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1 Relatively compact sets of Borel probability
measures on C[0,1]

Let E = C[0, 1], let BE be the Borel σ-algebra of E, and let PE be the collection
of Borel probability measures on E. We assign P the narrow topology, the
coarsest topology on PE such that for each F ∈ Cb(E) the map µ 7→

∫
E
Fdµ

is continuous.
For f ∈ E and δ > 0 we define

ωf (δ) = sup
s,t∈[0,1],|s−t|≤δ

|f(s)− f(t)|.

For f ∈ E, ωf (δ) ↓ 0 as δ ↓ 0, and for δ > 0, f 7→ ωf (δ) is continuous. We shall
use the following characterization of a relatively compact subset A of E, which
is proved using the Arzelà-Ascoli theorem.

Lemma 1. Let A be a subset of E. A is compact if and only if

sup
f∈A

|f(0)| < ∞

and
sup
f∈A

ωf (δ) ↓ 0, δ ↓ 0.

We shall use Prokhorov’s theorem:1 for X a Polish space and for Γ ⊂
PX , Γ is compact if and only if for each ϵ > 0 there is a compact subset
Kϵ of X such that µ(Kϵ) ≥ 1 − ϵ for all µ ∈ Γ. Namely, a subset of PX is
relatively compact if and only if it is tight. We use Prokhorov’s theorem to
prove a characterization of relatively compact subsets of PE , which we then
use to prove the characterization in Theorem 3.2

1K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 47, Chapter II, Theorem
6.7.

2K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 213, Chapter VII, Lemma
2.2.
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Lemma 2. Let Γ be a subset of PE . Γ is compact if and only if for each ϵ > 0
there is some Mϵ < ∞ and a function δ 7→ ωϵ(δ) satisfying ωϵ(δ) ↓ 0 as δ ↓ 0
and such that for all µ ∈ Γ,

µ(Aϵ) ≥ 1− ϵ

2
, µ(Bϵ) ≥ 1− ϵ

2
,

where

Aϵ = {f ∈ E : |f(0)| ≤ Mϵ}, Bϵ = {f ∈ E : ωf (δ) ≤ ωϵ(δ) for all δ > 0}.

Proof. Suppose that Γ satisfies the above conditions. Because f 7→ |f(0)| is
continuous, Aϵ is closed. For δ > 0, suppose that fn is a sequence in Bϵ tending
to some f ∈ E. Because g 7→ ωg(δ) is continuous, ωfn(δ) → ωf (δ), and because
ωfn(δ) ≤ ωϵ(δ) for each n, we get ωf (δ) ≤ ωϵ(δ) and hence f ∈ Bϵ, showing
that Bϵ is closed. Therefore Kϵ = Aϵ ∩ Bϵ is closed, i.e. Kϵ = Kϵ. The set Kϵ

satisfies
sup
f∈Kϵ

|f(0)| ≤ Mϵ

and
lim sup

δ↓0
sup
f∈Kϵ

ωf (δ) ≤ lim sup
δ↓0

ωϵ(δ) = 0,

thus by Lemma 1, Kϵ is compact. For µ ∈ Γ,

µ(Kϵ) ≥ 1− ϵ

2
,

and because Kϵ is compact, this means that Γ is tight, so by Prokhorov’s theo-
rem, Γ is relatively compact.

Now suppose that Γ is relatively compact and let ϵ > 0. By Prokhorov’s
theorem, there is a compact set Kϵ in E such that µ(Kϵ) ≥ 1− ϵ

2 for all µ ∈ Γ.
Define

Mϵ = sup
f∈Kϵ

|f(0)|, ωϵ(δ) = sup
f∈Kϵ

ωf (δ), δ > 0.

Because Kϵ is compact, by Lemma 1 we get that Mϵ < ∞ and ωϵ(δ) ↓ 0 as
δ ↓ 0. For µ ∈ Γ,

µ(Aϵ) ≥ µ(Kϵ) ≥ 1− ϵ

2
, µ(Bϵ) ≥ µ(Kϵ) ≥ 1− ϵ

2
,

showing that Γ satisfies the conditions of the theorem.

We now prove the characterization of relatively compact subsets of PE that
we shall use in our proof of Donsker’s theorem.3

Theorem 3 (Relatively compact sets in P). Let Γ be a subset of PE . Γ is
compact if and only if the following conditions are satisfied:

3K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 214, Chapter VII, Theo-
rem 2.2.
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1. For each ϵ > 0 there is some Mϵ < ∞ such that

µ(f : |f(0)| ≤ Mϵ) ≥ 1− ϵ

2
, µ ∈ Γ.

2. For each ϵ > 0 and δ > 0 there is some η = η(ϵ, δ) > 0 such that

µ(f : ωf (η) ≤ δ) ≥ 1− ϵ

2
, µ ∈ Γ.

Proof. Suppose that Γ is compact and let ϵ > 0. By Lemma 2, there is some
Mϵ < ∞ and a function η 7→ ωϵ(η) satisfying ωϵ(η) ↓ 0 as η ↓ 0 and

µ(Aϵ) ≥ 1− ϵ

2
, µ(Bϵ) ≥ 1− ϵ

2
, µ ∈ Γ.

For δ > 0, there is some η = η(ϵ, δ) with ωϵ(η) ≤ δ. Then for µ ∈ Γ,

µ(f : ωf (η) ≤ δ) ≥ µ(f : ωf (η) ≤ ωϵ(η)) ≥ µ(Bϵ) ≥ 1− ϵ

2
.

Now suppose that the conditions of the theorem hold. For each ϵ > 0 and
n ≥ 1 there is some ηϵ,n > 0 such that

µ(Fϵ,n) ≥ 1− ϵ

2n+1
, µ ∈ Γ,

where

Fϵ,n =

{
f : ωf (ηϵ,n) ≤

1

n

}
.

Let

Kϵ = {f : |f(0)| ≤ Mϵ} ∩
∞⋂

n=1

Fϵ,n,

for which
µ(Kϵ) ≥ µ(f : |f(0)| ≤ Mϵ) ≥ 1− ϵ

2
, µ ∈ Γ.

For f ∈ Kϵ, then for each n ≥ 1 we have f ∈ Fϵ,n, which means that ωf (ηϵ,n) ≤
1
n , and therefore

sup
f∈Kϵ

ωf (ηϵ,n) ≤
1

n
.

Thus for n ≥ 1, if 0 < η ≤ ηϵ,n then

sup
f∈Kϵ

ωf (η) ≤
1

n
,

which shows supf∈Kϵ
ωf (η) ↓ 0 as η ↓ 0. Then because

sup
f∈Kϵ

|f(0)| ≤ Mϵ,

applying Lemma 1 we get that Kϵ is compact. The map f 7→ ωf (ηϵ,n) is
continuous, so the set Fϵ,n is closed, and therefore the set Kϵ is closed. Because
Kϵ is compact and µ(Kϵ) ≥ 1− ϵ

2 for all µ ∈ Γ, it follows from by Prokhorov’s
theorem that Γ is relatively compact.
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2 Wiener measure

For t1, . . . , td ∈ [0, 1], t1 < · · · < td, define πt1,...,td : E → Rd by

πt1,...,td(f) = (f(t1), . . . , f(td)), f ∈ E,

which is continuous. We state the following results, which we will use later.4

Theorem 4 (The Borel σ-algebra of E). BE is equal to the σ-algebra generated
by {πt : t ∈ [0, 1]}.

Two elements µ and ν of PE are equal if and only if for any d and any
t1 < · · · < td, the pushforward measures

µt1,...,td = (πt1,...,td)∗µ, νt1,...,td = (πt1,...,td)∗ν

are equal.

Let (ξt)t∈[0,1] be a stochastic process with state space R and sample space
(Ω,F , P ). For t1 < · · · < td, let ξt1,...,td = ξt1 ⊗ · · · ⊗ ξtd and let Pt1,...,td =
(ξt1,...,td)∗P : for B ∈ Bd

R,

Pt1,...,td(B) = ((ξt1,...,td)∗P )(B) = P (ξ−1
t1,...,td

(B)) = P ((ξt1 , . . . , ξtd) ∈ B).

Pt1,...,td is a Borel probability measure on Rd and is called a finite-dimensional
distribution of the stochastic process.

The Kolmogorov continuity theorem5 tells us that if there are α, β,K >
0 such that for all s, t ∈ [0, 1],

E|ξt − ξs|α ≤ K|t− s|1+β ,

then there is a unique µ ∈ PE such that for all k and for all t1 < · · · < td,

µt1,...,td = Pt1,...,td .

We now define and prove the existence of Wiener measure.6

Theorem 5 (Wiener measure). There is a unique Borel probability measure
W on E satisfying:

1. W (f ∈ E : f(0) = 0) = 1.

2. For 0 ≤ t0 < t1 < · · · < td ≤ 1 the random variables

πt1 − πt0 , πt2 − πt1 , πt3 − πt2 , πtd − πtd−1

are independent (E,BE ,W ) → (R,BR).

4K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 212, Chapter VII, Theo-
rem 2.1.

5K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 216, Chapter VII, Theo-
rem 3.1

6K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 218, Chapter VII, Theo-
rem 3.2.
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3. If 0 ≤ s < t ≤ 1, the random variable πt − πs : (E,BE ,W ) → (R,BR) is
normal with mean 0 and variance t− s.

Proof. There is a stochastic process (ξt)t∈[0,1] with state space R and some sam-
ple space (Ω,F , P ), such that (i) P (ξ0 = 0) = 1, (ii) (ξt)t∈[0,1] has independent
increments, and (iii) for s < t, ξt − ξs is a normal random variable with mean
0 and variance t − s. (Namely, Brownian motion with starting point 0.)
Because ξt−ξs has mean 0 and variance t−s, we calculate (cf. Isserlis’s theorem)

E|ξt − ξs|4 = 3|t− s|2.

Thus using the Kolmogorov continuity theorem with α = 4, β = 1, K = 3, there
is a unique W ∈ PE such that for all t1 < · · · < td,

Wt1,...,td = Pt1,...,td ,

i.e. for B ∈ Bd
R,

W (πt1 ⊗ · · · ⊗ πtd ∈ B) = P (ξt1 ⊗ · · · ⊗ ξtd ∈ B).

For t1 < · · · < td and B ∈ Bd
R, with T : Rd → Rd defined by T (x1, . . . , xd) =

(x1, x2 − x1, . . . , xd − xd−1),

W (πt1 ⊗ (πt2 − πt1)⊗ · · · ⊗ (πtd − πtd−1
) ∈ B)

=W (T ◦ (πt1 ⊗ πt2 ⊗ · · · ⊗ πtd) ∈ B)

=W (πt1 ⊗ πt2 ⊗ · · · ⊗ πtd ∈ T−1(B))

=P (ξt1 ⊗ ξt2 ⊗ · · · ⊗ ξtd ∈ T−1(B))

=P (T ◦ (ξt1 ⊗ ξt2 ⊗ · · · ⊗ ξtd) ∈ B)

=P (ξt1 ⊗ (ξt2 − ξt1)⊗ · · · ⊗ (ξtd − ξtd−1
) ∈ B).

Hence, because ξt1 , ξt2 − ξt1 , . . . , ξtd − ξtd−1
are independent,

(πt1 ⊗ (πt2 − πt1)⊗ · · · ⊗ (πtd − πtd−1
))∗W

=(ξt1 ⊗ (ξt2 − ξt1)⊗ · · · ⊗ (ξtd − ξtd−1
))∗P

=(ξt1)∗P ⊗ (ξt2 − ξt1)∗P ⊗ · · · ⊗ (ξtd − ξtd−1
)∗P

=(πt1)∗W ⊗ (πt2 − πt1)∗W ⊗ · · · ⊗ (πtd − πtd−1
)∗W,

which means that the random variables πt1 , πt2 − πt1 , . . . , πtd − πtd−1
are inde-

pendent.
If s < t and B1, B2 ∈ BR, and for T : R2 → R2 defined by T (x, y) =

(x, y − x),

W ((πs, πt − πs) ∈ (B1, B2)) = W (T ◦ (πs, πt) ∈ (B1, B2))

= P ((ξs, ξt) ∈ T−1(B1, B2))

= P ((ξs, ξt − ξs) ∈ (B1, B2)),
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which implies that (πt − πs)∗W = (ξt − ξs)∗P , and because ξt − ξs is a normal
random variable with mean 0 and variance t− s, so is πt − πs.

Finally,
W (f : f(0) = 0) = W (π0 = 0) = P (ξ0 = 0) = 1.

(E,BE ,W ) is a probability space, and the stochastic process (πt)t∈[0,1] is a
Brownian motion.

3 Interpolation and continuous stochastic pro-
cesses

Let (ξt)t∈[0,1] be a continuous stochastic process with state space R and
sample space (Ω,F , P ). To say that the stochastic process is continuous means
that for each ω ∈ Ω the map t 7→ ξt(ω) is continuous [0, 1] → R. Define
ξ : Ω → E by

ξ(ω) = (t 7→ ξt(ω)), ω ∈ Ω.

For t ∈ [0, 1] and B a Borel set in R,

ξ−1π−1
t B = {ω ∈ Ω : ξt(ω) ∈ B} = ξ−1

t B,

and because ξt : (Ω,F ) → (R,BR) is measurable this belongs to F . But by
Theorem 4, BE is generated by the collection {π−1

t B : t ∈ [0, 1], B ∈ BR}.
Now, for f : X → Y and for a nonempty collection F of subsets of Y ,7

σ(f−1(F )) = f−1(σ(F )).

Therefore ξ−1(BE) ⊂ F , which means that ξ : (Ω,F ) → (E,BE) is mea-
surable. This means that a continuous stochastic proess with index set [0, 1]
induces a random variable with state space E. Then the pushforward measure
of P by ξ is a Borel probability measure on E. We shall end up constructing
a sequence of pushforward measures from a sequence of continuous stochastic
processes, that converge in PE to Wiener measure W .

Let (Xn)n≥1 be a sequence of independent identically distributed random
variables on a sample space (Ω,F , P ) with E(Xn) = 0 and V (Xn) = 1, and let
S0 = 0 and

Sk =

k∑
i=1

Xi.

Then E(Sk) = 0 and V (Sk) = k. For t ≥ 0 let

Yt = S[t] + (t− [t])X[t]+1.

7Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 140, Lemma 4.23.
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Thus, for k ≥ 0 and k ≤ t ≤ k + 1,

Yt = Sk + (t− k)Xk+1

= Sk + (t− k)(Sk+1 − Sk)

= (1− t+ k)Sk + (t− k)Sk+1.

For each ω ∈ Ω, the map t 7→ Yt(ω) is piecewise linear, equal to Sk(ω) when
t = k, and in particular it is continuous. For n ≥ 1, define

X
(n)
t = n−1/2Ynt = n−1/2S[nt] + n−1/2(nt− [nt])X[nt]+1, t ∈ [0, 1]. (1)

For 0 ≤ k ≤ n,

X
(n)
k/n = n−1/2Sk.

For each n ≥ 1, (X
(n)
t )t∈[0,1] is a continuous stochastic process on the sample

space (Ω,F , P ), and we denote by Pn ∈ PE the pushforward measure of P by
X(n).

4 Donsker’s theorem

Lemma 6. If Zn and Un are random variables with state space Rd such that
Zn → Z in distribution and Un → 0 in distribution, then Zn + Un → 0 in
distribution.

If Zn are random variables with state space R that converge in distribution
to some random variable Z and cn are real numbers that converge to some real
number c, then cnZn → cZ in distribution.

For σ ≥ 0, let νσ2 be the Gaussian measure on R with mean 0 and variance
σ2. The characteristic function of νσ2 is, for σ > 0,

ν̃σ2(ξ) =

∫
R
eiξxdνσ2(x) =

∫
R
eiξx

1

σ
√
2π

e−
x2

2σ2 dx = e−
1
2σ

2ξ2 ,

and ν̃0(ξ) = 1. One checks that c∗ν1 = νc2 for c ≥ 0.
In following theorem and in what follows,X(n) is the piecewise linear stochas-

tic process defined in (1). We prove that a sequence of finite-dimensional dis-
tributions converge to a Gaussian measure.8

Theorem 7. For 0 ≤ t0 < t1 < t1 < · · · < td ≤ 1, the random vectors

(X
(n)
t1 −X

(n)
t0 , . . . , X

(n)
td

−X
(n)
td−1

), (Ω,F , P ) → (Rd,Bd
R),

converge in distribution to νt1−t0 ⊗ · · · ⊗ νtd−td−1
as n → ∞.

8Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 368,
§19.1, Lemma 1.
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Proof. For 0 < j ≤ d and n ≥ 1 let

rj,n =
[ntj ]

n
, Uj,n = X

(n)
tj −X(n)

rj,n ,

and for 0 ≤ j < d and n ≥ 1 let

sj,n =
⌈ntj⌉
n

, Vj,n = X(n)
sj,n −X

(n)
tj ,

with which

(X
(n)
t1 −X

(n)
t0 , . . . , X

(n)
td

−X
(n)
td−1

) = (X(n)
r1,n −X(n)

s0,n , . . . , X
(n)
rd,n

−X(n)
sd−1,n

)

+ (U1,n, . . . , Ud,n) + (V0,n, . . . , Vd−1,n).

Because E(X
(n)
t ) = 0,

E(Uj,n) = 0, E(Vj,n) = 0.

Furthermore,

V (Uj,n)

=V (X
(n)
tj −X(n)

rj,n)

=n−1V (S[ntj ] + (ntj − [ntj ])X[ntj ]+1 − S[nrj,n] − (nrj,n − [nrj,n])X[nrj,n]+1)

=n−1V (S[ntj ] + (ntj − [ntj ])X[ntj ]+1 − S[ntj ] − ([ntj ]− [ntj ])X[nrj,n]+1)

=n−1(ntj − [ntj ])
2V (X[ntj ]+1)

=n−1(ntj − [ntj ])
2,

and because 0 ≤ ntj−[ntj ] < 1 this tends to 0 as n → ∞. Likewise, V (Vj,n) → 0
as n → ∞.

For 1 ≤ j ≤ d,

X(n)
rj,n −X(n)

sj−1,n
= n−1/2S[nrj,n] + n−1/2(nrj,n − [nrj,n])X[nrj,n]+1

− n−1/2S[nsj−1,n] − n−1/2(nsj−1,n − [nsj−1,n])X[nsj−1,n]+1

= n−1/2S[ntj ] − n−1/2S⌈ntj−1⌉

= n−1/2 ([ntj ]− ⌈ntj−1⌉ − 1)1/2

([ntj ]− ⌈ntj−1⌉ − 1)1/2

[ntj ]∑
i=⌈ntj−1⌉+1

Xi.

By the central limit theorem,

([ntj ]− ⌈ntj−1⌉ − 1)1/2
[ntj ]∑

i=⌈ntj−1⌉+1

Xi → ν1

in distribution as n → ∞. But

n−1/2([ntj ]− ⌈ntj−1⌉ − 1)1/2 → (tj − tj−1)
1/2
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as n → ∞, and (tj − tj−1)
1/2
∗ ν1 = νtj−tj−1 , so by Lemma 6,

X(n)
rj,n −X(n)

sj−1,n
→ νtj−tj−1

in distribution as n → ∞.
For sufficiently large n, depending on t0, . . . , td,

t0 ≤ s0,n < r1,n ≤ t1 ≤ s1,n < r2,n ≤ · · · ≤ td−1 ≤ sd−1,n < rd,n ≤ td.

Check that (U1,n, . . . , Ud,n) → 0 in probability and that (V0,n, . . . , Vd−1,n) → 0
in probability, and hence these random vectors converge to 0 in distribution

as n → ∞. The random variables X
(n)
r1,n −X

(n)
s0,n , . . . , X

(n)
rd,n −X

(n)
sd−1,n are inde-

pendent, and therefore their joint distribution is equal to the product of their
distributions. Now, if µn = µ1

n ⊗ · · · ⊗ µd
n and µj

n → µj as n → ∞, 1 ≤ j ≤ d,
then for ξ ∈ Rd,

µ̃n(ξ) = µ̃1
n(ξ1) · · · µ̃d

n(ξd)

→ µ̃1(ξ1) · · · µ̃d(ξd)

= (µ1 ⊗ · · · ⊗ µd)̃ (ξ)

as n → ∞, and therefore by Lévy’s continuity theorem, µn → µ1 ⊗ · · · ⊗ µd

as n → ∞. This means that the joint distribution of X
(n)
r1,n −X

(n)
s0,n , . . . , X

(n)
rd,n −

X
(n)
sd−1,n converges to

νt1−t0 ⊗ · · · ⊗ νtd−td−1

as n → ∞. Because (U1,n, . . . , Ud,n) → 0 in distribution as n → ∞ and
(V0,n, . . . , Vd−1,n) → 0 in distribution as n → ∞, applying Lemma 6 we get
that

(X
(n)
t1 −X

(n)
t0 , . . . , X

(n)
td

−X
(n)
td−1

) → νt1−t0 ⊗ · · · ⊗ νtd−td−1

in distribution as n → ∞, completing the proof.

Let t0 = 0 and let 0 < t1 < · · · < td ≤ 1. As X
(n)
0 = 0, the above lemma

tells us that

(X
(n)
t1 , X

(n)
t2 −X

(n)
t1 , . . . , X

(n)
td

−X
(n)
td−1

) → νt1 ⊗ νt2−t1 ⊗ · · · ⊗ νtd−td−1

in distribution as n → ∞. Define g : Rd → Rd by

g(x1, x2, . . . , xd) = (x1, x1 + x2, . . . , x1 + x2 + · · ·+ xd).

The function g is continuous and satisfies

g ◦ (X(n)
t1 −X

(n)
t0 , . . . , X

(n)
td

−X
(n)
td−1

) = (X
(n)
t1 , X

(n)
t2 , . . . , X

(n)
td

).

Then by the continuous mapping theorem,

(X
(n)
t1 , X

(n)
t2 , . . . , X

(n)
td

) → g∗(νt1 ⊗ νt2−t1 ⊗ · · · ⊗ νtd−td−1
) (2)
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in distribution as n → ∞.9

We prove a result that we use to prove the next lemma, and that lemma is
used in the proof of Donsker’s theorem.10

Lemma 8. For ϵ > 0,

lim
δ↓0

lim sup
n→∞

1

δ
P

(
max

1≤j≤[nδ]+1
|Sj | > ϵn1/2

)
= 0.

Proof. For each δ > 0, by the central limit theorem,

([nδ] + 1)−1/2S[nδ]+1 → Z

in distribution as n → ∞, where Z∗P = ν1. Because
([nδ]+1)1/2

(nδ)1/2
→ 1 as n → ∞,

by Lemma 6 we then get that

(nδ)−1/2S[nδ]+1 → Z

in distribution as n → ∞. Now let λ > 0, and there is a sequence ϕk in Cb(R)
such that ϕk ↓ 1(−∞,−λ]∪[λ,∞) = χλ pointwise as k → ∞. For each k, writing
X = S[nδ]+1, using the change of variables formula,

P (|X| ≥ λ(nδ)1/2) =

∫
Ω

χλ(nδ)1/2(X(ω))dP (ω)

=

∫
Ω

χλ((nδ)
−1/2X(ω))dP (ω)

≤
∫
Ω

ϕk((nδ)
−1/2X(ω))dP (ω)

= E(ϕk((nδ)
−1/2X)).

Therefore, by the continuous mapping theorem,

lim sup
n→∞

P (|S[nδ]+1| ≥ λ(nδ)1/2) ≤ lim
n→∞

E(ϕk((nδ)
−1/2S[nδ]+1))

= E(ϕk ◦ Z).

Because ϕk ↓ χλ pointwise as k → ∞, using the monotone convergence theorem
and then using Chebyshev’s inequality,

E(ϕk ◦ Z) → E(χλ ◦ Z) = P (|Z| ≥ λ) ≤ λ−3E|Z|3.

We have established that for each λ > 0,

lim sup
n→∞

P (|S[nδ]+1| ≥ λ(nδ)1/2) ≤ λ−3E|Z|3. (3)

9Allan Gut, Probability: A Graduate Course, second ed., p. 245, Chapter 5, Theorem 10.4.
10Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second

ed., p. 68, Lemma 4.18.
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Define
τ = min{j ≥ 1 : |Sj | > n1/2ϵ}.

For 0 < δ < ϵ2/2, it is a fact that

P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ϵ

)
≤P (|S[nδ]+1| ≥ n1/2(ϵ− (2δ)1/2))

+

[nδ]∑
j=1

P (|S[nδ]+1| < n1/2(ϵ− (2δ)1/2)|τ = j)P (τ = j).

If τ(ω) = j and |S[nδ]+1(ω)| < n1/2(ϵ− (2δ)1/2) then

|Sj(ω)−S[nδ]+1(ω)| ≥ |Sj(ω)|−|S[nδ]+1(ω)| > n1/2ϵ−n1/2(ϵ−(2δ)1/2) = (2nδ)1/2.

But by Chebyshev’s inequality and the fact that the random variablesX1, X2, . . .
are independent with mean 0 and variance 1,

P (|Sj − S[nδ]+1| > (2nδ)1/2) ≤ 1

2nδ
E((Sj − S[nδ]+1)

2) =
1

2nδ
([nδ]− j) ≤ 1

2
,

so

P (|S[nδ]+1(ω)| < n1/2(ϵ− (2δ)1/2)|τ = j) ≤ 1

2
.

Therefore,

P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ϵ

)

≤P (|S[nδ]+1| ≥ n1/2(ϵ− (2δ)1/2)) +

[nδ]∑
j=1

1

2
· P (τ = j)

=P (|S[nδ]+1| ≥ n1/2(ϵ− (2δ)1/2)) +
1

2
P (τ ≤ [nδ])

=P (|S[nδ]+1| ≥ n1/2(ϵ− (2δ)1/2)) +
1

2
P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ϵ

)
,

so

P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ϵ

)
≤ 2P (|S[nδ]+1| ≥ n1/2(ϵ− (2δ)1/2)).

Now using (3) with λ = (ϵ− (2δ)1/2)δ−1/2,

lim sup
n→∞

P (|S[nδ]+1| ≥ (ϵ− (2δ)1/2)δ−1/2(nδ)1/2) ≤ (ϵ− (2δ)1/2)−3δ3/2E|Z|3,

hence

lim sup
n→∞

P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ϵ

)
≤ 2(ϵ− (2δ)1/2)−3δ3/2E|Z|3.

Dividing both sides by δ and then taking δ ↓ 0 we obtain the claim.
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We prove one more result that we use to prove Donsker’s theorem.11

Lemma 9. For T > 0 and ϵ > 0,

lim
δ↓0

lim sup
n→∞

P

(
max

0≤k≤[nT ]+1
max

1≤j≤[nδ]+1
|Sj+k − Sk| > n1/2ϵ

)
= 0.

Proof. For 0 < δ ≤ T , let m = ⌈T/δ⌉, so T/m < δ ≤ T/(m− 1). Then

lim
n→∞

[nT ] + 1

[nδ] + 1
=

T

δ
< m,

so for all n ≥ nδ it is the case that [nT ] + 1 < ([nδ] + 1)m. Suppose that ω ∈ Ω
is such that there are 1 ≤ j ≤ [nδ] + 1 and 0 ≤ k ≤ [nT ] + 1 satisfying

|Sj+k(ω)− Sk(ω)| > n1/2ϵ,

and then let p = [k/([nδ] + 1)], which satisfies 0 ≤ p ≤ m− 1 and

([nδ] + 1)p ≤ k < ([nδ] + 1)(p+ 1).

Because 1 ≤ j ≤ [nδ] + 1, either

([nδ] + 1)p < k + j ≤ ([nδ] + 1)(p+ 1)

or
([nδ] + 1)(p+ 1) < k + j < ([nδ] + 1)(p+ 2).

We separate the first case into the cases

|Sk(ω)− S([nδ]+1)p(ω)| >
1

2
n1/2ϵ

and

|Sj+k(ω)− S([nδ]+1)p(ω)| >
1

2
n1/2ϵ,

and we separate the second case into the cases

|Sk − S([nδ]+1)p(ω)| >
1

3
n1/2ϵ,

and

|S([nδ]+1)p(ω)− S([nδ]+1)(p+1)(ω)| >
1

3
n1/2ϵ,

and

|S([nδ]+1)(p+1)(ω)− S([n+δ]+1)(p+2)(ω)| >
1

3
n1/2ϵ.

11Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second
ed., p. 69, Lemma 4.19.
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It follows that12{
max

1≤j≤[nδ]+1
max

0≤k≤[nT ]+1
|Sj+k − Sk| > n1/2ϵ

}
⊂

m−1⋃
p=0

{
max

1≤j≤[nδ]+1
|Sj+([nδ]+1)p − S([nδ]+1)p| >

1

3
n1/2ϵ

}
.

For 0 ≤ p ≤ m− 1,

P

(
max

1≤j≤[nδ]+1
|Sj+([nδ]+1)p − S([nδ]+1)p| >

1

3
n1/2ϵ

)
≤P

(
max

1≤j≤[nδ]+1
|Sj | >

1

3
n1/2ϵ

)
,

so

P

{
max

1≤j≤[nδ]+1
max

0≤k≤[nT ]+1
|Sj+k − Sk| > n1/2ϵ

}
≤

m−1∑
p=0

P

(
max

1≤j≤[nδ]+1
|Sj | >

1

3
n1/2ϵ

)
=mP

(
max

1≤j≤[nδ]+1
|Sj | >

1

3
n1/2ϵ

)
.

Lemma 8 tells us

lim
δ↓0

lim sup
n→∞

1

δ
P

(
max

1≤j≤[nδ]+1
|Sj | >

1

3
n1/2ϵ

)
= 0,

and because m ≤ T
δ + 1 = T+δ

δ ,

lim
δ↓0

lim sup
n→∞

P

{
max

1≤j≤[nδ]+1
max

0≤k≤[nT ]+1
|Sj+k − Sk| > n1/2ϵ

}
= 0,

proving the claim.

In the following, Pn ∈ PE denotes the pushforward measure of P by X(n),
for X(n) defined in (1). We now prove Donsker’s theorem.13

Theorem 10 (Donsker’s theorem). Pn → W .

Proof. We shall use Theorem 3 to prove that Γ = {Pn : n ≥ 1} is relatively
compact in PE . For n ≥ 1,

Pn(f ∈ E : |f(0)| = 0) = P (ω ∈ Ω : |X(n)
0 (ω)| = 0) = 1,

12This should be worked out more carefully. In Karatzas and Shreve, there is m+ 1 where
I have m.

13Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second
ed., p. 70, Theorem 4.20.
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thus the first condition of Theorem 3 is satisfied with Mϵ = 0. For the second
condition of Theorem 3 to be satisfied it suffices that for each ϵ > 0,

lim
δ↓0

lim sup
n→∞

P

(
sup

0≤s,t≤1,|s−t|≤δ

|X(n)(s)−X(n)(t)| > ϵ

)
= 0.

Now,

P

(
sup

0≤s,t≤1,|s−t|≤δ

|X(n)
s −X

(n)
t | > ϵ

)
= P

(
sup

0≤s,t≤n,|s−t|≤nδ

|Ys − Yt| > n1/2ϵ

)
.

Also,

sup
0≤s,t≤n,|s−t|≤nδ

|Ys − Yt| ≤ sup
0≤s,t≤n,|s−t|≤nδ

|Y − s− Yt|

≤ max
1≤j≤[nδ]+1

max
0≤k≤n+1

|Sj+k − Sk|,

so applying Lemma 9,

lim
δ↓0

lim sup
n→∞

P

(
sup

0≤s,t≤1,|s−t|≤δ

|X(n)
s −X

(n)
t | > ϵ

)

≤ lim
δ↓0

lim sup
n→∞

P

(
max

1≤j≤[nδ]+1
max

0≤k≤n+1
|Sj+k − Sk| > n1/2ϵ

)
→0,

from which we get that Γ is tight in PE .
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