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Let χ : Z → C be a primitive Dirichlet character modulo m. χ being a
Dirichlet character modulo m means that χ(kn) = χ(k)χ(n) for all k, n, that
χ(n + m) = χ(n) for all n, and that if gcd(n,m) > 1 then χ(n) = 0. χ being
primitive means that the conductor of χ is m. The conductor of χ is the smallest
defining modulus of χ. If m′ is a divisor of m, m′ is said to be a defining modulus
of χ if gcd(n,m) = 1 and n ≡ 1 (mod m′) together imply that χ(n) = 1. If
n ≡ 1 (mod m) then χ(n) = 1 (sends multiplicative identity to multiplicative
identity), so m is a defining modulus, so the conductor of a Dirichlet character
modulo m is less than or equal to m.

We shall prove the Polya-Vinogradov inequality for primitive Dirchlet char-
acters. The same inequality holds (using an O term rather than a particular
constant) for non-primitive Dirichlet characters. The proof of that involves the
fact [1, p. 152, Proposition 8] that a divisor m′ of m is a defining modulus for a
Dirichlet character χ modulo m if and only if there exists a Dirichlet character
χ′ modulo m′ such that

χ(n) = χ0(n) · χ′(n) n ∈ Z,

where χ0 is the principal Dirichlet character modulo m. (The principal Dirichlet
character modulo m is that character such that χ(n) = 0 if gcd(n,m) > 1 and
χ(n) = 1 otherwise.)

If χ is a Dirichlet character modulo m, define the Gauss sum G(·, χ) : Z → C
corresponding to this character by

G(n, χ) =

m−1∑
k=0

χ(k)e2πikn/m, n ∈ Z.

The Polya-Vinogradov inequality states that if χ is a primitive Dirichlet
character modulo m, then ∣∣∣∣∣∣

∑
n≤N

χ(n)

∣∣∣∣∣∣ < √
m logm.

We can write χ(n) using a Fourier series (the Fourier coefficients are defined
on the following line, and one proves that any function Z/m → C is equal to its
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Fourier series)

χ(n) =

m−1∑
k=0

χ̂(k)e2πikn/m.

The coefficients are defined by

χ̂(k) =
1

m

m−1∑
n=0

χ(n)e−2πikn/m

=
1

m
G(−k, χ).

We use the fact [1, p. 152, Proposition 9] that for any n we have G(n, χ) =
χ(n) ·G(1, χ). This is straightforward to show if gcd(n,m) = 1, but takes some
more work if gcd(n,m) > 1 (to show that G(n, χ) = 0 in that case). Using
G(n, χ) = χ(n) ·G(1, χ), we get

χ(n) =

m−1∑
k=0

1

m
χ(−k) ·G(1, χ)e2πikn/m =

G(1, χ)

m

m−1∑
k=0

χ(−k)e2πikn/m.

Therefore

N∑
n=1

χ(n) =

N∑
n=1

G(1, χ)

m

m−1∑
k=0

χ(−k)e2πikn/m

=
G(1, χ)

m

m−1∑
k=0

χ(−k)

N∑
n=1

e2πikn/m

=
G(1, χ)

m

m−1∑
k=1

χ(−k)

N∑
n=1

e2πikn/m.

Let f(k) =
∑N

n=1 e
2πikn/m. Thus

N∑
n=1

χ(n) =
G(1, χ)

m

m−1∑
k=1

χ(−k)f(k),

and so (because |χ(−k)| is either 1 or 0 and hence is ≤ 1)∣∣∣∣∣
N∑

n=1

χ(n)

∣∣∣∣∣ = |G(1, χ)|
m

m−1∑
k=1

|f(k)|.

We have f(m− k) = f(k), so |f(m− k)| = |f(k)|. Hence

m−1∑
k=1

|f(k)| ≤ 2
∑

1≤k≤m/2

|f(k)|.
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Moreover, for 1 ≤ k ≤ m/2 we have, setting r = e2πik/m,

|f(k)| =
∣∣∣∣1− rN+1

1− r

∣∣∣∣ ≤ 2

|1− r|
=

1

sin πk
m

≤ 1
2
π · πk

m

=
m

2k
.

Therefore, ∣∣∣∣∣
N∑

n=1

χ(n)

∣∣∣∣∣ ≤ |G(1, χ)|
m

· 2
∑

1≤k≤m/2

|f(k)|

≤ |G(1, χ)|
m

· 2
∑

1≤k≤m/2

m

2k

= |G(1, χ)|
∑

1≤k≤m/2

1

k

< |G(1, χ)| logm.

(If m is large enough. It’s not true that
∑

1≤k≤m/2
1
k ≤ log(m/2), but it is true

for large enough m that
∑

1≤k≤m/2
1
k < logm.)

It is a fact [1, p. 154, Proposition 10] that if χ is a primitive Dirichlet
character modulo m and gcd(n,m) = 1 then |G(n, χ)| =

√
m. Thus∣∣∣∣∣

N∑
n=1

χ(n)

∣∣∣∣∣ < √
m logm.
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