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1 Equivalent statements of Kronecker’s theorem

We shall now give two statements of Kronecker’s theorem, and prove that
they are equivalent before proving that they are true.

Theorem 1. If0y,...,0k, 1 are real numbers that are linearly independent over
Z, ay,...,ar are real numbers, and N and € are positive real numbers, then
there are integers n > N and p1, ..., px such that form=1,... k,

|n9m — Pm — O‘m| < e

Theorem 2. If 0y,...,0; are real numbers that are linearly independent over
Z, aq,...,ar are real numbers, and T and € are positive real numbers, then
there is a real number t > T and integers p1,...,pr such that form=1,... k,

[t0, — P — | < €.

We now prove that the above two statements are equivalent.!
Lemma 3. Theorem 1 is true if and only if Theorem 2 is true.

Proof. Assume that Theorem 2 is true and let 67, ..., 0,1 be real numbers that
are linearly independent over Z, let aq, ..., ar be real numbers, let N > 0 and
let 0 < e < 1. Let 0,, =0, —q, with 0 < 6,, < 1. Because 6¢/,...,0;,1 are
linearly independent over Z, so are 61,...,0;,1. Using Theorem 2 with k + 1
instead of k, N + 1 instead of T, %e instead of €, applied with

017"‘791671) alv"‘vakvoa

there is a real number ¢ > N + 1 and integers p1,..., Dk, Pr+1 such that for
m=1,...,k,
1
[t0, — P — | < €

1K. Chandrasekharan, Introduction to Analytic Number Theory, pp. 92-93, Chapter VIII,
85.



and

1
|t — prt1] < 3¢

Thenpk+1>t—%e>t—%>N,andformzl,...,k,because0<9mSl,

|Pk+19m — Pm — am| = |pk+19m — Pm + 0 — 10, — 0<m|
< |t0m — Pm — am‘ + |(pk+1 - t)0m|
< |t — Pm — Q| + [Py — t]

< 1 +1
g€t 3¢

Thus for n = pgy1, we have n > N, and for m =1,... k,
N0y, — (NG + pm) — & = 10 — P — om| < e,

proving Theorem 1.

Assume that Theorem 1 is true. The claim of Theorem 2 is immediate when
k =1. For k > 1, let 0], ...,0; be linearly independent over Z, let a,..., oy
be real numbers, and let 7" and € be positive real numbers. Let 6, = |6,,] > 0,

and because 61, ...,0; are linearly independent over Z, so are 01, ...,0;, and
then
b6 O
0k70ka"'7 ek i
are linearly independent over Z. Applying Theorem 1 with N = T, and
01 0o Ok—1
B o sgnd) - ay,...,sgnb_, - ap_1,

we get that there are integers n > T6; and pi,...,pg—1 such that for m =
1,...,k—1,
0 1

nﬁ — Dm —sgn@jn-am‘ < 36

Let t = g-. Thent > T and for m =1,...,k — 1,

P

[t0m, — D —segn O, - | =

nﬁ — P —sgn01n~am‘ <36

and 1
[t0r —n| =0 < €
On the other hand, applying Theorem 1 with N =T and
91,...,9k, O,...,O,Sgn%oak,

we get that there are integers v > T and q1, ..., qi such that form =1,... k-1,

1
[V0m — qm| < 7€



and )
[0 — qr. — sgn by, - ag| < ¢
Form=1,...,k—1,
|(t + )0 — (P + @m) —sgn 0., - am| < |t0m — pm — sgn 0., - | + V00 — @
< 1 n 1
2¢T %"

and

|(t +v)0k — (Pk + qr) — sgn b, - ag| < [t0p — pi| + [0y — g1 — sgn b}, - o]
< 1 n 1
—e+ .
2 2
Therefore for m =1,...,k,
|(t+’/)9rlm_8gnein'(pm+Qm)_am|
=|sgn @, - (t + )0y —sgn b, - (Pm + Gm) — am|
:|(t+1/)9m—(pm+qm)—sgn0;n-am|
<€,

which proves Theorem 2. O

2 Proof of Kronecker’s theorem

We now prove Theorem 2.2

Proof of Theorem 2. Let 01,...,0; be real numbers that are linearly indepen-
dent over Z, let aq,...,ax be real numbers, and let T and € be positive real
numbers.

For real ¢ and 7 > 0,

1 (7 . 0 0
lim 7/ eltdt = 7
7= T Jo 1 ¢=0.
For cy,...,¢,. € R with ¢, # ¢, for m # n, and for b, € C, let
(0 =3 bt
v=1
Then for 1 < pu <r,
lim 1 /T x(t)e ertdt = iby lim 1 /T eler=etqr — p,.
T—00 T 0 1 T—00 T 0 B

2K. Chandrasekharan, Introduction to Analytic Number Theory, pp. 93-96, Chapter VIII,
85.




Let i .
F(t) =14+ Z eQwi(tem*am) =14+ Z e*?friame%ritem

m=1 m=1

and let
which satisfies 0 < ¢(t) < k + 1.
Define ¢ : R — R by
V(xy,. . xp) =14z +- - +ag
and let p be a positive integer. By the multinomial theorem,

wp:(1+$1+"'+$k)p

p %1 Vi
-y ( Wl
Vo, Vi,---, Vg

vot+vi+t--FrvE=p

,,,,,

|
S
AS
S
kol
8
HH
8
ESIS

for which

and the number of terms in the above sum is (p‘]:k). We can write F'(t) as
F(t) — 1,[1(627Ti(t91_a1)7 el e?ﬂi(fﬂk—ak)).
Then

k
F@)P = Z Qs ..., €XP (Z U » 2700 (0, — am)> .
m=1

Because 61, ..., 0 are linearly independent over Z, for v # p it is the case that
2 an:l UmOm # 21 an:l O Write ¢, = 27w - 6 and

k
b, = ay,,... ., €Xp (—2772' Z ymam> ,
m=1
with which '
F(t)> = byer.

Then for each multi-index p,

1 /7 ;
lim 7/ F(tyPe " »'dt = b,,. (1)
0

T—00 T
Suppose by contradiction that

limsup ¢(t) < k + 1.

t—o0



Then there is some A < k 4+ 1 and some t( such that when t > %,

Thus for p a positive integer,

1 (7 1 [* 17
lim sup — / |F'(t)|Pdt < limsup — / |F'(t)|Pdt + limsup — / |F'(t)|Pdt
0 0 T Jtg

T—oo T T—o0 T T—00

. 1
= limsup —
T—oo T Jt

|F(t)|Pdt

1
< limsup = AP (7 — tp)

T—o0 T

= N,
But then by (1),
1 T
bl <timsup - [ [F(OPa < ¥,
T—=o00 T Jo

and then
(k + l)p = Zavl,...,uk
=2
<y
p+k
< AP .
=)
Let r = %ﬂ, for which 0 < r < 1, and so for each positive integer p it holds
that "
1<rp-<er ) (2)
k
Now,

(1)) i 2o o

In particular,

rP. (pzk) :O(Tp'pk)v p — 00,

and because 0 < r < 1, P - p*¥ — 0 as p — oo, contradicting (2) being true for
all positive integers p. This contradiction shows that in fact

limsup ¢(t) > k + 1,

t—o0



and because ¢(t) < k+1,

limsup ¢(t) = k + 1. (3)

t—o0

Now let 0 < 1 < 1. By (3) there is some ¢ > T for which ¢(¢) > k+ 1 —n.
For 1 <m < k, write

_ 627rz(tt9m7am) = Zon + Y-

Zm
It is straightforward from the definition of ¢(t) that
E+1-n<ol) <(k—1)+]1 _i_eQTri(tem—Oém)"

which yields ‘
2 2 |1 4 e27‘r7,(t9m—ocm)| 2 2 _ ,,7

Because |z;,| = 1,

T+ zm? = +an)’+yh =0 +a,)’+ (1 —22) =2+ 2z,,

hence

2428, > (2—n)2 =4 —dn+n? >4 — 4,
SO

1-2n<ax, <2
Furthermore,
2, =1—22 = (1 —2,) (1 +2,) <2(1 —2,,) < 2-2n = 47

Therefore

[2m = 11> = (2m — 1)% + ya, < 40° + 41 < 8n,
hence

2| sinw(t&m o am)| _ |e27ri(t9m—am) _ 1| < 81/2771/2 < 4171/2.

For z € R, denote by |z|| the distance from x to the nearest integer. We check
that

|sin(rz)| = sin(x |[z]]) = = -« [lz] = 2|[=]].

3w

Thus, for each m =1,...,k,
1t — am || < n'/2.

We have taken t > T .Take '/2 = ¢, i.e. 1 = €2, and take p,, to be the nearest
integer to t0,, — auy,, for which |t0,, — pm — am| < €, proving the claim. O



3 Uniform distribution modulo 1

For x € R let [z] be the greatest integer < z, and let {a} = z — [z], called the
fractional part of z. For P = (z1,...,74) € R? let {P} = ({a1},...,{7a4}),
which belongs to the set Q@ = [0,1)¢. Let P; = (zj1,...,%4), 5 > 1, be a
sequence in R?, and for A C Q let

bn(A)={k:1<k<n {P}ec A

We say that (P;) is uniformly distributed modulo 1 if for each closed rect-
angle V' contained in @,
Pn(V)

lim = A(V),

n—00 n

where A is Lebesgue measure on R%: for V = [a1,b1] X -+ [ag, ba], N(V) =
d
Hj:1(bj - aj).
We have proved that if 6;,...,60,1 are linearly independent over Z, then
the sequence {nf} = ({nb},...,{nb}) is dense in @Q.a It can in fact be proved
that (nf) is uniformly distributed modulo 1.3

4 Unique ergodicity

Let X be a compact metric space, let C(X) be the Banach space of continuous
functions X — R, and let .#(X) be the space of Borel probability measures on
X, with the subspace topology inherited from C(X)* with the weak-* topology.*
One proves that p and v in .#(X) are equal if and only if fX fdp = fX fdv for
all f € C(X). A#(X) is a closed set in C(X)* that is contained in the closed
unit ball, and by the Banach-Alaoglu theorem that closed unit ball is compact,
so A (X) is itself compact. C(X)*, with the weak-* topology, is not metrizable,
but it is the case that .#(X) with the subspace topology inherited from C(X)*
is metrizable.
For a continuous map T': X — X, define T}, : A#(X) — #(X) by

(Tep)(A) = w(T~HA)

for Borel sets A in X. For p,, — pin A4 (X) and f € C(X), by the change of
variables theorem we have

/X FA(Topin) = /X f o Tduy /X foTdy= /X Fd(Tap),

which means that Tip,, — Tip, and therefore the map T, is continuous. We
say that u € #(X) is T-invariant if T,y = p. Equivalently, T : (X, Bx, u) —
(X, PBx,u) is measure-preserving. We denote by .#7(X) the set of T-
invariant € . (X). The Kryloff-Bogoliouboff theorem states that .#7 (X)

3Giancarlo Travaglini, Number Theory, Fourier Analysis and Geometric Discrepancy,
p. 108, Theorem 6.3.
4This is the same as the narrow topology on .Z(X).



is nonempty. It is immediate that .#7 (X) is a convex subset of C(X)*. Let
pn, € AT (X) converge to some p € .#(X). For f € C(X) we have, because T
is continuous,

[ samw = i [ ga) = g [ i, = [ i,

which shows that p is T-invariant. Therefore .#7(X) is a closed set in . (X),
and we have thus established that .#7 (X) is a nonempty compact convex set.
A measure 1 € .#7(X) is called ergodic if for any A € Bx with T-1A = A
it holds that u(A) = 0 or u(A) = 1. It is proved that u € .#7(X) is ergodic if
and only if p is an extreme point of .#7(X).> The Krein-Milman theorem
states that if S is a nonempty compact convex set in a locally convex space,
then S is equal to the closed convex hull of the set of extreme points of S.° In
particular this shows us that there exist extreme points of S. Let &7 (X) be the
set of extreme points of .#7 (X), and applying the Krein-Milman theorem with
AT (X), which is a nonempty compact convex set in the locally convex space
C(X)*, we have that .#7(X) is equal to the closed convex hull £7. That is,
AT (X) is equal to the closed convex hull of the set of ergodic u € .Z7(X).
Choquet’s theorem? tells us that for each u € .#7(X) there is a unique
Borel probability measure A on the compact metrizable space .# (X ) such that

MET(X) =1
and for all f € C(X),

/deuz/ﬂ(x) (/deu) AA\(v).

We have established that .#7 (X) contains at least one element. T is called
uniquely ergodic if .#7(X) is a singleton. If .#7(X) = {uo} then pq is
an extreme point of .#7(X), hence is ergodic. If &7(X) = {ug}, then for
p € . #7(X), by Choquet’s theorem there is a unique Borel probability measure
X on .7 (X) satisfying A = 6, and

[ s~ /{M} ( /. de) W),
/X fu = /X fdo,

which means that 4 = pg. Therefore, T is uniquely ergodic if and only if &7 (X)
is a singleton. It can be proved that T is uniquely ergodic if and only if for each

i.e.

5Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards Number The-
ory, p- 99, Theorem 4.4.

SWalter Rudin, Functional Analysis, second ed., p. 75, Theorem 3.23.

"Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards Number The-
ory, p. 103, Theorem 4.8.



f € C(X) there is some C such that

1 N-1

¥ 2 (@) = C

n=0

uniformly on X.® This constant Cy is equal to [y fdu, where .27 (X) = {u}.

For a topological group X and for g € X, define R,(z) = gz, which is
continuous X — X. For a compact metrizable group, there is a unique Borel
probability measure mx on X that is R,-invariant for every g € X, called the
Haar measure on X. Thus for each g € X, the Haar measure mx belongs to
A B (X), and for R, to be uniquely ergodic means that my is the only element
of .#"s(X). For a locally compact abelian group X, let X be its Pontryagin
dual. The following theorem gives a condition that is equivalent to a translation
being uniquely ergodic.’

Theorem 4. Let X be a compact metrizable group and let g € X. Ry is uniquely
ergodic if and only if X is abelian and x(g) # 1 for all nontrivial x € X.

Let T =R/Z, let X = T¢ = R?/Z4, which is a compact abelian group, and
let g = (a1,...,0q) €RL For xy € X =274, x = (ky, ..., ka),

d
x(g) = exp | 27 Z kjo

Jj=1

X(g) = 1if and only if 39| kja; € Z if and only if there is some ka1 € Z
such that kiay + -+ + kqag + kg+1 = 0. Therefore for ag,...,aq € R, the set
{a1,...,aq,1} is linearly independent over Z if and only if for g = (o, ..., aq),
the map Ry(z) =z + g, T — T, is uniquely ergodic.

8Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards Number The-
ory, p. 105, Theorem 4.10.

9Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards Number The-
ory, p. 108, Theorem 4.14.



