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Let x : Z — C be a primitive Dirichlet character modulo m. x being a
Dirichlet character modulo m means that y(kn) = x(k)x(n) for all k,n, that
x(n +m) = x(n) for all n, and that if ged(n,m) > 1 then x(n) = 0. x being
primitive means that the conductor of x is m. The conductor of x is the smallest
defining modulus of y. If m’ is a divisor of m, m/’ is said to be a defining modulus
of x if ged(n,m) =1 and n = 1 (mod m’) together imply that x(n) = 1. If
n =1 (mod m) then x(n) = 1 (sends multiplicative identity to multiplicative
identity), so m is a defining modulus, so the conductor of a Dirichlet character
modulo m is less than or equal to m.

We shall prove the Polya-Vinogradov inequality for primitive Dirchlet char-
acters. The same inequality holds (using an O term rather than a particular
constant) for non-primitive Dirichlet characters. The proof of that involves the
fact [1, p. 152, Proposition 8] that a divisor m’ of m is a defining modulus for a
Dirichlet character x modulo m if and only if there exists a Dirichlet character
X' modulo m’ such that

x(n) =xo(n)-x'(n)  nek,

where X is the principal Dirichlet character modulo m. (The principal Dirichlet
character modulo m is that character such that x(n) = 0 if ged(n, m) > 1 and
x(n) =1 otherwise.)

If  is a Dirichlet character modulo m, define the Gauss sum G(-,x) : Z — C
corresponding to this character by

G(n,x) = X(k)e%”’m/m, n € 7.
k=0
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The Polya-Vinogradov inequality states that if x is a primitive Dirichlet
character modulo m, then

Z x(n)| < vmlogm.
n<N

We can write x(n) using a Fourier series (the Fourier coefficients are defined
on the following line, and one proves that any function Z/m — C is equal to its



Fourier series)

m—1
eZﬂ’ik:n/m.
k=0
The coefficients are defined by
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We use the fact [1, p. 152, Proposition 9] that for any n we have G(n,x) =
xX(n) - G(1,x). This is straightforward to show if ged(n,m) = 1, but takes some
more work if ged(n,m) > 1 (to show that G(n,x) = 0 in that case). Using

G(n,x) =X(n) - G(1, x), we get
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Let f(k) = Zgzl emikn/m  Thus
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and so (because |x(—k)| is either 1 or 0 and hence is < 1)

SO
k=1

We have f(m — k) = f(k), so |f(m — k)| = |f(k)|. Hence
Slwi< Y I
k=1 1<k<m/2



Moreover, for 1 < k < m/2 we have, setting r = ¢>7/™
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Therefore,
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< |G(L,x)|log m.

(If m is large enough. It’s not true that 3, <., + < log(m/2), but it is true
for large enough m that >, ., + <logm.)

It is a fact [1, p. 154, Proposition 10] that if x is a primitive Dirichlet
character modulo m and ged(n, m) = 1 then |G(n, x)| = v/m. Thus

N
> x(n)

< v/mlogm.
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