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1 Categories

If X is a set, by a partial order on X we mean a binary relation < on X that is
reflexive, antisymmetric, and transitive, and we call (X, <) a poset. If (X, <)
is a poset, we define it to be a category whose objects are the elements of X,
and for xz,y € X,

{(z.y)} =<y

Hom(z,y) = {@ L@ <y)

In particular, id, = (z, ).
Let U : Z — R be the inclusion map. If (j, k) € Hom(j, k), define U(j, k) =
(U4,Uk) € Hom(Uj, Uk).
Uid; = U(j,5) = (Uj,Uj) = idy;.
If (j,k) € Hom(j, k) and (k,I) € Hom(k,1), then (k,1) o (4,k) = (4,1) and
Uk,1)oU(j, k) = (Uk,Ul) o (Uj,Uk) = (Uj,Ul) =U(4,1) = U((4,1) o (j, k)).

This shows that U : (Z, <) — (R, <) is a functor.

2 Galois connections

If (A, <) and (B, <) are posets, a function G : A — B is said to be order-
preserving if a < o’ implies G(a) < G(a’). A Galois connection from A to
B is an order-preserving function G : A — B and an order-preserving function
H : B — A such that

G(a) < bif and only if a < H(b), acA, beB.

We say that G is the left-adjoint of H and that H is the right-adjoint of G.



n € Z and z € R, suppose I(n) < z. Then F(I(n)) < F(z). But F(I(n)) =n,
so n < F(z). Suppose n < F(z). Then I(n) < I(F(z)) < z
F:R — Z, F(z) = |z] is the right-adjoint of I : Z — R:!

I(n) <z <= n < F(x), neZ, zcR.

Define C : R — Z by C(z) = [z]. For n € Z and x € R, suppose C(z) <n
Then I(C(z)) < I(n). But I(C(z)) > x, so < I(n). Suppose z < I(n).
Then C(x) < C(I(n)). But C(I(n)) = C(z) < n. Therefore C : R — Z
C(z) = [x] is the left-adjoint of I : Z — R

Cz)<n < x<I(n), re€R, neZ.
Lemma 1. Forz >0,
V] = V=]
Proof. For k € Z>o and y € R>y,

k< V) = 1) < V1]

— K <y
— K<y
= k< \y
= k< |[Vyl

Lemma 2. Ifx € R and n € Z>1, then

WJ
Proof. For k € Z,
k< F(I(F(x))/1(n))

|
I

freeeee

This means that F(I(F(z))/I(n)) = F(xz/I(n)). O

ISee Roland Backhouse, Galois Connections and Fized Point Calculus, http://www.cs.
nott.ac.uk/~psarb2/G53PAL/FPandGC.pdf, p. 14; Samson Abramsky and Nikos Tzevelekos,
Introduction to Categories and Categorical Logic, http://arxiv.org/abs/1102.1313, p. 44,
§1.5.1.




Lemma 3. Ifn € Z>1 and m € Z, then

{@W _|m+n-1
nl n '
Proof. For k € Z,

kE<F({I(m+4+n-1)/I(n)) I(k) <I(m+n-—1)/I(n)
I(K)I(n) <Im+n-1)
kn<m+n-—1
kn—n+1<m
kn—n<m

I(k—1) < I(m)/I(n)
k—1<CI(m)/I(n))
k< CI(m)/1(n)).

rrereee

This means
F(Ilm+n-1)/I

—~

n)) = C(I(m)/I(n)).
O

3 The Euclidean algorithm and continued frac-
tions

Let a,b € Z>1, a > b. Let

Let
a1 = |vo/v1], w2 =1y — ayv.

For m > 2, if v, # 0 then let
Qm = Lvmfl/me Um+1 = Um—1 — QGmUm.-

Then 0 < vy 1 < V.2
For example, let a = 83, b = 14. Then

vo =83, v = 14.

Then
ap = [83/14] =5, wv3=83—-5-14=13.

Then

CLQZI_U1/’U2J:14/13J=1, ’U3=’U1—a2’l}2=14—1-13=1.

2See Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 1,
Chapter 1.



Then
ag = |va/vs| = [13/1] =13, w4 =v2 —agv3 =13—-13-1=0.

Aswvz3=1and vgs =0,
ged(83,14) = 1.

Written as a continued fraction, we get

1—4—[0-5 1,13]
83_ 9’ ) ) .

For example, let a = 168, b = 43. Then

v = 168, v =43.

Then
ay = |168/43] =3, wy =g —ajv; = 168 — 3 -43 = 39.
Then
a2=L43/39j=1, 1}321}1—@21}2:43—1'39:4.

Then

agszg/v3J=L39/4J:9, v4:v2—a303:39—9-4:3.
Then

CL4:|_’U3/U4J:|_4/3J:1, v5=vg—a4v4:4—1-3:1.
Then

a5:Lv4/v5J:L3/1J:3, 06:04—a5v5:3—3'1:0.

As vs =1 and vg = 0,
ged(168,43) = 1.

Written as a continued fraction, we get

43
— =10;3,1,9,1, 3.
168 [OvSa ,97 73]

For example, let @ = 1463 and b = 84. Then

vg = 1463, v, = 84.

Then
ay = [1463/84] =17, wy = 1463 — 17 -84 = 35.
Then
as = |84/35] =2, w3 =84—2-35=14.
Then

as = [35/14] =2, v, =35-2-14=T1.



Then
a4:L14/7J2, ’U5:14—2-7:0.

As vy =7 and v5 = 0,
ged(1463,84) = 7.

Written as a continued fraction, we get

84
— =10;17,2,2,2].
1463 [0:17,2,2,2]



