The Fourier transform of spherical surface measure and radial functions

Jordan Bell
August 24, 2015

1 Notation

For a topological space X, we denote by X the Borel σ-algebra of X. Let ρd be the Euclidean metric on d and let md be Lebesgue measure on d.

2 Polar coordinates

Let X=(0,), which is a metric space with the metric inherited from . Define μ:X[0,] by

dμ(r)=rd-1dm1(r).

Let Sd-1 be the unit sphere in d. Define S:𝒫(Sd-1)𝒫(d) by

S(E)={xd:x|x|E,0<|x|<1}.

Namely, S(E) is the sector subtended by the set E. Sd-1 is a metric space with the metric inherited from d, and if E is an open set in (Sd-1,ρd), then S(E) is an open set in d. For Eα𝒫(Sd-1),

S(Eα)=S(Eα),S(Eα)=S(Eα),

and for E,F𝒫(Sd-1),

S(EF)=S(E)S(F).
Lemma 1.
S(Sd-1)d.

We define σd-1:Sd-1[0,) by

σd-1(E)=dmd(S(E)),ESd-1.

For f:d and γSd-1, define fγ:(0,) by

fγ(r)=f(rγ),r(0,).

The following is proved in Stein and Shakarchi.11 1 Elias M. Stein and Rami Shakarchi, Real Analysis, p. 280, Chapter 6, Theorem 3.4.

Theorem 2.

If fL1(Rd,md), then (i) for σ-almost all γSd-1 we have fγL1((0,),μ), (ii) the function

γ0fγ(r)𝑑μ(r)

belongs to L1(Sd-1,σ), and (iii)

df(x)𝑑md(x)=Sd-1(0fγ(r)𝑑μ(r))𝑑σ(γ).

For r(0,), define fr:Sd-1 by

fr(γ)=f(rγ),γSd-1.
Theorem 3.

If fL1(Rd,md), then (i) for μ-almost all r(0,) we have frL1(Sd-1,σ), (ii) the function

rSd-1fr(γ)𝑑σ(σ)

belongs to L1((0,),μ), and (iii)

df(x)𝑑md(x)=0(Sd-1fr(γ)𝑑σ(γ))𝑑μ(r).

3 The Fourier transform of spherical surface measure

For real ν>-12,

Jν(s)=(s2)νΓ(ν+12)π-11eisx(1-x2)ν-12𝑑x,s.

One checks that Jν satisfies

Jν(-s)=eiπνJν(s),s.

We remind ourselves of spherical coordinates for Sd-1. The Jacobian of the transformation

γ1 =cosϕ1
γ2 =sinϕ1cosϕ2
γ3 =sinϕ1sinϕ2cosϕ3
γd-1 =sinϕ1sinϕ2sinϕ3sinϕd-2cosϕd-1
γd =sinϕ1sinϕ2sinϕ3sinϕd-2sinϕd-1,

with

0ϕ1,,ϕd-2π,0ϕd-12π,

is

J=sind-2ϕ1sind-3ϕ2sin2ϕd-3sinϕd-2.

Then, for ξ=(ξ1,0,,0), ξ10,

σ^d-1(ξ) =Sd-1e-2πiγξ𝑑σ(γ)
=ϕ1=0πϕ2=0πϕd-2=0πϕd-1=02πe-2πiξ1cosϕ1J𝑑ϕd-1𝑑ϕd-2𝑑ϕ2𝑑ϕ1
=2πϕ1=0πe-2πiξ1cosϕ1sind-2ϕ1dϕ1j=2d-2ϕj=0πsind-j-1ϕjdϕj.

We work out that

0πsinktdt=πΓ(k+12)Γ(k+22).

This gives

j=2d-2ϕj=0πsind-j-1ϕjdϕj =j=2d-2πΓ(d-j2)Γ(d-j+12)=πd-32Γ(22)Γ(d-12)=πd-32Γ(d-12).

With this we have, for ξ=(ξ1,0,,0), ξ10,

σ^d-1(ξ)=2ππd-32Γ(d-12)0πe-2πiξ1costsind-2tdt.

But doing the change of variable x=cost, for nonzero real s we have

0πeiscostsind-2tdt =0πeiscost(1-cos2t)d-22𝑑t
=1-1eisx(1-x2)d-22-dx1-x2
=-11eisx(1-x2)d2-1-12𝑑x
=Γ(d2-12)π(s2)d2-1Jd2-1(s).

Thus, taking s=-2πξ1,

σ^d-1(ξ) =2ππd-32Γ(d-12)Γ(d2-12)π(-2πξ12)d2-1Jd2-1(-2πξ1)
=2π(-ξ1)-d2+1Jd2-1(-2πξ1).

For ξ1<0 this is

σ^d-1(ξ)=2π|ξ|-d2+1Jd2-1(2π|ξ|).

In general, take nonzero ξd. Let T:dd be the rotation that sends ξ ti (0,,0,-|ξ|). Since σd-1T=σd-1 (namely, surface measure σd-1 is invariant under rotations),

σ^d-1(ξ)=σ^d-1((0,,0,-|ξ|))=2π|ξ|-d2+1Jd2-1(2π|ξ|).

For real ν>-12, we use the following asymptotic formula for Jν(s):22 2 Elias M. Stein and Rami Shakarchi, Complex Analysis, p. 319, Appendix A.1.

Jν(s)=2πscos(s-πν2-π4)+O(s-3/2),s+.

We get from this that

|σ^d-1(ξ)|=O(|ξ|-d2+12),|ξ|.

4 The Fourier transform of radial functions

A function f:d is said to be radial if there is a function f0:[0,) such that

f(x)=f0(|x|),xd.

For fL1(d), Using polar coordinates we determine the Fourier transform of a radial function. For ξd,

f^(ξ) =de-2πixξf(x)𝑑x
=0(Sd-1e-2πirσξf(rσ)𝑑σ(γ))𝑑μ(r)
=0(Sd-1e-2πirγξ𝑑σ(γ))f0(r)𝑑μ(r)
=0σ^d-1(rξ)f0(r)𝑑μ(r)
=02π(r|ξ|)-d2+1Jd2-1(2πr|ξ|)f0(r)𝑑μ(r)
=2π|ξ|-d2+10r-d2+1Jd2-1(2πr|ξ|)f0(r)𝑑μ(r).