Factoring a quadratic polynomial in standard form
\[\begin{align*}
(qx+r)(sx+t)&=(qx)(sx)+(qx)(t)+(r)(sx)+(r)(t)\\
&=qsx^2+qtx+rsx+rt\\
&=(qs)x^2+(qt+sr)x+rt
\end{align*}\]
\[ax^2+bx+c=(qx+r)(sx+t)\]
if and only if
\[\begin{align*} a&=qs\\ b&=qt+sr\\ c&=rt \end{align*}\]Let
\[m = qt\]and
\[n = sr.\]Then
\[mn=ac,\qquad m+n=b\]and
\[\begin{align*} ax^2+bx+c&=ax^2+mx+nx+c\\ &=(qs)x^2+qtx+srx+rt\\ &=qx(sx+t)+r(sx+t)\\ &=(qx+r)(sx+t). \end{align*}\]If \(mn=ac\) and \(m+n=b\) then \(n=b-m\) and so
\[m(b-m)=ac\]i.e.
\[m^2-bm+ac=0\] \[15x^2+61x+34\]https://www.chilimath.com/lessons/intermediate-algebra/factoring-trinomial-box-method/