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1 One dimensional Gaussian integrals
For p € C, let!
h(p) :/e*ﬁ/ze*”’zdx.
R

Then we check that

h'(p) = —i/ x67m2/2e*imdx = z/ % (e*””r‘)/?) e~ PT .
R R

Integrating by parts yields
W (p) = —p/ ™" 2Ty = —ph(p).
R
Since 1 (p) = —ph(p),*

h(p) = h(O)e_”z/Q.

Now, using Fubini’s theorem and then polar coordinates,

h(0)2:/ (/ em2/2dx> efyz/zdy
R \JR

- / e—(w2+y2)/2dxdy
Rz

:/ (/ e_rz/Qe_Tz/QdU(m) rdr
0 st
= 271'/ re=" 2 dr

0

= 2,

SO R
h(p) = (2m) /272,
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For a > 0 and p € C, doing the change of variable y = a'/?z,
(27’()_1/2 / e—a$2/2e—ipa:dx _ (27T)—1/2a—1/2 / €_y2/26—ipa*1/2ydy
R R
_ (2%)71/2a71/2h(pa71/2)
_ 0,71/2670’_1PQ/2.

For t > 0 and m € R, doing the change of variable y = x —m, and using the
above with a = t=2 and p = 0,

2
(27rt2)_1/2/exp (_(J:m)) dx = (27r)_1/2t_1/e_“y2/2dx
2t2
R R
— 1. gm1/2
=1.
Theorem 1. For ¢ >0 and p € C,
(2%)71/2/67“w2/26*imdx — g Y202,
R

For t > 0 and m € R,
- (x —m)?
(27Tt2) 1/2/Rexp <_2t2 da’,‘ =1.

For t > 0 and z € R, let

pi(x) = (2nt%) "2 exp (_ i ) .

2t2
For ¢ € #(R), doing the change of variable z = ty,
[ o@moriz = @n) 7 [ ote2ay = [ otopi(e)da,
R R R

Then as ¢ | 0, using the dominated convergence theorem,
[ ez > [ 6Oz = o(0)
R R

For ¢ € LY(RY), let

~

36 =m0 [ ctgwn, gerY.
]RN
By Theorem 1, with a = ¢t72,

]/Q\t(g) — (27Tt2)_1/2 . (27T)_1/2/€_aw2/26_i51dx
R

_ (2ﬁt2)—1/2a—1/2e—a*152/2

_ (27T)71/267t2£2/2.



2 Moments

For a > 0, define for Z € C,

Z(J) = a1/2(27r)_1/2/ e~ /261 g
R

By Theorem 1,
Z(J)y=e* T2 (1)

By the dominated convergence theorem,

Z(TL)(J) :a1/2(2ﬂ_)—1/2in/xne—awZ/Qeidex’
R

and so

a'’?(2m)~1/2 / a2y = i 4z

From (1) we calculate
Z'(J)=—a"tJz()), Z"(J)=—-a'Z(J)+a2T*Z(J),
so Z"(0) = —a=1Z(0) = —a~ !, and thus for t > 0 and a =t 1,

(27Tt)_1/2/1'26_t72$2/2d1' =t,
R
ie.
/xzpt(a:)dx =t.
R
3 N-dimensional Gaussian integrals

Let S(z) = @ for x € RN, For x € 2(RY) and ¢ > 0, Laplace’s method
tells us that

/ e 5@y (z)dx = (2t~ 1)N/2(det Hess S(0)) /25Oy (0)(1 + Ot ™1))
RN

as t — oo. Here, Hess S(z) = I for all x and S(0) = 0, so

(z,2)
67t .1‘2.1‘
RN
as t — 0.

For A an N x N matrix, we write A > 0 if A is symmetric and has positive
eigenvalues. It is proved that

/RN exp (—; (Az,x) —1i <57$>) da

X(@)de = 2t N2y (0)(1 + O(t™1))



for all ¢ € RY, and
/RN exp (—; (Az,z) + (b, x>) dz = (det A)~1/2(2m)N/% exp (; (A7, b>) .
for all b € RM. Let
Za= /RN e~ 24472 gy = (det A) ™2 (2m)N/2.

Let Ay be Lebesgue measure on RY and let 4 be the following Borel probability
measure on RV:

1
dpa(z) = ZfAe*%MWdAN(x) = (det A)/2(27) " N/2em 3440 g3\ (2).
For ¢ € RV,
]RN

= (det A)'/2(2m) N2 - (det A4) V2 (2m) V2 BAT )
e_%<A71575> ,

/ e dp (@) = (det A)'2(2m) 72 / e Hnn et Ay ()
R

and for b € R,

[ et uate) = @et ) 2m) V2 [ e iann iy (o)
RN

RN
— (det A)/2(2m) ~N/2 - (det A) 2 (2m) /23 (A7)
_ e%(A’lb,b>'

Theorem 2. For £ € RV,
RN

and for b € RN,
/ e(b,z)dﬂA(z) — i(aTt)
RN

Let?
N
L=L"= " A;.0;0.
j,k=1

We work out the semigroup whose infinitesimal generator is L/2.

3See http://www.math.ucsd.edu/~bdriver/247A-Winter2012/



Theorem 3. For f € C'(RY) that is p-integrable and for ¢t > 0,
@) = [ fe =t Ppduat), 2R,
RN

Proof. For £ € RN define f(z) = e{&®) = ef171+ NN - On the one hand,

Lf=Y AG&f = (A7) f

jik=1
Then )
exp(tL/2)f = exp (2t <A—1s,§>) ;

On the other hand, for 2 € RV, applying Theorem 2,
o—t1/2
fle—t"2y)dualy) = /N (o= )y (y)
R

:6</\,a:)/ 78Y) qu s (y)
RN

— e(A,z)g%<A71(_t1/2£)7(_t1/2£)>

e3t(aTe8) ¢

RN

Therefore

/ f(x — t2y)dpa(y) = 12,
RN

4 Concentration of measure
Let yn be the Borel probability measure on RY defined by
dyn(z) = (27T)_N/26_%<$’$>d>\]v($).

We estimate the mass vy assigns to a spherical shell about the sphere of radius
N1/24

Theorem 4. For § > 0,

N —N/2
'YN{J: c RN : ||ZC||2 Z N+6} S (M) 6_6/27

and for 0 < § < N,

—N/2
v{z e RN :|z|? < N -6} < (NN(S) 2,

4Alexander Barvinok, Measure Concentration, http://www.math.lsa.umich.edu/
~barvinok/total710.pdf, p. 5, Proposition 2.2.




Proof. For 0 < A < 1, if ||z > N + 6 then A z|* /2 > A(N + 6)/2 and then
AMel?/2 > AN+0)/2 Hence

iz €RY ¢ [zl = N + 6} = e AVH/2 / N2y ()
lzl|>>N+6

SefA(N+6)/2/ GAHIHQ/zd"}/N(ZL')
ll|[*>N+8

<67A(N+6)/2/ Ml /20 ()
RN

— M+ (Qw)fN/2/ GAHIHQ/?e*%H1H2d)\N(x)
RN
N

_ o AH)/2 H<27T)_1/2/ SO-Du?/2g,
k=1 R

For a = =\ +1 > 0, we have by Theorem 1
(27r)’1/2/e’““g/zdu:a’l/z,
R
SO
’YN{-%' c RN . ||x||2 Z N+(5} S e—A(N—‘r(S)/Qa—N/Q — e—)x(N—‘r(S)/Q(l _ A)_N/Q.
For A = <2 this is

N+o

—N/2
il eRY e N sy <o (N )
= = N+

O

Let Sy = {z € RY : |lz| = N2}, and let uy be the unique SO(N)-
invariant Borel probability measure on SV~! (any Borel probability measure
on a metric space is regular so we need not explicitly demand this to ensure
uniqueness). Let mn : Xy — R be the projection

mn(x) =7 (21,...,2N) = 271,

and let vy = (7N )N, the pushforward measure which is itself a Borel probabil-
ity measure on R. The following theorem states that the measures vy converges
strongly to the standard Gaussian measure 7;.°

Theorem 5. For A a Borel set in R,
vn(A4) = 71 (4)

as N — oo.

5Alexander Barvinok, Measure Concentration, http://www.math.lsa.umich.edu/
~barvinok/total710.pdf, p. 54, Theorem 13.2.



5 Zeta functions

Let A > 0, with eigenvalues A1, ..., Ay, counted according to multiplicity. For
s € C, define®
N N
als) = ToAe = Y e,
k=1 =1

The derivative of (4 is

N

L(s) = —log Ak A,
k=1
SO
N
Ca(0) == log A,
k=1
hence

N
e~ = H A = det A.
k=1

Theorem 6. For £ € RV,

(27T)7N/2 /RN exp (; (Ax,x) — 1 (f,x)) dx = £a(0)/2 exp (; <A1§,§>) .

Let Ay, >0, k > 1, and let Aex = Apeg, and if it makes sense let

det A = lo_o[ /\k-

k=1
For those complex s for which the expression makes sense, let

oo oo

Cals) =D A =D sl
k=1

k=1

Then, if the above makes sense in a neighborhood of s = 0,

C4(0) == log Ak,
k=1

S0 )
¢4 = det A.

SEberhard Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics, p. 434,
§7.23.3.




We calculate, doing the change of variables t = Au,

o0
" _
t° e dt - E LS

/ (Apw)S~te MU\, du
/ ut e AUy,
0

_ 1 > s—1 - —Aru
CA(eS) = F(S)/O U ;6 du.

For v > 0, the eigenvalues of 7A are v\, and doing the change of variables
v = yu,

['(s)Ca(s) =

ts 1 7tdt

M8 ||M8 HMS 0\8

=
Il
—

Thus

I -
Cyals) = —/ wLY ey
! I'(s) Jo ;
Lo =
_ —s,.5—1 —Agv
= — A e dv
O AR

k=1
=7"Ca(s).
Taking the derivative,
¢ als) = —logy -7 - Cals) + 7 "Ya(s),

and then
¢4 a(0) = —logy - €a(0) + ¢/4(0).

Then
det(yA) = e~ a(0) = (log7€a0)=C4(0) — Ca(0) get, A,



