The Heisenberg group and Hermite functions

Jordan Bell

August 6, 2015

1 The Heisenberg group

For $(z,t),(w,s)\in\mathbb{C}^n\times\mathbb{R}$, define the operation

$$(z,t)(w,s) = \left(z+w,t+s+\frac{1}{2}\mathrm{Im}\left(z\cdot\overline{w}\right)\right),$$

which satisfies

$$(z,t)(0,0) = (z,t),$$

and because $\operatorname{Im}(z \cdot \overline{z}) = 0$,

$$(z,t)^{-1} = (-z,-t).$$

We denote $\mathbb{C}^n \times \mathbb{R}$ with this operation by H^n . This is a Lie group of dimension 2n+1, called the **Heisenberg group**.

Writing z = x + iy define

$$X_j = \frac{\partial}{\partial x_j} - \frac{1}{2}y_j\frac{\partial}{\partial t}, \qquad 1 \le j \le n,$$

and

$$Y_j = \frac{\partial}{\partial y_i} + \frac{1}{2}x_j\frac{\partial}{\partial t}, \qquad 1 \le j \le n,$$

and

$$T = \frac{\partial}{\partial t}.$$

We calculate the Lie brackets of these vector fields. For X_j and X_k ,

$$\begin{split} X_j X_k &= \left(\frac{\partial}{\partial x_j} - \frac{1}{2} y_j \frac{\partial}{\partial t}\right) \left(\frac{\partial}{\partial x_k} - \frac{1}{2} y_k \frac{\partial}{\partial t}\right) \\ &= \frac{\partial^2}{\partial x_i \partial x_k} - \frac{1}{2} y_k \frac{\partial}{\partial x_j} \frac{\partial}{\partial t} - \frac{1}{2} y_j \frac{\partial}{\partial t} \frac{\partial}{\partial t_k} + \frac{1}{4} y_j y_k \frac{\partial^2}{\partial t^2}, \end{split}$$

yielding

$$[X_j, X_k] = X_j X_k - X_k X_j = 0.$$

For Y_j and Y_k ,

$$Y_{j}Y_{k} = \left(\frac{\partial}{\partial y_{j}} + \frac{1}{2}x_{j}\frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial y_{k}} + \frac{1}{2}x_{k}\frac{\partial}{\partial t}\right)$$
$$= \frac{\partial^{2}}{\partial y_{j}\partial y_{k}} + \frac{1}{2}x_{k}\frac{\partial}{\partial y_{j}}\frac{\partial}{\partial t} + \frac{1}{2}x_{j}\frac{\partial}{\partial t}\frac{\partial}{\partial y_{k}} + \frac{1}{4}x_{j}x_{k}\frac{\partial^{2}}{\partial t^{2}},$$

yielding

$$[Y_i, Y_k] = Y_i Y_k - Y_k Y_i = 0.$$

For X_i and Y_i ,

$$\begin{split} X_{j}Y_{j} &= \left(\frac{\partial}{\partial x_{j}} - \frac{1}{2}y_{j}\frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial y_{j}} + \frac{1}{2}x_{j}\frac{\partial}{\partial t}\right) \\ &= \frac{\partial^{2}}{\partial x_{i}\partial y_{j}} + \frac{1}{2}\frac{\partial}{\partial t} + \frac{1}{2}x_{j}\frac{\partial}{\partial x_{i}}\frac{\partial}{\partial t} - \frac{1}{2}y_{j}\frac{\partial}{\partial t}\frac{\partial}{\partial y_{j}} - \frac{1}{4}y_{j}x_{j}\frac{\partial^{2}}{\partial t^{2}}, \end{split}$$

and

$$\begin{split} Y_{j}X_{j} &= \left(\frac{\partial}{\partial y_{j}} + \frac{1}{2}x_{j}\frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial x_{j}} - \frac{1}{2}y_{j}\frac{\partial}{\partial t}\right) \\ &= \frac{\partial^{2}}{\partial y_{j}\partial x_{j}} - \frac{1}{2}\frac{\partial}{\partial t} - \frac{1}{2}y_{j}\frac{\partial}{\partial y_{j}}\frac{\partial}{\partial t} + \frac{1}{2}x_{j}\frac{\partial}{\partial t}\frac{\partial}{\partial x_{j}} - \frac{1}{4}x_{j}y_{j}\frac{\partial^{2}}{\partial t^{2}}, \end{split}$$

yielding

$$[X_j, Y_j] = X_j Y_j - Y_j X_j = \frac{\partial}{\partial t} = T.$$

For X_j and Y_k with $j \neq k$

$$\begin{split} X_{j}Y_{k} &= \left(\frac{\partial}{\partial x_{j}} - \frac{1}{2}y_{j}\frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial y_{k}} + \frac{1}{2}x_{k}\frac{\partial}{\partial t}\right) \\ &= \frac{\partial^{2}}{\partial x_{j}\partial y_{k}} + \frac{1}{2}x_{k}\frac{\partial}{\partial x_{j}}\frac{\partial}{\partial t} - \frac{1}{2}y_{j}\frac{\partial}{\partial t}\frac{\partial}{\partial y_{k}} - \frac{1}{4}y_{j}x_{k}\frac{\partial^{2}}{\partial t^{2}} \end{split}$$

and

$$Y_k X_j = \left(\frac{\partial}{\partial y_k} + \frac{1}{2} x_k \frac{\partial}{\partial t}\right) \left(\frac{\partial}{\partial x_j} - \frac{1}{2} y_j \frac{\partial}{\partial t}\right)$$
$$= \frac{\partial^2}{\partial y_k \partial x_j} - \frac{1}{2} y_j \frac{\partial}{\partial y_k} \frac{\partial}{\partial t} + \frac{1}{2} x_k \frac{\partial}{\partial t} \frac{\partial}{\partial x_j} - \frac{1}{4} x_k y_j \frac{\partial^2}{\partial t^2},$$

yielding

$$[X_i, Y_k] = 0.$$

For X_j and T,

$$X_j T = \left(\frac{\partial}{\partial x_j} - \frac{1}{2} y_j \frac{\partial}{\partial t}\right) \frac{\partial}{\partial t} = \frac{\partial}{\partial x_j} \frac{\partial}{\partial t} - \frac{1}{2} y_j \frac{\partial^2}{\partial t^2} = T X_j,$$

yielding

$$[X_i, T] = 0.$$

For Y_i and T,

$$Y_jT = \left(\frac{\partial}{\partial y_j} + \frac{1}{2}x_j\frac{\partial}{\partial t}\right)\frac{\partial}{\partial t} = \frac{\partial}{\partial y_j}\frac{\partial}{\partial t} + \frac{1}{2}x_j\frac{\partial^2}{\partial t^2} = TY_j,$$

yielding

$$[Y_i, T] = 0.$$

We summarize the above calculations in the following theorem.

Theorem 1. The Lie brackets of the vector fields $X_j, Y_j, 1 \le j \le n$, and T are:

- $\bullet \ [X_j, X_k] = 0$
- $\bullet \ [Y_i, Y_k] = 0$
- $[X_i, Y_i] = T$
- $[X_i, Y_k] = 0$ for $j \neq k$
- $[X_i, T] = 0$
- $\bullet \ [Y_j, T] = 0$

The Lie algebra of the H^n is called the **Heisenberg Lie algebra** and is denoted \mathfrak{h}^n . The above vector fields are left-invariant and are a basis for \mathfrak{h}^n .

2 Representation theory

For a Hilbert space H, we denote by $\mathscr{B}(H)$ the set of bounded linear operators $H \to H$, which is a Banach algebra with the operator norm. We denote by $\mathscr{B}_0(H)$ the set of compact operators $H \to H$, which is a closed ideal of the Banach algebra $\mathscr{B}(H)$. We denote by $\mathscr{B}_{HS}(H)$ the collection of Hilbert-Schmidt operators $H \to H$: if $\{e_i : i \in I\}$ is an orthonormal basis of H, a linear map $A: H \to H$ is called a **Hilbert-Schmidt operator** if

$$||A||_{\mathrm{HS}}^2 = \sum_{i \in I} ||Ae_i||^2 < \infty.$$

This satisfies $||A|| \le ||A||_{HS}$. A Hilbert-Schmidt operator is a compact operator. A linear map $U: H \to H$ is called a **unitary operator** if it is a bijection and satisfies

$$\langle Ux, Uy \rangle = xy, \qquad x, y \in H.$$

We denote the set of unitary operators $H \to H$ by $\mathscr{U}(H)$.

¹Sundaram Thangavelu, An Introduction to the Uncertainty Principle: Hardy's Theorem on Lie Groups, p. 47, §2.1.

For $\lambda \in \mathbb{R}$, $\lambda \neq 0$, for $(x+iy,t) \in H^n$, and for $f \in L^2(\mathbb{R}^n)$, define

$$\pi_{\lambda}(x+iy,t)f(\xi) = e^{i\lambda t}e^{i\lambda\left(x\cdot\xi + \frac{1}{2}x\cdot y\right)}f(\xi+y), \qquad \xi \in \mathbb{R}^n.$$

It is apparent that $\pi_{\lambda}(z,t)$ is a linear map $L^{2}(\mathbb{R}^{n}) \to L^{2}(\mathbb{R}^{n})$. For $(x+iy,t), (u+iv,s) \in H^{n}$ we calculate

$$\pi_{\lambda}(x+iy,t)\pi_{\lambda}(u+iv,s)f(\xi) = \pi_{\lambda}(x+iy,t)e^{i\lambda s}e^{i\lambda\left(u\cdot\xi+\frac{1}{2}u\cdot v\right)}f(\xi+v)$$

$$= e^{i\lambda t}e^{i\lambda\left(x\cdot\xi+\frac{1}{2}x\cdot y\right)}e^{i\lambda s}e^{i\lambda\left(u\cdot(\xi+y)+\frac{1}{2}u\cdot v\right)}f(\xi+y+v)$$

$$= e^{i\lambda(t+s)}e^{i\lambda\left((x+u)\cdot\xi+\frac{1}{2}x\cdot y+u\cdot y+\frac{1}{2}u\cdot v\right)}f(\xi+y+v).$$

On the other hand, with z = x + iy and w = u + iv,

$$\begin{split} (z,t)(w,s) &= \left(z+w,t+s+\frac{1}{2}\mathrm{Im}\left(z\cdot\overline{w}\right)\right) \\ &= \left(x+iy+u+iv,t+s+\frac{1}{2}\mathrm{Im}\left((x+iy)\cdot(u-iv)\right)\right) \\ &= \left(x+u+i(y+v),t+s+\frac{1}{2}\mathrm{Im}\left(x\cdot u-ix\cdot v+iy\cdot u+y\cdot v\right)\right) \\ &= \left(x+u+i(y+v),t+s-\frac{1}{2}x\cdot v+\frac{1}{2}y\cdot u\right), \end{split}$$

for which

$$\begin{split} \pi_{\lambda}((z,t)(w,s))f(\xi) &= e^{i\lambda\left(t+s-\frac{1}{2}x\cdot v+\frac{1}{2}y\cdot u\right)}e^{i\lambda\left((x+u)\cdot \xi+\frac{1}{2}(x+u)\cdot (y+v)\right)}f(\xi+y+v)\\ &= e^{i\lambda(t+s)}e^{i\lambda\left((x+u)\cdot \xi+\frac{1}{2}x\cdot y+y\cdot u+\frac{1}{2}u\cdot v\right)}f(\xi+y+v). \end{split}$$

and therefore

$$\pi_{\lambda}(x+iy,t)\pi_{\lambda}(u+iv,s) = \pi_{\lambda}((z,t)(w,s)).$$

We calculate

$$\pi_{\lambda}(0,0)f(\xi) = f(\xi)$$

and

$$\pi_{\lambda}(x+iy,t)\pi_{\lambda}((x+iy,t)^{-1})f = \pi_{\lambda}(0,0)f = f.$$

For $f, g \in L^2(\mathbb{R}^n)$

$$\begin{split} &\langle \pi_{\lambda}(x+iy,t)f,\pi_{\lambda}(x+iy,t)g\rangle \\ &\int_{\mathbb{R}^{n}}\pi_{\lambda}(x+iy,t)f(\xi)\overline{\pi_{\lambda}(x+iy,t)g(\xi)}d\xi \\ &=\int_{\mathbb{R}^{n}}e^{i\lambda t}e^{i\lambda\left(x\cdot\xi+\frac{1}{2}x\cdot y\right)}f(\xi+y)e^{-i\lambda t}e^{-i\lambda\left(x\cdot\xi+\frac{1}{2}x\cdot y\right)}\overline{g(\xi+y)}d\xi \\ &=\int_{\mathbb{R}^{n}}f(\xi+y)\overline{g(\xi+y)}d\xi \\ &=\langle f,g\rangle\,. \end{split}$$

Therefore $\pi_{\lambda}(z,t)$ is a unitary operator $L^{2}(\mathbb{R}^{n}) \to L^{2}(\mathbb{R}^{n})$, and

$$\pi_{\lambda}: H^n \to \mathscr{U}(L^2(\mathbb{R}^n))$$

is a group homomorphism, namely, π_{λ} is a unitary representation of H^n on $L^2(\mathbb{R}^n)$.² Furthermore, using that $y \mapsto f(\cdot + y)$ is continuous $\mathbb{R}^n \to L^2(\mathbb{R}^n)$,

$$\|\pi_{\lambda}(x+iy,t)f - f\|^2 = \int_{\mathbb{R}^n} |e^{i\lambda t}e^{i\lambda\left(x\cdot\xi + \frac{1}{2}x\cdot y\right)}f(\xi+y) - f(\xi)|^2 d\xi \to 0$$

as $(z,t) \to 0$, showing that $\pi_{\lambda}: H^n \to \mathscr{U}(L^2(\mathbb{R}^n))$ is **strongly continuous**. (That is, it is continuous when $\mathscr{U}(L^2(\mathbb{R}^n))$ is assigned the strong operator topology.)

Theorem 2. For $\lambda \in \mathbb{R}$, $\lambda \neq 0$, the map π_{λ} defined by

$$\pi_{\lambda}(x+iy,t)f(\xi) = e^{i\lambda t}e^{i\lambda\left(x\cdot\xi+\frac{1}{2}x\cdot y\right)}f(\xi+y),$$

for $(x+iy,t) \in H^n$, $f \in L^2(\mathbb{R}^n)$, and $\xi \in \mathbb{R}^n$, is a strongly continuous unitary representation of H^n on $L^2(\mathbb{R}^n)$.

We call π_1 the **Schrödinger representation**. Its kernel is

$$\Gamma = \{ (0, 2\pi k) : k \in \mathbb{Z} \}.$$

For $f \in L^1(H^n/\Gamma)$ we define

$$\pi_1(f) = \int_{H^n/\Gamma} f(z,t) \pi_1(z,t) dz dt.$$

For $f, g \in L^1(H^n/\Gamma)$,

$$(f*g)(z,t) = \int_{H^n/\Gamma} f((z,t)\cdot (w,s)^{-1})g(w,s)dwds, \qquad (z,t) \in H^n/\Gamma.$$

It is a fact that Lebesgue measure on $\mathbb{C}^n \times \mathbb{R}$ is a bi-invariant Haar measure on H^n , and using this we calculate

$$\begin{split} &\pi_{1}(f*g) \\ &= \int_{H^{n}/\Gamma} \left(\int_{H^{n}/\Gamma} f((z,t) \cdot (w,s)^{-1}) g(w,s) dw ds \right) \pi_{1}(z,t) dz dt \\ &= \int_{H^{n}/\Gamma} g(w,s) \left(\int_{H^{n}/\Gamma} f((z,t) \cdot (w,s)^{-1}) \pi_{1}((z,t) \cdot (w,s)^{-1}) dz dt \right) \pi_{1}(w,s) dw ds \\ &= \int_{H^{n}/\Gamma} g(w,s) \pi_{1}(f) dw ds \\ &= \pi_{1}(f) \pi_{1}(g). \end{split}$$

 $^{^{2}}$ cf. https://www.math.ubc.ca/~cass/research/pdf/Unitary.pdf

Lemma 3. For $f, g \in L^1(H^n/\Gamma)$,

$$\pi_1(f * g) = \pi_1(f)\pi_1(g).$$

We define

$$W(z) = \pi_1(z, 0),$$

with which

$$\pi_1(z,t) = e^{it}W(z).$$

Define

$$f_1(z) = (2\pi)^{-1/2} \int_0^{2\pi} f(z,t)e^{it}dt.$$

Then

$$\pi_1(f) = \int_{H^n/\Gamma} f(z,t)e^{it}W(z)dzdt$$

$$= \int_{\mathbb{C}^n} W(z) \left(\int_0^{2\pi} f(z,t)e^{it}dt \right) dz$$

$$= (2\pi)^{1/2} \int_{\mathbb{C}^n} f_1(z)W(z)dz.$$

For $f \in L^1(\mathbb{C}^n)$, define

$$f^{\#}(z,t) = (2\pi)^{-1}e^{-it}f(z).$$

 $f^{\#} \in L^1(H^n/\Gamma)$, and

$$f_1^{\#}(z) = (2\pi)^{-1/2} \int_0^{2\pi} f^{\#}(z,t)e^{it}dt = (2\pi)^{-1/2}f(z),$$

thus

$$\pi_1(f^\#) = (2\pi)^{1/2} \int_{\mathbb{C}^n} f^\#(z) W(z) dz = \int_{\mathbb{C}^n} f(z) W(z) dz.$$

We define $W: L^1(\mathbb{C}^n) \to \mathscr{U}(L^2(\mathbb{R}^n))$ by

$$W(f) = \pi_1(f^{\#}),$$

called the Weyl transform.

For $f, g \in L^1(\mathbb{C}^n)$ and for $(z, t) \in H^n/\Gamma$,

$$\begin{split} &(f^{\#} * g^{\#})(z,t) \\ &= \int_{H^n/\Gamma} f^{\#}((z,t) \cdot (w,s)^{-1}) g^{\#}(w,s) dw ds \\ &= \int_{H^n/\Gamma} f^{\#}((z,t) \cdot (-w,-s)) g^{\#}(w,s) dw ds \\ &= \int_{H^n/\Gamma} f^{\#} \left(z - w, t - s - \frac{1}{2} \mathrm{Im} \left(z \cdot \overline{w} \right) \right) g^{\#}(w,s) dw ds \\ &= \int_{H^n/\Gamma} (2\pi)^{-2} e^{-i \left(t - s - \frac{1}{2} \mathrm{Im} \left(z \cdot \overline{w} \right) \right)} f(z - w) e^{-is} g(w) dw ds \\ &= (2\pi)^{-1} e^{-it} \int_{\mathbb{C}^n} f(z - w) g(w) e^{\frac{i}{2} \mathrm{Im} \left(z \cdot \overline{w} \right)} dw \\ &= (f \times g)^{\#}(z,t), \end{split}$$

for

$$(f \times g)(z) = \int_{\mathbb{C}^n} f(z - w)g(w)e^{\frac{i}{2}\operatorname{Im}(z \cdot \overline{w})}dw,$$

called the **twisted convolution**. Using what we have established so far gives the following.

Lemma 4. For $f, g \in L^1(\mathbb{C}^n)$,

$$W(f \times g) = \pi_1((f \times g)^{\#}) = \pi_1(f^{\#} * g^{\#}) = \pi_1(f^{\#})\pi_1(g^{\#}) = W(f)W(g)$$

For $\phi \in L^1(\mathbb{C}^n)$, we define

$$K_{\phi}(\xi,\eta) = \int_{\mathbb{R}^n} \phi(x + i(\eta - \xi)) e^{\frac{i}{2}(\xi + \eta) \cdot x} dx, \qquad (\xi,\eta) \in \mathbb{R}^n \times \mathbb{R}^n,$$

which satisfies, for $f \in L^2(\mathbb{R}^n)$ and $\xi \in \mathbb{R}^n$,

$$\begin{split} W(\phi)f(\xi) &= \int_{\mathbb{C}^n} \phi(z)W(z)f(\xi)dz \\ &= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \phi(x+iy)e^{i\left(x\cdot\xi+\frac{1}{2}x\cdot y\right)}f(\xi+y)dydx \\ &= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \phi(x+i(y-\xi))e^{\frac{i}{2}(x\cdot\xi+x\cdot y)}f(y)dydx \\ &= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \phi(x+i(y-\xi))e^{\frac{i}{2}(\xi+y)\cdot x)}dx\right)f(y)dy \\ &= \int_{\mathbb{R}^n} K_{\phi}(\xi,y)f(y)dy. \end{split}$$

Thus K_{ϕ} is an integral kernel for the operator $W(\phi)$.

We show in the following theorem that the Weyl transform sends elements of $L^1(\mathbb{C}^n)$ to compact operators on $L^2(\mathbb{R}^n)$, and that it sends square integrable functions to Hilbert-Schmidt operators.³

Theorem 5. $W: L^1(\mathbb{C}^n) \to \mathscr{B}_0(L^2(\mathbb{R}^n))$, and for $\phi \in L^1(\mathbb{C}^n) \cap L^2(\mathbb{C}^n)$ we have $W(\phi) \in \mathscr{B}_{HS}(L^2(\mathbb{R}^n))$ and

$$\|\phi\|_{L^2(\mathbb{R}^n)} = (2\pi)^{-n/2} \|W(\phi)\|_{\mathrm{HS}}.$$

Proof. First take $\phi \in L^1(\mathbb{C}^n) \cap L^2(\mathbb{C}^n)$. It follows from this that $K_{\phi} \in L^2(\mathbb{R}^n \times \mathbb{R}^n)$, and because K_{ϕ} is the integral kernel of $W(\phi)$ this implies⁴ that $W(\phi) \in \mathscr{B}_{\mathrm{HS}}(L^2(\mathbb{R}^n))$ and

$$||W(\phi)||_{\mathrm{HS}}^2 = \int_{\mathbb{R}^n \times \mathbb{R}^n} |K(\xi, \eta)|^2 d\xi d\eta.$$

3 Hermite functions

For $\phi \in \mathscr{S}(\mathbb{R}^n)$, define

$$\widehat{\phi}(\xi) = (\mathscr{F}\phi)(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \phi(x) e^{-ix\cdot\xi} dx, \qquad \xi \in \mathbb{R}^n.$$

 $\mathscr{S}(\mathbb{R}^n)$ is a dense linear subspace of $L^2(\mathbb{R}^n)$, and the Fourier transform extends to a unique Hilbert space isomorphism $L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$. For $f, g \in L^2(\mathbb{R})$,

$$\langle f, g \rangle = \int_{\mathbb{R}^n} f(x) \overline{g(x)} dx.$$

For $\phi \in \mathscr{S}(\mathbb{R})$, let

$$(D\phi)(x) = \phi'(x), \qquad (M\phi)(x) = x\phi(x), \qquad x \in \mathbb{R},$$

and let

$$A = -D + M, \qquad B = D + M.$$

Let

$$H = \sum_{j=1}^{n} (-D_j^2 + M_j^2) = \frac{1}{2} \sum_{j=1}^{n} (A_j B_j + B_j A_j),$$

which satisfies

$$(H\phi)(x) = -(\Delta\phi)(x) + |x|^2\phi(x),$$

 $^{^3 \}mathrm{Sundaram}$ Thangavelu, Lectures on Hermite and Laguerre Expansions, p. 13, Theorem 1.2.1.

⁴Michael Reed and Barry Simon, *Methods of Modern Mathematical Physics*, volume I: Functional Analysis, revised and enlarged edition, p. 210, Theorem VI.23.

called the **Hermite operator**.

For $k \geq 0$, define

$$H_k(x) = (-1)^k e^{x^2} D^k e^{-x^2}$$

and

$$h_k(x) = (2^k k! \sqrt{\pi})^{-1/2} e^{-x^2/2} H_k(x).$$

The Hermite functions are an orthonormal basis for $L^2(\mathbb{R})$. Let \mathbb{N} be the non-negative integers, and for $\alpha \in \mathbb{N}^n$ let

$$\Phi_{\alpha} = h_{\alpha_1} \otimes \cdots \otimes h_{\alpha_n},$$

which are an orthonormal basis for $L^2(\mathbb{R}^n)$. It is a fact that

$$A_j \Phi_{\alpha} = (2\alpha_j + 2)^{1/2} \Phi_{\alpha + e_j}, \qquad B_j \Phi_{\alpha} = (2\alpha_j)^{1/2} \Phi_{\alpha - e_j}$$

and

$$H\Phi_{\alpha} = (2|\alpha| + n)\Phi_{\alpha}.$$

It is a fact that

$$\widehat{h}_k = (-i)^k h_k,$$

whence

$$\widehat{\Phi}_{\alpha} = (-i)^{|\alpha|} \Phi_{\alpha}.$$

Because $\{\Phi_{\alpha} : \alpha \in \mathbb{N}^n\}$ is an orthonormal basis for $L^2(\mathbb{R}^n)$, for $f \in L^2(\mathbb{R}^n)$,

$$f = \sum_{\alpha} \langle f, \Phi_{\alpha} \rangle \, \Phi_{\alpha}.$$

and then

$$\widehat{f} = \sum_{\alpha} \langle f, \Phi_{\alpha} \rangle (-i)^{|\alpha|} \Phi_{\alpha}.$$

Let E_k be the linear span of $\{\Phi_\alpha : |\alpha| = k\}$, which has dimension $\binom{k+n-1}{k}$. For $f \in E_k$, Hf = (2k+n)f. Let $P_k : L^2(\mathbb{R}^n) \to E_k$ be the projection:

$$P_k f = \sum_{|\alpha|=k} \langle f, \Phi_{\alpha} \rangle \Phi_{\alpha}, \qquad f \in L^2(\mathbb{R}^n).$$

Let

$$\Phi_k(x,y) = \sum_{|\alpha|=k} \Phi_{\alpha}(x)\Phi_{\alpha}(y), \qquad x,y \in \mathbb{R}^n.$$

For $x \in \mathbb{R}^n$ we calculate

$$\int_{\mathbb{R}^n} \Phi_k(x, y) f(y) dy = \sum_{|\alpha| = k} \Phi_{\alpha}(y) \int_{\mathbb{R}^n} f(y) \Phi_{\alpha}(y) dy$$
$$= \sum_{|\alpha| = k} \Phi_{\alpha}(y) \langle f, \Phi_{\alpha} \rangle$$
$$= (P_k f)(y),$$

thus Φ_k is a kernel for the projection operator P_k .

Using the 1-dimensional Mehler's formula we obtain the n-dimensional Mehler's formula:

$$\sum_{\alpha} r^{|\alpha|} \Phi_{\alpha}(x) \Phi_{\alpha}(y) = \pi^{-\frac{n}{2}} (1 - r^2)^{-\frac{n}{2}} \exp\left(-\frac{1}{2} \frac{1 + r^2}{1 - r^2} (|x|^2 + |y|^2) + \frac{2r}{1 - r^2} x \cdot y\right).$$

4 Special Hermite functions

We first define the **Fourier-Wigner transform**. For $f, g \in L^2(\mathbb{R}^n)$ and $z = x + iy \in \mathbb{C}^n$,

$$V(f,g)(z) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix\cdot\xi} f\left(\xi + \frac{1}{2}y\right) \overline{g\left(\xi - \frac{1}{2}y\right)} d\xi.$$

The following theorem relates the inner product on $L^2(\mathbb{R}^n)$ and the inner product on $L^2(\mathbb{C}^n)$.

Theorem 6. For $f, g, \phi, \psi \in L^2(\mathbb{R}^n)$,

$$\int_{\mathbb{C}^n} V(f,g)(z) \overline{V(\phi,\psi)(z)} dz = \left\langle f,\phi \right\rangle \left\langle \psi,g \right\rangle.$$

We now define the **special Hermite functions** on \mathbb{C}^n . For $\alpha, \beta \in \mathbb{N}^n$, let

$$\Phi_{\alpha\beta}(z) = V(\Phi_{\alpha}, \Phi_{\beta})(z).$$

We calculate

$$\langle W(z)\Phi_{\alpha}, \Phi_{\beta} \rangle = \int_{\mathbb{R}^{n}} W(z)\Phi_{\alpha}(\xi)\Phi_{\beta}(\xi)d\xi$$

$$= \int_{\mathbb{R}^{n}} e^{i\left(x\cdot\xi + \frac{1}{2}x\cdot y\right)}\Phi_{\alpha}(\xi + y)\Phi_{\beta}(\xi)d\xi$$

$$= \int_{\mathbb{R}^{n}} e^{ix\cdot\xi}\Phi_{\alpha}\left(\xi + \frac{1}{2}y\right)\Phi_{\beta}\left(\xi - \frac{1}{2}y\right)d\xi$$

$$= (2\pi)^{n/2}V(\Phi_{\alpha}, \Phi_{\beta}).$$

Lemma 7. For $\alpha, \beta \in \mathbb{N}^n$ and $z \in \mathbb{C}^n$,

$$\Phi_{\alpha\beta}(z) = (2\pi)^{-n/2} \langle W(z)\Phi_{\alpha}, \Phi_{\beta} \rangle.$$

Using that the Hermite functions Φ_{α} are an orthonormal basis for $L^2(\mathbb{R}^n)$, it is proved that the special Hermite functions $\Phi_{\alpha\beta}$ are an orthonormal basis for $L^2(\mathbb{C}^n)$.

 $^{^5 {\}rm Sundaram~Thangavelu},\, Lectures~on~Hermite~and~Laguerre~Expansions,~p.~14,~Proposition~1.3.1.$

 $^{^6\}mathrm{Sundaram}$ Thangavelu, Lectures on Hermite and Laguerre Expansions, p. 16, Theorem 1.3.2.