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1 Introduction

The goal of this note is to develop all the machinery necessary to understand
what it means to say that the set H(D) of holomorphic functions on the unit
disc is a separable and reflexive Fréchet space that has the Heine-Borel property
and is not normable.

2 Topological vector spaces

If X is a topological space and p ∈ X, a local basis at p is a set B of open
neighborhoods of p such that if U is an open neighborhood of p then there is
some U0 ∈ B that is contained in U . We emphasize that to say that a topological
vector space (X, τ) is normable is to say not just that there is a norm on the
vector space X, but moreover that the topology τ is induced by the norm.

A topological vector space over C is a vector space X over C that is a topo-
logical space such that singletons are closed sets and such that vector addition
X × X → X and scalar multiplication C × X → X are continuous. It is not
true that a topological space in which singletons are closed need be Hausdorff,
but one can prove that every topological vector space is a Hausdorff space.1 For
any a ∈ X, we check that the map x 7→ a+x is a homeomorphism. Therefore, a
subset U of X is open if and only if a+U is open for all a ∈ X. It follows that if
X is a vector space and B is a set of subsets of X each of which contains 0, then
there is at most one topology for X such that X is a topological vector space
for which B is a local basis at 0. In other words, the topology of a topological
vector space is determined by specifying a local basis at 0. A topological vector
space X is said to be locally convex if there is a local basis at 0 whose elements
are convex sets.

If X is a vector space and F is a set of seminorms on X, we say that F is
a separating family if x ̸= 0 implies that there is some m ∈ F with m(x) ̸= 0.
(Thus, if m is a seminorm on X, the singleton {m} is a separating family if
and only if m is a norm.) The following theorem presents a local basis at 0

1Walter Rudin, Functional Analysis, second ed., p. 11, Theorem 1.12.
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for a topology and shows that there is a topology for which the vector space
is a locally convex space and for which this is a local basis at 0.2 We call this
topology the seminorm topology induced by F .

Theorem 1 (Seminorm topology). If X is a vector space and F is a separating
family of seminorms on X, then there is a topology τ on X such that (X, τ) is
a locally convex space and the collection B of finite intersections of sets of the
form

Bm,ϵ = {x ∈ X : m(x) < ϵ}, m ∈ F , ϵ > 0

is a local basis at 0.

Proof. We define τ to be those subsets U of X such that for all x ∈ U there is
some N ∈ B satisfying x + N ⊆ U . If U is a subset of τ and x ∈

⋃
U∈U U ,

then there is some U0 ∈ U with x ∈ U0, and there is some N0 ∈ B satisfying
x+N0 ⊆ U0. We have

x+N0 ⊆ U0 ⊆
⋃

U∈U

U,

which tells us that
⋃

U∈U U ∈ τ . If U1, . . . , Un ∈ τ and x ∈
⋂n

k=1 Uk, then there
are N1, . . . , Nn ∈ B satisfying x+Nk ∈ Uk for 1 ≤ k ≤ n. But the intersection
of finitely many elements of B is itself an element of B, so N =

⋂n
k=1 Nk ∈ B,

and

x+N ⊆
n⋂

k=1

Uk,

showing that
⋂n

k=1 Uk ∈ τ . Therefore, τ is a topology.
Suppose that x ∈ X. For y ̸= x, let my ∈ F with ϵy = my(x− y) ̸= 0; there

is such a seminorm because F is a separating family. Then Uy = y + Bmy,ϵy

is an open set that contains y and does not contain x. Therefore X \ Uy is a
closed set that contains x and does not contain y, and⋂

y ̸=x

X \ Uy = {x}

is a closed set, showing that singletons are closed.
Let x, y ∈ X and N ∈ B. There are mk ∈ F and ϵk > 0, 1 ≤ k ≤ n,

such that N =
⋂n

k=1 Bmk,ϵk . Let U =
⋂n

k=1 Bmk,ϵk/2. If v ∈ (x+ U) + (y + U)
and 1 ≤ k ≤ n, then there are xk ∈ Bmk,ϵk/2 and yk ∈ Bmk,ϵk/2 such that
v = x+ xk + y + yk, and

mk(v − (x+ y)) = mk(xk + yk) ≤ mk(xk) +mk(yk) <
ϵk
2

+
ϵk
2

= ϵk,

so v ∈ x + y + Bmk,ϵk . This is true for each k, 1 ≤ k ≤ n, so v ∈ x + y + N .
Hence

(x+ U) + (y + U) ⊆ x+ y +N,

2Paul Garrett, Seminorms and locally convex spaces, http://www.math.umn.edu/

~garrett/m/fun/notes_2012-13/07b_seminorms.pdf
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showing that vector addition is continuous at (x, y) ∈ X × X: for every basic
open neighborhood x+y+N of the image x+y, there is an open neighborhood
(x + U) × (y + U) of (x, y) whose image under vector addition is contained in
x+ y +N .

Let α ∈ C, x ∈ X, and N ∈ B, say N =
⋂n

k=1 Bmk,ϵk . Let ϵ = min{ϵk :
1 ≤ k ≤ n}, let δ > 0 be small enough so that δ(δ + |α| + mk(x)) < ϵ for
each 1 ≤ k ≤ n, let ∆ = {β ∈ C : |β − α| < δ}, and let U =

⋂n
k=1 Bmk,δ. If

(β, v) ∈ ∆× (x+ U) and 1 ≤ k ≤ n, then

mk(βv − αx) = mk(βv − βx+ βx− αx)

≤ mk(β(v − x)) +mk((β − α)x)

= |β|mk(v − x) + |β − α|mk(x)

< (δ + |α|)δ + δmk(x)

= δ(δ + |α|+mk(x))

< ϵ

≤ ϵk,

showing that βv ∈ αx + Bmk,ϵk . This is true for each k, so βv ∈ N , which
shows that scalar multiplication is continuous at (α, x): for every basic open
neighborhood αx+N of the image αx, there is an open neighborhood ∆×(x+U)
of (α, x) whose image under scalar multiplication is contained in αx+N .

We have shown that X with the topology τ is a topological vector space. To
show that X is a locally convex space it suffices to prove that each element of
the local basis B is convex. An intersection of convex sets is a convex set, so
to prove that each element of B is convex it suffices to prove that each Bm,ϵ is
convex, m ∈ F and ϵ > 0. If 0 ≤ t ≤ 1 and x, y ∈ Bm,ϵ, then

m(tx+(1− t)y) ≤ m(tx)+m((1− t)y) = tm(x)+(1− t)m(y) < tϵ+(1− t)ϵ = ϵ,

showing that tx+(1− t)y ∈ Bm,ϵ and thus that Bm,ϵ is a convex set. Therefore,
(X, τ) is a locally convex space.

In the other direction, we will now explain how the topology of a locally
convex space is induced by a separating family of seminorms. We say that a
subset S of a vector space X is absorbing if x ∈ X implies that there is some
t > 0 such that x ∈ tS. The Minkowski functional µS : X → [0,∞) of an
absorbing set S is defined by

µS(x) = inf{t ≥ 0 : x ∈ tS}, x ∈ X.

If U is an open set containing 0 and x ∈ X, then 0 · x = 0 ∈ U , and because
scalar multiplication is continuous there is some t > 0 such that tx ∈ U . Thus
an open set containing 0 is absorbing. We say that a subset S of a vector space
X is balanced if |α| ≤ 1 implies that αS ⊆ S. One proves that in a topological
vector space, every convex open neighborhood of 0 contains a balanced convex
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open neighhborhood of 0.3 It follows that a locally convex space has a local
basis at 0 whose elements are balanced convex open sets. The following lemma
shows that the Minkowski functional of each member of this local basis is a
seminorm.

Lemma 2. If X is a topological vector space and U is a balanced convex open
neighborhood of 0, then the Minkowski functional of U is a seminorm on X.

Proof. Let α ∈ C and x ∈ X. If α = 0, then

µU (αx) = µU (0) = 0 = |α|µU (x).

Otherwise, write α = ru with r > 0 and |u| = 1. Because U is balanced and
|u−1| = 1, we have

µU (αx) = inf{t ≥ 0 : αx ∈ tU}
= inf{t ≥ 0 : rux ∈ tU}
= inf{t ≥ 0 : x ∈ r−1tu−1U}
= inf{t ≥ 0 : x ∈ r−1tU}
= inf{rs ≥ 0 : x ∈ sU}
= r inf{s ≥ 0 : x ∈ sU}
= rµU (x).

Therefore, if α ∈ C and x ∈ X, then µU (αx) = |α|µU (x).
Let x, y ∈ X. U is absorbing, so let s = µU (x) and t = µU (y). If ϵ > 0 then

x ∈ (s+ ϵ)U and y ∈ (t+ ϵ)U . We have

x+ y ∈ (s+ ϵ)U + (t+ ϵ)U = {(s+ ϵ)u+ (t+ ϵ)v : u, v ∈ U},

and for u, v ∈ U , because U is convex we have

s′u+ t′v = (s′ + t′)

(
s′

s′ + t′
u+

t′

s′ + t′
v

)
∈ (s′ + t′)U,

where s′ = s+ ϵ and t′ = t+ ϵ, so

x+ y ∈ (s+ t+ 2ϵ)U.

This is true for every ϵ > 0, which means that µU (x+ y) ≤ s+ t. Therefore

µU (x+ y) ≤ s+ t = µU (x) + µU (y),

showing that µU satisfies the triangle inequality and hence that µU is a seminorm
on X.

3Walter Rudin, Functional Analysis, second ed., p. 12, Theorem 1.14.
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We proved above that the Minkowski functional of a balanced convex open
neighborhood of 0 is a seminorm. The following lemma shows that the collection
of Minkowski functionals corresponding to a balanced convex local basis at 0
are a separating family.4

Lemma 3. If X is a topological vector space and U is a balanced convex open
neighborhood of 0, then

U = {x ∈ X : µU (x) < 1}.

If B is a local basis at 0 whose elements are balanced and convex, then

{µU : U ∈ B}

is a separating family of seminorms on X.

Proof. Let U ∈ B. If x ∈ U , then because 1 · x ∈ U and scalar multiplication is
continuous, there is some δ > 0 and some open neighborhood N of x such that
the image of [1− δ, 1 + δ]×N under scalar multiplication is contained in U . In
particular, if (1 + δ)x ∈ U and so x ∈ 1

1+δU . Thus we have

µU (x) = inf{t ≥ 0 : x ∈ tU} ≤ 1

1 + δ
< 1.

Therefore, if x ∈ U then µU (x) < 1. On the other hand, if x ∈ X and µU (x) < 1,
then there is some t < 1 such that x ∈ tU . As U is balanced, we have x ∈ U .
Therefore, if µU (x) < 1 then x ∈ U . This establishes that if U ∈ B then

U = {x ∈ X : µU (x) < 1}.

If x ̸= 0, then because singletons are closed, the set X \ {x} is open and
contains 0, and thus there is some U ∈ B with U ⊆ X \ {x}. Hence x ̸∈ U ,
which implies by the first claim that µU (x) ≥ 1. In particular, µU (x) ̸= 0,
proving the second claim.

If X is a locally convex space then there is a local basis at 0, call it B, whose
elements are balanced and convex, and we have established that F = {µU : U ∈
B} is a separating family of seminorms on X. Therefore by Theorem 1, X with
the seminorm topology induced by F is a locally convex space. The following
theorem states that the seminorm topology is equal to the original topology of
the space.5

Theorem 4. If (X, τ) is a locally convex space, then there is a separating family
of seminorms on X such that τ is equal to the seminorm topology.

4Walter Rudin, Functional Analysis, second ed., p. 27, Theorem 1.36.
5Paul Garrett, Seminorms and locally convex spaces, http://www.math.umn.edu/

~garrett/m/fun/notes_2012-13/07b_seminorms.pdf
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Proof. Let B be a local basis at 0 whose elements are balanced and convex and
let F = {µU : U ∈ B}. If U ∈ B, then U = {x ∈ X : µU (x) < 1}, which is
an open neighborhood of 0 in the seminorm topology induced by F , and this
implies that the seminorm topology is at least as fine as τ .

If U ∈ B and ϵ > 0, then

{x ∈ X : µU (x) < ϵ} =
{
x ∈ X : µU

(x
ϵ

)
< 1

}
= {ϵx ∈ X : µU (x) < 1} = ϵU.

ϵU ∈ τ and 0 ∈ ϵU , and it follows that τ is at least as fine as the seminorm
topology. Therefore τ is equal to the seminorm topology induced by F .

We have shown that if X is a vector space and F is a separating family of
seminorms on X, then X with the seminorm topology induced by F is a locally
convex space. Furthermore, we have shown that if X is a locally convex space
then there is a separating family F of seminorms on X such that the topology
of X is equal to the seminorm topology induced by F . In other words, the
topology of any locally convex space is the seminorm topology induced by some
separating family of seminorms on the space.

A subset E of a topological vector space X is said to be bounded if for every
open neighborhood N of 0 there is some s > 0 such that t > s implies that
E ⊆ tN .

Lemma 5. If X is a locally convex space with the seminorm topology induced
by a separating family F of seminorms on X, then a subset E of X is bounded
if and only if each m ∈ F is a bounded function on E.

Proof. Suppose that E is bounded and m ∈ F . The set U = {x ∈ X : m(x) <
1} is an open neighborhood of 0, so there is some t > 0 such that E ⊆ tU .
Hence if x ∈ E then m(x) < t, so m is a bounded function on E.

Suppose that for each m ∈ F there is some Mm such that x ∈ E implies that
m(x) ≤Mm. If U is an open neighborhood of 0, then there are m1, . . . ,mn ∈ F
and ϵ1, . . . , ϵn > 0 such that

n⋂
k=1

{x ∈ X : mk(x) < ϵk} ⊆ U.

Let M = max
{

Mmk

ϵk
: 1 ≤ k ≤ n

}
. For t > M ,

n⋂
k=1

{tx ∈ X : mk(x) < ϵk} ⊆ tU,

i.e.,
n⋂

k=1

{x ∈ X : mk(x) < ϵkt} ⊆ tU.

But if x ∈ E and 1 ≤ k ≤ n then

mk(x) ≤Mmk
≤ ϵkM < ϵkt,
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hence x is in the above intersection and thus is in tU . Therefore E ⊆ tU ,
showing that E is bounded.

We now prove that if the topology of a locally convex space is induced by a
countable separating family of seminorms then the topology is metrizable.

Theorem 6. If (X, τ) is a locally convex space with the seminorm topology
induced by a countable separating family of seminorms {mn : n ∈ N} and cn is
a summable nonincreasing sequence of positive numbers, then

d(x, y) =

∞∑
n=1

cn
mn(x− y)

1 +mn(x− y)
, x, y ∈ X,

is a translation invariant metric on X, τ is equal to the metric topology for d,
and with this metric the open balls centered at 0 are balanced.

Proof. For any x, y ∈ X we have

d(x, y) <

∞∑
n=1

cn <∞,

because the sequence cn is summable. It is apparent that d(x, y) = d(y, x).
If m is any seminorm on X, then

m(x) +m(y)

1 +m(x) +m(y)
− m(x+ y)

1 +m(x+ y)
=

m(x) +m(y)−m(x+ y)

(1 +m(x) +m(y))(1 +m(x+ y))
≥ 0,

so
m(x+ y)

1 +m(x+ y)
≤ m(x) +m(y)

1 +m(x) +m(y)
.

Also, it is straightforward to check that the function f : [0,∞)→ [0,∞) defined
by f(a) = a

1+a satisfies f(a + b) ≤ f(a) + f(b). Define d0(x) = d(x, 0). If
x, y ∈ X, then

d0(x+ y) =

∞∑
n=1

cn
mn(x+ y)

1 +mn(x+ y)

≤
∞∑

n=1

cn
mn(x) +mn(y)

1 +mn(x) +mn(y)

≤
∞∑

n=1

cn
mn(x)

1 +mn(x)
+ cn

mn(y)

1 +mn(y)

= d0(x) + d0(y).

Hence, for x, y ∈ X,

d(x, z) = d0(x− y + y − z) ≤ d0(x− y) + d0(y − z) = d(x, y) + d(y, z),

showing that d satisfies the triangle inequality.
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If d(x, y) = 0, then

∞∑
n=1

cn
mn(x− y)

1 +mn(x− y)
= 0.

As each term is nonnegative, each term must be equal to 0. As each cn is
positive, this implies that each mn(x− y) is equal to 0. But {mn : n ∈ N} is a
separating family so if x − y ̸= 0 then there is some mn with mn(x − y) ̸= 0,
and this shows that x− y = 0, i.e. x = y. Therefore d is a metric on X.

If x0 ∈ X, then d(x + x0, y + x0) = d(x, y): the metric d is translation
invariant.

If |α| ≤ 1 and x ∈ X, then

d0(αx) =

∞∑
n=1

cn
mn(αx)

1 +mn(αx)

=

∞∑
n=1

cn
|α|mn(x)

1 + |α|mn(x)

=

∞∑
n=1

cn
mn(x)

1
|α| +mn(x)

≤
∞∑

n=1

cn
mn(x)

1 +mn(x)

= d0(x).

Thus, if d(x, 0) < ϵ and |α| ≤ 1 then d(αx, 0) < ϵ, so the open ball

{x ∈ X : d(x, 0) < ϵ}

is balanced.
(X, τ) has a local basis at 0 whose elements are finite intersections of sets of

the form {x ∈ X : mn(x) < ϵ}. Suppose that ϵ > 0, let N be large enough so

that
∑∞

n=N+1 cn < ϵ
2 , and let M be large enough so that 1

M

∑N
n=1 cn < 1

2 . If

x ∈
⋂N

n=1{y ∈ X : mn(y) <
ϵ
M }, then

d(x, 0) =

N∑
n=1

cn
mn(x)

1 +mn(x)
+

∞∑
n=N+1

cn
mn(x)

1 +mn(x)

<

N∑
n=1

cnmn(x) +

∞∑
n=N+1

cn

<

N∑
n=1

cn
ϵ

M
+

ϵ

2

<
ϵ

2
+

ϵ

2
= ϵ.
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This shows that

N⋂
n=1

{
x ∈ X : mn(x) <

ϵ

M

}
⊆ {x ∈ X : d(x, 0) < ϵ},

and this entails that τ is at least as fine as the metric topology induced by d.
Suppose that 0 < ϵ < 1

2 and N ∈ N. If d(x, 0) < cN ϵ, then of course for each
n we have

cn
mn(x)

1 +mn(x)
< cN ϵ,

and hence if 1 ≤ n ≤ N then

mn(x)

1 +mn(x)
<

cN
cn

ϵ ≤ ϵ,

and hence if 1 ≤ n ≤ N then

mn(x) <
ϵ

1− ϵ
< 2ϵ.

Therefore,

{x ∈ X : d(x, 0) < cN ϵ} ⊆
N⋂

n=1

{x ∈ X : mn(x) < 2ϵ}.

It follows from this that the metric topology induced by d is at least as fine as
τ .

If a locally convex space is metrizable with a complete metric, then it is
called a Fréchet space.

We now prove conditions under which a topological vector space is normable.

Theorem 7. A topological vector space (X, τ) is normable if and only if there
is a convex bounded open neighborhood of the origin.

Proof. Suppose that V is a convex bounded open neighborhood of 0. V contains
a balanced convex open neighborhood U of 0,6 and because V is bounded so is
U . We define ∥x∥ = µU (x), where µU is the Minkowski functional of U . If x ̸= 0,
then because N = X \ {x} is an open neighborhood of 0 and U is bounded,
there is some t > 0 such that U ⊆ tN . Hence x ̸∈ 1

tU , i.e., tx ̸∈ U . As U is
balanced, by Lemma 3 we get µU (tx) ≥ 1. µU is a seminorm, so µU (x) ≥ 1

t > 0,
showing that if x ̸= 0 then µU (x) > 0, and hence that ∥·∥ is a norm on X. Also,
we check that

{x ∈ X : ∥x∥ < r} = rU.

Because U is bounded, for any open neighborhood N of 0 there is some t > 0
such that U ⊆ tN , hence {

x ∈ X : ∥x∥ < 1

t

}
⊆ N.

6Walter Rudin, Functional Analysis, second ed., p. 12, Theorem 1.14.
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This implies that the norm topology for ∥·∥ is at least as fine as τ . And {x ∈
X : ∥x∥ < r} = rU is an open set because scalar multiplication is continuous,
so τ is at least as fine as the norm topology for ∥·∥. Therefore that (X, τ) is
normable with the norm ∥·∥.

In the other direction, if τ is the norm topology for some norm ∥·∥ on X,
then

U = {x ∈ X : ∥x∥ < 1}

is indeed a convex open neighborhood of the origin. Suppose that N is an open
neighborhood of 0. There is some r > 0 such that

{x ∈ X : ∥x∥ < r} ⊆ N,

and thus such that U ⊆ 1
rN , and hence U is bounded, showing that there exists

a convex bounded open neighborhood of the origin.

A topological vector space is called locally bounded if there is a bounded
open neighborhood of the origin. A topological vector space is said to have the
Heine-Borel property if every closed and bounded subset of it is compact.

Theorem 8. If X is a topological vector space that is locally bounded and has
the Heine-Borel property, then X has finite dimension.

Proof. Let V be a bounded neighborhood of 0. It is a fact that the closure of
a bounded set is itself bounded,7 and therefore V is compact. For any x ∈ X,
the set x+ V is a compact neighborhood of x, hence X is locally compact. But
a locally compact topological vector space is finite dimensional,8 so X is finite
dimensional.

3 Continuous functions on the unit disc

Let D = {z ∈ C : |z| < 1}, the open unit disc. Let C(D) be the set of continuous
functions D → C. C(D) is a complex vector space. If K is a compact subset of
D, define

νK(f) = sup{|f(z)| : z ∈ K}, f ∈ C(D).

It is straightforward to check that νK is a seminorm on C(D). If f ∈ C(D) is
nonzero then there is some z ∈ D with f(z) ̸= 0, and hence ν{z}(f) = |f(z)| > 0,
so the set of all νK is a separating family of seminorms on C(D). Thus, C(D)
with the seminorm topology induced by the set of all νK is a locally convex
space.

Define Kn = {z ∈ C : |z| ≤ 1 − 1
n}, n ≥ 1. If K is a compact subset of D,

then there is some n with K ⊆ Kn, so νK(f) ≤ νKn
(f), and hence

{f ∈ C(D) : νKn
(f) < ϵ} ⊆ {f ∈ C(D) : νK(f) < ϵ}.

7Walter Rudin, Functional Analysis, second ed., p. 11, Theorem 1.13(f).
8Walter Rudin, Functional Analysis, second ed., p. 17, Theorem 1.22.
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It follows that the seminorm topology induced by {νKn : n ∈ N} is at least as fine
as the seminorm topology induced by {νK : K is compact}, thus the topologies
are equal. Because the topology of C(D) is induced by the countable family
{νKn

: n ∈ N}, by Theorem 6 it is metrizable: for any summable nonincreasing
sequence of positive real numbers cn, the topology is induced by the metric

d(f, g) =

∞∑
n=1

cn
νKn

(f − g)

1 + νKn(f − g)
, f, g ∈ C(D). (1)

Suppose that fi ∈ C(D) is a Cauchy sequence. For n ∈ N, the fact that fi is a
Cauchy sequence in C(D) implies that νKn

(fi − fj) → 0 as i, j → ∞. C(Kn)
is a Banach space with the norm νKn

, and hence there is some fKn
∈ C(Kn)

satisfying νKn(fi − fKn) → 0 as i → ∞. We define f : D → C to be fKn(z),
for z ∈ Kn; this makes sense because the restriction of fKn to Km is fKm if
n ≥ m. f is continuous at each point in D because for each point in D there is
some Kn containing an open neighborhood of the point, and fKn

is continuous.
Hence f ∈ C(D). Therefore C(D) with the metric (1) is a complete metric
space, which means that it is a Fréchet space.

Theorem 9. The topology of C(D) is not induced by a norm.

Proof. Because the topology of C(D) is the seminorm topology induced by the
separating family of seminorms {νKn

: n ∈ N}, by Lemma 5 a subset E of C(D)
is bounded if and only if each νKn is a bounded function on E, i.e., for each
n ∈ N there is some Mn such that f ∈ E implies νKn(f) ≤Mn.

Suppose by contradiction that there is a bounded convex open neighborhood
V of the origin. Because νKn

(f) ≤ νKn+1
(f) for any f ∈ C(D), there is some

N ∈ N and some ϵ > 0 such that

U = {f ∈ C(D) : νKN
(f) < ϵ} ⊆ V.

V being bounded implies that U is bounded. Let

∆1 =

{
z ∈ C : |z| < 1− 1

N
+

1

N(N + 1)

}
, ∆2 =

{
z ∈ C : 1− 1

N
< |z| < 1

}
,

and let ϕ1, ϕ2 be a partition of unity subordinate to this open cover of D. For
any constant M > 0, the restriction of Mϕ2 to KN is 0 and hence belongs to U .
But νKN+1

(Mϕ2) = M , so νKN+1
is not a bounded function on U , contradicting

that U is bounded. Therefore, there is no bounded convex open neighborhood
of 0. By Theorem 7, this tells us that C(D) is not normable.

For each n, the set C(Kn) is a Banach space with norm νKn
. If n ≥ m

and f ∈ C(Kn), let rn,m(f) be the restriction of f to Km. For n ≥ m, the
function rn,m is a continuous linear map C(Kn) → C(Km), and if n ≥ m ≥ l
then rn,l = rm,l ◦ rn,m. Thus the Banach spaces C(Kn) and the maps rn,m are
a projective system in the category of locally convex spaces, and it is a fact that
any projective system in this category has a projective limit that is unique up
to unique isomorphism.
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Theorem 10. C(D) = lim←−C(Kn).

Proof. Define rn : C(D)→ C(Kn) by taking rn(f) to be the restriction of f to
Kn. Each rn is continuous and linear. Certainly, if n ≥ m then rm = rn,m ◦ rn.
Suppose the Y is a locally convex space, that ϕn : Y → C(Kn) are continuous
linear maps, and that if n ≥ m then

ϕm = rn,m ◦ ϕn. (2)

If z ∈ Km and n ≥ m, then by (2) we have ϕn(y)(z) = ϕm(y)(z). For z ∈ D,
eventually z ∈ Kn, and define ϕ(y)(z) to be ϕn(y)(z) for any n such that
z ∈ Kn. For each z ∈ D there is some n such that z is in the interior of Kn,
and the restriction of ϕ(y) to Kn is equal to ϕn(y), hence ϕ(y) is continuous at
z. Therefore ϕ(y) ∈ C(D), so ϕ : Y → C(D).

Suppose that y1, y2 ∈ Y and α ∈ C. If z ∈ D, then there is some n with
z ∈ Kn, and because ϕn is linear,

ϕ(αy1+y2)(z) = ϕn(αy1+y2)(z) = αϕn(y1)(z)+ϕn(y2)(z) = αϕ(y1)(z)+ϕ(y2)(z).

Therefore ϕ is linear.
Suppose that yα ∈ Y is a net with limit y ∈ Y . For ϕ(yα) to converge to

ϕ(y) means that for each n ∈ N we have νKn(ϕ(yα)− ϕ(y))→ 0. But

νKn
(ϕ(yα)− ϕ(y)) = νKn

(ϕn(yα)− ϕn(y)),

and ϕn(yα) → ϕn(y) because ϕn is continuous. Therefore, for each n ∈ N we
have νKn

(ϕ(yα)− ϕ(y))→ 0, so ϕ is continuous.

We proved in the above theorem that the Fréchet space C(D) is the projec-
tive limit of the Banach spaces C(Kn). It is a fact that the projective limit of
any projective system of Banach spaces is a Fréchet space.9

A topological space is said to be separable if it has a countable subset that
is dense.

Theorem 11. C(D) is separable.

Proof. One proves using the Stone-Weierstrass theorem that the Banach space
C(Kn) is separable. The product of at most continuum many separable Haus-
dorff spaces each with at least two points is itself separable with the product
topology.10 Therefore,

∏∞
n=1 C(Kn) is separable. Because each C(Kn) is a met-

ric space, this countable product
∏∞

n=1 C(Kn) is metrizable, and any subset of
a separable metric space is itself separable with the subspace topology. The
projective limit of a projective system of topological vector spaces is a closed
subspace of the product of the spaces; thus, using merely that the projective
limit is a subset of the product

∏∞
n=1 C(Kn) and has the subspace topology

inherited from the direct product, we get that C(D) is separable.
9J. L .Taylor, Notes on locally convex topological vector spaces, http://www.math.

utah.edu/~taylor/LCS.pdf, p. 8, Proposition 2.6, and cf. Paul Garret, Functions on
circles: Fourier series, I, http://www.math.umn.edu/~garrett/m/fun/notes_2012-13/04_

blevi_sobolev.pdf, p. 37, §13.
10Stephen Willard, General Topology, p. 109, Theorem 16.4.
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4 Holomorphic functions on the unit disc

LetH(D) be the set of holomorphic functionsD → C. H(D) is a linear subspace
of C(D). Let H(D) have the subspace topology inherited from C(D). One
proves that this topology is equal to the seminorm topology induced by {νKn

:
n ∈ N}. Any subset of a separable metric space with the subspace topology is
separable. By Theorem 11 the Fréchet space C(D) is separable, and thus H(D)
is separable too.

We now prove that H(D) is a closed subspace of C(D).11 A closed linear
subspace of a Fréchet space is itself a Fréchet space, hence this theorem shows
that H(D) is a Fréchet space.

Theorem 12. H(D) is a closed subset of C(D).

Proof. Suppose that fj ∈ H(D) is a net and that fj → f ∈ C(D). We shall
show that f ∈ H(D). (In fact it suffices to prove this for a sequence of elements
in H(D) because we have shown that C(D) is metrizable, but that will not
simplify this argument.) To show this we have to prove that if z ∈ D then
f(z+h)−f(z)

h has a limit as h → 0, h ∈ C. Let γ be a counterclockwise oriented

circle contained in D with center z, say of radius r = 1−|z|
2 > 0. For each j the

function fj is holomorphic on D, and so Cauchy’s integral formula gives

fj(w) =
1

2πi

∫
γ

fj(ζ)

ζ − w
dζ, w ∈ Br(z).

Therefore

f(w)− 1

2πi

∫
γ

f(ζ)

ζ − w
dζ = f(w)− fj(w) +

1

2πi

∫
γ

fj(ζ)

ζ − w
dζ − 1

2πi

∫
γ

f(ζ)

ζ − w
dζ

= f(w)− fj(w) +
1

2πi

∫
γ

fj(w)− f(w)

ζ − w
dζ.

As γ is a compact subset of D this gives us∣∣∣∣f(w)− 1

2πi

∫
γ

f(ζ)

ζ − w
dζ

∣∣∣∣ ≤ |f(w)− fj(w)|+
1

2π
· 2πr · νγ(fj − f)

r − |w − z|
.

The right-hand side tends to 0, while the left-hand side does not depend on j.
Hence

f(w) =
1

2πi

∫
γ

f(ζ)

ζ − w
dζ, w ∈ Br(z). (3)

Applying (3), we have for 0 ≤ |h| < r,

f(z + h) =
1

2πi

∫
γ

f(ζ)

ζ − (z + h)
dζ,

11Paul Garrett, Holomorphic vector-valued functions, http://www.math.umn.edu/

~garrett/m/fun/notes_2012-13/08b_vv_holo.pdf
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hence

f(z + h)− f(z) =
1

2πi

∫
γ

f(ζ)

ζ − (z + h)
dζ − 1

2πi

∫
γ

f(ζ)

ζ − z
dζ

=
1

2πi

∫
γ

f(ζ)

(
1

ζ − (z + h)
− 1

ζ − z

)
dζ

=
1

2πi

∫
γ

f(ζ) · h

(ζ − (z + h))(ζ − z)
dζ,

thus
f(z + h)− f(z)

h
=

1

2πi

∫
γ

f(ζ)

(ζ − (z + h))(ζ − z)
dζ.

For ζ ∈ γ we have
∣∣∣ f(ζ)
(ζ−(z+h))(ζ−z)

∣∣∣ ≤ νγ(f)
(r−|h|)r , and so by the dominated conver-

gence theorem we get

lim
h→0

f(z + h)− f(z)

h
=

1

2πi

∫
γ

f(ζ)

(ζ − z)2
dζ.

Thus, for every z ∈ D, the function f is complex differentiable at z. Hence
f ∈ H(D), and therefore H(D) is a closed subset of C(D).

We remind ourselves that a topological vector space is said to have the Heine-
Borel property if every closed and bounded subset of it is compact. Lemma 5
tells us that a subset E of H(D) is bounded if and only if each seminorm νKn

is a bounded function on E. The following theorem states that H(D) has the
Heine-Borel property.12 An equivalent statement is called Montel’s theorem.

Theorem 13 (Heine-Borel property). The Fréchet space H(D) has the Heine-
Borel property.

That H(D) has the Heine-Borel property is a useful tool, and lets us prove
that the topology of H(D) is not induced by a norm.

Theorem 14. H(D) is not normable.

Proof. If H(D) were normable then by Theorem 7 there would be a convex
bounded open neighborhood of the origin. This would imply that H(D) is
locally bounded (has a bounded open neighborhood of the origin). But H(D)
has the Heine-Borel property, and a topological vector space that is locally
bounded and has the Heine-Borel property is finite dimensional by Theorem 8.
It is straightforward to check that H(D) is not finite dimensional, and hence
H(D) is not normable.

For f ∈ H(D), let (df)(z) = limh→0
f(z+h)−f(z)

h . First, if f ∈ H(D) then one
proves that df ∈ H(D). Then, the following theorem states that d : H(D) →
H(D) is a morphism in the category of locally convex spaces.13

12Henri Cartan, Elementary Theory of Analytic Functions of One or Several Complex
Variables, pp. 162–167, chapter V, §4.

13Henri Cartan, Elementary Theory of Analytic Functions of One or Several Complex
Variables, p. 143, chapter V, §1.
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Theorem 15. Differentiation H(D)→ H(D) is a continuous linear map.

If K is a compact subset of D and f ∈ H(D), let rK(f) be the restriction of
f to K, and let H(K) be the closure in C(K) of the set {rK(f) : f ∈ H(D)}.
Each element of H(K) is holomorphic on the interior of K. C(K) is a Banach
space with the norm νK , and hence H(K) is a Banach space with the same
norm, because it is indeed a linear subspace. If n ≥ m and f ∈ H(Kn),
let rn,m(f) = rKm

(f) ∈ H(Km). The rn,m are continuous and linear, and if
n ≥ m ≥ l then rn,l = rm,l ◦ rn,m. Thus the Banach spaces H(Kn) and the
continuous linear maps rn,m are a projective system in the category of locally
convex spaces, and this projective system has a projective limit lim←−H(Kn). The
following theorem states that this projective limit is equal to the Fréchet space
H(D).14

Theorem 16. H(D) = lim←−H(Kn).

5 Dual spaces

The dual of a topological vector space X is the set X∗ of continuous linear maps
X → C. If E is a bounded subset of X and λ ∈ X∗, then λ(E) is a bounded
subset of C (the image of a bounded set under a continuous linear map is a
bounded set). Hence

pE(λ) = sup{|λx| : x ∈ E} <∞.

The function pE is a seminorm on X∗, and if λ ̸= 0 then there is some x ∈ X
with λx ̸= 0, hence p{x}(λ) > 0. The strong dual topology on X∗ is the seminorm
topology induced by the separating family

{pE : E is a bounded subset of X}.

(To add to our vocabulary: the set of all bounded subsets of a topological
vector space is called the bornology of the space. Similar to how one can define
a topology as a collection of sets satisfying certain properties, one can also define
a bornology on a set without first having the structure of a topological vector
space.) We denote by X∗

β the dual space X∗ with the strong dual topology. X∗
β

is a locally convex space. If X is a normed space, one can prove15 that X∗
β is

normable with the operator norm

∥λ∥ = sup{|λx| : ∥x∥ ≤ 1}.

We say that a topological vector space X is reflexive if (X∗
β)

∗
β = X; since the

strong dual of a topological vector space is locally convex, for a topological
vector space to be reflexive it is necessary that it be locally convex.

14J. L .Taylor, Notes on locally convex topological vector spaces, http://www.math.utah.
edu/~taylor/LCS.pdf, p. 8

15K. Yosida, Functional Analysis, sixth ed., p. 111, Theorem 1.
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Let X be a locally convex space. The Hahn-Banach separation theorem16

yields that X∗ separates X: if x ̸= 0 then there is some λ ∈ X∗ with λx ̸= 0.
If λ ∈ X∗, then |λ| is a seminorm on X and {|λ| : λ ∈ X∗} is therefore a
separating family of seminorms on X. We call the seminorm topology induced
by this separating family the weak topology on X, and X with the weak topology
is a locally convex space. The original topology on X is at least as fine as the
weak topology on X: any set that is open using the weak topology is open using
the original topology.

The following lemma shows that a Fréchet space with the Heine-Borel prop-
erty is reflexive, and therefore that H(D) is reflexive.

Lemma 17. If a Fréchet space has the Heine-Borel property, then it is reflexive.

Proof. A subset of a locally convex space is called a barrel if it is closed, convex,
balanced, and absorbing. A locally convex space is said to be barreled if each
barrel is a neighborhood of 0. It is a fact that every Fréchet space is barreled.17

A locally convex space is reflexive if and only if it is barreled and if every set
that is closed, convex, balanced, and bounded is weakly compact.18 Therefore,
for a Fréchet space with the Heine-Borel property to be reflexive it is necessary
and sufficient that every set that is compact, convex, and balanced be weakly
compact. But if a subset of a locally convex space is compact then it is weakly
compact, because the original topology is at least as fine as the weak topology
and hence any cover of a set by elements of the weak topology is also a cover of
the set by elements of the original topology. Therefore, any Fréchet space with
the Heine-Borel property is reflexive.

Morphisms in the category of locally convex spaces are continuous linear
maps. If X and Y are locally convex spaces and ϕ : X → Y is a morphism, the
dual of ϕ is the morphism

ϕ∗ : Y ∗
β → X∗

β

defined by
ϕ∗(λ) = λ ◦ ϕ, λ ∈ Y ∗

β .

One verifies that ϕ∗ is in fact a morphism. If the spaces Xj and the morphisms
ϕi,j : Xi → Xj , i ≥ j, are a projective system in the category of locally convex
spaces, then the dual spaces (Xj)

∗
β and the morphisms ϕ∗

i,j : (Xj)
∗
β → (Xi)

∗
β ,

i ≥ j, are a direct system in this category. It is a fact that the dual of a
projective limit of Banach spaces is isomorphic to the direct limit of the duals
of the Banach spaces.19 Thus, as H(D) is the projective limit of the Banach
spaces H(Kn), its dual space H∗(D) = (H(D))∗β is isomorphic to the direct
limit of the duals of these Banach spaces:

H∗(D) = lim−→(H(Kn))
∗
β .

16Walter Rudin, Functional Analysis, second ed., p. 59, Theorem 3.4.
17K. Yosida, Functional Analysis, sixth ed., p. 138, Corollary 1.
18K. Yosida, Functional Analysis, sixth ed., p. 140, Theorem 2.
19Paul Garrett, Functions on circles: Fourier series, I, http://www.math.umn.edu/

~garrett/m/fun/notes_2012-13/04_blevi_sobolev.pdf, p. 15, Theorem 5.1.1.
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Cooper20 shows that H∗(D) is isomorphic to the space of germs of functions
on the complement of D in the extended complex plane that vanish at infinity.
Let A be those sequences a ∈ CN satisfying

lim sup |an|1/n ≤ 1.

By Hadamard’s formula for the radius of convergence of a power series, these are
precisely the sequences of coefficients of power series with radius of convergence
≥ 1, and A is a complex vector space. The map

a 7→
∞∑

n=0

anz
n

is linear and has the linear inverse

f 7→
(
f (n)(0)

n!

)
,

so H(D) and A are linearly isomorphic. For 0 < r < 1, define

qr(a) = max{|an|rn : n ∈ N}.

Each qr is a norm, yet we do not give A the norm topology. Rather, we give A
the seminorm topology induced by the family {qr : 0 < r < 1}, and with this
topology A is a locally convex space. One proves that the above two linear maps
are continuous, and hence that H(D) is isomorphic as a locally convex space to
A. Then, one proves that the dual space of A are those sequences b ∈ CN such
that

lim sup |bn|1/n < 1,

and b corresponds to
∞∑

n=0

bn

(
1

z

)n+1

.

20J. B. Cooper, Functional analysis– spaces of holomorphic functions and their duality,
http://www.dynamics-approx.jku.at/lena/Cooper/holloc.pdf, p. 11, §5.
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