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1 The continued fraction transformation

For ξ ∈ R let [x] be the greatest integer ≤ ξ, let R(ξ) = ξ − [ξ], and let
∥ξ∥ = min(R(ξ), 1−R(ξ)), the distance from ξ to a nearest integer. Let I = [0, 1]
and define the continued fraction transformation τ : I → I by

τ(x) =

{
x−1 − [x−1] x ̸= 0

0 x = 0.

It is immediate that for x ∈ I, x ∈ I \Q if and only if τ(x) ∈ I \Q. For x ∈ R,
define a0(x) = [x], and for n ≥ 1 define an(x) ∈ Z≥1 ∪ {∞} by

an(x) =

[
1

τn−1(x− a0(x))

]
.

For example, let x = 13
71 .

τ(x) =
71

13
−

[
71

13

]
=

71

13
− 5 =

6

13
.

τ2(x) =
13

6
−
[
13

6

]
=

13

6
− 2 =

1

6
.

τ3(x) =
6

1
−
[
6

1

]
= 0.

Then τn(x) = 0 for n ≥ 3. Thus, with x = 13
71 ,

a0(x) = 0, a1(x) =

[
71

13

]
= 5.

a2(x) =

[
1

τ(x)

]
=

[
13

6

]
= 2, a3(x) =

[
1

τ2(x)

]
=

[
6

1

]
= 6.

a4(x) =

[
1

τ3(x)

]
= ∞, a5(x) = ∞, . . . .
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2 Convergents

For x ∈ Ω = I \Q write an = an(x), and define

q−1 = 0, p−1 = 1, q0 = 1, p0 = 0,

and for n ≥ 1,

qn = anqn−1 + qn−2, pn = anpn−1 + pn−2.

Thus
q1 = a1q0 + q−1 = a1, p1 = a1p0 + p−1 = 1.

One proves
pnqn−1 − pn−1qn = (−1)n+1, n ≥ 0.

Also,1

x =
pn + τn(x)pn−1

qn + τn(x)qn−1
, x ∈ Ω, n ≥ 0.

From this,

x− pn
qn

=
(−1)nτn(x)

qn(qn + τn(x)qn−1)
.

Now,

an+1 + τn+1(x) =

[
1

τn(x)

]
+

1

τn(x)
−

[
1

τn(x)

]
=

1

τn(x)
,

and using this,

τn(x)

qn(qn + τn(x)qn−1)
=

1

qn(qn · (an+1 + τn+1(x)) + qn−1)

=
1

qn(qn+1 + τn+1(x)qn)
.

Thus
1

qn(qn + qn−1)
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnqn+1
.

For n ≥ 1 let

rn(x) =
1

τn−1(x)
= an + τn(x)

and

sn =
qn−1

qn
, yn =

1

sn

1Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 9,
Proposition 1.1.1.
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and

un = q−2
n−1

∣∣∣∣x− pn−1

qn−1

∣∣∣∣−1

=
1

q2n−1

· qn−1(qn−1 + τn−1(x)qn−2)

τn−1(x)

=
qn−1 + τn−1(x)qn−2

τn−1(x)qn−1

=
qn−1 · (an + τn(x)) + qn−2

qn−1

= an + τn(x) +
qn−2

qn−1
.

Let s0 = 0. It is worth noting that

y1 · · · yn =
q1
q0

· · · qn
qn−1

=
qn
q0

= qn.

1

sn
=

qn
qn−1

= an +
qn−2

qn−1
= an + sn−1.

un = an + τn(x) +
qn−2

qn−1
= rn + sn−1.

3 Measure theory

Suppose that (X,A ) is a measurable space and µ, ν are probability measures
on A . Let D = {A ∈ A : µ(A) = ν(A)}. First, X ∈ D . Second, if A,B ∈ D
and A ⊂ B then

µ(B \A) = µ(B)− µ(A) = ν(B)− ν(A) = ν(B \A),

so B \ A ∈ D . Third, suppose that An ∈ D , n ≥ 1, and An ↑ A. Because A is
a σ-algebra, A ∈ A , and then, setting A0 = ∅,

µ(A) = µ

⋃
n≥1

(An \An−1)

 =
∑
n≥1

(µ(An)− µ(An−1)),

whence µ(A) = ν(A). Therefore D is a Dynkin system. Dynkin’s theorem
says that if D is a Dynkin system and C ⊂ D where C is a π-system (nonempty
and closed under finite intersections), then σ(C ) ⊂ D .2

Suppose now that σ(C ) = A , that C is closed under finite intersections,
and that µ(A) = ν(A) for all A ∈ C . Then C ⊂ D , so by Dynkin’s theorem,

2Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 136, Lemma 4.11.
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A = σ(C ) ⊂ D , hence D = A . That is, for any A ∈ A , µ(A) = ν(A), meaning
µ = ν.

We shall apply the above with (I,BI), I = [0, 1]. For

C = {(0, u] : 0 < u ≤ 1},

it is a fact that σ(C ) = BI . Therefore if µ and ν are probability measures on
BI such that µ((0, u]) = ν((0, u]) for every 0 < u ≤ 1, then µ = ν.

Let λ be Lebesgue measure on I = [0, 1]. Define

dγ(x) =
1

(1 + x) log 2
dλ(x),

called the Gauss measure. If µ is a Borel probability measure on I, for
measurable T : I → I and for A ∈ BI let

T∗µ(A) = µ(T−1(A)).

T∗µ, called the pushforward of µ by T , is itself a Borel probability measure
on I. We prove that γ is an invariant measure for τ .3

Theorem 1. τ∗γ = γ.

Proof. Let 0 < u ≤ 1. For x ∈ I, 0 < τ(x) ≤ u if and only if 0 < 1
x −

[
1
x

]
≤ u

if and only if
[
1
x

]
< 1

x ≤ u +
[
1
x

]
if and only if 1

u+[ 1x ]
≤ x < 1

[ 1x ]
. Then, as

0 ̸∈ τ−1((0, u]),

τ−1((0, u]) =
⋃
i≥1

[
1

u+ i
,
1

i

)
.

We calculate

γ(τ−1((0, u])) =
∑
i≥1

γ

([
1

u+ i
,
1

i

))
=

∑
i≥1

∫
[ 1
u+i ,

1
i )

1

(1 + x) log 2
dλ(x)

=
1

log 2

∑
i≥1

(
log

(
1 +

1

i

)
− log

(
1 +

1

u+ i

))
.

Using
1 + 1

i

1 + 1
u+i

=
1 + u

i

1 + u
i+1

,

3Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 17,
Theorem 1.2.1; Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards
Number Theory, p. 77, Lemma 3.5.
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this is

γ(τ−1((0, u])) =
1

log 2

∑
i≥1

(
log

(
1 +

u

i

)
− log

(
1 +

u

i+ 1

))

=
1

log 2

∑
i≥1

∫ u
i

u
i+1

1

1 + x
dλ(x)

= γ((0, u]).

Because γ(τ−1((0, u])) = γ((0, u]) for every 0 < u ≤ 1, it follows that τ∗γ =
γ.

We remark that for a set X, X0 is a singleton. For i ∈ Z0
≥1 let I0(i) = Ω.

For n ≥ 1 and i ∈ Zn
≥1, let

In(i) = {ω ∈ Ω : ak(x) = ik, 1 ≤ k ≤ n}.

For n ≥ 1 and for i ∈ Zn
≥1, define

[i1, . . . , in] =
1

i1 +
1

· · ·+
1

in−1 +
1

in

.

For x ∈ In(i),

pn(x)

qn(x)
= [i1, . . . , in],

pn−1(x)

qn−1(x)
= [i1, . . . , in−1].

The following is an expression for the sets In(i).
4

Theorem 2. Let n ≥ 1, i ∈ Zn
≥1, and define

un(i) =

{
pn+pn−1

qn+qn−1
n odd

pn

qn
n even

and

vn(i) =

{
pn

qn
n odd

pn+pn−1

qn+qn−1
n even.

Then
In(i) = Ω ∩ (un(i), vn(i)).

4Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 18,
Theorem 1.2.2.
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From the above, if n is odd and i ∈ Z≥1 then

λ(In(i)) = vn(i)− un(i)

=
pn
qn

− pn + pn−1

qn + qn−1

=
pnqn−1 − pn−1qn
qn(qn + qn−1)

=
(−1)n+1

qn(qn + qn−1)

=
1

qn(qn + qn−1)
,

and if n is even then likewise

λ(In(i)) =
1

qn(qn + qn−1)
.

Kraaikamp and Iosifescu attribute the following to Torsten Brodén, in a 1900
paper.5

Theorem 3. For n ≥ 1, i ∈ Nn, x ∈ I,

λ(τn < x|i) = x(sn + 1)

snx+ 1
.

Proof. We have

λ(τn < x|i) = λ((τn < x) ∩ In(i))

λ(In(i))
.

Using

ω =
pn + τn(ω)pn−1

qn + τn(ω)qn−1
, ω ∈ Ω, n ≥ 0,

if n is odd then

(τn < x) ∩ In(i) =

{
ω ∈ Ω :

pn + pn−1

qn + qn−1
< ω <

pn
qn

, τn(ω) < x

}
=

{
ω ∈ Ω :

pn + xpn−1

qn + xqn−1
< ω <

pn
qn

}
and if n is even then

(τn < x) ∩ In(i) =

{
ω ∈ Ω :

pn
qn

< ω <
pn + xpn−1

qn + xqn−1

}
.

5Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 21,
Corollary 1.2.6.
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Therefore if n is odd,

λ((τn < x) ∩ In(i)) =
pn
qn

− pn + xpn−1

qn + xqn−1

=
xpnqn−1 − xpn−1qn
qn(qn + xqn−1)

=
x

qn(qn + xqn−1)

and likewise if n is even then

λ((τn < x) ∩ In(i)) =
x

qn(qn + xqn−1)
.

Therefore for n ≥ 1,

λ(τn < x|i) = x

qn(qn + xqn−1)
· qn(qn + qn−1)

=
x(qn + qn−1)

qn + xqn−1
.

Using sn + 1 = qn+qn−1

qn
and snx+ 1 = xqn−1+qn

qn
,

λ(τn < x|i) = xqn(sn + 1)

qn(snx+ 1)

=
x(sn + 1)

snx+ 1
.

For j ≥ 1 and s ∈ I define

Pj(s) =
s+ 1

(s+ j)(s+ j + 1)
.

We now apply Theorem 3 to prove the following.6

Theorem 4. For j ≥ 1,

λ(a1 = j) =
1

j(j + 1)
.

For n ≥ 1 and i ∈ Nn,
λ(an+1 = j|i) = Pj(sn).

Proof. By Theorem 2,

{ω ∈ Ω : a1(ω) = j} = I1(j) = Ω ∩ (u1(j), v1(j)).

6Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 22,
Proposition 1.2.7.
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In this case, q1 = j, so u1(j) =
p1+p0

q1+q0
= 1+0

j+1 = 1
j+1 and v1(j) =

p1

q1
= 1

j , so

{ω ∈ Ω : a1(ω) = j} = Ω ∩
(

1

j + 1
,
1

j

)
.

Now,

an+1(ω) =

[
1

τn(ω)

]
= a1(τ

n(ω)).

Thus

{ω ∈ Ω : an+1(ω) = j} =

{
ω ∈ Ω : τn(ω) ∈

(
1

j + 1
,
1

j

)}
.

Then using Theorem 3,

λ(an+1 = j|i) = λ

(
τn <

1

j

∣∣i)− λ

(
τn <

1

j + 1

∣∣i)
=

1
j (sn + 1)

sn
1
j + 1

−
1

j+1 (sn + 1)

sn
1

j+1 + 1

=
sn + 1

(sn + 1)(sn + j + 1)
.

4 Perron-Frobenius operators

For a probability measure µ on BI and for f ∈ L1(µ) let dµf = fdµ. If τ∗µ
is absolutely continuous with respect to µ, check that τ∗µf is itself absolutely
continuous with respect to µ. Then applying the Radon-Nikodym theorem, let

Pµf =
d(τ∗µf )

dµ
.

For g ∈ L∞(µ),∫
I

g · Pµfdµ =

∫
I

gd(τ∗µf ) =

∫
I

g ◦ τdµf =

∫
I

(g ◦ τ) · fdµ.

In particular, for g = 1A, A ∈ BI ,∫
I

1A · Pµfdµ =

∫
I

1τ−1(A) · fdµ.

For g ∈ L∞(µ), ∫
I

g · Pγ1dγ =

∫
I

g ◦ τdγ =

∫
I

gd(τ∗γ),

hence Pγ1 = 1 if and only if τ∗γ.

8



We shall be especially interested in

U = Pγ ,

where γ is the Gauss measure on I. We establish almost everywhere an expres-
sion for Uf(x).7

Theorem 5. For f ∈ L1(γ), for γ-almost all x ∈ I,

Uf(x) =
∑
i≥1

Pi(x)f

(
1

x+ i

)
.

Proof. Let Ii =
(

1
i+1 ,

1
i

]
and let τi be the restriction of τ : I → I to Ii. For

u ∈ Ii, i ≤ 1
u < i + 1, hence τi(u) = τ(u) = 1

u − i, i.e. u = 1
τi(u)+i , i.e.

τ−1
i (x) = 1

x+i .
For A ∈ BI , if 0 ̸∈ A then

τ−1(A) = τ−1

⋃
i≥1

(A ∩ Ii)

 =
⋃
i≥1

τ−1(A ∩ Ii),

and the sets τ−1(A ∩ Ii) are pairwise disjoint, hence∫
τ−1(A)

fdγ =
∑
i≥1

∫
τ−1(A∩Ii)

fdγ =
∑
i≥1

∫
τ−1
i (A)

fdγ.

Applying the change of variables formula, as d
dxτ

−1
i (x) = −(x+ i)−2,∫

τ−1
i (A)

fdγ =
1

log 2

∫
τ−1
i (A)

f(u)

u+ 1
dλ(u)

=
1

log 2

∫
A

f ◦ τ−1
i (x)

τ−1
i (x) + 1

· (x+ i)−2dλ(x)

=
1

log 2

∫
A

f

(
1

x+ i

)
· 1

(x+ i+ 1)(x+ i)
dλ(x)

=
1

log 2

∫
A

f

(
1

x+ i

)
· Pi(x) ·

1

x+ 1
dλ(x)

=

∫
A

f

(
1

x+ i

)
· Pi(x)dγ(x).

Therefore ∫
τ−1(A)

fdγ =
∑
i≥1

∫
A

f

(
1

x+ i

)
· Pi(x)dγ(x)

=

∫
A

∑
i≥1

f

(
1

x+ i

)
· Pi(x)dγ(x).

7Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 59,
Proposition 2.1.2.
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Then ∫
A

Pγfdγ =

∫
A

∑
i≥1

f

(
1

x+ i

)
· Pi(x)dγ(x).

Because this is true for any A ∈ BI with 0 ̸∈ A, it follows that for γ-almost all
x ∈ I,

Pγf(x) =
∑
i≥1

f

(
1

x+ i

)
· Pi(x).

The following gives an expression for Pµf(x) under some hypotheses.8

Theorem 6. Let µ be a probability measure on BI that is absolutely continuous
with respect to λ and suppose that dµ = hdλ with h(x) > 0 for µ-almost all
x ∈ I. Let f ∈ L1(µ) and define g(x) = (x+1)h(x)f(x). For µ-almost all x ∈ I,

Pµf(x) =
1

h(x)

∑
i≥1

h((x+ i)−1)

(x+ i)2
f

(
1

x+ i

)
=

Ug(x)

(x+ 1)h(x)
.

For n ≥ 1, for µ-almost all x ∈ I,

Pn
µ f(x) =

Ung(x)

(x+ 1)h(x)
.

We prove an expression for µ(τ−n(A)).9

Theorem 7. Let µ be a probability measure on BI that is absolutely continuous
with respect to λ. Let h = dµ

dλ and let f(x) = (x + 1)h(x). For A ∈ BI and
n ≥ 1,

µ(τ−n(A)) =

∫
A

Unf(x)

x+ 1
dλ(x).

Proof. For n = 0,

µ(A) =

∫
A

dµ =

∫
A

hdλ =

∫
A

f(x)

x+ 1
dλ(x) =

∫
A

U0f(x)

x+ 1
dλ(x).

8Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 60,
Proposition 2.1.3.

9Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 61,
Proposition 2.1.5.
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Suppose by hypothesis that the claim is true for some n ≥ 0. Then

µ(τ−n−1(A)) = µ(τ−n(τ−1(A)))

=

∫
τ−1(A)

Unf(x)

x+ 1
dλ(x)

= log 2 ·
∫
τ−1(A)

Unf(x)dγ(x)

= log 2 ·
∫
A

Un+1f(x)dγ(x)

= log 2 ·
∫
A

Un+1f(x)

x+ 1
dλ(x).

For f(x) = 1
x+1 and A ∈ BI ,∫

A

Pλfdλ =

∫
τ−1(A)

1

x+ 1
dλ(x)

= log 2 ·
∫
τ−1(A)

dγ

= log 2 ·
∫
A

dγ

=

∫
A

fdλ.

Because this is true for all Borel sets A,

Pλ
1

x+ 1
=

1

x+ 1
.

For f ∈ L1(λ) and x ∈ I, let

Π1f(x) =
1

(x+ 1) log 2

∫
I

fdλ.

Define
T0 = Pλ −Π1.

For n ≥ 1, Πn
1 = Π1. For f ∈ L1(λ),

PλΠ1f =
1

log 2

∫
I

fdλ · Pλ
1

x+ 1
=

1

log 2

∫
I

fdλ · 1

x+ 1
= Π1f(x)

and

Π1Pλf =
1

(x+ 1) log 2

∫
I

Pλfdλ =
1

(x+ 1) log 2

∫
I

fdλ = Π1f(x),

11



hence
PλΠ1 = Π1 = Π1Pλ.

Moreover,
T0Π1 = (Pλ −Π1)Π1 = PλΠ1 −Π2

1 = 0

and
Π1T0 = Π1(Pλ −Π1) = Π1Pλ −Π2

1 = 0.

Because Pλ = Π1 + T0, using Π2
1 = Π1, T0Π1 = 0, and Π1T0 = 0, we have

Pn
λ = Π1 + Tn

0 , n ≥ 1.

Theorem 6 tells us that for f ∈ L1(λ), for λ-almost all x ∈ I,

Pλf(x) =
∑
i≥1

1

(x+ i)2
f

(
1

x+ i

)
.

With h(x) = x+ 1 and g = hf , for n ≥ 1, for λ-almost all x ∈ I,

Pn
λ f(x) =

Ung(x)

x+ 1
.

Thus

Ung = hPn
λ f

= hΠ1f + hTn
0 f

=
1

log 2

∫
I

fdλ+ hTn
0 f

=

∫
I

gdγ + hTn
0 (g/h).

Define Iγ : L1(γ) → L1(γ) by

Iγf = 1 ·
∫
I

fdγ.

We have

IγUf =

∫
I

Pγfdγ =

∫
I

fdγ = Iγf,

meaning IγU = Iγ . Furthermore, because τ∗γ = γ we have Pγ1 = 1, so

UIγf =

∫
I

fdγ · U1 =

∫
I

fdγ · 1 = Iγf,

meaning UIγ = Iγ .
Let h(x) = x+ 1. h, 1

h ∈ L∞(γ). Now define T : L1(γ) → L1(γ) by

Tg = h · T0(g/h),
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which makes sense because 1
h ∈ L∞(γ). Then

T 2g = T (h · T0(g/h))

= h · T0

(
h · T0(g/h)

h

)
= h · T 2

0 (g/h).

For n ≥ 1,
Tng = h · Tn

0 (g/h).

Recapitulating the above, for n ≥ 1 and g ∈ L1(γ),

Ung = Iγg + hTn
0 (g/h) = Iγg + Tng,

meaning
Un = Iγ + Tn, n ≥ 1.

It is a fact that Tn converges to 0 in the strong operator topology on
L (L1(γ)), the bounded linear operators L1(γ) → L1(γ), that is, for each
f ∈ L1(γ), Tnf → 0 in L1(γ), i.e. ∥Tnf∥L1 → 0.10 Then Un → Iγ in the
strong operator topology: for f ∈ L1(γ),∫

I

∣∣∣∣Unf(x)−
∫
I

fdγ

∣∣∣∣ dλ → 0.

Iosifescu and Kraaikamp state that has not been determined whether for γ-
almost all x ∈ I, Unf(x) → Iγf .

Let B(I) be the set of bounded Borel measurable functions f : I → C and
write ∥f∥∞ = supx∈I |f(x)|. For f ∈ B(I), define for x ∈ I,

Uf(x) =
∑
i≥1

Pi(x)f

(
1

x+ i

)
=

∑
i≥1

x+ 1

(x+ i)(x+ i+ 1)
f

(
1

x+ i

)
.

1 ∈ B(I), and for x ∈ I,∑
1≤i≤m

x+ 1

(x+ i)(x+ i+ 1)
=

m

m+ x+ 1
,

hence

U1(x) =
∑
i≥1

x+ 1

(x+ i)(x+ i+ 1)
= 1.

For f ∈ B(I) and x ∈ I,

|Uf(x)| ≤ ∥f∥∞ · U1(x),

10Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 63,
Proposition 2.1.7.
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hence
∥U∥B(I)→B(I) = 1.

Say that f : I → R is increasing if x ≤ y implies f(x) ≤ f(y). An increasing
function f : I → R belongs to B(I). We prove that if f is increasing then Uf
is decreasing.11

Theorem 8. If f : I → R is increasing then Uf is decreasing.

Proof. Take x < y and let

S1 =
∑
i≥1

Pi(y)

(
f

(
1

y + i

)
− f

(
1

x+ i

))
and

S2 =
∑
i≥1

(Pi(y)− Pi(x))f

(
1

x+ i

)
.

Then

Uf(y)− Uf(x) =
∑
i≥1

(
Pi(y)f

(
1

y + i

)
− Pi(x)f

(
1

x+ i

))
= S1 + S2.

Because f is increasing, S1 ≤ 0. Using
∑

i≥1 Pi(u) = 1 for any u ∈ I,

∑
i≥1

(Pi(y)− Pi(x))f

(
1

x+ 1

)
= 0,

and therefore

S2 =
∑
i≥1

(
f

(
1

x+ i

)
− f

(
1

x+ 1

))
(Pi(y)− Pi(x))

=

(
f

(
1

x+ 2

)
− f

(
1

x+ 1

))
(P2(y)− P2(x))

+
∑
i≥3

(
f

(
1

x+ i

)
− f

(
1

x+ 1

))
(Pi(y)− Pi(x)).

For i ≥ 2, using that f is increasing,

f

(
1

x+ i

)
− f

(
1

x+ 1

)
≤ f

(
1

x+ 2

)
− f

(
1

x+ 1

)
≤ 0.

We calculate

P ′
i (u) = − −i2 + i+ (u+ 1)2

(u+ i)2(u+ i+ 1)2
.

11Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 65,
Proposition 2.1.11.
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The roots of the above rational function are u = −
√
(i− 1)i− 1,

√
(i− 1)i− 1.

Thus, P ′
i (u) = 0 if and only if u =

√
(i− 1)i− 1. But

√
(i− 1)i− 1 ∈ I if and

only if i2 − i − 1 ≥ 0 and i2 − i − 4 ≤ 0. This is possible if and only if i = 2.
And

P ′
i (0) =

i2 − i− 1

i2(i+ 1)2
,

so P ′
1(u) ≤ 0 for all u ∈ I and for i ≥ 3, P ′

i (u) ≥ 0 for all u ∈ I. For i = 2, check
that if 0 ≤ u ≤

√
2 − 1 then P ′

2(u) ≥ 0 and if
√
2 − 1 ≤ u ≤ 1 then P ′

2(u) ≤ 0.
Then

S2 ≤
(
f

(
1

x+ 2

)
− f

(
1

x+ 1

))
(P2(y)− P2(x))

+
∑
i≥3

(
f

(
1

x+ 2

)
− f

(
1

x+ 1

))
(Pi(y)− Pi(x))

=

(
f

(
1

x+ 2

)
− f

(
1

x+ 1

))
(P2(y)− P2(x))

+

(
f

(
1

x+ 2

)
− f

(
1

x+ 1

))
(−P1(y)− P2(y)− (−P1(x)− P2(x)))

=

(
f

(
1

x+ 2

)
− f

(
1

x+ 1

))
(P1(x)− P1(y))

≤ 0.

We have shown that S1 ≤ 0 and S2 ≤ 0, so

Uf(y)− Uf(x) = S1 + S2 ≤ 0,

which means that Uf : I → R is decreasing.

For J = [a, b] ⊂ I, a partition of J is a sequence P = (t0, . . . , tn) such that
a = t0 < · · · < tn = b. For f : I → R define

V (f, P ) =
∑

1≤i≤n

|f(ti)− f(ti−1)|.

Define
VJf = sup{V (f, P ) : P is a partition of J}.

Let vf (x) = V[0,x]f , the variation of f . vf (1) = V[0,1]f . We say that f has
bounded variation if vf (1) < ∞, and denote by BV (I) the set of functions
f : I → R with bounded variation. It is a fact that with the norm

∥f∥BV = |f(0)|+ VIf,

BV (I) is a Banach algebra.
If f is increasing then VIf = f(1)− f(0). We will use the following to prove

the theorem coming after it.12

12Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 66,
Proposition 2.1.12.
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Lemma 9. If f : I → R is increasing then

VI(Uf) ≤ 1

2
VIf.

Proof. Because Uf is decreasing,

VI(Uf) = Uf(0)− Uf(1) =
∑
i≥1

(
Pi(0)f

(
1

i

)
− Pi(1)f

(
1

1 + i

))
.

As Pi(u) =
u+1

(u+i)(u+i+1) ,

Pi(1) =
2

(i+ 1)(i+ 2)
= 2Pi+1(0),

hence

VI(Uf) =
∑
i≥1

(
Pi(0)f

(
1

i

)
− Pi(1)f

(
1

1 + i

))

=
∑
i≥1

(
Pi(0)f

(
1

i

)
− Pi+1(0)f

(
1

1 + i

))

−
∑
i≥1

Pi+1(0)f

(
1

1 + i

)

= P1(0)f(1)−
∑
i≥1

Pi+1(0)f

(
1

1 + i

)

=
1

2
f(1)−

∑
i≥1

Pi+1(0)f

(
1

1 + i

)
.

Because f
(

1
1+i

)
≥ f(0) we have −f

(
1

1+i

)
≤ −f(0), hence

VI(Uf) ≤ 1

2
f(1)− f(0)

∑
i≥1

Pi+1(0) =
1

2
f(1)− 1

2
f(0),

using
∑

i≥1 Pi(0) = 1 and P1(0) =
1
2 . As f is increasing this means

VI(Uf) ≤ 1

2
(f(1)− f(0)) =

1

2
VIf.

Theorem 10. If f ∈ BV (I) then

VI(Uf) ≤ 1

2
VIf.
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Proof. Let

pf (x) =
vf (x) + f(x)− f(0)

2
, nf (x) =

vf (x)− f(x) + f(0)

2
,

the positive variation of f and the negative variation of f . It is a fact that
0 ≤ pf ≤ vf , 0 ≤ nf ≤ vf , and pf and nf are increasing. Using this,

VI(Uf) = VI(Upf + Unf )

≤ 1

2
VIpf +

1

2
VInf

=
1

2
(pf (1)− pf (0)) +

1

2
(nf (1)− nf (0))

=
1

2
(vf (1)− vf (0))

=
1

2
VIf.

For f : I → C, let

s(f) = sup
x,y∈I,x̸=y

|f(x)− f(y)|
|x− y|

.

We denote by Lip(I) the set of f : I → C such that s(f) < ∞.13

Theorem 11. For f ∈ Lip(I),

s(Uf) ≤ (2ζ(3)− ζ(2))s(f).

Proof. Suppose x, y ∈ I, x > y. We calculate

Uf(y)− Uf(x)

y − x

=
1

y − x

∑
i≥1

(
Pi(y)f

(
1

y + i

)
− Pi(y)f

(
1

x+ i

))

+
1

y − x

∑
i≥1

(
Pi(y)f

(
1

x+ i

)
− Pi(x)f

(
1

x+ i

))

=
∑
i≥1

Pi(y) ·
f
(

1
y+i

)
− f

(
1

x+i

)
y − x

+
∑
i≥1

Pi(y)− Pi(x)

y − x
f

(
1

x+ i

)
.

13Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 67,
Proposition 2.1.14.
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Calculating further,

Uf(y)− Uf(x)

y − x
= −

∑
i≥1

Pi(y) ·
f
(

1
y+i

)
− f

(
1

x+i

)
1

y+i −
1

x+i

· 1

(x+ i)(y + i)

+
∑
i≥1

Pi(y)− Pi(x)

y − x
f

(
1

x+ i

)
.

Now,

Pi(u) =
u+ 1

(u+ i)(u+ i+ 1)
=

i

u+ i+ 1
− i− 1

u+ i
,

whence

Pi(y)− Pi(x) =
(x− y)i

(x+ i+ 1)(y + i+ 1)
+

(y − x)(i− 1)

(x+ i)(y + i)
,

therefore ∑
i≥1

Pi(y)− Pi(x)

y − x
f

(
1

x+ i

)

=
∑
i≥1

(
i− 1

(x+ i)(y + i)
− i

(x+ i+ 1)(y + i+ 1)

)
f

(
1

x+ i

)
.

Summation by parts tells us∑
i≥1

fi(gi+1 − gi) = −f1g1 −
∑
i≥1

gi+1(fi+1 − fi),

and here this yields, for gi =
i−1

(x+i)(y+i) and fi = f
(

1
x+i

)
,

∑
i≥1

(
i− 1

(x+ i)(y + i)
− i

(x+ i+ 1)(y + i+ 1)

)
f

(
1

x+ i

)
=
∑
i≥1

gi+1(fi+1 − fi)

=
∑
i≥1

i

(x+ i+ 1)(y + i+ 1)

(
f

(
1

x+ i+ 1

)
− f

(
1

x+ i

))

=
∑
i≥1

i

(x+ i+ 1)(y + i+ 1)
·
f
(

1
x+i+1

)
− f

(
1

x+i

)
1

x+i+1 − 1
x+i

· −1

(x+ i)(x+ i+ 1)
.
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Recapitulating the above,

Uf(y)− Uf(x)

y − x

=−
∑
i≥1

Pi(y) ·
f
(

1
y+i

)
− f

(
1

x+i

)
1

y+i −
1

x+i

· 1

(x+ i)(y + i)

−
∑
i≥1

i

(x+ i)(x+ i+ 1)2(y + i+ 1)
·
f
(

1
x+i+1

)
− f

(
1

x+i

)
1

x+i+1 − 1
x+i

.

Then ∣∣∣∣Uf(y)− Uf(x)

y − x

∣∣∣∣ ≤ s(f)
∑
i≥1

Pi(y)
1

(x+ i)(y + i)

+ s(f)
∑
i≥1

i

(x+ i)(x+ i+ 1)2(y + i+ 1)
.

Then, using that x > y,∣∣∣∣Uf(y)− Uf(x)

y − x

∣∣∣∣ ≤ s(f)
∑
i≥1

(
Pi(y)

1

(y + i)2
+

i

(y + i)(y + i+ 1)3

)
.

Because y ∈ I = [0, 1], y ≥ 0 so∑
i≥1

i

(y + i)(y + i+ 1)3
≤

∑
i≥1

1

(i+ 1)3
= −1 + ζ(3).

Let h(u) = u2, with which∑
i≥1

Pi(y)
1

(y + i)2
= Uh(y).

h : I → R is increasing, so Uh is decreasing. Because Pi(0) =
1

i(i+1) ,∑
i≥1

Pi(y)
1

(y + i)2
= Uh(y) ≤ Uh(0) =

∑
i≥1

Pi(0)
1

i2
=

∑
i≥1

1

i3(i+ 1)
.

Doing partial fractions,

1

i3(i+ 1)
=

1

i3
− 1

i2
+

1

i
− 1

1 + i
,

so ∑
i≥1

1

i3(i+ 1)
= ζ(3)− ζ(2) + 1.
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Therefore∣∣∣∣Uf(y)− Uf(x)

y − x

∣∣∣∣ ≤ s(f) (ζ(3)− ζ(2) + 1− 1 + ζ(3)) = s(f)(2ζ(3)− ζ(2)).

For example, let f(x) = x, for which s(f) = 1. Now,

Uf(x) =
∑
i≥1

Pi(x)
1

x+ i
.

We remind ourselves that

Pi(x) =
x+ 1

(x+ i)(x+ i+ 1)
, P ′

i (x) =
i2 − i− (x+ 1)2

(x+ i)2(x+ i+ 1)2
.

Then

(Uf)′(x) =
∑
i≥1

(
P ′
i (x)

1

x+ i
− Pi(x)

1

(x+ i)2

)

=
∑
i≥1

(
i2 − i− (x+ 1)2

(x+ i)3(x+ i+ 1)2
− x+ 1

(x+ i)3(x+ i+ 1)

)

=
∑
i≥1

i2 − i− (x+ 1)2 − (x+ 1)(x+ i+ 1)

(x+ i)3(x+ i+ 1)2

=
∑
i≥1

−2x2 − ix− 4x+ i2 − 2i− 2

(x+ i)3(x+ i+ 1)2
.

Check that x 7→ (Uf)′(x) is increasing and negative. Then ∥(Uf)′∥ ≤ |(Uf)′(0)|,
with

(Uf)′(0) =
∑
i≥1

i2 − 2i− 2

i3(i+ 1)2
= −2ζ(3) + ζ(2).

Therefore for f(x) = x,

s(f) = ∥(Uf)′∥∞ = 2ζ(3)− ζ(2),

which shows that the above theorem is sharp.
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