The inhomogeneous heat equation on 𝕋

Jordan Bell
April 3, 2014

1 Introduction

In this note I am working out some material following Steve Shkoller’s MAT218: Lecture Notes on Partial Differential Equations. However, I have written out a number of details that were not in the original notes, and may thus have introduced errors that were not in the notes on which this is based.

Write 𝕋=ℝ/2⁒π⁒℀, and for 1≀p<∞,

βˆ₯fβˆ₯Lp=(12β’Ο€β’βˆ«π•‹|f⁒(t)|p⁒𝑑t)1/p.

Define

βˆ₯fβˆ₯Hk=(βˆ‘0≀j≀kβˆ₯βˆ‚xj⁑fβˆ₯L22)1/2.

If u is a distribution on 𝕋, βˆ‚x⁑u is also a distribution on 𝕋, and in particular, if u∈L2⁒(𝕋) then βˆ‚x⁑u is a distribution on 𝕋. But if u∈H2⁒(𝕋), for example, then βˆ‚x2⁑u is an element of L2⁒(𝕋), rather than merely being a distribution.

Fix T>0. Let f∈L2⁒(0,T;L2⁒(𝕋)) and g∈H1⁒(𝕋); as H1⁒(𝕋)βŠ‚C0⁒(𝕋), we can speak about the value of g at every point rather than merely almost all points.

For almost all t and for all x, define fn by

fn⁒(x,t)=βˆ‘k=-nnf^⁒(k,t)⁒ei⁒k⁒x,

and for all x define gn by

gn⁒(x)=βˆ‘k=-nng^⁒(k)⁒ei⁒k⁒x.

In other words, if Dn⁒(x)=βˆ‘k=-nnei⁒k⁒x, then

fn⁒(x,t)=(Dn*f⁒(β‹…,t))⁒(x),gn⁒(x)=(Dn*g)⁒(x),

where

(Ο•*ψ)⁒(x)=12β’Ο€β’βˆ«π•‹Ο•β’(y)⁒ψ⁒(x-y)⁒𝑑y.

2 Truncation

For each n, assume that there is some un∈C∞⁒(0,T;C∞⁒(𝕋)) such that for almost all t and for all xβˆˆπ•‹,

un⁒t⁒(x,t)-un⁒x⁒x⁒(x,t)=fn⁒(x,t), (1)

and for all xβˆˆπ•‹,

un⁒(x,0)=gn⁒(x).

We will thus obtain a formula for un. In fact we will not necessarily have un∈C∞⁒(0,T;C∞⁒(𝕋)), but once we have an expression for un we can determine the function space of which it is an element. We will then show that there is some u in a certain function space such that un⁒(x,t)=(Dn*u⁒(β‹…,t))⁒(x) for all x and t.

For all t and x,

un⁒(x,t)=βˆ‘kβˆˆβ„€un^⁒(k,t)⁒ei⁒k⁒x.

Then (1) becomes the statement that for almost all t and for all x,

βˆ‘kβˆˆβ„€un^′⁒(k,t)⁒ei⁒k⁒x+βˆ‘kβˆˆβ„€k2⁒un^⁒(k,t)⁒ei⁒k⁒x=βˆ‘k=-nnf^⁒(k,t)⁒ei⁒k⁒x.

If |k|>n, then un^′⁒(k,t)+k2⁒un^⁒(k,t)=0, which is a linear ordinary differential equation, whose solution satisfies un^⁒(k,t)=e-k2⁒t⁒un^⁒(k,0). Since un⁒(x,0)=gn⁒(x), un^⁒(k,0)=0. Hence if |k|>n then un^⁒(k,t)=0. If |k|≀n, then for almost all t, un^′⁒(k,t)+k2⁒un^⁒(k,t)=f^⁒(k,t). The solution of this is, for all t and for all x,

un^⁒(k,t)=e-k2⁒t⁒gn^⁒(k)+e-k2⁒t⁒∫0tek2⁒s⁒fn^⁒(k,s)⁒𝑑s.

Hence, for all t and for all x,

un⁒(x,t)=βˆ‘k=-nn(e-k2⁒t⁒gn^⁒(k)+e-k2⁒t⁒∫0tek2⁒s⁒fn^⁒(k,s)⁒𝑑s)⁒ei⁒k⁒x.

We merely know that fn^⁒(k,t) is defined for almost all t, thus we only know for almost all t0∈(0,T) and for all x that un⁒t⁒(x,t0) exists. We do have that

un∈C0⁒(0,T;C∞⁒(𝕋)).

3 𝐻¹

For almost all t, multiply (1) by un⁒(x,t) and integrate over 𝕋. This is,

βˆ«π•‹un⁒t⁒(x,t)⁒un⁒(x,t)⁒𝑑x-βˆ«π•‹un⁒x⁒x⁒(x,t)⁒un⁒(x,t)⁒𝑑x=βˆ«π•‹fn⁒(x,t)⁒un⁒(x,t)⁒𝑑x.

Integrating by parts this becomes

βˆ«π•‹un⁒t⁒(x,t)⁒un⁒(x,t)⁒𝑑x+βˆ«π•‹un⁒x⁒(x,t)⁒un⁒x⁒(x,t)⁒𝑑x=βˆ«π•‹fn⁒(x,t)⁒un⁒(x,t)⁒𝑑x,

which is

Ο€β‹…βˆ‚t⁑12β’Ο€β’βˆ«π•‹un⁒(x,t)2⁒𝑑x+2⁒π⋅12β’Ο€β’βˆ«π•‹un⁒x⁒(x,t)2⁒𝑑x=βˆ«π•‹fn⁒(x,t)⁒un⁒(x,t)⁒𝑑x.

Writing this using norms,

Ο€β‹…βˆ‚t⁑βˆ₯un⁒(β‹…,t)βˆ₯L22+2⁒π⋅βˆ₯un⁒x⁒(β‹…,t)βˆ₯L22=βˆ«π•‹fn⁒(x,t)⁒un⁒(x,t)⁒𝑑x.

Integrating from 0 to t, for any t,

Ο€β‹…βˆ₯un⁒(β‹…,t)βˆ₯L22-Ο€β‹…βˆ₯un⁒(β‹…,0)βˆ₯L22+2β’Ο€β’βˆ«0tβˆ₯un⁒x⁒(β‹…,s)βˆ₯L22⁒𝑑s=∫0tβˆ«π•‹fn⁒(x,s)⁒un⁒(x,s)⁒𝑑x⁒𝑑s.

For almost all s,

βˆ«π•‹|fn⁒(x,s)⁒un⁒(x,s)|⁒𝑑x = 2⁒π⋅12β’Ο€β’βˆ«π•‹|fn⁒(x,s)⁒un⁒(x,s)|⁒𝑑x
≀ 2⁒π⋅βˆ₯fn⁒(β‹…,s)βˆ₯L2⁒βˆ₯un⁒(β‹…,s)βˆ₯L2
≀ 2⁒π⁒(βˆ₯fn⁒(β‹…,s)βˆ₯L222+βˆ₯un⁒(β‹…,s)βˆ₯L222)
= Ο€β‹…βˆ₯fn⁒(β‹…,s)βˆ₯L22+Ο€β‹…βˆ₯un⁒(β‹…,s)βˆ₯L22.

It follows that for all t (not just almost all t)

Ο€β‹…βˆ₯un⁒(β‹…,t)βˆ₯L22-Ο€β‹…βˆ₯un⁒(β‹…,0)βˆ₯L22+2β’Ο€β’βˆ«0tβˆ₯un⁒x⁒(β‹…,s)βˆ₯L22⁒𝑑sβ‰€βˆ«0tΟ€β‹…βˆ₯fn⁒(β‹…,s)βˆ₯L22+Ο€β‹…βˆ₯un⁒(β‹…,s)βˆ₯L22⁒d⁒s,,

so, as un⁒(x,0)=gn⁒(x),

βˆ₯un⁒(β‹…,t)βˆ₯L22+2⁒∫0tβˆ₯un⁒x⁒(β‹…,s)βˆ₯L22⁒𝑑s≀βˆ₯gnβˆ₯L22+∫0tβˆ₯fn⁒(β‹…,s)βˆ₯L22+βˆ₯un⁒(β‹…,s)βˆ₯L22⁒d⁒s.

Let

y⁒(t)=βˆ₯un⁒(β‹…,t)βˆ₯L22+2⁒∫0tβˆ₯un⁒x⁒(β‹…,s)βˆ₯L22⁒𝑑s.

By the inequality we just established we have, for all t,

y⁒(t) ≀ βˆ₯gnβˆ₯L22+∫0tβˆ₯fn⁒(β‹…,s)βˆ₯L22⁒𝑑s+∫0tβˆ₯un⁒(β‹…,s)βˆ₯L22⁒𝑑s
≀ βˆ₯gnβˆ₯L22+∫0tβˆ₯fn⁒(β‹…,s)βˆ₯L22⁒𝑑s+∫0ty⁒(s)⁒𝑑s.

By Gronwall’s inequality, we get

y⁒(t)≀(βˆ₯gnβˆ₯L22+∫0tβˆ₯fn⁒(β‹…,s)βˆ₯L22⁒𝑑s)⁒et.

As βˆ₯gnβˆ₯L2≀βˆ₯gβˆ₯L2 and βˆ₯fn⁒(β‹…,s)βˆ₯L2≀βˆ₯f⁒(β‹…,s)βˆ₯L2 (these two facts follow from Parseval’s identity), it follows that

y⁒(t)≀(βˆ₯gβˆ₯L22+∫0tβˆ₯f⁒(β‹…,s)βˆ₯L22⁒𝑑s)⁒et.

Therefore, if 0≀t≀T then

βˆ₯un⁒(β‹…,t)βˆ₯L22+2⁒∫0tβˆ₯un⁒x⁒(β‹…,s)βˆ₯L22⁒𝑑s ≀ (βˆ₯gβˆ₯L22+∫0tβˆ₯f⁒(β‹…,s)βˆ₯L22⁒𝑑s)⁒eT
≀ (βˆ₯gβˆ₯L22+βˆ₯fβˆ₯L2(0,T;L2(𝕋)2)⁒eT
= M.

By Parseval’s identity,

βˆ‘kβˆˆβ„€|un^⁒(k,t)|2+2⁒∫0tβˆ‘kβˆˆβ„€|un⁒x^⁒(k,s)|2⁒d⁒s≀M,

hence for all t,

βˆ‘kβˆˆβ„€|un^⁒(k,t)|2+2⁒∫0tβˆ‘kβˆˆβ„€k2⁒|un^⁒(k,s)|2⁒d⁒s≀M.

If k≀n≀m, then un^⁒(k,t)=um^⁒(k,t) for all t. Define u^⁒(k,t) by

u^⁒(k,t)=limnβ†’βˆžβ‘un^⁒(k,t)=uk^⁒(k,t).

Thus, for all t,

βˆ‘kβˆˆβ„€|u^⁒(k,t)|2+2⁒∫0tβˆ‘kβˆˆβ„€k2⁒|u^⁒(k,s)|2⁒d⁒s≀M. (2)

Then, for some Mβ€²=M′⁒(f,g,T),

∫0Tβˆ‘kβˆˆβ„€|u^⁒(k,t)|2+βˆ‘kβˆˆβ„€k2⁒|u^⁒(k,t)|2⁒d⁒t≀Mβ€².

It follows that for almost all t, there is some u∈H1⁒(𝕋) whose Fourier coefficients are u^⁒(k,t), and that we have

∫0Tβˆ₯u⁒(β‹…,t)βˆ₯H12⁒𝑑t≀Mβ€².

We have

limnβ†’βˆžβ‘βˆ«0Tβˆ₯un⁒(β‹…,t)-u⁒(β‹…,t)βˆ₯H12⁒𝑑t=0,

i.e.

limnβ†’βˆžβ‘βˆ₯un-uβˆ₯L2⁒(0,T;H1⁒(𝕋))2=0.

4 𝐻²

Multiply (1) by un⁒x⁒x⁒(x,t) and integrate over 𝕋. We get, for almost all t,

βˆ«π•‹un⁒t⁒(x,t)⁒un⁒x⁒x⁒(x,t)⁒𝑑x-βˆ«π•‹un⁒x⁒x⁒(x,t)⁒un⁒x⁒x⁒(x,t)⁒𝑑x=βˆ«π•‹fn⁒(x,t)⁒un⁒x⁒x⁒(x,t)⁒𝑑x.

As

βˆ«π•‹un⁒t⁒(x,t)⁒un⁒x⁒x⁒(x,t)⁒𝑑x=-βˆ«π•‹un⁒t⁒x⁒(x,t)⁒un⁒x⁒(x,t)⁒𝑑x=-12⁒dd⁒tβ’βˆ«π•‹un⁒x⁒(x,t)2⁒𝑑x,

we have

-π⁒dd⁒t⁒βˆ₯un⁒x⁒(β‹…,t)βˆ₯L22-2⁒π⁒βˆ₯un⁒x⁒x⁒(β‹…,t)βˆ₯L22=βˆ«π•‹fn⁒(x,t)⁒un⁒x⁒x⁒(x,t)⁒𝑑x.

Integrating from 0 to t,

-π⁒βˆ₯un⁒x⁒(β‹…,t)βˆ₯L22+π⁒βˆ₯un⁒x⁒(β‹…,0)βˆ₯L22-2β’Ο€β’βˆ«0tβˆ₯un⁒x⁒x⁒(β‹…,s)βˆ₯L22⁒𝑑s=∫0tβˆ«π•‹fn⁒(x,s)⁒un⁒x⁒x⁒(x,s)⁒𝑑x.

For almost all s,

βˆ«π•‹|fn⁒(x,s)⁒un⁒x⁒x⁒(x,s)|⁒𝑑x ≀ 2⁒π⁒βˆ₯fn⁒(β‹…,s)βˆ₯L2⁒βˆ₯un⁒x⁒x⁒(β‹…,s)βˆ₯L2
≀ 2⁒π⁒(βˆ₯fn⁒(β‹…,s)βˆ₯L222+βˆ₯un⁒x⁒x⁒(β‹…,s)βˆ₯L222)
= π⁒βˆ₯fn⁒(β‹…,s)βˆ₯L22+π⁒βˆ₯un⁒x⁒x⁒(β‹…,s)βˆ₯L22.

It follows that, for all t,

π⁒βˆ₯un⁒x⁒(β‹…,t)βˆ₯L22⁒x+2β’Ο€β’βˆ«0tβˆ₯un⁒x⁒x⁒(β‹…,s)βˆ₯L22⁒𝑑s≀π⁒βˆ₯gnβ€²βˆ₯L22+Ο€β’βˆ«0tβˆ₯fn⁒(β‹…,s)βˆ₯L22+βˆ₯un⁒x⁒x⁒(β‹…,s)βˆ₯L22⁒d⁒s.

Hence

βˆ₯un⁒x⁒(β‹…,t)βˆ₯L22+∫0tβˆ₯un⁒x⁒x⁒(β‹…,s)βˆ₯L22⁒𝑑s ≀ βˆ₯gnβ€²βˆ₯L22+∫0tβˆ₯fn⁒(β‹…,s)βˆ₯L22⁒𝑑s
≀ βˆ₯gβˆ₯H12+∫0tβˆ₯f⁒(β‹…,s)βˆ₯L22⁒𝑑s
≀ βˆ₯gβˆ₯H12+∫0Tβˆ₯f⁒(β‹…,s)βˆ₯L22⁒𝑑s.

Using Parseval’s identity we have, for all t,

βˆ‘kβˆˆβ„€|un⁒x^⁒(k,t)|2+∫0tβˆ‘kβˆˆβ„€|un⁒x⁒x^⁒(k,s)|2⁒d⁒s≀βˆ₯gβˆ₯H12+∫0Tβˆ₯f⁒(β‹…,s)βˆ₯L22⁒𝑑s,

hence

βˆ‘kβˆˆβ„€k2⁒|un^⁒(k,t)|2+∫0tβˆ‘kβˆˆβ„€k4⁒|un^⁒(k,s)|2⁒d⁒s≀βˆ₯gβˆ₯H12+∫0Tβˆ₯f⁒(β‹…,s)βˆ₯L22⁒𝑑s,

so

βˆ‘kβˆˆβ„€k2⁒|u^⁒(k,t)|2+∫0tβˆ‘kβˆˆβ„€k4⁒|u^⁒(k,s)|2⁒d⁒s≀βˆ₯gβˆ₯H12+∫0Tβˆ₯f⁒(β‹…,s)βˆ₯L22⁒𝑑s.

It follows that, for almost all t,11 1 The reason I see that this follows involves the fact that the intersection of two sets of full measure is itself a set of full measure.

βˆ‘kβˆˆβ„€k2⁒|u^⁒(k,t)|2+βˆ‘kβˆˆβ„€k4⁒|u^⁒(k,t)|2<∞,

thus u⁒(β‹…,t)∈H2⁒(𝕋).

We have

limnβ†’βˆžβ‘βˆ«0Tβˆ₯un⁒(β‹…,t)-u⁒(β‹…,t)βˆ₯H22⁒𝑑t=0,

i.e.

limnβ†’βˆžβ‘βˆ₯un-uβˆ₯L2⁒(0,T;H2⁒(𝕋))2=0.

5 Solution

For all t we have u⁒(β‹…,t)∈H1⁒(𝕋), and H1⁒(𝕋)βŠ‚C0⁒(𝕋), so for all t and all x, u⁒(x,t) is defined. The Sobolev embedding tells us that if k>Ξ±+12 then Hk⁒(𝕋)βŠ‚Cα⁒(𝕋). So, being specific, we have H1⁒(𝕋)βŠ‚C1/4⁒(𝕋). It is a fact that if h∈Cα⁒(𝕋), Ξ±>0, then the partial sums of the Fourier series of h converge to h in the supremum norm.

For all t and for each k,

u^⁒(k,t)=e-k2⁒t⁒g^⁒(k)+e-k2⁒t⁒∫0tek2⁒s⁒f^⁒(k,s)⁒𝑑s.

It follows that, for all x,

u⁒(x,0)=limNβ†’βˆžβ‘βˆ‘|k|≀Ng^⁒(k)⁒ei⁒k⁒x.

On the other hand,

g⁒(x)=limNβ†’βˆžβ‘βˆ‘|k|≀Ng^⁒(k)⁒ei⁒k⁒x.

Thus for all x, u⁒(x,0)=g⁒(x).

We have

βˆ₯ut-ux⁒x-fβˆ₯L2⁒(0,T;L2⁒(𝕋)) ≀ βˆ₯ut-un⁒tβˆ₯L2⁒(0,T;L2⁒(𝕋))
+βˆ₯ux⁒x-un⁒x⁒xβˆ₯L2⁒(0,T;L2⁒(𝕋))
+βˆ₯f-fnβˆ₯L2⁒(0,T;L2⁒(𝕋))
+βˆ₯un⁒t-un⁒x⁒x-fnβˆ₯L2⁒(0,T;L2⁒(𝕋)).

Each of the four norms has limit 0 as nβ†’βˆž. Let me work out the first one. For almost all t,

ut^⁒(k,t)-un⁒t^⁒(k,t) = βˆ‘|k|>n-k2⁒e-k2⁒t⁒g^⁒(k)-k2⁒e-k2⁒t⁒∫0tek2⁒s⁒f^⁒(k,s)⁒𝑑s
+e-k2⁒t⁒ek2⁒t⁒f^⁒(k,t)
= βˆ‘|k|>n-k2⁒u^⁒(k,t)+f^⁒(k,t).

Then using Parseval’s identity,

βˆ₯ut-un⁒tβˆ₯L2⁒(0,T;L2⁒(𝕋))2 = ∫0Tβˆ‘|k|>n|-k2⁒u^⁒(k,t)+f^⁒(k,t)|2⁒d⁒t
≀ 2⁒∫0Tβˆ‘|k|>nk2⁒|u^⁒(k,t)|2+|f^⁒(k,t)|2⁒d⁒t.

Then,

βˆ₯ut-ux⁒x-fβˆ₯L2⁒(0,T;L2⁒(𝕋))2=0.

So, for almost all t and for almost all x,

ut⁒(x,t)-ux⁒x⁒(x,t)=f⁒(x,t).