Pontryagin Duality and the Fourier Transform

Jordan Bell

June 13, 2023

Contents

1 Introduction 2
$2 \quad \mathbb{Z} / n \mathbb{Z}$ 2
3 Haar measure 2
$4 \quad \delta_{a}$ 3
5 Convolution 3
5.1 Example 4
6 Dual group 4
7 Fourier transform 4
8 Pullback 5
8.1 Example: $n=7$ and $f=\delta_{3}$ 5
$9 \widehat{Z_{n}}$ 6
10 Haar measure 7
10.1 Finite LCA groups 7
$11 L^{2}\left(Z_{n}\right)$ 7
12 Fourier transform 8
13 Pullback 8
14 Inverse Fourier transform 9
$15 \ell^{1}(\mathbb{Z})$ 10
$16 \ell^{2}(\mathbb{Z})$ 10

1 Introduction

We follow Rudin [3] and Terras [4], and refer to sp4comm [2] and Folland [1].

$2 \mathbb{Z} / n \mathbb{Z}$

Let n be a positive integer.

$$
\mathbb{Z} / n \mathbb{Z}=\{k+n \mathbb{Z}: k \in \mathbb{Z}\}=\{k+n \mathbb{Z}: 0 \leq k \leq n-1\}
$$

$Z_{n}=\mathbb{Z} / n \mathbb{Z}$ is a ring. $\left|Z_{n}\right|=n$. We focus on the additive group $\left(Z_{n},+\right)$.

3 Haar measure

Let

$$
\mathbb{C}^{Z_{n}}
$$

be the set of functions $Z_{n} \rightarrow \mathbb{C}$.
We use counting measure on the group Z_{n} as Haar measure (which is discrete and compact) with total volume n, and Since Z_{n} has finite Haar measure (being a compact group) and every function $Z_{n} \rightarrow \mathbb{C}$ is continuous (being a discrete group), we have

$$
\mathbb{C}^{Z_{n}}=L^{1}\left(Z_{n}\right)=L^{2}\left(Z_{n}\right) .
$$

We specify function space for emphasis.
For $f, g \in L^{2}\left(Z_{n}\right)$, define

$$
(f, g)_{L^{2}\left(Z_{n}\right)}=\sum_{x \in Z_{n}} f(x) \overline{g(x)}
$$

Define

$$
|f|_{L^{2}\left(Z_{n}\right)}=\sqrt{(f, f)_{L^{2}\left(Z_{n}\right)}}=\sqrt{\sum_{x \in Z_{n}} f(x) \overline{f(x)}}
$$

Define

$$
|f|_{L^{1}\left(Z_{n}\right)}=\sum_{x \in Z_{n}}|f(x)| .
$$

$4 \delta_{a}$
For $a \in Z_{n}$, define $\delta_{a}: Z_{n} \rightarrow \mathbb{C}$ by

$$
\delta_{a}(x)= \begin{cases}1 & x=a \\ 0 & x \neq a\end{cases}
$$

For $a, b \in Z_{n}$,

$$
\begin{aligned}
\left(\delta_{a}, \delta_{b}\right)_{L^{2}\left(Z_{n}\right)} & =\sum_{x \in Z_{n}} \delta_{a}(x) \overline{\delta_{b}(x)} \\
& =\sum_{x \in Z_{n}} \delta_{a}(x) \delta_{b}(x) \\
& = \begin{cases}1 & a=b \\
0 & a \neq b\end{cases}
\end{aligned}
$$

For $f \in L^{2}\left(Z_{n}\right)$,

$$
f(x)=\sum_{a \in Z_{n}} f(a) \delta_{a}(x)=\sum_{a=0}^{n-1} f(a) \delta_{a}(x), \quad x \in Z_{n} .
$$

Indeed, $\left\{\delta_{0}, \ldots, \delta_{n-1}\right\}$ is an orthonormal basis of $L^{2}\left(Z_{n}\right)$.

5 Convolution

For $f, g \in L^{1}\left(Z_{n}\right)$, define the convolution $f * g \in L^{1}\left(Z_{n}\right)$ by

$$
\begin{gathered}
(f * g)(x)=\sum_{y \in Z_{n}} f(y) g(x-y), \quad x \in Z_{n} . \\
f * g=g * f, \quad f, g \in L^{1}\left(Z_{n}\right) \\
f *(g * h)=(f * g) * h, \quad f, g, h \in L^{1}\left(Z_{n}\right) .
\end{gathered}
$$

For $f \in L^{1}\left(Z_{n}\right)$ and for $a \in Z_{n}$,

$$
\left(f * \delta_{a}\right)(x)=f(x-a), \quad x \in Z_{n} .
$$

For $a, b \in Z_{n}$, and for $x \in Z_{n}$,

$$
\left(\delta_{a} * \delta_{b}\right)(x)=\delta_{a}(x-b)=\delta_{a+b}(x) .
$$

5.1 Example

Take $n=15$. Define $f=\delta_{0}+\delta_{1}+\delta_{2}$. For $x \in Z_{15}$,

$$
\begin{aligned}
(f * f)(x) & =\left(\delta_{0}+\delta_{1}+\delta_{2}\right) *\left(\delta_{0}+\delta_{1}+\delta_{2}\right) \\
& =\delta_{0} * \delta_{0}+\delta_{1} * \delta_{1}+\delta_{2} * \delta_{2} \\
& +2 \delta_{0} * \delta_{1}+2 \delta_{0} * \delta_{2}+2 \delta_{1} * \delta_{2} \\
& =\delta_{0}+\delta_{2}+\delta_{4} \\
& +2 \delta_{1}+2 \delta_{2}+2 \delta_{3} \\
& =\delta_{0}+2 \delta_{1}+3 \delta_{2}+2 \delta_{3}+\delta_{4}
\end{aligned}
$$

6 Dual group

Let $S^{1}=\{z \in \mathbb{C}:|z|=1\}$, which is a multiplicative group.
Let $\widehat{Z_{n}}$ be the set of group homomorphisms $Z_{n} \rightarrow S^{1}$.
We use normalized counting measure on the group $\widehat{Z_{n}}$ as Haar measure (which is discrete and compact) with total volume 1.

For $a \in Z_{n}$, define $e_{a}: Z_{n} \rightarrow S^{1}$ by

$$
e_{a}(x)=\exp \left(2 \pi i \frac{a x}{n}\right), \quad x \in Z_{n} .
$$

e_{a} is an element of $\widehat{Z_{n}}$.
Define $\psi: Z_{n} \rightarrow \widehat{Z_{n}}$ by $\psi(a)=e_{a}$.

$$
\begin{aligned}
\widehat{Z_{n}} & =\left\{e_{a}: a \in Z_{n}\right\} \\
& =\left\{\psi(a): a \in Z_{n}\right\} \\
& =\psi\left(Z_{n}\right)
\end{aligned}
$$

$\psi: Z_{n} \rightarrow \widehat{Z_{n}}$ is an isomorphism of groups.

7 Fourier transform

Define the Fourier transform $\mathscr{F}_{n}: L^{2}\left(Z_{n}\right) \rightarrow L^{2}\left(\widehat{\left.Z_{n}\right)}\right.$ by

$$
\left(\mathscr{F}_{n} f\right)\left(e_{a}\right)=\sum_{x \in Z_{n}} f(x) e_{a}(-x), \quad e_{a} \in \widehat{Z_{n}} .
$$

8 Pullback

We introduce the operator $F_{n}: L^{2}\left(Z_{n}\right) \rightarrow L^{2}\left(Z_{n}\right)$, which is defined via composition with the Fourier transform \mathscr{F}_{n} and the function ψ as

$$
F_{n} f=\left(\mathscr{F}_{n} f\right) \circ \psi
$$

We pullback $\mathscr{F}_{n} f: \widehat{Z_{n}} \rightarrow \mathbb{C}$ to a function $Z_{n} \rightarrow \mathbb{C}$.
We remind ourselves (a) that for $a \in Z_{n}$, the function $e_{a}: Z_{n} \rightarrow S^{1}$ is defined by

$$
e_{a}(x)=\exp \left(2 \pi i \frac{a x}{n}\right), \quad x \in Z_{n}
$$

(b) that $\psi: Z_{n} \rightarrow \widehat{Z_{n}}$ is defined by $\psi(a)=e_{a}$,
and (c) that $\psi: Z_{n} \rightarrow \widehat{Z_{n}}$ is an isomorphism of groups, by

$$
\begin{aligned}
\widehat{Z_{n}} & =\left\{e_{a}: a \in Z_{n}\right\} \\
& =\left\{\psi(a): a \in Z_{n}\right\} \\
& =\psi\left(Z_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(\mathscr{F}_{n} f\right)(\psi(a)) & =\sum_{x \in Z_{n}} f(x) e_{a}(-x) \\
& =\sum_{x \in Z_{n}} f(x) \overline{e_{a}(x)} \\
& =\left(f, e_{a}\right)_{L^{2}\left(Z_{n}\right)}
\end{aligned}
$$

Thus

$$
\left(F_{n} f\right)(x)=\left(f, e_{x}\right)_{L^{2}\left(Z_{n}\right)}, \quad x \in Z_{n}
$$

In the sequel, we use the term Fourier transform to refer both to \mathscr{F}_{n} and to F_{n}, but preserve the distinction for calculations.

8.1 Example: $n=7$ and $f=\delta_{3}$

By

$$
\left(F_{n} f\right)(x)=\left(f, e_{x}\right)_{L^{2}\left(Z_{n}\right)}, \quad x \in Z_{n}
$$

we have

$$
\left(F_{7} \delta_{3}\right)(x)=\left(\delta_{3}, e_{x}\right)_{L^{2}\left(Z_{7}\right)}, \quad x \in Z_{7}
$$

The inner product $\left(\delta_{3}, e_{x}\right)_{L^{2}\left(Z_{7}\right)}$ is given by

$$
\begin{aligned}
\left(\delta_{3}, e_{x}\right)_{L^{2}\left(Z_{7}\right)} & =\sum_{y \in Z_{7}} \delta_{3}(y) \overline{e_{x}(y)} \\
& =\sum_{y=0}^{6} \delta_{3}(y) \overline{\exp \left(2 \pi i \frac{x y}{7}\right)}
\end{aligned}
$$

Since $\delta_{3}(y)=1$ only when $y=3$ and 0 otherwise, the sum collapses to a single term:

$$
\begin{aligned}
\left(\delta_{3}, e_{x}\right)_{L^{2}\left(Z_{7}\right)} & =\overline{\exp \left(2 \pi i \frac{3 x}{7}\right)} \\
& =\exp \left(-2 \pi i \frac{3 x}{7}\right) \\
& =e_{-3}(x)
\end{aligned}
$$

Thus,

$$
\left(F_{7} \delta_{3}\right)(x)=e_{-3}(x), \quad x \in Z_{7}
$$

namely,

$$
F_{7} \delta_{3}=e_{-3}
$$

$9 \widehat{Z_{n}}$

$\widehat{Z_{n}}$ is the set of group homomorphisms $Z_{n} \rightarrow S^{1}$.
$\widehat{Z_{n}}$ is a group using pointwise multiplication of functions $Z_{n} \rightarrow S^{1}$, the \mathbf{P} ontryagin dual group of Z_{n}.

For $a \in Z_{n}$, define $e_{a} \in \widehat{Z_{n}}$ by

$$
e_{a}(x)=\exp \left(2 \pi i \frac{a x}{n}\right), \quad x \in Z_{n}
$$

Define $\psi: Z_{n} \rightarrow \widehat{Z_{n}}$ by

$$
\psi(a)=e_{a}, \quad a \in Z_{n} .
$$

We have

$$
\begin{aligned}
\widehat{Z_{n}} & =\left\{e_{a}: a \in Z_{n}\right\} \\
& =\left\{\psi(a): a \in Z_{n}\right\} \\
& =\psi\left(Z_{n}\right)
\end{aligned}
$$

Thus, $\psi: Z_{n} \rightarrow \widehat{Z_{n}}$ is an isomorphism of groups.

10 Haar measure

Let G be a locally compact abelian group.
\widehat{G} is the set of continuous group homomorphisms $G \rightarrow S^{1}$. It is a group with operation $\left(\phi_{1} \phi_{2}\right)(x)=\phi_{1}(x) \phi_{2}(x), \phi_{1}, \phi_{2} \in \widehat{G}, x \in G$ (namely, pointwise multiplication).

We assign \widehat{G} the coarsest topology such that for each $x \in G$, the map $\phi \mapsto \phi(x)$ is continuous $\widehat{G} \rightarrow S^{1}$ (namely, the final topology on \widehat{G}).

One proves that \widehat{G} is a locally compact abelian group.
If G is a discrete LCA group, then \widehat{G} is a compact LCA group.

10.1 Finite LCA groups

Let G be a finite locally compact abelian group. G must have the discrete topology. Hence the Borel σ-algebra of G is equal to the power set of G, denoted $\mathscr{P}(G)$.

Because G has the discrete topology, \widehat{G} is equal to the set of group homomorphisms $G \rightarrow S^{1}$.

Assign G the Haar measure m_{G} defined by $m_{G}(A)=|A|$ for $A \in \mathscr{P}(G)$. One checks that m_{G} indeed is a Haar measure. (Counting measure.)

Assign \widehat{G} the Haar measure $m_{\widehat{G}}$ defined by $m_{\widehat{G}}(A)=\frac{1}{|\widehat{G}|} \cdot|A|$ for $A \in \mathscr{P}(\widehat{G})$. (Normalized counting measure.)
$L^{2}(G)$ is equal to the set of functions $G \rightarrow \mathbb{C}$ and $L^{2}(\widehat{G})$ is equal to the set of functions $\widehat{G} \rightarrow \mathbb{C}$.
$11 L^{2}\left(Z_{n}\right)$
For $f, g \in L^{2}\left(Z_{n}\right)$, define

$$
(f, g)_{L^{2}\left(Z_{n}\right)}=\sum_{x \in Z_{n}} f(x) \overline{g(x)}
$$

Define

$$
|f|_{L^{2}\left(Z_{n}\right)}=\sqrt{(f, f)_{L^{2}\left(Z_{n}\right)}}=\sqrt{\sum_{x \in Z_{n}} f(x) \overline{f(x)}} .
$$

For $a \in Z_{n}$, define $\delta_{a}: Z_{n} \rightarrow \mathbb{C}$ by

$$
\delta_{a}(x)= \begin{cases}1 & x=a \\ 0 & x \neq a\end{cases}
$$

For $a, b \in Z_{n}$,

$$
\begin{aligned}
\left(\delta_{a}, \delta_{b}\right)_{L^{2}\left(Z_{n}\right)} & =\sum_{x \in Z_{n}} \delta_{a}(x) \overline{\delta_{b}(x)} \\
& =\sum_{x \in Z_{n}} \delta_{a}(x) \delta_{b}(x) \\
& = \begin{cases}1 & a=b \\
0 & a \neq b\end{cases}
\end{aligned}
$$

For $f \in L^{2}\left(Z_{n}\right)$,

$$
f(x)=\sum_{a \in Z_{n}} f(a) \delta_{a}(x)=\sum_{a=0}^{n-1} f(a) \delta_{a}(x), \quad x \in Z_{n}
$$

12 Fourier transform

Define the Fourier transform $\mathscr{F}_{n}: L^{2}\left(Z_{n}\right) \rightarrow L^{2}\left(\widehat{Z_{n}}\right)$ by

$$
\left(\mathscr{F}_{n} f\right)\left(e_{a}\right)=\sum_{x \in Z_{n}} f(x) \overline{e_{a}(x)}=\sum_{x \in Z_{n}} f(x) e_{a}(-x), \quad e_{a} \in \widehat{Z_{n}}
$$

13 Pullback

We introduce the operator $F_{n}: L^{2}\left(Z_{n}\right) \rightarrow L^{2}\left(Z_{n}\right)$, which is defined via composition with the Fourier transform \mathscr{F}_{n} and the function ψ as

$$
F_{n} f=\left(\mathscr{F}_{n} f\right) \circ \psi
$$

That is, for $a \in Z_{n}$,

$$
\left(F_{n} f\right)(a)=\left(\mathscr{F}_{n} f\right)\left(e_{a}\right)
$$

We pullback $\mathscr{F}_{n} f: \widehat{Z_{n}} \rightarrow \mathbb{C}$ to a function $F_{n} f: Z_{n} \rightarrow \mathbb{C}$.
We have

$$
\begin{aligned}
\left(\mathscr{F}_{n} f\right)(\psi(a)) & =\sum_{x \in Z_{n}} f(x) e_{a}(-x) \\
& =\sum_{x \in Z_{n}} f(x) \overline{e_{a}(x)} \\
& =\left(f, e_{a}\right)_{L^{2}\left(Z_{n}\right)}
\end{aligned}
$$

Thus

$$
\left(F_{n} f\right)(x)=\left(f, e_{x}\right)_{L^{2}\left(Z_{n}\right)}, \quad x \in Z_{n}
$$

14 Inverse Fourier transform

Define the Haar measure $m_{\widehat{Z_{n}}}$ on $\widehat{Z_{n}}$ by $m_{\widehat{Z_{n}}}(A)=\frac{1}{n} \cdot|A|$ for $A \in \mathscr{P}\left(\widehat{Z_{n}}\right)$.
Let $f \in L^{2}\left(Z_{n}\right)$ and let $x \in Z_{n}$.

$$
\begin{aligned}
\int_{\widehat{Z_{n}}}\left(\mathscr{F}_{n} f\right)(\gamma) \gamma(x) d m_{\widehat{Z_{n}}}(\gamma) & =\frac{1}{n} \sum_{\gamma \in \widehat{Z_{n}}}\left(\mathscr{F}_{n} f\right)(\gamma) \gamma(x) \\
& =\frac{1}{n} \sum_{a \in Z_{n}}\left(\mathscr{F}_{n} f\right)\left(e_{a}\right) e_{a}(x) \\
& =\frac{1}{n} \sum_{a \in Z_{n}}\left(\sum_{y \in Z_{n}} f(y) \overline{e_{a}(y)}\right) e_{a}(x) \\
& =\frac{1}{n} \sum_{a \in Z_{n}} \sum_{y \in Z_{n}} f(y) \overline{e_{a}(y)} e_{a}(x) \\
& =\frac{1}{n} \sum_{y \in Z_{n}} f(y)\left(\sum_{a \in Z_{n}} e_{a}(x) \overline{e_{a}(y)}\right)
\end{aligned}
$$

We use the orthogonality relations for characters of finite abelian groups. For $a, b \in$ Z_{n} we have $e_{a}, e_{b} \in \widehat{Z_{n}}$, and

$$
\sum_{x \in Z_{n}} e_{a}(x) \overline{e_{b}(x)}=n \delta_{a, b}
$$

Then, as $e_{a}(x)=e_{x}(a)$ and $e_{a}(y)=e_{y}(a)$,

$$
\begin{aligned}
\frac{1}{n} \sum_{y \in Z_{n}} f(y)\left(\sum_{a \in Z_{n}} e_{a}(x) \overline{e_{a}(y)}\right) & =\frac{1}{n} \sum_{y \in Z_{n}} f(y)\left(\sum_{a \in Z_{n}} e_{x}(a) \overline{e_{y}(a)}\right) \\
& =\frac{1}{n} \sum_{y \in Z_{n}} f(y) \cdot n \delta_{x, y} \\
& =\sum_{y \in Z_{n}} f(y) \delta_{x, y} \\
& =\sum_{y \in Z_{n}} f(y) \delta_{x}(y) \\
& =f(x) .
\end{aligned}
$$

We have established that for $f \in L^{2}\left(Z_{n}\right)$ and for $x \in Z_{n}$,

$$
\int_{\widehat{Z_{n}}}\left(\mathscr{F}_{n} f\right)(\gamma) \gamma(x) d m_{\widehat{Z_{n}}}(\gamma)=\frac{1}{n} \sum_{a \in Z_{n}}\left(\mathscr{F}_{n} f\right)\left(e_{a}\right) e_{a}(x)=f(x)
$$

Also,

$$
\frac{1}{n} \sum_{a \in Z_{n}}\left(F_{n} f\right)(a) e_{a}(x)=\frac{1}{n} \sum_{a \in Z_{n}}\left(\mathscr{F}_{n} f\right)\left(e_{a}\right) e_{a}(x)=f(x)
$$

We have established the Fourier inversion formula for $f \in L^{2}\left(Z_{n}\right)$:

$$
f(x)=\frac{1}{n} \sum_{a \in Z_{n}}\left(F_{n} f\right)(a) e_{a}(x), \quad x \in Z_{n}
$$

$15 \ell^{1}(\mathbb{Z})$
Let $\mathbb{C}^{\mathbb{Z}}$ be the set of functions $\mathbb{Z} \rightarrow \mathbb{C}$.
Let $x \in \ell^{1}(\mathbb{Z})$ be the set of those $x \in \mathbb{C}^{\mathbb{Z}}$ such that

$$
\sum_{n \in \mathbb{Z}}|x[n]|<\infty
$$

and define

$$
|x|_{\ell^{1}(\mathbb{Z})}=\sum_{n \in \mathbb{Z}}|x[n]| .
$$

Let $\ell^{2}(\mathbb{Z})$ be the set of those $x \in \mathbb{C}^{\mathbb{Z}}$ such that

$$
\sum_{n \in \mathbb{Z}}|x[n]|^{2}<\infty
$$

16

$\ell^{2}(\mathbb{Z})$
For $x \in \ell^{2}(\mathbb{Z})$, define

$$
|x|_{\ell^{2}(\mathbb{Z})}=\sqrt{\sum_{n \in \mathbb{Z}}|x[n]|^{2}}
$$

and for $x, y \in \ell^{2}(\mathbb{Z})$, define

$$
(x, y)_{\ell^{2}(\mathbb{Z})}=\sum_{n \in \mathbb{Z}} x[n] \overline{y[n]}
$$

For $k \in \mathbb{Z}$, define $T_{k}: \mathbb{C}^{\mathbb{Z}} \rightarrow \mathbb{C}^{\mathbb{Z}}$ by

$$
\left(T_{k} x\right)[n]=x[n-k], \quad n \in \mathbb{Z}
$$

References

[1] Gerald B. Folland. A course in abstract harmonic analysis. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2nd updated edition edition, 2015.
[2] Paolo Prandoni and Martin Vetterli. Signal Processing for Communications. EPFL Press, 2008. https://www.sp4comm.org/webversion.html.
[3] Walter Rudin. Fourier analysis on groups. Number 12 in Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers, New York, 1962.
[4] Audrey Terras. Fourier analysis on finite groups and applications, volume 43 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1999.

