Lp norms of a sine sum

Jordan Bell
April 3, 2014

George Pólya and Gábor Szegő, Problems and theorems in analysis, Volume II, volume 216 of Die Grundlehren der mathematischen Wissenschaften, Springer, 1976, translated from the German by C. E. Billigheimer.

The following is an estimate of the Lp norms of a sum with nonnegative terms (p. 77, no. 38).

Let Γn(t)=k=1n|sinkt|k. As |sinkt|1, we have Γn(t)k=1n1k, but we can give a sharper upper bound for Γn(t) using the following two results. First, if Bn(t)=k=1ncosktk, then Bn(t)-1 for all t (p. 75, no. 28). Second , for all t (p. 76, no. 34),

|sint|=2π-4πj=1cos2jt4j2-1.

Therefore

Γn(t) = k=1n1k(2π-4πj=1cos2jkt4j2-1)
= 2πk=1n1k-4πj=114j2-1k=1ncos2jktk
= 2πk=1n1k-4πj=1Bn(2jt)4j2-1
2πk=1n1k+4πj=114j2-1
= 2πk=1n1k+2π,

using

j=114j2-1=j=11212j-1-1212j+1=12.

Thus ΓnpΓn2πk=1n1k+2π. On the other hand,

Γn1 = 12π02πΓn(t)𝑑t
= 12πk=1n1k02π|sinkt|𝑑t
= 12πk=1n1k202πk|sint|𝑑t
= 12πk=1n1k02π|sint|𝑑t
= 12πk=1n1k4
= 2πk=1n1k.

Therefore ΓnpΓn1=2πk=1n1k.

Hence for 1p,

2πk=1n1kΓnp2π+2πk=1n1k.

So,

Γnp=2πlogn+O(1).