
Approximating square roots in antiquity

Jordan Bell
jordan.bell@gmail.com

March 24, 2023

Contents
1 Babylonia 2

2 Egypt 4

3 Music 4

4 Jews 6

5 Hippocrates of Chios 6

6 Plato 6

7 Aristotle 9

8 Plutarch 10

9 Euclid 13

10 Archimedes 15

11 Aristarchus of Samos 15

12 Theodosius 17

13 Menelaus 17

14 Eratosthenes 17

15 Hipparchus 17

16 Geographers 18

17 Ptolemy 22

1



18 Heron of Alexandria 32

19 Diodorus Siculus 37

20 Greek and Roman art 38

21 Varro 38

22 Vitruvius 39

23 Columella 40

24 Frontinus 43

25 Faventinus 44

26 Roman camps 45

27 Palladius 47

28 Agrimensores 48

29 Diophantus of Alexandria 52

30 Pappus of Alexandria 54

31 Theon of Alexandria 54

32 Side and diagonal numbers 55

33 Arabic 55

34 Continued fractions 56

1 Babylonia
Neugebauer and Sachs [84, pp. 42–43], YBC 7289: in a square of side 2, the
diagonal is 1+ 24

60 +
51
602 +

10
603 . Neugebauer and Sachs suggest that this value was

obtained by the following method. Given a, let α1 satisfy α1 >
√
a. Then let β1

be such that
√
a is the geometric mean of α1 and β1, that is, α1 :

√
a =

√
a : β1,

which means β1 = a
α1

<
√
a. Then let α2 be the arithmetic mean of α1 and

β1, i.e. α2 = α1+β1

2 , and as α2 is the arithmetic mean of α1 and β1 and
√
a is

the geometric mean of α1 and β1 it holds that α2 >
√
a. Then let β2 be such

that
√
a is the geometric mean of α2 and β2, that is, α2 :

√
a =

√
a : β2, which

means β2 = a
α2

<
√
a.
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For a = 2, take α1 = 3
2 = 1 + 30

60 , which satisfies α2
1 = 2 + 15

60 > 2 and so
α1 >

√
2. Then

β1 =
2

1 + 30
60

= 1 +
20

60
.

Then

α2 =
1 + 30

60 + 1 + 20
60

2
= 1 +

25

60
.

Then
β2 =

2

1 + 25
60

= 1 +
24

60
+

42

602
+

21

603
+

10

604
+ · · · .

Then

α3 =
1 + 25

60 + 1 + 24
60 + 42

602 + 21
603 + 10

604 + · · ·
2

= 1 +
24

60
+

51

602
+

10

603
+

35

604
+ · · · .

Fowler and Robson [39]
Neugebauer [81] on square root approximations in Babylonian mathematics
YBC 7243 [84, pp. 136–139], Neugebauer and Sachs,

√
2 ∼ 1; 245110.

BM 15285, B 1 [110, p. 54]: draw a first square whose side is 1, then draw
a second square inside that touches the first. Then draw a third square inside
the second that touches the second. What is the surface of the third square?

AO 6484, Problem 8 [110, p. 78]: if the diagonal of a square is 10 cubits, what
is the side of the square? Mutiply 10 by 42′30′′ = 42

60+
30
602 , getting 7◦5′ = 7+ 5

60 .
In fact, the side of the square has length

√
50, so this amounts to

√
50 ∼ 7+ 5

60 .
YAT 6598, Problem 6 [110, p. 130]: for a rectangle whose height is one demi-

ninda 2 cubits and whose width is 2 cubits, what is the diagonal? (A ninda is
12 cubits, a demi-ninda is 6 cubits, and x′ means x′ ninda, e.g. 10′ means 1

6
ninda, namely 2 cubits.) Square 10′, the width, getting 1′40′′. Divide this by
40′, the height, getting 1′40′′ · 1

40′ = 2′30′′. Take half of this, getting 1′15′′. Add
this and the height, getting 1′15′′ + 40′ = 41′15′′. This is an instance of√

a2 + b2 ∼ a+
1

2
· b2 · 1

a
,

with a = 40′, the height and b = 10′, the width. See Weidner [116].
Høyrup [65]
Friberg [42] W 23291 §4b: area of equilateral triangle triangle with side

length 1 is 26
60 + 15

602 .
Friberg [42, p. 286] W 23291 §4c; pp. 302–304, VAT 7848 §1.
Friberg [43] Kassite MS3876, 3
Friberg [41, p. 548], Ist Sippar 428
Goetze [45], Old Babylonian IM 52916: the height of an equilateral triangle

with side length s is s− 1
8s. (“an eighth is torn out”). The area is ; 2615 s2.

Tell Harmal [47], IM 52301
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Bruins [14] and [13]
Bruins and Rutten [16], TMS 3, 27, regular hexagon, no. 31, no. 34
Old Babylonian tablet BM 80209, Problem 2 [40]: “if each square-side is [ ...

] 20, what is the transversal?”
Neugebauer [82] MKT: II.43; BM 85194, Problem 4
Robson [93] and [92]

2 Egypt
P. P11529, Schubart [103]

Rhind Mathematical Papyrus, Problems 41-60. The area of a regular octagon
with side length a is A = 2(1 +

√
2)a2. The length of an apothem is r =

1
2 (1 +

√
2)a. Thus, if r = 9

2 then a = 9
1+

√
2

and A = 162
1+

√
2
. In Problem 50,√

7/9 ∼ 8/9.
Problem 48: octagon. See Vogel [113, p. 66].
Problem 58 [21, p. 167]
Gillings [44]
Parker, Demotic Mathematical Papyri [87], Problem 7:

√
1500 ∼ 38 +

2

3
+

1

20
.

Demotic Mathematical Papyri, Parker, Problem 32, Problem 36√
133 +

1

3
∼ 11 +

1

2
+

1

20
.

Parker [86]
P. Dem. Heidelberg 663, Parker [88]
Cairo papyrus JE 89127, Problem 33
Berlin Papyrus 6619
BM 10520, Problem 62:

√
10 ∼ 3 +

1

6
.

Papyrus Berlin 11529

√
2 ∼ 1 +

1

5
+

1

7
+

1

14
=

99

70
.

Knorr [72] fractions
Bagnall, wax tablets, TVarie 71 [3]

3 Music
Philolaus, Fragment 6a [66, pp. 146–147], from Nicomachus, Manual of Har-
monics 9:
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The magnitude of harmonia (fitting together) is the fourth (syllaba)
and the fifth (di’ oxeian). The fifth is greater than the fourth by the
ratio 9 : 8 [a tone]. For from hypatē [lowest tone] to the middle string
(mesē) is a fourth, and from the middle string to neatē [highest tone]
is a fifth, but from neatē to the third string is a fourth, and from the
third string to hypatē is a fifth. That which is in between the third
string and the middle string is the ratio 9 : 8 [a tone], the fourth
has the ratio 4 : 3, the fifth 3 : 2, and the octave (dia pasōn) 2 : 1.
Thus the harmonia is five 9 : 8 ratios [tones] and two dieses [smaller
semitones]. The fifth is three 9 : 8 ratios [tones] and a diesis, and
the fourth two 9 : 8 ratios [tones] and a diesis.

Huffman [66, p. 164] gives a nihil obstat for the following suggestion of Tan-
nery. From the fifth 3 : 2 take away the fourth 4 : 3, getting the tone 9 : 8, which
is lesser than 4 : 3. From 4 : 3 take away 9 : 8, getting 32 : 27, which is greater
than 9 : 8. From 32 : 27 take away 9 : 8, getting the diesis 256 : 243, which
is lesser than 9 : 8. This procedure can be continued. From 9 : 8 take away
256 : 243, getting the apotome 2187 : 2048, which is greater than 256 : 243.
From 2187 : 2048 take away 256 : 243, getting the comma 531441 : 524288,
which is lesser than 256 : 243.

Philolaus, Fragment 6b [66, p. 364], from Boethius, De Institutione Musica
III.8 (according to Huffman, it is uncertain if this fragment is genuine):

Philolaus, then, defined these intervals and intervals smaller than
these in the following way: diesis, he says, is the interval by which
the ratio 4 : 3 is greater than two tones. The comma is the interval
by which the ratio 9 : 8 is greater than two dieses, that is than two
smaller semitones. Schisma is half of a comma, diaschisma half of a
diesis, that is a smaller semitone.

Archytas of Tarentum. Boethius, De Institutione Musica III.11, a superpar-
ticular ratio cannot be divided into equal parts.

Octave is 2 : 1, whole tone is 9 : 8, fourth is 4 : 3, fifth is 3 : 2. A semitone
satisfies x2 = 2 : 1. A tone is a minor semitone and an apotome; an apotome is
37 : 211; an apotome is a minor semitone and a comma; a comma is 312 : 219.

A superparticular ratio is a pair of numbers A and B such that A > B and
B is a proper divisor of A−B.

Archytas’s theorem is in Sectio canonis 3
Archytas’s theorem says that an interval whose ratio is epimoric cannot be

halved: Sectio canonis 16, 18; Theo of Smyrna 53.1–16, 70.14–19; Ptolemy,
Harmonics 24.10–11.

Divide the fourth into three intervals, two of which are equal: 4 : 3 = x ·x ·y.
Take x to be a whole tone: x = 9 : 8. Then y = 256 : 243. y is called the
leimma. cf. diesis

Sectio canonis, Postulate ix, notes are related in a ratio of number.
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Barker [5, p. 223]: Theon of Smyrna, On Mathematics Useful for the Under-
standing of Plato, √

9

8
∼ 17

16
.

Aristides Quintilianus, De Musica 95.20ff. [5, p. 496]:
√

9
8 ∼ 17

16 .
Ptolemy, Harmonics I.10 [5, pp. 297–298]
Ptolemy, Harmonics I.11 [5, pp. 298–299]
Ptolemy, Harmonics I.16 [5, pp. 312–313]
Nicomachus, Manual of Harmonics
Macrobius, Commentary on the Dream of Scipio [105, pp. 188–189] 2.1.21–

23:

[21] The ancients chose to call the interval smaller than a tone a
semitone, but this must not be taken to mean half a tone any more
than we would call an intermediate vowel a semivowel. [22] The
tone by its very nature cannot be divided equally: inasmuch as it
originates in the number nine, which cannot be equally divided, the
tone refuses to be divided into two halves; they have merely called
an interval smaller than a full tone a semitone, but it has been
discovered that there is as little difference between it and a full
tone as the difference between the numbers 256 and 243. [23] The
early Pythagoreans called the semitone diesis, but those who came
later decided to use the word diesis for the interval smaller than the
semitone. Plato called the semitone leimma.

Censorinus, De Die Natali 10.7 [85, p. 18]: according to Aristoxenus the
octave is 6 tones, while according to the Pythagoreans the octave is 5 tones and
2 semitones, “so Pythagoras and the mathematicians, who pointed out that two
semi-tones do not necessarily add up to a full tone”.

Proclus, Commentary on Plato’s Timaeus [4]
Cohen and Drabkin [22, p. 286]

4 Jews
Sukkah 8a,b, Eruvin 23a–b, 57a, 76b, Bava Batra 101b.

5 Hippocrates of Chios

Square lunes:
√
N , N positive integers.

6 Plato
Bulmer-Thomas [17]
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Mueller [80]
Hippias Major 303c
Parmenides 149a–c, complete induction and continued fractions. Allen [2,

pp. 238–258]
Statesman 266b
Meno 82b-85b [7, pp. 102–111]. Let ABCD be a square and let f, u, g, t

be the midpoints respectively of AB,BC,CD,DA. Socrates asks the slave boy
what the area of ABCD is, and to explain what sort of answer he wants he
explains that the area of the rectangle fBCg is 1 · 2 square feet, and then says
that the area of ABCD is 2 · 2 square feet, which the slave boy then says is 4
square feet. The slave boy agrees that there exists a square whose area is double
that of ABCD, and when asked by Socrates what its area is, says correctly 8
square feet, and then says incorrectly that a side of this bigger square is twice a
side of ABCD. Further draw a square Y BWX where A is the midpoint of Y B,
C is the midpoint of BW , and D is the center of the square. Socrates explains
that the area of Y BWX is 4 times the area of ABCD, namely 16 square feet.
Socrates then states a square whose area is 8 square feet is twice the area of
ABCD and half the area of Y BWX, and therefore that a side of the desired
square is greater than BC (2 feet) and less than BW (4 feet). When Socrates
asks what the slave boy thinks the side of the desired square is, and the slave
boy tentatively answers 3 feet. Now let M be the midpoint of Y A, let K be the
midpoint of CW , and let MBKL be a square, whose sides are thus each 3 feet.
The slave boy is asked the area of the square MBKL and correctly answers 9
square feet, which is greater than 8 square feet. Then 83e–84a [7, p. 108]:

Socrates: Ah. So we still haven’t got our square of eight square feet;
we don’t get it from the three-foot line either.
Slave: No, we don’t.
Socrates: Well, what line do we get it from? Try and tell us exactly.
And if you don’t want to use numbers, you can just show us. [He
hands the slave his stick.] What line?
Slave: [He stares at the drawing.] Honest to god, Socrates, I don’t
know!

Socrates newly draws the square ABCD, with each side 2 feet. Further
draw a square whose area is 4 times that of ABCD, with A the midpoint of
the left side, C the midpoint of the bottom side, G the midpoint of the right
side, and T the midpoint of the top side; D is the center of this square. Then
ACGT is a square. Socrates then guides the slave boy thus: the square ABCD
has twice the area of the triangle ACD, namely ABCD : ACD = 2 : 1, and
the square ACGT is made of 4 triangles each congruent to the triangle ACD,
namely ACGT : ACD = 4 : 1. Therefore ACGT : ABCD = 2 : 1, and as
ABCD is 4 square feet this means that ACGT is 8 square feet, and thus AC is
a side of a square twice the square ABCD. Klein [70, pp. 99–102] comments on
this passage, and writes, “At best, this side can only be drawn or ‘shown.’ And
Socrates will hint at this situation at every decisive turn of the search.”
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Laws 819d–820d
Theaetetus 147a–b [24, p. 22], Socrates says, “Suppose we were asked about

some obvious common thing, for instance, what clay is; it would be absurd
to answer: potters’ clay, and oven-makers’ clay, and brick-makers’ clay.” “To
begin with, it is absurd to imagine that our answer conveys any meaning to
the questioner, when we use the word ‘clay’, no matter whose clay we call it
– the doll-maker’s or any other craftsman’s. You do not suppose a man can
understand the name of a thing, when he does not know what the thing is?”
Then (147c), “And besides, we are going an interminable way round, when our
answer might be quite short and simple. In this question about clay, for instance,
the simple and ordinary thing to say is that clay is earth mixed with moisture,
never mind whose clay it may be.”

Then (147d–148b):

Theaetetus: Theodorus here was proving to us something about
square roots, namely that the sides (or roots) of squares represent-
ing three square feet and five square feet are not commensurable in
length with the line representing one foot; and he went on in this
way, taking all the separate cases up to the root of seventeen square
feet. There for some reason he stopped. The idea occurred to us,
seeing that these square roots were evidently infinite in number, to
try to arrive at a single collective term by which we could designate
all these roots.

Socrates: And did you find one?

Theaetetus: I think so; but I should like your opinion.

Socrates: Go on.

Theaetetus: We divided number in general into two classes. Any
number which is a product of a number multiplied by itself we likened
to the square figure, and we called such a number ‘square’ or ‘equi-
lateral’.

Socrates: Well done.

Theaetetus: Any intermediate number, such as 3 or 5 or any number
that cannot be obtained by multiplying a number by itself, but has
one factor either greater or less than the other, so that the sides
containing the corresponding figure are always unequal, we likened
to the oblong figure, and we called it an oblong number.

Socrates: Excellent; and what next?

Theaetetus: All the lines which form the four equal sides of the plane
figure representing the equilateral number we defined as length, while
those which form the sides of squares equal in area to the oblongs
we called ‘roots’ (surds), as not being commensurable with others in
length, but only in the plane areas to which their squares are equal.
And there is another distinction of the same sort in the case of solids.
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Brown [12] on Theaetetus.
Timaeus 36b [23, pp. 71–72]:

And he went on to fill up all the intervals of 4
3 (i.e. fourths) with the

interval 9
8 (the tone), leaving over in each a fraction. This remaining

interval of the fraction had its terms in the numerical proportion of
256 to 243 (semitone).

54c–d [23, p. 212]:

Now all triangles are derived from two, each having one right angle
and the other angles acute...

53d – 54b [23, pp. 213–214]: among scalene triangles, the best of them for
the construction of bodies is that a pair of which is an equilateral triangle,
which has “the greater side triple in square of the lesser”; among the isosceles
triangles...

Constructs the tetrahedron, octahedron, icosahedron, and cube 54d–55c [23,
pp. 216–218].

57c–d [23, p. 235]
cf. Chalcidius, On Plato’s Timaeus
Republic 546
Republic 546b–d, translated by Thomas [108, pp. 398–401].
McNamee and Jacovides [77]
Fossa and Erickson [37]

7 Aristotle
Topics VIII.3, 158b29-35 [53, p. 80]:

In mathematics, too, some things would seem to be not easily proved
for want of a definition, e.g. that the straight line, parallel to the side,
which cuts a plane [a parallelogram] divides similarly both the line
and the area. But, once the definition is stated, the said property is
immediately manifest; for the (operation of) reciprocal subtraction
applicable to both the areas and the lines is the same (or gives the
same result); and this is the definition of the same ratio.

Alexander of Aphrodisias [108, p. 507] writes in his commentary on this
passage:

For likewise when this is stated it is not obvious; but when the
definition of proportion is enunciated it becomes obvious that both
the line and the area are cut in the same proportion by the line
drawn parallel. For the definition of proportions which those of
old time used is this: Magnitudes which have the same alternating
subtraction (anthyphairesis) are proportional. But he has called
anthyphairesis antanairesis.
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8 Plutarch
Plutarch, De animae procreatione in Timaeo 17 (Moralia XIII) [20, pp. 303–
309]:

What the “leimma” is and what is Plato’s meaning you will perceive
more clearly, however, after having first been reminded briefly of the
customary statements in the Pythagorean treatises. For an interval
in music is all that is encompassed by two sounds dissimilar in pitch;
and of the intervals one is what is called the tone, that by which the
fifth is greater than the fourth. The harmonists think that this,
when divided in two, makes two intervals, each of which they call
a semitone; but the Pythagoreans denied that it is divisible into
equal parts and, as the segments are unequal, name the lesser of
them “leimma” because it falls short of the half. This is also why
among the consonances the fourth is by the former made to consist
of two tones and a semitone and by the latter of two and a “leimma.”
Sense-perception seems to testify in favour of the harmonists but in
favour of the mathematicians demonstration, the manner of which
is as follows. It has been found by observation with instruments
that the octave has the duple ratio and the fifth the sesquialteran
and the fourth the sesquitertian and the tone the sesquioctavan. It
is possible even now to test the truth of this either by suspending
unequal weights from two strings or by making one of two pipes with
equal cavities double the length of the other, for of the two pipes the
larger will sound lower as hypatê to nêtê and of the strings the one
stretched by the double weight will sound higher than the other as
nêtê to hypatê. This is an octave. Similarly too, when lengths and
weights of three to two are taken, they will produce the fifth and of
four to three the fourth, the latter of which has sesquitertian ratio
and the former sesquialteran. If the inequality of the weights or the
lengths be made as nine to eight, however, it will produce an interval,
that of the tone, not concordant but tuneful because,to put it briefly,
the notes it gives, if they are struck successively, sound sweet and
agreeable but, if struck together, harsh and painful, whereas in the
case of consonances, whether they be struck together or alternately,
the sense accepts with pleasure the combination of sounds. What is
more, they give a rational demonstration of this too. The reason is
that in a musical scale the octave is composed of the fifth and the
fourth and arithmetically the duple is composed of the sesquialter
and the sesquiterce, for twelve is four thirds of nine and half again
as much as eight and twice as much as six. Therefore the ratio of
the duple is composite of the sesquialter and the sesquiterce just as
that of the octave is of the fifth and the fourth, but in that case the
fifth is greater than the fourth by a tone and in this the sesquialter
greater than the sesquiterce by a sesquioctave. It is apparent, then,
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that the octave has the duple ratio and the fifth the sesquialteran
and the fourth the sesquitertian and the tone the sesquioctavan,

18 [20, pp. 309–315]:

Now that this has been demonstrated, let us see whether the sesquioc-
tave is susceptible of being divided in half, for, if it is not, neither
is the tone. Since nine and eight, the first numbers producing the
sesquioctavan ratio, have no intermediate interval but between them
when both are doubled the intervening number produces two inter-
vals, it is clear that, if these intervals are equal, the sesquioctave is
divided in half. But now twice nine is eighteen and twice eight six-
teen; and between them these numbers contain seventeen, and one of
the intervals turns out to be larger and the other smaller, for the for-
mer is eighteen seventeenths and the second is seventeen sixteenths.
It is into unequal parts, then, that the sesquioctave is divided; and,
if this is, the tone is also. Neither of its segments, therefore, when it
is divided, turns out to be a semitone; but it has rightly been called
by the mathematicians “leimma.” This is just what Plato says god
in filling in the sesquiterces with the sesquioctaves leaves a fraction
of each of them, the ratio of which is 256 to 243. For let the fourth
be taken as expressed by two numbers comprising the sesquitertian
ratio, 256 and 192; and of these let the smaller, 192, be placed at
the lowest note of the tetrachord and the larger, 256, at the highest.
It is to be proved that, when this is filled in with two sesquioctaves,
there is left an interval of the size that numerically expressed is 256
to 243. This is so, for, when the lower note has been raised a tone,
which is a sesquioctave, it amounts to 216; and, when this has been
raised again another tone, it amounts to 243, for the latter exceeds
216 by 27 and 216 exceeds 192 by 24, and of these 27 is an eighth
of 216 and 24 an eighth of 192. Consequently, of these three num-
bers the largest turns out to be sesquioctavan of the intermediate
and the intermediate sesquioctavan of the smallest; and the interval
from the smallest to the largest, i.e. that from 192 to 243, amounts
to an interval of two tones filled in with two sesquioctaves. When
this is subtracted, however, there remains of the whole as an interval
left over what is between 243 and 256, that is thirteen; and this is
the very reason why they named this number “leimma.” So I, for my
part, think that Plato’s intention is most clearly explained by these
numbers.

19 [20, pp. 315–317]:

As terms of the fourth, however, others put the high note at 288 and
the low at 216 and then determine proportionally those that come
next, except that they take the “leimma” to be between the two
tones. For, when the lower note has been raised a tone, the result is

11



243 and, when the higher has been lowered a tone, it is 256, for 213
is nine eighths of 216 and 288 nine eighths of 256, so that each of the
two intervals is that of a tone and there is left what is between 243
and 256; and this is not a semitone but is less, for 288 exceeds 256
by 32 and 243 exceeds 216 by 27 but 256 exceeds 243 by thirteen,
which is less than half of both the excesses 32 and 27. Consequently
it turns out that the fourth consists of two tones and a “leimma,”
not of two tones and a half. Such, then, is the demonstration of this
point. As to the following point, from what has been said before it
is not very difficult either to see why, after Plato had said that there
came to be intervals of three to two and of four to three and of nine
to eight, when saying that those of four to three are filled in with
those of nine to eight he did not mention those of three to two but
omitted them. The reason is that the sesquialter ⟨is greater than⟩
the sesquiterce by the sesquioctave ⟨so that with the sesquioctave’s⟩
addition to the sesquiterce the sesquialter is filled in as well.

20 [20, pp. 317–321]:

After the exposition of these matters the task of filling in the inter-
vals and inserting the means I should still have left to you for an
exercise to do yourselves though no one at all had happened to have
done it before; but now that this has been worked out by many ex-
cellent men and especially by Crantor and Clearchus and Theodorus,
all of Soli, it is not unprofitable to say a few words about the way
in which they disagree. For Theodorus unlike those others does not
make two rows but sets out the double and the triple numbers one
after another in a single straight line, relying for this in the first place
upon what is stated to be the cleavage of the substance lengthwise
that makes two parts presumably out of one, not four out of two,
and in the second place saying that it is suitable for the insertions
of the means to be arranged in this sequence, as otherwise there
will be disorder and confusion and transpositions to the very first
triple from the first double of the terms that ought to fill in each of
the two. Crantor and his followers, however, are supported by the
position of the numbers, paired off with plane numbers over against
plane and square over against square and cubic over against cubic
numbers, and in their being taken not in order but alternately even
and (30 b.) odd by ⟨Plato himself⟩. For after putting at the head
the unit, which is common to both, he takes eight and next there-
after twenty-seven, all but showing us the position that he assigns
to each of the two kinds. Now, to treat this with greater precision
is a task that belongs to others; but what remains is a proper part
of our present disquisition.
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9 Euclid
Euclid, Elements [54], [55], [56]

I.32: in a triangle the exterior angle is equal to the sum of the opposite
interior angles, and the sum of all the interior angles is two right angles.

I.43: complements in a parallelogram
I.45: to construct a parallelogram with a given angle and area equal to a

given rectilinear figure
I.47: Pythagorean theorem
II.2: let AB be a line and let C be point on AB, then square on AB is the

rectangle with sides AB,BC and the rectangle AB,AC.
II.4: let AB be a line and let C be a point on AB, then the square on AB

is the square on AC and the square on CB and twice the rectangle on AC,CB.
II.5: let AB be a line divided into unequal segments AD,DB and let C be

the midpoint of AB. Then the rectangle on AD,DB and the square on CD is
the square on CB.

II.6: let AB be a line and C its midpoint. Extend AB to AD. Then the
rectangle on AD,DB and the square on CB is the square on CD.

II.10: let AB be a line with C its midpoint, and extend AB to AD. Then
the square on AD and the square on DB is twice the square on AC and twice
the square on CD.

II.11: to divide a line AB into two segments, the larger AH and the smaller
HB, such that the square on AH is the rectangle on AB,BH.

II.14: to construct a square whose area is the a given rectilineal figure.
III.20: let BC be points on the circumference of a circle, with center O. Let

A be on the circumference. Then the central angle BOC is twice the inscribed
angle BAC.

III.26: let BC and EF be arcs of equal circles and suppose the central angles
BOC and EOF are equal, then the arcs BC and EF are equal, and likewise if
the inscribed angles BAC and EDF are equal.

III.27: if the arcs are equal then the angles are equal.
III.28: in two equal circles if chords CB and EF are equal then the arc CB

is equal to the arc EF .
III.29: in two equal circles if arcs CB and EF are equal, then chords CB

and EF are equal.
III.32: let BC be the arc of a circle and BF the tangent at point B. Let D

lie on the arc determined by B and C not included in the angle CBF . Then
the angles BDC and FBC are equal.

III.37: let D be a point outside a circle with center F and let DA be a secant
that cuts the circle at C. Let B be a point on the circle such that the rectangle
on AD,DC is equal to the square on DB. Then the line DB is tangent to the
circle at B.

IV.2: to inscribe a given triangle in a circle.
IV.6: to inscribe a given square in a circle.
IV.10: to construct an isosceles triangle where each base angle is twice the

summit angle.
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IV.11: to inscribe a regular pentagon in a given circle.
IV.12: to circumscribe a regular pentagon about a given circle.
IV.13: to inscribe a circle in a given regular pentagon.
IV.14: to circumscribe a circle about a given regular pentagon.
IV.15: to inscribe a regular hexagon in a circle.
V.15: let a : b = c : d. If a > c then b > d, if a = c then b = d, and if a < c

then b < d.
VI.1: if two triangles hae the same altitude then the areas of the triangles

have the same ratio as their bases, and likewise for parallelograms.
VI.8: in a right triangle drop a perpendicular from the vertex of the right

angle to the hypotenuse. Then the two new right triangles are similar to the
original.

VI.14
VI.16 mean, extreme
VI.17 mean, extreme
VI.25: to construct a rectilinear figure similar to a given rectilinear figure

and with the same area as another given rectilinear figure.
Plutarch, Quaestiones Convivales VIII.2.4, 720A [108, p. 177]:

Among the most geometrical theorems, or rather problems, is this
– given two figures, to apply a third equal to the one and similar
to the other; it was in virtue of this discovery they say Pythagoras
sacrificed. This is unquestionably more subtle and elegant than the
theorem which he proved that the square on the hypotenuse is equal
to the squares on the sides about the right angle.

VI.28
VI.30: mean and extreme ratio
VI.33
X.1
X.2
X.3
X.9
X.21 medial
X.24 medial area
X.36 binomial
X.73 apotome
X.76 minor
XIII.1
XIII.2
XIII.3
XIII.4
XIII.5
XIII.6: apotome
XIII.8: regular pentagon
XIII.9

14



XIII.10
XIII.11: minor
XIII.12
XIII.13, Lemma
XIV, Theorem 1
XIV, Lemma to Theorem 3
Knorr [71]
Optics, Proposition VIII [22, pp. 260–261]: if α, β are acute angles and α < β

then tanα : tanβ < α : β.

10 Archimedes
Archimedes, Measurement of a Circle, Proposition 3 states that if d is the di-
ameter of a circle and c is the circumference of the circle then

(
3 + 10

71

)
d <

c <
(
3 + 1

7

)
d [26, pp. 223–238]. To prove c <

(
3 + 1

7

)
d, it is taken as granted

that
√
3 : 1 > 265 : 153. To prove c >

(
3 + 10

71

)
d, it is taken as granted that√

3 : 1 < 1351 : 780.
Heath [58]
Sand Reckoner
Knorr [73, p. 522]: Eutocius
Hultsch [68]
Hofmann [63]

11 Aristarchus of Samos
Aristarchus, On the Sizes and Distances of the Sun and Moon, Proposition 4
[50, p. 367]. In the proof of this proposition, the following is taken as granted:
in a triangle BAD where ADB = 90◦ and BAD = 1◦, BAD : 45◦ > BD : DA.
(This is an instance of tan β

tanα < β
α when α and β are acute angles with β < α; here

α = 1
2ADB = 45◦ and β = BAD = 1◦.) It follows that tan 1◦ = BD : DA < 1

45 ;
in fact, tan 1◦ =; 1, 2, 50, . . . and 1

45 =; 1, 20. In this proposition, BD is the radius
of a circle such that DA touches the circle at D. Furthermore, let BF be the
radius of the circle that is perpendicular to BA, the line BA cuts this circle at
G, and H is taken on the circle such that the arc FD is equal to the arc HG.

Proposition 7 [50, p. 379]: let B be the center of a circle with radii BE,BA
that are perpendicular. Let when ABEF is a square and AG bisects FE, then
FB2 : BE2 = FG2 : GE2. But FB2 : BE2 = 2 : 1, so FG2 : GE2 = 2 : 1. It is
stated that because 49 : 25 < 2 : 1, then FG2 : GE2 > 49 : 25, and then FG :
GE > 7 : 5. If BCA is a right triangle where CAB = 3◦, then AB > 18BC,
which amounts to sin 3◦ < 1

18 . Conversely, let DKB be a right triangle, with
BDK = 3◦. Circumscribe this triangle, and in the circumscribed circle, inscribe
a regular hexagon one of whose sides is BL. Now, because DKB is a right angle,
BD is a diameter of the circle. The side of the inscribed hexagon is equal to the
radius of the circle (Elements IV.15). Thus, BD : BL = 2 : 1. The arc BL is 60◦
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and the arc BK is 6◦. But the arc BL has to the arc BK a ratio greater than BL
has to BK. (This is an instance of α : β > chordα : chordβ when α and β are
acute angles and α > β.) Therefore 10 : 1 > BL : BK, and as BD : BL = 2 : 1
we get BD : BK < 20 : 1. This means sin 3◦ = sinBDK = BK

BD > 1
20 .

Proposition 13 [50, p. 397]: 7921 : 4050 > 88 : 45. This can be found as
follows. 7921 = 4050 + 3871, 4050 = 3871 + 179, thus 7921

4050 = 1 + 3871
4050 and

4050
3871 = 1 + 179

3871 , so

7921

4050
= 1 +

3871

4050
= 1 +

1

1 +
179

3871

.

Next, 3871 = 21 · 179 + 112, 179 = 112 + 67, thus

3871

179
= 21 +

112

179
= 21 +

1

1 +
67

112

,

hence
7921

4050
= 1 +

1

1 +
1

21 +
1

1 +
67

112

Finally, 112 = 67 + 45, whence

7921

4050
= 1 +

1

1 +
1

21 +
1

1 +
1

1 +
45

67

.

Then

1 +
1

1 +
1

21 +
1

1 +
1

1 + 0

=
88

45

is an approximation from below to 7921
4050 .

Proposition 15 [50, p. 407]: 71755875 : 61735500 > 43 : 37. This can be
found as follows. 71755875 = 61735500 + 10020375, 61735500 = 6 · 10020375 +

16



1613250, 10020375 = 6 · 1613250 + 340875.

71755875

61735500
= 1 +

1

6 +
1

6 +
340875

1613250

.

Then

1 +
1

6 +
1

6 + 0

=
43

37

is an approximation from below to 71755875
61735500 .

Neugebauer [83]

12 Theodosius
There are scarcely any detailed modern expositions of spherical trigonometry;
one is Ratcliffe [91], Chapter 2.

Theodosius, Sphaerica III.11: ver Eecke [32] and Heiberg [59]

13 Menelaus
Menelaus [9]

14 Eratosthenes
Goldstein [46]

Neugebauer [83, pp. 336, 746–748]

15 Hipparchus
√
9750000 ∼ 3122 + 1

2 . cf. Heron, Metrica [102, pp. 18–20] and Ptolemy, Al-
magest IV.11. Toomer [111, p. 211].

Hipparchus, Commentary on Aratus I.3.5–7 [62, p. ], cf. Manitius [76, p. 27],
says the following about Aratus, Phaenomena 497:

In the first place, Aratus seems to me to be mistaken in thinking the
latitude of Greek lands to be such that the ratio of the longest day
to the shortest is as 5 to 3; for he says of the summer tropic, ‘If you
measure it as accurately as possible and divide it into eight parts,
five in the daylight will turn above the earth, and three below it.’
Now it is agreed that in Greek lands the gnomon at the equinox is to
its midday shadow in the ratio of 4 to 3. Consequently the longest
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day has a length of 14 3
5 hours and the latitude is approximately

37◦. Where, however, the longest day is to the shortest as 5 to 3,
the longest day has 15 hours and the latitude is approximately 41◦.
Consquently it is evident that the latter ratio does not hold for Greek
lands, but rather for the region about the Hellespont.

Hipparchus says

sin
1

2
(a− 12)15◦ = tanϕ tanω,

where a is the number of hours in the longest day, ϕ is the latitude of the place,
and ω is the latitude of the tropic.

Cohen and Drabkin [22, pp. 82–86]
Neugebauer [83]
Hipparchus, Fragment 41 [25, p. 91], in the Almagest I.67.22 and Theon of

Alexandria’s Commentary on the Almagest:

I have taken the arc from the northernmost limit to the most southerly,
that is the arc between the tropics, as being always 47◦ and more
than two-thirds but less than three-quarters of a degree, which is
nearly the same estimate as that of Eratosthenes and which Hip-
parchus also used; for the arc between the tropics amounts to almost
exactly 11 of the units of which the meridian contains 83.

[Theon’s comment.] This ratio is nearly the same as that of Eratos-
thenes, which Hipparchus also used because it had been accurately
mearued; for Eratosthenes determined the whole circle as being 83
units, and found that part of it which lies between the tropics to be
11 units; and the ratio 360◦ : 47◦42′40′′ is the same as 83 : 11.

In fact, 360◦ : 47◦42′40′′ = 16200 : 2147, and using the Euclidean algorithm
we get the approximations 7, 8, 15 : 2, 83 : 11, 16200 : 2147.

16 Geographers
Strabo, Geography 1.1.8 [99, p. 40]: “That the inhabited world is an island must
be assumed both from the senses as well as experience.”

1.1.12, Hipparchus Fragment 11 [25, p. 65]:

At all events it is a fact that many men have spoken of the neces-
sity for wide learning in relation to this subject [i.e. geography].
Hipparchus also rightly points out in his treatise aginst Eratos-
thenes that, while geographical knowledge is the concern of everyone
whether layman or scholar, it is impossible to attain it without con-
sideration of the heavens and of the observations of eclipses; thus one
cannot determine whether Alexandria in Egypt is north or south of
Babylon, or by how much, without investigation by means of the
climata. Similarly one cannot decide accurately whether places are
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situated to a greater or less degree towards the east or west except
by comparison of [the times of] eclipses of the sun and moon. This
is what Hipparchus says, anyway.

1.1.20 [99, p. 45]: “One must assume that the universe is sphere-shaped, and
that the surface of the earth is sphere-shaped, and moreover, what is fundamen-
tal to this, that the motion of the [heavenly] bodies is toward the center.”

2.1.29, Hipparchus Fragment 22 [25, pp. 73–75]:

Hipparchus, taking these things for granted and having shown, as
he thinks, that according to Eratosthenes Babylon is a little more
than 1000 stades further east than Thapsacus, again gratuitously
fabricates an assumption for his own use in his next argument; for
he says that, if a straight line is assumed drawn from Thapsacus
towards the south, and a line perpendicular to it from Babylon, a
right-angled triangle will be formed composed of the side drawn from
Thapsacus to Babylon, of the perpendicular drawn from Babylon to
the meridian through Thapsacus, and of the meridian itself through
Thapsacus. In this triangle he makes the hypotenuse the line from
Thapsacus to Babylon, which he says is 4800 stades, and the per-
pendicular from Babylon to the meridian through Thapsacus a little
more than 1000 stades, which is the amount by which the line to
Thapsacus [from the Caspian Gates] exceeds that up to Babylon
[from the frontier between Carmania and Persia]; and from this he
also calculates the remaining side about the right angle to be many
times longer than the said perpendicular.

Using 4800 stades for the hypotenuse and 1000 stades for one side, the other
side will be about 4695 stades, which is indeed much longer than 1000 stades.

2.1.34, Hipparchus Fragment 24 [25, p. 77]:

Neither is his subsequent conclusion correct. For, since Eratosthenes
had given the distance from the Caspian Gates to Babylon as stated
above [i.e. 6700 stades], from the Caspian Gates to Susa 4900 stades,
and from Babylon to Susa as 3400 stades, Hipparchus, again start-
ing from the same hypotheses, says that an obtuse-angled triangle
is formed with the Caspian Gates, Susa and Babylon at its vertices,
having the obtuse angle at Susa and the lengths of its sides as set
out above. Then he concludes that it will follow from these hypothe-
ses that the point of intersection of the meridian line through the
Caspian Gates and the parallel through Babylon and Susa is more
than 4400 stades further west than the intersection of the same par-
allel with the straight line running from the Caspian Gates to the
borders of Carmania and Persia; and that, in fact, this latter line
makes an angle of about 45◦ with a direction half-way between the
south and the equinoctial east; and that the river Indus runs paral-
lel to this line, so that this river also does not flow due south from
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the mountains, as Eratosthenes says it does, but in a direction be-
tween south and the equinoctial east, just as it has been drawn in
the ancient maps.

2.5.7, Eratosthenes Fragment 34 [98, p. 63]:

Since, according to Eratosthenes, the equator is 252,000 stadia, one
fourth would be 63,000. This is the distance from the equator to the
pole, fifteen sixtieths of the sixty [intervals] of the equator. From
the equator to the summer tropic is four [sixtieths], and this is the
parallel drawn through Syene. Each of these distances is computed
from known measurements. The tropic lies at Syene because there
at the summer solstice a gnomon has no shadow in the middle of the
day. The meridian through Syene is drawn approximately along the
course of the Nile from Meroë to Alexandria, which is about 10,000
stadia. It happens that Syene lies in the middle of that distance, so
that from there to Meroë is 5,000.

Meroë is between the 5th and 6th cataracts of the Nile.
2.5.10 [99, p. 134]: it will make only a small difference if a map of the

inhabited earth is drawn on a flat surface at least 7 feet long rather than a
sphere with diameter at least 10 feet:

It will make only a small difference if we draw the parallels and
meridians with straight lines, by which we plainly show the latitudes,
winds, and other differences, as well as the positioning of the parts
of the earth relative to each other and the heavens, parallel [lines] for
the parallels, and ones at right angles for those at right angles, for
the difference can easily be transferred from what is seen by the eye
on a flat surface to the form and size carried around the sphere. We
can say that the oblique circles and their straight lines are analogous.
Although the various meridians drawn through the pole converge on
the sphere toward a single point, on the surface of the plan there is
no difference if the straight lines converge slightly, but there is often
no necessity for this, nor is it obvious when the circumferential and
converging lines are transferred to the surface of the plan and drawn
as straight lines.

2.5.16, Eratosthenes Fragment 46 [98, p. 69]:

Such being the shape of the entire [inhabited world], it appears useful
to take two straight lines, which cut across each other at a right
angle, one going through all the greatest width and the other the
length, and the first will be one of the parallels and the other one
of the meridians. Then one should think of lines parallel to these
on either side, which are used to divide the land and the sea that
we happen to use. Thus the shape will be somewhat more clear, as
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I have described, according to the length of the line, with different
measurements for both the length and width, and the terrestrial
regions will be better manifested, both in the east and west as well
in as the south and north.

2.5.38, Hipparchus Fragment 48 [25, p. 95]:

In the regions some 400 stades south of the parallel through Alexan-
dria and Cyrene, where the longest day is 14 equinoctial hours, Arc-
turus reaches the zenith, but decline a little towards the south. In
Alexandria the gnomon bears to its equinoctial shadow a ratio of
5 : 3. These regions are 1300 stades south of Carthage, if it be true
that in Carthage the gnomon has a ratio of 11 : 7 for its equinoctial
shadow.

2.5.39, Eratosthenes Fragment 60 [99, pp. 148–149]: “In the region of Ptole-
mais – the one in Phoenicia – and Sidon and Tyre, the longest day has 14 1

4
equinoctial hours [Hipparchos, F49]. These regions are about 1,600 stadia fa-
ther north than Alexandria and about 700 from Karchedon. In the Peloponnesos
and around the middle of the Rhodia, around Xanthos in Lykia or a little to the
south, and also 400 stadia south of Syracuse, the longest day has 14 1

2 equinoctial
hours [Hipparchos, F50]. These places are 3,640 from Alexandria and ⟨ 2,740
from Karchedon ⟩.”

2.5.40, Eratosthenes Fragment 60 [99, p. 149]: “In the area around Alexan-
dria Troas, around Amphipolis, Apollonia in Epeiros, and south of Rome but
north of Neapolis, the longest day has 15 equinoctial hours [Hipparchos, F51].
The parallel is about 7,000 stadia north of the one through Alexandria next
to Egypt and more than 28,800 from the equator, 3,400 from the one through
Rhodes, and 1,500 south of Byzantion, Nikaia and the region around Massalia.”

2.5.41, Eratosthenes Fragment 60 [99, p. 149]: “In the regions around Byzan-
tion the longest day has 15 1

4 equinoctial hours and the relationship of the
gnomon to its shadow at the summer solstice is 120 to 42 less a fifth [Hip-
parchos, F52]. These places are 4,900 [stadia] from [the parallel] through the
center of the Rhodia and about 30,300 from the equator.”

2.5.42 [99, p. 149]: “In the regions 3,800 [stadia] to the north of Byzantion
the longest day has 16 equinoctial hours, and thus Cassiopeia appears within
the arctic circle [Hipparchos, F57]. These are the places around the Borysthenes
and the southern parts of the Maiotis, about 34,100 from the equator.”

Strabo in Books I and II of the Geography [99] reports distances between var-
ious locations stated by Eratosthenes, Hipparchus, and Polybius. We organize
these in Table 1. (Thapsacus = Euphrates)

Agathemerus, Sketch of Geography IV [27, pp. 69–70] states distances be-
tween various places, and says that the length of the inhabited earth from the
Ganges to Gades is 68545 stades. IV.15: from the Caspian Gates to the Eu-
phrates is 10050 stades. IV.18: from Meroë to Alexandria is 10000 stades, and
from Alexandria to Linus in Rhodes is 4500 stades. IV.19: “city to city”, from
Alexandria to Rhodes is 4670 stades.
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Table 1: Distances between locations reported in Strabo

Lycia, Rhodes Alexandria 4000 stades 1.2.17
Meroë Alexandria 10000 stades 1.4.2
Alexandria Hellespont 8100 stades 1.4.2
Hellespont Borysthenes 5000 stades 1.4.2
Caspian Gates Euphrates 10000 stades 1.4.5
Euphrates Nile 5000 stades 1.4.5
Nile Canopic mouth 1300 stades 1.4.5
Canopic mouth Carthage 13500 stades 1.4.5
Meröe Hellespont 18000 stades 2.1.3
Byzantium Borysthenes 3700 stades 2.1.12
Babylon Thapsacus 4800 stades 2.1.21
Caspian Gates Thapsacus 10000 stades 2.1.24, 2.1.39
Carthage meridian Thapsacus meridian 6300 stades 2.1.39
Babylon Carmania 9200 stades 2.1.23, 2.1.25
Thapsacus Babylon 4800 stades 2.1.26
Thapsacus Armenian Gates 1100 stades 2.1.26
Thapsacus Caspian Gates 10000 stades 2.1.27
Babylon Carmania 9000 stades 2.1.27
Thapsacus Babylon 4800 stades 2.1.27
Rhodes Alexandria 4000 stades 2.1.33
Babylon Caspian Gates 6700 stades 2.1.34
Babylon Carmania 9000 stades 2.1.34
Caspian Gates Susa 4900 stades 2.1.34
Susa Babylon 3400 stades 2.1.34
Syene Meroë 5000 stades 2.5.7
Meroë Alexandria 5000 stades 2.5.7
Rhodia Byzantium 4900 stades 2.5.8

Pliny, Natural History 2.186; Books 3–6; 37.108, Philo on Meroë
Pliny, Natural History 5.36: “But the most beautiful is the free island of

Rhodes, which measures 125, or, if we prefer to believe Isidore, 103 miles round,
and which contains the cities of Lindus, Camirus and Ialysus, and now that of
Rhodes. Its distance from Alexandria in Egypt is 583 miles according to Isidore,
468 according to Eratosthenes, 500 according to Mucianus; and it is 176 miles
from Cyprus.” The distance given by Eratosthenes corresponds to 3750 stades.

17 Ptolemy
Ptolemy, Planetary Hypotheses, Duke [29]

Ptolemy, Geography [8, p. 90]: for a right triangle BEZ where the base EZ
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is 23 5
6 units and the height BE is 90 units, the hypotenuse BZ is

BZ ∼ 93
1

10
.

Pedersen [89] on the Almagest. See page 60 on the half-angle formula.

sin 30◦ = 1
2 , sin 45◦ = 1√

2
, and sin 36◦ =

√
10−

√
20

4 . Because sin 30◦ and
sin 45◦ are given, so is sin 75◦, and because sin 36◦ is given, so is sin 72◦. There-
fore sin 3◦ is given; it turns out that

sin 3◦ =
2(1−

√
3)
√
5 +

√
5 + (

√
10−

√
2)(

√
3 + 1)

16
,

which is sin 3◦ = 3
60 +

8
602 +

24
603 + · · · . Since sin 3◦ is given, so is sin 3

2

◦ and then
sin 3

4

◦. When β < α < 90◦ it holds that α
β > sinα

sin β ; this is proved in Almagest
I.10 [111, pp. 54–55]. Therefore,

2

3
sin

3

2

◦
< sin 1◦ <

4

3
sin

3

4

◦
.

This yields

; 1, 2, 49, 28, 50, . . . < sin 1◦ < ; 1, 2, 49, 48, 12, . . . ,

so sin 1◦ =; 1, 2, 49, . . .. In fact, sin 1◦ =; 1, 2, 49, 43, 11, 14, . . ..
Ptolemy, Almagest I.10 [111, p. 49]:

√
4500 ∼ 67 +

4

60
+

55

602
.

I.10 [111, p. 49]: √
4975 +

4

60
+

15

602
∼ 70 +

32

60
+

3

602
.

I.11, the table of chords. For a circle with diameter 120, for an arc of the
circle of θ degrees, let chord θ be the length of the chord that joins the endpoints
of the arc. This means chord θ = 120 sin

(
θπ
360

)
. Now, sin

(
π
4

)
=

√
2
2 ; θπ

360 = π
4

is equivalent to θ = 90, so chord 90 = 120 ·
√
2
2 , i.e. chord 90 = 60 ·

√
2. In the

table of chords, for the arc 90 the chord is 84 + 51
60 + 10

602 , so

√
2 =

chord 90

60
∼ 1 +

24

60
+

51

602
+

10

603
.

Similarly, sin
(
π
3

)
=

√
3
2 ; θπ

360 = π
3 is equivalent to θ = 120, so chord 120 =

120 ·
√
3
2 , i.e. chord 120 = 60 ·

√
3. In the table of chords, for the arc 120 the

chord is 103 + 55
60 + 23

602 , so

√
3 =

chord 120

60
∼ 1 +

43

60
+

55

602
+

23

603
.
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III.5 [111, p. 158]: if DK = 1 + 15
60 and KΘZ = 62 + 10

60 , then for DK2 +
KΘZ2 = ZD2,

ZD ∼ 62 +
11

60
.

III.5 [111, p. 160]: if ZK = 1+ 15
60 and KD = 62 + 10

60 , then for ZK2 +KD2 =
ZD2,

ZD ∼ 62 +
11

60
.

III.5 [111, p. 162]: if DK = 1 + 15
60 and KZ = 57 + 50

60 , then for DZ2 =
DK2 +KZ2,

DZ ∼ 57 +
51

60
.

IV.6 [111, pp. 195–196]:√
291 +

14

60
+

36

602
∼ 17 +

3

60
+

57

602
.

IV.6 [111, p. 197]: √
476300 +

5

60
+

32

602
∼ 690 +

8

60
+

42

602
.

IV.6 [111, p. 201]: √
213 +

43

60
+

38

602
∼ 14 +

37

60
+

10

602
.

IV.6 [111, pp. 201–202]:√
474904 +

46

60
+

17

602
∼ 689 +

8

60
.

V.5 [111, p. 231]: if BD = 49 + 41
60 and DK = 10 + 19

60 , then for BK2 =
BD2 −DK2,

BK ∼ 48 +
36

60
.

V.6 [111, p. 234]: if BX = 48+ 26
60 and XN = 10+ 19

60 , then for BX2 +XN2 =
BN2,

BN ∼ 49 +
31

60
.

V.6 [111, p. 234]: if BE = 48+ 31
60 , LB = 5+ 5

60 , EL = BE+LB, LH = 1+ 20
60 ,

then for EL2 + LH2 = EH2,

EH ∼ 53 +
37

60
.
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V.10 [111, p. 241]: if BD = 49 + 41
60 and DM = 2 + 38

60 , then for BM2 =
BD2 −DM2,

BM ∼ 49 +
37

60
.

V.10 [111, p. 242]: if BD = 49+ 41
60 and DM = 51

60 , then for BM2 = BD2−DM2,

BM ∼ 49 +
41

60
.

V.13 [111, p. 250]: if BD = 49 + 41
60 and DM = 4 + 8

60 , then for BM2 =
BD2 −DM2,

BM ∼ 49 +
31

60
.

V.13 [111, p. 251]: if BL = 5+ 15
60 and EB = 40+ 4

60 , then for EL2 = BL2+EB2,

EL ∼ 40 +
25

60
.

V.17 [111, p. 261]: if ZH = 62 + 38
60 and HB = 4 + 33

60 , then for ZB2 =
ZH2 +HB2,

ZB ∼ 62 +
48

60
.

V.17 [111, p. 262]: if BH = GΘ = 6 + 56
60 , ZH = 64, and ZΘ = 56, then for

ZB2 = ZH2 +BH2 and ZG2 = ZΘ2 +GΘ2,

ZB ∼ 64 +
23

60
, ZG ∼ 56 +

26

60
.

V.17 [111, p. 263]: if BE = 49 + 41
60 and EH = 8 + 56

60 , then for BH2 =
BE2 − EH2,

BH ∼ 48 +
53

60
.

V.19 [111, p. 273]:√(
42 +

30

60

)2

+

(
4 +

20

60

)2

∼ 42+
46

60
,

√(
47 +

30

60

)2

+

(
4 +

20

60

)2

∼ 47+
44

60
.

VI.7 [111, p. 299]:√
429 +

32

60
∼ 20 +

43

60
,

√
460 +

52

60
∼ 21 +

28

60
,

√
822 +

15

60
∼ 28 +

41

60
.

VI.7 [111, p. 300]: √
1045 +

35

60
∼ 32 +

20

60
.

VI.7 [111, p. 301]:√
2883 +

59

60
∼ 53 +

42

60
,

√
331 +

21

60
∼ 18 +

12

60
,
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and √
3667 +

19

60
∼ 60 +

34

60
,

√
421 +

21

60
∼ 20 +

32

60
.

IX.10 [111, p. 463]: if DN = 2 + 2
60 and NZ = 55 + 49

60 , then for DZ2 =
DN2 +NZ2,

DZ ∼ 55 +
51

60
.

IX.10 [111, pp. 465–466]: if ZH = 60 and HM = 5 + 7
60 , then for ZM2 =

ZH2 −HM2,

ZM ∼ 59 +
47

60
.

IX.10 [111, p. 466]: DN = 84 + 36
60 and ZN = 64 + 5

60 , then for ZD2 =
ZN2 +DN2,

ZD ∼ 64 +
7

60
.

X.4 [111, p. 476]: if ZG = 60 and GL = 34
60 , then for ZG2 −GL2 = ZL2,

ZL ∼ 60;

if ZM = 58 + 53
60 and DM = 1 + 8

60 , then for ZD2 = ZM2 +DM2,

ZD ∼ 58 +
54

60
.

X.4 [111, pp. 477–478]: if GZ = 60 and GL = 42
60 , then for ZG2 −GL2 = ZL2,

ZL ∼ 60.

X.4 [111, p. 478]: if ZM = 58 + 58
60 and DM = 1 + 24

60 , then for ZD2 =
ZM2 +DM2,

ZD ∼ 58 +
59

60
.

X.7 [111, p. 488]: √
19289 +

32

60
∼ 138 +

53

60
.

X.7 [111, p. 489]: √
172 +

9

60
∼ 13 +

7

60
.

X.7 [111, p. 493]: if DG = 60 and DF = 4 + 9
60 , then for GD2 −DF 2 = GF 2,

GF ∼ 59 +
51

60
.

X.7 [111, p. 495]: if DA = 60 and DF = 3+
58+ 1

2

60 , then for DA2−DF 2 = FA2,

FA ∼ 59 +
50

60
.
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X.7 [111, p. 496]: if DB = 60 and DF = 3 + 52
60 , then for DB2 −DF 2 = BF 2,

BF ∼ 59 +
53

60
.

X.7 [111, p. 498]: if DG = 60 and DF = 4+
11+ 1

2

60 , then for DG2−DF 2 = GF 2,

GF ∼ 59 +
51

60
.

X.8 [111, p. 501]: if DB = 60 and DM = 4+ 5
60 , then for DB2−DM2 = BM2,

BM ∼ 59 +
52

60
.

XI.1 [111, p. 512]: if DA = 60 and DH = 2+ 39
60 , then for DA2 −DH2 = AH2,

AH ∼ 59 +
56

60
.

XI.1 [111, p. 514]: if DG = 60 and DH = 1+ 28
60 , then for GD2−DH2 = GH2,

GH ∼ 59 +
59

60
.

XI.1 [111, p. 516]: if DA = 60 and DH = 2+ 41
60 , then for AH2 = AD2 −DH2,

AH ∼ 59 +
56

60
.

XI.2 [111, p. 521]: if DB = 60 and DM = 2+ 44
60 , then for DB2−DM2 = MB2,

MB ∼ 59 +
56

60
.

XI.5 [111, p. 528]: √
50 +

51

60
∼ 7 +

8

60
.

XI.5 [111, p. 529]: if DA = 60 and DH = 2+ 57
60 , then for DA2 −DH2 = AH2,

AH ∼ 59 +
56

60
.

XI.5 [111, p. 531]: if DB = 60 and DH = 1+ 13
60 , then for DB2−DH2 = BH2,

BH ∼ 59 +
59

60
.

XI.5 [111, p. 533]: if DG = 60 and DH = 3+ 1
60 , then for DG2−DH2 = GH2,

GH ∼ 59 +
56

60
.
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XI.5 [111, p. 534]: if DA = 60 and DH = 2+ 52
60 , then for AD2 −DH2 = AH2,

AH ∼ 59 +
56

60
.

XI.5 [111, pp. 535–536]: if DB = 60 and DH = 1+ 5
60 , then for DB2 −DH2 =

BH2,

BH ∼ 59 +
59

60
.

XI.5 [111, p. 537]: if DG = 60 and DH = 2+ 51
60 , then for DG2−DH2 = GH2,

GH ∼ 59 +
56

60
.

XI.6 [111, p. 540]: if DB = 60 and DM = 3+ 25
60 , then for DB2−DM2 = BM2,

BM ∼ 59 +
54

60
.

XII.2 [111, p. 564]: √
4 +

6

60
+

45

602
∼ 2 +

1

60
+

40

602
.

XII.2 [111, p. 566]: √
4 +

35

60
+

56

602
∼ 2 +

8

60
+

40

602
.

XII.2 [111, p. 568]: √
3 +

39

60
+

12

602
∼ 1 +

54

60
+

41

602
.

XII.3 [111, p. 570]: √
24 +

50

60
+

9

602
∼ 4 +

59

60
+

1

602
.

XII.3 [111, p. 571]: √
27 +

13

60
+

26

602
∼ 5 +

13

60
+

4

602
.

XII.3 [111, p. 571]: √
22 +

33

60
+

39

602
∼ 4 +

45

60
.

XII.4 [111, p. 572]: √
803 +

50

60
+

50

602
∼ 28 +

21

60
+

8

602
.
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XII.4 [111, p. 574]: √
964 +

48

60
+

47

602
∼ 31 +

3

60
+

41

602
.

XII.4 [111, pp. 574–575]:√
672 +

13

60
∼ 25 +

25

60
+

38

602
.

XII.5 [111, pp. 575–576]:√
1057 +

51

60
∼ 32 +

31

60
+

29

602
.

XII.5 [111, p. 577]: √
1093 +

16

60
+

23

602
∼ 33 +

3

60
+

53

602
.

XII.5 [111, p. 578]: √
1022 +

54

60
+

7

602
∼ 31 +

58

60
+

58

602
.

XII.6 [111, p. 579]: √
190 +

29

60
+

31

602
∼ 13 +

48

60
+

7

602
.

XII.6 [111, p. 580]: √
257 +

22

60
+

44

602
∼ 16 +

2

60
+

35

602
.

XII.6 [111, p. 581]: √
160 +

21

60
+

29

602
∼ 12 +

39

60
+

48

602
.

XII.9 [111, p. 591]: if BM = 1 + 13
60 and MZ = 60 + 16

60 , then for BZ2 =
BM2 +MZ2,

BZ ∼ 60 +
17

60
.

XIII.4 [111, p. 608]: if AL = 29 + 30
60 and LM = 30 + 32

60 , then for AM2 =
AL2 + LM2,

AM ∼ 42 +
27

60
;

29



if AB = 60 and AK = 29 + 28
60 , then for AK2 +KΘ2 = AΘ2,

AΘ ∼ 42 +
26

60
.

XIII.4 [111, p. 610]: if AL = 40+ 51
60 and LM = 15+ 55

60 , then for AL2+LM2 =
AM2,

AM ∼ 43 +
50

60
;

if AM = 43 + 50
60 and ΘM = 1 + 44

60 , then for AM2 +ΘM2 = AΘ2,

AΘ ∼ 43 +
52

60
.

XIII.4 [111, p. 611]: if ΘK = 15+ 55
60 and AK = 40+ 45

60 , then for AK2+KΘ2 =
AΘ2,

AΘ ∼ 43 +
45

60
.

XIII.4 [111, p. 613]: if AM = 57 + 35
60 and MK = 22

60 , then for AK2 = AM2 +
MK2,

AK ∼ 57 +
35

60
.

XIII.4 [111, p. 614]: if AB = 57 + 31
60 and BL = 4+ 36

60 , then for AB2 +BL2 =
AL2,

AL ∼ 57 +
42

60
,

and if LΘ = 2 + 53
60 , then for AL2 + LΘ2 = AΘ2,

AΘ ∼ 57 +
46

60
;

if AB = 119 + 51
60 and BL = 4 + 36

60 , then for AB2 +BL2 = AL2,

AL ∼ 53 +
13

60
.

XIII.4 [111, p. 615]: if AL = 53+ 13
60 and ΘL = 2+ 41

60 , then for AL2+ΘL2 = AΘ2,

AΘ ∼ 53 +
17

60
;

if KΘ = 4 + 36
60 and AK = 53 + 4

60 , then for AK2 +KΘ2 = AΘ2,

AΘ ∼ 53 +
16

60
.

XIII.4 [111, p. 617]: if AB = 54 + 20
60 and BL = 8+ 8

60 , then for AB2 +BL2 =
AL2,

AL ∼ 54 +
56

60
,
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and if LΘ = 1 + 46
60 , then for AL2 + LΘ2 = AΘ2,

AΘ ∼ 54 +
58

60
.

XIII.4 [111, p. 618]: if AB = 49 + 20
60 and BL = 8+ 8

60 , then for AB2 +BL2 =
AL2,

AL ∼ 50,

and if ΘL = 1 + 39
60 , then for AL2 +ΘL2 = AΘ2,

AΘ = 50 +
2

60
;

if ΘK = 8 + 8
60 and AK = 49 + 22

60 , then for AK2 +KΘ2 = AΘ2,

AΘ ∼ 50 +
2

60
.

XIII.4 [111, p. 619]: if KM = 1 + 6
60 and AM = 38 + 6

60 , then for AK2 =
AM2 +KM2,

AK ∼ 38 +
7

60
.

XIII.4 [111, p. 620]: if AB = 38+ 5
60 and BL = 27+ 56

60 , then for AB2 +BL2 =
AL2,

AL ∼ 47 +
14

60
,

and if ΘL = 1 + 46
60 , then for AL2 + LΘ2 = AΘ2,

AΘ ∼ 47 +
16

60
.

XIII.4 [111, p. 621]: if KM = 1 + 6
60 and AM = 26 + 6

60 , then for AK2 =
KM2 +AM2,

AK ∼ 26 +
7

60
;

if AB = 26 + 4
60 and BL = 27 + 56

60 , then for AB2 +BL2 = AL2,

AL ∼ 38 +
12

60
,

and if LΘ = 1 + 33
60 , then for AL2 + LΘ2 = AΘ2,

AΘ ∼ 38 +
14

60
;

if KΘ = 27 + 56
60 and AK = 26 + 4

60 , then for AΘ2 = AK2 +KΘ2,

AΘ ∼ 38 +
12

60
.
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XIII.4 [111, p. 626]: if AB = 60 and BD = 43+ 10
60 , then for AB2−BD2 = AD2,

AD ∼ 41 +
40

60
;

if AD = 41 + 40
60 , DH = 1 + 50

60 , DZ = 29 + 58
60 , then for AD2 −DH2 = AH2

and ZD2 −DH2 = HZ2,

AH ∼ 41 +
37

60
, HZ ∼ 29 +

55

60
;

if AB = 63 and BD = 22 + 30
60 , then for AB2 −DB2 = AD2,

AD ∼ 58 +
51

60
.

XIII.4 [111, p. 627]: if DH = 2 + 34
60 , AD = 58 + 51

60 , and DZ = 21 + 1
60 , then

for DA2 −DH2 = AH2 and DZ2 −DH2 = HZ2,

AH ∼ 58 +
47

60
, ZH ∼ 20 +

53

60
.

XIII.4 [111, p. 628]: if AB = 61+ 15
60 and BD = 43+ 10

60 , then for AB2−BD2 =
AD2,

AD ∼ 43 +
27

60
.

XIII.4 [111, p. 629]: if BD = 43+ 10
60 and AB = 58+ 45

60 , then for AB2−DB2 =
AD2,

AD ∼ 39 +
51

60
;

if AB = 69 and BD = 22 + 30
60 , then for AD2 = AB2 −BD2,

AD ∼ 65 +
14

60
.

18 Heron of Alexandria
Bruins, Codex Constantinopolitanus, fol. 6r–6v [15, p. 6]: for a square each side
of which is 50 feet, find the area and the diagonal. The area is 2500 square feet.
To find the diagonal, double the area, getting 5000 square feet. The square root
of this is said to be 70 1

2
1
4 feet, which is said to be the diagonal.

Bruins, Codex Constantinopolitanus, fol. 6v [15, p. 6]: for a rectangle whose
length is 50 feet and whose length is 30 feet, find the area and the diagonal.
The area is 1500 square feet. To find the diagonal, add the length squared, 2500
square feet, and the width squared, 900 square feet, getting 3400 square feet.
he square root of this is said to be 58 1

3 feet, which is said to be the diagonal.
Bruins, Codex Constantinopolitanus, fol. 7v [15, p. 9]: for an equilateral

triangle each side of which is 30 feet, find the diameter of an inscribed circle. It
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is stated that the area of the triangle is 390 square feet. Generally, the area of a
triangle with side length a is A =

√
3a2

4 ; for a = 30, this satisfies 389 < A < 390.
Multiply the area by 4, getting 1560 square feet. The perimeter of the triangle
is 90 feet. Divide the area 1560 square feet by 90 feet, getting 17 1

3 feet. It
is used that for an equilateral triangle with side length a, the diameter of the
inscribed circle is 4A

3a = a√
3
.

Bruins, Codex Constantinopolitanus, fol. 8r [15, p. 10]: an equilateral tri-
angle whose sides are 30 is two right triangles each with hypotenuse 30 and
base 15. Square 30, getting 900, and square 15, getting 225, and subtract
225 from 900, getting 675. The square root of this is the height of the right
triangle, and it is stated that

√
675 is “very near” to 25 51

52 . Using 26 as the
altitude of the equilateral triangle, the area of the equilateral triangle 390, and
four times this is 1560. Divide this by the perimeter of the equilateral tri-
angle, getting 1560

90 = 171
3 , which is said to be the diameter of the inscribed

circle. This is also worked out using Heron’s formula. For a triangle with
sides a, b, c and with s = a+b+c

2 , Heron’s formula states that the area of the
triangle is A =

√
s(s− a)(s− b)(s− c). The radius of the inscribed circle

is r = A
s , so r2 = s(s−a)(s−b)(s−c)

s2 . For a = b = c, this is equivalent to
s2 : s(s− a) = (s− a)2 : r2. For a = 30 we have s = 45, s2 = 2025, s− a = 15,
(s − a)2 = 225, s(s − a) = 45 · 15 = 675, thus 2025 : 675 = 225 : r2. Now,
2025 : 675 = 225 : 75, so r2 = 75. It is then stated that the square root of 75 is
8 2
3 , and that twice this is the diameter, 17 1

3 .
Bruins, Codex Constantinopolitanus, fol. 8r [15, p. 12]: Euclid XIII.12 is

invoked, which says that the square on the side of an equilateral triangle is
three times the square on the radius of the circumscribed circle. Thus for a
triangle with side length 30, it is stated that the radius of the circumscribed
circle is

√
300. Twice this is the diameter, and it is stated that the diameter is

34 1
2
1
6 . Thus, 2

√
300 ∼ 34 2

3 .
Bruins, Codex Constantinopolitanus, fol. 17r [15, p. 42]: for a pyramid whose

base is an equilateral triangle with side length 30 feet and with inclined side 20
feet, find the altitude and the volume. Generally, let ABC be an equilateral
triangle with center D and let DE be perpendicular to the plane ABC. Then
ABCE is a pyramid, with altitude DE. It holds that AE2 = DE2 + AB2

3 , and
the volume of the pyramid is a third of the area of the base triangular multiplied
by the altitude of the pyramid (Elements XII.7). Here, AB = 30 and AE = 20,
so AB2

3 = 900
30 = 300 and AE2 = 400. Then DE2 = AE2 − AB2

3 = 400− 300 =
100, and therefore DE = 10. The altitude of the pyramid is thus found to be
10 feet. The area of ABC is found thus: square 30, getting 900. A third and
a tenth of this is 300 + 90 = 390. This is the area of the base triangle. (This
amounts to

√
3
4 ∼ 1

3 + 1
10 .) A third of this is 130, and the product of this and

the altitude is 130 · 10 = 1300.
Bruins, Codex Constantinopolitanus, fol. 20r [15, p. 58]: for a regular

decagon with sides 10 feet, find the area. Generally, the area of a regular

decagon of side length a is 5
√

5+2
√
5

2 a2. Square 10, getting 100, multiply this by
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38, getting 3800, and take a fifth, getting 760, which is said to be the area.
Bruins, Codex Constantinopolitanus, fol. 57r—v [15, p. 160]: for an isosceles

triangle with sides 8, 12, 12, the height h satisfies h2 = 122 − 42 = 128. It is
stated that

√
128 ∼ 11 1

4
1
22

1
44 = 249

22 . In fact, 249
22 − 1

223 <
√
128 < 249

22 − 1
224 .

Bruins, Codex Constantinopolitanus, fol. 57r—v [15, p. 165]: for a hexagonal
pyramid whose base edges are 12 feet and whose inclined edges are 35 feet, find
the height and the volume. The height h satisfies 352 = h2 +122, so h2 = 1081.
It is stated that

√
1081 ∼ 32 1

2
1
4
1
8

1
64 , which is 32 57

64 . In fact, 57
64 − 1

82 <
√
1081 <

57
64 − 1

83 .
Bruins, Codex Constantinopolitanus, fol. 65r [15, p. 178]: find the diagonal

of a square piece of wood having each side 10 feet. 102 + 102 = 200, and it
is stated that the approximate square root of 200 is 14 1

7 and that this is the
diagonal.

Euclid I.22: if A,B,C are three straight lines and any two taken together are
greater than the remaining, to construct a triangle with sides equal to A,B,C.
Heron’s formula says that if a, b, c are the sides of a triangle and s = a+b+c

2 then
the area of the triangle is

√
s(s− a)(s− b)(s− c). Heron’s formula is proved

in Heron’s Metrica I.8 [102, pp. 18–25]; Thomas [109, pp. 470–477] translates
this passages, and Heath [52, pp. 321–323] presents the proof. Heron gives the
example 7, 8, 9. Here, s = 7+8+9

2 = 24
2 = 12. Then

s(s− 7)(s− 8)(s− 9) = 12 · 5 · 4 · 3 = 60 · 4 · 3 = 240 · 3 = 720.

Thus the area of the triangle is
√
720.

Heron works out an approximate value for
√
720 as follows [52, pp. 323–326];

cf. [1]. The square integer closest to 720 is 729 = 27 · 27. Then 720
27 = 26 + 2

3 .
Then 27+26+ 2

3 = 53+ 2
3 and half of this is 26+ 1

2 +
1
3 , and this approximates

the square root of 720. Then(
26 +

1

2
+

1

3

)2

= 720 +
1

36

is a square, and the difference between this square and 720 is 1
36 , which is

smaller than the difference between 729 and 720, which is 9. Heron states that
this process can be done again to get a difference smaller than 1

36 , but does not
do any more iterations. The next iteration is: 720

26+ 1
2+

1
3

= 26 + 134
161 , and then

26 + 1
2 + 1

3 + 26 + 134
161 = 53 + 643

966 , and half of that is 26 + 1609
1932 . Then(

26 +
1609

1932

)2

=
2687489281

3732624

is a square, and the difference between this square and 720 is 1
3732624 , which is

smaller than the difference between 720 + 1
36 and 720, which is 1

36 . Cf. Bruins,
Codex Constantinopolitanus, fol. 70v [15, p. 189].

Metrica I.9 [102, pp. 27–29]:
√
63 ∼ 7 +

1

2
+

1

4
+

1

8
+

1

16
.
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Metrica I.15 [102, pp. 41–43]: for AB = 13, BΓ = 10, Γ∆ = 20, ∆A =
17, let ABΓ∆ be a quadrilateral where BΓ∆ is a right angle. Then B∆2 =
500. Let AE be perpendicular to B∆. For s = AB+B∆+∆A

2 we have AE =
2
√

s(s−AB)(s−B∆)(s−∆A)

B∆ , which means

AE2 =
4

500
· 30 +B∆

2
· 4 +B∆

2
· 30−B∆

2
· B∆− 4

2

=
1

125
· 900− 500

4
· 500− 16

4

=
484

5
.

Metrica I.17 [102, p. 49]:
√
1875 ∼ 43 +

1

3
.

Metrica I.18 [102, pp. 51–53]: the regular pentagon, with each side 10. 5 ∼ 81
16 ,

and this yields the approximate value 166 + 2
3 for the area. (See Heath [52,

pp. 326–329] about the regular polygons in the Metrica.)
Metrica I.19 [102, pp. 52–55]: the regular hexagon, with each side 10.
Metrica I.20 [102, pp. 54–57]: the regular heptagon, with each side 10.
Metrica I.21 [102, pp. 57–59]: the regular octagon, with each side 10.
Metrica I.22 [102, pp. 59–61]: the regular nonagon, with each side 10.
Metrica I.23 [102, p. 61]: the regular decagon, with each side 10.
Metrica I.24 [102, p. 63]: the regular 11-gon, with each side 10.
Metrica I.25 [102, pp. 63–65]: the regular 12-gon, with each side 10.
Stereometrica [61]. I.33,

√
63 [61, pp. 34–35]: for α1 = 8 and β1 = 63

8 = 7+ 7
8 ,

we get α2 = α1+β1

2 = 7 + 15
16 = 8− 1

16 . I.63 [61, p. 65]:

√
356 ∼ 18 +

1

2
+

1

4
+

1

8
.

II.1 [61, p. 85]:
√
288 ∼ 17. II.2 [61, p. 87]:

√
144 + 1

2 ∼ 12. II.57 [61, p. 139]:
√
288 ∼ 17,

√
1224 ∼ 35. II.59 [61, p. 143]:

√
512 ∼ 22 + 2

3 ,
√
72 ∼ 8 + 1

2 ,√
1400 ∼ 37+ 1

4+
1
6 . II.60 [61, p. 147]:

√
128 ∼ 11+ 1

4+
1
22+

1
44 ,

√
593 ∼ 24+ 1

4+
1
8 .

II.63 [61, pp. 151–153]:
√
1125 ∼ 33 + 1

2 + 1
22 ,

√
108 ∼ 10 + 1

3 + 1
15 . II.64 [61,

p. 153]:
√
1081 ∼ 32+ 1

2+
1
4+

1
8+

1
64 . II.65 [61, p. 155]:

√
50 ∼ 7+ 1

14 ,
√
54 ∼ 7+ 1

3 .

II.66 [61, p. 157]:
√
75 ∼ 8 + 1

2 + 1
8 + 1

16 ,
√
43 + 1

2 + 1
4 + 1

9 ∼ 6 + 1
2 + 1

9 ,√
356 + 1

18 ∼ 18 + 1
2 + 1

4 + 1
9 .

Geometrica 5.3 [60, p. 203]:

√
5000 ∼ 70 +

1

2
+

1

4
.

6.1 [60, p. 209]:
√
3400 ∼ 58 +

1

3
.
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10 [60, p. 223]: for an equilateral triangle with sides a, the area is a2
√
3

4 , and
the area is stated to be approximately

(
1
3 + 1

10

)
a2. This amounts to

√
3

4
∼ 1

3
+

1

10
,

√
3 ∼ 1 +

1

3
+

2

5
= 1 +

44

60
.

15 [60, pp. 286–301] states approximate values for several surds. 15.3:√
8 +

1

4
+

1

8
+

1

16
∼ 2 +

2

3
+

1

4
.

For, 8+ 1
4 +

1
8 +

1
16 = 135

16 = 1215
144 , and a square near to this is 1225

144 =
(
2 + 11

12

)2
=(

2 + 2
3 + 1

4

)2. 15.4:

√
135 ∼ 11 +

1

2
+

1

14
+

1

21
= 11 +

13

21
.

15.6: √
43 +

1

2
+

1

4
∼ 6 +

1

2
+

1

13
+

1

26
= 6 +

8

13
.

15.10: √
6300 ∼ 79 +

1

3
+

1

34
+

1

102
= 79 +

19

51
.

15.11: √
1575 ∼ 39 +

2

3
+

1

51
= 39 +

35

51
.

15.12: √
886÷ 1

16
∼ 29 +

1

2
+

1

4
+

1

68
= 29 +

39

51
.

15.13: √
2460 +

15

16
∼ 49 +

1

2
+

1

17
+

1

34
+

1

51
= 49 +

31

51
.

15.14: √
615 +

15

64
∼ 24 +

1

2
+

1

4
+

1

51
+

1

51
+

1

68
= 24 +

41

51
.

16.34–35 [60, p. 323]:

√
216 ∼ 14 +

2

3
+

1

33
= 14 +

23

33
.

16.36–37 [60, p. 325]:

√
720 ∼ 26 +

1

2
+

1

3
= 26 +

5

6
.

16.38 [60, p. 327]: √
58 +

1

4
+

1

8
+

1

16
∼ 7 +

2

3
.
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19.4 [60, p. 359]:
√
208 ∼ 14 +

1

3
+

1

12
.

20.13 [60, p. 373]: √
444 +

1

3
+

1

9
∼ 21 +

1

12
.

21.14 [60, p. 383]: for a regular pentagon with side a, the area is a2

4

√
5(5 + 2

√
5).

For a = 35, this passage states the area as 35 · 35 · 12 · 1
7 = 2100.

The area of a regular hexagon with side a is 3
√
3

2 a2. For a = 30, 21.16 states
the area as 30 · 30 · 13 · 1

5 = 2340.
(The area of a regular heptagon involves cos(π/7).)
The area of a regular octagon with side a is 2(1 +

√
2)a2. For a = 10, 21.19

[60, p. 385] states the area as 10 · 10 · 29 · 1
6 = 483 + 1

3 .
(The area of a regular nonagon involves cos(π/9).)

The area of a regular decagon with side a is 5
√

5+2
√
5

2 a2. For a = 10, 21.21
states the area as 10 · 10 · 15 · 1

2 = 750.
(The area of a regular 11-gon involves cos(π/11).)
The area of a regular 12-gon with side a is 3(2 +

√
3)a2. For a = 10, 21.23

[60, p. 387] states the area as 10 · 10 · 45 · 1
4 = 1125.

19 Diodorus Siculus
Diodorus Siculus, Bibliotheca historica 1.63.3–4 writes the following about the
Great Pyramids:

These pyramids, which are situated on the side of Egypt which is
towards Libya, are one hundred and twenty stades from Memphis
and forty-five from the Nile, and by the immensity of their structures
and the skill shown in their execution they fill the beholder with
wonder and astonishment. For the largest is in the form of a square
and has a base length on each side of seven plethra and a height of
over six plethra; it also gradually tapers to the top, where each side
is six cubits long.

(A plethron is 100 feet.) For a pyramid whose base is a square whose sides
have length a and whose four other faces are equilateral triangles, let c be the
distance from the apex of the pyramid to the midpoint of one of the sides of the
square base. Then c2 + (a/2)2 = a2, so c2 = 3

4a
2. For Diodorus Siculus, a is

seven plethra, so c =
√
3
2 a. Now, 6 <

√
3
2 · 7 < 97

16 .
Plutarch, The Dinner of the Seven Wise Men 147 (Moralia II):

“Not for this alone,” said Neiloxenus, “but he does not try to avoid,
as the rest of you do, being a friend of kings and being called such.
In your case, for instance, the king finds much to admire in you,
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and in particular he was immensely pleased with your method of
measuring the pyramid, because, without making any ado or asking
for any instrument, you simply set your walking-stick upright at the
edge of the shadow which the pyramid cast, and, two triangles being
formed by the intercepting of the sun’s rays, you demonstrated that
the height of the pyramid bore the same relation to the length of
the stick as the one shadow to the other....”

Pliny, Natural History 36.17:

The largest Pyramid occupies seven jugera of ground, and the four
angles are equidistant, the face of each side being eight hundred and
thirty-three feet in length. The total height from the ground to the
summit is seven hundred and twenty-five feet, and the platform on
the summit is sixteen feet and a-half in circuit.

Diogenes Laertius, Lives of Eminent Philosophers 1.27 writes about Thales:
“Hieronymus informs us that he measured the height of the pyramids by the
shadow they cast, taking the observation at the hour when our shadow is of the
same length as ourselves.”

20 Greek and Roman art
Villa of Maxentius, Mausoleum of Romulus: hexagon, and area of the interior
is half the total.

Athens, Tower of the Winds
Temple of Hadrian, Maritime Theatre,

√
3. Jacobson [69]

Pompeii [19]: I.280,322,326,407,438,458; IV.48, 136, 660, 724, 748; V.505,
843.

Pompeii VII.7.5, House of Triptolemus
Pompeii VI.9.2, House of Meleager
Herculaneum, Casa dell’Atrio a Mosaico, Casa del Rilievo di Telefo
House in Pella in Macedonia, pebble mosaic
Ostia, House of Cupid and Psyche, Room E [6]
Mediana, Moesia Superior: Nymphaeum
Gamzigrad, Serbia: Felix Romuliana temple, hexagonal labyrinth mosaic
Ammaedara, Haïdra, Tunisia: hexagonal mausoleum
Salzmann [100]
Dunbabin [30]

21 Varro
In De Re Rustica III.XVI.4–5 [64, p. 501], after stating that nature has given
great talent and art to bees, Varro writes:
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Bees are not of a solitary nature, as eagles are, but are like human
beings. Even if jackdaws in this respect are the same, still it is not
the same case; for in one there is a fellowship in toil and in building
which does not obtain in the other; in the one case there is reason
and skill – it is from these that men learn to toil, to build, to store
up food. They have three tasks: food, dwelling, toil; and the food is
not the same as the wax, nor the honey, nor the dwelling. Does not
the chamber in the comb have six angles, the same number as the
bee has feet? The geometricians prove that this hexagon inscribed
in a circular figure encloses the greatest amount of space.

Aristotle, De caelo III.8, 306b5–7 [53, p. 177]:

And, speaking generally, the attempt to give figures to the simple
elements is irrational, first, because it will be found that they do not
fill the whole (of a space). For, among plane figures, it is agreed that
there are only three which fill up space, the triangle, the square, and
the hexagon; while among solids there are only the pyramid and the
cube.

Pappus, Collection V.1–3 [109, pp. 589–593] writes about why cells of hon-
eycombs are hexagonal; cf. Collection VIII, Proposition 19.

22 Vitruvius
Vitruvius, De architectura, IV.1.11 [101, p. 93], on the Corinthian order:

The modular system of this capital should be established in such a
way that the lower diameter of the column should equal the height
of the capital with the abacus. The breadth of the abacus is to be
proportioned so that the length of diagonals taken from corner to
corner should be twice the height of the capital. In that way the
faces of the abacus will have fronts of the right breadth on all sides.
The faces should curve inwards from the points of the angles of the
abacus by a ninth of the breadth of the face. At the bottom, the
capital should be as wide as the top of the column, disregarding the
apothesis and the astragal. The height of the abacus should be a
seventh that of the capital.

VI.3.3 [101, p. 172]:

The lengths and breadths of atria fall into three categories: the first
category is laid out so that when the length has been divided into
five units, three should be allocated to the breadth; in the second,
the length should be divided into three units and two assigned to
the width; and in the third, the breadth of the atrium should be
incorporated in a square in which a diagonal should be drawn; the
length of the diagonal should be allocated to the atrium.
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The first category is the Tuscan atrium; the second category is the Corinthian
atrium; the third category is the tetrastyle atrium; the other two types of court-
yard are displuviate and testudinatum.

IX, Introduction 4–5 [101, p. 243]:

[4] First of all, I will explain one of Plato’s many exceptionally useful
theorems as he formulated it. If there is a site or square field, that is,
one with equal sides, which we have to double, the solution can be
found by drawing lines accurately, since we will need a type of num-
ber that cannot be arrived at by multiplication. The proof of this
is as follows: a square site ten feet long and ten feet wide produces
an area of a hundred square feet. If, then, we need to double it and
produce a square of two hundred feet, we must find out how long the
side of the square would be to obtain from it the two hundred feet
corresponding to the doubling of the area. Nobody can discover this
by calculation: for if we take the number fourteen, multiplication
will give a hundred and ninety-six square feet; if we take fifteen, it
will give two hundred and twenty-five square feet.
[5] Therefore, since we cannot solve this problem arithmetically, a
diagonal line should be drawn in the ten foot square from angle to
angle so that it is divided into two triangles of equal size, each fifty
feet in area; a square with equal sides should be drawn along the
length of this diagonal. In this way four triangles will be produced
in the larger square of the same size and number of feet as the two
triangles of fifty square feet created by the diagonal in the smaller
square. The problem of doubling an area was solved by Plato with
this procedure using geometrical methods, as is shown in the diagram
at the foot of the page.

Then in IX, Introduction 6 [101, pp. 243–244]:

Again, Pythagoras demonstrated how to devise a set-square without
the intervention of workmen; the results which workmen arrive at
when they make set-squares, with considerable effort but without
great accuracy, can be arrived at with precision using the principles
and methods derived from his teachings. For if we take three rulers,
three, four and five feet long, and assemble them with their ends
touching in the form of a triangle, they will form a perfect set-
square. If squares with equal sides are drawn along the lengths of
each ruler, the three-foot side will produce an area of nine square
feet, the four-foot side an area of sixteen square feet and the five-foot
side an area of twenty-five square feet.

23 Columella
In De Re Rustica V.I.4–8 [36, pp. 5–7], Columella defines measures of area:
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But to return to my subject, the extent of every area is reckoned by
measurement in feet, and a foot consists of 16 fingers. The multi-
plication of the foot produces successively the pace, the actus, the
clima, the iugerum, the stadium and the centuria, and afterward
still larger measurements. The pace contains five feet. The smallest
actus (as Marcus Varro says) is four feet wide and 120 feet long.
The clima is 60 feet each way. The square actus is bounded by 120
feet each way; when doubled it forms a iugerum, and it has derived
the name of iugerum from the fact that it was formed by joining.
This actus the country folk of the province of Baetica call acnua;
they also call a breadth of 30 feet and a length of 180 feet a porca.
The Gauls give the name candetum to areas of a hundred feet in
urban districts but to areas of 150 feet in rural districts they also
call a half-iugerum an arepennis. Two actus, as I have said, form a
iugerum 240 feet long and 120 feet wide, which two numbers mul-
tiplied together make 28,800 square feet. Next a stadium contains
125 paces (that is to say 625 feet) which multiplied by eight makes
1000 paces, which amount to 5000 feet. We now call an area of 200
iugera a centuria, as Varro again states; but formerly the centuria
was so called because it contained 100 iugera, but afterwards when
it was doubled it retained the same name, just as the tribes were
so called because the people were divided into three parts but now,
though many times more numerous, still keep their old name. It
was proper that we should begin by briefly mentioning these facts
first, as being relevant to and closely connected with the system of
calculation which we are going to set forth.

Then in V.I.8–13 [36, pp. 9–13] he defines different fractions of the iugerum:

Let us now come to our real purpose. We have not put down all the
parts of the iugerum but only those which enter into the estimation
of work done. For it was needless to follow out the smaller fractions
on which no business transaction depends. The iugerum, therefore,
as we have said, contains 28,800 square feet, which number of feet is
equivalent to 288 scripula. But to begin with the smallest fraction,
the half-scripulum, the 576th part of a iugerum, contains 50 feet; it
is the haif-scripulum of the iugerum. The 288th part of the iugerum
contains 100 feet; this is a scripulum. The 144th part contains 200
feet, that is two scripula. The 72nd part contains 400 feet and is a
sextula, in which there are four scripula. The 48th part, containing
600 feet, is a sicilicus, in which there are six scripula. The 24th part,
containing 1200 feet, is a semi-uncia, in which there are 12 scripula.
The 12th part, containing 2400 feet, is the uncia, in which there
are 24 scripula. The 6th part, containing 4800 feet, is a sextans, in
which there are 48 scripula. The 4th part, containing 7200 feet is a
quadrans, in which there are 72 scripula. The 3rd part, containing
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9600 feet, is a triens, in which there are 96 scripula. The 3rd part
plus the 12th part, containing 12,000 feet, is the quincunx, in which
there are 120 scripula. The half of a iugerum, containing 14,400
feet, is a semis, in which there are 144 scripula. A half plus a 12th
part, containing 16,800 feet, is a septunx, in which there are 168
scripula. Two-thirds of a iugerum, containing 19,200 feet, is a bes, in
which there are 192 scripula. Three-quarters, containing 21,600 feet,
is a dodrans, in which there are 216 scripula. A half plus a third,
containing 24,000 feet, is a dextans, in which there are 240 scripula.
Two-thirds plus a quarter, containing 26,400 feet, is a deunx, in
which there are 264 scripula. A iugerum, containing 28,800 feet, is
the as, in which there are 288 scripula. If the form of the iugerum
were always rectangular and, when measurements were being taken,
were always 240 feet long and 120 feet wide, the calculation would
be very quickly done; but since pieces of land of different shapes
come to be the subjects of dispute, we will give below specimens of
every kind of shape which we will use as patterns.

The area A of an equilateral triangle whose sides have length a is

A =
√
3 · a

2

4
.

In V.II.5 [36, pp. 15–17], Columella writes:

But if you have to measure a triangle with three equal sides, you will
follow this formula. Suppose the field to be triangular, three hundred
feet on every side. Multiply this number by itself and the result is
90,000 feet. Take a third part of this sum, that is 30,000. Likewise
take a tenth part, that is 9,000. Add the two numbers together; the
result is 39,000. We shall say that this is the total number of square
feet in this triangle, which measure makes a iugerum, plus a triens
( 13 ), plus a sicilicus ( 1

48 ).

This amounts to

A ∼ a2

3
+

a2

10
= a2 · 13

30
,

which implies
√
3
4 ∼ 13

30 , or
√
3 ∼ 26

15 .
The area of a regular hexagon whose sides have length a is

A =
√
3 · 3a

2

2
.

In V.II.10 [36, pp. 21–23], Columella writes:

If the area has six angles, it is reduced to square feet in the following
manner. Let there be a hexagon, each side of which measures 30 feet.
I multiply one side by itself: 30 times 30 makes 900. Of this sum I
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take one-third, which is 300, a tenth part of which is 90: total 390.
This must be multiplied by 6, because there are 6 sides: the product
is 2310. We shall say, therefore, that this is the number of square
feet. It will, then, be equivalent to an uncia ( 1

12 of a iugerum) less
half a scripulum ( 1

596 ) plus 1
10 of a scripulum.

This amounts to

A ∼ 6 ·
(
a2

3
+

a2

10

)
= a2 · 39

15
,

which implies 3
√
3

2 ∼ 39
15 , or

√
3 ∼ 78

45 .

24 Frontinus
Frontinus, De Aquaeductu Urbis Romae 24–25 [96]:

[24] Water pipes have been calibrated to measurement either in digits
or in inches. Digits are employed in Campania and in most parts
of Italy, but inches are still accepted as standard in Apulia. (2)
A digit, by convention, is one-sixteenth part of a foot, while an
inch is one-twelfth. (3) Just as there is a distinction between the
inch and the digit, there are also two kinds of digits. (4) One is
called square, the other round. (5) The square digit is larger than
the round by three-fourteenths of its own size; the round digit is
smaller than the square by three-elevenths of its size (because, of
course, the corners are taken away). [25] Later, a pipe called the
5-pipe (quinaria) came into use in the City to the exclusion of all
former sizes. Its origin was based neither on the inch nor on either
of the two kinds of digit. Some think that Agrippa was responsible
for its introduction, others that this was done by the lead-workers
under the influence of the architect Vitruvius. (2) Those who credit
Agrippa with its currency derive its name from the suggestion that
into one such pipe were combined five of the slender ancient pipes
(we might say little tubes) used for distributing the supply of water
which in those times was not copious. Those who ascribe the 5-
pipe to Vitruvius and the lead-workers suppose that its origin lay
in producing a cylindrical pipe from a sheet of lead five digits in
width. (3) The latter explanation is inexact, because in forming
a cylindrical shape the inner surface is contracted while the outer
surface is extended. (4) Most probable is the explanation that the
name of the 5-pipe came from its diameter of five quarter-digits, (5)
according to a system which remains consistent in pipes of increasing
size up as far as the 20-pipe: the diameter of each increases in size
by the addition of one quarter-digit. For example, the 6-pipe has
a diameter of six quarter-digits, the 7-pipe has seven, and so on by
uniform increment up to a 20-pipe.
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See Rodgers [97, pp. 209–211].
26–29 [96]:

[26] The size of any pipe is determined either by its diameter, or
its circumference, or the measure of its cross-section; from any one
of these factors its capacity is evident. (2) That we may more con-
veniently distinguish between the inch, the square digit, the round
digit, and the 5-pipe itself, we need to treat “the quinaria” (5-pipe
equivalent) as a unit of capacity, for its size is most accurate and its
standard best established. (3) The inch pipe has a diameter of 1 1

3
digits; its capacity is a little more than 1 1

8 quinariae, the fraction
being 1

8 plus 3
288 plus 2

3 of another 1
288 . (4) A square digit converted

to circular shape has a diameter of 1 5
36 digits; its capacity is 5

6 of a
quinaria. (5) A round digit has a diameter of 1 digit; its capacity
is 23

36 of a quinaria. [27] Now the pipes based on the 5-pipe are in-
creased in size in two ways. (2) One is by multiplying the 5-pipes
themselves, that is by including the equivalent of several 5-pipes into
one opening, with the size of that opening increasing according to
the addition of more 5-pipe equivalents. (3) This approach is more
or less limited to instances where a number of quinariae have been
granted: to avoid tapping the conduit too often, a single pipe is used
to lead the water into a delivery-tank, and from here individual per-
sons draw off their respective shares. [28] The second way does not
involve an increase in pipe size related to a necessary number of 5-
pipes. Instead, the increase is in the diameter of the pipe itself, a
change which alters both its name and its capacity. Take, for exam-
ple, the 5-pipe: add a sixth quarter-digit to its diameter, and one
has a 6-pipe, (2) but the capacity is not increased by an entire 5-pipe
equivalent (it has only 1 7

16 quinariae). (3) By adding quarter-digits
to the diameter in the same manner, as already explained, one gets
larger pipes, a 7-pipe, an 8-pipe, and so on up to the 20-pipe. [29]
Beyond the 20-pipe the gauging is based on the number of square
digits which are contained in the cross-section, that is the opening, of
each pipe. From this same number the pipes also take their names.
(2) Thus that pipe with an area of 25 square digits is called the
25-pipe; likewise the 30-pipe, and so on by increase in square digits,
up to the 120-pipe.

See Rodgers [97, pp. 212–215].

25 Faventinus
Faventinus, De Diversis Fabricis Architectonicae 28 [90, p. 80]:

Quoniam ad omnes usus normae ratio subtiliter inventa videtur, sine
quo nihil utiliter fieri potest, hoc modo erit disponenda. sumantur
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itaque tres regulae, ita ut duae sint pedibus binis et tertia habeat
pedes duo uncias x. eae regulae aequali crassitudine compositae ex-
tremis acuminibus iungantur schema facientes trigoni. sic fiet perite
norma composita.

A norma is a set-square, a right triangle.
Faventinus, De Diversis Fabricis Architectonicae 28 [90, p. 81]:

Since the principle of the square was a clever discovery and useful
for all purposes – since, indeed, nothing can be done very practically
without it, this is how you will prepare one. Take three scales, two
of them 2 foot long, the third, 2 foot 10 inches. They are all to be
of one uniform width, and are to be joined at the ends to give the
shape of a triangle. Your square will thus be made to professional
standards.

cf. tegulae bipedales

26 Roman camps
Polybius, Histories VI.19–20 describes the formation of four legions, each of
which is said to be usually 4200 infantry, when there is special danger 5000
infantry, and 300 cavalry. Polybius, VI.26–32 [104, pp. 324–329, 553] describes
a Roman camp for two legions. VI.26 [104, p. 324]: “No matter where this is
done, one simple formula for a camp is employed, which is adopted at all times
and in all places.” VI.31 [104, p. 328]: “The result of these dispositions is that
the whole camp is laid out as a square, and the arrangement both of the streets
and the general plan gives it the appearance of a town. The rampart is dug on
all sides at a distance of 200 feet from the tents, and this empty space serves
a number of important purposes.” VI.32 [104, p. 328]: “Given the numbers of
cavalry and infantry, and on the assumption that the strength of each legion
is either 4,000 or 5,000 men, and given likewise the depth and length and the
number of the maniples and squadrons, and besides these the dimensions of
the passages and roads and all other details, it is possible, for anybody who
wishes, to calculate the area and perimeter of the camp.” After stating that the
market and the quaestor’s depot should be reduced if there are exceptionally
many allies, VI.32 continues [104, pp. 328–329]:

On occasions when the two consuls with their four legions are united
in one camp, all we need to do is to imagine two camps similar to
the one I have described placed back to back, the two adjoining
at the point where the extraordinarii infantry are quartered, the
troops whom we described as facing the ramparts to the rear of
each camp. In this case the shape of the camp becomes oblong, its
area is doubled, and the perimeter of the entire rampart measures
half as much again. Whenever the two consuls happen to encamp
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together, this is the formation they adopt; when they are apart
the only difference is that the market, the quaestor’s depot and the
praetorium are placed between the two legions.

Walbank [114, p. 715] determines from Polybius’s statements that the square
camp that is described has sides 2150 feet.

Josephus, The Jewish War III.5.1 [107, p. 599]:

The Romans never lay themselves open to a surprise attack; for,
whatever hostile territory they may invade, they engage in no battle
until they have fortified their camp. This camp is not erected at
random or unevenly; they do not all work at once or in disorderly
parties; if the ground is uneven, it is first levelled; a site for the camp
is then measured out in the form of a square. For this purpose the
army is accompanied by a multitude of workmen and of tools for
building.

Indeed, tetragonos usually means square according to LSJ. Gibbon, Chapter
I, “The camp of a Roman legion presented the appearance of a fortified city. As
soon as the space was marked out, the pioneers carefully levelled the ground, and
removed every impediment that might interrupt its perfect regularity. Its form
was an exact quadrangle; and we may calculate, that a square of about seven
hundred yards was sufficient for the encampment of twenty thousand Romans;
though a similar number of our troops would expose to the enemy a front of
more than treble that extent.”

Vegetius, Epitoma Rei Militaris I.22 [78, p. 24]: “The camp should be built
according to the number of soldiers and baggage-train, lest too great a multitude
be crammed in a small area, or a small force in too large a space be compelled
to be spread out more than is appropriate.” I.23 [78, p. 24]: “Camps should be
made sometimes square, sometimes triangular, sometimes semicircular, accord-
ing as the nature and demands of the site require.”

II.7 [78, pp. 38–39]: “Quartermasters measure out the places in camp ac-
cording to the square footage for the soldiers to pitch their tents, or else assign
them billets in cities.”

III.8 [78, p. 80]: “When these conditions have been carefully and stringently
investigated, you may build the camp square, circular, triangular or oblong, as
required by the site. Appearance should not prejudice utility, although those
whose length is one-third longer than the width are deemed more attractive.
But surveyors should calculcate the square footage of the site-plan so that the
area enclosed corresponds to the size of the army. Cramped quarters constrict
the defenders, whilst unsuitably wide spaces spread them thinly.”

III.15 [78, p. 97]: “We said that 6 ft. ought to lie between each line in depth
from the rear, and in fact each warrior occupies 1 ft. standing still. Therefore,
if you draw up six lines, an army of 10,000 men will take up 42 ft. in depth
and a mile in breadth. [If you decide to draw up three lines, an army of 10,000
will take up 21 ft. in depth and two miles in breadth.] In accordance with this
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system, it will be possible to draw up even 20,000 or 30,000 infantry without
the slightest difficulty, if you follow the square footage for the size. The general
does not go wrong when he knows what space can hold how many fighting men.”

27 Palladius
Palladius Rutilius Taurus Aemilianus, Opus agriculturae II.11, De tabulis uin-
earum [95, p. 54]:

Tabulas autem pro domini uoluptate uel loci ratione faciemus siue
integrum iugerum continentes seu medium seu quaternariam tabu-
lam, quae quartam iugeri partem quadrata conficiet.

The word tabula is said by Souter, A Glossary of Later Latin to 600 A.D.,
s.v., to mean a “stretch (of land) in a vineyard”.

Fitch [34, p. 75]:

We shall make the planting-beds in accordance with the owner’s
inclination or the requirements of the place, covering a whole juger
or half or a quarter-bed, which consists of a fourth of a juger in
square footage.

II.12, De mensura pastini Italica [95, p. 55]:

Mensura uero pastini haec est in tabula quadrata iugerali, ut cen-
teni octogeni pedes per singula latera dirigantur, qui multiplicati tre-
centas uiginti et quattuor decempedas quadratas per spatium omne
conplebunt. secundum hunc numerum omnia quae uolueris pastinare
discuties. decem et octo enum decempedae decies et octies subpu-
tatae trecentas uiginti quattuor explebunt. quo exemplo doceberis
in maiore agri uel minore mensuram.

The word iugeralis is said by Souter, A Glossary of Later Latin to 600 A.D.,
s.v., to mean “of the land-measure called iugerum” or “very large”. Rodgers [94,
p. 96]:

With 32400 sq.ft., P.’s tabula iugeralis is larger by 3200 sq.ft. than
a normal iugerum (240 × 120 ft.), but P. is careful to explain that
he calculates his tabula with 180 ft. on a side. I wonder if he arrived
at the length of one side of his “squared” iugerum by dividing the
perimeter of a iugerum (2 × 240 + 2 × 120 = 720) by four equal
sides (720/4 = 180). He is at pains to tell us that the total area is
324 decempedae quadratae, and I suppose it is possible for him to
say (2.11) that the tabula will contain an integrum iugerum. With
medium (2.11) he must mean half the area of a iugerum (traditionally
called an actus, 120 ft. on a side) or 14400 sq.ft.; I doubt that
he would have been meaning half of 32400 sq.ft., which would be
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10 ×
√
162 ft. on a side. His quaternaria tabula, I think, would be

90 ft. on a side or 8100 sq.ft. (one-fourth of 32400) rather than
one-fourth the area of a iugerum, 7200 sq.ft., 10×

√
72 ft. on a side.

No-one, I am sure, would object to these rough approximations, least
of all P. himself (for his mathematical inexactitude, see my note on
3.9.9).

Fitch [34, p. 75]:

In a square planting-bed covering one juger, the measurement of the
prepared ground is 180 feet on each straight side; when multiplied
this will yield 324 10-foot square units across the whole area. Using
this figure, you will divide up all the ground you want to prepare. For
18 10-foot lengths multiplied 18 times will yield 324. This example
will show you how to measure a larger or smaller field.

28 Agrimensores
Folkerts [35]

Podismus §7 [48, pp. 134–137] states Heron’s formula for the right triangle
with sides 6, 8, 10; the area of the triangle is 26.

We refer to the tractate in the Corpus agrimensorum attributed to Epa-
phroditus and Vitruvius Rufus by EVR. EVR §10 [48, pp. 140–141]: let ABCD
be a right trapezium where AB and DC are parallel, ADC is a right angle,
AB = 25 feet, DC = 40 feet, DA = 30 feet; call AB the summit, BC the
hypotenuse, DC the base, and AD the height. The recipe given for finding the
area of the right triangle with height AD and hypotenuse BC is the following:
add the base DC and the summit AB, getting 65, take half of this, getting 32 1

2 ,
and multiply this by the height AD, getting 975. The recipe given for finding
the hypotenuse BC is the following: add the squares on the summit, the base,
and the height, getting 3125. Subtract from this twice the product of the base
and the summit, i.e. subtract 2 · 25 · 40 = 2000 from 3125, getting 1125. Then
BC is the side of the square 1125, namely BC2 = 1125. That is,

BC2 = AB2 +DC2 +AD2 − 2DC ·AB = (DC −AB)2 +AD2.

It is stated that BC is 33 1
2 ; indeed, 332 = 1089 and 342 = 1156.

EVR §11 [48, pp. 140–143]: for an equilateral triangle whose sides are 30
feet, multiply a side by itself, getting 30 ·30 = 900. Multiply half a side by itself,
getting 15 · 15 = 225. Then take away 225 from 900, getting 675, which is the
area. It is stated that the side of the square 675 is 26. (Indeed, 252 = 625 and
262 = 676.) This is the height of the triangle. Then multiply the height by half
the base, getting 26 · 15 = 390. This is the area of the triangle.

EVR §28 [48, pp. 158–163]: for an equilateral triangle whose sides are even
numbers, to find the area. Guillaumin explains that in §§28, 30–37 figurate
numbers are being used: for the triangular number whose each have n pebbles,
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the figure contains n2+n
2 pebbles; cf. Nicomachus, Introductio Arithmetica II.7–

12 [28, pp 239–249] and Heath [51, p. 76]. The example is given of the equilateral
triangle whose sides are 28 feet, multiply a side by itself, getting 28 · 28 = 784.
Add a side to this, getting 784 + 28 = 812. Take half of this, getting 406. It
is asserted that this is the area of the triangle. (The height of the triangle is
h =

√
282 − 142 =

√
588, which satisfies 24 < h < 24 1

4 . Then the area of the
triangle is half the product of the base and the height, i.e. 28·h

2 , and using
h = 24 1

4 this is 339 1
2 .) Conversely the side of a triangle is found given the area.

Multiply the area by 8, getting 8 · 406 = 3248. Add 1 to this, getting 3249.
The side of this square is 57. Remove 1 from this, getting 56. Take half of this,
getting 28, which is the side of the triangle.

For an a-gonal number with n pebbles on each side, the figure contains

(2 + (2n− 1)(a− 2))2 − (a− 4)2

8(a− 2)

pebbles; cf. Heath [52, p. 516]. Conversely, if the figure contains P pebbles,
then

n =
1

2

(√
8P (a− 2) + (a− 4)2 − 2

a− 2
+ 1

)
.

EVR §29 [48, pp. 164–167] states that for a pentagon with equal sides, multiply
a side by itself, multiply this by 3, then add one side, and that this gives the
pentagon. If the sides are each 10 feet, multiply a side by itself, getting 100.
Multiply this by 3, getting 300. Add a side to this, getting 310. Take half
of this, getting 155, which is said to be the area of the pentagon. Conversely,
if the area is 155, to find the side do the following: multiply the area by 24,
getting 24 · 155 = 3720. Add 1 to this, getting 3721. Find the side of the square
3721, which is 61. Remove 1 from this number, getting 60. Take a sixth of this,
getting 10, which is the said to be the side of the pentagon.

EVR §31 [48, pp. 172–177]: for a hexagon with equal sides, multiply a side
by itself, multiply this by 4, add twice a side to this, and then take half of this,
and it is asserted that this gives the pentagon. If the sides are 10 feet, multiply
a side by itself, getting 100. Multiply this by 4, getting 400. Add twice a side
to this, getting 400 + 2 · 10 = 420. Take half of this, getting 210. It is asserted
that this is the area of the hexagon. Conversely, given the area of the hexagon,
find the side. Multiply the area by 32, getting 32 · 210 = 6720. Add 4 to this,
getting 6724. Find the side of the square 6724, which is 82. Remove 2 from
this, getting 80. Take an eighth of this, getting 10. It is asserted that this is
the side of the hexagon.

EVR §32 [48, pp. 176–179] states that for a heptagon with equal sides, mul-
tiply a side by itself, multiply this by 5, remove three times a side from this,
and then take half of this, and it is asserted that this is gives the heptagon. If
the sides are 10 feet, multiply a side by itself, getting 100. Multiply this by 5,
getting 500. Remove three times a side from this, getting 500 − 3 · 10 = 470.
Take half of this, getting 235, which is asserted to be the area of the hexagon.
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Conversely, given the area of the heptagon, find the side. Multiply the area
by 40, getting 40 · 235 = 9400. Add 9 to this, getting 9409. Find the side of
the square 9409, which is 97. Add 3 to this, getting 100. Take a tenth of this,
getting 10. It is asserted that this is the side of the heptagon.

EVR §33 [48, pp. 178–179] states that for an octagon with equal sides, mul-
tiply a side by itself, multiply this by 6, remove four times a side from this, and
then take half of this, and it is asserted that this gives the octagon. If the sides
are 10 feet, multiply a side by itself, getting 100. Multiply this by 6, getting
600. Remove four times a side from this, getting 600 − 4 · 10 = 560. Take half
of this, getting 280, which is asserted to be the area of the octagon. Conversely,
given the area of the octagon, find the side. Multiply the area by 48, getting
48 · 280 = 13440. Add 16 to this, getting 13456. Find the side of the square
13456, which is 116. Add 4 to this, getting 120. Take a twelfth of this, getting
10, which is asserted to be the side of the octagon.

EVR §§34–37 [48, pp. 180–187] treat respectively the enneagon, the decagon,
the hendecagon, and the dodecagon.

De iugeribus metiundis §54 [48, pp. 198–201], cf. [10, p. 354–356]:

Castrense iugerum quadratas habet perticas CCLXXXVIII, pedes
autem quadratos XXVIIIDCCC, id est per latus unum perticas XVIII,
quae in quattuor latera faciunt perticas LXXII; habet itaque tabula
una quadratas perticas LXXII. Si ergo fuerit ager tetragonus iso-
pleurus, habens per latus unum perticas L, ita eum metiri oportet
ut sciamus quot iugera habeat intra se. Duco unum latus per aliud:
fiunt perticae IID, quae faciunt iugera VIII, tabulas II, perticas LII.
Itaque castrense iugerum capit k(astrenses) modios III.

It is first stated that a iugerum contains 288 square perticae. A iugerum is
a rectangle with sides 240 feet and 120 feet, thus whose area is 28800 square
feet. A pertica is a length of 10 feet; see Balblus, Expositio et ratio omnium
formarum [18, p. 207], Centuriarum quadratarum deformatio sive mensurarum
diversarum ritus [18, p. 241], and De mensuris agrorum [18, p. 271]. (Thus,
one iugerum contains 288 square perticae.) Next it is asserted that the side
of the square 28800 is 18 perticae, whose perimeter is 72 perticae. In fact,
1692 < 28800 < 1702, while a square with side 18 perticae contains 32400 square
feet. Guillaumin remarks that the sides of the iugerum are 24 perticae and 12
perticae, and 18 perticae is the arithmetic mean of these. If a rectangle has
sides a and b with b > a, then the square with side a+b

2 has the same perimeter
as the rectangle, namely a+ a+ b+ b, and has area

(
a+b
2

)2
= a2+b2+2ab

4 , while
the rectangle has area ab, for which

a2 + b2 + 2ab

4
− ab =

a2 + b2 − 2ab

4
=

1

4
(b− a)2.

Thus, the square with the same perimeter as the rectangle has greater area. It
is stated that one tabula contains 72 square perticae, i.e., one tabula contains
7200 square feet, namely, one tabula is a quarter of one iugerum. Then, for
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a square field whose sides are 50 perticae, find how many iugera it contains.
Multiply one side of the square by another, getting 2500 square perticae. As
2500 = 8 · 288 + 196, this field contains 8 iugera and 196 square perticae. As
196 = 2 · 72+52, the remaining 196 square feet contain 2 tabulae and 52 square
feet; thus the field contains 8 iugera, 2 tabulae, and 52 square perticae.

§56 [48, pp. 202–203]:

Ager si fuerit trigonus isopleurus, habens tria latera per quae sex-
agenas perticas habeat, duco unum latus per alterius lateris medi-
etatem, id est LX per XXX: fiunt perticae MDCCC, quae faciunt
iugera VI, tabulam unam.

If a field is an equilateral triangle whose sides are 60 perticae, multiply one
side by half another, giving 60 · 30 = 1800 square perticae. 1800 = 6 · 288 + 72,
so this is 6 iugera 1 tabula.

§57 [48, pp. 202–203]:

Ager si caput bubulum fuerit, id est duo trigona isopleura iuncta,
habentia per latus unum perticas L, unius trigoni latus in alterius
trigoni latus duco, id est L per L: fiunt IID, quae sunt iugera VIII,
tabulae IIS, perticae XVI.

If a field is two joined equilateral triangles (a “head of beef”), whose sides are
50 perticae, multiply the side of one triangle by the side of the other triangle,
that is 50 ·50 = 2500 = 8 ·288+2 ·72+36+16. That is, the area is 2500 square
perticae, which is 8 iugera, 2 1

2 tabulae, 16 square perticae.
§63 [48, pp. 210–211]:

Ager si fuerit sex angulorum, in quadratos pedes sic redigitur. Esto
exagonum in quo sint per latus unum perticae XXX. Latus unum
in se multiplico, id est tricies triceni: fiunt perticae DCCCC. Huius
summae tertiam partem statuo, id est CCC. Nihilominus ex eadem
pleniori summa decimam partem tollo, id est XC. Quae pariter iunc-
tae faciunt CCCXC. Quae sexies ducendae sunt, quia sex latera ha-
bet: quae summa colligit perticas IICCCXL. Tot igitur quadratas
perticas in hoc agro esse dicimus.

For a field that is a hexagon where each side is 30 perticae. Multiply one
side by itself, getting 30 × 30 = 900. Take a third of 900, which is 300, and a
tenth of 900, which is 90. The sum of these two is 300 + 90 = 390. Multiply
this by 6, getting 2340. The area of the field is 2340 square perticae. cf. Heron
in Heath [52, p. 327]

Marcus Junius Nipsus, Limitis Repositio [11, p. 51]:

In agris divisis subsiciva fiunt, in quibus trigona, trapezea et pentag-
ona sunt, et nihil alius nisi modus iugerum adsignatorum et nomen
scriptum est. Actus tamen in base sunt xx. Sic ut puta in pen-
tagono liis, bis ducti, faciunt cv. Qui in se ducti, faciunt iugera lxv.
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Cathetum sic quaerimus semper. Embadum duco quater – id est
lxv –; fiunt cclx. Huius summae pars vicesima fit xiii; erit cathetus.
In trigono sunt actus xlii, iugera cl. Insequentem actum iunctum
trigono ac trapezeo similiter. Quae si autem fuerint in trapezeo
iugera c, iugera ducta quater, erunt cccc. Horum pars vicesima –
hoc est xx – erit basis. Deducto contrario – id est xx – fit reliquum
vii. Erit contraria basis actus vii. Similiter in reliquius pedibus, si
fuerint cc.

Bouma [11, p. 73] translates:

When dividing land, pieces of land remain; these can be trian-
gles, trapeziums and pentagons; and nothing else but the number
of iugera assigned and their name has been written down (on the
forma). Yet there are 20 actus at the base. Thus for instance 52 1

2
(actus) in a pentagon make, multiplied by two, 105 (actus). To-
gether they comprise 65 iugera. We always seek the perpendicular
as described below. I multiply the area (of the pentagon) – that is
65 iugera – by four. This makes 260 (iugera). From these the 20th
part makes 13. This will be the perpendicular.

In a triangle are 42 actus, 150 iugera. Likewise (we want to know)
the next (number of) actus of triangle and trapezium. If there are
100 iugera in a trapezium, there will be, when multiplied by four,
400 (iugera). The 20th part of these (400 iugera) – that is 20 – will
be the base. When subtracted from the opposite base – that is 20
–, 7 remain: The opposite base will be 7 actus. The same goes for
the other feet, if they are 200.

For an isosceles trapezium with base a, summit b, and sides c and c, with
b > a, let h be its height. Then h2+

(
b−a
2

)2
= c2, and the area of the trapezium

is A = ah+ 1
2 (b− a)h = 1

2 (b+ a)h. Now,

b+ a

2
· c+ c

2
−A =

b+ a

2
· c− 1

2
(b+ a)h =

b+ a

2
(c− h).

Thus, b+a
2 · c+c

2 is greater than the area of the trapezium, as c > h.
Vaticanus Palatinus graecus 367, ff. 94r–97v, no. 23 [74, p. 51]: for a trapez-

ium with base 16 orgyiai, summit 20 orgyiai, and sides each 25 orgyiai, the area
is said to be 16+20

2 · 25+25
2 = 18 · 25 = 450 square orgyiai, which is 2 1

4 modioi; an
orgyia is six feet, and a modios is an area equal to 200 square orgyiai. In fact
the area is 54

√
69 square orgyiai, and 448 < 54

√
69 < 449.

29 Diophantus of Alexandria
Let a and b be numbers and let S be those numbers x such that ax2 − b is a
square. Diophantus, Arithmetica, Lemma to VI.15 [57, p. 238] states that if
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p ∈ S then there is some q > p such that q ∈ S. For a = 3 and b = 11, it is the
case that 3 · 25− 11 = 64 is a square, and take p = 8. Find q = x+ 5 such that
3q2 − 11 is a square, namely 3x2 + 30 + 64 is a square. It is supposed that it is
possible that this square is (8−2x)2, and so 3x2+30x+64 = 64−32x+4x2 which
is x2 = 62x, and thus x = 62. Then q = 67. Then 3 · q2 − 11 = 13456 = 1162,
so 67 ∈ S.

Heath [57, pp. 279–280] explains a generalization of this by Tannery. Given
that (p, q) is an integral solution of x2 −Ay2 = 1, put

p1 = mx− p, q1 = x+ q

with x ̸= 0 and m2 ̸= A. Analytically, for (p1, q1) to be a solution of x2−Ay2 = 1
means

m2x2 − 2mpx+ p2 −Ax2 − 2Aqx−Aq2 = 1,

and because (p, q) is a solution of x2 −Ay2 = 1 this is equivalent with

m2x2 − 2mpx−Ax2 − 2Aqx = 0.

This is equivalent with m2x−Ax = 2mp− 2Aq, which is equivalent with

x =
2mp+ 2Aq

m2 −A
,

which finally is equivalent with

p1 =
2m2p+ 2Amq

m2 −A
− p =

2m2p+ 2Amq −m2p+Ap

m2 −A
=

(m2 +A)p+ 2Amq

m2 −A
(1)

and

q1 =
2mp+ 2Aq

m2 −A
+ q =

2mp+ 2Aq +m2q −Aq

m2 −A
=

2mp+ (m2 +A)q

m2 −A
. (2)

Synthetically, given the final expressions for p1 and q1,

p21 −Aq21 =
A2p2 − 2Am2p2 +m4p2 −A3q2 + 2A2m2q2 −Am4q2

(m2 −A)2

=
(m2 −A)2 · (p2 −Aq2)

(m2 −A)2

= p2 −Aq2

= 1.

Now take x ̸= 0 and m = u
v and m2 ̸= A. Then (1) and (2) are equivalent with

p1 =
pu2 + 2Aquv +Apv2

u2 −Av2
, q1 =

qu2 + 2puv +Aqv2

u2 −Av2
. (3)

For p1, q2 to be integral is equivalent with (u, v) being a solution of x2−Ay2 = 1.
Therefore, if (p, q) and (u, v) are integral solutions of x2−Ay2 = 1 then (p1, q1)
defined by (3) is an integral solution of x2 −Ay2 = 1.
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30 Pappus of Alexandria
Pappus [67, pp. 1057–1059], Collection VIII, Proposition 9: if a weight of 200
talents needs a force of 40 men to be moved on a horizontal plane, to find the
force needed to move it on a plane inclined at 60◦. In this calculation,

sin 60◦ ∼ 104

120
.

Pappus V, Proposition 42
Pappus V, Proposition 45
Pappus V, Proposition 46
Pappus [67, p. 1244], V, Proposition 51, p. 451.

31 Theon of Alexandria
Euclid II.4 [54, p. 379]: “If a straight line be cut at random, the square on the
whole is equal to the squares on the segments and twice the rectangle contained
by the segments.” This means that if x = y + z then x2 = y2 + z2 + 2yz.

Theon of Alexandria, Commentary on Ptolemy’s Syntaxis [108, pp. 52–61],
cites this proposition and works out an approximation to

√
4500; this is ex-

plained by Heath [51, pp. 60–63]. 672 = 4489, and take
√
4500 = 67 +

x

60
+

y

602
.

Then
4500 = 4489 +

( x

60
+

y

602

)2
+ 2 · 67 ·

( x

60
+

y

602

)
,

which is

11 =
x2

602
+

y2

604
+

2xy

603
+

134x

60
+

134y

602
.

Determine x so that 134x
60 < 11, i.e. x < 330

67 . For x = 4,

11 =
16

602
+

y2

604
+

8y

603
+

536

60
+

134y

602
,

then
7424

602
=

y

602

(
y

602
+

8

60
+ 134

)
.

When y
602 ∼ 0,

7424 ∼ y · 8 + 60 · 134
60

, y ∼ 60 · 7424
8048

,

which is y ∼ 55 + 165
503 . Using y = 55 yields

√
4500 ∼ 67 +

4

60
+

55

602
,

the approximation that appears in Almagest I.10.
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32 Side and diagonal numbers
Høyrup [65, p. 261]

Heath [54, pp. 392–402]: Euclid II.9,10. II.9:

a2 + b2 = 2

[(
1

2
(a+ b)

)2

+

(
1

2
(a+ b)− b

)2
]
.

II.10:
(2a+ b)2 + b2 = 2(a2 + (a+ b)2).

Theon of Smyrna, On Mathematics Useful for the Understanding of Plato
I.31 [31, pp. 70–75],

Theon of Smyrna and Proclus, translated by Thomas [108, pp. 132–139].
Proclus, Commentary on Plato’s Republic, dissertation XIII [33, pp. 133–

135]. Waterfield [115, pp. 107–108] translates Proclus:

The Pythagoreans proposed the following elegant theorem about
diameter and side numbers. When to a diameter there is added the
side of which it is the diameter, it becomes a side, while the side,
when added to itself and receiving its own diameter in addition as
well, becomes a diameter. This is proved with the aid of a diagram
by Euclid in the second book of the Elements. If a straight line is
bisected and a straight line is added to it, the square on the whole
line (that is, including the added line) plus the square on the added
line by itself are together double the square on the half and of the
square on the straight line made up of the half and the added line.

Iamblichus, Commentary on Nicomachus [112], IV.144–156.
Cohen and Drabkin [22, pp. 42–43].
Proclus, Commentary on the First Book of Euclid’s Elements [79]
Taylor on Timaeus [106]

33 Arabic
Ibn Labban [75]
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34 Continued fractions
Hardy and Wright [49], §10.6: For 0 ≤ ξn < 1,

x = a0 + ξ0,

1

ξ0
= a′1 = a1 + ξ1,

1

ξ1
= a′2 = a2 + ξ2,

1

ξ2
= a′3 = a3 + ξ3,

. . .

Let x = a′0 =
√
10. a0 = [a′0] = 3, a′0 = a0 + ξ0; a′1 = 1

ξ0
, a1 = [a′1] = 6,

a′1 = a1 + ξ1; a′2 = 1
ξ1

, a2 = [a′2] = 6, a′2 = a2 + ξ2; a′3 = 1
ξ2

, a3 = [a′3] = 6,
a′3 = a3 + ξ3. Thus,

√
10 ∼ [3, 6, 6, 6] = 3 +

1

6 +
1

6 +
1

6

=
721

228
.

Fowler [38]
Weil [117]
Euclid X.1,2.
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