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1 Locally compact abelian groups

Let N denote the positive integers.
If Gi, i ∈ I, are compact abelian groups, we define their direct product to

be the cartesian product ∏
i∈I

Gi

with the coarsest topology such that the projection maps πi :
∏

j∈I Gj → Gi

are continuous (namely the product topology), with which the direct product is
a compact abelian group. We write

Gω =
∏
N

G.

We shall be interested especially in the compact abelian group T = S1, and we
call Tω the infinite-dimensional torus.

If Γi, i ∈ I, are discrete abelian groups, their direct sum, denoted by⊕
i∈I

Γi,

consists of those elements x of the cartesian product
∏

i∈I Γi such that the set
{i ∈ I : πi(x) ̸= 0} is finite. Let pi :

⊕
j∈I Γj → Γi be the restriction of πi

to
⊕

j∈I Γj . We give the direct sum the finest topology such that the inclusion
maps qi : Γi →

⊕
j∈I Γj , defined by

(pj ◦ qi)(x) =

{
x j = i

0 j ̸= i
, x ∈ Γi,

are continuous. With this topology, the direct sum is a discrete abelian group.
We write

Γ∞ =
⊕
N

Γ.

We shall be interested especially in the discrete abelian group Z, and in the
infinite direct sum Z∞. (I don’t know how significant an object it is, but I
mention that the abelian group

∏
N Z is called the Baer-Specker group.)
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When speaking about 0 or 1 in a locally compact abelian group, it is un-
ambiguous that this symbol denotes the identity element of the group, because
there is only one distinguished element in a locally compact abelian group. Of-
ten we denote the identity element of a compact abelian group by 1 and the
identity element of a discrete abelian group by 0.

If G1, . . . , Gn are locally compact abelian groups, it is straightforward to
check that the cartesian product

n∏
k=1

Gk

with the product topology is a locally compact abelian group. We call this both
the direct product and the direct sum and write

G1 ⊕ · · · ⊕Gn =

n⊕
k=1

Gk =

n∏
k=1

Gk = G1 × · · · ×Gn.

2 Dual groups

If G is a locally compact abelian group, denote by Ĝ its dual group, that is,
the set of continuous group homomorphisms G → S1. For g ∈ G and ϕ ∈ Ĝwe
write

⟨x, ϕ⟩ = ϕ(x).

Ĝ has the initial topology induced by {ϕ 7→ ⟨x, ϕ⟩ : x ∈ G}, with which it is a

locally compact abelian group. If G is compact then Ĝ is discrete, and if G is
discrete then Ĝ is compact.

Theorem 1. Suppose that G1, . . . , Gn are locally compact abelian groups. Then
the dual group of G1 ⊕ · · · ⊕ Gn is isomorphic as a topological group to Ĝ1 ⊕
· · · ⊕ Ĝn.

We prove in the following theorem that for discrete abelian groups, the dual
group of a direct sum is the direct product of the dual groups.1 In particular,
this shows that the dual group of Z∞ is Tω. Then by the Pontryagin duality
theorem2 we get that the dual group of Tω is Z∞.

Theorem 2. Suppose that Γi, i ∈ I, are discrete abelian groups and let

Γ =
⊕
i∈I

Γi, G =
∏
i∈I

Γ̂i.

Then Φ : G → Γ̂, defined by

(Φg)(γ) =
∏
i∈I

⟨pi(γ), πi(g)⟩, g ∈ G, γ ∈ Γ,

1Karl H. Hofmann and Sidney A. Morris, The Structure of Compact Groups, second ed.,
p. 12, Proposition 1.17. Cf. Walter Rudin, Fourier Analysis on Groups, p. 37, §2.2.3.

2Walter Rudin, Fourier Analysis on Groups, p. 28, Theorem 1.7.2.
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is an isomorphism of topological groups. Here, πi : G → Γ̂i and pi : Γ → Γi are
the projection maps.

Proof. The definition of (Φg)(γ) makes sense because {i ∈ I : pi(γ) ̸= 0} is
finite and hence {i ∈ I : ⟨pi(γ), πi(g)⟩ ≠ 1} is finite. For g, h ∈ G and γ ∈ Γ,

(Φ(gh))(γ) =
∏
i∈I

⟨pi(γ), πi(gh)⟩

=
∏
i∈I

⟨pi(γ), πi(g)⟩⟨pi(γ), πi(h)⟩

= (Φg)(γ)(Φh)(γ)

= ((Φg)(Φh))(γ),

showing that Φ(gh) = Φ(g)Φ(h) and hence that Φ is a homomorphism. Suppose
that g ∈ kerΦ. For each i ∈ I and each γ ∈ Γi,

((Φg) ◦ qi)(γ) = (Φg)(qi(γ)) = 1,

where qi : Γi →
Gamma is the inclusion map. This is true for all γ ∈ Γi, so (Φg) ◦ qi is the

identity element of Γ̂i. And this is true for all i ∈ I, so Φg is the identity element
of G. Therefore Φ is one-to-one. Suppose that α ∈ Γ̂. Define g ∈ G as follows:
for each i ∈ I, take πi(g) = α ◦ qi ∈ Γ̂i. Then g satisfies Φg = α, hence Φ is
onto and is therefore a group isomorphism.

A continuous bijection from a compact topological space to a Hausdorff space
is a homeomorphism, so to prove that Φ is a homeomorphism it suffices to prove
that Φ is continuous. Γ̂ has the initial topology induced by {α 7→ ⟨γ, α⟩ : γ ∈ Γ},
which are maps Γ̂ → S1, so by the universal property of the initial topology,
to prove that Φ is continuous it suffices to prove that for each γ ∈ Γ,

g 7→ ⟨γ,Φg⟩

is continuous G → S1. For γ ∈ Γ, let Jγ = {i ∈ I : pi(γ) ̸= 0}, which
is a finite set. For each i ∈ Jγ , it is straightforward to check that the map
g 7→ ⟨pi(γ), πi(g)⟩ is continuous G → S1. Hence the map

g 7→ (Φg)(γ) =
∏
i∈Jγ

⟨pi(γ), πi(g)⟩

is continuous G → S1, being a product of finitely many continuous functions
G → S1, and this completes the proof.

Let G be a locally compact abelian group. If Γ0 is a finite subset of Ĝ and
aγ ∈ C for each γ ∈ Γ0, we call the function G → C defined by

x 7→
∑
γ∈Γ0

aγ⟨x, γ⟩
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a trigonometric polynomial on G. Suppose that G is a compact abelian
group. Its dual group Ĝ separates points in G; this is not immediate and
is proved using the inversion theorem for the Fourier transform.3 The set of
trigonometric polynomials on G is a self-adjoint algebra that contains the con-
stant functions, so the Stone-Weierstrass theorem then tells us that it is dense
in the Banach algebra C(G). Because C is separable, it follows that if Ĝ is
countable then C(G) is separable. In particular, any closed subgroup G of Tω is
a compact abelian group whose dual group one checks to be countable, so C(G)
is separable.

A compact Hausdorff space X is metrizable if and only if the Banach algebra
C(X) is separable.4 We established in the previous paragraph that if G is
a compact abelian group with countable dual group then the trigonometric
polynomials are dense in the Banach algebra C(G). Therefore, every compact
abelian group with countable dual group is metrizable. In particular, Tω and
all its closed subgroups are metrizable. In fact, it is proved in Rudin that for a
compact abelian group, (i) being metrizable, (ii) having a countable dual group,
and (iii) being isomorphic as a topological group to a closed subgroup of Tω are
equivalent.5

3 Tω and Z∞

Let πn : Tω → S1 and pn : Z∞ → Z be the projection maps and let qn : Z → Z∞

be the inclusion map.
For x ∈ Tω and γ ∈ Z∞,

⟨x, γ⟩ =
∏
n∈N

⟨πn(x), pn(γ)⟩ =
∏
n∈N

πn(x)
pn(γ),

where for each n, πn(x) ∈ S1 and pn(γ) ∈ Z.
Let m be the Haar measure on Tω such that m(Tω) = 1. Because the dual

group of Tω is Z∞, for any f ∈ L1(m) the Fourier transform of f is the function

f̂ ∈ C0(Z∞) defined by

f̂(γ) =

∫
Tω

f(x)⟨−x, γ⟩dm(x) =

∫
Tω

f(x)
∏
n∈N

πn(γ)
−pn(x)dm(x), γ ∈ Z∞.

4 Kronecker sets

Suppose that G is a locally compact abelian group and that E is a subset of G,
which we give the subspace topology. E is called a Kronecker set if for every

3Walter Rudin, Fourier Analysis on Groups, p. 24, §1.5.2.
4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-

hiker’s Guide, third ed., p. 353, Theorem 9.14.
5Walter Rudin, Fourier Analysis on Groups, p. 38, §2.2.6.
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continuous f : E → S1 and every ϵ > 0, there is some γ ∈ Ĝ such that

sup
x∈E

|f(x)− ⟨x, γ⟩| < ϵ.

We first prove the following lemma from Rudin.6

Lemma 3. If 0 < α < β < 1, then the set of polynomials with integer coef-
ficients and 0 constant term is dense in the real Banach algebra C([α, β]) of
continuous functions [α, β] → R.

Proof. Let R be the closure in C([α, β]) of the set of polynomials with integer
coefficients and 0 constant term. Because x ∈ R, R separates points in [α, β] and
for every a ∈ [α, β] there is some f ∈ R such that f(a) ̸= 0. It is straightforward
to check that R is closed under addition and multiplication. If we show that
R ⊂ R, it will follow that R is an algebra over R, and then by the Stone-
Weierstrass theorem we will get that R is dense in C([α, β]), and hence equal
to C([α, β]) as R is closed.

Let c ∈ R, let p be prime, and define

Sp(x) =
1− xp − (1− x)p

p
, x ∈ [α, β].

Using that p is prime, by the binomial theorem it follows that Sp is a polynomial
with integer coefficients and 0 constant term. Partitioning R into intervals of
length p, c lies in one of these intervals and hence there is some integer qp such

that
∣∣∣c− qp

p

∣∣∣ < 1
p . For x ∈ [α, β],

|qpSp(x)− c| ≤
∣∣∣∣c− qp

p

∣∣∣∣+ |qp|
p

(βp + (1− α)p)

<
1

p
+

(
|c|+ 1

p

)
(βp + (1− α)p).

Hence ∥qpSp − c∥∞ → 0 as p → ∞. qp is an integer so for each p, qpSp is
a polynomial with integer coefficients and 0 constant term, so this shows that
c ∈ R, completing the proof.

An arc in a topological space is a homeomorphic image of a compact subset
of R of nonzero length. The following theorem shows that there is an arc in Tω

that is a Kronecker set.7

Theorem 4. Tω contains an arc that is a Kronecker set.

Proof. Let 0 < α < β < 1, define x : [α, β] → Tω by

(πn ◦ x)(t) = exp (2πitn) , t ∈ [α, β], n ∈ N,
6Walter Rudin, Fourier Analysis on Groups, p. 104, Lemma 5.2.8.
7Walter Rudin, Fourier Analysis on Groups, p. 103, Theorem 5.2.7.
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and let L be the image of [α, β] under x. Assign L the subspace topology
inherited from Tω, and suppose that f : L → S1 is continuous. One proves that
there is a continuous function h : [α, β] → R that satisfies

(f ◦ x)(t) = exp(2πih(t)), α ≤ t ≤ β.

Let ϵ > 0, and by Lemma 3, let Sm(x) =
∑m

j=1 ajx
j be a polynomial with

integer coefficients such that ∥Sm − h∥∞ < ϵ. Define γ ∈ Z∞ by pj(γ) = aj for
1 ≤ j ≤ m and pj(γ) = 0 otherwise. For t ∈ [α, β],

|f(x(t))− ⟨x(t), γ⟩| =

∣∣∣∣∣exp(2πih(t))− ∏
n∈N

⟨πn(x(t)), pn(γ)⟩

∣∣∣∣∣
=

∣∣∣∣∣exp(2πih(t))−
m∏

n=1

⟨πn(x(t)), an⟩

∣∣∣∣∣
=

∣∣∣∣∣exp(2πih(t))−
m∏

n=1

exp(2πiant
n)

∣∣∣∣∣
=

∣∣∣∣∣exp(2πih(t))− exp

(
m∑

n=1

2πiant
n

)∣∣∣∣∣
≤

∣∣∣∣∣2πh(t)−
m∑

n=1

2πant
n

∣∣∣∣∣
= 2π|h(t)− Sm(t)|
< 2πϵ,

using the fact that | exp(iA) − exp(iB)| ≤ |A − B| for A,B ∈ R. Hence, for
every ϵ > 0 there is some γ ∈ Z∞ such that

sup
y∈L

|f(y)− ⟨y, γ⟩| < ϵ,

showing that L is a Kronecker set.

5 Subgroups

Suppose that G is a locally compact abelian group. For each x ∈ G, let tx : G →
G be defined by tx(y) = x+ y, which is a homeomorphism, and let σ : G → G
be defined by σ(x) = −x, which is also a homeomorphism. If A is an open set
in G and B is a subset of G, then

A+B =
⋃
x∈B

tx(A),

which is open because tx(A) is open for each x ∈ B. Furthermore, if A and B
are both compact sets in G then A×B is compact in G×G and A+B is the
image of A×B under the continuous map (x, y) 7→ x+ y hence is compact.
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By a neighborhood of a point x in a topological space we mean a set such
that x lies in the interior of the set, in other words, a set that contains an open
neighborhood of the point. The collection of all neighborhoods of a point x is a
filter, and a neighborhood base at x is a filter base for the neighborhood filter
of x. In a locally compact Hausdorff space, every point x has a neighborhood
base consisting of compact neighborhoods of x.

Let A : G × A → G be A(x, y) = x + y, which is continuous. If W is a
neighborhood of 0 in G, then A−1(W ) is a neighborhood of (0, 0) in G×G. A
base for the product topology on G × G consists of sets of the form U1 × U2

where U1, U2 are open sets in G, so there are open sets U1, U2 in G such that
(0, 0) ∈ U1×U2 ⊂ A−1(W ). Each of U1 and U2 are then open neighborhoods of
0 in G, so V = U1 ∩U2 is also an open neighborhood of 0 in G, and then V ×V
is open in G×G and

(0, 0) ∈ V × V ⊂ U1 × U2 ⊂ A−1(W ).

Hence A(0, 0) ⊂ A(V × V ) ⊂ W , i.e. 0 ∈ V + V ⊂ W , and V + V is open
because V is open. Therefore, for every neighborhood W of 0 in a locally
compact abelian group, there is some V that is an open neigborhood of 0 and
that satisfies V + V ⊂ W .

Suppose that G is a locally compact abelian group. A subset E of G is called
symmetric if E = −E. If N is a compact neighborhood of 0 then N contains
an open neighborhood U of 0. The set U ∩ σ(U) is an open neighborhood
of 0 and the set N ∩ σ(N) is compact (an intersection of compact sets in a
Hausdorff space is compact) and contains U∩σ(U), hence N∩σ(N) is a compact
symmetric neighborhood of 0 that is contained in N . It follows that in a locally
compact abelian group, there is a neighborhood base at 0 consisting of compact
symmetric neighborhoods of 0.

Suppose that G is an abelian group and that H is a subgroup of G. We
define the quotient group G/H be the collection of cosets of H, which is an
abelian group where we define

(x+H) + (y +H) = (x+ y) +H, x, y ∈ G.

Let π : G → G/H be the projection map, which is a homomorphism with
kerπ = H.

We are now equipped to define quotient groups in the category of locally
compact abelian groups. Suppose that G is a locally compact abelian group and
that H is a closed subgroup of G. We assign G/H the final topology induced by
the projection map π (namely, the quotient topology). For x+H ∈ G/H, there
is a compact neighborhood N of x in G; that is, there is a compact set N and
an open set U such that x ∈ U ⊂ N . Because π is continuous, π(N) is compact,
and because π is open, π(U) is open, so π(N) is a compact neighborhood of
x + H in G/H. Therefore G/H is locally compact. It remains to prove that
G/H is Hausdorff and that addition and negation are continuous to prove that
G/H is a locally compact abelian group. Suppose that x+H, y+H are distinct
elements of G/H, i.e. x − y ̸∈ H. The set y + H = ty(H) is closed because
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H is closed, and x ̸∈ y + H so G \ ty(H) is an open neighborhood of x, and
hence W = t−x(G \ ty(H)) is an open neighborhood of 0 such that x + W is
disjoint from y +H. Because W is an open neighborhood of 0 there is an open
neighborhood V of 0 such that V + V ⊂ W . Furthermore, there is a compact
symmetric neighborhood of 0, N , contained in V . If (x+H+N)∩(y+H+N) ̸= ∅
then there are h1, h2 ∈ H and n1, n2 ∈ N such that x+ h1 + n1 = y + h2 + n2,
and then x+ (n1 − n2) = y + (h2 − h1). But −n2 ∈ N because N is symmetric
and so n1 − n2 ∈ N + N ⊂ V + V ⊂ W , so x + (n1 − n2) ∈ x + W , and
h2 − h1 ∈ H, so y+(h2 − h1) ∈ y+H, contradicting that x+W and y+H are
disjoint. Therefore x+H+N and y+H+N are disjoint, and their images under
π are then disjoint neighborhoods of x + H and y + H in G/H, showing that
G/H is Hausdorff. It is straightforward to prove that addition and negation are
continuous in G/H, and therefore G/H is a locally compact abelian group.

If H is a closed subgroup of a locally compact abelian group G, the anni-
hilator of H, denoted ΛH , is the set of all γ ∈ Ĝ such that

⟨x, γ⟩ = 1, x ∈ H.

For each x ∈ H, the map γ 7→ ⟨x, γ⟩ is continuous Ĝ → S1 so the inverse image
of {1} under this map is closed. ΛH is the intersection of all these inverse images
hence is closed, and is a closed subgroup because it is apparent that ΛH is a
subgroup of Ĝ. It can be proved that ΛH is the dual of the quotient group G/H

and that the quotient group Ĝ/ΛH is the dual of H.8

The following lemma shows that we can extend continuous characters on a
closed subgroup to the entire group.9

Lemma 5. Suppose that H is a closed subgroup of a locally compact abelian
group G. If ϕ ∈ Ĥ, then there is some γ ∈ Ĝ whose restriction to H is equal to
ϕ.

Proof. ϕ ∈ Ĥ = Ĝ/ΛH , so there is some γ ∈ Ĝ such that for all x ∈ H,
γ(x) = ϕ(x).

Suppose that G is a locally compact abelian group. It can be proved that
if E is a compact open set in G and 0 ∈ E, then E contains a compact open
subgroup of G.10

We are now equipped to prove the following theorem.11

Theorem 6. Suppose that G is a compact group. G is connected if and only if
γ ∈ Ĝ having finite order implies that γ = 0.

Proof. Assume that G is not connected. Then there is a clopen subset A that
is neither G nor ∅. Because G is compact, both A and G \ A are compact and
open, and one of them, call it E, contains 0. Because E is a compact open set

8Walter Rudin, Fourier Analysis on Groups, p. 35, Theorem 2.1.2.
9Walter Rudin, Fourier Analysis on Groups, p. 36, Theorem 2.1.4.

10Walter Rudin, Fourier Analysis on Groups, p. 41, Lemma 2.4.3.
11Walter Rudin, Fourier Analysis on Groups, p. 47, Theorem 2.5.6.
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containing 0, E contains a compact open subgroup H of G, and H ̸= G because
E ̸= G. Because H is open, the singleton {0+H} in the quotient group G/H is
an open set, and therefore G/H is discrete. But G is compact and G/H is the
image of G under the projection map, so G/H is compact. Hence G/H is finite.

The dual of G/H is ΛH , which is a subgroup of Ĝ. Because G/H contains more
than one element (as H ̸= G), ΛH contains some γ ̸= 0, and γ has finite order
because it is contained in the finite subgroup ΛH .

Assume that γ ∈ Ĝ has order finite order and that γ ̸= 0. Every element of
γ(G) has finite order and γ(G) ̸= {1}, so γ(G) is not connected. But if G were
connected then γ(G), a continuous image of G, would be connected, hence G is
not connected.

Lemma 7. Suppose that G is a locally compact abelian group. If A is an open
subgroup of G, then A is closed.

Proof. A is a subgroup of G, which gives us

A = G \
⋃

x∈G\A

(x+A).

Because each set x+A is open, this shows that A is closed.

6 Measures

Suppose that M is a σ-algebra on a set X. If µ is a complex measure on M we
denote by |µ| its total variation, which is a finite positive measure on M .12

The total variation norm of µ is ∥µ∥ = |µ|(X).
Suppose that X is a Hausdorff space with Borel σ-algebra BX and that µ

is a complex Borel measure on X. We say that µ is outer regular if for each
E ∈ BX ,

|µ|(E) = inf{|µ|(V ) : E ⊂ V and V is open}

inner regular if for each E ∈ BX ,

|µ|(E) = sup{|µ|(F ) : F ⊂ E and F is closed},

and tight if for each E ∈ BX ,

|µ|(E) = sup{|µ|(K) : K ⊂ E and K is compact}.

(Because we demand that X be Hausdorff, a compact set is closed and hence
belongs to the Borel σ-algebra of X; compact sets need not belong to the Borel
σ-algebra of a topological space that is not Hausdorff.) We remark that the
words “inner regular” often means what we call tight. We say that µ is regular
if it is both outer regular and tight, and we also remark that calling a measure

12Walter Rudin, Real and Complex Analysis, third ed., p. 117, Theorem 6.2 and p. 118,
Theorem 6.4.
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regular often means being outer regular and what we call inner regular. What
we call a regular complex Borel measure means precisely what Rudin means
by these words in Fourier Analysis on Groups, and using Rudin’s notation we
define

M(X) = {µ : µ is a regular complex Borel measure on X}.

It is a fact that a complex Borel measure on a metrizable space is outer
regular and inner regular,13 and that a complex Borel measure on a Polish
space is regular.14

Suppose that X and Y are locally compact Hausdorff spaces and that µ ∈
M(X) and λ ∈ M(Y ). It is a fact that there is a unique element of M(X × Y ),
denoted µ× λ, such that for any A ∈ BX and B ∈ BY ,

(µ× λ)(A×B) = µ(A)λ(B).

We call µ× λ the product measure of µ and λ.
Suppose that G is a locally compact abelian group with addition A : G ×

G → G. For µ, λ ∈ M(G), we define the convolution of µ and λ to be the
pushforward of the product µ× λ by A,

µ ∗ λ = A∗(µ× λ),

and it can be proved that µ ∗ λ ∈ M(G), that convolution is commutative and
associative, and that ∥µ∗λ∥ ≤ ∥µ∥∥λ∥.15 Then, with convolution as multiplica-
tion and using the total variation norm, M(G) is a unital commutative Banach
algebra, with unity δ0.

For µ ∈ M(G), the Fourier transform of µ is the function µ̂ : Ĝ → C
defined by

µ̂(γ) =

∫
G

⟨−x, γ⟩dµ(x), γ ∈ Ĝ.

One proves that µ̂ is bounded and uniformly continuous, and we define

B(Ĝ) = {µ̂ : µ ∈ M(G)}.

7 Idempotent measures

If G is a locally compact abelian group and µ ∈ M(G), we say that µ is idem-
potent if µ ∗ µ = µ, and we denote the set of idempotent elements of M(G)
by J(G). Because the Fourier transform of a convolution is the product of the
Fourier transforms, for µ ∈ M(G) we have µ ∗ µ = µ if and only if µ̂2 = µ̂. But

13Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 436, Theorem 12.5.

14Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 438, Theorem 12.7.

15Walter Rudin, Fourier Analysis on Groups, p. 13, Theorem 1.3.2; Karl Stromberg, A note
on the convolution of regular measures, Math. Scand. 7 (1959), 347–352.
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µ̂2 = µ̂ is equivalent to µ̂ having range contained in {0, 1}, so for µ ∈ M(G), we
have that µ ∈ J(G) if and only if µ̂ is the characteristic function of some subset

of Ĝ. For µ ∈ J(G), we write

S(µ) = {γ ∈ Ĝ : µ̂(γ) = 1}.

Suppose that Λ is an open subgroup of Ĝ. Then Λ is closed, and the fact
that Λ is open implies that the singleton containing the identity in Ĝ/Λ is open

and hence that Ĝ/Λ is a discrete abelian group. Denoting the annihilator of

Λ by H, which is a closed subgroup of G, the quotient group Ĝ/Λ is the dual
group of H and hence H is compact. Let mH be the Haar measure on H such
that mH(H) = 1. Taking mH(E) = mH(E ∩H), mH ∈ M(G). If γ ∈ Λ then

m̂H(γ) =

∫
G

⟨−x, γ⟩dmH(x) =

∫
H

⟨−x, γ⟩dmH(x) =

∫
H

dmH(x) = mH(H) = 1.

If γ ∈ Ĝ \ Λ then there is some x0 ∈ H such that ⟨x0, γ⟩ ≠ 1, and then∫
H

⟨−x, γ⟩dmH(x) = ⟨x0, γ⟩
∫
H

⟨−x0−x, γ⟩dmH(x) = ⟨x0, γ⟩
∫
H

⟨−x, γ⟩dmH(x),

showing that m̂H(γ) = ⟨x0, γ⟩m̂H(γ), and because ⟨x0, γ⟩ ≠ 1 this implies that
m̂H(γ) = 0. Therefore, Λ = S(mH).

If E = γ0 + Λ, then with

dµ(x) = ⟨x, γ0⟩dm(H)

we have µ ∈ J(G) and E = S(µ).

8 Sidon sets

Let G be a compact abelian group and let E ⊂ Ĝ. A function f ∈ L1(G) is

called an E-function if γ ∈ Ĝ \E implies that f̂(γ) = 0. An E-polynomial is
a trigonometric polynomial f on G that is an E-function.

We call a subset E of Ĝ a Sidon set if there is some BE ≥ 0 such that for
every E-polynomial f on G,∑

γ∈E

|f̂(γ)| ≤ BE∥f∥∞.

We shall use the following lemma later.16

Lemma 8. Suppose that Γ is a discrete abelian group that is the dual group of
a compact abelian group G. If E ⊂ Γ is a Sidon set with constant BE, then
every bounded E-function f on G satisfies∑

γ∈E

|f̂(γ)| ≤ BE∥f∥∞.

16Walter Rudin, Fourier Analysis on Groups, p. 121, Theorem 5.7.3.
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9 Dirichlet series

Define σ : Z∞ → Z by σ(γ) =
∑

n∈N pn(γ), i.e. the sum of the entries of γ,
which makes sense because any element of Z∞ has only finitely many nonzero
entries.

Let Y be those γ ∈ Z∞ such that pn(γ) ≥ 0 for all n ∈ N, and let E =
Y ∩σ−1(1). In other words, the elements of E are those γ ∈ Z∞ one coordinate
of which is 1 and all other coordinates of which are 0. The proof of the following
theorem is from Rudin.17

Theorem 9. If f ∈ L∞(Tω) and f̂(γ) = 0 for all γ ∈ X \ Y , then∑
γ∈E

|f̂(γ)| ≤ ∥f∥∞.

Proof. σ : Z∞ → Z is a continuous group homomorphism, and kerσ is an open
subgroup of Z∞, because Z∞ is discrete. Because σ−1(1) is a coset of this open
subgroup, there is some µ ∈ J(Tω) such that µ̂ is the characteristic function of
σ−1(1), and this µ satisfies ∥µ∥ = 1. Define g : Tω → C by

g(x) = (f ∗ µ)(x) =
∫
Tω

f(x− y)dµ(y), x ∈ Tω,

whose Fourier transform is ĝ(γ) = f̂(γ)µ̂(γ). If γ ̸∈ E then γ ̸∈ Y or γ ̸∈ σ−1(1).

In the first case f̂(γ) = 0 and in the second case µ̂(γ) = 0, and hence γ ̸∈ E
implies that ĝ(γ) = 0, namely, g is an E-function. Also, it is apparent from the
definition of g that ∥g∥∞ ≤ ∥f∥∞.

Suppose that P is an E-polynomial. Hence there is a finite subset E0 of E
such that γ ̸∈ E0 implies that P̂ (γ) = 0, and thus there are cγ ∈ C, γ ∈ E0,
such that

P (x) =
∑
γ∈E0

cγ⟨x, γ⟩ =
∑
γ∈E0

cγ
∏
n∈N

⟨πn(x), pn(γ)⟩, x ∈ Tω.

E0 ⊂ E, so any element of E0 has one entry 1, say pnγ (γ) = 1, and all other
entries 0, so

P (x) =
∑
γ∈E0

cγπnγ
(x).

Define x ∈ Tω by taking cγ ·πnγ
(x) = |cγ | for each γ ∈ E0, and all other entries

of x to be 1 ∈ S1; this makes sense because if γ1, γ2 ∈ E0 and nγ1 = nγ2 then
γ1 = γ2. For this x, P (x) =

∑
γ∈E0

|cγ |. But it is apparent that ∥P∥∞ ≤∑
γ∈E0

|cγ |, so
∥P∥∞ =

∑
γ∈E0

|cγ |.

17Walter Rudin, Fourier Analysis on Groups, p. 224, Theorem 8.7.9.
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This shows that E is a Sidon set with BE = 1. Therefore by Lemma 8, because
g is a bounded E-function on Tω we get

∑
γ∈E |ĝ(γ)| ≤ ∥g∥∞. But µ̂ is the

characteristic function of σ−1(1) and E = Y ∩ σ−1(1), so∑
γ∈E

f̂(γ) =
∑
γ∈E

f̂(γ)µ̂(γ) =
∑
γ∈E

ĝ(γ) ≤ ∥g∥∞ ≤ ∥f∥∞,

proving the claim.

Following Rudin, we use the above theorem to prove a theorem about Dirich-
let series due to Bohr.18

Theorem 10 (Bohr). If

ϕ(s) =
∞∑
k=1

ck
ks

and |ϕ(s)| ≤ 1 for all s such that Re s > 0, then∑
p

|cp| ≤ 1.

Proof. For k ∈ N, let γ(k) ∈ Y such that k =
∏∞

n=1 p
hn(γ(k))
n , where pn are the

primes and where hn : Z∞ → Z are the projection maps; so far we have denoted
these projection maps by pn, rather than using hn, but the symbol pn has such
a strong association with the primes that we change notation here. The map
k 7→ γ(k) is a bijection N → Y , and we write cγ = ck. We shall use the fact
that the image of the primes under this bijection is E.

Let s be a complex number in the half-plane of convergence of ϕ and write
zn(s) = p−s

n = exp(−s log pn). Then,

ϕ(s) =

∞∑
k=1

ckk
−s

=
∑
γ∈Y

cγ

( ∞∏
n=1

phn(γ)
n

)−s

=
∑
γ∈Y

cγ

∞∏
n=1

p−shn(γ)
n

=
∑
γ∈Y

cγ

∞∏
n=1

zn(s)
hn(γ)

Defining T : R → Tω by

(πn ◦ T )(σ) = exp(−iσ log pn), n ∈ N, σ ∈ R,
18Walter Rudin, Fourier Analysis on Groups, pp. 224–225. See also Maxime Bailleul and

Pascal Lefèvre, Some Banach spaces of Dirichlet series, arxiv.org/abs/1311.3845
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we have, as zn(iσ) = exp(−iσ log pn),

ϕ(iσ) =
∑
γ∈Y

cγ

∞∏
n=1

⟨πn(T (σ)), hn(γ)⟩ =
∑
γ∈Y

cγ⟨T (σ), γ⟩.

One checks that the function f : Tω → C defined by f(x) =
∑

γ∈Y cγ⟨x, γ⟩
satisfies the conditions of Theorem 9, and thus gets∑

p

|cp| =
∑
γ∈E

|cγ | =
∑
γ∈E

|f̂(γ)| ≤ ∥f∥∞

I do not see why ∥f∥∞ ≤ 1. However, granted this, the claim follows.

10 Descriptive set theory

If (X, d) is a compact metric space, C(X,X) is a Polish space with the uniform
metric (f, g) 7→ supx∈X d(f(x), g(x)). We denote by H(X) the group of home-
omorphisms of X, which one proves is a Gδ set in C(X,X). Because H(X) is
a Gδ set in a Polish space, it is a Polish space with the subspace topology. A
homeomorphism h of X is said to be minimal if there is no proper closed subset
of X that is invariant under h, and is called distal if x ̸= y implies that there
is some ϵ > 0 such that for all n ∈ N, d(hn(x), hn(y)) > ϵ. It has been proved
(Beleznay-Foreman) that the collection of minimal distal homeomorphisms of
Tω is a Borel Σ1

1-complete set in H(Tω).19
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