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1 Product measures

Let (X,A , µ) be a σ-finite measure space. Then with A ⊗ A the product σ-
algebra and µ ⊗ µ the product measure on A ⊗ A , (X ×X,A ⊗ A , µ⊗ µ) is
itself a σ-finite measure space.

Write Fx(y) = F (x, y) and F y(x) = F (x, y). For any measurable space
(X ′,A ′), it is a fact that if F : X×X → X ′ is measurable then Fx is measurable
for each x ∈ X and F y is measurable for each y ∈ X.1

Suppose that F ∈ L 1(X × X), F : X → C. Fubini’s theorem tells us the
following.2 3 There are sets N1, N2 ∈ A with µ(N1) = 0 and µ(N2) = 0 such
that if x ∈ N c

1 then Fx ∈ L 1(X) and if y ∈ N c
2 then F y ∈ L 1(X). Define

I1(x) =

{∫
X
Fx(y)dµ(y) x ∈ N c

1

0 x ∈ N1

and

I2(y) =

{∫
X
F y(x)dµ(x) y ∈ N c

2

0 y ∈ N2.

I1 ∈ L 1(X) and I2 ∈ L 1(X), and∫
X×X

Fd(µ⊗ µ) =

∫
X

I2(y)dµ(y) =

∫
X

I1(x)dµ(x).

1Heinz Bauer, Measure and Integration Theory, p. 138, Lemma 23.5.
2Heinz Bauer, Measure and Integration Theory, p. 139, Corollary 23.7.
3Suppose that F : X×X → [0,∞] is measurable. Tonelli’s theorem, Heinz Bauer, Measure

and Integration Theory, p. 138, Theorem 23.6, tells us that the functions

x 7→
∫
X

Fxdµ, y 7→
∫
X

F ydµ

are measurable X → [0,∞], and that∫
X×X

Fd(µ⊗ µ) =

∫
X

(∫
X

F ydµ

)
dµ(y) =

∫
X

(∫
X

Fxdµ

)
dµ(x).
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2 Integral operators in L2

Let k ∈ L 2(X × X) and let g ∈ L 2(X). By Fubini’s theorem, there is a set
Z ∈ A with µ(Z) = 0 such that if x ∈ Zc then kx ∈ L 2(X). For x ∈ Zc

n, by
the Cauchy-Schwarz inequality,∫

X

|kxg|dµ ≤
(∫

X

|kx|2dµ
)1/2(∫

X

|g|2dµ
)1/2

= ∥kx∥L2 ∥g∥L2 ,

so kxg ∈ L 1(X).
Since µ is σ-finite, there are An ∈ A , µ(An) < ∞, with An ↑ X. For each

n, the function (x, y) 7→ 1An
(x)g(y) belongs to L 2(X ×X) and hence, by the

Cauchy-Schwarz inequality, (x, y) 7→ k(x, y)1An
(x)g(y) belongs to L 1(X ×X).

Applying Fubini’s theorem, there is a set Nn ∈ A with µ(Nn) = 0 such that
if x ∈ N c

n then y 7→ k(x, y)1An(x)g(y) belongs to L 1(X), and the function
In : X → C defined by

In(x) =

{∫
X
kx(y)1An

(x)g(y)dµ(y) x ∈ N c
n

0 x ∈ Nn

belongs to L 1(X).
Let M =

⋃
n(Z ∪Nn), for which

µ(M) ≤
∑
n

µ(Z ∪Nn) ≤
∑
n

(µ(Z) + µ(Nn)) = 0.

We note
M c =

⋂
n

(Zc ∩N c
n).

For g ∈ L 2(X), define KMg : X → C by

KMg(x) =

{∫
X
kx(y)g(y)dµ(y) x ∈ M c

0 x ∈ M.
(1)

For x ∈ M c,

In(x) =

∫
X

kx(y)1An(x)g(y)dµ(y) = 1An(x)

∫
X

kx(y)g(y)dµ(y) = 1An(x)·KMg(x).

Then
1An ·KMg = 1Mc · 1An ·Kg = 1Mc · In,

which shows that fn = 1An
·KMg is measurable X → C. For any x ∈ X, for

sufficiently large n we have fn(x) = KMg(x), thus fn → KMg pointwise, which
implies that KMg : X → C is measurable.4

4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 142, Lemma 4.29.
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Using the Cauchy-Schwarz inequality and then Fubini’s theorem,∫
X

|KMg(x)|2dµ(x) =
∫
Mc

∣∣∣∣∫
X

kx(y)g(y)dµ(y)

∣∣∣∣2 dµ(x)
≤ ∥g∥2L2 ·

∫
Mc

(∫
X

|kx(y)|2dµ(y)
)
dµ(x)

= ∥g∥2L2 · ∥k∥2L2 .

This shows that KMg ∈ L 2(X), with

∥KMg∥L2 ≤ ∥k∥L2 · ∥g∥L2 .

Recapitulating, for g ∈ L 2(X) there is some M ∈ A with µ(M) = 0 such
that for x ∈ M c, kx ∈ L 2(X), and such that KMg : X → C defined by
(1) belongs to L 2(X). If N is any set satisfying these conditions, then for
x ∈ M c ∩N c,

KMg(x) =

∫
X

kx(y)g(y)dµ(y) = KNg(x),

and µ((M c ∩N c)c) = µ(M ∪N) = 0. Therefore, for g ∈ L 2(X) it makes sense
to define Kg ∈ L2(X) by Kg = KMg.

If f, g ∈ L 2(X) and f = g in L2(X), check that Kf = Kg in L2(X). We
thus define K : L2(X) → L2(X) for g ∈ L2(X) as

Kg(x) =

∫
X

kx(y)g(y)dµ(y) =
〈
g, kx

〉
,

where

⟨f, g⟩ =
∫
X

f · gdµ.

Theorem 1. Let (X,A , µ) be a σ-finite measure space. For k ∈ L2(X ×X),
it makes sense to define Kg ∈ L2(X) by

Kg(x) =

∫
X

kx(y)g(y)dµ(y) =
〈
g, kx

〉
.

K : L2(X) → L2(X) is a bounded linear operator with ∥K∥ ≤ ∥k∥L2 .

3 Integrals of functions

Suppose that f : X → C is a function, which we do not ask to be measurable,
and that Z1, Z2 ∈ A , µ(Z1) = 0, µ(Z2) = 0, satisfy 1Zc

1
· f, 1Zc

2
· f ∈ L 1(X).
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We have ∫
X

1Zc
1
· fdµ =

∫
X

1Zc
1
· (1Z2

+ 1Zc
2
) · fdµ

=

∫
X

1Zc
1∩Z2 · fdµ+

∫
X

1Zc
1∩Zc

2
· fdµ

=

∫
X

1Zc
1∩Zc

2
· fdµ

=

∫
X

1Zc
2∩Zc

1
· fdµ

=

∫
X

1Zc
2
· fdµ.

Therefore if there is some Z ∈ A with µ(Z) = 0 and 1Z · f ∈ L 1(X), it makes
sense to define ∫

X

fdµ =

∫
X

1Z · fdµ.

However, only if f is itself measurable do we write f ∈ L 1(X).

4 Self-adjoint operators

Theorem 2. Let (X,A , µ) be a σ-finite measure space. For k ∈ L2(X × X)
satisfying kx = kx, K : L2(X) → L2(X) is self-adjoint.

Proof. For f, g ∈ L2(X),

⟨Kf, g⟩ =
∫
X

Kf(x) · g(x)dµ(x)

=

∫
X

(∫
X

kx(y)f(y)dµ(y)

)
g(x)dµ(x)

=

∫
X

(∫
X

ky(x) · g(x)dµ(x)
)
f(y)dµ(y)

=

∫
X

(∫
X

ky(x)g(x)dµ(x)

)
f(y)dµ(y)

=

∫
X

Kg(y) · f(y)dµ(y)

= ⟨f,Kg⟩ .

It follows that K : L2(X) → L2(X) is self-adjoint.

5 Hilbert-Schmidt operators

Let (X,A , µ) be a measure space and let 1 ≤ p < ∞. It is a fact that if
µ is σ-finite and A is countably generated, then the Banach space Lp(X) is
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separable.5

Theorem 3. Let (X,A , µ) be a σ-finite countably generated measure space.
For k ∈ L2(X ×X), K : L2(X) → L2(X) is a Hilbert-Schmidt operator with

∥K∥HS = ∥k∥L2 .

Proof. L2(X) is separable, so there is an orthonormal basis {en} for L2(X).
Using Parseval’s formula and then Fubini’s theorem,∑

n

⟨Ken,Ken⟩ =
∑
n

∫
X

|Ken(x)|2dµ(x)

=
∑
n

∫
X

|
〈
en, kx

〉
|2dµ(x)

=

∫
X

(∑
n

|
〈
en, kx

〉
|2
)
dµ(x)

=

∫
X

〈
kx, kx

〉
dµ(x)

=

∫
X

(∫
X

|kx|2dµ(y)
)
dµ(x)

=

∫
X×X

|k|2d(µ⊗ µ)

= ∥k∥2L2 .

This shows that

∥K∥HS =

(∑
n

⟨Ken,Ken⟩

)1/2

= ∥k∥L2 .

If T is a compact linear operator on L2(X), then T ∗T is a positive compact
operator on L2(X). Then |T | =

√
T ∗T is a positive compact operator.6 Let sj

be the nonzero eigenvalues of |T | repeated according to geometric multiplicity,
with sj+1 ≤ sj , j ≥ 1, called the singular values of T . By the spectral
theorem, there is an orthonormal basis for {ej : j ≥ 1} for L2(X) such that

5Donald L. Cohn, Measure Theory, second ed., p. 102, Proposition 3.4.5.
6See Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second

ed., p. 109, Theorem 5.1.3
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|T |ej = sjej for each j ≥ 1. Then

∥T∥2HS =
∑
j≥1

⟨Tej , T ej⟩

=
∑
j≥1

⟨T ∗Tej , ej⟩

=
∑
j≥1

〈
|T |2ej , ej

〉
=
∑
j≥1

⟨|T |ej , |T |ej⟩

=
∑
j≥1

⟨sj , sj⟩

=
∑
j≥1

|sj |2.

Summarizing,

∥k∥2L2 = ∥K∥2HS =
∑
j≥1

|sj(T )|2.

6 Trace class operators

A compact operator T on L2(X) is called trace class if ∥T∥tr < ∞, where

∥T∥tr =
∑
j≥1

sj(T ).

For a trace class operator it makes sense to define

tr (T ) =
∑
n

⟨Ten, en⟩ ,

which does not depend on the orthonormal basis {en} of L2(X).
Let X be a locally compact Hausdorff space and let B be the Borel σ-algebra

of X. A Borel measure on X is a measure on B. We say that a Borel measure
µ on X is locally finite if for each x ∈ X there is an open set Ux with x ∈ Ux

and µ(Ux) < ∞. A Radon measure on X is a locally finite Borel measure µ
on X such that for each A ∈ B and for any ϵ > 0 there is an open set Uϵ with
A ⊂ Uϵ and

µ(A) > µ(Uϵ)− ϵ

and for each open set U and for any ϵ > 0 there is a compact set Kϵ with
Kϵ ⊂ U and

µ(U) < µ(Kϵ) + ϵ.
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By definition, if µ is a Radon measure then µ(U) can be approximated by
µ(K) for compact sets K contained in U . We prove that this holds for µ(A) if
µ(A) < ∞.7

Lemma 4. Let X be a locally compact Hausdorff space and let µ be a Radon
measure on X. If A ∈ B with µ(A) < ∞, there for any ϵ > 0 there is a compact
set Kϵ, Kϵ ⊂ A, such that

µ(A) < µ(Kϵ) + ϵ.

Proof. If L is a compact set, B ∈ B, and B ⊂ L, let T = L\B. For δ > 0 there
is an open set Wδ, T ⊂ Wδ, such that µ(Wδ) < µ(T ) + δ. Let Kδ = L \ Wδ,
and because X is Hausdorff, L is closed and hence Kδ is closed and therefore
compact. Now, as B ⊂ L,

L \Wδ ⊂ L \ T = L \ (L \B) = B

and

µ(B \Kδ) = µ(B \ (L \Wδ)) ≤ µ(Wδ \ (L \B)) = µ(Wδ \ T ) < δ.

We have proved that if L is a compact set and B is a Borel set contained in L,
then for any δ > 0 then there is a compact set Kδ with Kδ ⊂ B and

µ(B \Kδ) < δ.

Now let U be an open set with A ⊂ U and µ(U) < ∞, say µ(U) < µ(A)+1.
Let L be a compact set with L ⊂ U and

µ(U) < µ(L) + ϵ.

A = (A ∩ L) ∪ (A \ L), so

µ(A) = µ(A ∩ L) + µ(A \ L),

and
µ(A \ L) ≤ µ(U \ L) < ϵ.

Let B = A∩L. Because B is a Borel set contained in a compact set L, there is
a compact set K contained in B such that

µ(B \K) < ϵ.

As A = B ∪ (A \ L) and K ⊂ B,

µ(A \K) = µ((B \K) ∪ (A \ L)) = µ(B \K) + µ(A \ L) < 2ϵ.

7Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second ed.,
p. 291, Lemma B.2.1.
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Let X be a locally compact Hausdorff space and let µ be a Radon measure
on X. An admissible kernel is a function k ∈ C(X × X) ∩ L 2(X × X) for
which there is some g ∈ C(X) ∩ L 2(X) such that |k(x, y)| ≤ g(x)g(y) for all
(x, y) ∈ X×X. We call S : L2(X) → L2(X) an admissible integral operator
if there is an admissible kernel k such that

Sg(x) =

∫
X

kx(y)g(y)dµ(y).

The following gives conditions under which we can calculate the trace of an
integral operator.8

Theorem 5. Let X be a first-countable locally compact Hausdorff space and let
µ be a Radon measure on X. Let k ∈ C(X ×X) ∩ L 2(X) and let

Kg(x) =

∫
X

kx(y)g(y)dµ(y).

If there are admissible integral operators S1 and S2 such that K = S1S2, then
K is of trace class and

tr (K) =

∫
X

k(x, x)dµ(x).

The following is Mercer’s theorem.9

Theorem 6 (Mercer’s theorem). If k ∈ C(X × X) ∩ L 2(X × X) and K :
L2(X) → L2(X) is a positive operator, then

tr (K) =

∫
X

k(x, x)dµ(x).

8Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second ed.,
p. 172, Proposition 9.3.1.

9E. Brian Davies, Linear Operators and their Spectra, p. 156, Proposition 5.6.9.
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