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1 The continued fraction transformation
For £ € R let [z] be the greatest integer < ¢, let R(§) = & — [¢], and let

I€]] = min(R(&),1—R(&)), the distance from £ to a nearest integer. Let I = [0, 1]
and define the continued fraction transformation 7 : I — I by

et =z 2 #£0
re) = {0 z=0.

It is immediate that for x € I, x € I\ Q if and only if 7(x) € T\ Q. For z € R,
define ag(z) = [z], and for n > 1 define a,(z) € Z>1 U {oo} by

an(r) = [T”l(:z:lao(x))} .

For example, let z = %’

71 71 71 6
1

13 3 13 1
6

TS(x)=§— m ~0.
h

Then 77(z) = 0 for n > 3. Thus, wit




2 Convergents
For z € Q = I\ Q write a,, = a,(x), and define

¢-1=0, p1=1q=1 p =0,
and for n > 1,

n = nQn—1 + qn—2, Pn = GpPn—1 + Pn—2-

Thus
Q1 = 0190 +q—1 = a1, p1=aipo+p-1 =1
One proves
Prdn-1 — Pn—1qn = (=1)"T1 n > 0.
Also,?
D % i ) I S
Gn + 7(T)qn—1
From this,
o V)
an @n(qn + 7"(2)qn-1)
Now,

ani1 + 7" (2) = |:7_n(x):| + Tnl(x) B [7”1(90)] - 7"1(95)’
and using this,

n

T"(x) B 1
An(qn +7"(2)qn—-1)  @n(qn - (@ny1 +7"7(2)) + Gn1)
1
B Qn(QH-‘rl + 7-n+1(x)Qn) .
Thus
1 1
B — T .
Qn(Qn + Qn—l) dn ndn+1
For n > 1 let
T (T) = rl(x) =a, + 7" ()
and
dn—1 1
Sn = , Yn = —
dn Sn

IMarius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 9,
Proposition 1.1.1.



and

-1

=2 -
dn-1
1 . qnfl(anl + Tnil(x)qan)
I T (z)

I e GOl

B Tnil(x)anl

_qn—1 - (@n +7"(2)) + gn—2
dn—1

= an +7"(z) + 2222,
qn—1

Let sg = 0. It is worth noting that

q1 dn dn
yl...yn:i... = :qn
do qn—1 do0

1 _
i qn :an+qn 2 = ay, 4 Sp_1
Sn dn—1 qn—1
n qn—2
Up = ap + 7" () + =7, + Sn_1

qn—1
3 Measure theory

Suppose that (X, o) is a measurable space and p,v are probability measures

on &. Let 2 ={A € & : u(A) = v(A)}. First, X € 9. Second, if A,B € 2
and A C B then

u(B\ A) = u(B) - p(A) = v(B) — v(4) = v(B\ A),

so B\ A € 2. Third, suppose that A, € 2, n > 1, and A,, T A. Because &« is
a o-algebra, A € &/, and then, setting Ag = 0,

wA) = p ([ U A\ ) | =D (0(AR) = p(An-),

n>1 n>1

whence p(A) = v(A). Therefore 2 is a Dynkin system. Dynkin’s theorem
says that if 2 is a Dynkin system and € C & where % is a m-system (nonempty
and closed under finite intersections), then o (%) C 2.2

Suppose now that o(¢) = 7, that € is closed under finite intersections,
and that p(A) = v(A) for all A € €. Then € C 2, so by Dynkin’s theorem,

2Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 136, Lemma 4.11.



o =0(€) C 2,hence P = of. That is, for any A € o, u(A) = v(A), meaning
p=v.
We shall apply the above with (I, %;), I = [0, 1]. For
¢ ={(0,u] : 0 <u <1},

it is a fact that 0(%) = %. Therefore if p and v are probability measures on
B such that p((0,u]) = v((0,u]) for every 0 < u < 1, then p = v.
Let A be Lebesgue measure on I = [0, 1]. Define
1

dy(w) = (1+2z)log2

dA(2),

called the Gauss measure. If p is a Borel probability measure on I, for
measurable T : I — I and for A € %y let

T.p(4) = u(T(4)).

Typ, called the pushforward of p by T, is itself a Borel probability measure
on I. We prove that « is an invariant measure for 7.3

Theorem 1. 7,v = 17.

Proof. Let 0 < u < 1. For:z:GI,0<T(x)§uifandonlyif0<%7[%] <u
if and only if [%] < % <u+ [%] if and only if —— < x < ;. Then, as

ut{3] =]
0¢&771((0,u]),
- 1 1
o= [,
i>1
We calculate
_ 1 1
s = (|755+7))
i>1
1
= —————d\(z
1221/[@1) (14 z)log2 ()
1 1 1
= 1+-) - .
logQ;(IOg( +i) IOg(1+u+i>>
Using
1+1 144
1+ 2 1+

3Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 17,
Theorem 1.2.1; Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards
Number Theory, p. 77, Lemma 3.5.



this is

O = 5 2 (log (1+7) ~1os (1 N L))

Because v(771((0,u])) = v((0,u]) for every 0 < u < 1, it follows that 7,y =
7. -

We remark that for a set X, X© is a singleton. For i € Z%l let In(i) = Q.
Forn>1andie Zgl, let

I,(i) = {w e Q:ap(z) =i, 1 <k <n}.

For n > 1 and for ¢ € Z%3,, define

. . 1
[21,...,271]:. N n
i
1 . 1
, 1
In—1+ —
in
For z € I,,(7),
pn(x) . . pn—l(JU) . .
= |11y.--5ln], — = |11y -5 ln—1]-
ale) ik Ty el
The following is an expression for the sets I,,(i).4
Theorem 2. Let n > 1,7 € ZY,, and define
PntPn—1
srn=l o poodd
un(z) — {gz"l‘in
b n even
and
(0 5—" n odd
vp (i) =< I
T ees neven
Then

I,(3) = QN (un (i), v (7).

4Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 18,
Theorem 1.2.2.



From the above, if n is odd and ¢ € Z> then

AIn (1)) = vp (i) — un(i)
_DPn_ Pn + Pn—1
dn Gn + qn—-1
_ Pndn-1 = Pn-14n

Qn(Qn + Qn—l)

B (_1)n+1
qn(Qn + anl)
1

qn(Qn + (]n—l)7

and if n is even then likewise

Aln(0)) = an(gn wlL Gn-1)

Kraaikamp and losifescu attribute the following to Torsten Brodén, in a 1900
5
paper.

Theorem 3. Forn> 1,1 e N*, x €I,

x(sp +1)

A" < zli) = PR

Proof. We have

Using
, we, n>0,

if n is odd then

(T"<x)ﬂ[n(i)={w€Q:pn+pnl<w<pn,7'”(w)<x}

qn + qn—1 dn
IPp—
:{weﬂ:pn"i_pnl<w<pn}
Qn+xQn—1 dn

and if n is even then

(T"<x)ﬂ]n(i):{weﬂzpn<o.)<pn+x]%1}.
Adn Gn + Tqn-1

5Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 21,
Corollary 1.2.6.



Therefore if n is odd,

- Pn Dn + TPn—1
M <2)NnI,(i) = — - —————
(( ) ( )) dn Gn + Tqn—1

ITPnqn—1 — TPn—14n

Qn(Qn + xQn—l)
T

dn (Qn + xanl)

and likewise if n is even then
T

A" < z)N L,(0)) = —Qn(Qn o)

Therefore for n > 1,

x

A" < z|i) = ) “Gn(qn + qn-1)

@n(qn + Tqn—1
_ x(qn + Qn71)
qn + T4n—1

Using Sp+ 1= an;qna and ST + 1= $Q'1L;1+q'n7
n n

n n 1
A" < afi) = Dol 1)
gn(snz +1)
(s, +1)
T ospr+1
O
For j > 1 and s € I define
s+ 1

Pj(s) =

(s+i)(s+i+1)
We now apply Theorem 3 to prove the following.5

Theorem 4. For j > 1,

Forn > 1 and i € N”,
Mant1 = jli) = Pj(sn).
Proof. By Theorem 2,

{fwe:ra(w) =4} = L) =20 (u1(4),v1(4))-

SMarius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 22,
Proposition 1.2.7.




=btpo _ 140 _ 1 and o(j) =2 =1 s0

In this case, ¢1 = 7, so u1(j) A = =5

{weQ:al(w)j}Qm(jil,;).

Now,

Thus

@eiom@ =)= {wen:mwe (7.5) |

Then using Theorem 3,

1 1
Many1 = jli) = A (T" < jyi) -2 <T” < j+1{i>

%(Sn +1) 7 jﬁ(sn +1)
sn%—i—l snj%—&—l
- Sp+1

C (snD(sn+i+1)

4 Perron-Frobenius operators

For a probability measure 1 on %, and for f € L'(u) let duy = fdp. If Top
is absolutely continuous with respect to u, check that 7,y is itself absolutely
continuous with respect to p. Then applying the Radon-Nikodym theorem, let

d(Ts
Puf = (dﬁf)

For g € L (y1),

/Ig-Pufdu= /Igd(wf) :/IgonMf =/I(907)~fdu.

In particular, for g = 14, A € %y,

/1A~Pufd/1,:/17.71(A)-fd/,L.
I 1

/g-Pw1d7= /gwd’vz /gd(nv),
I I I

hence P,1 =1 if and only if 7.

For g € L™(),



We shall be especially interested in
U=P,,

where v is the Gauss measure on I. We establish almost everywhere an expres-
sion for U f(x).”

Theorem 5. For f € L'(v), for v-almost all z € I,

->rwr ()

i>1
Proof. Let I; = (le’ f} and let 7; be the restriction of 7 : I — I to I;. For
u € I, i <1 <i+1, hence 7;(u) = 7(u) = + — i, ie. u = W, ie.
Tiil(x) = x}H
For A € #;,if 0 € A then
71 A) =771 UAﬂI UT (ANI;)
i>1 i>1

and the sets 77 1(A N I;) are pairwise disjoint, hence

/T—l(A) Z/—l(m[)fd Z/—l

i>1 i>1

Applying the change of variables formula, as %Tfl(m) =—(z+1)72,

1 f(w)
dy = / dA(u
/Til(A) I log2 J;-1ayu+1 (u)

1 fofl()

logQ T ) )
1

" log2 <x+z) (gc—i—z—l—l (x +1)

1022 (:r—H) 703)\( )

- [ 1(:5) @,
/ﬂ( fdy = Z/ (H,)ﬂm)dw(a:)

i>1

- [

=1 <x+ )'Pi(x)dv(a:).

"Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 59,
Proposition 2.1.2.

d\(x)

Therefore




Then

fpriin= [ S (55) P

Because this is true for any A € % with 0 ¢ A, it follows that for y-almost all

xel,
P =Y 1 (4

i>1

)P,

The following gives an expression for P, f(z) under some hypotheses.®

Theorem 6. Let i be a probability measure on %y that is absolutely continuous
with respect to A and suppose that du = hdX with h(z) > 0 for p-almost all
x € 1. Let f € L'(u) and define g(z) = (x+1)h(z) f(z). For p-almost all x € I,

1 h((z+14)~") L\ __ Ugle)
Puf(w) = h(z) Z (z +1)2 / (x‘H) (@ Dh(z)

i>1

For n > 1, for p-almost all x € I,

iy - U"9(2)
= G ay

We prove an expression for p(77"(A)).?

Theorem 7. Let i be a probability measure on %} that is absolutely continuous
with respect to A. Let h = % and let f(z) = (z + 1)h(z). For A € %#; and

d\
n>1,
=) = [ & &) i),

Proof. For n =0,

M(A)_Adu_AhdA_Agf)ld)\(x)_AUxoi(lx)d)\(:z:).

8Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 60,
Proposition 2.1.3.

9Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 61,
Proposition 2.1.5.
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Suppose by hypothesis that the claim is true for some n > 0. Then
p(rTHA) = p(r (rTH(A)))
:/ U"@) 4y )
T-1(A)

1%z/ﬂmwwmmw

~log2- [ U™ (@)

_ Urtif(z)
=log2- /A mi_’_ld)\(x).

For f(z) = -1 and A € %y,

x+1
/P fd)\—/ ! dA(x)
A T =14y T+ 1
:log2~/ dy
r=1(A)

:logZ-/ dy
A

= /AfdA.

Because this is true for all Borel sets A,

For f € L'(\) and z € I, let

1
1) = iy J,

Define
To = P\ —1II;.

For n > 1, 117 =1;. For f € L1()),

1 1 1 1
P f = —— -P = . =11
ML log 2 /Ifd)\ ‘ol log 2 /Ifd)\ z+1 1/(@)

and

1 1
HlP)\f:m/zp)\fd)\:m/lfw\:nlﬂx)’

11



hence
Py =11 =11, Py.

Moreover,
Toll, = (P)\ — HI)HI = P\II; — H? =0

and
Ty =T (Py —I0)) =, P, — 12 = 0.

Because Py = II; + Ty, using I13 = II;, Tyll; = 0, and I1; Ty = 0, we have
Pf:H1+T6n, TLZI
Theorem 6 tells us that for f € L'(\), for A-almost all z € I,

Pyf(z) = (zii)Qf (I}H) '

i>1

With A(z) =z + 1 and g = hf, for n > 1, for A-almost all z € I,

Py fa) = 29,

Thus

Utg=hP{f
=hlli f + WIG f

1
= d\ + T}
1ng/lf ATy

= /gdw + hTg (g/h).
I

Define I, : L*(y) = L'(v) by

Ivf:1~/1fd’y.

‘We have
LUf= /I P, fdy = /1 fdy =1L,

meaning I,U = I,. Furthermore, because 7.y = v we have P,1 =1, so
UIA,f:/Ifdwal:/Ifdwl:Ivf,

meaning UL, = L,.
Let h(z) =z + 1. h,+ € L*(v). Now define T': L*(y) — L'(v) by

Tg=h-To(g/h),

12



which makes sense because % € L*(y). Then

T2 = T(h-Ty(g/h))
h-To(g/h)
=h-To (h)

=h-T5(g/h).
For n > 1,
T"g=h-Tg(g/h).
Recapitulating the above, for n > 1 and g € L'(v),
U'g = Lg+h1g(g/h) = Iyg+T"g,
meaning
Ur=1,+T", n > 1.

It is a fact that T™ converges to 0 in the strong operator topology on
Z(L'(v)), the bounded linear operators L'(y) — L!(v), that is, for each
f e L(y), T"f = 0in L'(y), ie. | T"f|l,: — 0.1° Then U™ — I, in the
strong operator topology: for f € L(v),

J

Tosifescu and Kraaikamp state that has not been determined whether for -
almost all x € I, U, f(z) — L, f.

Let B(I) be the set of bounded Borel measurable functions f : I — C and
write || f||., = sup,ey |f(x)|. For f € B(I), define for x € I,

Uf(x)zzpi(ﬂﬂ)f(xiJ :Z(eri)x(;_iiJrl)f(zii).

i>1 i>1

U f(z) — /Ifd'y‘ dx — 0.

1€ B(I), and for z € I,

L2, @i tit]) S omAr+1’

hence
z+1

Ul(x):;(x—i-i)(x—i-i—i-l) =1

For f € B(I) and x € I,

Uf@)] < Iflle - UL(2),

10Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 63,
Proposition 2.1.7.
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hence
||UHB(I)~>B(1) =L

Say that f: I — R is increasing if < y implies f(z) < f(y). An increasing
function f : I — R belongs to B(I). We prove that if f is increasing then U f
is decreasing.'!

Theorem 8. If f: I — R is increasing then U f is decreasing.

Proof. Take z < y and let
1 1
g (1 () 1 ()

5= o) - P f (5.

T+1
i>1 +

and

Then

01 - s =3 (P () - ror (1))

i>1

=S + 5.

Because f is increasing, S; < 0. Using Zi21 P;(u) =1 for any u € I,

St - @) (157 ) =0

_;(f< +> < +1>> W)= B
G

(1 ()
1)) B - .

()
(o) () =0 (o) o () =

For ¢ > 2, using that f is increasing,
We calculate

and therefore

—i2+i+ (u+1)2

Fi(u) = Tt i2(utit+1)?

7

11 Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 65,
Proposition 2.1.11.
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The roots of the above rational function are u = —+/(i — 1)i — 1, /(i — 1)i — 1.
Thus, P/(u) =0 if and only if u = /(i —1)i — 1. But /(i —1)i — 1 € I if and
only if i —i —1 > 0 and > — i — 4 < 0. This is possible if and only if i = 2.
And

i?—i—1
P0)= ———
'L() 22(2_1_1)27

so P{(u) <Oforallu € I and for i > 3, P/(u) > 0 for all u € I. For i = 2, check
thatifogugx/?—lthean’(u)ZOandif\/ﬁ—lguglthenPQ’(u)§0.
Then

We have shown that S; < 0 and S5 <0, so
Uf(y) —Uf(z) =51+ 52 <0,
which means that U f : I — R is decreasing. O

For J = [a,b] C I, a partition of J is a sequence P = (¢, ..., t,) such that
a=ty<---<t,=>=. For f: I — R define

V(f,P)= Y If(t:) = f(tia)l-
1<i<n
Define
Vi f =sup{V(f, P) : P is a partition of J}.

Let vy(x) = Vjo,z1f, the variation of f. vs(1) = Vjo 1) f. We say that f has
bounded variation if v;(1) < oo, and denote by BV (I) the set of functions
f I — R with bounded variation. It is a fact that with the norm

1fll gy = FO) + Vi f,

BV (I) is a Banach algebra.
If f is increasing then Vi f = f(1) — f(0). We will use the following to prove
the theorem coming after it.!2

12Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 66,
Proposition 2.1.12.
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Lemma 9. If f: I — R is increasing then
1
Vi(Uf) < §V1f-

Proof. Because U f is decreasing,

v = - v =% (o (3) - rns(35))-

i>1

_ u+1
As Pi(v) = gfaro

Pi(1) = m = 2P;41(0),

hence

Because f (

e
N—
IV
~
—~
NS
|
)
g
<
(¢
\
~
/N

=
D
N—
IA
\
=
(=}
:—/
=
]
=}
Q
@

1

%

using )~ P;(0) = 1 and P1(0) = . As f is increasing this means
1 1
Vi(Uf) < §(f(1) — f(0)) = §Vlf~
Theorem 10. If f € BV (I) then

Vi(Uf) < %Vl,ﬁ

16



Proof. Let

_ vp@) + f(@) — f(0) _ vp@) — f(@) + f(0)
ps(a) = L2 o ongle) = g ,

the positive variation of f and the negative variation of f. It is a fact that
0<py<wvs, 0<ny <wvy, and py and ny are increasing. Using this,

Vi({Uf) = Vi(Upy + Uny)

< %lef + %me
= S (or(1) = py(0)) + (s (1) — ns(0))
= S (s (1) — 0;(0)
:%Wf
O
For f: 1 — C, let
z,yel,x#y |x_y|

We denote by Lip(I) the set of f: I — C such that s(f) < co.!?
Theorem 11. For f € Lip(]),

s(Uf) < (2¢(3) = €(2)s(f)-
Proof. Suppose z,y € I, z > y. We calculate

Uf(y) —Uf(x)
Yy—x

:yleIOﬂwaji)—B@”<xiJ>

i>1

N yixz (pi(y>f (xi) — Bi(2)f (ﬁ))

i>1

S R uo R G

-
i>1 Yy

= ()

i>1

13Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 67,
Proposition 2.1.14.
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Calculating further,

UMW -US) _ syt () -1(F)

y N R
P,(y) — Pi(x 1
Py PR (1Y,
i>1 Yy
Now,
u+1 7 i—1
P; = - _
i) (w+d(u+i+1) wu+i+l u+i
whence
x—y)i —x)(t—1
Pi(y) — Pi(z) = . ( Y) . (y )( .)7
(x+i+Dy+i+1)  (x+1i)(y+i)
therefore

R-(y)Pi(x)f( 1 >

- Yy—x T+

3

WV,

" 1<<x+ii)(;+i) - (m+z’+1>i<y+i+1>>f<xii)'

3

%

Summation by parts tells us

Zfi(gi-‘rl —9i) = —fig1 — Zgi+1(fi+1 — fi),

i>1 i>1

and here this yields, for g; = W@lﬁz) and f; = f (%ﬂ),

Z((x+ii)—(;+i) a (x+i+1)i(y+i+1)>f(x~1kz')

i>1
:Zgi+1(fi+l - fi)

i>1

_g(x+i+1)i(y+i+1) (f <m+1+1) _f(x—l&-z>)
L i)

:Z ; . : 1 1 - - .
i21(x+z+l)(y+z+1) P (z+i)(x+i+1)

18



Recapitulating the above,
Uf(y) —Uf(x)

y—
(y1i>_f(w1i) 1
LR e g
i S (em) -4 ()
_;(x+2)($+1+1) y+i+1) :+—E+1_z}ri+ .
Then
’W < (f);ﬂ(y)wl(ym

+s(f)z(x+z-)(x+z'+1)2(y+i+1)'

i>1

Then, using that = > vy,

‘Uf(y)—Uf(I)
y—x

1 7
SS(f)Z (Pi(y)(y_H')? + (y+i)(y+i+1)3)'

Because y € I =[0,1], y > 0 so

Z(erz)( +i+1)3 %: :_1+C(3)'

i>1

Let h(u) = u?, with which

h: I — R is increasing, so Uh is decreasing. Because P;(0) = ﬁ,

> Piw) = Uh(y) < UR(0) = 3 Pi(0) gy = 3 ot z+1 :

i>1 i>1 i>1

Doing partial fractions,

11 1.1 1

Bi+1) 3 A

SO

1
e BCCRICA

19



Therefore

‘Uf(y)—Uf(fv)

g <s(f) (€)= <¢2)+1-1+¢@3)) = s(F)(2¢3) = ¢(2)).

For example, let f(x) = z, for which s(f) = 1. Now,

Uf(z) = ;Pi(x)zii.
We remind ourselves that _
R =7 z)x(;_—i it1) Fi(z) = (;:)iz(_x(i i++1)12)2 '
Then
0pe =3 (P - P )
S (aroeriry  wroerD)

B _ i?—i—(z+1)?—(z+1)(z+i+1)
=2 (+i)3(x 44+ 1)2

72—2x2—ix—4m+i272i—2
B (x+i)3(x +i+1)2

Check that « — (U f)’(z) is increasing and negative. Then ||(U f)'|| < [(U f)'(0)],
with
L 222
(Uf)(0) = Z Bar1? —2¢(3) +¢(2).

i>1

Therefore for f(z) = x,

s(f) = 1Uf) lloe = 2(3) = <(2),

which shows that the above theorem is sharp.
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