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1 Preliminaries

Let N be the set of positive integers. We say that a set is countable if it is
bijective with a subset of N; thus a finite set is countable. In this note I do
not presume unless I say so that any set is countable or that any topological
space is separable. A neighborhood of a point in a topological space is a set that
contains an open set that contains the point; one reason why it can be handy to
speak about neighborhoods of a point rather than just open sets that contain
the point is that the set of all neighborhoods of a point is a filter, whereas it is
unlikely that the set of all open sets that contain a point is a filter.

2 Unordered sums in normed spaces

A partially ordered set is a set J and a binary relation < on J that is reflexive
(o < @), antisymmetric (if both a < § and 8 < « then o = ), and transitive
(if both o < B and 8 < 7 then a < 7).1 A directed set is a partially ordered
set (J, <) such that if a, 8 € J then there is some v € J such that o < 7 and
B <~. If X is a topological space, a net in X is a function from some directed
set to X. If z: J — X is a net in X and N is a subset of X, we say that z
is eventually in N if there is some o € J such that o < 8 implies z(8) € N.
We say that the net z converges to x € X if for every neighborhood of = the
net is eventually in that neighborhood. The importance of the notion of a net
is that if X and Y are topological spaces and f is a function X — Y then f
is continuous if and only if for every x € X and for every net z : J — X that
converges to x, the net foz:.J — Y converges to f(z).2

Let X be a normed space, let I be a set, and let % be the set of all finite
subsets of I. % is a directed set ordered by set inclusion. Define S : # — X
by

S(F)=> fi)eX, FeZ.
ieF

S is a net in X, and if the net S converges to x € X, we say that the sum
> icr f(i) converges to x, and write ), ; f(i) = x.

1Paul R. Halmos, Naive Set Theory, §14.
2James R. Munkres, Topology, second ed., p. 188.




Theorem 1. If X is a normed space, f : I — X is a function, x € X, and I
is a subset of I such that if i € I\ Iy then f(i) =0, then ), ; f(i) converges
to x if and only if 3, f(i) converges to x.

Proof. Let .Z be the set of all finite subsets of I, let .%; be the set of all finite
subsets of Iy, define S : . — X by S(F) = > ,cp f(i), and let Sy be the
restriction of S to #,. Suppose that ), f(i) converges to x, and let € > 0.
There is some F, € % such that if F. C F € % then |S(F) — x| < e. Let
Ge=F.NIy. If G. C G € %y, then

So(G)—x =) f(i)—x=> f(i)—ax=S(F) -z,
ied ieF
giving ||So(G) — z|| = ||S(F') — z||. Hence G, C G € %, implies that ||So(G) — z|| <
€, showing that the net Sy converges to z, i.e. that ), , f(i) converges to x.
Suppose that ., f(i) converges to x, and let € > 0. There is some
G. € % such that if G C G € % then ||So(G) —z|| < e IfGe CF € &,
then, with G = F N I,

SF)—z=) f(i)—z=> f(i)—z==5(G) -z,
i€l i€G

so Ge C F € % implies that ||S(F) — z|| < e. This shows that S converges to
x, that is, that ), ; f(i) converges to x. O

Theorem 2. If X is a normed space, f : I — X is a function, and ), f(i)
converges, then {i € I : f(i) # 0} is countable.

Proof. Suppose that ). f(i) converges to x, let .# be the set of all finite
subsets of I, and let S(F') = )., f(i), I’ € #. For each n € N, let F}, € .7 be
such that if F,, C F € .% then

1
Is(F) ) < -
If Ge# and GNF, =0, then
2
IS@G) = 1S(G U Fa) = S(F)| < [|S(G U Fa) — 2l + |S(Fn) — 2l < —.

Let J = U, ey Fn. Ifi € I\ J, then for each n € N, we have {i}NF,, = (}, whence
|S({i})| < 2. That is, if i € I\ J then for each n € N we have | f(i)| < 2,
which implies that if ¢ € '\ J then f(i) = 0. Therefore {i € I : f(i) # 0} C J,
and as J is countable, the set {i € I : f(i) # 0} is countable. O

However, we already have a notion of infinite sums: a series is the limit of a
sequence of partial sums.

Theorem 3. If X is a normed space, x, € X, and
then 25:1 Tp =« as N — 00.

neN Tn converges to x,



Proof. Let € > 0, let % be the set of all finite subsets of N, and let S : % — X
be S(F) = >, cr®n. The net S converges to x, so there is some F, € .# such
that if F. C F then ||S(F) —z|| < e. Let N. = maxF,.. If N > N, then for
F={1,...,N} we have F, C F and so

N
g Ty — T
n=1

showing that 25:1 Tnp — x as N — oo. O

= [[1S(F) —z| <«

When we talk about the sum ), ; f(i), the set of all finite subsets of [
is ordered by set inclusion, but we don’t care about any ordering of the set
I itself. If the sum ) _y, converges then for any bijection o : N — N,
Zzozl To(n) = ZneN ZTpn. If z, is a sequence in a normed space and for every
bijection o : N = N the series Y~ Ty(n) converges, we say that the sequence
Zpn is unconditionally summable. If an unordered sum converges, then it is
unconditionally summable, and if a countable unordered sum is unconditionally
summable the unordered sum converges.

Theorem 4. If X is a Banach space, x, € X, and Y > ||z,| < oo, then
Y onen Tn cONVETgES.

Proof. For each k € N there is some K (k) such that

oo

]l < 2
k

n=K (k)+1
suppose that if j < k then K(j) < K (k). Define

K (k)

Vg = E Ip.
n=1

Fore>0,letN>%. If k> j > N, then

K (k) K(j) K (k) K (k) LS
ok =il = (1D wn =D || =1 D @< D Mzl DDzl
n=1 n=1 n=K(j)+1 n=K(j)+1 n=K(j)+1

hence if k£ > j > N, then ||v; —v;|| < % < +. This shows that vy is a Cauchy
sequence, and hence vy converges to some x € X.

Let % be the set of all finite subsets of N and define S : # — X by
S(F) = > ,cpTn Let € >0, and as vy — x there is some Ny such that if
k > Nj then |vg —z| < e. Let Ny > %, put N = max{Ny, N2}, and put



F.={1,...,K(N)}. f F. C F € %, then

ISCF) —al = ||3 wn—s
neF
N DT e R ore
neF neF, neF,
= Z ZTnl|| + |lon — 2]
neF\F.
< Y lwall+e
neF\Fe
oo
< > lwall+e
n=K(N)+1
< ! +
— +e€
N
2e.
Therefore the net S converges to x, i.e. ) _y ¥, converges to x. O

The following theorem shows us in particular that the converse of Theorem
3 is false. One direction of the following theorem is Theorem 4 with X = C.
The other direction follows from the Riemann rearrangement theorem.3

Theorem 5. If a, € C, then Y, o converges if and only if >~ | o, | < co.

neN

Let X be a normed space and z : J — X a net. We say that z is Cauchy if
for every € > 0 there is some a € J such that o < g and a < v together imply
that [|2(8) — 2(7)] <!

Theorem 6. If X is a Banach space and z : J — X is a Cauchy net, then
there is some x € X such that z converges to x.

Proof. Let ay € J such that if ay < « then [|z(a) — z(aq)|| < 1, and for n > 1
let o, € J be such that if oy, < a then [z(a) — z(an)|| < + and such that
ap—1 < ay. Define z,, = z(a,,). For e >0, let N > % If n > m > N, then, as

O 2 Q,
| | = llz(am) — 2( )H<*1 1S
Tn — Tm|| = [|2\Qn) — 2(Qm = ’
m -~ N

showing that z,, is a Cauchy sequence in X. Hence there is some x € X such
that x,, — x.

3Walter Rudin, Principles of Mathematical Analysis, third ed., p. 76, Theorem 3.54.
4Ronald G. Douglas, Banach Algebra Techniques in Operator Theory, second ed., p. 3,
Proposition 1.7.



Let € > 0, let Ny > 1, let Ny be such that if n > Ny then [z, — 2| < e,
and set N = max{Ny, Na}. If any < «, then, by construction of the sequence
a'fb?

() —zl| < |[2(a) = z(an)|[ + [|z(an) — =]
= 2(@) = z(an)ll + [len — 2|
1
< N +e€
< 2,
showing that the net z converges to x. O

Theorem 7. If H is an infinite dimensional Hilbert space and {e, : n € N} is
an orthonormal set in H, then ) %en converges.

Proof. Let . be the set of finite subsets of N and let S(F) = . _. Le,,

neF n
F € 7. Define vy = ZnN:1 %en. If Ny > Ny > N, then, as e, are orthonormal,
2
Nl Nl o0 o0
1 1 1 1 1
2
v — v = —e = — < — < = —,
lov —owalP= | > el = X m< X @< et =
n=No+1 n=Ns+1 n=N+1 n=N

so vy is a Cauchy sequence in H and hence converges to some h € H. For
€>0,let Ny > % let |luy, — hl|> < ¢, put N = max{Ny, N>}, and put F.
{1,....,N}. If F. C F € %, then, using that e, are orthonormal and 0 <
(a —b)? = a? — 2ab + b2,

IS(F) =nl* < (IS(F) = S(F)| + |S(F.) = k)
< 2|S(F) = S(F)|* +2||S(F.) - h®
2
1
=2 ~en +2|luy — B
neF\F.
1
=2 > —+2fw—hf
neF\F.
< e

This shows that the net S converges to h, that is, that ) %en converges to
h. O

We have proved that if H is an infinite dimensional Hilbert space and
{en : n € N} is an orthonormal set in H, then >, .\ Le, converges, although
Sl 2en]] = X021 L = co. This shows that the converse of Theorem 4 is
false. In fact, the Dvoretsky-Rogers theorem states that if X is an infinite di-
mensional Banach space then there is some countable subset {z,, : n € N} of X

such that >\ @, converges but - |lzn|| = 0.

5Joseph Diestel, Sequences and Series in Banach Spaces, p. 59, chapter VI.



3 Orthogonal projections

If S;,i € I, are subsets of a Hilbert space H, we define \/,; S; to be the closure
of the span of (J;.; S;. If i # j implies that S; L S, we say that the sets .S; are
mutually orthogonal. To say that {e; : ¢ € I'} is an orthonormal basis for H is
to say that {e; : i € I'} is an orthonormal set and that H = \/,_;{e;}.

If M,,,n € N, are mutually orthogonal closed subspaces of M, we denote

@Mn: \/ Mna
neN neN

which we call an orthogonal direct sum.
If H is a Hilbert space and M is a closed subspace of H, then for every
h € H there is a unique v, € M such that

_ — inf I|h —
o —onll = inf 12— o],

and h — v, € M+.5 This gives
H=M®oM™".
The orthogonal projection of H onto M is the map P : H — H defined by
P(hy + hy) = hy, hy € M,hy € M*.

It is straightforward to check that P is linear, ||P|| < 1 (||P|| = 1 if and only if M
is nonzero), P? = P, and ker P = M+ and P(H) = M.” Rather than specifying
a closed subspace of H and talking about the orthogonal projection onto M, we
can talk about an orthogonal projection in H, which is the orthogonal projection
onto its image.

Bessel’s inequality® states that if {e, : n € N} is an orthonormal set in a
Hilbert space H and h € H, then

Ry en)]® < (117 (1)

M8

n=1

Theorem 8. If H is a Hilbert space, & is an orthonormal set in H, and h € H,
then there are only countably many e € & such that (h,e) # 0.

Proof. Let
1
é"n:{eeéa:|<h,e>|2n}.

If &, were infinite, let {e; : j € N} be a subset of it, and this gives us a
contradiction by (1). Therefore each &, is finite. But if (h, e) # 0 then there is

6John B. Conway, A Course in Functional Analysis, second ed., p. 9, Theorem 2.6.
7John B. Conway, A Course in Functional Analysis, second ed., p. 10, Theorem 2.7.
8John B. Conway, A Course in Functional Analysis, second ed., p. 15, Theorem 4.8.



some n such that |(h,e)| > 1, so

& = fj &,
n=1

Therefore & is countable. O

Bessel’s inequality makes sense for an orthonormal set of any cardinality in
a Hilbert space, rather than just for a countable orthonormal set.

Theorem 9 (Bessel’s inequality). If H is a Hilbert space, & is an orthonormal
set in H, and h € H, then

>l e < a)*.

ecé

Proof. By Theorem 8, there are only countably many e € & such that (h,e) # 0;
let them be {e,, : n € N}. {e,, : n € N} is an orthonormal set, so by (1) we have

> lhen) < lIn)*
n=1

Theorem 4 states that if X is a Banach space, 2, € X,n € N,and >~ | [|lz,]| <
oo, then the unordered sum )y, converges. Thus, with X = C and
zn = |(h,en)|?, the unordered sum Y\ [(h,e,)|? converges, say to S. Be-
cause y o |(h,en)|? converges to S, by Theorem 3 the series Y7, [(h, en)|?
converges to S. But we already know that this series is < ||h]|%, so

D [hsen) P < |IAII*.

neN

By Theorem 1, the unordered sum Y _.|(h,e)|*> converges if and only if the
unordered sum Y, [(h,en)[* converges, and if they converge they have the
same value. Therefore, the unordered sum ) .. |(h, €)|* indeed converges, and

it is < ||A||%. O

4 Convergence of unordered sums in the strong
operator topology

Let H be a Hilbert space and let Z(H) be the set of bounded linear maps
H — H. Tt is straightforward to check that %(H) is a normed space with the
operator norm [|7'|| = supy, <y [[Th[|. (In fact it is a Banach space, actually
a Banach algebra, actually a C*-algebra; each of these statements implies the
previous one.) The strong operator topology on Z(H) can be characterized in



the following way: a net f : I — ZB(H) converges to T € Z#(H) in the strong
operator topology if for all h € H the net f(i)h converges to Th in H.”

If T is a set, # is the set of all finite subsets of I, and f : I — A(H) is a
function, define S : . — %B(H) by

S(F)=>_f(i) € B(H).

el

S is a net in B(H), and if the net converges to T' € %B(H) in the strong operator
topology we say that the unordered sum } ., f(i) converges strongly to T'. To
say that the net S converges to T in the strong operator topology is to say that
if h € H then ), ; f(i)h converges to Th in H.

If f,g € H, we define f®@g: H— H by

fogh)={hg)f

It is apparent that f ® g is linear, and

1F @ g = [IKh, g) Il = R LTI < TIRI g LA

so If @ gll < |1 lgll, giving f & g € B(H). Additionally,

(f@g(h),h2) = ((h1,9) f, ha) = (h1, 9)(f, ha) = (h1, (h2, [)g) = (h1, 9@ f(h2)),
showing that (f ® ¢)* =g ® f.

Theorem 10. If H is a Hilbert space, & is an orthonormal set in H, and P is
the orthogonal projection onto \/ &, then ) . e ® e converges strongly to P.

Proof. Let h € H. By Theorem 8 there are only countably many e € & such
that (h,e) # 0, and we denote these by {e,, : n € N}. By Bessel’s inequality,

Yo lhe)P =" lhea)® = [ ea)® < [IR]*. (2)
ecé neN n=1

Let .% be the set of all finite subsets of N and for F € % let

S(F) = Z(h,en>en € H.

ner

If € > 0, then by (2) there is some N such that Y07 .\ [(h,e,)|*> < €. If
F. ={1,...,N} and F,G € % both contain F, then, because the e, are

9For the strong operator topology see John B. Conway, A Course in Functional Analysis,
second ed., p. 256.



orthonormal,

2

IS(F) = S@IF = D (hen)en— > (hoen)en

ner neG

= Z H(h,en>en||2
ne(FUG)\(FNG)

= > (s en)|?
ne(FUG)\(FNG)

< 3 e
n=N+1

< €.

Therefore, if F,G € . both contain F, then ||S(F) — S(G)| < e. This means
that S is a Cauchy net, and hence, by Theorem 6, has a limit v € H. That is,
the unordered sum  _(h, en)e, converges to v.

As the unordered sum ) _(h,en)e, converges to v we have

N
lim (h,en)en, = v.
N—oo el
If m € N then it follows that
N
]\}gnoo nzz:l<ha €n><env em> = <v» em>,

which is
(hyem) = (v, €m).

Let @ be the orthogonal projection onto \/,,.x{e,}. On the one hand, because
(h,e) =0 for e & {e, : n € N}, we check that Ph = Qh. On the other hand, we
check that Qh = v. Therefore, v = Ph, i.e.

Ze ®e(h) = Z(h,e>e = Z(h,en>en = Ph,

eced ecs neN
showing that the unordered sum }___, e ® e converges strongly to P. O

In particular, if & is an orthonormal basis for H, then }___, e ® e converges
strongly to idg.



