Pontryagin Duality and the Fourier Transform

Jordan Bell

June 13, 2023

Contents

1	Introduction	2
2	$\mathbb{Z}/n\mathbb{Z}$	2
3	Haar measure	2
4	δ_a	3
5	Convolution 5.1 Example	$\frac{3}{4}$
6	Dual group	4
7	Fourier transform	4
8	Pullback 8.1 Example: $n = 7$ and $f = \delta_3$	$5\\5$
9	$\widehat{Z_n}$	6
10	Haar measure 10.1 Finite LCA groups	7 7
11	$L^2(Z_n)$	7
12	Fourier transform	8
13	Pullback	8
14	Inverse Fourier transform	9
15	$\ell^1(\mathbb{Z})$	10
16	$\ell^2(\mathbb{Z})$	10

References

1 Introduction

We follow Rudin [3] and Terras [4], and refer to sp4comm [2] and Folland [1].

2 $\mathbb{Z}/n\mathbb{Z}$

Let n be a positive integer.

 $\mathbb{Z}/n\mathbb{Z} = \{k + n\mathbb{Z} : k \in \mathbb{Z}\} = \{k + n\mathbb{Z} : 0 \le k \le n - 1\}$ $Z_n = \mathbb{Z}/n\mathbb{Z} \text{ is a ring. } |Z_n| = n. \text{ We focus on the additive group } (Z_n, +).$

3 Haar measure

Let

 \mathbb{C}^{Z_n}

be the set of functions $Z_n \to \mathbb{C}$.

We use counting measure on the group Z_n as Haar measure (which is discrete and compact) with total volume n, and Since Z_n has finite Haar measure (being a compact group) and every function $Z_n \to \mathbb{C}$ is continuous (being a discrete group), we have

$$\mathbb{C}^{Z_n} = L^1(Z_n) = L^2(Z_n).$$

We specify function space for emphasis. For $f, g \in L^2(\mathbb{Z}_n)$, define

$$(f,g)_{L^2(Z_n)} = \sum_{x \in Z_n} f(x)\overline{g(x)}$$

Define

$$|f|_{L^2(Z_n)} = \sqrt{(f,f)_{L^2(Z_n)}} = \sqrt{\sum_{x \in Z_n} f(x)\overline{f(x)}}.$$

Define

$$|f|_{L^1(Z_n)} = \sum_{x \in Z_n} |f(x)|.$$

4 δ_a

For $a \in Z_n$, define $\delta_a : Z_n \to \mathbb{C}$ by

$$\delta_a(x) = \begin{cases} 1 & x = a \\ 0 & x \neq a \end{cases}$$

For $a, b \in Z_n$,

$$(\delta_a, \delta_b)_{L^2(Z_n)} = \sum_{x \in Z_n} \delta_a(x) \overline{\delta_b(x)}$$
$$= \sum_{x \in Z_n} \delta_a(x) \delta_b(x)$$
$$= \begin{cases} 1 & a = b \\ 0 & a \neq b \end{cases}$$

For $f \in L^2(\mathbb{Z}_n)$,

$$f(x) = \sum_{a \in Z_n} f(a)\delta_a(x) = \sum_{a=0}^{n-1} f(a)\delta_a(x), \qquad x \in Z_n.$$

Indeed, $\{\delta_0, \ldots, \delta_{n-1}\}$ is an orthonormal basis of $L^2(\mathbb{Z}_n)$.

5 Convolution

For $f, g \in L^1(\mathbb{Z}_n)$, define the **c**onvolution $f * g \in L^1(\mathbb{Z}_n)$ by

$$(f * g)(x) = \sum_{y \in Z_n} f(y)g(x - y), \qquad x \in Z_n.$$
$$f * g = g * f, \qquad f, g \in L^1(Z_n).$$

$$f * (g * h) = (f * g) * h, \qquad f, g, h \in L^1(Z_n).$$

For $f \in L^1(\mathbb{Z}_n)$ and for $a \in \mathbb{Z}_n$,

$$(f * \delta_a)(x) = f(x - a), \qquad x \in Z_n.$$

For $a, b \in Z_n$, and for $x \in Z_n$,

$$(\delta_a * \delta_b)(x) = \delta_a(x - b) = \delta_{a+b}(x).$$

5.1 Example

Take n = 15. Define $f = \delta_0 + \delta_1 + \delta_2$. For $x \in \mathbb{Z}_{15}$,

$$(f * f)(x) = (\delta_0 + \delta_1 + \delta_2) * (\delta_0 + \delta_1 + \delta_2) = \delta_0 * \delta_0 + \delta_1 * \delta_1 + \delta_2 * \delta_2 + 2\delta_0 * \delta_1 + 2\delta_0 * \delta_2 + 2\delta_1 * \delta_2 = \delta_0 + \delta_2 + \delta_4 + 2\delta_1 + 2\delta_2 + 2\delta_3 = \delta_0 + 2\delta_1 + 3\delta_2 + 2\delta_3 + \delta_4$$

Dual group 6

Let $S^1 = \{z \in \mathbb{C} : |z| = 1\}$, which is a multiplicative group.

Let $\widehat{Z_n}$ be the set of group homomorphisms $Z_n \to S^1$. We use normalized counting measure on the group $\widehat{Z_n}$ as Haar measure (which is discrete and compact) with total volume 1.

For $a \in Z_n$, define $e_a : Z_n \to S^1$ by

$$e_a(x) = \exp\left(2\pi i \frac{ax}{n}\right), \qquad x \in Z_n$$

 e_a is an element of $\widehat{Z_n}$. Define $\psi: Z_n \to \widehat{Z_n}$ by $\psi(a) = e_a$.

$$\widehat{Z_n} = \{e_a : a \in Z_n\} \\ = \{\psi(a) : a \in Z_n\} \\ = \psi(Z_n)$$

 $\psi:Z_n\to \widehat{Z_n}$ is an isomorphism of groups.

Fourier transform 7

Define the Fourier transform $\mathscr{F}_n: L^2(Z_n) \to L^2(\widehat{Z_n})$ by

$$(\mathscr{F}_n f)(e_a) = \sum_{x \in Z_n} f(x)e_a(-x), \qquad e_a \in \widehat{Z_n}.$$

8 Pullback

We introduce the operator $F_n: L^2(Z_n) \to L^2(Z_n)$, which is defined via composition with the Fourier transform \mathscr{F}_n and the function ψ as

$$F_n f = (\mathscr{F}_n f) \circ \psi.$$

We pullback $\mathscr{F}_n f: \widehat{Z_n} \to \mathbb{C}$ to a function $Z_n \to \mathbb{C}$. We remind ourselves (a) that for $a \in Z_n$, the function $e_a: Z_n \to S^1$ is defined by

$$e_a(x) = \exp\left(2\pi i \frac{ax}{n}\right), \qquad x \in Z_n,$$

(b) that $\psi: Z_n \to \widehat{Z_n}$ is defined by $\psi(a) = e_a$, and (c) that $\psi: Z_n \to \widehat{Z_n}$ is an isomorphism of groups, by

$$\widehat{Z_n} = \{e_a : a \in Z_n\} \\ = \{\psi(a) : a \in Z_n\} \\ = \psi(Z_n)$$

$$(\mathscr{F}_n f)(\psi(a)) = \sum_{x \in Z_n} f(x)e_a(-x)$$
$$= \sum_{x \in Z_n} f(x)\overline{e_a(x)}$$
$$= (f, e_a)_{L^2(Z_n)}$$

Thus

$$(F_n f)(x) = (f, e_x)_{L^2(Z_n)}, \qquad x \in Z_n.$$

In the sequel, we use the term Fourier transform to refer both to \mathscr{F}_n and to F_n , but preserve the distinction for calculations.

8.1 Example: n = 7 and $f = \delta_3$

By

$$(F_n f)(x) = (f, e_x)_{L^2(Z_n)}, \qquad x \in Z_n$$

we have

$$(F_7\delta_3)(x) = (\delta_3, e_x)_{L^2(Z_7)}, \qquad x \in Z_7.$$

The inner product $(\delta_3, e_x)_{L^2(\mathbb{Z}_7)}$ is given by

$$(\delta_3, e_x)_{L^2(Z_7)} = \sum_{y \in Z_7} \delta_3(y) \overline{e_x(y)}$$
$$= \sum_{y=0}^6 \delta_3(y) \overline{\exp\left(2\pi i \frac{xy}{7}\right)}.$$

Since $\delta_3(y) = 1$ only when y = 3 and 0 otherwise, the sum collapses to a single term:

$$(\delta_3, e_x)_{L^2(Z_7)} = \overline{\exp\left(2\pi i\frac{3x}{7}\right)}$$
$$= \exp\left(-2\pi i\frac{3x}{7}\right)$$
$$= e_{-3}(x)$$

Thus,

$$(F_7\delta_3)(x) = e_{-3}(x), \qquad x \in Z_7,$$

namely,

$$F_7\delta_3 = e_{-3}.$$

 $\widehat{Z_n}$ 9

 $\widehat{Z_n}$ is the set of group homomorphisms $Z_n \to S^1$. $\widehat{Z_n}$ is a group using pointwise multiplication of functions $Z_n \to S^1$, the **P**ontryagin dual group of Z_n . For $a \in Z_n$, define $e_a \in \widehat{Z_n}$ by

$$e_a(x) = \exp\left(2\pi i \frac{ax}{n}\right), \qquad x \in Z_n,$$

Define $\psi: Z_n \to \widehat{Z_n}$ by

$$\psi(a) = e_a, \qquad a \in Z_n.$$

We have

$$\widehat{Z_n} = \{e_a : a \in Z_n\}$$
$$= \{\psi(a) : a \in Z_n\}$$
$$= \psi(Z_n)$$

Thus, $\psi: Z_n \to \widehat{Z_n}$ is an isomorphism of groups.

10 Haar measure

Let G be a locally compact abelian group.

 \widehat{G} is the set of continuous group homomorphisms $G \to S^1$. It is a group with operation $(\phi_1\phi_2)(x) = \phi_1(x)\phi_2(x), \phi_1, \phi_2 \in \widehat{G}, x \in G$ (namely, pointwise multiplication). We assign \widehat{G} the coarsest topology such that for each $x \in G$, the map $\phi \mapsto \phi(x)$ is

continuous $\widehat{G} \to S^1$ (namely, the final topology on \widehat{G}).

One proves that \widehat{G} is a locally compact abelian group.

If G is a discrete LCA group, then \widehat{G} is a compact LCA group.

10.1 Finite LCA groups

Let G be a finite locally compact abelian group. G must have the discrete topology. Hence the Borel σ -algebra of G is equal to the power set of G, denoted $\mathscr{P}(G)$.

Because G has the discrete topology, \widehat{G} is equal to the set of group homomorphisms $G \to S^1$.

Assign G the Haar measure m_G defined by $m_G(A) = |A|$ for $A \in \mathscr{P}(G)$. One checks that m_G indeed is a Haar measure. (Counting measure.)

Assign \widehat{G} the Haar measure $m_{\widehat{G}}$ defined by $m_{\widehat{G}}(A) = \frac{1}{|\widehat{G}|} \cdot |A|$ for $A \in \mathscr{P}(\widehat{G})$. (Normalized counting measure.)

 $L^2(G)$ is equal to the set of functions $G \to \mathbb{C}$ and $L^2(\widehat{G})$ is equal to the set of functions $\widehat{G} \to \mathbb{C}$.

11 $L^2(Z_n)$

For $f, g \in L^2(\mathbb{Z}_n)$, define

$$(f,g)_{L^2(Z_n)} = \sum_{x \in Z_n} f(x) \overline{g(x)}$$

Define

$$|f|_{L^2(Z_n)} = \sqrt{(f,f)_{L^2(Z_n)}} = \sqrt{\sum_{x \in Z_n} f(x)\overline{f(x)}}.$$

For $a \in Z_n$, define $\delta_a : Z_n \to \mathbb{C}$ by

$$\delta_a(x) = \begin{cases} 1 & x = a \\ 0 & x \neq a \end{cases}$$

For $a, b \in Z_n$,

$$(\delta_a, \delta_b)_{L^2(Z_n)} = \sum_{x \in Z_n} \delta_a(x) \overline{\delta_b(x)}$$
$$= \sum_{x \in Z_n} \delta_a(x) \delta_b(x)$$
$$= \begin{cases} 1 & a = b \\ 0 & a \neq b \end{cases}$$

For $f \in L^2(\mathbb{Z}_n)$,

$$f(x) = \sum_{a \in \mathbb{Z}_n} f(a)\delta_a(x) = \sum_{a=0}^{n-1} f(a)\delta_a(x), \qquad x \in \mathbb{Z}_n.$$

12 Fourier transform

Define the Fourier transform $\mathscr{F}_n: L^2(Z_n) \to L^2(\widehat{Z_n})$ by

$$(\mathscr{F}_n f)(e_a) = \sum_{x \in Z_n} f(x)\overline{e_a(x)} = \sum_{x \in Z_n} f(x)e_a(-x), \qquad e_a \in \widehat{Z_n}.$$

13 Pullback

We introduce the operator $F_n: L^2(Z_n) \to L^2(Z_n)$, which is defined via composition with the Fourier transform \mathscr{F}_n and the function ψ as

$$F_n f = (\mathscr{F}_n f) \circ \psi.$$

That is, for $a \in Z_n$,

$$(F_n f)(a) = (\mathscr{F}_n f)(e_a).$$

We pullback $\mathscr{F}_n f: \widehat{Z_n} \to \mathbb{C}$ to a function $F_n f: Z_n \to \mathbb{C}$. We have

$$(\mathscr{F}_n f)(\psi(a)) = \sum_{x \in Z_n} f(x)e_a(-x)$$
$$= \sum_{x \in Z_n} f(x)\overline{e_a(x)}$$
$$= (f, e_a)_{L^2(Z_n)}$$

Thus

$$(F_n f)(x) = (f, e_x)_{L^2(Z_n)}, \qquad x \in Z_n.$$

14 Inverse Fourier transform

Define the Haar measure $m_{\widehat{Z_n}}$ on $\widehat{Z_n}$ by $m_{\widehat{Z_n}}(A) = \frac{1}{n} \cdot |A|$ for $A \in \mathscr{P}(\widehat{Z_n})$. Let $f \in L^2(Z_n)$ and let $x \in Z_n$.

$$\begin{split} \int_{\widehat{Z_n}} (\mathscr{F}_n f)(\gamma) \gamma(x) dm_{\widehat{Z_n}}(\gamma) &= \frac{1}{n} \sum_{\gamma \in \widehat{Z_n}} (\mathscr{F}_n f)(\gamma) \gamma(x) \\ &= \frac{1}{n} \sum_{a \in Z_n} (\mathscr{F}_n f)(e_a) e_a(x) \\ &= \frac{1}{n} \sum_{a \in Z_n} \left(\sum_{y \in Z_n} f(y) \overline{e_a(y)} \right) e_a(x) \\ &= \frac{1}{n} \sum_{a \in Z_n} \sum_{y \in Z_n} f(y) \overline{e_a(y)} e_a(x) \\ &= \frac{1}{n} \sum_{y \in Z_n} f(y) \left(\sum_{a \in Z_n} e_a(x) \overline{e_a(y)} \right) \end{split}$$

We use the orthogonality relations for characters of finite abelian groups. For $a, b \in Z_n$ we have $e_a, e_b \in \widehat{Z_n}$, and

$$\sum_{x \in Z_n} e_a(x)\overline{e_b(x)} = n\delta_{a,b}.$$

Then, as $e_a(x) = e_x(a)$ and $e_a(y) = e_y(a)$,

$$\begin{aligned} \frac{1}{n} \sum_{y \in \mathbb{Z}_n} f(y) \left(\sum_{a \in \mathbb{Z}_n} e_a(x) \overline{e_a(y)} \right) &= \frac{1}{n} \sum_{y \in \mathbb{Z}_n} f(y) \left(\sum_{a \in \mathbb{Z}_n} e_x(a) \overline{e_y(a)} \right) \\ &= \frac{1}{n} \sum_{y \in \mathbb{Z}_n} f(y) \cdot n \delta_{x,y} \\ &= \sum_{y \in \mathbb{Z}_n} f(y) \delta_{x,y} \\ &= \sum_{y \in \mathbb{Z}_n} f(y) \delta_x(y) \\ &= f(x). \end{aligned}$$

We have established that for $f \in L^2(\mathbb{Z}_n)$ and for $x \in \mathbb{Z}_n$,

$$\int_{\widehat{Z_n}} (\mathscr{F}_n f)(\gamma) \gamma(x) dm_{\widehat{Z_n}}(\gamma) = \frac{1}{n} \sum_{a \in Z_n} (\mathscr{F}_n f)(e_a) e_a(x) = f(x).$$

Also,

$$\frac{1}{n}\sum_{a\in Z_n} (F_n f)(a)e_a(x) = \frac{1}{n}\sum_{a\in Z_n} (\mathscr{F}_n f)(e_a)e_a(x) = f(x).$$

We have established the Fourier inversion formula for $f \in L^2(\mathbb{Z}_n)$:

$$f(x) = \frac{1}{n} \sum_{a \in \mathbb{Z}_n} (F_n f)(a) e_a(x), \qquad x \in \mathbb{Z}_n.$$

15 $\ell^1(\mathbb{Z})$

Let $\mathbb{C}^{\mathbb{Z}}$ be the set of functions $\mathbb{Z} \to \mathbb{C}$. Let $x \in \ell^1(\mathbb{Z})$ be the set of those $x \in \mathbb{C}^{\mathbb{Z}}$ such that

$$\sum_{n\in\mathbb{Z}}|x[n]|<\infty$$

and define

$$|x|_{\ell^1(\mathbb{Z})} = \sum_{n \in \mathbb{Z}} |x[n]|.$$

Let $\ell^2(\mathbb{Z})$ be the set of those $x \in \mathbb{C}^{\mathbb{Z}}$ such that

$$\sum_{n \in \mathbb{Z}} |x[n]|^2 < \infty.$$

16 $\ell^2(\mathbb{Z})$

For $x \in \ell^2(\mathbb{Z})$, define

$$|x|_{\ell^2(\mathbb{Z})} = \sqrt{\sum_{n \in \mathbb{Z}} |x[n]|^2},$$

and for $x, y \in \ell^2(\mathbb{Z})$, define

$$(x,y)_{\ell^2(\mathbb{Z})} = \sum_{n \in \mathbb{Z}} x[n]\overline{y[n]}.$$

For $k \in \mathbb{Z}$, define $T_k : \mathbb{C}^{\mathbb{Z}} \to \mathbb{C}^{\mathbb{Z}}$ by

$$(T_k x)[n] = x[n-k], \qquad n \in \mathbb{Z}.$$

References

- [1] Gerald B. Folland. A course in abstract harmonic analysis. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2nd updated edition edition, 2015.
- [2] Paolo Prandoni and Martin Vetterli. Signal Processing for Communications. EPFL Press, 2008. https://www.sp4comm.org/webversion.html.
- [3] Walter Rudin. *Fourier analysis on groups*. Number 12 in Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers, New York, 1962.
- [4] Audrey Terras. Fourier analysis on finite groups and applications, volume 43 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1999.