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1 Motivation

The solution of the initial value problem

x′(t) = Ax(t), x(0) = x0 ∈ Rn,

where A is an n×n matrix over R, is x(t) = exp(At)x0. If we want to compute
the solution and if A is diagonalizable, say A = PDP−1, we use

exp(At) = exp((PDP−1)t) = P exp(Dt)P−1.

Thus if the matrix A has complex eigenvalues, then although exp(At)x0 ∈ Rn,

it may not be the case that P−1x0 ∈ Rn. For example, if A =

(
0 −1
1 0

)
, then

D =

(
−i 0
0 i

)
, P =

(
−i i
1 1

)
, P−1 =

1

2

(
i 1
−i 1

)
.

For x0 =

(
1
0

)
,

P−1x0 =
1

2

(
i 1
−i 1

)(
1
0

)
=

1

2

(
i
−i

)
.

This is similar to how Cardano’s formula, which expresses the roots of a real
cubic polynomial in terms of its coefficients, involves complex numbers and yet
the final result may still be real.

In the following, unless I specify the dimension of a vector space, any state-
ment about real vector spaces is about real vector spaces of finite or infinite
dimension, and any statement about complex vector spaces is about complex
vector spaces of finite or infinite dimension.

2 Direct sums

If V is a real vector space, a complex structure for V is an R-linear map J :
V → V such that J2 = −idV .
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If V is a real vector space and J : V → V is a complex structure, define a
complex vector space VJ in the following way: let the set of elements of VJ be
V , let addition in VJ be addition in V , and define scalar multiplication in VJ by

(a+ ib)v = av + bJ(v).

One checks that for α, β ∈ C and v ∈ VJ we have (αβ)v = α(βv), and thus that
VJ is indeed a complex vector space with this definition of scalar multiplication.1

Let V be a real vector space, and define the R-linear map J : V ⊕V → V ⊕V
by

J(v, w) = (−w, v).

J2 = −idV⊕V . J is a complex structure on the real vector space V ⊕ V . The
complexification of V is the complex vector space V C = (V ⊕ V )J . Thus, V C

has the same set of elements as V ⊕ V , the same addition as V ⊕ V , and scalar
multiplication

(a+ ib)(v, w) = a(v, w) + bJ(v, w),

which gives

(a+ ib)(v, w) = a(v, w)+ b(−w, v) = (av, aw)+ (−bw, bv) = (av− bw, aw+ bv).

If the real vector space V has dimension n and if {e1, . . . , en} is a basis for
V , then

{(e1, 0), . . . , (en, 0), (0, e1), . . . , (0, en)}

is a basis for the real vector space V ⊕ V . Let v ∈ V C. Using the basis for the
real vector space V ⊕ V , there exist

a1, . . . , an, b1, . . . , bn ∈ R

such that

v = a1(e1, 0) + · · · an(en, 0) + b1(0, e1) + · · ·+ bn(0, en)

= a1(e1, 0) + · · ·+ an(en, 0) + b1J(e1, 0) + · · ·+ bnJ(en, 0)

= (a1 + ib1)(e1, 0) + · · ·+ (an + ibn)(en, 0),

where in the last line we used the definition of scalar multiplication in V C.
One checks that the set {(e1, 0), . . . , (en, 0)} is linearly independent over C, and
therefore it is a basis for V C. Hence

dimC V C = dimR V.

1One should also verify that distributivity holds with this definition of scalar product; the
other properties of a vector space are satisfied because VJ has the same addition as the real
vector space V .
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3 Complexification is a functor

If V,W are real vector spaces and T : V → W is an R-linear map, we define

TC : V C → WC

by
TC(v1, v2) = (Tv1, T v2);

this is a C-linear map. Setting ιV (v1, v2) = (v1, 0) and ιW (w1, w2) = (w1, 0),
TC : V C → WC is the unique C-linear map such that TC ◦ ιV = ιW ◦ T .2

Complexification is a functor from the category of real vector spaces to the
category of complex vector spaces:

(idV )
C(v1, v2) = (idV v1, idV v2) = (v1, v2) = idV C(v1, v2),

so (idV )
C = idV C , and if S : U → V and T : V → S are R-linear maps, then

(T ◦ S)C(v1, v2) = (T (Sv1), T (Sv2)) = TC(Sv1, Sv2) = TC(SC(v1, v2)),

so (T ◦ S)C = TC ◦ SC.

4 Complexifying a complex structure

If V is a real vector space and J : V → V is a complex structure, then

(JC)2(v1, v2) = JC(Jv1, Jv2)

= (J2v1, J
2v2)

= (−v1,−v2)

= −(v1, v2),

so (JC)2 = −idV C . Let

Ei = {w ∈ V C : JCw = iw}, E−i = {w ∈ V C : JCw = −iw}.

If w ∈ V C, then one checks that

w − iJCw ∈ Ei, w + iJCw ∈ E−i,

and

w =
1

2

(
w − iJCw

)
+

1

2

(
w + iJCw

)
.

It follows that
V C = Ei ⊕ E−i.

2See Keith Conrad’s, https://kconrad.math.uconn.edu/blurbs/linmultialg/

complexification.pdf
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5 Complex structures, inner products, and sym-
plectic forms

If V is a real vector space of odd dimension, then one can show that there is no
linear map J : V → V satisfying J2 = −idV , i.e. there does not exist a complex
structure for it. On the other hand, if V has even dimension, let

{e1, . . . , en, f1, . . . , fn}

be a basis for the real vector space V , and define J : V → V by

Jej = fj , Jfj = −ej .

Then J : V → V is a complex structure.
If V is a real vector space of dimension 2n with a complex structure J , let

e1 ̸= 0. Check that Je1 ̸∈ span{e1}. If n > 1, let

e2 ̸∈ span{e1, Je1}.

Check that the set {e1, e2, Je1, Je2} is linearly independent. If n > 2, let

e3 ̸∈ span{e1, e2, Je1, Je2}.

Check that the set {e1, e2, e3, Je1, Je2, Je3} is linearly independent. If 2i < 2n
then there is some

ei+1 ̸∈ span{e1, . . . , ei, Je1, . . . , Jei}.

I assert that
{e1, . . . , en, Je1, . . . , Jen}

is a basis for V .
Using the above basis {e1, . . . , en, Je1, . . . , Jen} for V , let fi = Jei, and

define ⟨·, ·⟩ : V × V → R by

⟨ei, ej⟩ = δi,j , ⟨fi, fj⟩ = δi,j , ⟨ei, fj⟩ = 0, ⟨fi, ej⟩ = 0.

Check that this is an inner product on the real vector space V . Moreover,

⟨Jei, Jej⟩ = ⟨fi, fj⟩ = δi,j = ⟨ei, ej⟩ ,

and

⟨Jfi, Jfj⟩ =
〈
J2ei, J

2ej
〉
= ⟨−ei,−ej⟩ = ⟨ei, ej⟩ = δi,j = ⟨fi, fj⟩ ,

and
⟨Jei, Jfj⟩ = ⟨fi,−ej⟩ = −⟨fi, ej⟩ = 0 = ⟨ei, fj⟩ ,

and
⟨Jfi, Jej⟩ = ⟨−ei, fj⟩ = −⟨ei, fj⟩ = 0 = ⟨fi, ej⟩ .
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Hence for any v, w ∈ V ,
⟨Jv, Jw⟩ = ⟨v, w⟩ .

We say that the complex structure J is compatible with the inner product ⟨·, ·⟩,
i.e. J : (V, ⟨·, ·⟩) → (V, ⟨·, ·⟩) is an orthogonal transformation.

A symplectic form on a real vector space V is a bilinear form ω : V ×V → R
such that ω(v, w) = −ω(w, v), and such that if ω(v, w) = 0 for all w then
v = 0; we say respectively that ω is skew-symmetric and non-degenerate. If a
real vector space V has a complex structure J , and ⟨·, ·⟩ is an inner product on
V that is compatible with J , define ω by

ω(v, w) =
〈
v, J−1w

〉
= ⟨v,−Jw⟩ = −⟨v, Jw⟩ ,

which is equivalent to
ω(v, Jw) = ⟨v, w⟩ .

Using that the inner product is compatible with J and that it is symmetric,

ω(v, w) = −⟨v, Jw⟩ = −
〈
Jv, J2w

〉
= −⟨Jv,−w⟩ = ⟨w, Jv⟩ = −ω(w, v),

so ω is skew-symmetric. If w ∈ V and ω(v, w) = 0 for all v ∈ V , then

−⟨v, Jw⟩ = 0

for all v ∈ V , and thus Jw = 0. Since J is invertible, w = 0. Thus ω is
nondegenerate. Therefore ω is a symplectic form on V .3 We have

ω(Jv, Jw) = −
〈
Jv, J2w

〉
= −

〈
J2v, J3w

〉
= −⟨−v,−Jw⟩ = −⟨v, Jw⟩ = ω(v, w).

We say that J is compatible with the sympletic form ω, namely, J : (V, ω) →
(V, ω) is a symplectic transformation.

On the other hand, if V is a real vector space with symplectic form ω and
J is a compatible complex structure, then ⟨·, ·⟩ : V × V → R defined by

⟨v, w⟩ = ω(v, Jw)

is an inner product on V that is compatible with the complex structure J .
Suppose V is a real vector space with complex structure J : V → V and that

h : VJ × VJ → C is an inner product on the complex vector space VJ . Define
g : V × V → R by4

g(v1, v2) =
1

2

(
h(v1, v2) + h(v1, v2)

)
=

1

2
(h(v1, v2) + h(v2, v1)) .

3Using the basis {e1, . . . , en, f1, . . . , fn} for V , fi = Jei, we have

ω(ei, fj) = −⟨ei, Jfj⟩ = −
〈
ei, J

2ej
〉
= −⟨ei,−ej⟩ = ⟨ei, ej⟩ = δi,j ,

and
ω(ei, ej) = −⟨ei, Jej⟩ = −⟨ei, fj⟩ = 0, ω(fi, fj) = 0.

A basis {e1, . . . , en, f1, . . . , fn} for a symplectic vector space that satisfies these three condi-
tions is called a Darboux basis.

4The letter h refers to a Hermitian form, i.e. an inner product on a complex vector space,
and the letter g refers to the usual notation for a metric on a Riemannian manifold.
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It is straightforward to check that g is an inner product on the real vector space
V . Similarly, define ω : V × V → R by

ω(v1, v2) =
i

2

(
h(v1, v2)− h(v1, v2)

)
=

i

2
(h(v1, v2)− h(v2, v1)) .

It is apparent that ω is skew-symmetric. If ω(v1, v2) = 0 for all v1, then in
particular ω(iv1, v1) = 0, and so

h(iv1, v1)− h(v1, iv1) = 0.

As h is a complex inner product,

ih(v1, v1)− ih(v1, v1) = 0,

i.e.
2ih(v1, v1) = 0,

and thus h(v1, v1) = 0, which implies that v1 = 0. Therefore ω is nondegener-
ate, and thus ω is a symplectic form on the real vector space V . With these
definitions of g and ω, for v1, v2 ∈ VJ we have

h(v1, v2) = g(v1, v2)− iω(v1, v2),

which writes the inner product on the complex vector space VJ using an inner
product on the real vector space V and a symplectic form on the real vector space
V ; note that VJ has the same set of elements as V . Moreover, for v1, v2 ∈ V we
have

ω(v1, Jv2) =
i

2
(h(v1, Jv2)− h(Jv2, v1))

=
i

2
(h(v1, iv2)− h(iv2, v1))

=
i

2
(−ih(v1, v2)− ih(v2, v1))

= g(v1, v2).

5.1 Tensor products

Here we give another presentation of the complexification of a real vector space,
this time using tensor products of real vector spaces. If you were satisfied
by the first definition you don’t need to read this one; read this either if you
are curious about another way to define complexification, if you want to see a
pleasant application of tensor products, or if you didn’t like the first definition.
Let V be a real vector space of dimension n. C is a real vector space of dimension
2, and

V ⊗R C
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is a real vector space of dimension 2n. If V has basis {e1, . . . , en}, then V ⊗R C
has basis {e1 ⊗ 1, . . . , en ⊗ 1, e1 ⊗ i, . . . , en ⊗ i}. Since every element of V ⊗R C
can be written uniquely in the form

v1 ⊗ 1 + v2 ⊗ i, v1, v2 ∈ V,

one often writes
V ⊗R C ∼= V ⊕ iV ;

here iV is a real vector space that is isomorphic to V .
The complexification of V is the complex vector space V C whose set of ele-

ments is V ⊗R C, with the same addition as the real vector space V ⊗R C, and
with scalar multiplication defined by

α(v ⊗ β) = v ⊗ (αβ), v ∈ V, α, β ∈ C.

Let v ∈ V C. Using the basis of the real vector space V ⊗R C, there exist some

a1, . . . , an, b1, . . . , bn ∈ R

such that

v = a1e1 ⊗ 1 + · · ·+ anen ⊗ 1 + b1e1 ⊗ i+ · · ·+ bnen ⊗ i

= e1 ⊗ (a1 + ib1) + · · ·+ en ⊗ (an + ibn)

= (a1 + ib1)e1 ⊗ 1 + · · ·+ (an + ibn)en ⊗ 1,

where in the last line we used the definition of scalar multiplication in V C. One
checks that the {e1 ⊗ 1, . . . , en ⊗ 1} is linearly independent over C, and hence
that it is a basis for the complex vector space V C, so V C has dimension n over
C.

If V and W are real vector spaces and T : V → W is a linear map, define
TC : V C → WC by

TC(v ⊗ z) = (Tv)⊗ z.

With this definition of TC, one can check that complexification is a functor from
the category of real vector spaces to the category of complex vector spaces.

6 Decomplexification

If V is a complex vector space, let V R be the real vector space whose set of
elements is V , in which addition is the same as addition in V , and in which
scalar multiplication is defined by

av = (a+ 0i)v, a ∈ R.

Because V is a complex vector space, it is apparent that V R is a real vector
space with this scalar multiplication. We call V R the decomplexification of the
complex vector space V .
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If V has basis {e1, . . . , en} and v ∈ V , then there are a1+ib1, . . . , an+ibn ∈ C
such that

v = (a1+ ib1)e1+ · · ·+(an+ ibn)en = a1e1+ · · ·+anen+ b1(ie1)+ · · ·+ bn(ien).

One checks that
e1, . . . , en, ie1, . . . , ien

are linearly independent over R, and hence are a basis for the real vector space
V R. Thus,

dimR V R = 2dimC V.

If V is a complex vector space and T : V → V is a C-linear map, define
TR : V R → V R by

TRv = Tv.

Because T is C-linear it follows that TR is R-linear. Decomplexification is a
functor from the category of complex vector spaces to the category of real vector
spaces. Since decomplexification is defined simply by ignoring the fact that V
is closed under multiplication by complex scalars and only using real scalars,
decomplexification is called a forgetful functor

7 Complex conjugation in complexified vector
spaces

If V is a real vector space, define σ : V C → V C by

σ(v1, v2) = (v1,−v2).

We call σ complex conjugation in V C. We have σ ◦ σ = idV C . If T : V C → V C

is a C-linear map, define Tσ : V C → V C by

Tσ(w) = σ(Tσ(w)).

Tσ is a C-linear map. It is a fact that if T : V C → V C is C-linear, then Tσ = T
if and only if there is some R-linear S : V → V such that T = SC. In words,
a linear map on the complexification of a real vector space is equal to its own
conjugate if and only if it is the complexification of a linear map on the real
vector space.

The following are true statements:5 (Cn = (Rn)C)

• If T : Cn → Cn is a linear map, then

exp(T )R = exp(TR),

and
exp(T )σ = exp(Tσ).

5These are exercises from V. I. Arnold’s Ordinary differential equations, p. 122, §18.4, in
Richard A. Silverman’s translation.
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• If T : Rn → Rn is a linear map, then

exp(T )C = exp(TC).

• If T : Cn → Cn is a linear map, then

detTR = |detT |2,

and
detTσ = detT .

• If T : Rn → Rn is a linear map, then

detTC = detT.

• If T : Cn → Cn is a linear map, then

Tr (TR) = TrT +TrTσ,

and
TrTσ = TrT .

• If T : Rn → Rn is a linear map, then

TrTC = TrT.

8 Linear ordinary differential equations over C
Let A be an n× n matrix over C. The solution of the initial value problem

z′(t) = Az(t), z(0) = z0 ∈ Cn,

is z(t) = exp(At).
If A has n distinct eigenvalues λ1, . . . , λn ∈ C, then, with

Eλ = {z ∈ Cn : Az = λz},

we have
Cn = Eλ1

⊕+ · · ·+⊕Eλn
,

where each Eλk
has dimension 1. For z ∈ Eλk

,

exp(At)z =

∞∑
m=0

tm
Amz

m!
=

∞∑
m=0

tm
λm
k z

m!
= eλktz.

Let ξk ∈ Eλk
be nonzero, 1 ≤ k ≤ n. They are a basis for Cn, so there are

ck ∈ C such that

z0 =

n∑
k=1

ckξk.
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Then

z(t) = exp(At)z0 = exp(At)

n∑
k=1

ckξk =

n∑
k=1

ck exp(At)ξk =

n∑
k=1

cke
λktξk.

Suppose that A is an n× n matrix over C, that z0 ∈ Cn, that Aσ = A and
that σ(z0) = z0. The solution of the initial value problem

z′(t) = Az(t), z(0) = z0,

is z(t) = exp(At)z0. We have, as exp(At)σ = exp((At)σ) = exp(At),

σ(z(t)) = σ(exp(At)z0) = σ(exp(At)σ(z0)) = exp(At)σz0 = exp(At)z0 = z(t).

Therefore, if Aσ = A and σ(z0) = z0, then σ(z(t)) = z(t) for all t.

9 Linear ordinary differential equations over R
Let A be an n×nmatrix over R and let x0 ∈ Rn. Let z0 = (x0, 0) ∈ Cn = (Rn)C,
and let z(t) = (z1(t), z2(t)) be the solution of the initial value problem

z′(t) = ACz(t), z(0) = z0 ∈ Cn.

As AC is the complexification of a real linear map, (AC)σ = AC, and

σ(z0) = σ(x0, 0) = (x0,−0) = (x0, 0) = z0,

so σ(z(t)) = z(t), i.e. (z1(t), z2(t)) = (z1(t),−z2(t)), so z2(t) = 0 for all t. But
z′(t) = (z′1(t), z

′
2(t)) and ACz(t) = (Az1(t), Az2(t)), so

z′1(t) = Az1(t)

for all t. Also, z(0) = (z1(0), z2(0)) and z(0) = z0 = (x0, 0), so z1(0) = x0.
Therefore, x(t) = z1(t) is the solution of the initial value problem

x′(t) = Ax(t), x(0) = x0.

Thus, to solve an initial value problem in Rn we can complexify it, solve the
initial value problem in Cn, and take the first entry of the solution of the complex
initial value problem.

If A is an n× n matrix over R, let

det(A− xI) =

n∑
k=0

akx
k, ak ∈ R,

its characteristic polynomial. The Cayley-Hamilton theorem states that

n∑
k=0

akA
k = 0.
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Taking the complexification of this gives

n∑
k=0

ak(A
C)k = 0.

It follows that the roots of det(A−xI) are the same as the roots of det(AC−xIC).
A complex root of det(A−xI) is not an eigenvalue of A : R2 → R2, but is indeed
an eigenvalue of AC : C2 → C2, so the roots of the characteristic polynomial of
A are the eigenvalues of AC.

10 Linear ordinary differential equations in R2

Let A be a 2 × 2 matrix over R.6 Suppose that the roots of the characteristic
polynomial

det(A− xI) = detA− xTrA+ x2

are λ, λ, i.e. that the roots of the characteristic polynomial are complex conju-
gate. Let λ = α + iω, ω ̸= 0.7 λ is an eigenvalue for AC, so let AC(v1, v2) =
λ(v1, v2), (v1, v2) ̸= 0. Furthermore,

σ(AC(v1, v2)) = σ(λ(v1, v2)),

so
(AC)σσ(v1, v2) = λσ(v1, v2),

hence, as (AC)σ = AC,

AC(v1,−v2) = λ(v1,−v2).

Therefore (v1,−v2) is an eigenvector of AC with eigenvalue λ ̸= λ, so (v1,−v2)
and (v1, v2) are linearly independent over C. If a1v1 + a2v2 = 0, a1, a2 ∈ R,
then (a1

2
− i

a2
2

)
(v1, v2) +

(a1
2

+ i
a2
2

)
(v1,−v2) = 0,

6This section follows Arnold, p. 132, §20.3.
7Define J : R2 → R2 by

J =
1

ω
(A− αI).

We have J2 = 1
ω2 (A

2 − 2αA+ α2I). By the Cayley-Hamilton theorem,

I detA−ATrA+A2 = 0,

so
Iλλ−A(λ+ λ) +A2 = 0,

and written using λ = α+ iω this is

I(α2 + ω2)− 2αA+A2 = 0.

Hence
J2 = −I,

so J = 1
ω
(A− αI) is a complex structure on R2.
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from which it follows that a1, a2 = 0. Therefore v1, v2 ∈ R2 are linearly inde-
pendent over R.

We have
(α+ iω)(v1, v2) = (αv1 − ωv2, αv1 + ωv2),

and
AC(v1, v2) = (Av1, Av2),

so
Av1 = αv1 − ωv2, Av2 = αv1 + ωv2,

and hence

A
(
v1 v2

)
=

(
αv1 − ωv2 αv1 + ωv2

)
=

(
v1 v2

)( α ω
−ω α

)
.

Therefore

A =
(
v1 v2

)( α ω
−ω α

)(
v1 v2

)−1
.
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