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1 Locally integrable functions and distributions

Let A be Lebesgue measure on R. We denote by -4 _()) the collection of Borel

measurable functions f : R — R such that for each compact subset K of R,

NK(f)Z/K|f|d>\=/RlK\f|d)\<oo.

We denote by Li .(\) the collection of equivalence classes of elements of £!_(\)
where f ~ g when f = g almost everywhere.
Write B(z,r) ={y €R:|ly—z| <r} = (z—r,z+r). For f € 4. (\) and

x € R, we say that x is a Lebesgue point of f if

) 1 _
S /B )= Sl =o.

It is immediate that if f is continuous at z then z is a Lebesgue point of f.
The Lebesgue differentiation theorem! states that for f € Z!_(\), almost
every x € R is a Lebesgue point of f. A sequence of Borel sets F,, is said
to shrink nicely to z if there is some o > 0 and a sequence 1, — 0 such
that E,, C B(z,r,) and A\(E,) > a - A(B(z,7,)). The sequence B(z,n~!) =
(x —n~!,x +n~') shrinks nicely to z, the sequence [z, x + n~!] shrinks nicely
to x, and the sequence [z — n~1, z] shrinks nicely to z. It is proved that if
fe &L ()\) and for each x € R, E, () is a sequence that shrinks nicely to z,

then )
f(z) = lim 7/ fdX

at each Lebesgue point of f.2
For a nonempty open set 2 in R, we denote by C*(£) the collection of C*
functions ¢ : R — R such that

supp ¢ = {z € R: ¢(x) # 0}

IWalter Rudin, Real and Complex Analysis, third ed., p. 138, Theorem 7.7.
2Walter Rudin, Real and Complex Analysis, third ed., p. 140, Theorem 7.10.




is compact and is contained in . We write 2(Q2) = C°(Q2), whose elements
are called called test functions. The following statement is called the funda-
mental lemma of the calculus of variations or the Du Bois-Reymond
Lemma.?

Theorem 1. If f € £ (\) and [, f¢d\ = 0 for all ¢ € D(R), then f =0
almost everywhere.

Proof. There is some n € 2(—1,1) with fR nd\ = 1. We can explicitly write
this out:
c lexp (#) |z] <1
n(z) = o
0 x| > 1,

where

! 1
c=/ exp (y2_1>d)\(y)20.443994....

1

For = a Lebesgue point of f and for 0 < r < 1,

r

Then

r

f@I <l [ F@) — F@ldAG) 50, 70,
(x—r,z+71)

meaning that f(z) = 0. This is true for almost all z € R, showing that f =0
almost everywhere. O

For f € 4L (\), define Ay : 2(R) — R by

Ap(¢) = | fodA.

R

3Lars Hérmander, The Analysis of Linear Partial Differential Operators I, second ed.,
p- 15, Theorem 1.2.5.



2 (R) is a locally convex space, and one proves that Ay is continuous and thus
belongs to the dual space 2’ (R), whose elements are called distributions.* We
say that a distribution A is induced by f € 4! _(\) if A = As. For A € 2'(R),
we define DA : 2(R) — R by

(DA)(¢) = —A(&).

It is proved that DA € 2'(R).5

Let f,g € AL.(\). If DAy = Ay, we call g a distributional derivative
of f. In other words, for f € 4! _(\) to have a distributional derivative means
that there is some g € £ _(\) such that for all ¢ € Z2(R),

- /R fo'd\ = /R ghd.

If g1, 92 € AL .()\) are distributional derivatives of f then fR (g1 —g2)od\ = 0 for
all ¢ € Z(R), which by Theorem 1 implies that g1 = go almost everywhere. It
follows that if f has a distributional derivative then the distributional derivative
is unique in L ()), and is denoted Df € L _(\):

loc loc

—/f¢>’d)\:/(Df)~¢d/\, 6 € I(R).
R R

2 The Sobolev space H!(R)

We denote by Z2(\) the collection of Borel measurable functions f : R — R
such that [, |f[*d\ < oo, and we denote by L*()) the collection of equivalence
classes of elements of #?(\) where f ~ g when f = g almost everywhere, and
write

(f,9) 2 Z/ngdk-

It is a fact that L?()\) is a Hilbert space.

We define the Sobolev space H!(R) to be the set of f € L?()\) that have a
distributional derivative that satisfies Df € L?()\). We remark that the elements
of H'(R) are equivalence classes of elements of Z?()\). We define

<fag>[—]1 = <f7g>L2 + <DfaDg>L2 .
Let f,g € HY(R) and let ¢ € 2(R). Because f, g have distributional derivatives

Df, Dy,
- [trrawar—— [ joir- [ g

:/RDf-MAJF/RDg-qsdA

= /R(Df + Dg)pdA.

4Walter Rudin, Functional Analysis, second ed., p. 157, §6.11.
5Walter Rudin, Functional Analysis, second ed., p. 158, §6.12.



This means that f + g has a distributional derivative, D(f + g) = Df + Dg.
Thus H'(R) is a linear space. If (f, f) ;» = 0 then [ [f|*dX = 0, which implies
that f = 0 as an element of L?(X). Therefore (-,); is an inner product on
HY(R).

If f, is a Cauchy sequence in H'(R), then f,, is a Cauchy sequence in L?())
and Df, is a Cauchy sequence in L?(\), and hence these sequences have limits
f,g € L*(\). For ¢ € 2(R),

— 'd\ = — 1i L d\
/}R 1o Tim. /R fud
— lim [ (Df)- édA

n— oo R

= /R gpd.

This means that f has distributional derivative, Df = g. Because f, Df € L?(\)
it is the case that f € H'(R). Furthermore,

I fo = Fl3 = o = fl32 + 1D fa = Dfll72 = I fo — fll72 + IDfn — gll72 — O,

meaning that f, — f in H'(R), which shows that H!(R) is a Hilbert space.

3 Absolutely continuous functions
We prove a lemma that gives conditions under which a function, for which

integration by parts needs not make sense, is equal to a particular constant
almost everywhere.’

Lemma 2. If f € 4L.()\) and

/ fPdA=0, ¢e I(R),
R

then there is some ¢ € R such that f = ¢ almost everywhere.

Proof. Fix n € 2(R) with [ nd\ = 1. Let w € Z(R) and define

h:wfn'/wd)\,
R

which belongs to Z(R) and satisfies fR hdX = 0. Define ¢ : R — R by

b(z) = /m hd.

— 00

SHaim Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,
p. 204, Lemma 8.1.



Using ¢/(x) = h(z) for all z and ¢(x) — [, hdX = 0 as & — oo, check that
¢ € Z(R). Then by hypothesis, [, f¢’d)\ =0, i.e.

:/thd)\
/R(fwfn./Rwd/\>dA
:/R<f—/and)\>-wd/\.

Because this is true for all w € Z(R), by Theorem 1 we get that f = [, fndA
almost everywhere. O

Lemma 3. Let g € 4L (N), let a € R, and define f: R — R by

ﬂ@=/¥@w@»

/ fody=— / godA
R R
Proof. Using Fubini’s theorem,

[r@e@ae == [ ([ swaw)s@ae
+/m(a )¢%mmm
[ ([ s@ane) s
+/ ([ ow ﬁ()ﬁ@)
= [ swemirm - [ smaan

——Amwwmw@»

Then

for all p € Z(R).

O

For real numbers a,b with a < b, we say that a function f : [a,b] - R
is absolutely continuous if for all ¢ > 0 there is some § > 0 such that
whenever (a1,b1),..., (an, b,) are disjoint intervals each contained in [a, b] with
> (br, — ag) < 6 it holds that > |f(bx) — f(ar)| < e. We say that a function
f : R — R is locally absolutely continuous if for each nonempty compact



interval [a, b], the restriction of f to [a,b] is absolutely continuous. We denote
the collection of locally absolutely continuous by ACie.(R).
Let f € HY(R), let a € R, and define h : R — R by

hz) = / Dfd.

By Lemma 3 and by the definition of a distributional derivative,
/hqb'd)\z—/(Df)-qbd/\:/fqb’d)\, » € 2(R).
R R R

Hence [,(f — h)¢/d\ = 0 for all ¢ € Z(R), which by Lemma 2 implies that

there is some ¢ € R such that f — h = ¢ almost everywhere. Let f =c+h.
On the one hand, the fact that Df € Li ()\) implies that h € ACj,.(R) and

loc

SO fe AC)oe(R). On the other hand, f = f almost everywhere. Furthermore,
because f is locally absolutely continuous, integration by parts yields

/R Fotar= - /R Foax,

and by definition of a distributional derivative,
[ Foix=— [ (pRsar
R R

Therefore by Theorem 1, f' = D]Ealmost everywhere. But the fact that f: f
almost everywhere implies that D f = D f almost everywhere, so f' = D f almost
everywhere. In particular, f’ € L%()\).

Theorem 4. For f € H'(R), there is a function fe ACioc(R) such that f=f
almost everywhere and f' = Df almost everywhere. The function [ is %—Hé'lder
continuous.

Proof. For xz,y € R,” i
Fx) = fy) = [ fld,
fo)-Fw=[ 7

and using the Cauchy-Schwarz inequality,

fo) - Fwl < | "7l

e 1/2
<o -y (/ f’2dA)
Yy

< IDf| 2 |z —y['/2.

7cf. Giovanni Leoni, A First Course in Sobolev Spaces, p. 222, Theorem 7.13.



