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1 Calderéon-Zygmund kernels
Let wy,_1 be the measure of S?~ 1. It is

27'('71/2
Wpo] = ————.

I'(n/2)
Let v,, be the measure of the unit ball in R™. It is
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Up = =

n nl'(n/2)’

For k, N > 0 and ¢ € C*(R") let

Pie,n(9) = max sup (1 + |z)V](0¢)(x)]-

la|<k zeRrn

A Borel measurable function K : R™\{0} — C is called a Calderén-
Zygmund kernel if there is some B such that

L |K(z)] < Blz|™, 2 #0
3. SR1<\3¢|<R2 K(m)dw =0,0< Ry < Ry < 0.

The following lemma gives a tractable condition under which Condition 2 is
satisfied.!

Lemma 1. If |(VK)(z)| < Clz|™ ! for all x # 0 then for y # 0,

J |K(x —y) — K(z)|dz < v,2"C.
lz[>2]y|

1Camil Muscalu and Wilhelm Schlag, Classical and Multilinear Harmonic Analysis, volume
I, p. 167, Lemma 7.2.



Proof. For |z| > 2|y| > 0, if 0 <t < 1 then

. el _ el
|z —ty| > |z = tlyl > 2] = |yl > «| = T = T~

Write f(t) = K(z—ty), for which f'(t) = —(VK)(z—ty)-y. By the fundamental
theorem of calculus,

1 1
K(x—y) — K(x) = f(1) - f(0) = j ft)dt = — f (VE)(x — ty) - ydt,
0 0
thus
1 1
K(z—y) - K(@)] < j (VE)(x — ty)||yldt < c|y|f & — ty| "t
0 0
Then using |z — ty| > %l,
—n—1
K (e —y) - K(@)| < Cly ('2') _ 2y laf .

For |y| > 0, using spherical coordinates,?

| Ee-p K@< [ ovicle i
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0
=iy [ ([ e ) it
2yl \Jsn=t
a0
=0,2" 1 Cy| r2dr
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=0, 2" Cly| - 2
=v,2"C.
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For a Calderén-Zygmund kernel K, for f € .7(R"), for € R™, and for € > 0,
using Condition 3 with Ry = ¢ and Ry = 1,3

fl . Kz —y)f(y)dy
=] KU ey | K iy

|[z—y|>1

By Condition 1 there is some B such that |K(z)| < Blz|™", and combining this
with [f(y) — f(2)| < [Vl ly —=l,

[K(z =) (f(y) = f@)| < BVl ly — 2|7,

2See http://individual.utoronto.ca/jordanbell/notes/sphericalmeasure.pdf
Shttps://math.aalto.fi/~parissil/notes/harmonic.pdf, p. 115, Lemma 6.15.




which is integrable on {|z — y| < 1}. Then by the dominated convergence
theorem,

| Keon)(@) S@d= | K )7~ ey

Lemma 2. For a Calderdn-Zygmund kernel K, for f € Z(R™), and for x € R™,
the limit

lim K(z —y)f(y)dy

=0 Jjz—y|ze

exists.

2 Singular integral operators

For a Calderén-Zygmund kernel K on R”, for f € .(R"), and for x € R", let

(T'f)(x) = lim K(z —y)f(y)dy.

20 jz—y|>e

We call T' a singular integral operator. By Lemma 2 this makes sense.
We prove that singular integral operators are L? — L? bounded.*

Theorem 3. There is some Cy, such that for any Calderdn-Zygmund kernel K
and any f € S (R"),
ITfly < CaB | fl,-

Proof. For 0 <r < s < o and for £ € R define
M) = [ L @)K (@)

Take r < [£|~! < s, for which

mys(§) = f e 2N K (x)dx + f e 2T K (7)) d.
r<|z|<|g|~"

€17t <|z|<s

For the first integral, using Condition 3 with R; = r and Ry = |[¢|~! and then

4Camil Muscalu and Wilhelm Schlag, Classical and Multilinear Harmonic Analysis, volume
I, p. 168, Proposition 7.3; Elias M. Stein, Singular Integrals and Differentiability Properties
of Functions, p. 35, §3.2, Theorem 2; http://math.uchicago.edu/~may/REU2013/REUPapers/
Talbut.pdf



using Condition 1,

J e ML K (2)da
r<laz|<lg] !

For the second integral, let z =

J e—QWix'fK(x)
€= <|z|<s

2¢[?

dr =

Let

R= f e K (2 — 2
gl <lzl<s

with which
. 1

f e MK (x)dr = =
€11 <] <s 2

On the other hand, let
D=DADy={z: ¢! <
For x € Dy we have

|z = |z + 2] - |

_ J e—27ria:-£K(x
||~ t<|z+2z|<s

J.

On the one hand, applying Condition 2, as |z| =

f e M (K (x) — K(x — 2)
[l t<|z|<s

f (e72m@ 8 _ 1)K (z)dx

r<|z|<|¢]

< f le=2i@8 _ 1||K (z)|dx
|| <l€]

< f €] K ()| de
|z|<[€] 71

< 27|¢| Blz| "*dx
lzl<|g] ="
= 2l¢] - val€] 7

, and
_ f e—2m’(:c+z)~§K(x)dm
|17t <|z|<s
- f e 2K (2 — 2)d.
|

< |z—2z|<s

)dx — J e MK (2 — 2)dx
[l t<|z—z|<s

)dx + J e K (1) da,
lg|=" <|z|<s
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2T ([ (3) — K ( — 2))da + 2.
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and for z € Dy we have |z| > %, so for z € D,

Applying Condition 1,
[K ()| < Blz|™" < 2"BI¢[".
Furthermore, for z € D;\D2 we have |z| < |¢|7!, and for x € Dy\D; we have

1 1 1 3
lz| < |z +zl+ )2l =le+2l+ 55 < =+ ==

20l < jel T 20e] T 2lel

Hence ) 5
Dcixr: — <|x|< =,
e 3 < < 3
SO 3\ g\
MDY= ) vo=|= oy,
0= (5) w0 (3) 1
Therefore
n n 3 " —n n
Rl < 2Bl (3) 160 = 30,8
and then

1 1
< -B+ =-3",B,
5 +23v

J e 2T K (1) da
lgl=t <|z|<s

and finally®
1 1

Define
Teh)@) = | K@@=y, aeR"

Then
T.7(€) =

e (JR L <py<s (WK () f(z — y)dy> dx
)

n n

= | Ly E e 2V Ef(&)dy

n

J,
~ [ et ([ e gpas
J

~

=mys(§) f(§),

5The way I organize the argument, I want to use |[m, s|,, < CnB, while we have only
obtained this bound for 7 < |¢]|~! < 5. To make the argument correct I may need to do things
in a different order, e.g. apply Fatou’s lemma and then use an inequality instead of using an
inequality and then apply Fatou’s lemma.




and so

2
)
2

a4

2 . -
L= | @R = [ man©F©PdS <
by Plancherel’s theorem and the inequality we got for |m, 4(£)],

2 IFI2 < (CuB)?| 13-

For each z € R”, (T, sf)(x) — (Tf)(z) as r — 0 and s — oo, and thus using
Fatou’s lemma,

2
1T s fll < lmr s

—0,5s—00

| ien@Pds < tmint [ (0@ Pds = €82 115

That is,
ITfly < CuB|fl,-

3 The Riesz transform

Let
_ 1 rd)
L R e

For 1 <j <mn,let
KJ($> =Cn !

|x|n+1 :

This is a Calder6n-Zygmund kernel. For ¢ € #(R") define

(R;j¢)(x) = lim Kj(x —y)p(y)dy = lim K;(y)p(z — y)dy.

=0 Jjy—z|ze =0 jy[=e

We call each R;, 1 < j < n, a Riesz transform.
For 1 < j < n define W; : #(R™) — C by

Wy, ) = a (:i ) lim K;(y)o(y)dy. (1)

T2 e—0 ly|=e

jq K6 o0y

< j ealyl ™™ - [V6]., lyldy
e<|yl<1

1

=¢n |V, wn-1 J pontl =1 g,

= n [V wn—1(1 =)



For |y| = 1,

f | 1\Kj<y>¢<y>|dy<cnf (1 + 92) " 2p0. (6)dy
yl=

ly|=1

o0
= annj P (14 r) T e
1

= cpwnp log 2.

It then follows from the dominated convergence theorem that the limit

lim K;(y)o(y)dy

=0 Jjy|>e

exists, which shows that the definition (1) makes sense. It is apparent that
W; is linear. Then prove that if ¢, — ¢ in (R™) then {Wj, ¢y — (W;, o).
This being true means that W; € /(R™), namely that each W, is a tempered
distribution.

For a function f: R™ — C, write

f@)=f(=a), (@)= fz—y).
For v € '(R™) and h € .(R"), define

<h*u,¢>:<u,ﬁ*¢>, 6 e 7[R

It is a fact that h=u e ' (R™), and this tempered distribution is induced by the

C® function x — <u, Tw?z>.6 The Fourier transform of a tempered distribution
u is defined by

G0y =(wdy, e SR,
where

86 = | ermtowdn,  cern

It is a fact that @ is itself a tempered distribution. Finally, for a tempered
distribution u and a Schwartz function h, we define

(hu, @) = (u, hey, e S (RY).
It is a fact that hu is itself a tempered distribution. It is proved that”
b *u = .

The left-hand side is the Fourier transform of the tempered distribution ¢=u, and
the right-hand side is the product of the Schwartz function ¢ and the tempered
distribution .

SLoukas Grafakos, Classical Fourier Analysis, second ed., p. 116, Theorem 2.3.20.
"Loukas Grafakos, Classical Fourier Analysis, second ed., p. 120, Proposition 2.3.22.



Lemma 4. For 1< j < n, for ¢ € S(R"), and for x € R",

(Rj¢)(x) = (¢ Wj)(x).
We will use the following identity for integrals over S™~1.8

Lemma 5. For £ #0 and for 1 <j<n

f sgn (€ - 0)0;do(0) = an 28
gn-1 -1 ¢
Proof. 1t is a fact that
0 k#3j
sgn (0x)0;do(0) = ] (2)
Jor. ) fgoos 0,1d0(8) k= .

It suffices to prove the claim when ¢ € S"!. For 1 < j < n there is
Aj = (ai7k)i7k: € SOn(R) such that?

ej=§»

for which a; ; = &. Using that Af = Aj_1 and that o is invariant under O(n)
we calculate

f sgn (€ - 0)0;do (6 J sgn (Aje; - 0)(AA10);do(0)
Sn— 1 Sn— 1

J sgn (e; - 119)(AA 19);da(0)

n—1

t/)

f sgn (e; - (AQ)jd(Aj_l*U)(Q)
S'n 1

J sgn (e; - 0)(A0);do(8)
Sn— 1
= J sgn (6;) Z a;,10rd.
snt k=1
Applying Lemma 2 and a; ; = ;, this becomes
&
|, sen(e-00sa00) = | glojidoo) = | 16,1an(0).

Sn—l S’n—l Sn—l

Hence for each 1 < j <n

&
€] Jgn

8Loukas Grafakos, Classical Fourier Analysis, second ed., p. 261, Lemma 4.1.15.
9mttp://www.math.umn.edu/~garrett/m/mfms/notes/08_homogeneous . pdf

LH sgn (€ 0)0;do(0) = 10,]do(6).




It is a fact that!©

J F(0)do (0 f J 5, ¢)dp—me ds _.
RSn—1 VRZ=sZ§n—2 —s

Using this with f(0) = f(61,...,60,) = |61] and using that the measure of RS"~2
is R"2w,_1, we calculate

gn—1 /T_s2§n—2 w/1—52
Zf (153 “hw, ofs|do
-1

1
= QWH_QJ (1- 52)%3st
0

1 n—3
=wp—o | u 2 du
0

2wn72

n—1"
O

We now calculate the Fourier transform of the W;. We show that the Fourier

transform of the tempered distribution W; is induced by the function { —
&5 11

—1
lel

Theorem 6. For 1 < j <n and for ¢ € S (R"),
(W)= | ~iot)

Proof. We calculate

n+1 =N
(W;,8) = 75 lim | KOs

n+1
. (nfl ) tim K;(€)p(&)de
e 0 Jege<ise
RAGY) ( izt ) &

1 T d d

7'1'”;r1 EE’% e<|é|<1/e J]R"e (b(x) ! |§|n+1 ¢
F (n+1) —2mix-& fj
= ll—{% R ¢(x) <£<|g<1/ee |£|"+1d£ &

10T oukas Grafakos, Classical Fourier Analysis, second ed., p. 441, Appendix D.2.
HT,oukas Grafakos, Classical Fourier Analysis, second ed., p. 260, Proposition 4.1.14.



For the inside integral, because § — cos(—2nrz;6;)0; is an odd function,

4 . , 0.
6727rzw~€ 5] de = (J 6727rzw-(7‘0) T do (6 ) Tnfldr
J6S|$<1/6 €[+t g esr<1/e \Jgn—1 197 (0)
:f (J e_zmm'aﬁjda(ﬁ)) rtdr
e<r<l/e Sn—1
= f (J isin(—2mre - 9)9jd0(9)) rtdr
e<r<l/e Sn—1
= —i.[ (J sin(2mra - 9)9jda(9)) r~tdr
e<r<l/e Sn—1

= —ij (J sin(27re - 9)r_1dr> 0;do(6).
Sn—t e<r<l/e

Call the whole last expression f.(z). It is a fact that for 0 < a < b < o0,
b .

J sint gt
o t

‘fe(x” < 4wn71~

<4,

thus for x # 0,

ASlQ

lim f.(z) = —zf sgn (- a)gajda(e),

S'n,—l
applying the dominated convergence theorem yields

. —omize S
lim T J P — o I
e—0 Jpn ( )< e<|é|<1/e [

- | ot <_¢ LH sgn (- e)gejdo—(e)) da

™

=—q— (x) <J sgn (z - 9)9jd0(0)> dz.
2 R™ Sn—1
Then using Lemma 5 and putting the above together we get

1) -

R r n+
<Wj7 q§> = 75;21 . —2'5 N (x) (anl sgn (x - 9)9jd0(9)> dx
_0 (7;-2&-1) f ¢(;1;) 2Wp—2 ﬁdl‘

2 n—1 |z

2 ﬂ_n;rl

We work out that
PO s

2 7T'n,;»l n — 1 I

121,oukas Grafakos, Classical Fourier Analysis, second ed., p. 263, Exercise 4.1.1.
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and therefore

<W],¢> ' ﬁ dz,

R'L
completing the proof. O

Because R;jh = h = Wy,

(Fiho) = (i) = (Wyho) = | —ihie \s|

Theorem 7. For 1 < j <n and for he /(R"),

Roh(e) = fé he),  ceRrn.

In other words, the multiplier of the Riesz transform R; is m;(§) = —i

4 Properties of the Riesz transform
Theorem 8. .
~I=) R}
j=1
where I(h) = h for h e /(R").
Proof. For h e Z(R"),

— R? & &7 H
R2h(€) = —i L Rjh(€) = —iL - —i2lh(€) = — L h
JhE) = =i Fah() = =i i h() = —h(E),
hence .
j=1

Taking the inverse Fourier transform,

i R?h = —
j=1

i.e.

j=1

11



For a tempered distribution u, for 1 < j < n, we define
ju, ) = (=1){w,0;¢), e S R").
It is a fact that d;u is itself a tempered distribution. One proves that
Oju = (2mig;)i.

Each side of the above equation is a tempered distribution. Then
Py n o n n
Au = Z u = Z (2mig;)*a = —4n? Z 5]213 = —47?|¢)%a.
j=1 j=1 j=1

Suppose that f is a Schwartz function and that u is a tempered distribution
satisfying
Au = f,

called Poisson’s equation. Then
—An*lea = f.

For 1 < j, k <n,

ajaku 1(9(@6}&0)

7
FH((2mig;) (2mige)n)
27 (s <)
-1 %@A)

(7).
RiR,f = ﬁ_ly(Rijf)

_ & 5
g1 (5

S

_ & I
_ g8 Sk
( el ’|ff>

_ g1 _5j5'“>
7 ( 2!)

8j6ku = —Rijf.

I
A

Using Theorem 7,

Therefore

Theorem 9. If f is a Schwartz function and u is a tempered distribution sat-
1sfying
Au = f,

then for 1 < j,k <mn,
(7jc7ku = *Rijf.
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