Quadratic formula
Exercise
Given the quadratic polynomial in standard form \(4x^2+4x-7\)
(i) Find the roots of the polynomial using the quadratic formula.
(ii) Draw the x-intercepts and the axis of symmetry.
(iii) Find the y-value of the vertex by evaluating the polynomial.
(iv) Graph the parabola using three points.
Solution
(i) Quadratic formula
Step 1: Write coefficients
The coefficients are
\[a=4, \quad b=4,\quad c=-7\]Step 2: Calculate discriminant
The discriminant is
\[\begin{align*} D&=b^2-4ac\\ &=(4)^2-4(4)(-7)\\ &= 16+112\\ &=128 \end{align*}\]Step 3: Apply quadratic formula
Quadratic formula
\[\begin{gather*} -\frac{b}{2a} \pm \frac{\sqrt{D}}{2a}\\ = -\frac{(4)}{2(4)} \pm \frac{\sqrt{128}}{2(4)}\\ = - \frac{4}{8} \pm \frac{\sqrt{128}}{8}\\ =-\frac{1}{2} \pm \frac{\sqrt{64}\sqrt{2}}{8}\\ =-\frac{1}{2} \pm \frac{8\sqrt{2}}{8}\\ =-\frac{1}{2} \pm \sqrt{2} \end{gather*}\]Roots \(x_1 =-\frac{1}{2}-\sqrt{2}, \quad x_2 =-\frac{1}{2}+\sqrt{2}.\)
(ii) x-intercepts and axis of symmetry
Step 1: x-intercepts
The x-intercepts are
\[(x_1,0),\quad (x_2,0)\]which is
\[\Big(-\frac{1}{2}-\sqrt{2},0\Big),\quad \Big(-\frac{1}{2}+\sqrt{2},0\Big).\]Step 2: Axis of symmetry
The axis of symmetry is the vertical line \(x=h\) where
\[\begin{align*} h &= -\frac{b}{2a}\\ &= -\frac{(4)}{2(4)}\\ &=-\frac{4}{8}\\ &=-\frac{1}{2}. \end{align*}\]Axis of symmetry
\[x=-\frac{1}{2}.\](iii) y-value of vertex
Use \(4x^2+4x-7\) with \(x=-\frac{1}{2}\):
\[\begin{align*} k&=4\big(-\frac{1}{2}\big)^2+4\big(-\frac{1}{2}\big)-7\\ &=4\big(\frac{1}{4}\big) - \frac{4}{2} -7\\ &=\frac{4}{4}-2-7\\ &=1-2-7\\ &=-8. \end{align*}\]The y-value of the vertex is \(k=-8\).
Thus the vertex is at
\[\big(-\frac{1}{2},-8\big).\](iv) Graph of parabola using three points
The x-intercepts \((x_1,0)\) and \((x_2,0)\) are
\[\big(-\frac{1}{2}-\sqrt{2},0\big),\quad \big(-\frac{1}{2}+\sqrt{2},0\big)\]and the vertex \((h,k)\) is
\[\big(-\frac{1}{2},-8\big).\]