Real reproducing kernel Hilbert spaces

Jordan Bell
October 22, 2015

1 Reproducing kernels

We shall often speak about functions F': X x X — R, where X is a nonempty
set. For x € X, we define F, : X — R by F,(y) = F(x,y) and for y € X we
define FY : X — R by F¥(xz) = F(z,y). F is said to be symmetric if F(z,y) =
F(y,z) for all z,y € X and positive-definite if for any z1,...,2, € X and
C1,...,cn € R it holds that

Z CiCjF(llEi,lle) Z 0.

1<ij<n
Lemma 1. If F: X x X — R is symmetric and positive-definite then

F(x,y)? < F(z,2)F(y,y), x,y€X.

Proof. For a, 3 € R define!

C(a, B) = &*F(z,2) + afF (z,y) + BaF (y,x) + B°F(y,y)
o’F(z,2) + 2aBF (z,y) + B*F(y, ),

which is > 0. Let
P(a) = C(a, F(x,y))
= a*F(z,2) + 2aF (z,y)* + F(z,9)*F(y,y),

which is > 0. In the case F(z,2) = 0, the fact that P > 0 implies that
F(z,y) = 0. In the case F(z,y) # 0, P(a) is a quadratic polynomial and
because P > 0 it follows that the discriminant of P is < 0:

4F(l‘,y)4 —4-F($,.’L‘) ~F(x,y)2F(y,y) <0.

That is, F(z,y)* < F(x,y)?F(z,2)F(y,y), and this implies that F(x,y)? <
F(z,z)F(y,y)- =

1See Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in
Probability and Statistics, p. 13, Lemma 3.



A real reproducing kernel Hilbert space is a Hilbert space H contained
in RX, where X is a nonempty set, such that for each z € X the map A, f = f(x)
is continuous H — R. In this note we speak always about real Hilbert spaces.

Let H c RX be a reproducing kernel Hilbert space. Because H is a Hilbert
space, the Riesz representation theorem states that ® : H — H* defined by

is an isometric isomorphism. Because H is a reproducing kernel Hilbert space,
A, € H* for each z € X and we define T, = ®~ 1A, € H, which satisfies

f@)=A(f) = (f, To)y,  fEH.
In particular, because T, € H, for y € X it holds that
Tz(y) = Ay(Tm) = <TxaTy>H .
Define K : X x X — R by
K(x, y) = <Twa Ty>H s
called the reproducing kernel of H. For z,y € X,
To(y) = (T, Ty) y = K(z,y) = Ke(y),

which means that T, = K.
A reproducing kernel is symmetric and positive-definite:

K(%?J) = <T17Ty>H = <Ty7TI>H = K(y,x)

and

Z cic; K (z;,xj) = Z <CiTmejTIj>H

1<i,j<n 1<i,j<n
= < E CiTIi, E C]'ij>
1<i<n 1<j<n H
> 0.

Lemma 2. If FE is an orthonormal basis for a reproducing kernel Hilbert space
H c RX with reproducing kernel K : X x X — R, then

K(z,y) =) e@)ely), wyeX.
eckE
Proof. Because F is an orthonormal basis for H, Parseval’s identity tell us

(T, Ty)y = Z (T, e) (Ty,e) = Z (e, 1) (e, Ty) = Z e(z)e(y).

ecE ecE ecE



If H C R¥ is a reproducing kernel Hilbert space with reproducing kernel
K: X xX — R and V is a closed linear subspace of H, then V is itself a
reproducing kernel Hilbert space, with some reproducing kernel G : X x X — R.
The following theorem expresses G in terms of K .2

Theorem 3. Let H C R¥ be a reproducing kernel Hilbert space with reproducing
kernel K : X x X — R, let V be a closed linear subspace of H with reproducing
kernel G : X x X — R, and let Py : H — V be the projection onto V. Then

Gz:PVK;m r e X.

Proof. H =V @V, thus for f € H there are unique g € V,h € V* such that
f=g+h,and Py f = g.2 Then f— Py f € V+. Therefore for y € X, as GyeV
it holds that

([.Gyly = —Pvf+Pvf.Gyy=(Pvf Gy)y=Pvf)y)

In particular, for z,y € X and f = K,
(PvK2)(y) = (Ko, Gy) gy = (Gy, )y = Gy(z) = Gy, ) = G(2,y) = Ga(y),
which means that Py K, = G, proving the claim. O

The Moore-Aronszajn theorem states that if X is a nonempty set and
K : X x X — R is a symmetric and positive-definite function, then there is a
unique reproducing kernel Hilbert space H C R¥ for which K is the reproducing
kernel.

We now prove that given a symmetric positive-definite kernel there is a
unique reproducing Hilbert space for which it is the reproducing kernel.*

2 Sobolev spaces on [0, 7]

Let f € RI9T]. The following are equivalent:®
1. f is absolutely continuous.

2. f is differentiable at almost all ¢ € [0, 7], f’ € L', and
t
fO=10+ [ Fo)ds te.]
0
3. There is some g € L' such that

f() = £(0) —I—/O g(s)ds, te€0,T].

2Ward Cheney and Will Light, A Course in Approzimation Theory, p. 234, Chapter 31,
Theorem 4.

Shttp://individual .utoronto.ca/jordanbell/notes/pvm. pdf

4 Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Prob-
ability and Statistics, p. 19, Theorem 3.

5Elias M. Stein and Rami Shakarchi, Real Analysis, p. 130, Theorem 3.11.




In particular, if f is absolutely continuous and f’ = 0 almost everywhere then
f; f'(s)ds = 0 and so f(t) = f(0) for all ¢t € [0,T]. That is, if f is absolutely
continuous and f’ = 0 almost everywhere then f is constant.

Let H be the set of those absolutely continuous functions f € R%T! such
that f(0) =0 and f’ € L% For f,g € H define

T
<f79>H:/0 f'(s)d'(s)ds.

If || f|| 7 = O then foT f'(s)%ds = 0, which implies that f’ = 0 almost everywhere
and hence that f is constant, and therefore f = 0. Thus (-,-), is indeed an
inner product on H.

If f, is a Cauchy sequence in H then f’ is a Cauchy sequence in L? and
hence converges to some g € L2. Then the function f € RI%7] defined by

£(t) = / g(s)ds, e[0T,

is absolutely continuous, f(0) = 0, and satisfies f’ = ¢ almost everywhere,
which shows that f € H. Then f,, — f in H, which proves that H is a Hilbert
space. For t € [0,T], by the Cauchy-Schwarz inequality,

/0 t F(s)ds /O ' F(s)ds

ie. |Lif| < TY2| f||;, which shows that L, € H*. Therefore H is a reproducing
kernel Hilbert space.

For a € [0,7] define h, : [0,7] — R by hy(s) = 1jg,4)(s), which belongs to
L?, and define g, : [0,T] — R by

2 2 T
- gT/ F(s)7ds =TI,
0

IfO)1* =

ga(t) = /o he(s)ds = min(t, a),

which belongs to H. For f € H,

T T a
(. ga) g = / F()gh(s)ds = / F/(5)1 0.0 (s)ds = / f(s)ds = f(a).

This means that K, = g,. For a,b € [0, 7],

T

T T
(Ka o) gy = / g ()gh(s)ds = / 10.01(5) 0.1 (5)ds = / Lo min(a (5)d5.
0 0 0

That is, the reproducing kernel of H is K : [0,T] x [0,T] — R,

K(a,b) = (K,, Kp) ; = min(a,b).



3 Sobolev spaces on R

Let A\ be Lebesgue measure on R. Let .#?()\) be the collection of Borel mea-
surable functions f : R — R such that |f|? is integrable, and let L?()\) be the
Hilbert space of equivalence classes of elements of .#?(\) where f ~ g when
f = g almost everywhere, with

(f,9) 12 :/ngd/\

Let H'(R) be the set of locally absolutely continuous functions f : R — R
such that f, f/ € L?(\). This is a Hilbert space with the inner product®

<fag>H1 = <fag>L2 + <f/7gl>L2
Define K : R x R — R by

1
K(x,y)ziexp(—|x—y|), xvy€R~

Let x € R. For y < z, K. (y) = K,(y) and for y > z, K/ (y) = —K,(y), which
shows that K, € H'(R). For f € H'(R), doing integration by parts,

(fs Ka) g =/_OO medAJr/x f’(y)Kac(y)cM(y)—/Oo F' () Kz (y)dA(y)

/de/\+f /f VK (1)dA(y)

+ f(x /f VK. (y)d\(y)

/deA+f /f dA(y)
/f dA(y)

—f()

This shows that H'(R) is a reproducing kernel Hilbert space. We calculate, for
x <y,

T Yy [e's)
(To, Ty 10 :/ KIKyd)\+/ KzKyd)\—k/ K, K,d\
—00 x Yy
x Yy o)
+ / K K, d\ — / K K, d\ + / K, K, d\
—o0 T Yy

1
=4 gexp(z —y)
= K(z,y).

Shttp://individual.utoronto.ca/jordanbell/notes/sobolevid.pdf



This shows that K(xz,y) = 3 exp(—|z —y|) is the reproducing kernel of H*(R).”

7cf. Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in
Probability and Statistics, pp. 8-9, Example 5.



