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At this point, we can look at a time series and, using software or by developing our own code, 

estimate the order of the process and estimate the coefficients describing autoregressive or moving 

average components. We also know how to judge the quality of a model. 

To push further, we will explore ways to use our past data in order to say something intelligent 

about what values we are likely to observe in the future. 

Simple Exponential Smoothing 

In the handy reference A Little Book of R for Time Series by Avril Coghlan, the author reads in a 

classic data set describing the total annual rainfall recorded during the years 1813-1912, values 

measured in inches, for London, England (original data from Hipel and McLeod, 1994).  You can 

access these data from the comfort and safety of your R script with the scan() command. The 

author’s R code has been edited slightly and is presented below.  

rm(list=ls(all=TRUE))rain.data <- 

scan("http://robjhyndman.com/tsdldata/hurst/precip1.dat",skip=1) 

rain.ts <- ts(rain.data, start=c(1813)) 

We’d like to produce some plots summarizing the nature of our data. The histogram shows data 

that are not quite symmetrical and mound shaped. 

par( mfrow=c(1,2) ) 

hist(rain.data, main="Annual London Rainfall 1813-1912", 

 xlab="rainfall in inches") 

 

qqnorm(rain.data,main="Normal Plot of London Rainfall") 

qqline(rain.data) 
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Of course we also plot the data and look at the ACF. 

 

par( mfrow=c(2,1) ) 

plot.ts(rain.ts, main="Annual London Rainfall 1813-1912", 

     xlab="year", ylab="rainfall in inches") 

  

acf(rain.ts, main="ACF: London Rainfall") 

 

It’s hard to look at these plots and think of an obvious model. The data themselves exhibit 

some skew and aren’t terribly far from normally distributed. The autocorrelations seem 

pretty weak.  Even auto.arima() kind of gives up on us. 

library(forecast) 
auto.arima(rain.ts) 
 
Series: rain.ts  
ARIMA(0,0,0) with non-zero mean  
 
Coefficients: 
          mean 
       24.8239 
s.e.    0.4193 
 
sigma^2 estimated as 17.76:  log likelihood=-285.25 
AIC=574.49   AICc=574.61   BIC=579.7 
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If you could hop in your Tardis and time travel back to 1912, would you be able to make a 

prediction about the 1913 rainfall given the data gathered in the years prior? How would 

you do it? (Make the prediction, not the time travel). 

Naïve method 

The simplest way we can think to make a forecast is to take the previous year’s data and just 

assume that will happen again in the current year. In our data set, the last few years have 

annual rainfall as listed. 

YEAR 1909 1910 1911 1912 1913 

RAINFALL 26.75 25.36 24.79 27.88 ??? 

In this naïve method, you would forecast that the rainfall in 1913 will be 27.88 inches. If you 

can find someone who will pay you to make predictions in this manner please let me know 

because I usually have to work harder for my money. 

Average method 

We should pause and develop a little notation. Let’s assume that we have a time series of n 

points, listed in the usual way as   𝑥1, 𝑥2, … , 𝑥𝑛. Even though it’s fun to watch people fight 

about the differences between prediction and forecasting, but we’ll just loosely consider a 

forecast to be a prediction about a future value. We will then make a forecast about the future 

value h lags away based upon data currently observed at the nth time, denoted as 𝑥𝑛+ℎ
𝑛 .  

𝑥𝑛+ℎ
𝑛  =  forecast at time n + h made from observations available at time n 

𝑥𝑛+ℎ
𝑛  =  𝑥

time for which you′d like a forecast

time for which you actually have data
 

In the current case, the naïve method would give a one step ahead forecast as 

𝑥𝑛+1
𝑛 = 𝑥𝑛   (𝑛𝑎𝑖̈𝑣𝑒 𝑚𝑒𝑡ℎ𝑜𝑑) 

A slight increase in complexity, especially if you believe there is some seasonality, is to 

predict the next future value based upon the corresponding value at the previous season.  

𝑥𝑛+1
𝑛 = 𝑥𝑛+1−𝑆   (𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑛𝑎𝑖̈𝑣𝑒 𝑚𝑒𝑡ℎ𝑜𝑑) 
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Just a little bit fancier, another very simple forecasting method is to predict the upcoming 

value as the average of all of the past values, weighted equally 

𝑥𝑛+1
𝑛 =

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
   (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑡ℎ𝑜𝑑) 

In this average method, you would forecast that the rainfall in 1913 will be 24.8239 inches. 

Frankly, I still don’t think you are earning your salary. 

Simple Exponential Smoothing 

If you’d like to make a forecast based upon past values, but would like to give a greater weighting 

to values that are more recent, consider Simple Exponential Smoothing (SES). All we need is a 

decaying sequence of weights. The geometric series is a pretty obvious choice since they decrease 

at a constant ratio. We scale to make the weights add to 1. 

Our commonly used convergence result is that 

∑(1 − 𝛼)𝑘 =
1

𝛼

∞

𝑘=0

 

For example, if we let  𝛼 =
1

2
 we’d say that  

1 +
1

2
+

1

4
+

1

8
+ ⋯ = 2 

Multiply both sides of the sum by  𝛼  and we can say that 

 ∑ 𝛼(1 − 𝛼)𝑘 = 1 = 𝛼 + 𝛼(1 − 𝛼) + 𝛼(1 − 𝛼)2 + ⋯ + 𝛼(1 − 𝛼)𝑘 + ⋯

∞

𝑘=0

 

We can use these values as our weights.  In this forecasting framework we would write 

𝑥𝑛+1
𝑛 = 𝛼𝑥𝑛 + 𝛼(1 − 𝛼)𝑥𝑛−1   + 𝛼(1 − 𝛼)2𝑥𝑛−2 + ⋯ + 𝛼(1 − 𝛼)𝑘𝑥𝑛−𝑘 + ⋯      (𝑆𝐸𝑆) 

We form our weights and apply them looking back in time. You may complain that only a 

mathematician would create a weighting method involving an infinitely long series. Fair enough, 

but we can express this in so called recurrence form by creating the forecast at time n+1 as an 
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update to the forecast at time n (which is itself based upon data up until n-1), etc. So, start with 

the forecast for time  𝑛  based upon the preceding available data up to time 𝑛 − 1  

𝑥𝑛
𝑛−1 = 𝛼𝑥𝑛−1 + 𝛼(1 − 𝛼)𝑥𝑛−2   + 𝛼(1 − 𝛼)2𝑥𝑛−3 + ⋯ 

A simple trick here: 

(1 − 𝛼) 𝑥𝑛
𝑛−1 = 𝛼(1 − 𝛼)𝑥n−1 + 𝛼(1 − 𝛼)2𝑥n−2   + 𝛼(1 − 𝛼)3𝑥n−3 + ⋯ 

Let’s use this to obtain the forecast for time  𝑛 + 1 based upon data up until time  𝑛 . 

𝑥𝑛+1
𝑛 = 𝛼𝑥𝑛 + 𝛼(1 − 𝛼)𝑥𝑛−1   + 𝛼(1 − 𝛼)2𝑥𝑛−2 + ⋯ + 𝛼(1 − 𝛼)𝑘𝑥𝑛−𝑘 + ⋯ 

𝑥𝑛+1
𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼) 𝑥𝑛

𝑛−1 

You can see that we form a new forecast by weighting the previous forecast 𝑥𝑛
𝑛−1 and updating 

with the fresh data point  𝑥𝑛. We need to start somewhere, so define  

𝑥2
1 = 𝑥1 

and then proceed inductively. 

𝑥3
2 = 𝛼 𝑥2 + (1 − 𝛼)𝑥2

1 

𝑥4
3 = 𝛼 𝑥3 + (1 − 𝛼)𝑥3

2 

⋮ 

Not to belabor the point, but you can write this as 

new forecast at time 𝑛 + 1 = 𝛼 ⋅ data at time 𝑛 + (1 − 𝛼) ⋅  old forecast at time 𝑛 

If you let α = 1  you are of course back to naïve forecasting. Large values of  α  (i.e. those values 

of α ≈ 1 ) will cause the series to decay rapidly and put great emphasis on “near” observations. 

Smaller values of  α  cause the series to decay more slowly and thus afford a larger weighting to 

data points further in the past. We can easily write a for-loop to implement this procedure. It’s 

instructive to implement SES yourself before calling a package. 
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alpha=.2   #increase alpha for more rapid decay  
forecast.values = NULL #establish array to store forecast values 
 
n = length(rain.data) 
 
#naive first forecast 
forecast.values [1] = rain.data[1] 
 
#loop to create all forecast values 
for( i in 1:n ) { 
 forecast.values [i+1] = alpha*rain.data[i] + (1-alpha)* forecast.values [i] 
} 
 
paste("forecast for time",n+1," = ", forecast.values [n+1]) 

 

The paste() command may be new to us, but it’s pretty obvious and allows us to concatenate 

strings.  

"forecast at time:  101  =  25.3094062064236" 

Moving Towards a Least Squares Approach 

The choice of α = 0.2 was totally unmotivated in the preceding. To find the optimal α value for a 

particular time series we can look at our forecast errors. Since we produce forecasts at every time 

step we can keep a running total of how we are doing. Define the prediction error at time n as 

𝑒𝑛 ≡ data value at time 𝑛 − forecast value for time 𝑛 

𝑒𝑛 ≡ 𝑥𝑛 − 𝑥𝑛
𝑛−1 

A measure of quality is then  

SSE(α) =  ∑(𝑥𝑛 − 𝑥𝑛
𝑛−1)2

n

i=1

 

We can calculate SSE(α) for various values between 0 and 1 and see which returns the smallest 

aggregate error. I did this by placing the previous code in another for-loop. As usual, the code is 

meant to be transparently obvious, not display coding efficiency. (Excuses, excuses…) 
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SSE=NULL 

n = length(rain.data) 

alpha.values = seq( .001, .999, by=0.001) 

number.alphas = length(alpha.values) 

 

for( k in 1:number.alphas ) { 

  forecast.values=NULL 

  alpha = alpha.values[k] 

  forecast.values[1] = rain.data[1] 

  for( i in 1:n ) { 

    forecast.values[i+1] = alpha*rain.data[i] + (1-alpha)*forecast.values[i] 

  } 

  SSE[k] = sum( (rain.data - forecast.values[1:n])^2 )  

} 

plot(SSE~alpha.values, main="Optimal alpha value Minimizes SSE") 

 
 
 

Our best  α  in terms of minimizing the aggregate squared error is around 0.024 (found by zooming 

or by “interrogating” the SSE array to find which SSE value is the smallest, then retrieving the 

corresponding  α value. 

index.of.smallest.SSE = which.min(SSE) #returns position 24  

alpha.values[which.min(SSE)]  #returns 0.024 
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If you run with α = 0.024 you will make a prediction  

"forecast at time:  101  =  24.6771392918524" 

In the next lecture we learn about Holt-Winters as a forecasting procedure. For now, we will 

use the R command HoltWinters() to perform the SES for us by setting a couple of parameters 

equal to zero, and observing our results. Our forecasts differ slightly because our alpha is very 

slightly less accurate (but not bad for just zooming!) If you are patient and have a reasonably fast 

machine, you can get a little closer with a finer grid. 

HoltWinters(rain.ts, beta=FALSE, gamma=FALSE) 

Holt-Winters exponential smoothing without trend and without seasonal component. 
 
Call: 
HoltWinters(x = rain.ts, beta = FALSE, gamma = FALSE) 
 
Smoothing parameters: 
 alpha:  0.02412151 
 beta :   FALSE 
 gamma:  FALSE 
 
Coefficients: a 24.67819 

 


