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1 Banach algebras

Let A be a complex Banach algebra with unit element e. Let G(A) be the set
of invertible elements of A. For z € A, the resolvent set of x is

pl)y={reC:le—xzeGA)}.
The spectrum of z is
ox)=C\px)={AeC:he—2x ¢ G(A)}.
The spectral radius of x is
r(z) =sup{|A\|: A € o(x)}.
One proves that o(z) C C is compact and nonempty and

. 1
r(@) = Jim o],

the spectral radius formula.! If r(z) = 0 we say that = is quasinilpotent.?
x € A is quasinilpotent if and only if o(z) = {0}.

Lemma 1. If x € A is quasinilpotent and |\| > 0, then S, = Z;L:O Nl e A
is a Cauchy sequence, and

(e — Ax) Z Atz =e.
n=0

Proof. Let 0 < € < |A|71. There is some n. such that ||x"|\1/" < e for n > ne.
For n > m > n.,

n

1S =Sl < Y- APl < Do AP,

j=m+1 j=m+1

IWalter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.13.
2We say that = € A is nilpotent if there is some n > 1 such that z® = 0, and if z is
nilpotent then by the spectral radius formula, x is quasinilpotent.



and because |[A|e < 1, it follows that S, € A is a Cauchy sequence and so
converges to some S € A, S =37  A*zF. Now,
(e — Ax)S = (e — Mx)S, + (e — Ax)(S — Sp)
=8y, — xS, + (e — Az)(S — Sp)
n+1
=S, =Y Nal 4 (e = Ax)(S - Sy)

j=1
=e— N (e — \2)(S - S,).
Because x is quasinilpotent it follows that [[(e — Az)S — e|| — 0. O
For x € A and X € p(x), let
R,(\) = (z — Xe)™ L.

Lemma 2. If x € A is quasinilpotent and \ € C then

(oo}

(e—Ax)~! = Z A"

n=0

and if |A| > 0 then

Ry(\)=-A""e—A"lo) =Tty AT
n=0

2 Volterra integral operators

Let I = [0,1] and let u be Lebesgue measure on I. C(I) is a Banach space with
the norm

[flloe =suplf(x)],  feC).
xecl

L(I) is a Banach space with the norm

1l = / @)z, feIND).

For f: 1 — C, let
flz) — fly
e sp V@I
zyel,x#y |1‘ y|

Let Lip(I) be the set of those f : I — C with |f|nip < oco. It is a fact that
Lip(I) is a Banach space with the norm || f|l;, = [| fll o + [f[Lip-*

Lip(I) c C(I) c L*(I).

3Walter Rudin, Real and Complex Analysis, third ed., p. 113, Exercise 11.




A= 2(C(I)) is a Banach algebra with unit element e(f) = f and with the

operator norm:

7= swp  |Tfl,, TeA
FeC),lIfll<1

For K : I x I — C and for x,y € I define
Kao(y) = K(z,y),  KY(z) = K(z,y).

Let K € C(I x I). For f € L(I) define Vi f : I — C by

‘%fW)AwK@wﬁ@M% vel.

Lemma 3. If K € C(I xI) and f € C(I) then Vi f € C(I).

Proof. For x1,29 € I, ©1 > x2,

Wﬂm)Vm@ﬂ—/mK%wﬁ@@Amewﬁ@@

0

+/0x K(xmy)f(y)dy—/OzQK(xa,y)f(y)dy

/Oxl {K(ml,y)K(xg,y)]f(y)der/a: K(x2,y)f(y)dy.

Let € > 0. Because K : I x I — C is uniformly continuous, there is some §; > 0
such that |(z1,y1) — (z2,y2)| < 1 implies |K(z1,y1) — K(x2,y2)| < €. By the
absolute continuity of the Lebesgue integral, there is some d3 > 0 such that
u(E) < 6y implies [, |f|dpu < e.* Therefore if |11 — x2| < § = min(éy, d2) then

1

|Wﬂm>vmum§ﬂmwwwwnmu/ F)ldy

T2

<ellfllp + 1Kl e
It follows that Vi f : I — C is uniformly continuous, so Vi f € C(I). O

Vi flloo < 1Ko [Iflloe s0 IVEll < I o, hence Vi = C(I) — C(I) is a
bounded linear operator, namely Vx € A. We call Vi a Volterra integral
operator.

For x € 1,

Y1

Vigf(z) = /OI K(z,y1)Vi f(y1)dy: = /OE K(z,y1) ( A K(y17y2)f(y2)dy2) dyi.

4http://individual.utoronto.ca/jordanbell/notes/LO.pdf, p. 8, Theorem 8.



Vi f(x) = ViVicf (@)

z Y1
:/ K(z,y1) K (y1,y2) Vi f(y2)dy2dyr
0 0
Y2

x Y1
:/0 K(z,y1) ; K(y1,y2) ; K (y2,y3) f(y3)dysdyady; .

For n > 2,
x Y1 Yn—1

Vg f(z) =/ / / K(z,y1)K(y1,92) - KWUn—1,Yn) f (Yn)dyn - - - dy1.
y1=0 Jy2=0 Yyn=0

We prove that Vi is quasinilpotent.®
Theorem 4. If K € C(I x I) then

IK]
vzl < ==

and thus Vg € A= 2(C(I)) is quasinilpotent.

Proof. Let
x Y1 Yn—1
0o Jo 0
£g Y1 Yn—2
Z/ / / Yn—1dYn—1- - dy1
0o Jo 0
x Y1 Yn—3
yn
:// / 22dyn2 -dy1
0o Jo 0
x n—1
Yi
= d
/0 n—1)
— xn
Tl
For x € 1,
Yn—1
Vit f@) < 1K 11l / / O
= K115 1 £l
= K%, ||f||oo -
Hence ||K||
Vel < —=

5Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 53,
Example 2.2.13.



Then

nt/m o 1K

1/n

Hl/" — 0. Thus Vi € A is quasinilpotent. O

Using (n!)!/™ — oo we get ||V

Theorem 4 tells us that Vi is quasinilpotent and then Lemma 2 then tells
us that for A € C,

(e = AVg)™' = i N'VE € A. (1)

n=0

3 Sturm-Liouville theory
Let Q € C(I) and for u € C?(I) define
Lgou = —u" + Qu.
Lemma 5. If u € C?(I) and
Lgou =0, uw(0) =0, u'(0)=1,

then
u(z) =z + / (- )QWuly)dy, wel.
0

Proof. For y € I, by the fundamental theorem of calculus® and using v/(0) = 1,

/Oy u’(t)dt = v (y) —u'(0) = u'(y) — 1.

Using Lou = 0,

u'(y) =1+ /Oy o' (t)dt =1+ /Oy Q(t)u(t)dt.

For x € I, by the fundamental theorem of calculus and using u(0) = 0,

Thus

u(z) = /0 ' u'(y)dy
:/OI (1+/OyQ(t)u(t)dt> dy
. /0 (/Oy Q(t)u(t)dt) dy.

SWalter Rudin, Real and Complex Analysis, third ed., p. 149, Theorem 7.21.




Applying Fubini’s theorem,

(@) = @ + /O Qtyu(t) </t dy) dt

=z+ /0 Q(t)u(t)(x — t)dt.

Lemma 6. Ifu e C(I) and

ua)=z+ [ @ pQWudy,  zel,

then u € C*(I) and

Lou =0, u(0) =0, «'(0)=1.

Proof. .
u(w) = + / (r— )QWuly)dy, el

then

u(z) =z +z /Oz Q(y)u(y)dy — /m yQ(y)u(y)dy,

0
and using the fundamental theorem of calculus,

() =1+ / " QU)uly)dy + 2Q(@)u(x) — 2Q(yu(r) = 1 + / " QWuly)dy

hence

and so
Lou=—u"4+Qu=—-Qu+ Qu=0.

u(0) =0 and «/(0) =1, so
Lou =0, u(0) =0, «'(0)=1.
O

Lemma 7. Let Q € C(I) and let K(z,y) = (x —y)Q(y), K € C(I x I). Let
uo(x) =z, ug € C(I). Then 35, Vi is a Cauchy sequence in A = £(C(I)),
and u =" Viug € C(I) satisfies u = (e — Vi) tuy.



Proof. Vi € C(I) is quasinilpotent so applying (1) with A =1,
RV R j
(e — Vi) HIEI;OE:OV €A
j

Then

7=0

(e — Vi) ug (nlirgoZVK) ug = hm (Viug) = Z Vidug.

Hence u = (1 — Vi) lug, and so (1 — Vx)u = ug, i.e. u = ug + Vxu, i.e. for

xzel,
u(z) = uo(z) + / K (2, y)u(y)dy

Theorem 8. Let Q € C(I) and let K(x,y) = (x —y)Q(y), K € C(I x I). Let
uo(x) =z, ugp € C(I). Then Z?:o Vi is a Cauchy sequence in A = Z(C(I)),
and u =" Viuy € C(I) satisfies u € C*(I),

O

Lou =0, uw(0) =0, «'(0)=1.

Proof. By Lemma 7, u = (e — Vi) " tug, i.e. (e — Vi)u = ug, i.e. u— Vxu = uo,
ie. forxzel,

u(z) = 2+ Vicu(x) = 2 + / " K(eyuly)dy == + / (@ — )Q)uly)dy.

Lemma 6 then tells us that v € C?(I) and

Lou =0, w(0) =0, «(0)=1.

4 Gronwall’s inequality
Let f € L'(I). We say that € I is a Lebesgue point of f if

z+r
L[ t@ - s@ly o, o

r

which implies
1 T+r
L[t f@. oo

r



The Lebesgue differentiation theorem” states that for almost all z € I, x
is a Lebesgue point of f. Let

)= [ 1wy wel,
0
SO
T+
Fo+n)-Fa)= [ fwy.
If x is a Lebesgue point of f then

o) — . T+
Pt =P8 2 [ wiy = 1)

r r

which means that if x is a Lebesgue point of f then
F'() = f(a).
We now prove Gronwall’s inequality.®

Theorem 9 (Gronwall’s inequality). Let g € L*(I), g > 0 almost everywhere
and let f: I — R be continuous. If y: I — R is continuous and

y(t) < f(t) + /Otg(s)y(s)ds, tel,
then , .
y(t) < f@) + [ f(s)g(s)exp g(u)du | ds,  tel
If f is increasing thef </ )
o < e ([ o). et

Proof. Let z(t) = g(t)y(t) and

Z(t) = /Ot z(s)ds, tel.

By hypothesis, g > 0 almost everywhere, and by the Lebesgue differentiation
theorem, Z'(t) = z(t) for almost all ¢ € I. Therefore for almost all t € I,

Z/(t) = =(t) = g(Oy(t) < 9(t) (f(t) o g(s)y(s)ds) — g(0)1(0) + () Z(0).

That is, there is a Borel set E C I, u(F) = 1, such that for ¢t € I, Z is
differentiable at ¢ and

Z'(t) — g(t)Z(t) < g(t) f (D).

"Walter Rudin, Real and Complex Analysis, third ed., p. 138, Theorem 7.7
8 Anton Zettl, Sturm-Liouville Theory, p. 8, Theorem 1.4.1.




For s € F, using the product rule,

{exp < /0 ’ g(u)du> Z(s)}/ = exp ( /O ) g(u)du) [z’(s) - g(t)Z(s)].

w 2

= =

— @«

al —~ ~—
=2 =
> - )
N =S \W/
) 3
3 ~ S \W
\d/ g N— N—

But

/Ot [exp (_ /Ogg(u)du) Z(S)}/ds

o (- [ o) 2]

exp (- /O t g(u)du) Z(1).

o (- [ tg(u)du) z< [ gls)1(s) exp (- [ stwran) as.

= f()+ 2(0)

> ~— ~—

ng. Let
- / g(u)du,
0

ot —~

Suppose that f is increas



Fortel,
o0 <100+ [ s ( [ gt as
< f(t) + /Otg(S)f(t) exp (/:g(U)dU> ds

s+ [ ' gls)exp (/ tg(u)du) s
o [ tg(s)e““f"(s)ds}
= f(t) :1 + G /Ot g(s)eG(s)ds].

Let H(s) = e~ %) with which

y(t) < £(t) [1 | tg(s)H(s)ds] |

If s is a Lebesgue point of g then
H'(s) = —G'(s)e" %) = —g(s)H(s).

Hence
y(t) < f(t) :1 - %t)/o H'(s)ds]
= f()|1- ﬁ {H(t) - H(O)”
_ el H(0)
= f(H)|1—-1+ H(t)]

O

Let K(z,y) = (z — y)Q(y). Let u =" Vi2ug € C(I). Lemma 7 tells us
that u = (e — Vi)~ tug, i.e. (e — V)u = ug, i.e. u=ug+ Viu, i.e. for x € I,

u(w) = + / (z — 1)Qy)uly)dy.
Then
()| <z + / & — 41Q) lu(y)ldy < = + / 1QW)lu(y)|dy.

Applying Gronwall’s inequality we get

ju(e)] < wexp ( I |Q<y>|dy) sel @)

10



5 The spectral theorem for positive compact op-
erators

The following is the spectral theorem for positive compact operators.’

Theorem 10 (Spectral theorem for positive compact operators). Let H be a
separable complex Hilbert space and let T € ZL(H) be positive and compact.
There are countable sets ®,¥ C H and Ay > 0 for ¢ € ® such that (i) UV is
an orthonormal basis for H, (i1) T¢ = As¢ for ¢ € @, (i45) Ty =0 forp € U,
(iv) if @ is infinite then 0 is a limit point of A and is the only limit point of A.

Suppose that H is infinite dimensional and that T is a positive compact
operator with ker(T') = 0. The spectral theorem for positive compact operators
then says that there is a a countable set ® C H and Ay > 0 for ¢ € ® such that
® is an orthonormal basis for H, T¢ = Ay¢ for ¢ € @, and the unique limit
point of {Ay : ¢ € @} is 0. Let @ = {¢, : n > 1}, ¢y, # ¢y, for n > m, such that
n > m implies Ay, < Ay, . Let A, = Ay, . Then A, | 0. Summarizing, there is
an orthonormal basis {¢,, : n > 1} for H and A,, > 0 such that T'¢,, = A\, ¢y, for
n >1and A\, | 0.

6 (@ >0, Green’s function for Lg

Suppose @ € C(I) with Q(z) > 0 for 0 < z < 1. Let K(x,y) = (x — y)Q(y),
K e C(I x1I),and up(x) =z, up € C(I). Let

u=Y Viug € C(I).

n=0
By Theorem 8, u € C?(I) and
Lou =0, w(0) =0, «(0)=1.
If feC(I) and f(x) >0 for 0 < z <1 then

Vie /() = /0 “(@ — 9)Q) fy)dy > 0.

By induction, for 0 < z < 1 and for n > 1 we have V2 f(x) > 0. Hence for
O<z<l,

o0

u() = (Vitug)(z) > 0.

n=0
For x € I,

u(z) =+ /OI(:L’ —yY)QW)u(y)dy =z +z /Ox Q(y)u(y)dy — /I yQ(y)u(y)dy.

0

9Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 102,
Theorem 3.2.1.

11



Using the fundamental theorem of calculus,

W(z) =1+ / " QU)uly)dy.

Then because Q(y) >0 for 0 <y <1and u(y) >0for 0 <y <1,
u'(z) > 1, 0<z<l1.
Using u(z) =z + [ (z — y)Q(y)u(y)dy and Q > 0 we get
u(z) >z, 0<az<l.
Let uy(z) = u(z) and ug(z) = u(l — x). Then

LQUl = 0, Ul(O) = 0, U/l(O) =1

and

Lgus =0, us(1) =0, us(1) = —1.
A fortiori,

uy(z) > 0, uy(z) >0, 0<z<l,
and as uh(z) = —u'(1 — z),

ua(z) > 0, uh(z) < 0, 0<x<l.

For0 <z <1let
W(z) = uy (2)uz(x) — ui (z)us(2).
uy > 0,ug > 0so ujus > 0. up > 0,us <0 so —ujuh > 0, hence W > 0.

W' = (ujug — ugub)’
= ufug + ujuhy — ujul — ujul
= ufug — ujul
= (Qu1)uz — u1 (Qua)
=0.

Therefore there is some Wy > 0 such that W(z) = W, for all 0 < = < 1.
Define
ui(z Aylus(z Vy)
Wo ’
x Ay =min(z,y), x Vy = max(x,y). Because (z,y) = Ay and (z,y) —» a2 Vy
are each continuous I x I — I, it follows that G € C(I x I). G(z,y) = G(y, x).
G is the Green’s function for Lg. Let (z,y) € I x I. If © > y then

G(z,y) = (z,y) € I x I.

GY(z) = ul(yv)[;f (z)

12



and so
LoG¥(2) = 2 1 n(2) = 0.

If < y then
GY(x) =

and so
LoG¥(2) = 29 1o (2) = 0.

7 Q >0, LX(])

L2(I) is a separable complex Hilbert space with the inner product
9) = /Ifﬁdu, f.g € L*(1).

Define T : L*(I) — L*(I) by

(Tqg)(x /Gwy

Tq : L*(I) — L*(I) is a Hilbert-Schmidt operator.'®
It is immediate that G(y,2) = G(z,y) and G = G. Then by Fubini’s
theorem, for f,g € L%(I),

<m%ﬁ:/h@mmﬂ5m

N
= [ [ G srie )ay

:[mmmﬂ@@
=(g,Tqf).

Therefore Tg : L?(I) — L?(I) is self-adjoint.
We now establish properties of Tg.'! Let

N*(I) = {f € C*(I): f(0) =0, f(1) = 0}.

10Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 96,
Theorem 3.1.16.

1 Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 106,
Proposition 3.2.8.

13



Lemma 11. Let Q € C(I), Q(z) > 0 for 0 < z < 1. Let g € L*(I) and let
f=Tqg,
fa) = (Tag)(@) = [ Glam)awyiy = [ Gugd
Then f € N°(I).
If g€ C(I) then f € C*(I) and

Lof=g.

Proof. For x € 1,

Ty (v U2(T 1u1x ug(x
f(ﬂﬂ):/0 ( /\33/0( vy)g(y)dy+/$ ( M”V)VO( vy)g(y)dy

[T u(y)us(x) " ug (2)ua(y)
_/0 Tog(y)dy-l-/m Tog(y)dy

:ug(x)/ox Q“(y)g(y)dy‘f'ul(x)/l %g(y)dy

Wo Wo
Tt follows that f € C(I).
Suppose g € C(I). Then by the fundamental theorem of calculus,

f(@) = uj(x) /Om Mdy + W(@M

Wo WO
o (2) /I uz(a)/g(y) dy — un () uz(ﬂééog(w)
o, T (y)g(y) , Y ua(y)g(y)
—u2(x)/0 Tody—kul(a:)/z Tody.

Because uj, u € O(I) it follows that f € O(I), ie. f € C'(I). Then
P(a) = o) [ gy 40y L)

Wo WO
N ,1,(1,)/ UQ(%)/ZJ(?J) dy — () m(a)/g(w)
vy [T u(m)ay) vy [FTuagly) . W(z)g(x)
:Uz(x)/ ley‘f'ul(x)/ W dy — W
0 0 x 0 0
v (5% 17 ! (]
= (o) [y ) [0 gy - g,

Because g € C(I) it follows that f” € C(I), i.e. f € C?*(I). Furthermore,
because u] = Qui and u}) = Qua,

T 1
£ = Qauae) [0y 1 Qo) [ 2T ay - g(o)

= Q(z)f(x) — g(x).

14



‘We now establish more facts about TQ.12
Lemma 12. Let Q € C(I), Q(z) >0 for0 <z < 1.
1. If fr,f2 € NQ(I) then

/ f1Lo fadz = / (FLfs+ Qs fo)d.
I I

2. If f € N*(I) and Lof =0, then f = 0.
3. If f € N*(I) then f = ToLof.

4. To > 0.

5. ker Tgy = 0.

Proof. First, doing integration by parts,
[ nsi+apiae=—[ np+ [ s [Qninds
~ [ fissdo+ [ Qiifado
I I
= /I(f{fz/ + Qf1f2)d.

Second, using the above with f; = f and fo = f, with f € C?(I) real-valued,
[+ Qnae= [+l
I I

Using —f" +Qf =0,
/ (7P + QI 12)da = 0.

1

Because Q(z) > 0 for 0 < = < 1, it follows that |f| = 0 almost everywhere.
But f is continuous so f = 0. For f = f1 +ifs, if —f"+Qf =0 and f(0) =
0, f(1) = 0 then as @ is real-valued, we get f; =0 and fo = 0 hence f = 0.

Third, say f € C?(I) is real-valued, f(0) =0, f(1) =0, and g = Lof =
—f"+Qf € C(I). Let h = Tgg. By Lemma 11, h € C?(I) and

b+ Qh =g, h(0) =0, h(1) =0.
Let F = f — h. Then using —f" + Qf = g we get

F'=f"—h"=(Qf —9) = (Qh—g) = Q(f = h) = QF.

12Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 107,
Proposition 3.2.9.

15



Furthermore,

Because f is real-valued so is g, and because g is real-valued it follows that
h = Tgg is real-valued. Thus F' is real-valued and so by the above, F' = 0.
That is, f = h, i.e. f =Tgg. For f = fi+ifs, if f(0) =0, f(1) =0 and
g=—f"+Qf, let g = g1 +iga. As Q is real-valued we get g = —f' + Qf1
and g2 = —f5 + Qf2. Then f; = Tggr and fo = Tgge. Thus

[f=h+ifo=Tog +iTgg: = To(g1 + ig2) = Tqg-

Fourth, let g € C(I) and let f = Tpg. By Lemma 11, f € C*(I) and

—f"+Qf=g.  fO)=0, f(1)=0.

Then using the above,

(9, Tqg) = (—f"+Qf, f)
- / (1" + Q) Fdz

- /I 77+ QT f)de
- / (7P + QI P)d.

Because @ > 0 we have (g,Tgg) > 0. For g € L*(I) let g, € C(I) with
lgn — gll 2 — 0. Then (gn, Togn) — (9, Tog) as n — oo, and because (g, T gn) >
0 it follows that (g, Tog) > 0. Therefore T > 0, namely T is a positive oper-
ator.

Let f € N? and let ¢ = —f” + Qf. Then f = Tpg. This means that
N2 C Ran(Tg). One checks that N? is dense in L?(I), so Ran(Tg) is dense in
L3(I). If f € ker(Tg) and g € L*(I) then (f,Tg) = (Tqf,g) = 0. Hence
ker(Tg) L Ran(T5). But T is self-adjoint which implies that ker(7g) L
Ran(Tg). Because Ran(Ty) is dense in L*(I) it follows that ker(Tgp) =0. O

We now prove the Sturm-Liouville theorem.'?

Theorem 13 (Sturm-Liouville theorem). Let Q € C(I), Q(x) >0 for 0 <z <
1. There is an orthonormal basis {u, : n > 1} C N%(I) for L*(I) and A\, > 0,
Am < Ap form <n and N\, = 0o, such that

Louy, = A, n>1.

3Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 105,
Theorem 3.2.7, p. 110, Exercise 7.

16



Proof. We have established that T¢, is a positive compact operator with ker Ty =
0. The spectral theorem for positive compact operators then tells us that there is
an orthonormal basis {¢,, : n > 1} for L?(I) and ~,, > 0 such that To¢, = yndn
for n > 1 and v, | 0. By Lemma 11, T¢,, € N°(I). Let

1
U, = —Tgo¢, € NO(I).
Tn
Because Tgdn = Yn¢n we have u,, = ¢, in L*(I) and so
1
Uup = —TQuy.
Tn
Let v, = Tou,. Because u,, € C(I), Lemma 11 tells us that v, € N*(I) and
Lovy, = uy. But u, = %vn 0 u, € N2(I) and

1 1
Louy, = ’YTLLQU“ = 7—un

Let A\, = % Then A\, > 0, A\, < A, for m <n, A\, = oo, and

To prove the claim it remains to show that the sequence A, is strictly increasing.
Let A > 0 and suppose that f,g € N2(I) satisfy

Lof =M, Leg=Ag.

Let W(x) = f(x)g'(x) — g(z) f'(x), the Wronskian of f and g. Either W(x) =0
for all z € T or W(x) # 0 for all z € I. Using f(0) = 0 and ¢g(0) = 0 we get
W(0) = 0. Therefore W(x) = 0 for all z € I and W = 0 implies that f, g are
linearly dependent.

Suppose by contradiction that A\, = A, for some n # m. Applying the
above with A = A\, = A\, f = un,9 = U, we get that wu,,u,, are linearly
dependent, contradicting that {u, : n > 1} is an orthonormal set. Therefore
m # n implies that A, # \,- O

8 Other results in Sturm-Liouville theory
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14B. M. Levitan and I. S. Sargsjan, Spectral Theory: Selfadjoint Ordinary Differential
Operators, p. 11.
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