The Segal-Bargmann transform and the Segal-Bargmann space

Jordan Bell
July 31, 2015

1 The Fourier transform

Let dmn(x)=(2π)-n/2dx. For Borel measurable functions f,g:n, when yf(x-y)g(y) is integrable we define

(f*g)(x)=nf(x-y)g(y)𝑑mn(y).

For fL1,

f^(ξ)=(f)(ξ)=nf(x)e-iξ,x𝑑mn(x),ξn.

For f,gL1, for almost all xn, yf(x-y)g(y) is integrable,11 1 Walter Rudin, Real and Complex Analysis, third ed., p. 170, Theorem 8.14. and using Fubini’s theorem one checks that

f*g^=f^g^.

Let 𝒮 be the Schwartz functions n. For a multi-index α and ϕ𝒮 define Xαϕ:n by

(Xαϕ)(x)=xαϕ(x).

Define Δϕ:n by

(Δϕ)(x)=j=1n(j2ϕ)(x).

One proves that

Dα=i|α|Xα,Dα=(-i)|α|Xα

and

(Δϕ)(ξ)=-|ξ|2(ϕ)(ξ).

Parseval’s formula states that for f,gL2,

f,gL2=nfg¯𝑑mn=n(f)(g)¯𝑑mn=f,gL2,

thus

fL22=n|f|2𝑑mn=n|f|2𝑑mn=fL22.

For zn, using Cauchy’s integral theorem we obtain

nF(x+iy)e-iξ,x𝑑x=e-ξ,ynF(x)e-iξ,x𝑑x. (1)

2 The heat kernel

For t0 and fL2, define Htf:n by

(Htf)(x)=(2π)-n/2nf^(ξ)e-t|ξ|2eiξ,x𝑑mn(ξ).

For t>0 let

ht(x)=(4πt)-n/2e-|x|24t,xn,

and we calculate

tht=(4πt)-n/2e-|x|24t(-n2t+|x|24t2)=Δht,

which yields

t(f*ht)=f*(tht)=f*(Δht)=Δ(f*ht).

The Fourier transform of ht is22 2 http://individual.utoronto.ca/jordanbell/notes/stationaryphase.pdf, Theorem 2.

h^t(ξ) =n(4πt)-n/2e-|x|24te-iξ,x𝑑mn(x)
=(4πt)-n/2(2π)-n/2(4πt)n/2exp(-t|ξ|2)
=(2π)-n/2exp(-t|ξ|2).

Using ht*f^=p^tf^ and the Fourier inversion theorem,

(ht*f)(x) =nht*f^(ξ)eiξ,x𝑑mn(ξ)
=np^t(ξ)f^(ξ)eiξ,x𝑑mn(ξ)
=n(2π)-n/2exp(-t|ξ|2)f^(ξ)eiξ,x𝑑mn(ξ)
=(Htf)(x).

For t>0 and for zn,

(Htf)(z)=(2π)-n/2nf^(ξ)e-t|ξ|2eiξ,z𝑑mn(ξ)

and

ht(z)=(4πt)-n/2exp(-z12++zn24t).

It is apparent that ht:n is holomorphic. By the dominated convergence theorem,

dHtfdzj(z)=(2π)-n/2nf^(ξ)e-t|ξ|2iξjeiξ,z𝑑mn(ξ),

and Htf:n is holomorphic.

3 The Segal-Bargmann transform and the Segal-Bargmann space

Let λn be Lebesgue measure on n, for t>0 let

ωt(y)=t-n/2e-|y|22t,

and let μt be the Borel measure on n=n×n whose density with respect to λn×λn is x+iyωt(y). We define t(n) to be the set of those holomorphic functions F:n satisfying

Ft2=n|F|2𝑑μt<,

and for G,Ht we define

F,Gt=nFG¯𝑑μt=n(nF(x+iy)G(x+iy)¯ωt(y)𝑑y)𝑑x.

We call t the Segal-Bargmann space. It can be proved that it is a Hilbert space.

For yn write g(x)=(Htf)(x+iy), and applying Parseval’s formula and (1) yields

n|(Htf)(x+iy)|2𝑑mn(x) =n|g(x)|2𝑑mn(x)
=n|g^(ξ)|2𝑑mn(ξ)
=n|e-ξ,yHtf^(ξ)|2𝑑mn(ξ).

Using this with Htf^=h^tf^ and then using Fubini’s theorem and an identity for Gaussian integrals33 3 http://individual.utoronto.ca/jordanbell/notes/stationaryphase.pdf, Theorem 3. we get

Htft2 =n(n|(Htf)(x+iy)|2ωt𝑑y)𝑑x
=(2π)nn(n|(Htf)(x+iy)|2𝑑mn(x))ωt(y)𝑑mn(y)
=(2π)nn(ne-2ξ,y|Htf^(ξ)|2𝑑mn(ξ))ωt(y)𝑑mn(y)
=(2π)nn(ne-2ξ,y(2π)-nexp(-2t|ξ|2)|f^(ξ)|2𝑑mn(ξ))ωt(y)𝑑mn(y)
=n|f^(ξ)|2exp(-2t|ξ|2)(t-n/2ne-2ξ,ye-|y|22t𝑑mn(y))𝑑mn(x)
=n|f^(ξ)|2exp(-2t|ξ|2)exp(2t|ξ|2)𝑑mn(x)
=fL22
=fL22.

Therefore Ht:L2(n)t(n) is a linear isometry. We call Ht the Segal-Bargmann transform. It can be proved that Ht is a Hilbert space isomorphism.44 4 cf. https://www.math.lsu.edu/~olafsson/pdf_files/ht.pdf

For Ft and zn, write

evz(F)=F(z)

and

(TwF)(z)=F(z-w).

For fL2(n) and t>0 let F=Htft(n), and for wn, using

ht(w-x)¯=ht(x-w)¯=ht(x-w¯)=(Tw¯ht)(x),

we get

evw(F) =(f*ht)(w)
=nf(x)(Tw¯ht)(x)¯𝑑mn(x)
=f,Tw¯htL2
=Htf,HtTw¯htL2
=F,HtTw¯htL2.

Then (w,z)(HtTw¯ht)(z) is a reproducing kernel for the Hilbert space t.