The Heisenberg group and Hermite functions

Jordan Bell
August 6, 2015

1 The Heisenberg group

For (z,t),(w,s)n×, define the operation

(z,t)(w,s)=(z+w,t+s+12Im(zw¯)),

which satisfies

(z,t)(0,0)=(z,t),

and because Im(zz¯)=0,

(z,t)-1=(-z,-t).

We denote n× with this operation by Hn. This is a Lie group of dimension 2n+1, called the Heisenberg group.

Writing z=x+iy define

Xj=xj-12yjt,1jn,

and

Yj=yj+12xjt,1jn,

and

T=t.

We calculate the Lie brackets of these vector fields. For Xj and Xk,

XjXk =(xj-12yjt)(xk-12ykt)
=2xjxk-12ykxjt-12yjtxk+14yjyk2t2,

yielding

[Xj,Xk]=XjXk-XkXj=0.

For Yj and Yk,

YjYk =(yj+12xjt)(yk+12xkt)
=2yjyk+12xkyjt+12xjtyk+14xjxk2t2,

yielding

[Yj,Yk]=YjYk-YkYj=0.

For Xj and Yj,

XjYj =(xj-12yjt)(yj+12xjt)
=2xjyj+12t+12xjxjt-12yjtyj-14yjxj2t2,

and

YjXj =(yj+12xjt)(xj-12yjt)
=2yjxj-12t-12yjyjt+12xjtxj-14xjyj2t2,

yielding

[Xj,Yj]=XjYj-YjXj=t=T.

For Xj and Yk with jk,

XjYk =(xj-12yjt)(yk+12xkt)
=2xjyk+12xkxjt-12yjtyk-14yjxk2t2

and

YkXj =(yk+12xkt)(xj-12yjt)
=2ykxj-12yjykt+12xktxj-14xkyj2t2,

yielding

[Xj,Yk]=0.

For Xj and T,

XjT=(xj-12yjt)t=xjt-12yj2t2=TXj,

yielding

[Xj,T]=0.

For Yj and T,

YjT=(yj+12xjt)t=yjt+12xj2t2=TYj,

yielding

[Yj,T]=0.

We summarize the above calculations in the following theorem.

Theorem 1.

The Lie brackets of the vector fields Xj,Yj, 1jn, and T are:

  • [Xj,Xk]=0

  • [Yj,Yk]=0

  • [Xj,Yj]=T

  • [Xj,Yk]=0 for jk

  • [Xj,T]=0

  • [Yj,T]=0

The Lie algebra of the Hn is called the Heisenberg Lie algebra and is denoted 𝔥n. The above vector fields are left-invariant and are a basis for 𝔥n.11 1 Sundaram Thangavelu, An Introduction to the Uncertainty Principle: Hardy’s Theorem on Lie Groups, p. 47, §2.1.

2 Representation theory

For a Hilbert space H, we denote by (H) the set of bounded linear operators HH, which is a Banach algebra with the operator norm. We denote by 0(H) the set of compact operators HH, which is a closed ideal of the Banach algebra (H). We denote by HS(H) the collection of Hilbert-Schmidt operators HH: if {ei:iI} is an orthonormal basis of H, a linear map A:HH is called a Hilbert-Schmidt operator if

AHS2=iIAei2<.

This satisfies AAHS. A Hilbert-Schmidt operator is a compact operator. A linear map U:HH is called a unitary operator if it is a bijection and satisfies

Ux,Uy=xy,x,yH.

We denote the set of unitary operators HH by 𝒰(H).

For λ,λ0, for (x+iy,t)Hn, and for fL2(n), define

πλ(x+iy,t)f(ξ)=eiλteiλ(xξ+12xy)f(ξ+y),ξn.

It is apparent that πλ(z,t) is a linear map L2(n)L2(n).

For (x+iy,t),(u+iv,s)Hn we calculate

πλ(x+iy,t)πλ(u+iv,s)f(ξ) =πλ(x+iy,t)eiλseiλ(uξ+12uv)f(ξ+v)
=eiλteiλ(xξ+12xy)eiλseiλ(u(ξ+y)+12uv)f(ξ+y+v)
=eiλ(t+s)eiλ((x+u)ξ+12xy+uy+12uv)f(ξ+y+v).

On the other hand, with z=x+iy and w=u+iv,

(z,t)(w,s) =(z+w,t+s+12Im(zw¯))
=(x+iy+u+iv,t+s+12Im((x+iy)(u-iv)))
=(x+u+i(y+v),t+s+12Im(xu-ixv+iyu+yv))
=(x+u+i(y+v),t+s-12xv+12yu),

for which

πλ((z,t)(w,s))f(ξ) =eiλ(t+s-12xv+12yu)eiλ((x+u)ξ+12(x+u)(y+v))f(ξ+y+v)
=eiλ(t+s)eiλ((x+u)ξ+12xy+yu+12uv)f(ξ+y+v),

and therefore

πλ(x+iy,t)πλ(u+iv,s)=πλ((z,t)(w,s)).

We calculate

πλ(0,0)f(ξ)=f(ξ)

and

πλ(x+iy,t)πλ((x+iy,t)-1)f=πλ(0,0)f=f.

For f,gL2(n),

πλ(x+iy,t)f,πλ(x+iy,t)gnπλ(x+iy,t)f(ξ)πλ(x+iy,t)g(ξ)¯𝑑ξ=neiλteiλ(xξ+12xy)f(ξ+y)e-iλte-iλ(xξ+12xy)g(ξ+y)¯𝑑ξ=nf(ξ+y)g(ξ+y)¯𝑑ξ=f,g.

Therefore πλ(z,t) is a unitary operator L2(n)L2(n), and

πλ:Hn𝒰(L2(n))

is a group homomorphism, namely, πλ is a unitary representation of Hn on L2(n).22 2 cf. https://www.math.ubc.ca/~cass/research/pdf/Unitary.pdf Furthermore, using that yf(+y) is continuous nL2(n),

πλ(x+iy,t)f-f2 =n|eiλteiλ(xξ+12xy)f(ξ+y)-f(ξ)|2𝑑ξ0

as (z,t)0, showing that πλ:Hn𝒰(L2(n)) is strongly continuous. (That is, it is continuous when 𝒰(L2(n)) is assigned the strong operator topology.)

Theorem 2.

For λ, λ0, the map πλ defined by

πλ(x+iy,t)f(ξ)=eiλteiλ(xξ+12xy)f(ξ+y),

for (x+iy,t)Hn, fL2(n), and ξn, is a strongly continuous unitary representation of Hn on L2(n).

We call π1 the Schrödinger representation. Its kernel is

Γ={(0,2πk):k}.

For fL1(Hn/Γ) we define

π1(f)=Hn/Γf(z,t)π1(z,t)𝑑z𝑑t.

For f,gL1(Hn/Γ),

(f*g)(z,t)=Hn/Γf((z,t)(w,s)-1)g(w,s)𝑑w𝑑s,(z,t)Hn/Γ.

It is a fact that Lebesgue measure on n× is a bi-invariant Haar measure on Hn, and using this we calculate

π1(f*g)=Hn/Γ(Hn/Γf((z,t)(w,s)-1)g(w,s)𝑑w𝑑s)π1(z,t)𝑑z𝑑t=Hn/Γg(w,s)(Hn/Γf((z,t)(w,s)-1)π1((z,t)(w,s)-1)𝑑z𝑑t)π1(w,s)𝑑w𝑑s=Hn/Γg(w,s)π1(f)𝑑w𝑑s=π1(f)π1(g).
Lemma 3.

For f,gL1(Hn/Γ),

π1(f*g)=π1(f)π1(g).

We define

W(z)=π1(z,0),

with which

π1(z,t)=eitW(z).

Define

f1(z)=(2π)-1/202πf(z,t)eit𝑑t.

Then

π1(f) =Hn/Γf(z,t)eitW(z)𝑑z𝑑t
=nW(z)(02πf(z,t)eit𝑑t)𝑑z
=(2π)1/2nf1(z)W(z)𝑑z.

For fL1(n), define

f#(z,t)=(2π)-1e-itf(z).

f#L1(Hn/Γ), and

f1#(z)=(2π)-1/202πf#(z,t)eit𝑑t=(2π)-1/2f(z),

thus

π1(f#)=(2π)1/2nf#(z)W(z)𝑑z=nf(z)W(z)𝑑z.

We define W:L1(n)𝒰(L2(n)) by

W(f)=π1(f#),

called the Weyl transform.

For f,gL1(n) and for (z,t)Hn/Γ,

(f#*g#)(z,t)=Hn/Γf#((z,t)(w,s)-1)g#(w,s)𝑑w𝑑s=Hn/Γf#((z,t)(-w,-s))g#(w,s)𝑑w𝑑s=Hn/Γf#(z-w,t-s-12Im(zw¯))g#(w,s)𝑑w𝑑s=Hn/Γ(2π)-2e-i(t-s-12Im(zw¯))f(z-w)e-isg(w)𝑑w𝑑s=(2π)-1e-itnf(z-w)g(w)ei2Im(zw¯)𝑑w=(f×g)#(z,t),

for

(f×g)(z)=nf(z-w)g(w)ei2Im(zw¯)𝑑w,

called the twisted convolution. Using what we have established so far gives the following.

Lemma 4.

For f,gL1(n),

W(f×g)=π1((f×g)#)=π1(f#*g#)=π1(f#)π1(g#)=W(f)W(g)

For ϕL1(n), we define

Kϕ(ξ,η)=nϕ(x+i(η-ξ))ei2(ξ+η)x𝑑x,(ξ,η)n×n,

which satisfies, for fL2(n) and ξn,

W(ϕ)f(ξ) =nϕ(z)W(z)f(ξ)𝑑z
=nnϕ(x+iy)ei(xξ+12xy)f(ξ+y)𝑑y𝑑x
=nnϕ(x+i(y-ξ))ei2(xξ+xy)f(y)𝑑y𝑑x
=n(nϕ(x+i(y-ξ))ei2(ξ+y)x)𝑑x)f(y)𝑑y
=nKϕ(ξ,y)f(y)𝑑y.

Thus Kϕ is an integral kernel for the operator W(ϕ).

We show in the following theorem that the Weyl transform sends elements of L1(n) to compact operators on L2(n), and that it sends square integrable functions to Hilbert-Schmidt operators.33 3 Sundaram Thangavelu, Lectures on Hermite and Laguerre Expansions, p. 13, Theorem 1.2.1.

Theorem 5.

W:L1(n)0(L2(n)), and for ϕL1(n)L2(n) we have W(ϕ)HS(L2(n)) and

ϕL2(n)=(2π)-n/2W(ϕ)HS.
Proof.

First take ϕL1(n)L2(n). It follows from this that KϕL2(n×n), and because Kϕ is the integral kernel of W(ϕ) this implies44 4 Michael Reed and Barry Simon, Methods of Modern Mathematical Physics, volume I: Functional Analysis, revised and enlarged edition, p. 210, Theorem VI.23. that W(ϕ)HS(L2(n)) and

W(ϕ)HS2=n×n|K(ξ,η)|2𝑑ξ𝑑η.

3 Hermite functions

For ϕ𝒮(n), define

ϕ^(ξ)=(ϕ)(ξ)=(2π)-n/2nϕ(x)e-ixξ𝑑x,ξn.

𝒮(n) is a dense linear subspace of L2(n), and the Fourier transform extends to a unique Hilbert space isomorphism L2(n)L2(n). For f,gL2(),

f,g=nf(x)g(x)¯𝑑x.

For ϕ𝒮(), let

(Dϕ)(x)=ϕ(x),(Mϕ)(x)=xϕ(x),x,

and let

A=-D+M,B=D+M.

Let

H=j=1n(-Dj2+Mj2)=12j=1n(AjBj+BjAj),

which satisfies

(Hϕ)(x)=-(Δϕ)(x)+|x|2ϕ(x),

called the Hermite operator.

For k0, define

Hk(x)=(-1)kex2Dke-x2

and

hk(x)=(2kk!π)-1/2e-x2/2Hk(x).

The Hermite functions are an orthonormal basis for L2(). Let be the nonnegative integers, and for αn let

Φα=hα1hαn,

which are an orthonormal basis for L2(n). It is a fact that

AjΦα=(2αj+2)1/2Φα+ej,BjΦα=(2αj)1/2Φα-ej

and

HΦα=(2|α|+n)Φα.

It is a fact that

h^k=(-i)khk,

whence

Φ^α=(-i)|α|Φα.

Because {Φα:αn} is an orthonormal basis for L2(n), for fL2(n),

f=αf,ΦαΦα.

and then

f^=αf,Φα(-i)|α|Φα.

Let Ek be the linear span of {Φα:|α|=k}, which has dimension (k+n-1k). For fEk, Hf=(2k+n)f. Let Pk:L2(n)Ek be the projection:

Pkf=|α|=kf,ΦαΦα,fL2(n).

Let

Φk(x,y)=|α|=kΦα(x)Φα(y),x,yn.

For xn we calculate

nΦk(x,y)f(y)𝑑y =|α|=kΦα(y)nf(y)Φα(y)𝑑y
=|α|=kΦα(y)f,Φα
=(Pkf)(y),

thus Φk is a kernel for the projection operator Pk.

Using the 1-dimensional Mehler’s formula we obtain the n-dimensional Mehler’s formula:

αr|α|Φα(x)Φα(y)=π-n2(1-r2)-n2exp(-121+r21-r2(|x|2+|y|2)+2r1-r2xy).

4 Special Hermite functions

We first define the Fourier-Wigner transform. For f,gL2(n) and z=x+iyn,

V(f,g)(z)=(2π)-n/2neixξf(ξ+12y)g(ξ-12y)¯𝑑ξ.

The following theorem relates the inner product on L2(n) and the inner product on L2(n).55 5 Sundaram Thangavelu, Lectures on Hermite and Laguerre Expansions, p. 14, Proposition 1.3.1.

Theorem 6.

For f,g,ϕ,ψL2(n),

nV(f,g)(z)V(ϕ,ψ)(z)¯𝑑z=f,ϕψ,g.

We now define the special Hermite functions on n. For α,βn, let

Φαβ(z)=V(Φα,Φβ)(z).

We calculate

W(z)Φα,Φβ =nW(z)Φα(ξ)Φβ(ξ)𝑑ξ
=nei(xξ+12xy)Φα(ξ+y)Φβ(ξ)𝑑ξ
=neixξΦα(ξ+12y)Φβ(ξ-12y)𝑑ξ
=(2π)n/2V(Φα,Φβ).
Lemma 7.

For α,βn and zn,

Φαβ(z)=(2π)-n/2W(z)Φα,Φβ.

Using that the Hermite functions Φα are an orthonormal basis for L2(n), it is proved that the special Hermite functions Φαβ are an orthonormal basis for L2(n).66 6 Sundaram Thangavelu, Lectures on Hermite and Laguerre Expansions, p. 16, Theorem 1.3.2.