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1 Owuter measures and metric outer measures

Suppose that X is a set. A function v : Z(X) — [0, 00] is said to be an outer
measure if (i) v(0) = 0, (ii) ¥(A) < v(B) when A C B, and, (iii) for any
countable collection {4;} C Z(X),

We say that a subset A of X is v-measurable if
v(E)=v(ENA)+v(EnN A, Eec Z(X). (1)

Here, instead of taking a o-algebra as given and then defining a measure on this
o-algebra (namely, on the measurable sets), we take an outer measure as given
and then define measurable sets using this outer measure. Carathéodory’s
theorem! states that the collection .# of v-measurable sets is a o-algebra and
that the restriction of v to .# is a complete measure.

Suppose that (X, p) is a metric space. An outer measure v on X is said to
be a metric outer measure if

p(A,B) = inf{p(a,b) :a € A,be B} >0

implies that
v(AUB) =v(A) +v(B).

We prove that the Borel sets are v-measurable.? That is, we prove that the
Borel g-algebra is contained in the o-algebra of v-measurable sets.

Theorem 1. If v is a metric outer measure on a metric space (X, p), then every
Borel set is v-measurable.

LGerald B. Folland, Real Analysis, second ed., p. 29, Theorem 1.11.
2Gerald B. Folland, Real Analysis, second ed., p. 349, Proposition 11.16.



Proof. Because v is an outer measure, by Carathéodory’s theorem the collection
M of v-measurable sets is a g-algebra, and hence to prove that .# contains the
Borel o-algebra it suffices to prove that .# contains all the closed sets. Let F
be a closed set in X, and let E be a subset of X. Because v is an outer measure,

V(E)=v(ENF)U(ENF) <u(ENF)+v(ENF°).

In the case v(E) = oo, certainly v(E) > v(ENF) +v(E N F°). In the case
v(E) < oo, for each n let

En={z€E\F:p(F)>n""},

which satisfies p(E,, F) > n~!. Because p(E,,ENF) > p(E,,F) > n~!, the
fact that v is a metric outer measure tells us that

v(ENFYUE,) =v(ENF)+v(E,). (2)
Because F is closed, for any x € E'\ F we have p(z, F') > 0, and hence

E\F = G E,. (3)
n=1

Therefore

E=(EnF)U(ENF)=(ENF)U G [j (ENF)UE,),

hence for each n, using this and (2) we have
v(EY>v(ENF)UE,) =v(ENF)+v(E,).
To prove that v(E) > v(ENF) + v(E N F°), it now suffices to prove that

lim v(E,) =v(ENF°).
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Let D, nt1 \ En. For x € D,y; and y € X satisfying p(z,y) <
((n+1)n)~1, we have
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p(y, F) < p(x,y) + p(z, F) <

which implies that y € E,,. Thus,
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For any n, using (4) and the fact that v is a metric outer measure,
v(Bapt1) = v(D2p U Eap)

v(Dap U Egp_1)
v(Day) + v(Eap—1)
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V(EZn) = V(DQn—l U E2n—1)
> v(Dap—1UEs,_2)
= v(Dap—1) +v(Eon—2)
> ...

v(Dap—1) +v(D2n—3) + - +v(D3) + v(D1) + v(Ep)

n

V(ngfl).

Jj=1

But E, C E so v(E,) < v(E), and hence each of the series > 72, v/(Dy;)
and Zj’;l v(Dg;_1) converges to a value < v(E). Thus the series Z‘;‘;l v(D;)
converges to a value < 2v(FE). But for any n,

v(E\F)=v EHUDDj SI/(E,L)—FiV(Dj).

j=n

Because the series > 72 | v/(D;) converges, the sum on the right-hand side of the
above tends to 0 as n — oo, so

v(E\ F) <liminfv(E,) <limsupv(E,) < v(E\ F);

n—oo n—oo

the last inequality is due to (3), which tells us ¥(E,) < v(E \ F). Therefore,

lim v(E,)=v(E\F)=v(ENF°,

n—oo
which completes the proof. O

We shall use the following.3

3QGerald B. Folland, Real Analysis, second ed., p. 29, Proposition 1.10.



Lemma 2. Let (X, p) be a metric space. Suppose that & C Z(X) satisfies
0, X € & and that d : & — [0,00] satisfies d(f) = 0. Then the function
v:P(X) — [0,00] defined by

v(A)=inf¢> d(E;):E;je&and AC | JE; 3, Ae 2(X)
j=1

j=1
is an outer measure.

We remark that if there is no covering of a set A by countably many elements
of & then v(A) is an infinimum of an empty set and is thus equal to co.

2 Hausdorff measure

Suppose that (X, p) is a metric space and let p > 0, § > 0. Let & be the
collection of those subsets of X with diameter < § together with the set X, and
define d(A) = (diam A)?. By Lemma 2, the function H,s : Z(X) — [0, ]
defined by

Hps(A)=inf{ Y d(Ej):E;e&and AC|JE p, Aec2(X)
j=1

j=1

is an outer measure. If 6; < 0y then H, 5, (A) > H, 5,(A), from which it follows
that for each A € Z(X), as ¢ tends to 0, H,s(A) tends to some element

of [0,00]. We define H, = lims_,o Hp, s and show that this is a metric outer

measure.4

Theorem 3. Suppose that (X, p) is a metric space and let p > 0. Then H), :
P(X) — [0, 00] defined by

Hy(A) = lim H,5(4), A€ 2(X).
is a metric outer measure.

Proof. First we establish that H, is an outer measure. It is apparent that
H,(0) = 0. If A C B, then, using that H, s is a metric outer measure,

Hy(A) = lim H,,5(4) < lim Hy 5(B) = Hy(B)

4Gerald B. Folland, Real Analysis, second ed., p. 350, Proposition 11.17.



If {A;} C Z(X) is countable then, using that H, 5 is a metric outer measure,

j=1

<lim » H,s(A))

5—0

j=1

= Z; HPJS(AJ)

j=1
= Z HP(AJ)

j=1

Hence H), is an outer measure.

To obtain that H, is a metric outer measure, we must show that if p(4, B) >
0 then H,(AU B) > H,(A) + H,(B). Let 0 < 6 < p(A,B) and let & be
the collection of those subsets of X with diameter < § together with the set
X. If there is no covering of A U B by countably many elements of &, then
H,(AUB) > H,s(AU B) = co. Otherwise, let {E;} C & be a covering of
AU B. For each j, because diam E; < § < p(A4, B), it follows that E; does not
intersect both A and B. Write

&= {Eaj} U {Ebj}a

where E,; N B = () and Ey, N A= (). Then A C |JE,; and B C |JEy,, so

> (diam E;)P =) " (diam E,, ) Z diam E;,)P > H, 5(A) + H, 5(B).

j=1 j=1
This is true for any covering of AU B by countably many element of &, so
H,s;(AUB) > H,;(A) + H, s(B).
The above inequality is true for any 0 < § < p(A4, B), and taking 6 — 0 yields
Hy(AUB) > Hy(A) + Hy(B),
completing the proof. O

We call the metric outer measure H, : Z(X) — [0, 0] in the above theorem
the p-dimensional Hausdorff outer measure. From Theorem 1 it follows
that the restriction of H, to the Borel o-algebra %x of a metric space is a
meausure. We call this restriction the p-dimensional Hausdorff measure,
and denote it also by H,,.

It is straightforward to verify that if 7 : X — X is an isometric isomorphism
then H,0T = H,,. In particular, for X = R", H,, is invariant under translations.



We will use the following inequality when talking about Hausdorff measure
on R".5

Lemma 4. Let Y be a set and (X, p) be a metric space. If f,g: Y — X satisfy
p(f(y), f(2)) < Cp(g(y),9(2)),  y,z€Y,
then for any 4 € 2(Y),
H,(f(A)) < CPHy(g(A)).

Proof. Take 6 > 0 and € > 0. There are countably many sets E; that cover
g(A) each with diameter < C~'§ and such that

S (diam E;)” < Hy(g(4)) + .

Let a € A. There is some j with g(a) € Ej, so a € g~'(FE;) and then f(a) €
(g7 (E})). Therefore the sets f(g7(E;)) cover f(A). For u,v € f(g7 (E;)),
there are y,z € g7 (E;) with u = f(y),v = f(z). Because g(y),g(z) € Ej,

p(u,v) = p(f(y), f(2)) < Cp(g(y),9(2)) < Cdiam Ej,

hence
diam f(g~"(E;)) < Cdiam E;.

Since the sets f(g~'(E;)) cover f(A) and each has diameter < Cdiam E; < 6,
Hy5(f(A) < ) (diam f(g1(E)))? < Y CP(diam E;)P < CP(H,(g(A)) + ).
This is true for all § > 0, so taking 6 — 0,

Hy(f(A)) < CP(Hp(g(A)) +€).
This is true for all € > 0, so taking € — 0,

Hy(f(A)) < CPHp(g(A)).

3 Hausdorff dimension

Theorem 5. If H,(A) < oo then Hy(A) =0 for all ¢ > p.
5Gerald B. Folland, Real Analysis, second ed., p. 350, Proposition 11.18.




Proof. Let 6 > 0. Then H, s(A) < Hp(A) < oo Let {E;} be countably many
sets each with diameter < ¢ such that A C UEj and

> (diam E;)P < H, 5(A) + 1 < Hy(A) + 1.
This gives us
Hy5(A) < (diam E;)? =) (diam E;)? P (diam E;)”
<6977 " (diam E;)P
< §97P(H,(A) +1).

This is true for any § > 0 and ¢ — p > 0, so taking 6 — 0 we obtain Hy(A) =
0. O

For A € Z(X), we define the Hausdorff dimension of A to be
inf{qg > 0: H,(A) =0}.

If the set whose infimum we are taking is empty, then the Hausdorff dimension
of A is co.

4 Radon measures and Haar measures

Before speaking about Hausdorff measure on R™, we remind ourselves of some
material about Radon measures and Haar measures. Let X be a locally compact
Hausdorff space. A Borel measure p on X is said to be a Radon measure if
(i) it is finite on each compact set, (ii) for any Borel set FE,

w(E) =inf{u(U) : U open and E C U},
and (iil) for any open set F,
w(E) = sup{u(K) : K compact and K C E}.

It is a fact that if X is a locally compact Hausdorff space in which every open
set is o-compact, then every Borel measure on X that is finite on compact sets
is a Radon measure.®

Suppose that G is a locally compact group. A Borel measure p on G is said
to be left-invariant if for all x € G and FE € %A,

p(xE) = p(E).

A left Haar measure on G is a nonzero left-invariant Radon measure on G.
It is a fact that if 4 and v are left Haar measures on G then there is some ¢ > 0
such that p = cv.”

6Gerald B. Folland, Real Analysis, second ed., p. 217, Theorem 7.8.
7Gerald B. Folland, Real Analysis, second ed., p. 344, Theorem 11.9.



5 Hausdorff measure in R®

Let m,, denote Lebesgue measure on R".

Lemma 6. If E is a Borel set in R", then

Ho(E) > 2"m,, (E).

Proof. Let € > 0 and let {E;} be countably many closed sets that cover E and
such that
> (diam E;)" < H,(E) + €.

The isodiametric inequality (which one proves using the Brunn-Minkowski
inequality) states that if A is a Borel set in R™, then

() < <dia;nA>".

Using this gives
> 2"mn(E;) < Hu(E) +e.

But because the sets E; cover E we have m,(E) < m,(UE;) <> m,(E;), so
we get
H,(E)+e¢

27’L
This expression does not involve the sets E; (which depend on €), and since this
expression is true for any € > 0, taking ¢ — 0 yields

mn(E) <

H,(E
my(F) < ( )
2’!7.
O
Let
n 1 1
Q=qzeR": |1y < 5,,|3:n| §§ .

Lemma 7. 0 < H,(Q) < oc.
Proof. For any m > 1, the cube @ can be covered by m”™ cubes q1,...,¢mnn of

side length % Let 0 < d <1 and let m > % The distance from the center of
g; to one of the vertices of g; is




Inscribe g; in a closed ball b; with the same center as g; and radius r. These
balls cover (). Hence

n n

H,s5(Q) <Y (diamb)" = (2r)" = (2r)" - m" = n"/2.
1 1

3
3

<.
I

<.
I

Taking § — 0 gives H,(Q) < n"? < co.
On the other hand, by Lemma 6,

H,(Q) >2"m,(Q) =2" > 0.

Theorem 8. There is some constant ¢,, > 0 such that
H, =c,m,.

Proof. R™ is a locally compact Hausdorff space in which every open set in R is
o-compact. Therefore, to show that H,, is a Radon measure it suffices to show
that H,, is finite on every compact set. If K is a compact subset of R™, there is
some r > 0 such that K C r@Q. By Lemma 4 and Lemma 7 we get H, (rQ) < oo,
so Hy(K) < co. Therefore H,, is a Radon measure.

Because H,(Q) > 0, H, is not the zero measure. Any translation is an
isometric isomorphism R"” — R", so H,, is invariant under translations. Thus
H,, is a left Haar measure on R". But Lebesgue measure m,, is also a left Haar
measure on R”, so there is some ¢, > 0 such that

H,, = cpymy,

proving the claim. O



