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1 Oscillatory integrals

Suppose that @ € C*(R%), ¢ € Z(R?), and that ® is real-valued. Define
I:(0,00) = C by

I()\):/ M@y (xyde, A > 0.
]Rd

We call ¢ a phase and ¢ an amplitude, and I()\) an oscillatory integral.
The following proof follows Stein and Shakarchi.!

Theorem 1. If there is some ¢ > 0 such that |(V®)(x)| > ¢ for all x € supp ¢,
then for each nonnegative integer IV there is some cy > 0 such that

II(N)] < enA™Y, A>0.

Proof. There is some h € Z(R%), h > 0, such that h(z) = 1 for 2 € supp.2

Define a : R? — R9 by
Vo

= hi
Vo[
whose entries each belong to 2(R4), and define L : C®°(R?) — 2(R9) by

a

1 Zd 1
k=1

2

L satisfies, doing integration by parts and using the fact that a has compact
support,

d d
L Enate= 53" [ wouot =552~ [ sontgards

Thus the transpose of L is

d
1 1
Ltg=—— — V()
g o g:l@k(ga) v (9a)

1Elias M. Stein and Rami Shakarchi, Functional Analysis, p. 325, Proposition 2.1.
2Walter Rudin, Functional Analysis, second ed., p. 162, Theorem 6.20.



Furthermore, in supp v,

d
L(e™?) = Y " ap(0p®)
k=1

d

: O ®
IAD
(& ; W(I)Pak(l)

— IAD

e

Thus for any positive integer N and for = € supp ¢, L(e**®)(z) = ¢**(®) | hence

I(A):/Rd LN(eM‘I’)wdm:/ e (LY Nyda.

Rd
But
[ olde = [ IV ayjas,
Rd Rd
where A; =V - (¢a) and A, =V - (A,_1a). With
cN = / |An|dz < oo,
]Rd

we obtain

[TV =

/ ei)\fb(Lt)N,(/de
Rd

< / (LN ldr = ey A,
R4

completing the proof. O

The following is an estimate for a one-dimensional oscillatory integral with-
out an amplitude term.?

Lemma 2. Let a < b, and suppose that ® € C?(R) is real-valued, that either
& () > 0 for all z € [a,b] or "(x) <0 for all z € [a, b], and that ®'(z) > 1 for

all z € [a,b]. Then
b .
/ eP@) dr| < 3N, A > 0.

Proof. Write
1 d

TN da
which satisfies

b by 1 b g\
/a (Lf)gdx:/a o 99 = _/a f(z’A(I)’) du

3Elias M. Stein and Rami Shakarchi, Functional Analysis, p. 326, Proposition 2.2.
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With f = e*® and g = 1, we have Lf = ¢*® and hence

’ iAD A P ’ iAD 1y
/a N € a_/a ‘ (iA(b’) da
e | 1 b o
— 7 ) @/ —Q@I/d .
| T /a ) v

For A > 0, using that ®'(z) > 1 for all # € [a,b] the boundary terms have
absolute value
CAR(b)  LirD(a)

iIND/(b)  iAD(a)

Because ®” > 0 or ®” <0 on [a, b],

1 1
<
=N )] T N )]

2
< —.
- A

1]/,
X / 61A<I>((I)/)72(b//dz

1 ’ =25
< 5[ (@) 79"|dx
AJa
b

1

X /a (@/)72(I)lldx
1 1
R ‘@(a) - <I>’(b)'
1 .

3

the final inequality uses the fact that the two terms inside the absolute value are

both > 1, and thus the absolute value can be bounded by the larger of them.
Putting together the two inequalities,

b
/ el)\fb d.’L‘
a

proving the claim. O

<

< +§:3)\‘1, A >0,

>N

Lemma 3. Let a < b, and suppose that ® € C?(R) is real-valued, that either
@ () > 0 for all z € [a,b] or ”(x) <0 for all z € [a, b], and that there is some
> 0 such that |®'(x)| > p for all 2 € [a,b]. Then

b .
/ 61)\d>(m) dx

Proof. ®' is continuous on [a, b], so, by the intermediate value theorem, either
O'(z) > p for all z € [a,b] or ®'(x) < —p for all x € [a,b]. Let e = 1 in the
first case and € = —1 in the second case, and define ®; = ¢2. Then applying

I’
Lemma 2, for A > 0 we have, writing A\g = pA,

b
/ ei)\oq>0 (I) dI’

<3p~ AT A > 0.

<301,




i.e.

b
/ eie)&b(m)dq} < 3(/1)\)_1.
If € = 1 this is the claim. If € = —1, then the above integral is the complex

conjugate of the integral in the claim, and these have the same absolute values.
O

Theorem 4. Let a < b, and suppose that ® € C?(R) is real-valued, that either
®"(x) > 0 for all € [a,b] or ®'(x) < 0 for all x € [a,b], and there is some
p > 0 such that |®'(z)| > p for all z € [a,b]. Suppose also that ¢ € C1(R).

Then with ,
ey =3 (|w<b>| + / w'<x>|dx> 7

b
/ ei)\@(z)w(x)dx

we have

< cw/fl)\_l.

Proof. Define J : [a,b] — C by

which satisfies J'(z) = e**®®), Integrating by parts,

- b
/eZ/\(I)(m)w(Z)dl':/ J' (@)(x)de = J(x))(x)

a a

and as J(a) = 0 this is equal to

Lemma 3 tells us that |J(x)| < 3u~'A~?! for all x € [a, b], so

b b
J(b)(b) - / J(@)e (@)de| < 3u AL (b)] + 3u A / W (2))de,

proving the claim. O

The following is van der Corput’s lemma.*

Lemma 5 (van der Corput’s lemma). Let a < b and suppose that ® € C%(R)
is real-valued and satisfies ®”(x) > 1 for all = € [a,b]. Then

b .
/ ez)\q)(a:) dx

4Elias M. Stein and Rami Shakarchi, Functional Analysis, p. 328, Proposition 2.3.

< 8AT/2 A>0.




Proof. Because @’ is strictly increasing on [a, b], &’ has at most one zero in this
interval. If ®'(x0) = 0, then for x > xg + A~1/2 we have o' (z) > A~1/2 and
applying Lemma 3 with g = A\~1/2,

/ () g
[zo+A—1/2,b]

For < xg — A~Y/2 we have ®(z) < —A~!/2, and applying Lemma 3 with

p=x"12
/ AR (@) gy
[a,z0—A—1/2]

<3pTIATh =372,

<3pATh =312

But

@) g dr < 2)\_1/2,

S /
/[xo—)\l/2,:c0+)\1/2]ﬁ[a,b] [xo—=A—1/2 2g+A~1/2]N[a,b]

b

Lo S
a la,xo—A—1/2] [zo—A—1/2 29+A~1/2]N]a,b] [zo+A—1/2 b
b .

/ ezz\‘I’(a:)dx

If there is no g € [a,b] such that ®'(xg) = 0, then either ® > 0 on [a, b]
or & < 0 on [a,b]. In the first case, because @’ is strictly increasing on [a, b],
() > \"Y? for x € [a+ A"/2,b], and applying Lemma 3 with u = A\~1/2
gives

b .
/ 61)\<I>(m) dx

and

SO

<3NTVZpon T2 43N T/2 =g 12,
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_|_

/ SiAR() / AR (@) gy
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)\—1/2 4 3’u—1>\—1
ANT12,

IN

In the second case, ®'(z) < —A~'/2 for 2 € [a,b — A~'/?], and applying Lemma
3 with g = A~1/2 also gives
b
/ GiAR() g

Therefore, if ®' does not have a zero on [a,b] then

b .
/ ez)\@(x) dr

<4NT2,

<ANTHZ gAY




Lemma 6. Let a < b and suppose that ® € C?(R) is real-valued and that there
is some p > 0 such that |®”(z)| > u for all z € [a,b]. Then

b .
/ ez)\q)(m) dx

Proof. ®" is continuous on [a,b], so by the intermediate value theorem either
O (x) > p for all z € [a,b] or ®”(x) < —p for all z € [a,b]. Let ¢ = 1 in the

< 8u T PAT12, A > 0.

first case and € = —1 in the second case, and define ¢y = e%. Then ®j(z) > 1
for all z € [a,b], and applying Lemma 5,
b .
/ AP gyl < 8(uN)~Y/2, A >0,

i.e.

b
/ M@ gl <8(uA)"HV2 A>0.
If e = 1 this is the inequality in the claim. If ¢ = —1, then the above integral
is the complex conjugate of the integral in the claim, and these have the same
absolute values. O

We use the above to prove the following estimate which involves an ampli-
tude.?

Theorem 7. Let a < b and suppose that ® € C?(R) is real-valued and that
there is some p > 0 such that |®”(x)| > p for all z € [a,b]. Suppose also that

¥ € CY(R). Then with
b
cw=8(wwn+/wumm),

b
/ ei/\q)(x)iﬁ(l')dfb

we have

Sepp VPATVZ x>

Proof. Define J : [a,b] — C by
J(x) = / e dy,

which satisfies J'(z) = e**®(®), Integrating by parts,

b b
[ e = [ r@is = I@)

a a

5Elias M. Stein and Rami Shakarchi, Functional Analysis, p. 328, Corollary 2.4.



and as J(a) = 0 this is equal to
b
IEwb) - [ I @)
But for each = € [a, b] we have by Lemma 6 that |J(z)| < 8u~/2X\"1/2  so

b b
J(b)y(b) — / J(@2) (z)dz| < 82N 2 (b)| + 8/ EAT2 / 1Y (z)|dz,

completing the proof. O

2 Bessel functions

For n € Z, the nth Bessel function of the first kind J,, : R — R is
1

T or

27
Ju(N) / eAsinTe=inzg, N ER.
0

Let

3 5 7
L = |:05 %i| ) I = |:Iaﬂ—:| ) I3 = |:7T7 7T:| ’ I, = |:7T727T:| )

on which |cos x| > %, and
15: ﬁ73£ ) 16: 51771 )
4" 4 474
on which |sinz| > % Write ®(x) = sinz and ¥ (z) = e~"*. ®'(z) = cos(z)
and ®"(z) = —sin(z), and for I, I, I3, Iy we apply Theorem 4 with pu = %
For each of Iy, I, I3, I4 we compute ¢y = 3 (1 + %), which gives us

/ eiA@(z)w(x)dx

Iy

< c¢,u_1)\_1 =3 (1 + %) V2L

1

For Iy and Ig, we apply Theorem 7 with u = —=. For each of I5 and I we

S

compute ¢y = 8 (1 + ”2—”), which gives us

/ QZA‘I)(I)?/J(I)dI

<epp V2ATV2 = 8 (1 4 %) L9l/4 . \—1/2.
Iy

Therefore
1 ™m 1 ™
<4.—.3(1+22). ! R~ I O ) 1 VR S e 9"
(V) <4+ 3(+4) V2T 42 o 8(+2) 91/, \~1/2,
which shows that for each n € Z,
Ta(X) = On(A1/?)

as A — oo.



