The inhomogeneous heat equation on T

Jordan Bell
April 3, 2014

1 Introduction

In this note I am working out some material following Steve Shkoller’s MAT218:
Lecture Notes on Partial Differential Equations. However, I have written out
a number of details that were not in the original notes, and may thus have
introduced errors that were not in the notes on which this is based.

Write T = R/27Z, and for 1 < p < oo,

1/p
11 = (55 [15007at)

1/2

Define

1l = | Y [02F]

0<j<k

If w is a distribution on T, 0,u is also a distribution on T, and in particular, if
u € L*(T) then d,u is a distribution on T. But if u € H?(T), for example, then
02w is an element of L?(T), rather than merely being a distribution.

Fix T > 0. Let f € L?(0,T;L*(T)) and g € HY(T); as HY(T) c C°(T),
we can speak about the value of g at every point rather than merely almost all
points.

For almost all ¢t and for all x, define f,, by

n

fn(z,t) = Z f(k, t)etke,

k=—n
and for all z define g,, by
gn(z) = Z g(k)eikm~

k=—n
In other words, if D, (z) = Y_;__ €*® then
fn(@,t) = (Dnx f(,1)(@),  gn(x) = (Dn* g)(2),
where

0+ 0)(a) = 3= [ ow0ta =)y



2 Truncation

For each n, assume that there is some u, € C°(0,T;C°(T)) such that for
almost all ¢ and for all z € T,

unt($7t) - unmx(xat) = fn($7t)7 (1)
and for all x € T,
Un(z,0) = gn(x).

We will thus obtain a formula for u,. In fact we will not necessarily have
U, € C*°(0,T;C*(T)), but once we have an expression for u,, we can determine
the function space of which it is an element. We will then show that there is
some u in a certain function space such that wu,(z,t) = (D, * u(-,t))(z) for all
x and t.

For all t and =z,

Un(,t) =Y i (1),

kEZ

Then (1) becomes the statement that for almost all ¢ and for all «,

Wy (b )e™ + 3 " Kty (k, )™ = Y= f(k, t)e’*”.

keZ kEZ k=-—n

If |k| > n, then @' (k,t) + k*u, (k,t) = 0, which is a linear ordinary differential
equation, whose solution satisfies 0, (k,t) = e~* ', (k,0). Since uy,(z,0) =
gn(x), Un(k,0) = 0. Hence if |k| > n then u,(k,t) = 0. If |k| < n, then for
almost all ¢, @, (k,t) + k2t (k, t) = f(k,t). The solution of this is, for all ¢ and
for all z,

t
Tk, t) = e G (k) + ekt / KTk, 5)ds.
0

Hence, for all t and for all x,

n t
U (2, 1) = Z (ekztﬁﬁ(k) + 67k2t/ ekgsfn(k:,s)ds> etk

k=—n 0

We merely know that E(k, t) is defined for almost all ¢, thus we only know for
almost all ¢y € (0,7") and for all © that u,.(x,to) exists. We do have that

u, € C°(0,T;C>(T)).

3 H!

For almost all ¢, multiply (1) by u,(z,t) and integrate over T. This is,

/T e (2, )t (1) — /T U (@, )i (2, £)dar = /T ol B (2, ) da.



Integrating by parts this becomes
/unt(x,t)un(x,t)dx—l—/um(x,t)um(x,t)dx:/fn(ac,t)un(x,t)dx,
T T T
which is
0 ! / (z,t)%dx + 2 ! /u (z,t)%dx /f (z,t)up(z,t)dx
T Op— n(T, e — nz (T, = n (T, T)Un (T, .
t27T T 2 T T
Writing this using norms,

7 Oy llun (-, Ol 72 + 27+ Juna ()72 = /Tfn(%t)un(af,t)dm-

Integrating from 0 to ¢, for any t,

t t
-t (s ) 2= 1t -, 0) a2 / tma () 2 ds = / /T Fu(s 8Ytn(z, 5)dds.
0 0

For almost all s,

/\fn(x,s)un(ac,sﬂdx
T

27T~%/T\fn(x,s)un(x,s)|dx
2 (| Fu )l g2 un ) o
< o <|fn<-,28>||’ig . un<-,25>||i2>

2 2
= 7 faCos)lz + 7 flunl )2 -

It follows that for all ¢ (not just almost all t)

IN

t
2 2 2
T flun (5 Ol72 =7 - flun (-, 0)]l72 + 27r/ [[tna (-5 )72 ds
0

t
2 2
< [ 5 Ul 7 T ) s,
80, as u,(z,0) = gn(z),

t t
2 2 2 2 2
am (- D)2 +2 / ltn (- )[22 ds < llgnllZ + / 1o )10 + lin (- )]0 ds.

Let .
y(t) = ln (- 0) 20 +2 / (-, )22 ds.
0

By the inequality we just established we have, for all ¢,

t t
y(t) < lgall7s + / | f (-, )17 2 ds + / [tn (-, 8)||7 2 ds
2 t 2 t
< lgnlls + / 1y )2 ds + / y(s)ds.
0 0



By Gronwall’s inequality, we get

y(t) < (Ilgnniz +/ 1 fu e 8) |7 ds) et
0

As [|gnll 2 < |lgll 2 and || fu(-,8)|| 2 < [[f (- 8)] .2 (these two facts follow from
Parseval’s identity), it follows that

o)< (Ioli+ [ 170 ds) -

Therefore, if 0 < ¢ < T then
t t
2 2 2 2
lam (- )20 + 2 / (- 8) |2 ds (mz " / 1G9 ds) e
2 2
(||9||L2 + ||f||L2(0,T;L2(’H‘)) e’

= M.

IN

By Parseval’s identity,

t
SO (@, )2 + 2 / S fam (k, ) Pds < M,

kEZ 0 kez
hence for all ¢,

t
Z\u?(k,t)IzH/ > K[ (k, 5)[2ds < M.
0

keZ kEZ
If k <n <m, then @, (k,t) = U, (k,t) for all t. Define u(k,t) by
(k,t) = lim w,(k,t) = ug(k,t).
n— oo

Thus, for all t,

t
> ik, )] + 2/ > Kla(k, s)|*ds < M. (2)
keZ 0 kez

Then, for some M’ = M'(f,q,T),

T
> lalk, ) + Y K2lalk, t)Pdt < M.
0 ez keEZ

It follows that for almost all ¢, there is some u € H'(T) whose Fourier coefficients

are @(k,t), and that we have

T
/ e, 8) 2t < M.
0

We have
T

m [ Jun(t) = u(-, )5 dt =0,

n—oo 0
i.e.

3 2
nlgr;o [un = ullp2(0, 7,11 (m)) = 0-



4 H?
Multiply (1) by @nze(x,t) and integrate over T. We get, for almost all ¢,

/um(x,t)unm(x, t)dx — / Ungz (T, V) Unze (2, t)dr = / (@, )tunge (z, t)d.

T T T
As
1d ,
Unt (T, O)Unge (T, )dr = — | Uppe (2, DUpe (2, 8)de = —=— [ upe(x,t)°dx,
we have
d 2 2
_77% ||un$(-,t)HL2 — 27 [|unaa (-, t)||L2 = - I (@, ) unge (2, t)do.

Integrating from 0 to ¢,

t
= 7 s (1)1 72+ 7 [t (- O) |72 — 27?/ ltnaa (-, 5)II72 ds
0

:/Ot/Tfn(:c,s)unm(m,s)dx.

For almost all s,

/T|fn(x7s)unmr(xvs)|dx < 27 [l fu e 9)ll 2 Nltnaa (-5 8) [l 2
. <|fn<-,s>||ig . um<-,s>||ig>

IN

2 2
2 2
= 7| fals 3)”1,2 +m ”“nm('»s)HLZ :

It follows that, for all ¢,
2 t 2
7 Ntina (D)2 @ + 2 / e -+ )22 ds

t
2 2 2
<7 [l gnllz2 +7T/ 1fn (s )22 + [[tnaa (- 8) [ 2 ds.
0

Hence
t t
tna (- £)]12 + / ltnea ()2 ds < [lghl%e + / 1 8)]2 ds
° y
< ol + [ 1G9l ds
OT
< gl + / 1£C. )2 ds.



Using Parseval’s identity we have, for all ¢,

t T
S fam (kD)2 + / S @k, 5)[2ds < gl + / 1FCy )]0 ds,

kEZ keZ
hence
t 2 T 2
S K (k, )] + / STk @ (k. 5)Pds < [lgll% + / 1£(o8)]122 ds,
keZ 0 ez 0
SO

t T
> K fu(k, 1) +/0 > Kk, s)[Pds < |19l +/O 1F (8172 ds.

kEZ keZ

It follows that, for almost all ¢,

S Ktk ) + > kK fa(k, t)]* < oo,
kEZ kEZ
thus u(-,t) € H*(T).

‘We have
T

lim [t (- ) = u(-, )| 3> dt = 0,

n—oo 0
i.e.

, 2
HILH;O [tn = ullp20,7,m2(ry) = 0

5 Solution

For all ¢t we have u(-,t) € HY(T), and H*(T) C C°(T), so for all ¢ and all
xz, u(z,t) is defined. The Sobolev embedding tells us that if k > o + 1 then
H*(T) c C*(T). So, being specific, we have H'(T) ¢ C*/4(T). It is a fact that
if h € C*(T), @ > 0, then the partial sums of the Fourier series of h converge
to h in the supremum norm.

For all t and for each k,

t
ik, t) = e F 150k + ek / 55 Tk, s)ds.
0

It follows that, for all z,

u(z,0) = lim_ > Gk)ete.
|[k|<N

IThe reason I see that this follows involves the fact that the intersection of two sets of full
measure is itself a set of full measure.



On the other hand,

Thus for all z, u(z,0) = g(x).
We have

< u — unt”Lz(O,T;LQ(T))

||Ut — Ugy — f||L2(0,T;L2(11‘))
+ ||Uxa: - una:x||L2(0,T;L2('Jl’))
+f - anL2(0,T;L2(11‘))
+{|tnt — Unaga — anLQ(O,T;L?(’]l‘)) :
Each of the four norms has limit 0 as n — oco. Let me work out the first one.
For almost all ¢,

{[t(kat) - u/\nt(kvt)

t
3 sze*’“%g(k)sze*k%/ ¥’ 5 f(k, s)ds

lk|>n 0
+€_k2t€k2tf(k, t)
> —ka(k, t) + f(kt).

|k|>n

Then using Parseval’s identity,

T
[ — unt”i?(O,T;L?('Jl‘)) = /o Z | — K*a(k,t) + f(k,t)[*dt
|k|>n

IN

T A
2/ > KPa(k, b)) + | f(k,t)[Pdt.

O |k|>n

Then, ,
[t = Uaz = fll7200,7;02(m)) = 0-

So, for almost all ¢t and for almost all z,

up(x,t) — ugpe(x,t) = f(a,t).



