Mathematica plots

Bell, Jordan. “Estimates for the Norms of Products of Sines and Cosines.” Journal of Mathematical Analysis and Applications 405, no. 2 (2013): 530–45. https://doi.org/10.1016/j.jmaa.2013.04.010.

PDF

Pn(θ)=k=1n(1eikθ) Pn(θ)=(2i)neiNθ2k=1nsin(kθ2),N=n(n+1)2
Plot of sine product for n=1 to 10
k=1102|sin(kθ)| for 0θπ2
fL1=12π02π|f(θ)|dθ K=log2+max0<w<1(1w0wlogsin(πt)dt)
Plot of sine product L1 norms for n=1 to 400
PnL1enKn1 for n=1,,400
fL2=(12π02π|f(θ)|2dθ)12
Plot of sine product L2 norms for n=1 to 400
PnL2enKn1/4 for n=1,,400
Qn(θ)=k=1n(1+eikθ) Qn(θ)=2neiNθ2k=1ncos(kθ2),N=n(n+1)2
Plot of cosine product for n=1 to 10
k=1102|cos(kθ)| for 0θπ2
f^(k)=02πf(θ)eikθdθ,kZ f^1=kZ|f^(k)|
Plot of l1 norms of Fourier coefficients of Pn for n=1 to 500
P^n1eKnn1/2 for n=1,,500
f^3=(kZ|f^(k)|3)13
Plot of l3 norms of Fourier coefficients of Qn for n=1 to 400
Q^n32nn1 for n=1,,400

Desmos plots

product of sin(kx)

product of cos(kx)