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1 Outer measures and metric outer measures

Suppose that X is a set. A function ν : P(X) → [0,∞] is said to be an outer
measure if (i) ν(∅) = 0, (ii) ν(A) ≤ ν(B) when A ⊂ B, and, (iii) for any
countable collection {Aj} ⊂ P(X),

ν

 ∞⋃
j=1

Aj

 ≤
∞∑
j=1

ν(Aj).

We say that a subset A of X is ν-measurable if

ν(E) = ν(E ∩A) + ν(E ∩Ac), E ∈ P(X). (1)

Here, instead of taking a σ-algebra as given and then defining a measure on this
σ-algebra (namely, on the measurable sets), we take an outer measure as given
and then define measurable sets using this outer measure. Carathéodory’s
theorem1 states that the collection M of ν-measurable sets is a σ-algebra and
that the restriction of ν to M is a complete measure.

Suppose that (X, ρ) is a metric space. An outer measure ν on X is said to
be a metric outer measure if

ρ(A,B) = inf{ρ(a, b) : a ∈ A, b ∈ B} > 0

implies that
ν(A ∪B) = ν(A) + ν(B).

We prove that the Borel sets are ν-measurable.2 That is, we prove that the
Borel σ-algebra is contained in the σ-algebra of ν-measurable sets.

Theorem 1. If ν is a metric outer measure on a metric space (X, ρ), then every
Borel set is ν-measurable.

1Gerald B. Folland, Real Analysis, second ed., p. 29, Theorem 1.11.
2Gerald B. Folland, Real Analysis, second ed., p. 349, Proposition 11.16.
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Proof. Because ν is an outer measure, by Carathéodory’s theorem the collection
M of ν-measurable sets is a σ-algebra, and hence to prove that M contains the
Borel σ-algebra it suffices to prove that M contains all the closed sets. Let F
be a closed set in X, and let E be a subset of X. Because ν is an outer measure,

ν(E) = ν((E ∩ F ) ∪ (E ∩ F c)) ≤ ν(E ∩ F ) + ν(E ∩ F c).

In the case ν(E) = ∞, certainly ν(E) ≥ ν(E ∩ F ) + ν(E ∩ F c). In the case
ν(E) < ∞, for each n let

En = {x ∈ E \ F : ρ(x, F ) ≥ n−1},

which satisfies ρ(En, F ) ≥ n−1. Because ρ(En, E ∩ F ) ≥ ρ(En, F ) ≥ n−1, the
fact that ν is a metric outer measure tells us that

ν((E ∩ F ) ∪ En) = ν(E ∩ F ) + ν(En). (2)

Because F is closed, for any x ∈ E \ F we have ρ(x, F ) > 0, and hence

E \ F =

∞⋃
n=1

En. (3)

Therefore

E = (E ∩ F ) ∪ (E ∩ F c) = (E ∩ F ) ∪
∞⋃

n=1

En =

∞⋃
n=1

((E ∩ F ) ∪ En),

hence for each n, using this and (2) we have

ν(E) ≥ ν((E ∩ F ) ∪ En) = ν(E ∩ F ) + ν(En).

To prove that ν(E) ≥ ν(E ∩ F ) + ν(E ∩ F c), it now suffices to prove that

lim
n→∞

ν(En) = ν(E ∩ F c).

Let Dn = En+1 \ En. For x ∈ Dn+1 and y ∈ X satisfying ρ(x, y) <
((n+ 1)n)−1, we have

ρ(y, F ) ≤ ρ(x, y) + ρ(x, F ) <
1

n(n+ 1)
+

1

n+ 1
=

1

n
,

which implies that y ̸∈ En. Thus,

ρ(Dn+1, En) ≥
1

n(n+ 1)
. (4)
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For any n, using (4) and the fact that ν is a metric outer measure,

ν(E2n+1) = ν(D2n ∪ E2n)

≥ ν(D2n ∪ E2n−1)

= ν(D2n) + ν(E2n−1)

≥ · · ·
= ν(D2n) + ν(D2n−2) + · · ·+ ν(D2) + ν(E1)

≥
n∑

j=1

ν(D2j),

and

ν(E2n) = ν(D2n−1 ∪ E2n−1)

≥ ν(D2n−1 ∪ E2n−2)

= ν(D2n−1) + ν(E2n−2)

≥ · · ·
= ν(D2n−1) + ν(D2n−3) + · · ·+ ν(D3) + ν(D1) + ν(E0)

=

n∑
j=1

ν(D2j−1).

But En ⊂ E so ν(En) ≤ ν(E), and hence each of the series
∑∞

j=1 ν(D2j)

and
∑∞

j=1 ν(D2j−1) converges to a value ≤ ν(E). Thus the series
∑∞

j=1 ν(Dj)
converges to a value ≤ 2ν(E). But for any n,

ν(E \ F ) = ν

En ∪
∞⋃
j=n

Dj

 ≤ ν(En) +

∞∑
j=n

ν(Dj).

Because the series
∑∞

j=1 ν(Dj) converges, the sum on the right-hand side of the
above tends to 0 as n → ∞, so

ν(E \ F ) ≤ lim inf
n→∞

ν(En) ≤ lim sup
n→∞

ν(En) ≤ ν(E \ F );

the last inequality is due to (3), which tells us ν(En) ≤ ν(E \ F ). Therefore,

lim
n→∞

ν(En) = ν(E \ F ) = ν(E ∩ F c),

which completes the proof.

We shall use the following.3

3Gerald B. Folland, Real Analysis, second ed., p. 29, Proposition 1.10.

3



Lemma 2. Let (X, ρ) be a metric space. Suppose that E ⊂ P(X) satisfies
∅, X ∈ E and that d : E → [0,∞] satisfies d(∅) = 0. Then the function
ν : P(X) → [0,∞] defined by

ν(A) = inf


∞∑
j=1

d(Ej) : Ej ∈ E and A ⊂
∞⋃
j=1

Ej

 , A ∈ P(X)

is an outer measure.

We remark that if there is no covering of a set A by countably many elements
of E then ν(A) is an infinimum of an empty set and is thus equal to ∞.

2 Hausdorff measure

Suppose that (X, ρ) is a metric space and let p ≥ 0, δ > 0. Let E be the
collection of those subsets of X with diameter ≤ δ together with the set X, and
define d(A) = (diamA)p. By Lemma 2, the function Hp,δ : P(X) → [0,∞]
defined by

Hp,δ(A) = inf


∞∑
j=1

d(Ej) : Ej ∈ E and A ⊂
∞⋃
j=1

Ej

 , A ∈ P(X)

is an outer measure. If δ1 ≤ δ2 then Hp,δ1(A) ≥ Hp,δ2(A), from which it follows
that for each A ∈ P(X), as δ tends to 0, Hp,δ(A) tends to some element
of [0,∞]. We define Hp = limδ→0 Hp,δ and show that this is a metric outer
measure.4

Theorem 3. Suppose that (X, ρ) is a metric space and let p ≥ 0. Then Hp :
P(X) → [0,∞] defined by

Hp(A) = lim
δ→0

Hp,δ(A), A ∈ P(X).

is a metric outer measure.

Proof. First we establish that Hp is an outer measure. It is apparent that
Hp(∅) = 0. If A ⊂ B, then, using that Hp,δ is a metric outer measure,

Hp(A) = lim
δ→0

Hp,δ(A) ≤ lim
δ→0

Hp,δ(B) = Hp(B).

4Gerald B. Folland, Real Analysis, second ed., p. 350, Proposition 11.17.
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If {Aj} ⊂ P(X) is countable then, using that Hp,δ is a metric outer measure,

Hp

 ∞⋃
j=1

Aj

 = lim
δ→0

Hp,δ

 ∞⋃
j=1

Aj


≤ lim

δ→0

∞∑
j=1

Hp,δ(Aj)

=

∞∑
j=1

lim
δ→0

Hp,δ(Aj)

=

∞∑
j=1

Hp(Aj).

Hence Hp is an outer measure.
To obtain that Hp is a metric outer measure, we must show that if ρ(A,B) >

0 then Hp(A ∪ B) ≥ Hp(A) + Hp(B). Let 0 < δ < ρ(A,B) and let E be
the collection of those subsets of X with diameter ≤ δ together with the set
X. If there is no covering of A ∪ B by countably many elements of E , then
Hp(A ∪ B) ≥ Hp,δ(A ∪ B) = ∞. Otherwise, let {Ej} ⊂ E be a covering of
A ∪B. For each j, because diamEj ≤ δ < ρ(A,B), it follows that Ej does not
intersect both A and B. Write

E = {Eaj
} ∪ {Ebj},

where Eaj ∩B = ∅ and Ebj ∩A = ∅. Then A ⊂
⋃
Eaj and B ⊂

⋃
Ebj , so

∞∑
j=1

(diamEj)
p =

∞∑
j=1

(diamEaj )
p +

∞∑
j=1

(diamEjb)
p ≥ Hp,δ(A) +Hp,δ(B).

This is true for any covering of A ∪B by countably many element of E , so

Hp,δ(A ∪B) ≥ Hp,δ(A) +Hp,δ(B).

The above inequality is true for any 0 < δ < ρ(A,B), and taking δ → 0 yields

Hp(A ∪B) ≥ Hp(A) +Hp(B),

completing the proof.

We call the metric outer measure Hp : P(X) → [0,∞] in the above theorem
the p-dimensional Hausdorff outer measure. From Theorem 1 it follows
that the restriction of Hp to the Borel σ-algebra BX of a metric space is a
meausure. We call this restriction the p-dimensional Hausdorff measure,
and denote it also by Hp.

It is straightforward to verify that if T : X → X is an isometric isomorphism
then Hp◦T = Hp. In particular, for X = Rn, Hp is invariant under translations.
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We will use the following inequality when talking about Hausdorff measure
on Rn.5

Lemma 4. Let Y be a set and (X, ρ) be a metric space. If f, g : Y → X satisfy

ρ(f(y), f(z)) ≤ Cρ(g(y), g(z)), y, z ∈ Y,

then for any A ∈ P(Y ),

Hp(f(A)) ≤ CpHp(g(A)).

Proof. Take δ > 0 and ϵ > 0. There are countably many sets Ej that cover
g(A) each with diameter ≤ C−1δ and such that∑

(diamEj)
p ≤ Hp(g(A)) + ϵ.

Let a ∈ A. There is some j with g(a) ∈ Ej , so a ∈ g−1(Ej) and then f(a) ∈
f(g−1(Ej)). Therefore the sets f(g−1(Ej)) cover f(A). For u, v ∈ f(g−1(Ej)),
there are y, z ∈ g−1(Ej) with u = f(y), v = f(z). Because g(y), g(z) ∈ Ej ,

ρ(u, v) = ρ(f(y), f(z)) ≤ Cρ(g(y), g(z)) ≤ CdiamEj ,

hence
diam f(g−1(Ej)) ≤ CdiamEj .

Since the sets f(g−1(Ej)) cover f(A) and each has diameter ≤ CdiamEj ≤ δ,

Hp,δ(f(A)) ≤
∑

(diam f(g−1(Ej)))
p ≤

∑
Cp(diamEj)

p ≤ Cp(Hp(g(A)) + ϵ).

This is true for all δ > 0, so taking δ → 0,

Hp(f(A)) ≤ Cp(Hp(g(A)) + ϵ).

This is true for all ϵ > 0, so taking ϵ → 0,

Hp(f(A)) ≤ CpHp(g(A)).

3 Hausdorff dimension

Theorem 5. If Hp(A) < ∞ then Hq(A) = 0 for all q > p.

5Gerald B. Folland, Real Analysis, second ed., p. 350, Proposition 11.18.
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Proof. Let δ > 0. Then Hp,δ(A) ≤ Hp(A) < ∞ Let {Ej} be countably many
sets each with diameter ≤ δ such that A ⊂

⋃
Ej and∑

(diamEj)
p ≤ Hp,δ(A) + 1 ≤ Hp(A) + 1.

This gives us

Hq.δ(A) ≤
∑

(diamEj)
q =

∑
(diamEj)

q−p(diamEj)
p

≤ δq−p
∑

(diamEj)
p

≤ δq−p(Hp(A) + 1).

This is true for any δ > 0 and q − p > 0, so taking δ → 0 we obtain Hq(A) =
0.

For A ∈ P(X), we define the Hausdorff dimension of A to be

inf{q ≥ 0 : Hq(A) = 0}.

If the set whose infimum we are taking is empty, then the Hausdorff dimension
of A is ∞.

4 Radon measures and Haar measures

Before speaking about Hausdorff measure on Rn, we remind ourselves of some
material about Radon measures and Haar measures. Let X be a locally compact
Hausdorff space. A Borel measure µ on X is said to be a Radon measure if
(i) it is finite on each compact set, (ii) for any Borel set E,

µ(E) = inf{µ(U) : U open and E ⊂ U},

and (iii) for any open set E,

µ(E) = sup{µ(K) : K compact and K ⊂ E}.

It is a fact that if X is a locally compact Hausdorff space in which every open
set is σ-compact, then every Borel measure on X that is finite on compact sets
is a Radon measure.6

Suppose that G is a locally compact group. A Borel measure µ on G is said
to be left-invariant if for all x ∈ G and E ∈ BG,

µ(xE) = µ(E).

A left Haar measure on G is a nonzero left-invariant Radon measure on G.
It is a fact that if µ and ν are left Haar measures on G then there is some c > 0
such that µ = cν.7

6Gerald B. Folland, Real Analysis, second ed., p. 217, Theorem 7.8.
7Gerald B. Folland, Real Analysis, second ed., p. 344, Theorem 11.9.
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5 Hausdorff measure in Rn

Let mn denote Lebesgue measure on Rn.

Lemma 6. If E is a Borel set in Rn, then

Hn(E) ≥ 2nmn(E).

Proof. Let ϵ > 0 and let {Ej} be countably many closed sets that cover E and
such that ∑

(diamEj)
n ≤ Hn(E) + ϵ.

The isodiametric inequality (which one proves using the Brunn-Minkowski
inequality) states that if A is a Borel set in Rn, then

mn(A) ≤
(
diamA

2

)n

.

Using this gives ∑
2nmn(Ej) ≤ Hn(E) + ϵ.

But because the sets Ej cover E we have mn(E) ≤ mn(
⋃
Ej) ≤

∑
mn(Ej), so

we get

mn(E) ≤ Hn(E) + ϵ

2n
.

This expression does not involve the sets Ej (which depend on ϵ), and since this
expression is true for any ϵ > 0, taking ϵ → 0 yields

mn(E) ≤ Hn(E)

2n
.

Let

Q =

{
x ∈ Rn : |x1| ≤

1

2
, . . . , |xn| ≤

1

2

}
.

Lemma 7. 0 < Hn(Q) < ∞.

Proof. For any m ≥ 1, the cube Q can be covered by mn cubes q1, . . . , qmn of
side length 1

m . Let 0 < δ < 1 and let m > 1
δ . The distance from the center of

qj to one of the vertices of qj is

r =

√(
1

2m

)2

+ · · ·+
(

1

2m

)2

=

√
n

2m
.
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Inscribe qj in a closed ball bj with the same center as qj and radius r. These
balls cover Q. Hence

Hp,δ(Q) ≤
mn∑
j=1

(diam bj)
n =

mn∑
j=1

(2r)n = (2r)n ·mn = nn/2.

Taking δ → 0 gives Hp(Q) ≤ nn/2 < ∞.
On the other hand, by Lemma 6,

Hn(Q) ≥ 2nmn(Q) = 2n > 0.

Theorem 8. There is some constant cn > 0 such that

Hn = cnmn.

Proof. Rn is a locally compact Hausdorff space in which every open set in Rn is
σ-compact. Therefore, to show that Hn is a Radon measure it suffices to show
that Hn is finite on every compact set. If K is a compact subset of Rn, there is
some r > 0 such that K ⊂ rQ. By Lemma 4 and Lemma 7 we get Hn(rQ) < ∞,
so Hn(K) < ∞. Therefore Hn is a Radon measure.

Because Hn(Q) > 0, Hn is not the zero measure. Any translation is an
isometric isomorphism Rn → Rn, so Hn is invariant under translations. Thus
Hn is a left Haar measure on Rn. But Lebesgue measure mn is also a left Haar
measure on Rn, so there is some cn > 0 such that

Hn = cnmn,

proving the claim.
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