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1 Binary expansions

Define S : {0, 1}N → [0, 1] by

S(σ) =

∞∑
k=1

σk

2k
, σ ∈ {0, 1}N.

For example, for σ1 = 0 and σ2 = 1, σ3 = 1, . . .,

S(σ) =
0

2
+

1

4
+

1

8
+ · · · = 1

2
;

for σ1 = 1 and σ2 = 0, σ3 = 0, . . .,

S(σ) =
1

2
+

0

4
+

0

8
+ · · · = 1

2
.

Let σ ∈ {0, 1}N. If there is some n ∈ N such that σn = 0 and σk = 1 for all
k ≥ n+ 1, then defining

τk =


σk k ≤ n− 1

1 k = n

0 k ≥ n,

we have

S(σ) =

n−1∑
k=1

σk

2k
+

∞∑
k=n+1

1

2k
=

n−1∑
k=1

σk

2k
+

1

2n
= S(τ).

One proves that if either (i) there is some n ∈ N such that σn = 0 and σk = 1
for all k ≥ n+ 1 or (ii) there is some n ∈ N such that σn = 1 and σk = 0 for all
k ≥ n + 1, then S−1(S(σ)) contains exactly two elements, and that otherwise
S−1(S(σ)) contains exactly one element.

In words, except for the sequence whose terms are only 0 or the sequence
whose terms are only 1, S−1(S(σ)) contains exactly two elements when σ is
eventually 0 or eventually 1, and S−1(S(σ)) contains exactly one element oth-
erwise.
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We define ϵ : [0, 1] → {0, 1}N by taking ϵ(t) to be the unique element of
S−1(t) if S−1(t) contains exactly one element, and to be the element of S−1(t)
that is eventually 0 if S−1(t) contains exactly two elements. For k ∈ N we define
ϵk : [0, 1] → {0, 1} by

ϵk(t) = ϵ(t)k, t ∈ [0, 1].

Then, for all t ∈ [0, 1],

t = S(ϵ(t)) =

∞∑
k=1

ϵk(t)

2k
, (1)

which we call the binary expansion of t.

2 Rademacher functions

For k ∈ N, the kth Rademacher function rk : [0, 1] → {−1,+1} is defined by

rk(t) = 1− 2ϵk(t), t ∈ [0, 1].

We can rewrite the binary expansion of t ∈ [0, 1] in (1) as

∞∑
k=1

rk(t)

2k
=

∞∑
k=1

(
1

2k
− 2 · ϵk(t)

2k

)
= 1− 2

∞∑
k=1

ϵk(t)

2k
= 1− 2t. (2)

Define r : R → {−1,+1} by

r(x) = (−1)[x],

where [x] denotes the greatest integer ≤ x. Thus, for 0 ≤ x < 1 we have
r(x) = 1, for 1 ≤ x < 2 we have r(x) = −1, and r has period 2.

Lemma 1. For any n ∈ N,

rn(t) = (−1)[2
nt] = r(2nt), t ∈ [0, 1]

In the following theorem we use the Rademacher functions to prove an iden-
tity for trigonometric functions.1

Theorem 2. For any nonzero real x,

∞∏
k=1

cos
x

2k
=

sinx

x
.

1Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, p. 4,
§3.
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Proof. Let n ∈ N and let c1, . . . , cn ∈ R. The function

n∑
k=1

ckrk

is constant on each of the intervals[
s

2n
,
s+ 1

2n

)
, 0 ≤ s ≤ 2n − 1. (3)

There is a bijection between ∆n = {−1,+1}n and the collection of intervals (3).
Without explicitly describing this bijection, we have∫ 1

0

exp

(
i

n∑
k=1

ckrk(t)

)
dt =

2n−1∑
s=0

∫ (s+1)·2−n

s·2−n

exp

(
i

n∑
k=1

ckrk(t)

)
dt

=
∑
δ∈∆n

1

2n
exp

(
i

n∑
k=1

δkck

)

=
∑
δ∈∆n

n∏
k=1

eiδkck

2

=

n∏
k=1

eick + e−ick

2
,

giving ∫ 1

0

exp

(
i

n∑
k=1

ckrk(t)

)
dt =

n∏
k=1

cos ck. (4)

We have∫ 1

0

eix(1−2t)dt = eix
e−2ixt

−2ix

∣∣∣∣1
0

= eix
(
e−2ix

−2ix
+

1

2ix

)
=

sinx

x
. (5)

Using (2) we check that the sequence of functions
∑n

k=1
rk(t)
2k

converges uni-
formly on [0, 1] to 1− 2t, and hence using (5) we get∫ 1

0

exp

(
ix

n∑
k=1

rk(t)

2k

)
dt →

∫ 1

0

eix(1−2t)dt =
sinx

x

as n → ∞. Combining this with (4), which we apply with ck = x
2k
, we get

n∏
k=1

cos
x

2k
→ sinx

x

as n → ∞, proving the claim.
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We now give an explicit formula for the measure of those t for which exactly
l of r1(t), . . . , rn(t) are equal to 1.2 We denote by µ Lebesgue measure on R.
We can interpret the following formula as stating the probability that out of n
tosses of a coin, exactly l of the outcomes are heads.

Theorem 3. For n ∈ N and 0 ≤ l ≤ n,

µ{t ∈ [0, 1] : r1(t) + · · ·+ rn(t) = 2l − n} =
1

2n

(
n

l

)
.

Proof. Define ϕ : [0, 1] → R by

ϕ(t) =
1

2π

∫ 2π

0

eix(−(2l−n)+
∑n

k=1 rk(t))dx

But for m ∈ Z,
1

2π

∫ 2π

0

eimxdx = δm,0 =

{
1 m = 0

0 m ̸= 0,
(6)

hence

ϕ(t) =

{
1
∑n

k=1 rk(t) = 2l − n

0
∑n

k=1 rk(t) ̸= 2l − n.

Therefore

µ

{
t ∈ [0, 1] :

n∑
k=1

rk(t) = 2l − n

}
=

∫ 1

0

ϕ(t)dt

=

∫ 1

0

1

2π

∫ 2π

0

eix(−(2l−n)+
∑n

k=1 rk(t))dxdt

=
1

2π

∫ 2π

0

e−ix(2l−n)

∫ 1

0

eix
∑n

k=1 rk(t)dtdx

=
1

2π

∫ 2π

0

e−ix(2l−n) cosn xdx;

the last equality uses (4) with c1 = x, . . . , cn = x. Furthermore, writing

cosn x = 2−n(eix + e−ix) = 2−n
n∑

k=0

(
n

k

)
eix(2k−n),

2Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, pp. 8–9.
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we calculate using (6) that

1

2π

∫ 2π

0

e−ix(2l−n) cosn xdx = 2−n
n∑

k=0

(
n

k

)
1

2π

∫ 1

0

e−ix(2l−n)eix(2k−n)dx

= 2−n
n∑

k=0

(
n

k

)
1

2π

∫ 1

0

eix(2k−2l)dx

= 2−n
n∑

k=0

(
n

k

)
δ2k−2l,0

= 2−n
n∑

k=0

(
n

k

)
δk,l

= 2−n

(
n

l

)
,

proving the claim.

We now prove that the expected value of a product of distinct Rademacher
functions is equal to the product of their expected values.3

Theorem 4. If k1, . . . , kn are positive integers and k1 < · · · < kn, then∫ 1

0

rk1
(t) · · · rkn

(t)dt = 0.

Proof. Write J =
∫ 1

0
rk1

(t) · · · rkn
(t)dt and define

ϕ(x) =

n∏
s=2

r(2ks−k1x), x ∈ R,

which satisfies

ϕ(x+ 1) =

n∏
s=2

r(2ks−k1x+ 2ks−k1) =

n∏
s=2

r(2ks−k1x) = ϕ(x).

3Masayoshi Hata, Problems and Solutions in Real Analysis, p. 185, Solution 13.2.

5



Hence, as ϕ has period 1 and r has period 2,

J =

∫ 1

0

rk1
(t)ϕ(2k1t)dt

=

∫ 1

0

r(2k1t)ϕ(2k1t)dt

=
1

2k1

∫ 2k1

0

r(x)ϕ(x)dx

=
1

2k1

2k1−1−1∑
j=0

∫ 2j+2

2j

r(x)ϕ(x)dx

=
1

2k1

2k1−1−1∑
j=0

∫ 2

0

r(x)ϕ(x)dx

=
1

2

∫ 2

0

r(x)ϕ(x)dx.

But, as ϕ has period 1,∫ 2

0

r(x)ϕ(x)dx =

∫ 1

0

ϕ(x)dx−
∫ 2

1

ϕ(x)dx =

∫ 1

0

ϕ(x)dx−
∫ 1

0

ϕ(x)dx = 0,

hence J = 0, proving the claim.

For each n ∈ N, if f is a function defined on the integers we define

In(f) =

∫ 1

0

f

(
n∑

k=1

rk(t)

)
dt.

Lemma 5. For any n ∈ N,

In(x
2) = n, In(x

4) = 3n2 − 2n.

Proof. Using Theorem 4 we get

In(x
2) =

∫ 1

0

(
n∑

k=1

rk(t)

)2

dt

=

∫ 1

0

n∑
k=1

rk(t)
2 +

∑
j ̸=k

rj(t)rk(t)dt

=

∫ 1

0

n∑
k=1

rk(t)
2dt

= n.
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Using Theorem 4 we get, since rj(t)
4 = rj(t)

2 = 1 and rj(t)
3 = rj(t),

In(x
4) =

∫ 1

0

(
n∑

k=1

rk(t)

)4

dt

=

∫ 1

0

n∑
k=1

rk(t)
4 +

(
4

3

) n∑
j=1

∑
k ̸=j

rj(t)
3rk(t) +

(
4

2

) n∑
j=1

∑
k ̸=j

rj(t)
2rk(t)

2

+

(
4

2

) n∑
j=1

∑
j, k, l all distinct

rj(t)
2rk(t)rl(t)

+
∑

j, k, l,m all distinct

rj(t)rk(t)rl(t)rm(t)dt

= n+

(
4

2

)
n(n− 1).

Our proof of the next identity follows Hata.4

Lemma 6. For any n ∈ N,

In(|x|) =
2

π

∫ ∞

0

1− cosn x

x2
dx.

Proof. For n ∈ N and c1, . . . , cn ∈ R,∫ 1

0

exp

(
i

n∑
k=1

ckrk(t)

)
dt =

∫ 1

0

cos

(
n∑

k=1

ckrk(t)

)
dt+i

∫ 1

0

sin

(
n∑

k=1

ckrk(t)

)
dt,

and since (4) tells us that the left-hand side of the above is real, it follows that
we can write (4) as ∫ 1

0

cos

(
n∑

k=1

ckrk(t)

)
dt =

n∏
k=1

cos ck. (7)

Suppose that ξ is a positive real number. Using t = xξ and doing integration
by parts, ∫ ∞

0

1− cosxξ

x2
dx = ξ

∫ ∞

0

1− cos t

t2
dt

= ξ
1− cos t

−t

∣∣∣∣∞
0

+ ξ

∫ ∞

0

sin t

t
dt

= ξ

∫ ∞

0

sin t

t
dt

= ξ
π

2
.

4Masayoshi Hata, Problems and Solutions in Real Analysis, p. 188, Solution 13.6.
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It is thus apparent that for any real ξ,∫ ∞

0

1− cosxξ

x2
dx = |ξ|π

2
.

For any n ∈ N, applying the above with ξ =
∑n

k=1 rk(t) we get

In(|x|) =
2

π

∫ 1

0

∣∣∣∣∣
n∑

k=1

rk(t)

∣∣∣∣∣ π2 dt
=

2

π

∫ 1

0

∫ ∞

0

1− cos (x
∑n

k=1 rk(t))

x2
dxdt

=
2

π

∫ ∞

0

1

x2

∫ 1

0

1− cos

(
x

n∑
k=1

rk(t)

)
dtdx

=
2

π

∫ ∞

0

1

x2
(1− In(cosx·)) dx.

Applying (7) with ck = x for each k, this is equal to

2

π

∫ ∞

0

1

x2

(
1−

n∏
k=1

cosx

)
dx =

2

π

∫ ∞

0

1− cosn x

x2
dx,

completing the proof.

We use the above formula for In(|x|) to obtain an asymptotic formula for
In(|x|).5

Theorem 7.

In(|x|) ∼
√

2

π

√
n.

Proof. By Lemma 6,

In(|x|) =
2

π

∫ ∞

0

1− cosn x

x2
dx.

For 0 ≤ ϵ < 1, define ϕϵ :
[
0, π

2

)
→ R by

ϕϵ(x) =
x2

2(1− ϵ)
+ log cosx.

We also define

αϵ = arccos
√
1− ϵ, βϵ =

∫ ∞

αϵ

1− cosn x

x2
dx,

5Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, p. 12,
Masayoshi Hata, Problems and Solutions in Real Analysis, p. 188, Solution 13.6.
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and for σ > 0,

Kϵ,σ =

∫ αϵ

0

1− exp
(
−nx2

σ

)
x2

dx.

Let 0 < ϵ < 1. Until the end of the proof, at which point we take ϵ → 0, we
shall keep ϵ fixed. For 0 < x < αϵ we have, using arccos

√
1− ϵ ≤

√
ϵ,

ϕ0(x) =
x2

2
+ log cosx <

ϵ

2
+ log

√
1− ϵ =

ϵ

2
+

1

2
log(1− ϵ) < 0,

hence

cosx < exp

(
−x2

2

)
.

On the other hand,

ϕ′
ϵ(x) =

x

1− ϵ
− tanx, ϕ′′

ϵ (x) =
1

1− ϵ
− sec2 x,

so ϕϵ(0) = ϕ′
ϵ(0) = 0 and ϕ′′

ϵ (t) > 0 for all 0 ≤ t < αϵ, giving

ϕϵ(x) > 0,

and hence

exp

(
− x2

2(1− ϵ)

)
< cosx.

Collecting what we have established so far, for 0 < x < αϵ we have

exp

(
− x2

2(1− ϵ)

)
< cosx < exp

(
−x2

2

)
.

This shows that

Kϵ,2(1−ϵ) =

∫ αϵ

0

1− exp
(
− nx2

2(1−ϵ)

)
x2

dx ≥
∫ αϵ

0

1− cosn x

x2
dx,

and therefore
Kϵ,2(1−ϵ) + βϵ ≥

π

2
In(|x|).

On the other hand,

Kϵ,2 =

∫ αϵ

0

1− exp
(
−nx2

2

)
x2

dx ≤
∫ αϵ

0

1− cosn x

x2
dx,

so
Kϵ,2 + βϵ ≤

π

2
In(|x|).

Now summarizing what we have obtained, we have

Kϵ,2 + βϵ ≤
π

2
In(|x|) ≤ Kϵ,2(1−ϵ) + βϵ. (8)
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For σ > 0, doing the change of variable t =
√

n
σx,

Kϵ,σ =

∫ αϵ

0

1− exp
(
−nx2

σ

)
x2

dx =

√
n

σ

∫ √
n
σαϵ

0

1− e−t2

t2
dt.

As n → ∞, the right-hand side of this is asymptotic to√
n

σ

∫ ∞

0

1− e−t2

t2
dt =

√
n

σ

√
π.

Dividing (8) by
√
n and taking the limsup then gives

lim sup
n→∞

π

2

In(|x|)√
n

≤
√

π

2(1− ϵ)
,

or

lim sup
n→∞

In(|x|)√
n

≤

√
2

π(1− ϵ)
;

indeed βϵ depends on n, but βϵ < 2
αϵ
, which does not depend on n. Taking

ϵ → 0 yields

lim sup
n→∞

In(|x|)√
n

≤
√

2

π
.

On the other hand, taking the liminf of (8) divided by
√
n gives

lim inf
n→∞

π

2

In(|x|)√
n

≥
√

π

2
,

or

lim inf
n→∞

In(|x|)√
n

≥
√

2

π
.

Combining the limsup and the liminf inequalities proves the claim.

Lemma 8. For any ξ ∈ R and n ∈ N,

In(e
ξ|x|) < In(e

ξx) + In(e
−ξx) = 2(cosh ξ)n.

We will use the following theorem to establish an estimate similar to but
weaker than the law of the iterated logarithm.6

Theorem 9. For any ϵ > 0, for almost all t ∈ [0, 1],

∞∑
n=1

1

n2+ϵ
exp

(√
2 log n

n

∣∣∣∣∣
n∑

k=1

rk(t)

∣∣∣∣∣
)
dt < ∞.

6Masayoshi Hata, Problems and Solutions in Real Analysis, p. 189, Solution 13.7.
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Proof. Define fn : [0, 1] → (0,∞) by

fn(t) =
1

n2+ϵ
exp

(√
2 log n

n

∣∣∣∣∣
n∑

k=1

rk(t)

∣∣∣∣∣
)
.

Applying Lemma 8 with ξ =
√

2 logn
n ,

∫ 1

0

fn(t)dt ≤
1

n2+ϵ
· 2 ·

(
cosh

√
2 log n

n

)n

.

It is not obvious, but we take as given the asymptotic expansion(
cosh

√
2 log n

n

)n

= n− 1

3
(log n)2 +

8
45 (log n)

3 + 1
18 (log n)

4

n
+O(n−3/2),

and using this,

1

n2+ϵ
· 2 ·

(
cosh

√
2 log n

n

)n

=
2

n1+ϵ
+O

(
(log n)2

n2+ϵ

)
=

2

n1+ϵ
+O(n−2).

Thus
∞∑

n=1

∫ 1

0

fn(t)dt =

∞∑
n=1

(
2

n1+ϵ
+O(n−2)

)
< ∞.

Because each fn is nonnegative, using this with the monotone convergence
theorem gives the claim.

Theorem 10. For almost all t ∈ [0, 1],

lim sup
n→∞

|
∑n

k=1 rk(t)|√
n log n

≤
√
2.

Proof. Let ϵ > 0. By Theorem 9, for almost all t ∈ [0, 1] there is some nt such
that n ≥ nt implies that fn(t) < 1, where we are talking about the functions fn
defined in the proof of that theorem; certainly the terms of a convergent series
are eventually less than 1. That is, for almost all t ∈ [0, 1] there is some nt such
that n ≥ nt implies that (taking logarithms),

(−2− ϵ) log n+

√
2 log n

n

∣∣∣∣∣
n∑

k=1

rk(t)

∣∣∣∣∣ < 0,

and rearranging,
|
∑n

k=1 rk(t)|√
n log n

<
√
2 +

ϵ√
2
=

√
2 + ϵ′.

For each s ∈ N, let Es be those t ∈ [0, 1] such that

lim sup
n→∞

|
∑n

k=1 rk(t)|√
n log n

>
√
2 +

1

s
.
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For each s, taking 0 < ϵ′ < 1
s we get that almost all t ∈ [0, 1] do not belong to

Es. That is, for each s, the set Es has measure 0. Therefore

E =

∞⋃
s=1

Es

has measure 0. That is, for almost all t ∈ [0, 1], for all s ∈ N we have t ̸∈ Es,
i.e.

lim sup
n→∞

|
∑n

k=1 rk(t)|√
n log n

≤
√
2 +

1

s
,

and this holding for all s ∈ N yields

lim sup
n→∞

|
∑n

k=1 rk(t)|√
n log n

≤
√
2,

completing the proof.

3 Hypercubes

Let mn be Lebesgue measure on Rn, and let Qn = [0, 1]n.7

Theorem 11. If f ∈ C([0, 1]), then

lim
n→∞

∫
Qn

f

(
x1 + · · ·+ xn

n

)
dmn(x) = f

(
1

2

)
.

Proof. Define Xn : Qn → R by

Xn =
x1 + · · ·+ xn

n
, x ∈ Qn.

We have ∫
Qn

Xndmn(x) =
1

n

n∑
k=1

∫ 1

0

xk · 1dxk =
1

n

n∑
k=1

1

2
=

1

2
,

7Masayoshi Hata, Problems and Solutions in Real Analysis, p. 161, Solution 11.1.

12



and we define

Vn =

∫
Qn

(
Xn − 1

2

)2

dmn(x)

=

∫
Qn

n∑
k=1

x2
k

n2
+
∑
j ̸=k

xjxk

n2
−Xn +

1

4
dmn(x)

=
1

n2

n∑
k=1

∫ 1

0

x2
kdxk +

1

n2

n∑
j=1

∑
k ̸=j

∫ 1

0

xjdxj

∫ 1

0

xkdxk − 1

2
+

1

4

=
1

n2

n∑
k=1

1

3
+

1

n2

n∑
j=1

∑
k ̸=j

1

4
− 1

4

=
1

3n
+

n− 1

4n
− 1

4

=
n−1

12
.

Suppose that cn is a sequence of positive real numbers tending to 0, and
define Jn = Jn(c) to be those x ∈ Qn such that∣∣∣∣Xn(x)−

1

2

∣∣∣∣ ≥ cn.

Then

Vn =

∫
Qn

(
Xn − 1

2

)2

dmn(x)

≥
∫
Jn

(
Xn − 1

2

)2

dmn(x)

≥
∫
Jn

c2ndmn(x)

= c2nmn(Jn),

so

mn(Jn) ≤
Vn

c2n
=

n−1

12c2n
.

Take cn = n−1/3, giving

mn(Jn) ≤
n−1/3

12
.

Let ϵ > 0. Because f is continuous, there is some δ > 0 such that |t − 1
2 | < δ

implies that |f(t)− f( 12 )| < ϵ; furthermore, we take δ such that

∥f∥∞ δ

6
< ϵ.
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Set N > δ−3. For n ≥ N and x ∈ Qn \ Jn,∣∣∣∣Xn(x)−
1

2

∣∣∣∣ < cn = n−1/3 ≤ N−1/3 < δ,

and so ∣∣∣∣(f(Xn(x))− f

(
1

2

)∣∣∣∣ < ϵ.

This gives us∣∣∣∣∫
Qn

f(Xn(x))dmn(x)− f

(
1

2

)∣∣∣∣ =

∣∣∣∣∫
Qn

f(Xn(x))− f

(
1

2

)
dmn(x)

∣∣∣∣
≤

∫
Jn

∣∣∣∣f(Xn(x))− f

(
1

2

)∣∣∣∣ dmn(x)

+

∫
Qn\Jn

∣∣∣∣f(Xn(x))− f

(
1

2

)∣∣∣∣ dmn(x)

≤
∫
Jn

2 ∥f∥∞ dmn(x) +

∫
Qn\Jn

ϵdmn(x)

≤ 2 ∥f∥∞ mn(Jn) + ϵ

≤ 2 ∥f∥∞
n−1/3

12
+ ϵ

<
∥f∥∞ δ

6
+ ϵ

< 2ϵ,

which proves the claim.
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