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1 Binary expansions

Define S : {0, 1} — [0, 1] by

For example, for 0y =0 and 0o = 1,03 =1,...,

0o 1 1 1
Se)=g T itg Ty

foroy =1and 05 =0,03=0,...,
1 0 0 1

Let o € {0,1}N. If there is some n € N such that o,, = 0 and o = 1 for all
k > n+ 1, then defining

O ]an—].

T — 1 ]C =N
0 k>n,
we have
n—1 O% (e’ 1 n—1 o 1
S(o—)zzz—k+ > 2—,6:22—,;%7:5(7).
k=1 k=n+1 k=1

One proves that if either (i) there is some n € N such that o, =0 and o, = 1
for all k > n+1 or (ii) there is some n € N such that ¢,, = 1 and o}, = 0 for all
k > n+1, then S~1(S(0)) contains exactly two elements, and that otherwise
S~1(S(0)) contains exactly one element.

In words, except for the sequence whose terms are only 0 or the sequence
whose terms are only 1, S71(S(0)) contains exactly two elements when o is
eventually 0 or eventually 1, and S~!(S(c)) contains exactly one element oth-
erwise.



We define ¢ : [0,1] — {0,1}" by taking €(t) to be the unique element of
S=L(t) if S71(t) contains exactly one element, and to be the element of S~ (¢)
that is eventually 0 if S~1(¢) contains exactly two elements. For k € N we define

k:[0,1] — {0,1} by
ex(t) = e(t), t e [0,1].

Then, for all ¢ € [0, 1],

8

k=1

which we call the binary expansion of ¢.

2 Rademacher functions

For k € N, the kth Rademacher function r; : [0,1] — {—1,+1} is defined by
ri(t) =1 — 2ex(t), te[0,1].

We can rewrite the binary expansion of ¢t € [0,1] in (1) as

Sy (-2 %)

k=1

D 1o (2)

Define r : R — {—1,+1} by

r(z) = (=11,

where [z] denotes the greatest integer < z. Thus, for 0 < z < 1 we have
r(z) =1, for 1 <a < 2 we have r(z) = —1, and r has period 2.

Lemma 1. For anyn € N,

ra(t) = (=1 = r(27), te[0,1]

In the following theorem we use the Rademacher functions to prove an iden-
tity for trigonometric functions.’

Theorem 2. For any nonzero real x,

sm X
H

IMark Kac, Statistical Independence in Probability, Analysis and Number Theory, p. 4,
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Proof. Let n € N and let cy,...,c, € R. The function

n
E CrTk
k=1

is constant on each of the intervals

[s s+1

— 0<s<2™—1. 3
2n’ 271)’ 8% ()

There is a bijection between A,, = {—1,+1}" and the collection of intervals (3).
Without explicitly describing this bijection, we have

2" —

1 a(s+1)-27™ n
/ exp( chrk ) = Z /.2771 exp (ichrk(t)> dt

s=0

= Z exp< Zékck>

0EA,

Ik

€A, k=1

n zck + e—zck

ZJka

k=1

giving

ckrk(t)> dt = [ ] coscx. (4)
k=1

=1

1
/ exp | ¢
0 k
‘We have

1 — 2zt
/ pir(1=20) gy _ eime
0 —2ix
ri(t)

Using (2) we check that the sequence of functions Y | ™3~ converges uni-
formly on [0, 1] to 1 — 2¢, and hence using (5) we get

1 n 1 .
t ,
/ exp (’L:EE :%&)) dt %/ (=20 gy %
0 k=1 0

as n — oo. Combining this with (4), which we apply with c; = 5z, we get

sinx
H COS

as n — 0o, proving the claim. O

1 —2ix :
) 1 5
=e (e — + ) = bmx~ (5)

0 —2ix  2ix x




We now give an explicit formula for the measure of those ¢ for which exactly
I of 71(t),...,7,(t) are equal to 1.2 We denote by p Lebesgue measure on R.
We can interpret the following formula as stating the probability that out of n

tosses of a coin, exactly [ of the outcomes are heads.

Theorem 3. Forn e N and 0 <[ <n,

u{te[0,1]:7’1(t)+~-'+7"n(t)2ln}2171(”>'

l

Proof. Define ¢ : [0,1] — R by

27
PR
2m Jy
But for m € Z,
1 [ 1 =0
— e"Pdr = 00 = m (6)
27 0 ’ 0 m;éO,
hence
o(t) = 1 > () =2l—n
0 Yop_qre(t)#2l—n.
Therefore
n 1
u{t €[0,1]:> mi(t) =21 - n} = / o(t)dt
k=1 0
1 27
_ / 1 / i (— @) Si (D) gt
o 27 Jo
1 27 . 1 . n
_ efm(2l7n) / ete Sl Tk(t)dtdl‘
27 Jy 0
1 27 )
= — e~ =) cos™ pda;
2m Jo
the last equality uses (4) with ¢y =z, ..., ¢, = 2. Furthermore, writing

cos™ ¢ = 2—n(eiw + e—iw) —9n Z (Z) eiw(Zk:—n)’

k=0

2Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, pp. 8-9.



we calculate using (6) that

1 2m . n 1 1 . .
% i efmz(Qlfn) cos xdr = 27" Z <Z> %/Ov efzm(2l7n)elx(2k7n)dx
k=0
_ Q_nzn: ny 1 /1 ot (2k=21) ..
k 27T 0
k=0
_n n
= 27"y (k) 02k—21,0
k=0
" /n
= 27" Z <k‘) 5k,l
k=0
_ 2—n<7 ,
proving the claim. O

We now prove that the expected value of a product of distinct Rademacher
functions is equal to the product of their expected values.?

Theorem 4. If k..., k, are positive integers and k1 < --- < ky,, then

/ vy (8) . (£)dt = 0.
0

Proof. Write J = fol Tk, (t) -+ 7k, (t)dt and define

n

o(x) = [[r@** ), 2eR,
s=2
which satisfies

n n

$x+1) = [[r@Fa+ 28 k) = T]r@bMa) = ¢().

s=2 s=2

3Masayoshi Hata, Problems and Solutions in Real Analysis, p. 185, Solution 13.2.



Hence, as ¢ has period 1 and r has period 2,

J

/01 ri, (H)p(251 1) dt
— /1 r(281t)p(2%1t)dt
0

= o0 /0 r(z)p(x)dx

1 ok1—1_1 2j+2

= o5 Z - r(@)¢(z)de
j=0 72
1 2k1i-1_1 o
= o0 Z r(z)o(z)dx
j=0 70
2

_ % / r(2)(z)dz.

0

But, as ¢ has period 1,

[ @t = [ owr~ [ o= [ owar [ owar=o

hence J = 0, proving the claim. O

For each n € N, if f is a function defined on the integers we define

1 n 2
I,(z?) = /0 (Zmn) dt
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Using Theorem 4 we get, since r;(¢)* = r;(t)? = 1 and r;(t)® = r;(t),

1 " 4
L(x") = / (Zm(t)) dt

k=1
_ /Olkzijlm(t)“ + (g) g;r‘j(w%(w . (‘21) ;gm(t

+©an > Pt

j=14,k,1 all distinct

* Z 75 ()T () (t)rm (t)dt

7, k, 1, m all distinct

I <;l>n(n— 1),

Our proof of the next identity follows Hata.*

Lemma 6. For anyn € N,

2 [*®1—cos"z
I,(|z|) = —/O - dz.

T x2

Proof. Forn € Nand ¢y,...,¢, € R,

/ eXp( chrk ) —/ cos (Zcm >dt+z/1sin (é ckrk(t)> dt,

and since (4) tells us that the left-hand side of the above is real, it follows that
we can write (4) as

/1 cos (i ckrk(t)> dt = ﬁ COS C. (7)
0 k=1 k=1

Suppose that £ is a positive real number. Using ¢ = z¢ and doing integration
by parts,

= ¢ —at

2 0 12
sm t
f/

/oolfcosxﬁ 1 —cost
——dx
0

1 —cost|™

3

5/ smt

4Masayoshi Hata, Problems and Solutions in Real Analysis, p. 188, Solution 13.6.




It is thus apparent that for any real &,
1 —cosxé T
/ SO = e
0 X 2

For any n € N, applying the above with £ = >"_, 74 (t) we get

k=

1
2 /1 /oo 1 —cos (xz;Z:l ’rk(t))dxdt
™ Jo 0 X

) © q 1 n
= ;/0 ?/0 1 — cos (erk(t)> dtdx
k=1
= g/ 1 (1 —1I,(cosx))dz.
0

0 2

™
L(Jz]) St

Applying (7) with ¢, = z for each k, this is equal to

2 [ L 2 [*®1—-cos"x
— —(1- Hcosa: de = — — —duz,
i 0 X iy 0 X

k=1
completing the proof. O

We use the above formula for I,,(]z|) to obtain an asymptotic formula for

L(|a]).?
Lu(jal) ~ \/f\/ﬁ.

2 [*1—cos"x
I,(|z|) = —/O ———dx

Theorem 7.

Proof. By Lemma 6,

™ x

For 0 < e < 1, define ¢ : [0,%) — R by
2

¢e($) = m

+ log cos x.

We also define

o0 1 N
—cos" x
ae = arccos v 1 — e, Be = / —5 —dz,
x
«@

€

5Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, p. 12,
Masayoshi Hata, Problems and Solutions in Real Analysis, p. 188, Solution 13.6.



and for o > 0,
ac 1 —exp (—"712>
Ko = / ————dx.
0 X
Let 0 < € < 1. Until the end of the proof, at which point we take ¢ — 0, we
shall keep € fixed. For 0 < z < a,. we have, using arccos /1 — € </,

2
1
do(x) = %+10gc0s1’<§+10g\/17€:§+§10g(1*6) <0,

22
cosx < exp <—2> .

—tanz, ol (x) = . — sec? z,
—€

hence

On the other hand,

oz
T 1—¢

P ()

50 ¢.(0) = ¢L(0) =0 and ¢/ (t) > 0 for all 0 < ¢ < a, giving

e(x) >0,

and hence

72

exp (_2(1_6)) < cosczx.
Collecting what we have established so far, for 0 < z < a, we have

2

x2
exp <2(1_€)) < cosx < exp <2) .

TIZEZ

ac 1 —exp <*m> % 1 —cos"x
K@Z(l—e) :/0 dx Z/(] ——dz,

2 2

This shows that

and therefore -
Ke,?(lfe) + ﬁe 2 §In(|w|)

On the other hand,

nax?
2

ac. 1 —exp (—
e [ 0E)
0

)dx</ <1 —cos T
x 0

s )
2 .132

SO -
K6,2 +/86 S §In(‘x|)

Now summarizing what we have obtained, we have

™
Ke,2 + Be S iln(|x|) S Ke,2(176) + Be- (8)



For o > 0, doing the change of variable t = \/gx,

/aé 1 76Xp \/7/\/>a5 1—
Ke,o = - 2
O :I;

As n — oo, the right-hand side of this is asymptotic to

001_ —t2
N e G
o Jo t o

Dividing (8) by /n and taking the limsup then gives

hmbup - |3:|
n—00 ]. - 6
or
lim su n(jz])
e,V S\ w(i—e)

indeed . depends on n, but 8. < (%, which does not depend on n. Taking
€ — 0 yields

&’

lim sup
n—oo

On the other hand, taking the liminf of ( ) divided by /n gives

m
n—oo
or
lim i f \/7
n—oo
Combining the limsup and the liminf mequahtles proves the claim. O

Lemma 8. For any £ € R andn € N,

I, (e8171) < I,(e5%) 4 I,,(e7%) = 2(cosh &)™,

We will use the following theorem to establish an estimate similar to but
weaker than the law of the iterated logarithm.%

Theorem 9. For any € > 0, for almost all t € [0, 1],

=1 2logn |w—
ZInQ‘*‘EGXp< . Zrk(t)>dt<oo.
n= k=1

6Masayoshi Hata, Problems and Solutions in Real Analysis, p. 189, Solution 13.7.
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Proof. Define f,, : [0,1] — (0,00) by

2logn
n

Applying Lemma 8 with £ =

1 n
1 2logn
/0 fa(t)dt < X -2 (cosh . > .

It is not obvious, but we take as given the asymptotic expansion

21 " 1 80 34 1 4 ,
<cosh ogn) :nfg(logn)2+ 15 (logn)” + 5 (logn) JrO(n,d/g)’

n n

and using this,

1 L [2logn ! 2 (logn)? 2 L
n2+6-2~<cosh - ) :n1+6+0< e nHE—&—O(n ).

Thus

2/01 fn(t)dt = ni: (ni + O(n2)> < 0.

Because each f,, is nonnegative, using this with the monotone convergence
theorem gives the claim. O

Theorem 10. For almost all t € [0, 1],

: > 1 TE ()]
lim sup “=E=L 20 < /9,
n_)oop vnlogn —

Proof. Let € > 0. By Theorem 9, for almost all ¢ € [0,1] there is some n; such
that n > n; implies that f,(¢) < 1, where we are talking about the functions f,
defined in the proof of that theorem; certainly the terms of a convergent series
are eventually less than 1. That is, for almost all ¢ € [0, 1] there is some n; such
that n > n; implies that (taking logarithms),

21
(=2 —¢)logn + ogn
n

1> hey e ()] € y
Y~ <\/5+\/§—\/§+ .

For each s € N, let E, be those t € [0,1] such that
>k Tk (0)]

limsup “=E=L0 S /2 4+ B
n_>oop Vnlogn s

n

> ()

k=1

<0,

and rearranging,

11



For each s, taking 0 < € < 1 we get that almost all ¢ € [0,1] do not belong to
E,. That is, for each s, the set Es has measure 0. Therefore

E = GES
s=1

has measure 0. That is, for almost all ¢ € [0,1], for all s € N we have t ¢ E,
ie.

lim sup

n— 00 VvVn 10g n

and this holding for all s € N yields

1> k=1 7k (2)] S\/i—kl,
s

DTG

lim sup

n—00 \/nlogn

completing the proof. O

3 Hypercubes

Let m,, be Lebesgue measure on R", and let Q,, = [0, 1]".7

Theorem 11. If f € C([0,1]), then

i [, 0 (o =1 ()

Proof. Define X, : Q,, — R by

Xp=—"—"7", z € Qn.
n
We have .
I 11 1
Xndmn(x) = — / T - ldxy = — - =,
Qn n’; 0 nk:l 2 2

"Masayoshi Hata, Problems and Solutions in Real Analysis, p. 161, Solution 11.1.
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and we define

vn:/
Q,

n k=1
1 & 1
= EZ xkdmk—i— 222 x]d:cj xkdxk—f—i—z
k=1 Jj=1k#j
1
- Flitwilic
1 n—l 1
 3n 4n 4
n-1
= ﬁ.

Suppose that ¢, is a sequence of positive real numbers tending to 0, and
define J,, = J,(c¢) to be those x € @,, such that

1
’Xn(x) - 2’ Z Cn
Then
1\2
Vi = / (Xn - 2) dmy, (x)
> / (Xn - ) dm., (x)
In 2
> / cZdmy, (z)
Jn
= camn(Jn),
S0 V. )
-
Take ¢, = n~/3, giving
n—1/3
Let € > 0. Because f is continuous, there is some § > 0 such that [t — 1| < §

implies that |f(t) — f(3)| < € furthermore, we take & such that

[
6 <

13



Set N> 4§73 Forn> N and 2 € Q,, \ Jn,

Xn(x)—l' <epn=n"YP< N3 <4,

and so 2
) -1 (5)] <
This gives us
’ 0. f(Xn(x))dmy,(z) — f <;>‘ = ‘ o f(Xn(2) — f (;) dmy (z)
< [ - ()| amto

F) - £ (3 dmate)

)
Qn\Jn

/ 2l dma(r) + / @)

201 fll e min () + €
—-1/3
201/l “55

]
I/t

)

IN

IN

n

IN

+e€

A

< 2e

which proves the claim. O
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