Norms of trigonometric polynomials

Jordan Bell
April 3, 2014
Theorem 1.

Let 1pq. If f^(j)=0 for |j|>n+1 then

fq5(n+1)1p-1qfp.
Proof.

Let Kn(t)=j=-nn(1-|j|n+1)eijt, the Fejér kernel. From this expression we get |Kn(t)|Kn(0)=n+1. It’s straightforward to show that Kn(t)=1n+1(sinn+12tsin12t)2. Since sint2>tπ for 0<t<π, we get |Kn(t)|π2(n+1)t2, and thus we obtain

|Kn(t)|min(n+1,π2(n+1)t2).

Then, for any r1,

Knrr = 12π02π|Kn(t)|r𝑑t
12π0πn+1(n+1)r𝑑t+12ππn+12π(π2(n+1)t2)r𝑑t
= (n+1)r-12+121(n+1)r12r-1((n+1)2r-1-122r-1)
(n+1)r-12+121(n+1)r12r-1(n+1)2r-1
(n+1)r-1.

Hence Knr(n+1)1-1r.

Let Vn(t)=2K2n+1(t)-Kn(t), the de la Vallée Poussin kernel [1, p. 16]. Then

Vnr2K2n+1r+Knr2(2n+2)1-1r+(n+1)1-1r5(n+1)1-1r.

For |j|n+1 we have Vn^(j)=1, and one thus checks that Vn*f=f. Take 1q+1=1p+1r. By Young’s inequality we have

fq=Vn*fqVnrfp5(n+1)1p-1qfp.

References

  • [1] Yitzhak Katznelson, An introduction to harmonic analysis, third ed., Cambridge Mathematical Library, Cambridge University Press, 2004.