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1 Equivalent statements of Kronecker’s theorem

We shall now give two statements of Kronecker’s theorem, and prove that
they are equivalent before proving that they are true.

Theorem 1. If θ1, . . . , θk, 1 are real numbers that are linearly independent over
Z, α1, . . . , αk are real numbers, and N and ϵ are positive real numbers, then
there are integers n > N and p1, . . . , pk such that for m = 1, . . . , k,

|nθm − pm − αm| < ϵ.

Theorem 2. If θ1, . . . , θk are real numbers that are linearly independent over
Z, α1, . . . , αk are real numbers, and T and ϵ are positive real numbers, then
there is a real number t > T and integers p1, . . . , pk such that for m = 1, . . . , k,

|tθm − pm − αm| < ϵ.

We now prove that the above two statements are equivalent.1

Lemma 3. Theorem 1 is true if and only if Theorem 2 is true.

Proof. Assume that Theorem 2 is true and let θ′1, . . . , θ
′
k, 1 be real numbers that

are linearly independent over Z, let α1, . . . , αk be real numbers, let N > 0 and
let 0 < ϵ < 1. Let θm = θ′m − qm with 0 < θm ≤ 1. Because θ′1, . . . , θ

′
k, 1 are

linearly independent over Z, so are θ1, . . . , θk, 1. Using Theorem 2 with k + 1
instead of k, N + 1 instead of T , 1

2ϵ instead of ϵ, applied with

θ1, . . . , θk, 1, α1, . . . , αk, 0,

there is a real number t > N + 1 and integers p1, . . . , pk, pk+1 such that for
m = 1, . . . , k,

|tθm − pm − αm| < 1

2
ϵ,

1K. Chandrasekharan, Introduction to Analytic Number Theory, pp. 92–93, Chapter VIII,
§5.
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and

|t− pk+1| <
1

2
ϵ.

Then pk+1 > t− 1
2ϵ > t− 1

2 > N , and for m = 1, . . . , k, because 0 < θm ≤ 1,

|pk+1θm − pm − αm| = |pk+1θm − pm + tθm − tθm − αm|
≤ |tθm − pm − αm|+ |(pk+1 − t)θm|
≤ |tθm − pm − αm|+ |pk+1 − t|

<
1

2
ϵ+

1

2
ϵ.

Thus for n = pk+1, we have n > N , and for m = 1, . . . , k,

|nθ′m − (nqm + pm)− α| = |nθm − pm − αm| < ϵ,

proving Theorem 1.
Assume that Theorem 1 is true. The claim of Theorem 2 is immediate when

k = 1. For k > 1, let θ′1, . . . , θ
′
k be linearly independent over Z, let α1, . . . , αk

be real numbers, and let T and ϵ be positive real numbers. Let θm = |θ′m| > 0,
and because θ′1, . . . , θ

′
k are linearly independent over Z, so are θ1, . . . , θk, and

then
θ1
θk
,
θ2
θk
, . . . ,

θk−1

θk
, 1

are linearly independent over Z. Applying Theorem 1 with N = Tθk and

θ1
θk
,
θ2
θk
, . . . ,

θk−1

θk
, sgn θ′1 · α1, . . . , sgn θ

′
k−1 · αk−1,

we get that there are integers n > Tθk and p1, . . . , pk−1 such that for m =
1, . . . , k − 1, ∣∣∣∣nθmθk − pm − sgn θ′m · αm

∣∣∣∣ < 1

2
ϵ.

Let t = n
θk
. Then t > T and for m = 1, . . . , k − 1,

|tθm − pm − sgn θ′m · αm| =
∣∣∣∣nθmθk − pm − sgn θ′m · αm

∣∣∣∣ < 1

2
ϵ,

and

|tθk − n| = 0 <
1

2
ϵ.

On the other hand, applying Theorem 1 with N = T and

θ1, . . . , θk, 0, . . . , 0, sgn θ′k · αk,

we get that there are integers ν > T and q1, . . . , qk such that form = 1, . . . , k−1,

|νθm − qm| < 1

2
ϵ

2



and

|νθk − qk − sgn θ′k · αk| <
1

2
ϵ.

For m = 1, . . . , k − 1,

|(t+ ν)θm − (pm + qm)− sgn θ′m · αm| ≤ |tθm − pm − sgn θ′m · αm|+ |νθm − qm|

<
1

2
ϵ+

1

2
ϵ

and

|(t+ ν)θk − (pk + qk)− sgn θ′k · αk| ≤ |tθk − pk|+ |νθk − qk − sgn θ′k · αk|

<
1

2
ϵ+

1

2
.

Therefore for m = 1, . . . , k,

|(t+ ν)θ′m − sgn θ′m · (pm + qm)− αm|
=|sgn θ′m · (t+ ν)θm − sgn θ′m · (pm + qm)− αm|
=|(t+ ν)θm − (pm + qm)− sgn θ′m · αm|
<ϵ,

which proves Theorem 2.

2 Proof of Kronecker’s theorem

We now prove Theorem 2.2

Proof of Theorem 2. Let θ1, . . . , θk be real numbers that are linearly indepen-
dent over Z, let α1, . . . , αk be real numbers, and let T and ϵ be positive real
numbers.

For real c and τ > 0,

lim
τ→∞

1

τ

∫ τ

0

eictdt =

{
0 c ̸= 0

1 c = 0.

For c1, . . . , cr ∈ R with cm ̸= cn for m ̸= n, and for bν ∈ C, let

χ(t) =

r∑
ν=1

bνe
icνt.

Then for 1 ≤ µ ≤ r,

lim
τ→∞

1

τ

∫ τ

0

χ(t)e−icµtdt =

r∑
ν=1

bν lim
τ→∞

1

τ

∫ τ

0

ei(cν−cµ)tdt = bµ.

2K. Chandrasekharan, Introduction to Analytic Number Theory, pp. 93–96, Chapter VIII,
§5.
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Let

F (t) = 1 +

k∑
m=1

e2πi(tθm−αm) = 1 +

k∑
m=1

e−2πiαme2πitθm

and let
ϕ(t) = |F (t)|,

which satisfies 0 ≤ ϕ(t) ≤ k + 1.
Define ϕ : Rk → R by

ψ(x1, . . . , xk) = 1 + x1 + · · ·+ xk

and let p be a positive integer. By the multinomial theorem,

ψp = (1 + x1 + · · ·+ xk)
p

=
∑

ν0+ν1+···+νk=p

(
p

ν0, ν1, . . . , νk

)
xν1
1 · · ·xνk

k

=
∑
ν

aν1,...,νk
xν1
1 · · ·xνk

k ,

for which ∑
ν

aν1,...,νk
= (k + 1)p

and the number of terms in the above sum is
(
p+k
k

)
. We can write F (t) as

F (t) = ψ(e2πi(tθ1−α1), . . . , e2πi(tθk−αk)).

Then

F (t)p =
∑

aν1,...,νk
exp

(
k∑

m=1

νm · 2πi(tθm − αm)

)
.

Because θ1, . . . , θk are linearly independent over Z, for ν ̸= µ it is the case that
2π
∑k

m=1 νmθm ̸= 2π
∑k

m=1 µmθm. Write cν = 2πν · θ and

bν = aν1,...,νk
exp

(
−2πi

k∑
m=1

νmαm

)
,

with which
F (t)p =

∑
bνe

icνt.

Then for each multi-index µ,

lim
τ→∞

1

τ

∫ τ

0

F (t)pe−icµtdt = bµ. (1)

Suppose by contradiction that

lim sup
t→∞

ϕ(t) < k + 1.
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Then there is some λ < k + 1 and some t0 such that when t ≥ t0,

|F (t)| = ϕ(t) ≤ λ.

Thus for p a positive integer,

lim sup
τ→∞

1

τ

∫ τ

0

|F (t)|pdt ≤ lim sup
τ→∞

1

τ

∫ t0

0

|F (t)|pdt+ lim sup
τ→∞

1

τ

∫ τ

t0

|F (t)|pdt

= lim sup
τ→∞

1

τ

∫ τ

t0

|F (t)|pdt

≤ lim sup
τ→∞

1

τ
λp(τ − t0)

= λp.

But then by (1),

|bµ| ≤ lim sup
τ→∞

1

τ

∫ τ

0

|F (t)|pdt ≤ λp,

and then

(k + 1)p =
∑
ν

aν1,...,νk

=
∑
ν

|bν |

≤
∑
ν

λp

≤ λp ·
(
p+ k

k

)
.

Let r = λ
k+1 , for which 0 < r < 1, and so for each positive integer p it holds

that

1 ≤ rp ·
(
p+ k

k

)
. (2)

Now,(
p+ k

k

)
=

(
p+ k

p

)
=

pk

Γ(k + 1)

(
1 +

k(k + 1)

2p
+O(p−2)

)
, p→ ∞.

In particular,

rp ·
(
p+ k

k

)
= O(rp · pk), p→ ∞,

and because 0 < r < 1, rp · pk → 0 as p → ∞, contradicting (2) being true for
all positive integers p. This contradiction shows that in fact

lim sup
t→∞

ϕ(t) ≥ k + 1,
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and because ϕ(t) ≤ k + 1,

lim sup
t→∞

ϕ(t) = k + 1. (3)

Now let 0 < η < 1. By (3) there is some t ≥ T for which ϕ(t) ≥ k + 1 − η.
For 1 ≤ m ≤ k, write

zm = e2πi(tθm−αm) = xm + iym.

It is straightforward from the definition of ϕ(t) that

k + 1− η ≤ ϕ(t) ≤ (k − 1) + |1 + e2πi(tθm−αm)|,

which yields
2 ≥ |1 + e2πi(tθm−αm)| ≥ 2− η.

Because |zm| = 1,

|1 + zm|2 = (1 + xm)2 + y2m = (1 + xm)2 + (1− x2m) = 2 + 2xm,

hence
2 + 2xm ≥ (2− η)2 = 4− 4η + η2 > 4− 4η,

so
1− 2η < xm ≤ 2.

Furthermore,

y2m = 1− x2m = (1− xm)(1 + xm) ≤ 2(1− xm) < 2 · 2η = 4η.

Therefore
|zm − 1|2 = (xm − 1)2 + y2m < 4η2 + 4η < 8η,

hence

2| sinπ(tθm − αm)| = |e2πi(tθm−αm) − 1| < 81/2η1/2 < 4η1/2.

For x ∈ R, denote by ∥x∥ the distance from x to the nearest integer. We check
that

| sin(πx)| = sin(π ∥x∥) ≥ 2

π
· π ∥x∥ = 2 ∥x∥ .

Thus, for each m = 1, . . . , k,

∥tθm − αm∥ < η1/2.

We have taken t ≥ T .Take η1/2 = ϵ, i.e. η = ϵ2, and take pm to be the nearest
integer to tθm − αm, for which |tθm − pm − αm| < ϵ, proving the claim.
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3 Uniform distribution modulo 1

For x ∈ R let [x] be the greatest integer ≤ x, and let {x} = x − [x], called the
fractional part of x. For P = (x1, . . . , xd) ∈ Rd let {P} = ({x1}, . . . , {xd}),
which belongs to the set Q = [0, 1)d. Let Pj = (xj,1, . . . , xj,d), j ≥ 1, be a
sequence in Rd, and for A ⊂ Q let

ϕn(A) = {k : 1 ≤ k ≤ n, {Pj} ∈ A}.

We say that (Pj) is uniformly distributed modulo 1 if for each closed rect-
angle V contained in Q,

lim
n→∞

ϕn(V )

n
= λ(V ),

where λ is Lebesgue measure on Rd: for V = [a1, b1] × · · · [ad, bd], λ(V ) =∏d
j=1(bj − aj).
We have proved that if θ1, . . . , θk, 1 are linearly independent over Z, then

the sequence {nθ} = ({nθ1}, . . . , {nθk}) is dense in Q.a It can in fact be proved
that (nθ) is uniformly distributed modulo 1.3

4 Unique ergodicity

Let X be a compact metric space, let C(X) be the Banach space of continuous
functions X → R, and let M (X) be the space of Borel probability measures on
X, with the subspace topology inherited from C(X)∗ with the weak-* topology.4

One proves that µ and ν in M (X) are equal if and only if
∫
X
fdµ =

∫
X
fdν for

all f ∈ C(X). M (X) is a closed set in C(X)∗ that is contained in the closed
unit ball, and by the Banach-Alaoglu theorem that closed unit ball is compact,
so M (X) is itself compact. C(X)∗, with the weak-* topology, is not metrizable,
but it is the case that M (X) with the subspace topology inherited from C(X)∗

is metrizable.
For a continuous map T : X → X, define T∗ : M (X) → M (X) by

(T∗µ)(A) = µ(T−1A)

for Borel sets A in X. For µn → µ in M (X) and f ∈ C(X), by the change of
variables theorem we have∫

X

fd(T∗µn) =

∫
X

f ◦ Tdµn →
∫
X

f ◦ Tdµ =

∫
X

fd(T∗µ),

which means that T∗µn → T∗µ, and therefore the map T∗ is continuous. We
say that µ ∈ M (X) is T -invariant if T∗µ = µ. Equivalently, T : (X,BX , µ) →
(X,BX , µ) is measure-preserving. We denote by M T (X) the set of T -
invariant µ ∈ M (X). TheKryloff-Bogoliouboff theorem states that M T (X)

3Giancarlo Travaglini, Number Theory, Fourier Analysis and Geometric Discrepancy,
p. 108, Theorem 6.3.

4This is the same as the narrow topology on M (X).

7



is nonempty. It is immediate that M T (X) is a convex subset of C(X)∗. Let
µn ∈ M T (X) converge to some µ ∈ M (X). For f ∈ C(X) we have, because T∗
is continuous,∫

X

fd(T∗µ) = lim
n→∞

∫
X

fd(T∗µn) = lim
n→∞

∫
X

fdµn =

∫
X

fdµ,

which shows that µ is T -invariant. Therefore M T (X) is a closed set in M (X),
and we have thus established that M T (X) is a nonempty compact convex set.

A measure µ ∈ M T (X) is called ergodic if for any A ∈ BX with T−1A = A
it holds that µ(A) = 0 or µ(A) = 1. It is proved that µ ∈ M T (X) is ergodic if
and only if µ is an extreme point of M T (X).5 The Krein-Milman theorem
states that if S is a nonempty compact convex set in a locally convex space,
then S is equal to the closed convex hull of the set of extreme points of S.6 In
particular this shows us that there exist extreme points of S. Let E T (X) be the
set of extreme points of M T (X), and applying the Krein-Milman theorem with
M T (X), which is a nonempty compact convex set in the locally convex space
C(X)∗, we have that M T (X) is equal to the closed convex hull E T . That is,
M T (X) is equal to the closed convex hull of the set of ergodic µ ∈ M T (X).

Choquet’s theorem7 tells us that for each µ ∈ M T (X) there is a unique
Borel probability measure λ on the compact metrizable space M T (X) such that

λ(E T (X)) = 1

and for all f ∈ C(X), ∫
X

fdµ =

∫
E T (X)

(∫
X

fdν

)
dλ(ν).

We have established that M T (X) contains at least one element. T is called
uniquely ergodic if M T (X) is a singleton. If M T (X) = {µ0} then µ0 is
an extreme point of M T (X), hence is ergodic. If E T (X) = {µ0}, then for
µ ∈ M T (X), by Choquet’s theorem there is a unique Borel probability measure
λ on M T (X) satisfying λ = δµ0

and∫
X

fdµ =

∫
{µ0}

(∫
X

fdν

)
dλ(ν),

i.e. ∫
X

fdµ =

∫
X

fdµ0,

which means that µ = µ0. Therefore, T is uniquely ergodic if and only if E T (X)
is a singleton. It can be proved that T is uniquely ergodic if and only if for each

5Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards Number The-
ory, p. 99, Theorem 4.4.

6Walter Rudin, Functional Analysis, second ed., p. 75, Theorem 3.23.
7Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards Number The-

ory, p. 103, Theorem 4.8.
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f ∈ C(X) there is some Cf such that

1

N

N−1∑
n=0

f(Tnx) → Cf

uniformly on X.8 This constant Cf is equal to
∫
X
fdµ, where M T (X) = {µ}.

For a topological group X and for g ∈ X, define Rg(x) = gx, which is
continuous X → X. For a compact metrizable group, there is a unique Borel
probability measure mX on X that is Rg-invariant for every g ∈ X, called the
Haar measure on X. Thus for each g ∈ X, the Haar measure mX belongs to
MRg (X), and for Rg to be uniquely ergodic means that mX is the only element

of MRg (X). For a locally compact abelian group X, let X̂ be its Pontryagin
dual. The following theorem gives a condition that is equivalent to a translation
being uniquely ergodic.9

Theorem 4. Let X be a compact metrizable group and let g ∈ X. Rg is uniquely

ergodic if and only if X is abelian and χ(g) ̸= 1 for all nontrivial χ ∈ X̂.

Let T = R/Z, let X = Td = Rd/Zd, which is a compact abelian group, and

let g = (α1, . . . , αd) ∈ Rd. For χ ∈ X̂ = Zd, χ = (k1, . . . , kd),

χ(g) = exp

2πi

d∑
j=1

kjαj

 .

χ(g) = 1 if and only if
∑d

j=1 kjαj ∈ Z if and only if there is some kd+1 ∈ Z
such that k1α1 + · · · + kdαd + kd+1 = 0. Therefore for α1, . . . , αd ∈ R, the set
{α1, . . . , αd, 1} is linearly independent over Z if and only if for g = (α1, . . . , αd),
the map Rg(x) = x+ g, Td → Td, is uniquely ergodic.

8Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards Number The-
ory, p. 105, Theorem 4.10.

9Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards Number The-
ory, p. 108, Theorem 4.14.
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