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1 The Heisenberg group

For (z,t), (w, s) € C™ x R, define the operation
1 _
(z,8)(w,s) = (z—l—w,t—l—s—i— 2Im(z-w)) ,

which satisfies
(Z7 t)(oa O) = (Za t)7
and because Im (z - Z) = 0,

(z,t)7' = (=2, —t).

We denote C™ x R with this operation by H™. This is a Lie group of dimension
2n + 1, called the Heisenberg group.
Writing z = « + ¢y define

X:i=— — Zq. 1<j<
1= oz, 2%ar J=m
and 9 1 8
Y, = ~ 1<i<
P By T J=m
and
_9
ot

We calculate the Lie brackets of these vector fields. For X; and Xy,

0 1 0 0 1 0
XXy = (8% - 2yj6t> (33319 - 2yk6t>

.o i 00 100 1 0
= Ow;0r, 270z, 0t 2% 0t 0my, | 4o

yielding
(X5, Xi] = X; X — X3 X; =0.



For Y; and Yy,

o 1 9 L10
YY — - . _ -
s (ayﬁ2%t>(a 6)
__e 1 iﬁJrl 20 1 o
T Oy0ue 2 oy, 0t T 2 ot oy, 4T R o
yielding
[Yj, Yi] = Y3V — Y3.Y; = 0.
For X; and Y7,
9 1 aN/a 1 0
XYV = [ — — —¢y. = 4 =
7% (axj 2yjat> (ayj +2x'78t>
_ o 1o 1 90 100 1 0
T oz,0y;, 20t 20z;0t 2% oty 4V o
and
9 1 9N/ 1 9
VX, = [ — + Z4. = — _Z
7 (8yj+2x‘78t>(8x] y?m)
_ _lﬁ_l 6o 100 1 0
~ oy0m; 20t 2%ay ot 2 otox;, 4o
yielding
)
X, V)] = X)Y; - Y, X, = 5 =T,
For X; and Y, with j # k,
8 1 aN/o 1 0
XYV = [ — — 4. — 4 o=
3K (axj 2yfat> <6yk +2$k8t>
_o 1 909 19009 1 09
T Or0u 2oz 0t 2% otoy, 4% or
and
8 1 aN[/a 1 9
VX = (4 a2 ) (2 - oy 2
kL <8yk+2xk8t> <ag;j 2yfat>
_ 190 1009 1 0
T Oz, 270y, ot 2 % otow; Ao
yielding
(X, Y] = 0.
For X; and T,
8 1 a9\ 99 1 &
XiT = (ax - 2yj8t> o oot 2Yige 1N



yielding

[X;,T] =0.
For Y; and T,
0 1 0\ 0 g0 1 092
YT T=|—+4+-0i—|==——+=-x,—5=TY;
! (ayj * 2%875) ot Oy; ot T 3"ige !
yielding

[Yjv T} =0.
We summarize the above calculations in the following theorem.

Theorem 1. The Lie brackets of the vector fields X;,Y;,1 < j <n, and T are:

[ ] [XJ,X[C} :O
° [Yj,Yk] =0
° [X;Y]|=T

[X;,Yi] =0for j #k
d [vaT] =0

[Yj’T}:O

The Lie algebra of the H™ is called the Heisenberg Lie algebra and is
denoted h™. The above vector fields are left-invariant and are a basis for h™.!

2 Representation theory

For a Hilbert space H, we denote by Z(H) the set of bounded linear operators
H — H, which is a Banach algebra with the operator norm. We denote by
Po(H) the set of compact operators H — H, which is a closed ideal of the
Banach algebra Z(H). We denote by %us(H) the collection of Hilbert-Schmidt
operators H — H: if {e; : ¢ € I} is an orthonormal basis of H, a linear map
A: H — H is called a Hilbert-Schmidt operator if

2 2
1Allfs = D Il Aeill* < oo
el

This satisfies ||A|| < [|Al|g- A Hilbert-Schmidt operator is a compact operator.
A linear map U : H — H is called a unitary operator if it is a bijection and
satisfies

(Uz,Uy) = zy, xz,y € H.

We denote the set of unitary operators H — H by % (H).

1Sundaram Thangavelu, An Introduction to the Uncertainty Principle: Hardy’s Theorem
on Lie Groups, p. 47, §2.1.



For A € R, A # 0, for (x +iy,t) € H", and for f € L*(R"), define

(o +iy (€)= NN fe 4 y) e R,

It is apparent that my(z,t) is a linear map L?(R") — L?(R").
For (z +iy,t), (u+iv,s) € H" we calculate

(@ + iy, E)ma (u + i, 8) F(€) = ma (@ + iy, 1) e AW EF3ww) £(g 4 )
_ ei)\tei)\(m-5+%z~y)ei)\sei)\(u~(£+y)+%u-v)f(g Fy+0)
_ eiA(t—&-s)ei)\((z+u)~£+%w‘y-i-u'y-‘r%wv)f(f +y+ o).
On the other hand, with z = z + iy and w = u + v,
(z,t)(w,s) = (z +w,t+ s+ %Im (z w))

1
x+iy+u+iv,t+s+2Im((x+iy)-(u—iv))>

1
x+u+i(y+v),t+s+21m(x~uixov+iy~u+y~fu)>

I
S~ N7 N 7N

. 1 1
x+u+z(y+v),t+s—§x-v+§y-u )

for which

(2, ) (w, 8)) f(€) = (e Fovthyu) M (whn) et ) ) f(g 4y 4 o)
_ (e bt ) e 4y o),
and therefore
ma(x + iy, t)ma(u + v, s) = ma((z, 1) (w, s)).
We calculate
mx(0,0)£(§) = f(£)
and
mA(z + iy, )yma((z + iy, 1)) f = m(0,0) f = f.
For f,g € L*(R"),
(ma(z + iy, ) f, ma(z + iy, t)g)

[ i pma T i Date)de

:/ eiktei)\(m-5+%z~y)f(£ + y)efi/\tefi)\(m-5+%z~y)md§
Rn

= [ e+ vt e
=(f.9).



Therefore 7y (z,t) is a unitary operator L?(R") — L?(R"), and
7\ H" — % (L*(R™))

is a group homomorphism, namely, 7 is a unitary representation of H" on
L?(R™).2 Furthermore, using that y +— f(- +y) is continuous R™ — L?(R"),

NGRS = / e FEE35Y) £(¢ gy — F(€)[2dE — 0

n

as (z,t) — 0, showing that 7\ : H® — % (L*(R")) is strongly continuous.
(That is, it is continuous when % (L?(R™)) is assigned the strong operator topol-
ogy:)

Theorem 2. For A € R, A # 0, the map 7 defined by
(@ + iy, ) f(€) = M) fle 1y,

for (x +iy,t) € H", f € L?>(R"), and & € R, is a strongly continuous unitary
representation of H™ on L?(R").

We call m; the Schrédinger representation. Its kernel is
I' ={(0,27k) : k € Z}.
For f € L'(H"/T) we define
m(f) = / f(z,t)m1(z, t)dzdt.
H"/T
For f,g € L'(H"/T),
(Fra)et) = [ f(et) (09 glwsduds,  (20) € HT.

H"/T

It is a fact that Lebesgue measure on C™ x R is a bi-invariant Haar measure on
H™, and using this we calculate

m(f *g)
:/ </ f((z,t) - (w,8) " Hg(w, s)dwds) 71 (2, t)dzdt
/v \JH" /T
:/ g(w, s) (/ f((z,t) - (w, 8) " Hm((2,t) - (w,s)_l)dzdt> m1(w, s)dwds
H™/T H™/T

:/ g(w, s)m (f)dwds
H"/T
=m(f)m(g)-

2¢f. https://www.math.ubc.ca/~cass/research/pdf/Unitary.pdf




Lemma 3. For f,g € L'(H"/T),

mi(f * g) = m(f)m(g).

We define
W(Z) = 7T1(Z, 0)5
with which '
71 (2, t) = " W(2).
Define 9
Fiz) = (2m) 12 / F(b)etdt.

0

Then

m(f) = / P2 et W (2)dzdt
H»/T
= /. W(2) (/027r f(z,t)e”dt) dz
=2m)? | ()W (2)d=.
Cn
For f € L'(C"), define

FH(z,t) = 2m) e f(2).
f# e LY(H"/T), and

() = (2m) 12 / "G tetdt = (2m) £(2),

(2m) 1/2/ ()W (2)dz = /(C” f(2)W(z)d

We define W : LY(C") — % (L*(R™)) by
W(f)=m(f*),

thus

called the Weyl transform.



For f,g € L*(C") and for (z,t) € H"/T,
(f# % g%)(z,1)
:/ f#((z,t) - (w, 3)71)9#(111, s)dwds
Hn/T
z/ f#((z,t) - (—w, —s))g" (w, s)dwds
Hn/T
:/ f# <z—w,t—s— 11m(z~w)) g7 (w, s)dwds
Hn )T 2
:/ (27_‘,) 2 —z(t s—flm(z w)>f(z_w)e—isg(w)dwd8
Hn/T
=(2m) e f(z — w)g(w)es™ ) qy

:(f X g)#(zv t)v
for

(fxg)(z /fz— mzw)dw

called the twisted convolution. Using what we have established so far gives
the following.

Lemma 4. For f,g € L'(C"),

W(f x g) =m((f x 9)*) = m(f* x g%) = m(f#)mi(g7) = W(f)W(9)
For ¢ € L'(C"), we define

sen) = [ dlo+iln— )RS, (6 R xR,
which satisfies, for f € L2(R") and ¢ € R,
W@ = [ oW (e
- / et iy)e! (TS50 0) £ (¢ 4 y)dyda
=[]ttt ity =)t pyiya

=/ (/ Pz +i y—f))eé(“y)'z)dw) f(y)dy
rR» \JRn

= [ K&y f(y)dy.

Rn

Thus K, is an integral kernel for the operator W (o).



We show in the following theorem that the Weyl transform sends elements
of L1(C") to compact operators on L?(R™), and that it sends square integrable
functions to Hilbert-Schmidt operators.?

Theorem 5. W : L}(C") — %Bo(L*(R")), and for ¢ € LY(C") N L?(C") we
have W (¢) € Pus(L*(R™)) and

161l 2@y = (2m) 72 [W(9)llpss -

Proof. First take ¢ € L'(C™)N L?(C™). It follows from this that K4 € L*(R"™ x
R™), and because K, is the integral kernel of W (¢) this implies? that W (¢) €
%Hs(LQ(Rn)) and

W@lis= [ Iz

3 Hermite functions

For ¢ € .Z(R"™), define
06 = (F9)&) = @m™/ | ¢@)e” " da, R

Z(R") is a dense linear subspace of L?(R™), and the Fourier transform extends
to a unique Hilbert space isomorphism L?*(R") — L?(R"). For f,g € L*(R),

()= [ faaada
For ¢ € .Z(R), let
(Do) (x) = ¢'(z),  (Mg)(x) =zd(x), z€R,

and let
A=—-D+ M, B=D+ M.

Let
n 1 n
Z =D} + M) = 5 > (4;B; + B;A;),

Jj=1

which satisfies
(Ho)(z) = —(A¢)(z) + |z ¢ (),

3Sundaram Thangavelu, Lectures on Hermite and Laguerre Expansions, p. 13, Theorem
1.2.1.

4Michael Reed and Barry Simon, Methods of Modern Mathematical Physics, volume I:
Functional Analysis, revised and enlarged edition, p. 210, Theorem VI.23.




called the Hermite operator.
For k > 0, define

Hy(z) = (—1)ke®” Dre="
and ,
hi(z) = (2Fk!/m) Y2 12 Hy ().
The Hermite functions are an orthonormal basis for L?(R). Let N be the non-
negative integers, and for v € N” let
@, :hoq ®"'®hozna
which are an orthonormal basis for L?(R"). It is a fact that
A0, = (205 +2)P00re;,  Bj® = (205) 70,
and
Hd, = (2|la| +n)D,.
It is a fact that R
hie = (—i)*
whence R
D, = (—i)*®,.
Because {®,, : @ € N"} is an orthonormal basis for L?(R"), for f € L*(R"),

f:Z<f»q)a>(I)ow

and then

~

F=Y (f2a) ()@,

[e3%

Let Ej, be the linear span of {®, : || = k}, which has dimension (kﬂ;*l).
For f € Ey, Hf = (2k+n)f. Let P : L*(R™) — Ej, be the projection:

Pkf: Z <fa(1)a> D, f€L2(Rn)'

ll=k

Let

Op(z,y) = > Pal@)Paly),  x,y€R™
la|=k

For x € R™ we calculate

| owtaasoidy = X @at) [ fa)@atiy

|| =k
= 3 buly) (.0a)
|a|=k

= (Bef)(y),



thus @ is a kernel for the projection operator Pj.
Using the 1-dimensional Mehler’s formula we obtain the n-dimensional Mehler’s
formula:

N n 11472 2r
lol P — a2 (1—r?)"2 2 (2] 2 = . .
%:r a(@)@a(y) = 7 E (1) exp ( —5 75 (2 + W) + 5y

4 Special Hermite functions
We first define the Fourier-Wigner transform. For f,g € L?(R") and z =

x+iy € C,

—n ix- 1 1
V(o)) = 202 [ ey (e g ) o (6 go)ae
The following theorem relates the inner product on L?(R™) and the inner prod-
uct on L?(C").?

Theorem 6. For f,g, ¢, € L?(R"),

| VTG IEE = (1.6) 6.9).
We now define the special Hermite functions on C". For «, 5 € N, let

Dop(2) = V(Pa, p)(2).

We calculate

(W(2)®a, Pp) = | W(2)Pa(§)Ps()dE

Rn

N /n BT, (€ + y) Dy (€)de

. 1 1
= / e D, (6 + y) P (f - y) d¢
n 2 2
= (2m)"/2V (D, p).
Lemma 7. For o, 8 € N” and z € C",
Bap(z) = (2m) 2 (W (2)@a, Bp) .

Using that the Hermite functions ®,, are an orthonormal basis for L?(R"),
it is proved that the special Hermite functions ®,4 are an orthonormal basis for
L2 ((C") _6

5Sundaram Thangavelu, Lectures on Hermite and Laguerre Expansions, p. 14, Proposition
1.3.1.

6Sundaram Thangavelu, Lectures on Hermite and Laguerre Expansions, p. 16, Theorem
1.3.2.
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