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1 19 norms and volume of the unit ball
For z,y € R",
(@,y) = > xy;.
j=1
Let €1,.

.., e, be the standard basis for R".

For 1 < ¢ < oo let

and for ¢ = oo let
[#loo = max |z].
Then for for 1 < ¢ < oo let
By ={z e R":|z[; < 1}.

For 0 < k < n let Ay be k-dimensional Lebesgue measure on R™. We
calculate the volume of the unit ball with the £¢ norm for 1 < g < oo.

Theorem 1. For n > 1 and for 1 < ¢ < o0,
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Proof. For R >0 let V'(R) = Ay (R - By). Forn =1,
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Vql(R) =M (R- B;) = / dM\1(z1) = 2R.
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By induction, suppose for some n that
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Using Fubini’s theorem and the induction hypothesis and doing the change of
variable x,11 = Rt we calculate
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Now, doing the change of variable u = t?, namely ¢t = u'/? with ¢/ =

using the beta function B(a,b) = fol w1 — w) A (u),
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which proves the claim.



BT is an n-dimensional cross-polytope, B3 is an n-dimensional Euclidean
ball, and B is an n-dimensional cube.

on 71'"/2

An(BY) = —5, An(Bz) = An(B5) = 2",

using I'(n 4+ 1) = n! and l"(%) = @

2 Intersection of a hyperplane and the cube
Let £ € S" ! and t € R, and define
Pey={z eR": (z,§) =t}

In particular,
&t = P
Let
Act) = hnr(Pea N BL) = [ 1y (@) (o).
et

Theorem 2. For £ € "' and t € R,
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Proof. Then by Fubini’s theorem,

Ae(7) = /R Ae(t)e 2N (1)

= / ( / 13&(;5)@—2”%97&”l(x)> d (t)
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whence, by Fubini’s theorem,
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But, when &7 # 0,
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By the Fourier inversion theorem, using that ][ﬁ is an even function,
Ac(t) = [ Ae(r)man(r)
R
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3 Schwartz functions

Let . be the Fréchet space of Schwartz function R® — C and let ./ be the
locally convex space of tempered distributions . — C. If f : R™ — C is locally
integrable and there is some IV such that

[ @l =omY), R,
|z]2<R
it is a fact that

oo (10 = [ f@o@dna).  oe.

is a tempered distribution.
Lemma 3. For 1 < ¢ < oo and for 0 < h < n, |x|;h is a tempered distribution.

Proof. For 1 < g <2,
1 1
|z]2 < falg < a7z,

and for 2 < q¢ < o0,
1 1
2l < |zl < n¥ 3 al,.



Then for 1 < ¢ < 2 and for 0 < h < n, using polar coordinates and as o(S" 1) =
oq(n+1)/2
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For 2 < ¢ < oo and for 0 < r < n,
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For ¢ € .7 let
o) = [ o> d (x).
Rn
For 1 < ¢ < oo define ¢4 : R = R by
cq(z) = e ", z €R,
which belongs to .7 (R), and let v, = ¢,.
For a tempered distribution 7T,
(T.6)=(T.0), e
Define fqn(x) = |z|;". We calculate the Fourier transform of the tempered

distribution fq p.

LAlexander Koldobsky and Vladyslav Yaskin, The Interface between Convexr Geometry
and Harmonic Analysis, p. 9, Lemma 2.1.



Theorem 4. Let 0 < h <n. For 1 < ¢ < o0,

N _ q > n—h— - )
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Proof. Suppose that 1 < ¢ < oo. For x # 0, doing the change of variable
2=t
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For z > 0 define F, , : R®™ — R by

F,.(z) = e_‘m'g, r e R",

which is a Schwartz function. Doing the change of variable y = z -  and using
Fubini’s theorem,
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Then for ¢ € .7,

(Famo) = [ fq,h<f>$<f>dxn<§>
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This implies, doing the change of variable z = ¢t~1,
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4 Fourier transform

We remind ourselves that c,(z) = e 1?I" 2z € R, and g = Cq. We prove that -,

is positive and logconvex.?

Theorem 5. For 1 < ¢ <2, v4(y/2z) > 0, and z — log v4(y/%) is convex on R>g.

Proof. Let 0 < a < 1, and for z € [0,00) let f(z) = expz and g(z) =
Then for k € Z>o and z € (0,00),

g®(z) = —k!<2) 227k sgn g®) (2) = (=1)k.

2Alexander Koldobsky and Vladyslav Yaskin, The Interface between Convexr Geometry

and Harmonic Analysis, p. 4, Lemma 1.4.



For n > 1, Faa di Bruno’s formula tells us

(fog)™(z) = Z m(f( HeEma) o g)(2)
(m1,...;mpn),lmi+-+n-my=n L n

. f[ 9P\
k! '
k=1
Then

" " n!
(1) (fog)( )(Z) = ( 5 Z m(e){pog)(z)
mi,...,Mmy )l mi+-+n-mnp=n

H( )™
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> 0.

This shows that f o g is completely monotone. Furthermore, (f o ¢)(0) =1,
so by the Bernstein-Widder theorem there is a Borel probability measure p
on [0,00) such that

Feo= [ Tt e o)
With o = £, there is thus a Borel probability measure j on [0, 00) such that
exp(—29/?) = /[0 )e_thuq(t), z € [0, 00).
Then for z € R,
o) = exp(-[al") = exp(~()72) = [ eyt

[0,00)

For w € R we calculate, using the Fourier transform of a Gaussian,
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From the final expression it is evident that v, (w) > 0. Furthermore, for wy, ws €
(0, 00), using the Cauchy-Schwarz inequality,
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1 1
=3 log v (v/w1) + 3 log v, (v/w2).
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Because w — log 7y, (y/w) is continuous, this suffices to prove that it is convex.
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