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In this note I’m just presenting the proof of Denjoy’s theorem in Michael Brin
and Garrett Stuck’s Introduction to dynamical systems, Cambridge University
Press, 2002.

Let S1 = R/Z. For α ∈ R, define Rα : S1 → S1 by Rα(x) = x+ α+ Z.
We say that a homeomorphism f : S1 → S1 is orientation preserving if it

lifts to an increasing homeomorphism F : R → R: π ◦ F = f ◦ π.
The rotation number of an orientation preserving homeomorphism f is de-

fined by

ρ(f) = lim
n→∞

Fn(x)− x

n
.

One proves that this is independent both of the lift F of f and the point x ∈
R. Some facts about the rotation number: it is an invariant of topological
conjugacy, and ρ(f) is rational if and only if f has a periodic point. A periodic
point is x ∈ S1 such that fn(x) = x for some n ≥ 1.

There are some lemmas in Chapter 7 that I don’t want to write out. The
important theorem that we’re going to use without proof is that if f : S1 → S1

is an orientation preserving homeomorphism that is topologically transitive with
irrational rotation number ρ(f), then f is topologically conjugate to Rρ(f). This
reduces our problem to showing that a map is topologically transitive.

We will use the following lemma in the proof of Denjoy’s theorem.

Lemma 1. Let f : S1 → S1 be a C1 diffeomorphism and let J be an interval in
S1. Let g = log f ′. If the interiors of J, f(J), . . . , fn−1(J) are pairwise disjoint,
then for any x, y ∈ J and any n ∈ Z we have

Var(g) ≥ | log((fn)′(x))− log((fn)′(y))|.

Proof. The intervals [x, y], [f(x), f(y)], . . . , [fn−1(x), fn−1(y)] are pairwise dis-
joint, so they are part of a partition of [0, 1]. The total variation of g is defined
as a supremum over all partitions, so in particular it will be ≥ the sum coming
from any particular partition or a subset of that partition.
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Var(g) ≥
n−1∑
k=0

|g(fk(y))− g(fk(x))|

≥
∣∣∣ n−1∑
k=0

g(fk(y))− g(fk(x))
∣∣∣

=
∣∣∣ log n−1∏

k=0

f ′(fk(y))− log

n−1∏
k=0

f ′(fk(x))
∣∣∣

= | log((fn)′(x))− log((fn)′(y))|.

Now we can prove Denjoy’s theorem.

Theorem 2. If f : S1 → S1 is a C1 diffeomorphism that is orientation preserv-
ing, that has irrational rotation number ρ(f), and whose derivative f ′ : S1 → R
has bounded variation, then f is topologically conjugate to Rρ(f).

Proof. Suppose by contradiction that f is not topologically transitive. It’s a
fact proved in Chapter 7 of Brin and Stuck that this implies that ω(x) is
perfect and nowhere dense, and is independent of the point x. (Recall that

ω(x) =
⋂

n≥1

⋃
i≥n f

i(x).) It follows that there is an interval I = (a, b) in its
complement.

The intervals fn(I), n ∈ Z, are pairwise disjoint, for otherwise f would have
a periodic point. Let µ be Haar measure on S1. Then∑

n∈Z
µ(fn(I)) ≤ 1.

Let x ∈ S1. Suppose for the moment that there are infinitely n ≥ 1 such that
the intervals (x, f−n(x)), (f(x), f1−n(x)), . . . , (fn(x), x) are pairwise disjoint;
we shall prove that this is true later. By applying the lemma we proved with
y = f−n(x) we get

Var(g) ≥
∣∣∣ log (fn)′(x)

(fn)′(y)

∣∣∣ = | log((fn)′(x)(f−n)′(x)|.

To see the equality in the above line it helps to write out what (f−n)′(x) is.
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Then for infinitely many n we have

µ(fn(I)) + µ(f−n(I)) =

∫
I

(fn)′(x)dx+

∫
I

(f−n)′(x)dx

=

∫
I

((fn)′(x) + (f−n)′(x))dx

≥
∫
I

√
(fn)′(x)(f−n)′(x)dx

=

∫
I

√
exp log((fn)′(x)(f−n)′(x))dx

≥
∫
I

√
exp(−| log((fn)′(x)(f−n)′(x))|)dx

≥
∫
I

√
exp(−Var(g))dx

= exp
(
− 1

2
Var(g)

)
µ(I).

Since µ(I) > 0 this implies that
∑

n∈Z µ(f
n(I)) = ∞, a contradiction. Therefore

f is topologically transitive, and so it is topologically conjugate to the Rρ(f).

It is indeed necessary that f ′ has bounded variation. Brin and Stuck give
an example on p. 161 that they attribute to Denjoy: for any irrational number
ρ ∈ (0, 1), there is a nontransitive orientation preserving C1 diffeomorphism of
S1 with rotation number ρ. The only condition of Denjoy’s theorem that isn’t
satisfied here is that f ′ have bounded variation.
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