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1 Relatively compact sets of Borel probability
measures on C[0,1]

Let E = C0, 1], let Zg be the Borel o-algebra of E, and let &g be the collection
of Borel probability measures on E. We assign & the narrow topology, the
coarsest topology on Zp such that for each F' € Cy(E) the map p — [, Fdu
is continuous.

For f € F and 6 > 0 we define

wy(d) = sup |f(s) = F(@).
s,t€[0,1],|s—t|<d

For f € E, wy(d) L 0as ¢ |0, and for 6 > 0, f — wy(d) is continuous. We shall
use the following characterization of a relatively compact subset A of E, which
is proved using the Arzela-Ascoli theorem.

Lemma 1. Let A be a subset of E. A is compact if and only if

sup | f(0)] < o0
feA

and

supwy(d) 10, 040.
feA

We shall use Prokhorov’s theorem:' for X a Polish space and for I' C
Px, T is compact if and only if for each € > 0 there is a compact subset
K. of X such that u(K.) > 1 — ¢ for all 4 € I'. Namely, a subset of Px is
relatively compact if and only if it is tight. We use Prokhorov’s theorem to
prove a characterization of relatively compact subsets of &g, which we then
use to prove the characterization in Theorem 3.2

K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 47, Chapter II, Theorem
6.7.

2K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 213, Chapter VII, Lemma,
2.2.



Lemma 2. Let I be a subset of Zg. T is compact if and only if for each € > 0
there is some M, < oo and a function § — w,(d) satisfying w.(d) J 0 as § | 0
and such that for all p €T,

,U'(Ae) > 1- M(Be) > 1-

€
5 9
where

Ac={fe€ E:|f(0) < M.}, Be={f € E:ws() <we(d) for all 6 > 0}.

Proof. Suppose that I' satisfies the above conditions. Because f +— |f(0)] is
continuous, A, is closed. For § > 0, suppose that f,, is a sequence in B, tending
to some f € E. Because g — wy(9) is continuous, wy, (6) = w(d), and because
wy, (8) < we(6) for each n, we get wy(d) < we(d) and hence f € B, showing
that B, is closed. Therefore K, = A, N B, is closed, i.e. K. = K.. The set K.
satisfies

sup [f(0)] < Me

JeK.
and

limsup sup wy(d) < limsupw,(d) =0,
510 feK. 510

thus by Lemma 1, K, is compact. For p € T,

MUSESES
2
and because K. is compact, this means that I' is tight, so by Prokhorov’s theo-
rem, I' is relatively compact.

Now suppose that I' is relatively compact and let € > 0. By Prokhorov’s
theorem, there is a compact set K. in E such that pu(K.) > 1— 5 forall pel.
Define

M, = sup |f(0)], we(d) = sup wy(9), 0> 0.
feK. feK.
Because K, is compact, by Lemma 1 we get that M, < oo and we(d) | 0 as
040. For peTl,
€ €
Az p(K) 21 =5, p(Bo) 2 p(E) 213,
showing that I" satisfies the conditions of the theorem. O

We now prove the characterization of relatively compact subsets of &g that
we shall use in our proof of Donsker’s theorem.?

Theorem 3 (Relatively compact sets in &?). Let T' be a subset of Zg. T is
compact if and only if the following conditions are satisfied:

3K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 214, Chapter VII, Theo-
rem 2.2.



1. For each € > 0 there is some M, < oo such that
€
wflfOlsM)=z1-5,  pel
2. For each € > 0 and 6 > 0 there is some 1 = n(e, §) > 0 such that

u(f i) <0)=1-5,  pel.

Proof. Suppose that I' is compact and let ¢ > 0. By Lemma 2, there is some
M, < oo and a function n — w.(n) satisfying we(n) 4 0 as | 0 and

u(As)Zl—g, M(Be)Zl—%, pel.

For § > 0, there is some 1 = n(e, §) with w.(n) < 4J. Then for p € T,
€
plf rwp(n) <6) 2 u(f 2 wp() < we(n) 2 u(Be) 21— 5.

Now suppose that the conditions of the theorem hold. For each ¢ > 0 and
n > 1 there is some 7., > 0 such that

€

N(Fe,n)zl—ﬁv nwel,
where .
Fon= {1 st < 2}
Let -
Ke={f:1f(0)] < M3} () Fem,
for which "~

MKazuu:umMSMazl—; perl.

For f € K., then for each n > 1 we have f € F ,,, which means that ws(n. ) <
%, and therefore

3=

sup Wy (7en) <
feK.

Thus for n > 1, if 0 < n < ¢, then

)

S|

sup wy (1) <
JeK.

which shows sup ¢ g wy(n) 1 0 as | 0. Then because

sup [f(0)] < M,
JeK.

applying Lemma 1 we get that K, is compact. The map f — Wi (Nen) is
continuous, so the set F, ,, is closed, and therefore the set K. is closed. Because
K. is compact and p(K.) > 1 — § for all u € T, it follows from by Prokhorov’s
theorem that I" is relatively compact. O



2 Wiener measure
For t1,...,ta €[0,1], t1 < --- < tq, define my, . 4, : B — R4 by

7Tt1,~~7td(f):(f(tl)v"'af(td))a feE,

which is continuous. We state the following results, which we will use later.

Theorem 4 (The Borel o-algebra of E). %, is equal to the o-algebra generated
by {m : t € [0,1]}.

Two elements p and v of &g are equal if and only if for any d and any
t1 < --- < tq, the pushforward measures

,U/tl,...,td = (Trtl,“.,td)*/f"a th,.“,td = (ﬂ-tl,...,td)*y
are equal.

Let (&t):efo,1] be a stochastic process with state space R and sample space
(Q,Z,P). Forty < --- <tg, let &, 1y =6, @ - @&, and let Py, . ;, =
(€t1,...7td)*P: for B c %ﬂ%’

Pt17---;td(B) = ((£t1,-~7td)*P)(B) = P(Et_l,l,td(B)) = P((gtu s ’gtd) € B)

Py, ...+, 1s a Borel probability measure on R4 and is called a finite-dimensional
distribution of the stochastic process.

The Kolmogorov continuity theorem? tells us that if there are a, 3, K >
0 such that for all s,¢ € [0, 1],

Elg — &]* < K|t — s|'T7,
then there is a unique pu € #g such that for all k£ and for all ¢; < --- < tg4,
My, tyg = Ptl,...,td'
6

We now define and prove the existence of Wiener measure.

Theorem 5 (Wiener measure). There is a unique Borel probability measure
W on FE satisfying:

1. W(feE: f(0)=0)=1.
2. For 0 <ty <t; <---<tg <1 the random variables
7Tt1 - 7Tt07 7Tt2 - 7Tt17 7rt3 - 7Tt27 ﬂ-td - 7Ttd71

are independent (E, Zg, W) — (R, Zr).

4K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 212, Chapter VII, Theo-
rem 2.1.

5K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 216, Chapter VII, Theo-
rem 3.1

6K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 218, Chapter VII, Theo-
rem 3.2.



3. If 0 < s <t <1, the random variable m; — 75 : (E, B, W) = (R, #r) is
normal with mean 0 and variance t — s.

Proof. There is a stochastic process (ft)te[o,l] with state space R and some sam-
ple space (2, .#, P), such that (i) P(§ = 0) = 1, (ii) (§¢)¢ejo,1) has independent
increments, and (iii) for s < ¢, & — & is a normal random variable with mean
0 and variance t — s. (Namely, Brownian motion with starting point 0.)
Because £ —&; has mean 0 and variance ¢ —s, we calculate (cf. Isserlis’s theorem)

B¢ — &* = 3|t — 5|2

Thus using the Kolmogorov continuity theorem with « =4, 8 =1, K = 3, there
is a unique W € £ such that for all t; < --- < tq4,

Wiyota = Pyt
i.e. for B € %4,
W(ry, @ @m, € B)=P(&, @ ®§&, € B).

Fort; < .-+ <tgand B € %%, with T : RY — R? defined by T(z1,...,74) =
(1,2 — X1, ., Tg — Tg—1),
W(my, @ (m, —m,) @ - ® (e, — T,_y) € B)
W(To(ml@ﬂ't?@"'@ﬂtd) € B)
W(ry, @m, @ @7y, € T~HB))
P&, @&, ®---©&, € TH(B))
P(To (& ®&,® --®&,) € B)
P&, @ (&, — &) @+ @ (&g — &tay) € B).

Hence, because &,,&, — &y, .-, &, — &, are independent,

(g, @ (Tpy = Tg)) @+ @ (Mg — Ty )W
=6ty @ (§t —611) @+ @ (g — &tay)) P

=(&,)sP ® (&, — &)« P @ -+ @ (&1 — &ty 1) P
=(m, )W @ (g, — T4, s W @ -+ @ (mp, — ey )5 W,

which means that the random variables 7, , my, — my,, ..., M, — 7, , are inde-
pendent.
If s < tand By,By € %R, and for T : R? — R? defined by T(z,y) =

(z,y —x),
W ((ns,m¢ —7s) € (B1,B2)) = W(T o (w5, 1) € (B, B2))
((537615) eT™ (BlvBQ))
P((&s,& — &) € (B, Ba)),

ot



which implies that (m; — 75). W = (& — &)« P, and because & — &, is a normal
random variable with mean 0 and variance t — s, so is m; — 7.
Finally,
W(f : (0) = 0) = W(mo = 0) = P& = 0) = 1.

O

(E,#gr,W) is a probability space, and the stochastic process (7¢)eo,1] 18 a
Brownian motion.

3 Interpolation and continuous stochastic pro-
cesses

Let (£¢)ief0,1) be a continuous stochastic process with state space R and
sample space (Q2,.%, P). To say that the stochastic process is continuous means
that for each w € Q the map t — & (w) is continuous [0,1] — R. Define
£:Q — FE by

fw)=(tr—&w), wel

For ¢t € [0,1] and B a Borel set in R,
ln'B={weQ:&w) e By =¢'B,

and because & : (Q,.7) — (R, %r) is measurable this belongs to %#. But by
Theorem 4, % is generated by the collection {m;'B : t € [0,1],B € %}.
Now, for f: X — Y and for a nonempty collection .% of subsets of Y,”

o(fHF)) = T (a(F)).

Therefore {1 (%r) C #, which means that £ : (,.%) — (E,%g) is mea-
surable. This means that a continuous stochastic proess with index set [0, 1]
induces a random variable with state space E. Then the pushforward measure
of P by ¢ is a Borel probability measure on . We shall end up constructing
a sequence of pushforward measures from a sequence of continuous stochastic
processes, that converge in g to Wiener measure W.

Let (X,,)n>1 be a sequence of independent identically distributed random
variables on a sample space (2, %, P) with E(X,) =0 and V(X,,) =1, and let

So =0 and
k
Sy, = ZXi.
i=1

Then E(Si) =0 and V(S;) = k. For t > 0 let

Y = S+ (t — [t]) X 41

7Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 140, Lemma 4.23.



Thus, for k> 0and k <t <k +1,

Yi =Sp+ (t — k) Xpy1
= Sk + (t = k)(Sk+1 — Sk)
= (1=t +k)Sk + (t — k) Spsr.

For each w € Q, the map ¢t — Y;(w) is piecewise linear, equal to Si(w) when
t = k, and in particular it is continuous. For n > 1, define

XM = V2, =028 4+ 0 V2 (0t — [nt]) X1, € [0,1]. (1)

For 0 < k < n,

x™ - n128;.

k/n
For each n > 1, (Xt(n))te[o,l] is a continuous stochastic process on the sample
space (Q, Z, P), and we denote by P, € &g the pushforward measure of P by
X,

4 Donsker’s theorem

Lemma 6. If Z,, and U,, are random variables with state space R? such that
Z, — Z in distribution and U,, — 0 in distribution, then Z,, + U,, — 0 in
distribution.

If Z,, are random variables with state space R that converge in distribution
to some random variable Z and c¢,, are real numbers that converge to some real
number ¢, then ¢, Z,, — ¢Z in distribution.

For 0 > 0, let v,2 be the Gaussian measure on R with mean 0 and variance
o?. The characteristic function of v,2 is, for ¢ > 0,

_ . . 1 22 1,202
Uy2(€) = / ezémdyaa(x) = / 't e 2Zdr =e 27§,
R R oV 2w

and (&) = 1. One checks that ¢,y = v.2 for ¢ > 0.

In following theorem and in what follows, X (™) is the piecewise linear stochas-
tic process defined in (1). We prove that a sequence of finite-dimensional dis-
tributions converge to a Gaussian measure.®

Theorem 7. For 0 <tg <ty <ty <---<tg <1, the random vectors

(XM - xm X - x M), (Q,.F,P) — (RY, ),

to td—1

converge in distribution to v4, 4, ® -+ @ vy, ¢, , as n — 0.

8Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 368,
§19.1, Lemma 1.



Proof. For 0 < j < dandn >1 let

t n
Tjn = [nnJ]a UJ,Tl = Xt(J ) - X(TL) 3

Tjn
and for 0 < j < dandn > 1 let

t; n
Sjn = [nnﬂ ) Vin = Xs(?l - Xt(j )’

with which
(=X x Xy = (- x X - X

Sd—1,n

+ (Uins -3 Udn) + (Vons -5 Vae1,n).

Because E(Xt(n)) =0,

Furthermore,
V(Uj.n)
=V(X{ - X))
=0V (Spuey) + (0t = 085]) Xpny141 = Spargoal = (03,0 = [075.0]) X a1 41)
=1V (Spue,) + (nty — [n85]) Xt 141 = Spne,) — ([nt5] = [085]) X v, 141)
:nil(ntj - [ntj])ZV(X[7Ltj}+1)
=n""(nt; — [nt;])?,
and because 0 < nt; —[nt;] < 1 this tends to 0 as n — oco. Likewise, V(Vj,) — 0

as n — o0.
For 1 <j <d,

xm _x) n_1/25[m,jyn] + n_1/2(nrj7n — [nrjm])X[mj,nHl

Tjn Sj—1,n
—1/2 —-1/2 . .
-n S[nsj'a,n] -n (nsj—lm - [nsj—l,n])X[nijl,nHl

=02 St = 0TS,

[nt;]

_aja(nty] = [t 4] = 1)V? X,
R (CO T ’

J J—1 i:(ntj,ﬂJrl

By the central limit theorem,
[nt;]
([nt;] = [nt;—1] — 1)/ Z X —wn
i:[ntj,ﬂ-&-l

in distribution as n — oco. But

n 2 ([nty] — [ntj—1] — 1)Y2 — (t; — tj-1)'/?



1/2
*

as n — oo, and (t; —tj_1) / V1 = Vt;—t;_,, 50 by Lemma 6,

X(n) —X(n) n — thftjil

Tj,n Sj—1,

in distribution as n — co.
For sufficiently large n, depending on g, ..., tq,

to < Son <Tin St1 <810 <T2p <o < fg—1 < Sg—1,n < Tdn < g

Check that (U p,...,Uqyn) — 0 in probability and that (Vo ..., Va—1,n) = 0
in probability, and hence these random vectors converge to 0 in distribution
as n — oco. The random variables Xﬁ?)n - Xéﬁl, . ,Xﬁz)n - X(g:}m are inde-
pendent, and therefore their joint distribution is equal to the product of their
distributions. Now, if p, = pl ®@ - @ ud and pd — @/ asn — oo, 1 < j < d,
then for ¢ € R?,

fin(€) = Fin(&1) -+ A% (£a)
— (&) - (&)
= e out)(©)

as n — 00, and therefore by Lévy’s continuity theorem, p, — p! ® - ® pu?
as n — 0o. This means that the joint distribution of XT(?)n — ng) o ,XT(Z) —

n?
n
Xﬁdlm converges to
Vii—to ® =" @ Viy—ty 4

as n — oo. Because (Uin,...,Usn) — 0 in distribution as n — oo and
(Von, -+ Va—1,n) — 0 in distribution as n — oo, applying Lemma 6 we get
that

(Xt(ln) - Xt(:)) ceey Xt(:) - Xt(:,)l) — Vi —to - Vtg—ta—1
in distribution as n — oo, completing the proof. O

Let to =0andlet 0 <t; < --- <ty <1. As X(g") = 0, the above lemma
tells us that

t ty v Ny taon) Vi @Viyt, @ @ Vi,
in distribution as n — oco. Define g : R* — R? by
g(x1, 2, ... xq) = (1,21 + Tay ..., 1 + Ta+ -+ 24g).
The function g is continuous and satisfies
go (XM —x{M xiM o xiMy=(x™M xM L x™).

to

Then by the continuous mapping theorem,

(Xt(ln)’Xt(zn)7 e 7Xt(:)) = Gx(Vty OVtyt, @ Dy, ,) (2)



in distribution as n — 00.?

We prove a result that we use to prove the next lemma, and that lemma is
used in the proof of Donsker’s theorem.!©

Lemma 8. For ¢ > 0,

1
lim lim sup =P < max_ |S;] > en1/2) =0.
10 nooo 0 \1<j<[nd]+1
Proof. For each § > 0, by the central limit theorem,
([nd] + 1)~Y2S 11 — Z

([nd]+1)"/*

in distribution as n — oo, where Z, P = v1. Because NCHECE

— 1 as n — oo,
by Lemma 6 we then get that

(715)_1/25[”5]+1 — 7

in distribution as n — co. Now let A > 0, and there is a sequence ¢y, in Cp(R)
such that ¢r | 1(—oo,—AJu[r,00) = X2 POintwise as k — oo. For each k, writing
X = S[ns)+1, using the change of variables formula,

HMQMMW%aAmMmuwwmm
=AmWﬂ”WWWHM

< [ oulnd) X @)iP()
= B(¢i((nd)"1/2X).
Therefore, by the continuous mapping theorem,
lim sup P(|Sinsp41] > A(n6)'/2) < lim E(¢5((n8) ™2 Spug) 1))
= E(¢r 0 7).

Because ¢y | x) pointwise as k — 00, using the monotone convergence theorem
and then using Chebyshev’s inequality,

E(¢roZ) = E(xx0Z) =P(|Z| > \) <\ 3E|Z)>.
We have established that for each A > 0,

limsup P(|Sps41] > Mnd)/2) < A3E|Z]°. (3)
n—oo

9 Allan Gut, Probability: A Graduate Course, second ed., p. 245, Chapter 5, Theorem 10.4.
10Toannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second
ed., p. 68, Lemma 4.18.
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Define
7 =min{j > 1:|S;| > n'/2}.

For 0 < § < €2/2, it is a fact that
P( max || > nl/Qe)
0<j<[nd]+1
<P(|Spmoj+1] > n'/2(e — (26)1/2))

[n3]
+ 3 P(ISs ] < n'3(e — (28)/%)|7 = j)P(r = j).

j=1
If 7(w) = j and [Sps41(w)| < nt/%(e — (20)'/2) then
157 (@)=Sins1+1 ()] = 1)l |Smaj41 ()] > n'/Zemn'/2(e~(20)"/?) = (2n6)"/2.

But by Chebyshev’s inequality and the fact that the random variables X1, Xo, ...
are independent with mean 0 and variance 1,

1 1 . 1
P(|S; = Spaj+1] > (2n8)'/?) < TME((Sj — Snoj1)?) = 27&(5([”5] -j) < >
so )
P( St @)] < /26 = (20)/2)]r = ) < 1
Therefore,
P( max || > n1/2e>
0<j<[nd]+1
[n] 1
<P(Spsyial 2 02 (e = (20)Y2) + > 5 - P(r = j)
j=1
1
=P(|Spsjs1| = n'/?(e - (26)'/2)) + FP(r < [nd])
1
_ > o 1/2(c _ (95)1/2 1 4 1/2
P(|Smo)+1| = n'/%(e = (20)/%)) + 2P (0<j12?1)§]+1 |S;| >n e) ,
so

] 1/2 < >nl/2( _ 1/2yy
P(ogj?ﬁ’ém'sﬂ'” 6)213 (ISina41] = n'/2(e = (20)'/%))

Now using (3) with A\ = (e — (20)1/2)671/2,
limsup P(|Spus)1] > (e — (26)/2)67/2(nd)!/?) < (e — (20)"/%)*6%2 | 2],
n—roo

hence

lim sup P ( max  |S;] > n1/26> < 2(e — (20)Y2) 7382 E|Z)°.

n—00 0<j<[nd]+1

Dividing both sides by § and then taking § | 0 we obtain the claim. O

11



We prove one more result that we use to prove Donsker’s theorem.'!

Lemma 9. For T' > 0 and € > 0,

lim li p Sjtk — 8 12¢) = 0.
510 mine (oszc?[?t)%m 19@[%]“' i = Skl > n e
Proof. For 0 <0 <T,let m=[T/d],s0T/m<§<T/(m—1). Then

nI+1 T

nso0 [nd] + 1 :§<m,

so for all n > ns it is the case that [nT] 41 < ([nd] + 1)m. Suppose that w € Q
is such that there are 1 < j < [nd]+ 1 and 0 < k < [nT] + 1 satisfying

|Sj4k(w) = Sk(w)] > n'/2e,
and then let p = [k/([nd] + 1)], which satisfies 0 < p < m — 1 and
(8] + Dp < k < ([nd] + 1)(p+1).
Because 1 < j < [nd] + 1, either
([né] +p <k +j < ([nd] + )(p+1)

([nd] + D)(p+1) < k44 < ([nd] 4+ 1)(p+2).

We separate the first case into the cases
L 10
|Sk(w) — S([715]+1)p(w)| > in €

and

1
1Sj k(W) = S(ino+1)p(W)] > §n1/2

67
and we separate the second case into the cases

1
|Sk — S([n5}+1)p(w)‘ > 5’111/267

and )
1S(ins1+1)p (W) = S((né+1)(pr1) (W)| > 5711/267

and

1
IS(ne1+1)(p+1) (@) = S(in+a)+1)(p+2) (W)| > §n1/26~

Hoannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second
ed., p. 69, Lemma 4.19.
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It follows that!2

max max_ [Sj4x — S| > n'
1<]<[n5]+1 0<k<[nT]+1

1 1/2
C U {1<j121[%1}(§ | +( n5 +1)p - S([n5 +1)p| > 3n / }'

For0<p<m-—-1,

1
P _ - 1/2
<1<Jfg[§3§ S5+ (ns+1)p = S(ina+1)pl > 31 6)

1
<P < max || > 3n1/26> ,
S0

P{ max max  [Sjyr — Skl > nl/ge}
1<j<[n6]+1 0<k<[nT]+1

m—1

1

< P< max  |S;| > n1/26>
= 1<j<[né]+1 3

1
=mP ( max  |S;| > n1/26> :
1<j<[nd]+1 3

Lemma 8 tells us

1 1
%iinlimsup 5P< max || > 3n1/2e> =0,

n—o0 1<j<[né]+1
and because m < L +1 =T+
lim lim sup P max ma 1Sk — Skl >nl/2e4 =,
10 nooo 1<j<[né]+1 O<k<[nT]+1

proving the claim.

In the following, P, € &5 denotes the pushforward measure of P by X (™,

for X(™ defined in (1). We now prove Donsker’s theorem.'?

Theorem 10 (Donsker’s theorem). P, — W.

Proof. We shall use Theorem 3 to prove that I' = {P,, : n > 1} is relatively

compact in Pg. For n > 1,

Pu(f€E:|f(0)=0)=Pwe: X" (w)|=0) =1,

12This should be worked out more carefully. In Karatzas and Shreve, there is m + 1 where

I have m.

13Joannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second

ed., p. 70, Theorem 4.20.
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thus the first condition of Theorem 3 is satisfied with M, = 0. For the second
condition of Theorem 3 to be satisfied it suffices that for each € > 0,

%iﬁ)l lim sup P ( sup XM (s) — XM (1) > e) =0.

n—o0 0<s,t<1,|s—t|<d

Now,
P sup |x( — Xt(n)| >e| =P sup |V, — Y| > nt/% ).
0<s,t<1,|s—t|<d 0<s,t<n,|s—t|<nd
Also,
swp  Ve-Yi<  sp Y —s-Y
0<s,t<n,|s—t|<nd 0<s,t<n,|s—t|<nd
< max max |S;ir — Skl

T 1<5<[né]+1 0<k<n+1

so applying Lemma 9,

lim lim sup P sup |x () — Xt(n)| > €
00 n—oo 0<s,t<1,|s—t|<d
<lim lim sup P ( max max |Sjyr — Sk| > nl/ze)
310 oo 1<j<[nd]+1 0<h<n+1
—0,
from which we get that I' is tight in Zg. O
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