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Abstract

In these notes I prove that the spectrum of a bounded linear operator
from a Hilbert space to itself is a nonempty compact subset of C, and that
if the operator is self-adjoint then the spectrum is contained in R. To show
that the spectrum is nonempty I prove various facts about resolvents.

1 Adjoints

1.1 Operator norm

Let H be a Hilbert space with inner product (-,-) : H x H — C, and define
I:H—-Hbylr=x,2z€ H.. Forve H,let ||v|| =+/(v,v),andif T: H - H
is a bounded linear map, let

IT|| = sup [[Tv].
loli<1

namely, the operator norm of T.

1.2 Definition of adjoint

The Riesz representation theorem states that if ¢ : H — C is a bounded linear
map then there is a unique vy € H such that

¢(x) = (2, v9)

for all x € H. Let T : H — H be a bounded linear map, and for y € H, define
¢y : H— C by

py(x) = (Tz,y).
¢y : H — C is a bounded linear map, so by the Riesz representation theorem
there is a unique v, such that

Py(2) = (z,0y)



for all x € H. Define T* : H — H by
Ty = vy.

T*y is well-defined because of the uniqueness in the Riesz representation theo-
rem. For all z,y € H,

(x,T7y) = (z,vy) = ¢y(z) = (Tx,y) .

We call T* : H — H the adjointof T: H — H.

1.3 Adjoint is linear
For y1,y2 € H, we have for all x € H that
(@, T"( +12)) = (Tz,y1+y2)

<Tx=y1> + <T$7y2>
(x, T"y1 + T ya) .

Hence for all x € H,
(@, T (y1 +y2) = T"y1 — T"y2) = 0.

In particular this is true for z = T*(y1 + y2) — T*y1 — T*ys, so by the nonde-
generacy of (-,-) we get

T (y1 +y2) =Ty — T"y2 = 0.
We similarly obtain for all A € C and all y € H that
T*(\y) — AXT*y = 0.
Hence T* : H — H is a linear map.
1.4 Adjoint is bounded

For z,y € H, by the Cauchy-Schwarz inequality we have

|y (@) = [ {2, 0y) [ < [lz]| [[oy ]
50 ||@yll < |lvyl|, i.e. the operator norm of ¢, is less than or equal to the norm

of vy. If v, # 0, then HHZﬁH =1 and

v v
o @)l (-t
NEA loyll” ™ !

oyl = lloyll -

It follows that



Then for y € H, by the Cauchy-Schwarz inequality and because T' is bounded
we have

1Tyl = vyl
= gyl

= sup [[gy(2)]|
el <1

= sup [(T,y)]
lell<1
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sup (|| [l Iyl
lell<1

< ATyl

Therefore T* is bounded. Thus if T': H — H is a bounded linear map then its
adjoint T* : H — H is a bounded linear map.

A

1.5 Adjoint is involution

Because T* : H — H is a bounded linear map, it has an adjoint T** : H — H,
and T** is itself a bounded linear map. For all z,y € H,

(Tz,y) = (2,T"y)

Hence for all z,y € H,
(T —T*x,y) =0.

This is true in particular for y = Tz — T**x, so by the nondegeneracy of (-, -)
we obtain
Te —T"x =0, x e H.
Thus for any bounded linear map T : H — H, T** = T. In words, if T
is a bounded linear map from a Hilbert space to itself, then the adjoint of
its adjoint is itself. We have shown already that ||T*|] < ||T||. Hence also
[T)] = T[] < [|T]], so
1Tl =17
If T* =T, we say that T is self-adjoint.

2 Bounded linear operators

Let B(H) be the set of bounded linear maps H — H. With the operator norm,
one checks that #(H) is a Banach space. We define a product on Z(H) by
T\ Ty =Ty o Ty, and thus Z(H) is an algebra. We have

I Tall = sup |[Ta(Tox)|| < sup [Tl [[Tox]| = (T3] up [ Tox]| < ITA[[ T2l
1

llzll<1 lzll< |z <1



and thus %(H) is a Banach algebra.' Let PBs.(H) be the set of all T € B(H)
that are self-adjoint.

Theorem 1. If T € B(H), then T is self-adjoint if and only if (Tx,x) € R for
allz € H.

Proof. U'T € PBso(H), then for all z € H,

(Tz,z) = (x,T"x) = (x,Tx) = (Tx,x),

so (Txz,z) € R.
If T e B(H) and (Tz,z) € R for all x € H, then

(T2,2) = (2, T"2) = (T"2,2) = (T*2,3),
so, putting A =T — T*, for all + € H we have
(Az,z) = 0.
Thus, for all z,y € H we have
(Az,z) =0,  (Ay,y)=0, (Al +y),z+y) =0,
and combining these three equations,
0= (Az,z) + (Az,y) + (Ay, z) + (Ay,y) = 0+ (Az,y) + (Ay, z) + 0.
But A* = — A, so we get
(Az,y) + (y, —Az) = 0,

hence
As well, for all z,y € H we have
(Az, —iy) — (Az,—iy) = 0,

SO

(Az,y) + (Az,y) = 0. (2)
By (1) and (2), for all z,y € H we have

(Az,y) =0,

and thus A =0, i.e. T =T*. O

IThe adjoint map * : B(H) — B(H) satisfies, for A € C and Ty, T € B(H),
T =T, (Ti+Te)" =Tf +T5, ()" =XT*, ||T*T|=|T|*.
Thus Z(H) is a C*-algebra. I € $(H), so we say that Z(H) is unital.



Using the above characterization of bounded self-adjoint operators, we can
prove that a limit of bounded self-adjoint operators is itself a bounded self-
adjoint operator.

Theorem 2. %, (H) is a closed subset of B(H).
Proof. t T,, € Bso(H) and T,, — T € HB(H), then for x € H we have

(Tz,xz) = lim (T,z,z) € R,

n—oo

hence T € HBsa(H). O

If T € Beo(H) and (Tx,xz) > 0 for all x € H, we say that T is positive. Let
P+ (H) be the set of all positive T' € Beo(H). For S,T € Bso(H), if

T-Se R, (H)

we write S < T. Thus, we can talk about one self-adjoint operator being greater
than or equal to another self-adjoint operator. S < T is equivalent to

(Sz,z) < (Tx,z)

for all x € H.

3 A condition for invertibility

Theorem 3. If T € #(H) and there is some o > 0 such that o < TT* and
al <T*T, then T~ € B(H).

Proof. By al < T*T, we have for all x € H,
|Tz|* = (Tx, Tz) = (T*Tx,z) > (az,z) = o||z]?,
so ||Tz|| > /a||z||. This implies that T is injective. By al < TT*, we have for
allz € H,
|T*2||* = (T*2,T*2) = (IT*z,z) > (az,z) = a|z|°,
so |[T*z|| > /a||z||, and hence T* is injective. Let Tx,, — y € H. Then,
T2y — TmmHZ = |T'(zn — xm)HZ > allz, — xm”? :

Since Tz, converges it is a Cauchy sequence, and from the above inequality it
follows that x,, is a Cauchy sequence, hence there is some = € H with z,, — =.
As T is continuous, y = Tz € T(H), showing that T(H) is a closed subset of
H. But it is a fact that if T € %(H) then the closure of T(H) is equal to
(ker T*)+.2 Thus, as we have shown that 7% is injective,

T(H) = (ker T*)* = {0}* = H,

21t is straightforward to show that if v is in the closure of T(H) and w € ker T* then
(v, w) = 0. It is less straightforward to show the opposite inclusion.




i.e. T is surjective. Hence T : H — H is bijective. It is a fact that if T € B(H)
is bijective then T~! € %(H), completing the proof.? O

4 Spectrum

For T € #(H), we define the spectrum o(T) of T to be the set of all A € C such
T — I is not bijective, and we define the resolvent set of T to be p(T') = C\o(T).
To say that A € p(T) is to say that T — Al is a bijection, and if T — A\ is a
bijection it follows from the open mapping theorem that its inverse function is
an element of Z(H): the inverse of a linear bijection is itself linear, but the
inverse of a continuous bijection need not itself be continuous, which is where
we use the open mapping theorem.
We prove that the spectrum of a bounded self-adjoint operator is real.

Theorem 4. IfT € B, (H), then o(T) C R.
Proof. A€ C\R, A=a+1ib, b#0,and X =T — A, then

XX* = (T-XM)(T—\)*
= (T — (a+ib)I)(T — (a —ib)I)
= T?—(a—ib)T — (a +ib)T + (a® + b*)I
= (a® +b*)I —2aT + T?
= b I+(al - T)*
= VI + (ol —T)(al —T)*
> bl

X*X = XX* > b?I and b > 0, so by Theorem 3, X = T — A has an inverse
(T —XI)~! € B(H), showing \ & o(T). O

5 The spectrum of a bounded linear map is bounded

If A € p(T) then we define Ry = (T — M)~ € B(H), called the resolvent of T'.
Theorem 5. If T € B(H) and |\ > || T then X € p(T).
Proof. Define Ry ny € #(H) by

1oL
R’\’N:_XZ_%)\T'

3T-1: H — H is linear. The open mapping theorem states that if X and Y are Banach
spaces and S : X — Y is a bounded linear map that is surjective, then S is an open map,
i.e., if U is an open subset of X then S(U) is an open subset of Y. Here, T € #(H) and
T is bijective, and so by the open mapping theorem 7' is open, from which it follows that
T—!: H — H is continuous, and so bounded (a linear map between normed vector spaces is
continuous if and only if it is bounded).




As % < 1, the geometric series Y.~ o H‘fl\ln" converges, from which it follows

that Ry n is a Cauchy sequence in Z(H) and so converges to some Sy € B(H).
We have

IS\T = AI) — 1| < [IS\(T = AI) = Ry (T = AI)]|
1B (T = AL) — 1]

T L
< |S\—-R T—MN|+[--> — ~ !
< ISy — Ranllll I+ AM”+§”

N+1
= wxzaNMTMnﬂ\Mwl

A
< ISy = R IT = M| + ™ ;

which tends to 0 as N — oco. Therefore Sx(T'— M) = I. And,

(T =ADSx =TI < (T =ADSy = (T = AR n||
+ (T = ARy N — 1

|\
< T = M| ||Sx — Ra vl + W ,

whence (T — A\I)Sy = I, showing that
S\ = (T — )\I)_l.
Thus, if |A| > ||T|| then A € p(T). O

The above theorem shows that ¢(T") is a bounded set: it is contained in
the closed disc |A| < ||T'||. Moreover, if |A] > ||T|| then we have an explicit
expression for the resolvent Rjy:

I =T
RA:_XZOT"'

6 The spectrum of a bounded linear map is closed
Theorem 6. If T € B(H), then p(T) is an open subset of C.
Proof. It A € p(T), let | — A| < ||Rx||”", and define R, n € #(H) by

N
Run = Ra Y (1~ "R}

n=0



Because | — A| < [|Ra] ", R, n is a Cauchy sequence in #(H) and converges
to some S, € B(H). We have, as Ry = (T — X\ )71,

I1Su(T = uI) = 1| < ||Su(T = uI) = Ry n (T = pl)|

RN (T — pul + X — XI) — I

||Su - RmNH ||T - NIH

R (T = M) = Ry v (= A) = I

= Sy = RunllIT = p|

N N

D (= N"RY = (u—=NBx > (n—N"Ry I

n=0 n=0
= |I8u = Ruw | IT = || + ||=(n = WV RTHY
= ISy = Run | IT = pIl| + |1 = AN RAVFE,

IN

_|_

which tends to 0 as N — oo. Therefore S, (T — ) = I. One checks likewise
that (T' — uI)S, = I, and hence that

(T - :uI)_l = S}u
showing that p € p(T). O

As o(T) is bounded and closed, it is a compact set in C. Moreover, if
A& o(T) and | — Al < |Ra| ", then

o0

R, =Ry> (n—N"RY}.

n=0

7 The spectrum of a bounded linear map is nonempty

Theorem 7. If T € B(H) is self-adjoint, then o(T) # 0.
Proof. Suppose by contradiction that o(T) = (. If A\, u € C, then

(T = AI)(Rx — R,)(T —pI) = (I—(T = A)R,)(T — pl)
= T—pul—(T—X)
R)\ — RM = (/\ — M)RARW (3)

the resolvent identity. Thus

1By = Ryl < | = pl [ BAll | Ryl

4For each v,w € H we are going to construct a bounded entire function C — C depending
on v and w, which by Liouville’s theorem must be constant, and it will turn out to be 0. This
will lead to a contradiction.



and together with ||R,|| — ||Ra|| < [|[R, — Ra|| we get
[Rull (1= [A=pl[[BA) < [[RA]l-
If A= | < §-|[Rx]| 7", then
[Rull < 2||RAll,
whence, for [A —p < 1 - IR,
187 = Ryll < 21 = ul [ BA]

Therefore, A — Rj is a continuous function C — Z(H). From this and (3) it
follows that for each A € C,?

Ry—R

lim L= R3.

= A — L
Let v,w € H and define f, ,, : C — C by
fowX) = (Ryv,w),  AeC.

For X\ € C,

. fv,w(A)*fv,w(ﬂ) T R)\*Rp‘ . 2
Egl}\ Py 7;1511)\ 7)\—M v, W 7<R/\v,w>.

Thus f,. is an entire function. For [A| > ||T||, Rx = —5 >.r", ;—:, so, for
1l

T=T
>
n:0>\
1 = ,
DIk
|A|n:0
1 1
A 1—r
1 1
A1 — 171
Al 12
1

A= 1IT1

1

IRAll = o

IN

Hence, for |A| > ||T|,

|fv,w(/\)| ‘ <R)\’U,’w> |
BRI lv]] Jlwl]

[l flwl]

AL =171

IN

IN

5There are no complications that appear if we do complex analysis on functions from C to
a complex Banach algebra rather than on functions from C to C. Thus this statement is that
A — Rj is a holomorphic function C — %(H).



from which it follows that f, ., is bounded and that lim| e fo,w(A) = 0.
Therefore by Liouville’s theorem, fy, ,(A) = 0 for all A\. Let’s recap: for all
v,w € H and for all A € C, (Ryv,w) = 0. Switching the order of the universal
quantifiers, for all A € C and for all v,w € H we have (Ryv,w) = 0, which
implies that for all A € C we have Ry = 0. But by assumption Ry is invertible,
so this is a contradiction. Hence ¢(T") is nonempty. O
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