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1 Introduction

The purpose of this paper is to give complete proofs to several fundamental re-
sults about modular forms. Modular forms are complex functions with certain
analytic properties, and that transform nicely under a certain group of trans-
formations of the complex upper half plane. It turns out that modular forms
can be used to study analytic number theory, by investigating the coefficients
in series expansions of the modular forms. In fact, often using modular forms
we can discover and prove things in number theory where a direct proof might
not be obvious. To help the reader get a feel for this, we will give an example;
all the terms used here are defined in the paper. An important class of modu-
lar forms, called Eisenstein series, have expansions that involve the divisor sum
σr(n) =

∑
d|n d

r. Another modular form, called the modular discriminant, has

a series expansion that involves the Ramanujan tau function, τ(n). Modular
forms comprise vector spaces whose dimensions we can explicitly determine.
Using this information one can prove the congruence

τ(n) ≡ σ11(n) (mod 691).

We will develop all the results needed to prove this congruence and other similar
results (cf. [9]).

We have tried to find the clearest proofs in the literature for the results
about modular forms in this paper. The proofs use complex analysis and group
theory, and do not assume advanced results.

In §2 we introduce a group action on the complex upper half plane, under
which modular forms are well behaved.

Next in §3 we define modular forms and cusp forms, which are defined on the
upper half plane. We show that modular forms have Fourier expansions. Indeed
it is often convenient to study a modular form through its Fourier series. We
also show that modular forms constitute complex vector spaces. We explicitly
construct a class of modular forms, namely the Eisenstein series, in §4. However,
these are not cusp forms. In §5 we construct a cusp form of weight 12, and prove
estimates on the magnitude of the Fourier coefficients of cusp forms.

Finally in §6 we give a formula for the dimensions of spaces of modular
forms. We also introduce a natural inner product on the spaces of cusp forms.
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We will now introduce some notation that will be used throughout this paper.
Let Z be the integers, C be the complex numbers, R be the real numbers, and
R2 = R × R, Z2 = Z × Z. For a commutative ring R with unity 1, let SL2(R)
be the group of all 2× 2 matrices over R with determinant 1. For integers m,n
not both 0, let (m,n) denote their greatest common divisor.

2 Automorphisms of the complex upper half plane

Let H = {z ∈ C : ℑ(z) > 0} be the complex upper half plane. Modular forms
are defined on the upper half plane, and transform nicely under a certain group
that acts on H. We will present this group now, and prove several properties
about it.

Γ = SL2(Z) is called the modular group.

Lemma 1. Γ has an action on H defined by γz = az+b
cz+d for γ =

(
a b
c d

)
∈ Γ

and z ∈ H.

Proof. If z ∈ H and γ ∈ Γ, then

ℑ(γz) = ℑ(az + b

cz + d
)

= ℑ(az + b

cz + d

cz + d

cz + d
)

=
(ad− bc)ℑ(z)

|cz + d|2

=
det(γ)ℑ(z)
|cz + d|2

=
ℑ(z)

|cz + d|2
> 0.

Therefore γz ∈ H.
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Let γ =

(
a b
c d

)
, β =

(
e f
g h

)
∈ Γ and let z ∈ H. Then

β(γz) = β(
az + b

cz + d
)

=
eaz+b
cz+d + f

g az+b
cz+d + h

=

eaz+eb+fcz+fd
cz+d

gaz+gb+hcz+hd
cz+d

=
eaz + eb+ fcz + fd

gaz + gb+ hcz + hd

=
(ea+ fc)z + eb+ fd

(gz + hc)z + gb+ hd

=

(
ea+ fc eb+ fd
gz + hc gb+ hd

)
z

= (βγ)z.

As well, for all z ∈ H,

(
1 0
0 1

)
z = 1z+0

0z+1 = z. Hence the identity element of Γ

fixes all z ∈ H.

The proof of the following theorem follows [2, Chapter I, 5.7].

Theorem 2. Γ is generated by A =

(
1 1
0 1

)
and B =

(
0 −1
1 0

)
.

Proof. Let M =

(
a b
c d

)
∈ Γ. We may assume that |c| ≤ |d| since BM =(

b −a
d −c

)
is generated by A and B if and only if M is. If c = 0, then ad = 1,

and so a = d = 1 or a = d = −1. In the first case, M = Ab, and in the second
case, M = AbB2.

We now assume that for n > 1, and all |c| < n the element M is generated

by A and B. Because B2M =

(
−a −b
−c −d

)
is generated by A and B if and only

if M is, we may assume that c > 0. For c = n, let k be an integer such that
0 ≤ ck + d < c = n. By the induction hypothesis,

BMAk =

(
−ak − b a
−ck − d c

)
is generated by A and B. Thus M is generated by A and B.

Two points z0, z1 ∈ H are said to be equivalent under Γ if there exists an
M ∈ Γ such that Mz1 = z2. A subset F of H is said to be a fundamental domain
for Γ if it is an open connected set (i.e. a domain) such that no two distinct
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points of F are equivalent, and every point of H is equivalent to some point in
F , the closure of F . In the following theorem we explicitly give a fundamental
domain for Γ. Our proof follows [8, Chapter VII, Theorem 1].

Theorem 3. F = {z ∈ H : |z| > 1, |ℜ(z)| < 1
2} is a fundamental domain for Γ.

Proof. Let z ∈ F and let g =

(
a b
c d

)
∈ Γ such that gz ∈ F . We will show

that g = ±I and thus that gz = z. This implies that no two distinct points
of F are equivalent. If ℑ(gz) < ℑ(z), then ℑ(g−1(gz)) > ℑ(gz). But gz ∈ F ,
and g−1 = ±I if and only if g = ±I; hence we may assume that ℑ(gz) ≥ ℑ(z).
Then |cz + d| ≤ 1, so, since ℑ(z) > 1/2, c must either be −1, 0 or 1. If c = 0
then a = d = ±1 and g is translation by b. But − 1

2 < ℜ(z) < 1
2 , so b must be

= 0, otherwise gz /∈ F . In this case indeed g = ±I.
If c = 1, then |x+ iy + d| ≤ 1 for z = x+ iy. Then x2 + 2xd+ d2 + y2 ≤ 1.

As x2+y2 > 1, it follows that 2xd+d2 < 0. In this inequality d cannot be 0, so
we can divide by d. If d ≥ 1 then d < −2x, a contradiction since |x| < 1/2, and
if d ≤ −1 then d > −2x, again a contradiction since |x| < 1/2. Hence, the case
c = 1 does not occur. If c = −1, we can replace g with g′ = −g (since gz ∈ F if
and only if g′z ∈ F ), and the above argument shows that the case c′ = 1 does
not occur, and thus the case c = −1 does not occur. Therefore if z ∈ F and
g ∈ Γ such that gz ∈ F , then g = ±I.

Now, let z ∈ H. Now, for a given C > 0, there are only finitely many integers

c, d such that |cz + d| < C. Hence there is a g =

(
a b
c d

)
∈ Γ such that

ℑ(gz) = ℑ(z)
|cz + d|2

is maximal. We may choose n to be an integer such that − 1
2 ≤ ℜ(Tngz) ≤ 1

2 .
Put z′ = Tngz. If |z′| < 1 then Sz′ = −1/z′ would have an imaginary part
strictly greater than ℑ(z′) = ℑ(Tngz) = ℑ(gz), a contradiction. Thus |z′| ≥ 1,
and z′ ∈ F . This proves that every point in H is equivalent to some point in
the closure of F .

The fact that F = {z ∈ H : |z| > 1, |ℜ(z)| < 1
2} is a fundamental domain for

Γ will be used in §6. The images of F under several elements of Γ are shown in
Figure 1.

If {
(
a b
c d

)
,

(
−a −b
−c −d

)
} ∈ SL2(R)/{I,−I} is identified with the mapping

z 7→ az+b
cz+d ,H → H, then SL2(R)/{I,−I} is the automorphism group of the

upper half plane (i.e., the group of all holomorphic bijections H → H, cf. [5,
Chapter VII, §3]). In the next section we define modular forms, which are
“almost” invariant under automorphisms of the upper half plane.
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Figure 1: Images of the fundamental domain F under elements of Γ
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3 Modular forms and cusp froms

In this section we define modular forms. We prove that they have Fourier
expansions. Then we define cusp forms, which are an important class of modular
forms, with 0 constant term in their Fourier expansions. We then show that
modular forms and cusp forms constitute vector spaces, and prove a result about
pointwise products of modular forms.

We define the factor of automorphy j(γ, z) by j(γ, z) = cz + d for γ =(
a b
c d

)
∈ Γ and z ∈ H.

A holomorphic function f : H → C is said to be holomorphic at infinity if
limℑ(z)→∞ f(z) exists.

Definition 4. For k ∈ Z, a modular form of weight k, with respect to Γ =
SL2(Z), is a function f : H → C that is holomorphic on H, holomorphic at
infinity, and satisfies

f(γz) = j(γ, z)kf(z)

for all γ ∈ Γ, z ∈ H. The set of all modular forms of weight k is denoted by
Mk(Γ).

Fourier series will be important in studying modular forms and cusp forms,
so we first introduce these. We say that a function f : H → C is ω-periodic if
f(z + ω) = f(z) for all z ∈ H.
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Lemma 5. If f : H → C is holomorphic and 1-periodic, then f has an expansion

f(z) =

∞∑
n=−∞

anq
n, q = e2πiz, an ∈ C, (1)

valid for all z ∈ H.

Proof. Let A = {z : 0 < |z| < 1} be the annulus obtained by removing the
origin from the unit disc. We define F : A → C by F (q) = f(z) for all q ∈ A.
Indeed, if q = e2πiz1 = e2πiz2 , then 2πiz1 = 2πiz2 +2kπi for some integer k and
z1 = z2 + k. Hence f(z1) = f(z2) by periodicity. Thus F is well defined.

For all q0 ∈ A, there exists a holomorphic branch of the logarithm, say L0,

defined in some neighborhood V0 of q0. Then for all q ∈ V0, F (q) = f(L0(q)
2πi ).

Thus on V0 ∩ A, F is the composition of holomorphic functions. Hence F is
holomorphic at q0 ∈ A. Therefore F is holomorphic on A.

Since F is holomorphic on the annulus A, it has a Laurent expansion

F (q) =

∞∑
n=−∞

anq
n, an ∈ C, (2)

valid for all q ∈ A [5, Chapter V, Theorem 2.1], and

f(z) =

∞∑
n=−∞

anq
n,

with q = e2πiz, as desired.

The expansion (1) is called the Fourier expansion or q-expansion of the
function f .

Since γ =

(
1 1
0 1

)
∈ Γ, for f ∈ Mk(Γ), then f(γz) = f(z + 1) for all z ∈ H,

i.e. f is 1-periodic. Thus by Lemma 5, modular forms have Fourier expansions.
Let f ∈ Mk(Γ) and let g(q) = f(z), q = e2πiz, z ∈ H. There is an α ∈ C such
that limy→∞ f(x+iy) = α. Let ϵ > 0 be given. Then there is a y0 > 0 such that
for all y > y0, |f(x + iy) − α| < ϵ. Let δ = e−2πy0 . Say q is such that |q| < δ.
Now, q = e2πi(x+iy) for some x, y. Then |q| = e−2πy < δ = e−2πy0 . As exp is an
increasing function on R, this implies y > y0. Hence |f(x+ iy)−α| < ϵ, and so
|g(q) − α| < ϵ. Thus limq→0 g(q) = α. Hence g is bounded in a neighborhood
of q = 0, so an = 0 for all n < 0 in its Laurent expansion (1). This means that
an = 0 for all n < 0 in the Fourier expansion (1) of a modular form.

We recall [5, Chapter V, Theorem 2.1] that for 0 < s < S < 1, the Laurent
series

∑∞
n=−∞ anq

n in (2) converges absolutely for q such that s < |q| < S. Thus
in particular the Laurent series converges absolutely for q = e−2π. This shows
that the Fourier series (1) converges absolutely for z = i. Now, let E = {z :

ℑ(z) ≥ 1}; it is clear that |e2πiz| has a maximum value |e2πi2 | = e−2π on E. We
define Mn = |an|e−2nπ for n = 0, 1, 2, . . .. That the Fourier series (1) converges
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absolutely for z = i means that
∑∞

n=0 Mn converges. But |ane2πinz| ≤ Mn for
all z ∈ E. Therefore by the Weierstrass M -test, the Fourier series (1) converges
uniformly on E. However, if a sequence fn converges uniformly on a set E and
x is a limit point of E, then limt→x limn→∞ fn(t) = limn→∞ limt→x fn(t) [6,
Theorem 7.11]. Thus,

lim
y→∞

f(z) = lim
y→∞

∞∑
n=0

ane
2nπi(x+iy) =

∞∑
n=0

an lim
y→∞

e2nπixe−2nπy = a0. (3)

This tells us that constant term in the Fourier series of a modular form is the
limit of the function at i∞.

We will often need to consider modular forms with 0 constant term in their
Fourier expansions. Thus we make the following definition.

Definition 6. A cusp form of weight k is a modular form f of weight k whose
Fourier expansion has a 0 constant term, i.e. f ∈ Mk(Γ) and

f(z) =

∞∑
n=1

anq
n, q = e2πiz, an ∈ C.

The set of all cusp forms of weight k is denoted by Sk(Γ).

From (3), a modular form f is a cusp form if and only if limℑ(z)→∞ f(z) = 0.

Suppose k is odd and f ∈ Mk(Γ). Let γ =

(
−1 0
0 −1

)
∈ Γ. Then for all

z ∈ H,

j(γ, z)k = (0z − 1)k = −1, f(z) = f(γz) = j(γ, z)kf(z) = −f(z),

so f is the zero function on H. Thus for all odd k, Mk(Γ) contains only the zero
function.

In the following theorem we show that the modular forms of weight k form
a complex vector space, and that the cusp forms of weight k are a subspace.

Theorem 7. For every integer, Mk(Γ) is a complex vector space and Sk(Γ) is
a subspace of Mk(Γ).

Proof. Let f, g ∈ Mk(Γ) and a ∈ C. Since f and g are holomorphic on H,
af+g is holomorphic on H, and since limℑ(z)→∞ f(z) and limℑ(z)→∞ g(z) exist,
limℑ(z)→∞(af + g)(z) exists. Therefore af + g is holomorphic at infinity. For
γ ∈ Γ and z ∈ H,

(af + g)(γz) = af(γz) + g(γz)

= aj(γ, z)kf(z) + j(γ, z)kg(z)

= j(γ, z)k(af + g)(z),

hence af + g satisfies the automorphy condition. Thus af + g ∈ Mk(Γ).
This proves that Mk(Γ) is a complex vector space. If f, g ∈ Sk(Γ), then
limℑ(z)→∞(af + g)(z) = a limℑ(z)→∞ f(z) + limℑ(z)→∞ g(z) = a · 0 + 0 = 0,
and thus af + g ∈ Sk(Γ). Hence Sk(Γ) is a subspace of Mk(Γ).
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For modular forms f and g, we shall define their product fg by (fg)(z) =
f(z)g(z). The next lemma shows that the product of a modular form of weight
k and a modular form of weight l is a modular form of weight k + l. We will
use this result later in §6.

Lemma 8. If f ∈ Mk(Γ) and g ∈ Ml(Γ), then fg ∈ Mk+l(Γ).

Proof. It is immediate that fg is holomorphic on H and holomorphic at infinity.
Let γ ∈ Γ and z ∈ H. Then

(fg)(γz) = f(γz)g(γz)

= j(γ, z)kf(z)j(γ, z)lg(z)

= j(γ, z)k+lf(z)g(z)

= j(γ, z)k+l(fg)(z),

showing that fg satisfies the automorphy condition. Therefore fg is a modular
form of weight k + l.

4 Eisenstein series

Now we will explicitly construct a class of modular forms of all even weights
k > 2, the Eisenstein series of weight k. In particular these will not be the
zero function, thus giving us nontrivial examples of modular forms. Moreover,
these are not cusp forms. In fact, we will show later in this section that for even
k > 2, any modular form of weight k is a linear combination of an Eisenstein
series of weight k and a cusp form of weight k.

Definition 9. The Eisenstein series Gk(τ) of weight k is defined by

Gk(τ) =
∑′

c,d

1

(cτ + d)k

for τ ∈ H, where the primed summation means that summation is over all
(c, d) ∈ Z2 such that (c, d) ̸= (0, 0).

In the following theorem we prove that for all even k ≥ 4, the Eisenstein
series Gk is a nonzero modular form of weight k. This will be our first example
of a modular form (aside from the zero function). The proof follows [7, Theorem
1, Chapter III].

Theorem 10. For all even integers k ≥ 4, the Eisenstein series Gk is a modular
form of weight k.

Proof. We will use the fact [5, Chapter V, §1] that the series defining the Rie-
mann zeta function ζ(s) =

∑∞
n=1 n

−s converges absolutely for ℜ(s) > 1. First
we show that the series Gk(τ) defines a holomorphic function H → C. Let K
be a compact subset of H. Let S1 = {(x, y) ∈ R2|x2+ y2 = 1} be the unit circle
in R2. Recall that S1 is a compact subset of R2. Thus the product K × S1
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is a compact subset of H × R2. Clearly, (τ, x, y) 7→ |xτ + y| is a continuous
function K × S1 → R. Hence it attains a minimum value µ. For all τ ∈ K and
m1,m2 ∈ Z with (m1,m2) ̸= (0, 0),

|m1τ +m2|2 = | m1

m2
1 +m2

2

τ +
m2

m2
1 +m2

2

|2(m2
1 +m2

2)
2

≥ µ2(m2
1 +m2

2).

Thus for all τ ∈ K, Gk(τ) is bounded above by the series

µ−k
∑′

m1,m2

(m2
1 +m2

2)
−k/2.

Now, ∑′

m1,m2

(m2
1 +m2

2)
−k/2 =

∞∑
N=1

∑
m1,m2

(m2
1 +m2

2)
−k/2

where the inner summation is over those m1,m2 ∈ Z such that |m1| = N
and |m2| ≤ N , or |m2| = N and |m1| ≤ N . Fixing N , there are a most
2 · 2 · (2N + 1) = 8N + 4 such pairs (m1,m2) ∈ Z2. Thus

∞∑
N=1

∑
m1,m2

(m2
1 +m2

2)
−k/2 ≤

∞∑
N=1

(8N + 4)(N2)−k/2 =

∞∑
N=1

8N−k+1 + 4N−k.

We have shown that µ−k
∑∞

N=1 8N
−k+1 + 4N−k is an upper bound for Gk(τ).

Since k > 2, the latter series converges, so by the Weierstrass M -test, Gk(τ)
converges uniformly (and absolutely) on K.

This proves that Gk(τ) converges uniformly on compact subsets of H. There-
fore according to [5, Theorem 1.1, Chapter V], Gk is a holomorphic function on
H.

We now show that Gk satisfies the automorphy condition. Let τ ∈ H and

γ =

(
a b
c d

)
∈ Γ. Then

Gk(γτ) = Gk(
aτ + b

cτ + d
)

=
∑′

m1,m2

(m1
aτ + b

cτ + d
+m2)

−k

=
∑′

m1,m2

(
m1aτ +m1b+m2cτ +m2d

cτ + d
)−k

= (cτ + d)k
∑′

m1,m2

((m1a+m2c)τ +m1b+m2d)
−k. (4)

Since ad− bc = 1, (m1,m2) 7→ (m1a+m2c,m1b+m2d) is a bijection Z2 → Z2,
by the Euclidean algorithm [4, §12.3]. Thus, after changing variables,∑′

m1,m2

((m1a+m2c)τ +m1b+m2d)
−k =

∑′

m1,m2

(m1τ +m2)
−k = Gk(τ).

(5)
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Combining (4) with (5),

Gk(γτ) = (cτ + d)kGk(τ) = j(γ, τ)kGk(τ).

Finally we show that Gk is holomorphic at infinity. For γ =

(
1 1
0 1

)
∈ Γ and

τ ∈ H, we have Gk(γτ) = Gk(
1τ+1
0τ+1 ) = Gk(τ + 1). But since Gk satisfies the

automorphy condition, then Gk(γτ) = j(γ, z)kGk(τ) = (0τ+1)kGk(τ) = Gk(τ),
and so Gk(τ +1) = Gk(τ). That is, Gk is 1-period. Since Gk is holomorphic on
H with period 1, by Lemma 5 it has a Fourier expansion

Gk(τ) =

∞∑
n=−∞

ane
2πiτn, τ ∈ H.

Now, since k is even and Gk(τ) converges absolutely,

Gk(τ) = 2ζ(k) + 2

∞∑
m1=1

∞∑
m2=−∞

(m1τ +m2)
−k.

For m1 = 1, the inner series is
∑∞

n=−∞(τ+n)−k. It follows from the Weierstrass

M -test that the series
∑−1

n=−∞(τ+n)−k and
∑∞

n=0(τ+n)−k converge uniformly
on every compact subset of H and hence define holomorphic functions on H.
Therefore

∑∞
n=−∞(τ + n)−k defines a holomorphic function on H. Certainly∑∞

n=−∞(τ + n)−k is 1-periodic. Thus it has a Fourier expansion

∞∑
n=−∞

(τ + n)−k =

∞∑
ν=−∞

ανe
2πiτν .

Then by Laurent’s formula [5, Chapter V, Theorem 2.1], for an arbitrary τ0 ∈ H,

αν =

∫ τ0+1

τ0

(

∞∑
n=−∞

(τ + n)−k)e−2πiντdτ.

Since k is even and k ≥ 2, the series converges uniformly so we can interchange
integration and summation

αν =

∞∑
n=−∞

∫ τ0+1

τ0

(τ + n)−ke−2πiντdτ

=

∫ ∞+iy0

−∞+iy0

τ−ke−2πiντdτ (6)

where ℑ(τ0) = y0.

10



Figure 2: Paths of integration for τ−ke−2πiντ (only singularity is pole at origin)

II

III

IV

I

T ′ + iy0T + iy0

T + iy1 T ′ + iy1

T ′

iy0

iy1

T 0 + 0i

Put τ = x+ iy0. Thus

|αν | ≤ e2πνy0

∫ ∞

−∞
|x+ iy0|−kdτ

= e2πνy0

∫ ∞

−∞
(x2 + y20)

−k/2dτ

= e2πνy0y1−k
0

∫ ∞

−∞
(x2 + 1)−k/2dx.

This integral converges to some ck since k ≥ 2. Thus

|αν | ≤
e2πνy0

yk−1
0

ck.

Since we can choose y0 to be arbitrarily large, it follows that

αν = 0 for all ν ≤ 0.

For ν > 0, we integrate τ−ke−2πiντ along the oriented paths in Figure 2,
where y1 < 0 is arbitrary, and apply the residue formula [5, Theorem 1.2,
Chapter VI] to obtain∫

I

τ−ke−2πiντdτ =

∫
II+III+IV

τ−ke−2πiντdτ − Res(τ−ke−2πiντ ; 0). (7)
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On path II,

|τ−ke−2πiντ | = |T + iy|−k|e−2πiν(T+iy)|
= (T 2 + y2)−k/2e2πνy

≤ (T 2 + 02)−k/2e2πνy0

= T−ke2πνy0 .

That is, an upper bound for |τ−ke−2πiντ | on path II is T−ke2πνy0 . The length
of path II is y0−y1. Thus by [5, Theorem 2.3, Chapter III] we have the estimate

|
∫
II

τ−ke−2πiντdτ | ≤ T−ke2πνy0(y0 − y1).

The limit of the righthand side of this inequality as T → −∞ is 0. Hence
limT→−∞

∫
II
τ−ke−2πiντdτ = 0.

Similarly on path IV,

|τ−ke−2πiντ | = |T ′ + iy|−k|e−2πiν(T ′+iy)|
= (T ′2 + y2)−k/2e2πνy

≤ T ′−ke2πνy0 .

The length of path IV is y0 − y1, so we have the estimate

|
∫
IV

τ−ke−2πiντdτ | ≤ T ′−ke2πνy0(y0 − y1).

Hence limT ′→∞
∫
IV

τ−ke−2πiντdτ = 0.
For path III,

|τ−ke−2πiντ | = |x+ iy1|−k|e−2πiν(x+iy1)|
= |x+ iy1|−ke2πνy1

≤ y−k
1 ,

hence

|
∫
III

τ−ke−2πiντdτ | ≤ |
∫ T ′

T

(x2 + y21)
−ke2πνy1dx

= e2πνy1

∫ T ′

T

(x2 + y21)
−kdx.

However,
∫∞
−∞

1
(x2+y2

1)
k dx = π

2k−1

1·3···(2k−3)
1·2···(k−1)

1
y2k−1 [5, Chapter XV, §2, K7]. Thus

the absolute value of the above integral is bounded above by e2πνy1 π
2k−1

1·3···(2k−3)
1·2···(k−1)

1
y2k−1 .

Since y1 < 0 is arbitrary, it must be that

lim
T→−∞

lim
T ′→∞

∫
III

τ−ke−2πiντdτ = 0.

12



Therefore (7) reduces to∫ ∞+iy0

−∞+iy0

τ−ke−2πiντdτ = −Res(τ−ke−2πiντ ; 0).

Now, the Laurent series of τ−ke−2πiντ is

τ−ke−2πiντ = τ−k
∞∑
l=0

(−2πiν)lτ l

l!

=

∞∑
l=0

(−2πiν)lτ l−k

l!
.

Thus Res(τ−ke−2πiντ ; 0) = (−2πiν)k−1

(k−1)! . Hence∫ ∞+iy0

−∞+iy0

τ−ke−2πiντdτ = (−2πi)k
νk−1

(k − 1)!
.

By (6) we have

αν = (−2πi)k
νk−1

(k − 1)!
,

giving us the Fourier series when m1 = 1.
Then for m1 > 1,

∞∑
n=−∞

(m1τ + n)−k =

∞∑
ν=1

ανe
2πiνm1τ ,

hence

Gk(z) = 2ζ(k) + 2

∞∑
m1=1

(2πi)k

(k − 1)!

∞∑
ν=1

νk−1e2πim1νz

= 2ζ(k) +
2(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e
2πinz, (8)

where σr(n) is the sum of the rth powers of the positive divisors of n, e.g.
σr(6) = 1r + 2r + 3r + 6r.

Therefore limℑ(z)→∞ Gk(z) = 2ζ(k). Hence Gk is holomorphic at infinity,
and the constant term in the Fourier expansion of Gk is 2ζ(k). Since ζ(k) =∑∞

n=1 n
−k ̸= 0, Gk is not the zero function.

For even k ≥ 4, in the following theorem we show that Mk(Γ) decomposes
into an internal direct sum of the cusp forms Sk(Γ) and multiples of the Eisen-
stein series Gk.

Theorem 11. For all even k ≥ 4,

Mk(Γ) = Sk(Γ)⊕GkC.

13



Proof. For f ∈ Mk(Γ), f has a Fourier expansion

f(z) =

∞∑
n=0

ane
2πiz, an ∈ C.

Let h = f − a0

2ζ(k)Gk. Then h ∈ Sk(Γ), and f = h + a0

2ζ(k)Gk where a0

2ζ(k)Gk ∈
GkC. Furthermore, the only multiple of Gk with zero constant term in its
Fourier expansion is the zero function. Hence the intersection of Sk(Γ) and
GkC is the zero subspace of Mk(Γ). Thus Mk(Γ) = Sk(Γ)⊕GkC.

5 The Dedekind eta function

We would like to give an explicit example of a nonzero cusp form. We will
construct this using the following function.

Definition 12. The Dedekind eta function η : H → C is defined by

η(z) = q1/24
∞∏

n=1

(1− qn) (9)

for q = e2πiz.

We will now show that the Dedekind eta function is holomorphic on H and
has no zeros in H. This will be done by showing that the infinite product defining
η converges uniformly on all compact subsets of H. We will prove the uniform
convergence of this infinite product by results about the uniform convergence
of series.

Let an be a sequence of complex numbers such that the series
∑∞

n=1 log(1+

an) converges. Here log(1 + z) = −∑∞
n=1

zn

n for |z − 1| < 1 (the open unit disc

with center 1+0i). For all N , exp(
∑N

n=1 log(1+an)) =
∏N

n=1(1+an). Since the
exponential function is continuous, we have

∏∞
n=1(1 + an) = exp(

∑∞
n=1 log(1 +

an)) ̸= 0.
Let K be a compact subset of H. Let z0 ∈ K such that |e2πiz0 | is maximum,

and put q0 = e2πiz0 . Since |q0| < 1, there is some m such that for all n ≥ m,
|qn0 | < 1

2 . Now, let z ∈ K, and put q = e2πiz. For all n ≥ m,

| log(1− qn)| ≤ |qn|+ |qn|2
2

+ . . .

≤ |qn0 |+
|qn0 |2
2

+ . . .

≤ |qn0 |+ |qn0 |2 + . . .

= |qn0 |
1

1− |qn0 |

< |qn0 |
1

1− 1
2

= 2|qn0 |.

14



But the series
∑∞

n=m |q0|n converges (since |q0| < 1). Hence by the Weierstrass
M -test,

∑∞
n=1 log(1− e2πinz) converges uniformly on K.

Let hm be a sequence of continuous functions that converge uniformly on K
to a (continuous) function h. Then there exists an N such that for all m ≥ N ,
|hm(z)−h(z)| < 1 for all z ∈ K. Since h is continuous, h(K) is compact, hence
it is contained in a closed disc, of radius r. Let D be the closed concentric disc
with radius r + 1. Then hm(K) ⊆ D for all m ≥ N . Now let ϵ > 0 be given.
Since exp is continuous on the compact set D, it is uniformly continuous on
D [6, Theorem 4.19]. Hence there exists a δ > 0 such that if w1, w2 ∈ D and
|w1 − w2| < δ, then | exp(w1) − exp(w2)| < ϵ. But since hm → h uniformly on
K, there exists an M ≥ N such that for all m ≥ M , |hm(z)− h(z)| < δ for all
z ∈ K. So | exp(hm(z))− exp(h(z))| < ϵ for all m ≥ M, z ∈ K. Thus exp ◦ hm

converges uniformly on K to exp ◦ h. Setting hm =
∑m

n=1 log(1 − e2πinz), we
find that the infinite product

∏∞
n=1(1− e2πinz) converges uniformly on K.

Since the infinite product
∏∞

n=1(1− e2πinz) converges uniformly on all com-
pact subsets of H, η(z) = eπiz/12

∏∞
n=1(1−e2πinz) is a holomorphic function H →

C [5, Chapter V, Theorem 1.1]. As η(z) = eπiz/12 exp(
∑∞

n=1 log(1− e2πinz)) for
all z ∈ H, η(z) ̸= 0 for all z ∈ H.

The following theorem shows how η transforms under B =

(
0 −1
1 0

)
, one of

the two generators of the modular group Γ, by Theorem 2. After this theorem,
we can then show how η transforms under the whole modular group Γ. Our
proof of the following theorem follows [2, Theorem 2, Chapter VIII].

Theorem 13. For all z ∈ H,

η(
−1

z
) =

√
z

i
· η(z),

where
√

is the principal branch of the square root, holomorphic on the plane

with the ray {z ∈ C : ℑ(z) = 0,ℜ(z) ≤ 0} removed.

Proof. η(−1
z ) and

√
z
i · η(z) are holomorphic functions of z on H. If they are

equal on a set with an accumulation point in H then they are equal on all of H
by the identity theorem for holomorphic functions [5, Chapter III, Theorem 1.2].
It therefore suffices to prove the theorem for purely imaginary z = iy, y > 0.
Suppose now that z = iy, y > 0.

Since η(z) ̸= 0 for y > 0, we can take logarithms in (9), and use the series
expansion

log(1− e2πimz) = −
∞∑
k=1

1

k
e2πikmz, ℑ(z) > 0, m = 1, 2, . . .

to obtain

log η(z) =
πiz

12
+

∞∑
m=1

log(1− e2πimz) =
πiz

12
−

∞∑
m=1

∞∑
k=1

1

k
e2πikmz. (10)
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The double series converges absolutely, because |e2πikmz| = e−2πkmy, y > 0.
Since ℑ(z) > 0, we have ℑ(− 1

z ) > 0. We can therefore replace z with − 1
z in

(10) to obtain

log η(−1

z
) = − πi

12z
−

∞∑
m=1

∞∑
k=1

1

k
e−2πikm/z. (11)

Since

∞∑
m=1

e2πikmz =
e2πikz

1− e2πikz
and

∞∑
m=1

e−2πikm/z =
e−2πik/z

1− e−2πik/z
,

to prove to the theorem it suffices, by (10) and (11), to prove

−πiz

12
− πi

12z
+

∞∑
k=1

1

k
(

e2πikz

1− e2πikz
− e−2πik/z

1− e−2πik/z
) =

1

2
log

z

i
. (12)

Now, the nth partial sum of the infinite series in (12) can be written as

n∑
k=1

1

2k
(

2e2πikz

1− e2πikz
+ 1− 2e−2πik/z

1− e−2πik/z
− 1)

=

n∑
k=1

i

2k
(−i

1 + e2πikz

1− e2πikz
+ i

1 + e−2πik/z

1− e−2πik/z
)

=

n∑
k=1

i

2k
(cotπkz + cot

πk

z
)

=

n∑
k=−n

k ̸=0

i

4k
(cotπkz + cot

πk

z
),

(13)

where cot s = i e
2is+1

e2is−1 = cos s
sin s is the cotangent function.

To prove the theorem, by (13) it suffices to prove that

−πi

12
(z +

1

z
) +

n∑
k=−n

k ̸=0

i

4k
(cotπkz + cot

πk

z
) → 1

2
log

z

i
, as n → +∞. (14)

This will be done by applying the residue theorem to a certain path integral, of
a suitably chosen function.

Let

φ(s) = cot s · cot s
z
, ν = π(n+

1

2
), (15)

Since sin(s) = eis−e−is

2i has a simple zero at s = nπ and no other zeros, and

cos(s) = eis+e−is

2 has a simple zero at nπ + π/2 and no other zeros, n ∈ Z, the
function cot(s) has a simple zero at s = nπi+π/2 and a simple pole at s = nπ,

n ∈ Z, and no other zeros or poles. Therefore φ(νs)
s is meromorphic, with simple

16



poles at s = πk
ν and s = πk

ν z, where k is any nonzero integer, and a triple pole
at s = 0, and has no other poles.

The Laurent expansion of φ(νs)
s about s = 0 is found by noting that

cot s =
cos s

sin s

=
1− s2

2 + . . .

s(1− s2

6 + . . .)

=
1

s
(1− s2

2
+ . . .)(1 +

s2

6
+ . . .)

=
1

s
− s

3
+ . . . ,

and so
φ(νs)

s
=

1

s
(
1

νs
− νs

3
+ . . .)(

z

νs
− νs

3z
+ . . .).

Furthermore, cot s has period π, because

cot(s+ π) = i
e2i(s+π) + 1

e2i(s+π) − 1
= i

e2is + 1

e2is − 1
= cot s.

Thus the Laurent series of cot(νs) about s = πk
ν is

1

νs− πk
− νs− πk

3
+ . . . =

1

ν(s− πk
ν )

− ν(s− πk
ν )

3
+ . . . ,

and the Laurent series of cot(νsz ) about s = πk
ν z is

1
νs
z − πk

−
νs
z − πk

3
+ . . . =

z

ν(s− πk
ν z)

− ν(s− πk
ν z)

3z
+ . . . .

The residues of φ(νs)
s at s = 0, s = πk

ν , and s = πk
ν z are respectively

−1

3
(z +

1

z
),

ν

πk
Res(cot(νs);

πk

z
) cot

πk

z
,

ν

πkz
cot(πkz)Res(cot

νs

z
;
πk

ν
z),

i.e.

−1

3
(z +

1

z
),

1

πk
cot

πk

z
,

1

πk
cotπkz.

Let P denote the parallelogram with vertices at A(s = 1), B(s = z = iy),
C(s = 1) and D(s = −z = −iy) oriented counterclockwise, shown in Figure 3.
Then since ν = π(n+ 1

2 ), the residue theorem implies that

1

2πi

∫
P

φ(νs)

s
ds = −1

3
(z +

1

z
) +

n∑
k=−n

k ̸=0

1

πk
(cotπkz + cot

πk

z
).
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Figure 3: Paths of integration of φ(νs)
s , ν = π(n+ 1

2 )

B(s = z)

D(s = −z)

A′

B′

−nπz/ν

−nπ/ν −π/ν

−zπ/ν

A(s = 1)C(s = −1)
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Here the initial term is the residue of φ(νs)
s at the triple pole s = 0, and the

summation is over the residues of φ(νs)
s at the simple poles s = πk

ν and s = πk
ν z

respectively; the function φ(νs)
s has no other poles inside P . Thus,∫

P

φ(νs)

8s
ds = −πi

12
(z +

1

z
) +

n∑
k=−n

k ̸=0

i

4k
(cotπkz + cot

πk

z
).

To prove (14) it therefore suffices to prove that

lim
n→∞

∫
P

φ(νs)

8s
ds =

1

2
log

z

i
, ν = π(n+

1

2
). (16)

Because cot s has period π, and | cot s| < M1 for s ∈ P with −π
2 ≤ ℜ(s) ≤ π

2 ,
|s| ≥ δ0 > 0 (since the only pole of cot s with real part between −π/2 and π/2
is 0), it follows that

|φ(νs)
s

| < M, s ∈ P, ν = π(n+
1

2
), n = 1, 2, . . . . (17)

Here M is independent of s and ν. As well, since

cot s = i
e2πis + 1

e2πis − 1
,

we have

cot s →
{
−i, as ℑ(s) → +∞,

+i, as ℑ(s) → −∞.
(18)

Let K be a compact subset of the upper half plane H, and let ϵ > 0. As
ν → ∞, ℑ(νs) → ∞ for s ∈ K. Thus by (18), cot νs → −i as ν → ∞ uniformly
for s ∈ K (since as K is compact, there is an s ∈ K such that ℑ(s) is minimum).
Similarly, cot νs → +i as ν → +∞ uniformly in every compact set in the lower
half plane ℑ(s) < 0, cot νs

z → −i as ν → +∞ uniformly in every compact set
in the left half plane ℜ(s) < 0, and cot νs

z → +i as ν → +∞ uniformly in every
compact set in the right half plane ℜ(s) > 0.

To prove (16), we shall show that

lim
n→∞

∫
P

φ(νs)

s
ds = (

∫ z

1

−
∫ −1

z

+

∫ −z

−1

−
∫ 1

−z

)
ds

s
, (19)

where the integrals on the right hand side are along the respective paths AB,
BC, CD, DA of the parallelogram P . We will then show that the sum of the
integrals on the right hand side is equal to 4 log z

i , which would prove (16).
We first split the integral along the path AB into three parts, from A to

A′, A′ to B′, and B′ to B, such that the distances |AA′| and |B′B| are equal
to δ > 0, to be chosen sufficiently small. From above, φ(νs) → (+i)(−i) = 1
uniformly as ν → ∞, for s in the compact set A′B′. Therefore, for any ϵ′ > 0
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Figure 4: Simple curve L joining A and C

B(s = z)

C(s = −1) A(s = 1)

L

there exists a ν0 such that for all ν ≥ ν0, |φ(νs) − 1| < ϵ′ for s ∈ A′B′. But

|s| has a minimum δ1 > 0 on A′B′, so |φ(νs)−1
s | < ϵ′

δ1
for s ∈ A′B′. By (17),

|φ(νs)−1
s | < M + 1

δ1
for all s ∈ AA′, B′B. Hence, given ϵ > 0, there exist a δ > 0

and a ν0 such that for all ν ≥ ν0, we have

|
∫ B

A

φ(νs)− 1

s
ds| ≤ |

∫ B′

A′

φ(νs)− 1

s
ds|+ |

∫ A′

A

|+ |
∫ B

B′
|

< |AB| ϵ
′

δ0
+ δ(M +

1

δ1
) + δ(M +

1

δ1
)

< ϵ.

We have just shown that

lim
n→∞

∫ B

A

φ(νs)

s
ds =

∫ B

A

ds

s
=

∫ z

1

ds

s
. (20)

Similar results hold for the other three edges of P . Thus (19) follows, and

lim
n→∞

∫
P

φ(νs)

s
ds = 2(

∫ z

1

ds

s
+

∫ z

−1

ds

s
).

Let L be a simple curve in the upper half plane joining A and C and not
passing through CB or AB, as in Figure 4. Since L is homotopic to the arc of
the unit circle from −1 to 1, which is parameterized by s = eit, π ≤ t ≤ 0, by
[5, Chapter III, Theorem 5.1] we have∫

L

ds

s
=

∫ 0

π

d(eit)

eit
=

∫ 0

π

idt = −πi.
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As 0 is not in the region contained by L and the line segments CB,AB, by the
residue theorem we have

lim
n→∞

∫
P

φ(νs)

s
ds = 4

∫ z

1

ds

s
+ 2

∫
L

ds

s

= 4 log z − 2 · 2πi
2

= 4 log z − 4 log i

= 4 log
z

i
.

This proves (16), and thus the theorem.

The proof of the analog of the automorphy condition for η follows [2, Chapter
VIII, Theorem 3].

Theorem 14. Suppose a, d, b, c are integers such that ad− bc = 1. Then for all
z ∈ H,

η(
az + b

cz + d
) = ω

√
cz + d · η(z) (21)

where ω ∈ C is a 24th root of unity that depends on a, b, c, d, but not on z.

Proof. First we note that for all z ∈ H,

η(z ± 1) = e
2π(z±1)

24

∞∏
n=1

(1− e2nπiz(z±1)) = e±πi/12η(z). (22)

Let A =

(
1 1
0 1

)
, B =

(
0 −1
−1 0

)
, and let M =

(
a b
c d

)
∈ Γ. If M = A±1

or B = B−1 then
η(Mz)24 = (cz + d)12η(z)24 (23)

holds because of (22) and Theorem 13 respectively. Now suppose (23) holds for

some fixed M =

(
a b
c d

)
∈ Γ. Then

MA±1 =

(
a b
c d

)(
1 ±1
0 1

)
=

(
a ±a+ b
c ±c+ d

)
and

MB =

(
a b
c d

)(
0 −1
−1 0

)
=

(
−b −a
−d −c

)
.

Hence

η(MA±1z) = (c(z ± 1) + d)12η(z ± 1)24 = (cz ± c+ d)12η(z)

by (22). Therefore so (23) holds for MA±1. Furthermore

η(MBz)24 = (c(
−1

z
) + d)12η(

−1

z
)24 = (

−c+ dz

z
)12z12η(z)24 = (dz− c)12η(z)24
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by Theorem 13. Therefore (23) holds for MB = MB−1. Since Γ is generated

by A and B, by Theorem 2, therefore (23) holds for all M =

(
a b
c d

)
∈ Γ.

For M =

(
a b
c d

)
∈ Γ, taking the 24th roots of both sides of (23) gives

η(Mz) = ω(z)
√
cz + d · η(z) for some function γ that takes values in the 24th

roots of unity. But η(Mz) and
√
cz + d · η(z) are continuous functions of z on

H, and
√
cz + d · η(z) ̸= 0 for all z ∈ H, so ω(z) is a continuous function on

H. Since ω(z) is a continuous function from the connected set H to the discrete
set of 24th roots of unity, it must be a constant 24th root of unity ω, which
completes the proof.

Now we can explicitly construct a cusp form. By taking the 24th powers of
each side of (21) we find that η24 satisfies the automorphy condition η(γz)24 =
j(γ, z)12η(z) for all γ ∈ Γ and z ∈ H. This leads us to define the following
function.

Definition 15. The modular discriminant ∆(z) is defined by

∆(z) = η(z)24

for z ∈ H.

Corollary 16. The modular discriminant ∆ is a cusp form of weight 12.

Proof. That ∆ is a holomorphic function H → C and that ∆ is holomorphic at
infinity follows immediately from ∆ = η24.

Suppose a, b, c, d ∈ Z such that ad− bc = 1. Then for γ ∈ Γ, z ∈ H, Theorem
14 tells us that

∆(γz) = η(γz)24

= (
√

j(γ, z) · η(z))24
= j(γ, z)12∆(z).

This shows that ∆ satisfies the automorphy condition. Therefore ∆ is a modular
form of weight 12.

Moreover,

lim
ℑ(z)→∞

∆(z) = lim
ℑ(z)→∞

η(z)24 = ( lim
ℑ(z)→∞

η(z))24 = 0,

showing that ∆ is a cusp form of weight 12.

Since ∆ is a cusp form, it has a Fourier expansion ∆(z) =
∑∞

n=1 anq
n,

q = e2πiz. The Ramanujan tau function is defined by τ(n) = an for all n,
that is, the Ramanujan tau function is defined by the Fourier coefficients of the
modular discriminant.

We give the following estimates for the magnitude of the Fourier coefficients
of cusp forms. The following estimates will be employed in defining a certain
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inner product on Sk(Γ) in §6. Moreover, since the Fourier coefficients of cusp
forms are related to number theoretic functions, estimates on their magnitude
give us number theoretic information. The proof of the following theorem follows
[8, Chapter VII, Theorem 5].

Theorem 17. If f ∈ Sk(Γ) with Fourier expansion

f(z) =

∞∑
n=1

anq
n, q = e2πiz,

then an = O(nk/2) for all n ≥ 1.

Proof. Indeed the series
∑∞

n=1 anq
n−1 defines a holomorphic function in a closed

disc D about q = 0 of radius r for any 0 < r < 1. Let such an r be fixed. Then∑∞
n=1 anq

n−1 has a maximum value in the compact set D. Hence for z = x+iy,
as y → ∞,

|f(z)| = O(q) = O(e−2πy), q = e2πi(x+iy) ∈ D,

since for all sufficiently large y, e2πi(x+iy) ∈ D. Let φ(z) = |f(z)|yk/2 for

z ∈ H, y = ℑ(z). Then for all g =

(
a b
c d

)
∈ Γ, ℑ(gz) = ℑ(z)

|cz+d|2 . Hence

φ(gz) = |f(gz)|( y

|cz + d|2 )
k/2

= |(cz + d)kf(z)| yk/2

|cz + d|k

= |cz + d|k|f(z)| yk/2

|cz + d|k
= φ(z),

so φ is invariant under Γ. Since f is a cusp form, φ(z) → 0 as y → ∞. Since φ
is continuous on F , the closure of the fundamental domain F , it is bounded on
the compact set obtained by removing all z ∈ F with ℑ(z) > y0 some y0 > 0.
Therefore for some M > 0, |φ(z)| ≤ M for all z ∈ F . The invariance of φ under
Γ implies that |φ(z)| ≤ M for all z ∈ H. Hence

|f(z)| ≤ My−k/2, z ∈ H, y = ℑ(z). (24)

Let y > 0 be fixed and let Cy be the circle about the origin with radius y,
parametrized by q = e2πi(x+iy), 0 ≤ x ≤ 1. Then using Cauchy’s formula [5,
Chapter III, Theorem 7.1],

an =
1

2πi

∫
Cy

f(z)

qn+1
dq =

∫ 1

0

f(x+ iy)q−ndx.

Consequently, by (24),

|an| ≤
∫ 1

0

My−k/2e2πnydx = My−k/2e2πny.

But this inequality is valid for all y > 0. Letting y = 1/n, we obtain |an| ≤
e2πMnk/2, proving the claim.
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6 The vector spaces of modular forms

In this section we will prove several results about the vector space Mk(Γ), and
in particular the subspace Sk(Γ). We will explicitly determine the dimension of
Mk(Γ). After this we will introduce an inner product on the subspace of cusp
forms Sk(Γ).

For modular forms f, g where g has no zeros in H, we shall define their
quotient f/g by (f/g)(z) = f(z)/g(z). Let ord∞ f be the order of the zero f at
infinity.

Lemma 18. If f ∈ Mk(Γ), g ∈ Ml(Γ) such that g has no zeros in H and
ord∞ f ≥ ord∞ g, then f/g ∈ Mk−l(Γ).

Proof. Clearly f/g is holomorphic on H. Since ord∞ f ≥ ord∞ g, f/g is holo-
morphic at infinity.

Let γ ∈ Γ, and let z ∈ H. Then

(f/g)(γz) =
f(γz)

g(γz)

=
j(γ, z)kf(z)

j(γ, z)lg(z)

=
j(γ, z)k−lf(z)

g(z)

= j(γ, z)k−l(f/g)(z),

which shows that f/g ∈ Mk−l(Γ).

The following lemma shows that a modular form of weight 0 is constant.
This lemma will be used in determining the dimension of Mk(Γ), for which
we need to show that certain modular forms must be scalar multiples of other
modular forms. Our proof of this lemma follows [3, Chapter IX, Notes on §9.11].

Lemma 19. A modular form of weight 0 is constant.

Proof. Let f be a modular form of weight 0. Let F = {τ : |τ | > 1, |ℜ(τ)| < 1/2},
a fundamental domain for Γ. Then for τ = x + iy ∈ F , limy→∞ f(τ) = α for
some α ∈ C. Since f − α is also a modular form of weight 0, we may suppose
without loss of generality that α = 0.

Because for τ = x+ iy, limy→∞ f(τ) = 0, there is a y′0 > 0 such that for all
τ = x+ iy with y > y′0, |f(τ)| < 1. Then in the compact set {τ = x+ iy ∈ F :
y ≤ y′0}, |f(τ)| is bounded. Hence |f(τ)| is bounded on F .

Let M = supτ∈F |f(τ)| < ∞. If M ̸= 0, then there exists a y0 > 0 such

that for all τ = x + iy ∈ F with y > y0, |f(τ)| < M/2. Thus |f(τ)| attains
its maximum in K = {τ = x + iy ∈ F : y ≤ y0}. By the maximum modulus
principle [5, Theorem 1.3, Chapter III], |f(τ)| attains its maximum at some τ0
on the boundary of K, so |f(τ0)| = M . If f is not constant then there must be
a τ2 ∈ H such that |f(τ2)| > |f(τ1)|. But since F is a fundamental domain for
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Γ, there exists a γ ∈ Γ such that γτ2 ∈ F . As f is a modular form of weight 0,
M ≥ |f(γτ2)| = |f(τ2)| > M , a contradiction. Thus f is constant.

It will be convenient to define the normalized Eisenstein series Ek by

Ek(z) =
Gk(z)

2ζ(k)
.

where ζ(s) =
∑∞

n=1 n
−s is the Riemann zeta function. Certainly Ek is a modular

form of weight k, since Gk is. Thus Ek has a Fourier series
∑∞

n=0 anq
n. We

will use the fact that a0 = 1 and a1 = (2πi)k

(k−1)!ζ(k) , which are immediate from

the Fourier series (8) of Gk. In particular, since ζ(4) = π4

90 and ζ(6) = π6

945 [8,
Proposition 7, Chapter VII], the coefficient a1 of q in the Fourier expansions of
E4 and E6 is respectively 240 and −504.

The proof of the following theorem follows [1, Proposition 1.3.3]. It will be
used in the proof of the general formula for the dimension of Mk(Γ).

Theorem 20. The space of cusp forms of weight 12 is one dimensional, spanned
by the modular discriminant ∆. Moreover,

∆ =
1

1728
(E3

4 − E2
6). (25)

Proof. Let f ∈ S12(Γ). ∆ has no zeros in H and ord∞ f ≥ 1 = ord∞ ∆. By
Lemma 18, f/∆ is a modular form of weight 0. Thus f/∆ is a constant, so
f = c∆ for some c ∈ C.

We work out the first several terms of the Fourier expansion of 1
1728 (E

3
4−E2

6)
to find

1

1728
(E3

4 − E2
6) = q − 24q2 + 252q3 − 1472q4 + 4830q5 + . . . .

This implies that 1
1728 (E

3
4 −E2

6) is a cusp form of weight 12, and by the above,
1

1728 (G
3
4 − G2

6) = c∆ for some constant c ∈ C. Thus comparing the Fourier
coefficients of q, we see that c = 1, completing the proof.

The proof of the following fact follows the sketch [1, Exercise 1.3.3]. A
consequence is that G4(ρ) = 0 for ρ = e2πi/3, which we will use in our proof of
the dimension formula for Mk(Γ).

Lemma 21. Let ρ = e2πi/3. If 3 does not divide k, then f(ρ) = 0 for any
modular form of weight k.

Proof. γ =

(
1 1
−1 0

)
∈ Γ, and

γρ =
ρ+ 1

−ρ
= −1−1

ρ
= −1−e−2πi/3 = −1−(−1/2−i

√
3/2) = −1/2+i

√
3/2 = ρ.
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Certainly then f(γρ) = f(ρ). On the other hand, as f is a modular form of
weight k, f(γρ) = j(γ, ρ)kf(ρ). Since j(γ, ρ) = −ρ,

f(ρ) = (−ρ)kf(ρ) = e−2kπi/3f(ρ).

But k is not a multiple of 3, so it must be that f(ρ) = 0.

Now we can determine the dimension of Mk(Γ). Our proof of the following
theorem follows [1, Proposition 1.3.4].

Theorem 22. If k is an even nonnegative integer with k = 12j+ r for 0 ≤ r ≤
10, then

dimM12j+r(Γ) =

{
j + 1, if r = 0, 4, 6, 8 or 10,

j otherwise

Proof. We will first show that for k = 4, 6, 8 or 10, Sk(Γ) is the zero space
and thus that Mk(Γ) is generated by Gk. Let f ∈ Sk(Γ), and suppose by
contradiction that f is not the zero function. Now, for h = 6(12−k), Gh(f/∆)6

is a modular form of weight 0 by Lemma 18. Hence it is a constant c. So
Gh = c∆6/f6. This implies that Gh has no zeros in H, because ∆ has no zeros
in H and f is holomorphic in H. For H = h/12, H = 1, 2, 3 or 4. We consider
∆H/Gh. Since Gh has no zeros in H and does not have a zero at infinity, it
follows that ∆H/Gh is a modular form of weight 0. ∆H/Gh has a zero of order
H at infinity but is not the zero function, a contradiction. This means that f
must be the zero function. Hence for k = 4, 6, 8 or 10, Mk(Γ) is spanned by the
Eisenstein series Gk and thus is one dimensional.

We now show that M2(Γ) is the zero space. Suppose by contradiction that f
is a nonzero element of M2(Γ). Then fG4 ∈ M6(Γ). From the above, we know
that M6(Γ) is generated by G6, hence fG4 = cG6 for some c ∈ C. Because
f is not the zero function, c ̸= 0. By Lemma 21, G4(ρ) = 0 for ρ = e2πi/3.
This implies that G6(ρ) = 0, as c ̸= 0. But then by (25), ∆(ρ) = 0, which
is a contradiction. Therefore f must be the zero function. So M2(Γ) is the
zero space. Finally, M0(Γ) is of course one dimensional, as it spanned by any
constant nonzero function H → C.

For k ≥ 12, we shall show that f 7→ ∆f is a vector space isomorphism
Mk−12(Γ) → Sk(Γ). Clearly this mapping is linear over C. If ∆f is the zero
function then f must be the zero function (since ∆ has no zeros in H), so this
mapping is injective. If f ∈ Sk(Γ), then f/∆ is a modular form of weight k−12.
However, f/∆ is sent by this mapping to f . This shows that this mapping is
a surjection. Therefore the vector spaces Mk−12(Γ) and Sk(Γ) are isomorphic,
and thus have the same dimension.

We now introduce an inner product (·, ·) on the space of cusp forms of a
given weight k. We will show that indeed (·, ·) is an inner product, that is, that
it is linear in the first argument, conjugate symmetric, and positive definite.
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Definition 23. The Petersson inner product (·, ·) on Sk(Γ) is defined, for f, g ∈
Sk(Γ), by

(f, g) =

∫
F

f(z)g(z)yk
dxdy

y2
, z = x+ iy, x, y ∈ R, (26)

where F = {z : |z| > 1, |ℜ(z)| < 1
2}.

Theorem 24. (·, ·) is an inner product on Sk(Γ).

Proof. By (24), f, g = O(y−k/2), i.e., there exist C,D > 0 such that |f(z)| <
Cy−k/2, |g(z)| < Dy−k/2 for all sufficiently large y, z = x + iy. Then, since
|g(z)| = |g(z)|,

|
∫
F

f(z)g(z)yk
dxdy

y2
| ≤

∫
F

|f(z)||g(z)|yk dxdy
y2

≤
∫
F

Cy−k/2Dy−k/2yk
dxdy

y2

= CD

∫
F

dxdy

y2

≤ CD

∫ ∞

√
3/2

∫ 1/2

−1/2

dxdy

y2

= CD

∫ ∞

√
3/2

dy

y2

= CD
√
3.

Therefore the integral (26) converges. We shall now show that (·, ·) is an inner
product on Sk(Γ).

That (αf1+f2, g) = α(f1, g)+α(f2, g) for all f1, f2, g ∈ Sk(Γ), α ∈ C, follows
immediately from the fact that integration is linear.

Let f, g ∈ Sk(Γ). Then

(f, g) =

∫
F

f(z)g(z)yk
dxdy

y2

=

∫
F

f(z)g(z)yk
dxdy

y2

= (g, f),

showing that (·, ·) is conjugate symmetric.
Let f ∈ Sk(Γ). If f = 0 on H then (f, f) =

∫
F
0 dxdy = 0. Otherwise, if f is

not identically 0 on H, then there is some z0 ∈ H such that f(z0) ̸= 0. Since F
is a fundamental domain, there exist z′0 ∈ F , g ∈ Γ such that gz0 = z′0. Because
f(gz0) = j(g, z0)

kf(z0) ̸= 0, then f(z′0) ̸= 0. Since f is continuous, there is
some disc D of radius > 0 about z′0 on which f is nonzero. But indeed there is

27



a disc D′ of radius > 0 such that D′ ⊆ D ∩ F . Hence,

(f, f) =

∫
F

f(z)f(z)yk
dxdy

y2

=

∫
F

|f(z)|yk−2dxdy

≥
∫
D′

|f(z)|yk−2dxdy

> 0,

so (f, f) > 0 if f ̸= 0. This verifies that (·, ·) is positive definite. Therefore (·, ·)
is an inner product on Sk(Γ).
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