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1 Heat kernel on T

For t > 0, define k; : R — (0, 00) by!

2
ki(z) = (4mt) Y2 exp <_Zt) , z eR.

For ¢ > 0, define g; : R — (0, 00) by
gi(z) = ZWZkt(x + 27k), r eR,
kEZ

which one checks indeed converges for all z € R. Of course, gi(z + 27k) = g:(x)
for any k € Z, so we can interpret g; as a function on T, where T = R/27Z.

Let m be Haar measure on T: dm(z) = (27) 'dz, and so m(T) = 1. With
£l = J;|fldm for f: T — C, we have, because g; > 0,

lgelln = Z/Tkt(x + 2nk)dw = /Rkt(x)da: =1.

keZ

Hence g; € L'(T). For £ € Z, we compute
@ = [ oy dm(a)
= Z/ Ei(x + 2mk)e™ %% dg
T

kEZ

= Z/kt(x—i—%rk)e_if(w””k)dx
kez’T

= / ki(x)e "% dx
R

- 4(5)

_ 2
= egt.

IMost of this note is my working through of notes by Patrick Maheux. http://www.
univ-orleans.fr/mapmo/membres/maheux/InfiniteTorusV2.pdf



Lemma 1. Fort >0 and x € R,

s x? n2k? rkx
git(z) = \/Zexp (4t> 1 +2};exp ( . ) cosh <t>

Proof. Using the definition of gy,

gi(x) = 27 k(w+ 27k)
kEZ
_ + 27k)?
= 27 4rt) "2 ex (_(1:)
k%( ) p m

T x? wkx w2 k2
Voo (<) Zew (75 oo ()

. . . . _ 4!/_;'_‘*'9
which gives the claim, using coshy = “~5—. O
Definition 2. For z € R, let ||z|| = inf{|z — 27k| : k € Z}.

For k € Z, ||x + 27k]|| = ||=||, so it makes sense to talk about ||z|| for z € T.

Theorem 3. Fort >0 and x € R,

exp (— ”jj) 9:(0) < g¢(z) < exp (— ”Z;) (ﬁ+ 9t(0)> .

Proof. Let x = 2rm+6 with |0| < , so that ||z|| = ||0]| = |0], and g¢(z) = g:(0).
Using Lemma 1 and the fact that coshy > 1, we get

62 T w2 k2 02
> _— —_ — = _—
g:(6) > exp ( 4t> 1/ ; 1+ 2kg>1exp ( ; ) exp ( 4t> 9:(0),

hence

g9¢(x) = exp (— HLP) 9+(0),

the lower bound we wanted to prove.

Write 2.2 10
7r 7r
=142 — h|—|.
S + g exp ( " ) cos ( " >

k>1




For any k > 1, using 0| <,

2 2 2 2
2 cosh (7T];9> < 2cosh (ﬂ-tk> = exp (7Ttk)—|—exp (—ﬂ-tk> < 1+exp <7rtk‘) .

Hence
2p2 2
< — .z
S < 1+Zexp< )(l—l—exp( ; >)
k>1
21.2 2 1
= 1+Zexp<—7rtk )-l—eXp(—ﬂ-k(]z))
k>1
2k.2 7T2(]€—1)2
< 1 - -
< —l—ZeXp( )—i—exp( P )

But g¢(0) = /T exp (—Z—i) S, 50

9:(0) < exp (ii) (ﬁ+gt(0)> = exp <Zz|f|2> <ﬁ+9t(0)> ;

the upper bound we wanted to prove. O

Applying Lemma 1 with = 0 gives g;(0) > \/f

+, and using this with the
above theorem we obtain

) < 20 (1) 01 0), )
Theorem 4. Fort >0,
\f <g(0) <1+ \/?
and ot
267 < gu(0) ~ 1< T



For each x € R we have

gi(x) = th(k)e““ = Z e Htgikr — 1 4 9 Z ek cos(kzx).

kEZ kEZ k>1
Writing ¢(t) = >+, e=*’t we then have

9:(0) = 1+ 26(0).

But as e~ is positive and decreasing, bounding a sum by an integral we get
> 2 1 o 2 1 ™
t) < e_mtdxz—/ e Tdr=—-4/—,
¢( ) N /() \/E 0 2 t
hence

g:(0) =1+20(t) <1+ ﬁ

Moreover, because ¢(t) > e~! (lower bounding the sum by the first term), we
have
0u(0) = 1+20(t) = 1+2¢7.

Finally, because et < o=tk for | > 1,

_ _ 1
o) <y e =T
k>1
thus .
2e”
0)<1 .
9:(0) < +1—e—t

O

Taking ¢ — 0 and ¢t — oo in the above theorem gives the following asymp-
totics.

Corollary 5.

and
g:(0) — 1~ 2e7 ", t — o0.

2 Heat kernel on T"

Fix n > 1, and let & = (ay,...,ay), a; positive real numbers. We define
g7 :R" — (0,00) by

gff(:y): Hgakt(xk)7 x:(xl,...,xn)eR”.
k=1



For z € R™ and & € Z™ we have

g7 (v +27€) = [ [ gane(@n +278) = [ Gane(zn) = 9 (),
k=1 k=1

so gf can be interpreted as a function on T™.
Let m,, be Haar measure on T"™:

dmy(x) = H dm(zy) = H(ZW)_ldxk = (2m) "dx,
k=1 k=1

which satisfies m,,(T") = 1. Define uf to be the measure on T" whose density
with respect to m,, is g{”:
duf{ = gf{ dmy,.

We now calculate the Fourier coefficients of g&. For ¢ € Z",
FENE = [ g @e < dm, (o)

n
- / H gukt(xk)eiiglzlﬁhiignmndmn(x)
T

" k=1

n
= H/gakt(xk)e_ikakdm(xk)
k=17T
n
= 1 dae(&)
k=1
n
= Heigia’kt
k=1

— e—tq(f)7
where .
9 => ar&l, ez
k=1
Definition 6. For z = (x1,...,2,) € R™ we define
1 1
2 _ 1 2, ., 2
Jally = ol -+

with o = (a1,...,a,).

For £ = (&,...,&,) € Z", because ||z + 2w&;|| = ||zk||, we have ||z +
27€||or = |||l oz» SO it makes sense to talk about || - || on T™.
Using Theorem 3 and (1) we get the following.



Theorem 7. Fort >0 and x € R",

||$||i¢ of o n ||$||§z¢ o
exp T g7 (0) < g (z) < 2"exp T g; (0).

Combining this with Theorem 4 we obtain the following. The first inequality
is appropriate for ¢ — 0T and the second inequality for ¢ — co.

Theorem 8. Fort >0 and x € R",

e ||x||d) 15 <o <zon(- ”w”ﬂ)i{l( /)

and

[EIFPAR S - HHCH2 - 2e” !
eXp(: [[ (1+2e7) <97 () <2"exp (== )
k=1

k=1

3 The infinite-dimensional torus

T with the product topology is a compact abelian group. Let m., be Haar
measure on T>:

dms(z) = H dm(zy), x = (x1,22,...) € T,
k=1

where m is Haar measure on T.
For t > 0, let u; be the measure on T whose density with respect to Haar
measure m is gy:
dp = grdm.

This is a probability measure on T.
Let & = (a1, az,...) € N*. For ¢t > 0 we define

o)
= [T pawe
k=1

This is a probability measure on T>.2
The Pontryagin dual of T is the direct sum @;-, Z, which we denote by
7.(>) which is a discrete abelian group. For ¢ € Z(>) and z € T*, we write

eg(r) = exp ( ka%)

2Christian Berg determines conditions on &/ and t so that uf{ is absolutely continuous
with respect to Haar measure moo on T°°: Potential theory on the infinite dimensional torus,
Invent. Math. 32 (1976), no. 1, 49-100.




The Fourier transform of p is . (u) : Z(>*) — C defined by
FUENO = [ _e-e@dma(a), €0,

which is

[ ec@yimat) = [ ew (—i fjg) Api (x)

k=1

4 Convergence of infinite products

If ¢, > 0, then for any n,
1+ch < H(l +cx) < exp <ch>
Thus, the limit of [T;_, (1 + ¢x) as n — oo exists if and only if

oo
Z c < 00.
k=1

For the second inequality in Theorem 8, the limit of [T}_; (1 + 2e~*") asn — o

exists if and only if
(oo}
Z 2e” %! < oo.
k=1



