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1 Complex Borel measures and the Fourier trans-
form

Let M(R%) = rca(R?) be the set of complex Borel measures on R%. This is a
Banach algebra with the total variation norm, with convolution as multiplica-
tion; for p € M(R?), we denote by |u| the total variation of u, which itself
belongs to M(R?), and the total variation norm of p is ||u|| = |u|(R?).

For pp € M(R?), it is a fact that the union O of all open sets U C R? such
that |u|(U) = 0 itself satisfies |u|(O) = 0. We define supp u = R%\ O, called the
support of u.

For ;1 € M(R), we define i : R? — C by

i€ = [ ), g e R

It is a fact that i belongs to Cy(R), the collection of bounded uniformly con-
tinuous functions R? — C. For ¢ € R?,

(&))< /Rd e 27 d|pul () = [ul(RT) = [|u] - (1)
Let mg4 be Lebesgue measure on R?. For f € L!(R?), let

Af = fmd7

which belongs to M(R%). We define f : R — C by

ﬂa=@@=/

e—27ri§‘dif(x) — f(x)e_Qﬂig.wdmd(x), 5 S Rd-
Rd Re

The following theorem establishes properties of the Fourier transform of a
complex Borel measure with compact support.

'Thomas H. Wolff, Lectures on Harmonic Analysis, p. 3, Proposition 1.3.



Theorem 1. If u € M(RY) and supp u is compact, then fi € C>(RY) and for
any multi-indez «,
D% = F((—2miz)* ).

For R >0, if supp u C B(0, R), then

IDf o < (2rR)! M |l

Proof. For j =1,...,d, let e; be the jth coordinate vector in R?, with length
1. Let £ € R%, and define

We can write this as

—2mwihx; _ 1 )
A(h) = /Rd %e—Zmé.xdu(w).

For any z € R?,

6727Tihwj -1 ‘6727rihwj _ 1| - | _ 27TZh£L'j| 5 ‘ |
= = Z4T|Tj|.
h |l - A !

Because £ has compact support, 27|x;| € L' (). Furthermore, for each z € R?

we have )
6727rzh:rj -1

h
Therefore, the dominated convergence theorem tells us that

— —2miz;,  h— 0.

lim A(h) :/ —2miz e 2 T dp ().
h—0 Rd

On the other hand, for a = 1 for k = j and oy = 0 otherwise,

(D°7i)(€) = lim A(h),

(D)) = [ (~2min)e = du(a) = P (~2mia)" ) €),

and in particular, i € C*(R%). (The Fourier transform of a regular complex
Borel measure on a locally compact abelian group is bounded and uniformly
continuous.?) Because u has compact support so does (—2miz)*u, hence we
can play the above game with (—2miz)*u, and by induction it follows that for
any «,

D = F((—2miz)* ),

2Walter Rudin, Fourier Analysis on Groups, p. 15, Theorem 1.3.3.



and in particular, i € C>(R%).
Suppose that supp ¢ C B(0, R). The total variation of the complex measure
(=2miz)*p is the positive measure

(2m)l @@y || ]

hence
-2l = (@) [ a2

= (m)'*h /B<o In )

< (2m)leh / R® .. R4dlu|(z)

B(0,R)

— (2nR)lel /B )

= (27R)loh x
enR)t [ dlul(o)
= (27R)*1 ||u]l .
Then using (1),
17 ((—2miz)*p)| o < ll(=2miz)*pl| < (27R)H [lu]] -

But we have already established that D = % ((—2miz)*u), which with the
above inequality completes the proof. O

2 Test functions

For an open subset ) of R we denote by Z(f) the set of those ¢ € C°°(Q)
such that supp ¢ is a compact set. Elements of Z({2) are called test functions.
It is a fact that there is a test function ¢ satisfying: (i) ¢(z) =1 for |z| < 1,
(i) ( ) =0 for |z| > 2, (iii) 0 < ¢ < 1, and (iv) ¢ is radial. We write, for
k =
bu() = ok 1z),  weRL

For any multi-index «,
(D¢p)(x) = k™11 (D ) (k™ "2), @ e R,

hence
D%kl = k™11 | D¢ - (2)

We use the following lemma to prove the theorem that comes after it.3

3Thomas H. Wolff, Lectures on Harmonic Analysis, p. 4, Lemma 1.5.



Lemma 2. Suppose that f € CN(R?) and D*f € L*(R?) for each |a] < N.
Then for each |a| < N, DY(¢rf) — D*f in L*(R?) as k — oo.

Proof. Let |a| < N. In the case a = 0,
Jon = £l = [ lon(alf @) - fo)lds
[ o) - f@)lds
o>k

< /xlzkmx)dx.

Because f € L'(R?), this tends to 0 as k — oo.
Suppose that o > 0. The Leibniz rule tells us that with cg = (g), we have,
for each k,

D*(¢rf) = pDf+ > cgD* P fDPy.

0<fB<L

For C1 = maxg |ca|,

ID*(61f) = xDflly < Y [jesD* P fDP o],

0<B<a

< 3 D%l D01,

0<B<a
Let Cy = maxo<g<a | DP¢|| . By (2), for 0 < 8 < a we have
|DP ||, = k=11 |DPg|| . < Cok™PIr < Cok™".
Thus
ID*(6xf) = 6k DSl < GOk~ B |ID°P ]

0<B<a

which tends to 0 as k — co. For any k,
¢ D*f — D*f||; = /Rd |0k (2) (D f)(z) — (D f)(x)|dz
= [ @0 @ o s
< D% f)(z)|dz,
<[ 0wl

and because D®f € L*(R), this tends to 0 as k — oco. But

1D*(¢rf) = D*flly < 1D*(9xf) — ok D flly + [0 D f = Dflly

which completes the proof. O



Now we calculate the Fourier transform of the derivative of a function, and
show that the smoother a function is the faster its Fourier transform decays.*

Theorem 3. If f € CV(R?) and D*f € L*(RY) for each |a| < N, then for
each |a] < N,

Def(€) = (2mig)*f(€),  £eR (3)
There is a constant C = C(f, N) such that
fel<ca+ih™,  gere
Proof. If g € C1(R?), then for any 1 < j < d, integrating by parts,
/ (0,9)(z)e™ ™ dy = 27T2'£j/ g(x)e &y,
R4 Rd

It follows by induction that if g € CY(R?), then for each |a| < N,

Deg(¢) = (2mi€)g(6), € eRY

Let || < N. For k = 1,2,..., let fr = érf. For each k we have f; €
CN(R?), hence
Defi(€) = (2mi&)* fr(€), € eR%
On the one hand,

|7 - 7

| = 1D fi = D)l <D= DSy

and Lemma 2 tells us that this tends to 0 as ¥ — oco. On the other hand, for
£ €RY,

|(2mi€) fi(€) — (2mi€)* f(€)]
|2mi&)||.F (fu — £)(©)]
|2mi€)*| | fe — £l »

which by Lemma 2 tends to 0 as k — oco. Therefore, for £ € R?,

D fi(€) — (2mi€)* f(€)]

IN

D7 () - (2rig)*f(©)] < | D — D7

|+ DFu(e) — 2rig)*F(©)]
and because the right-hand side tends to 0 as k — oo, we get
D (&) = (2mi&) f()-

If y € S?71 then there is at least one 1 < j < d with y; # 0, from which we

get
> W>o

[Bl1=N

4Thomas H. Wolff, Lectures on Harmonic Analysis, p. 4, Proposition 1.4.



The function y — 75 _x ly8| is continuous S?~! — R, so there is some

Cn > 0 such that

1 _

FS Z v’ ye s
N
|Bli=N
For nonzero x € R, write = |x|y, with which Z\BIFN 28| = |2V ZIBh:N ly2].
Therefore
lz|N < Cy Z |27, r € R
[Bli=N
For |a| < N, because the Fourier transform of an element of L' belongs to

Co, we have by (3) that & — §°‘f(§) belongs to Cy(R?), and in particular is
bounded. Then for & € R?,

EMNf©l<on Y IEP11F©)]

|Bli=N
=Cn Z €7 £(9)
[Bli=N
<Cn Z “ﬁﬁf(f)Hoo
[Bli=N
=C".
On the one hand, for |{| > 1 we have
1+ [¢] < 2[¢],
hence N
_ 1+ B -
A< ()~
giving

fOr<cg™ <c2ha+1eh .
On the other hand, for || <1 we have

1+ [¢] <2,
and so
F@I < |f]|_ 2N < |f|_ 2V a+ 1.
Thus, for
C = max {2NC’,2N HfHOO}
we have
fOr<ca+len™,  ceRr,
completing the proof. O



3 Bernstein’s inequality for L?

For a Borel measurable function f : R* — C, let O be the union of those open
subsets U of R? such that f(z) = 0 for almost all z € U. In other words, O is
the largest open set on which f = 0 almost everywhere. The essential support
of f is the set

esssupp f = R\ O.

The following is Bernstein’s inequality for L?(R?).5

Theorem 4. If f € L>(R?), R > 0, and
esssupp f C B(0,R), (4)

then there is some fo € C°(R%) such that f(z) = fo(x) for almost all z € R,
and for any multi-index «,

1D foll, < (27 R) 1[I £, -

Proof. Let x r be the indicator function for B(0, R). By (4), the Cauchy-Schwarz
inequality, and the Parseval identity,

17 = ]|, < txall [ 7], = maB@ B2 151, < o0,
so f € L*(R%). The Plancherel theorem® tells us that if ¢ € L2(R%) and
g € L*(RY), then
o) = [ @)
Rd

for almost all z € R?. Thus, for fy : R? — C defined by
fo@) = [ F@eide = F(f)(-w),  weR,

we have f(x) = fo(x) for almost all x € R?. Because f = fy almost everywhere,

fo=1.
Applying Theorem 1 to du(§) = fo(—g)dé“, we have fo € C*°(R%) and for

any multi-index «,

D° fo = F((—2mi€)* f(—€)).

5Thomas H. Wolff, Lectures on Harmonic Analysis, p. 31, Proposition 5.1.
SWalter Rudin, Real and Complex Analysis, third ed., p. 187, Theorem 9.14.




By Parseval’s identity,
1D°foll, = || (~2nig)*f(=¢)],
= |erior v f&)],
< llemi€) xr ()l || ]
7.
= @2rR)* £l

< (2 R)leh

proving the claim. U

4 Nikolsky’s inequality

Nikolsky’s inequality tells us that if the Fourier transform of a function is
supported on a ball centered at the origin, then for 1 < p < g < oo, the L?
norm of the function is bounded above in terms of its LP norm.”

Theorem 5. There is a constant Cy such that if f € #(R%), R > 0,
supp f C B(0, R),
and 1 < p < q< oo, then
11, < CaR'G=H) | 11,
Proof. Let g = fgr, i.e.
g(z) = R™4f(R™ '), r e RY,

Then for £ € R?,

36 = [ o@ememde = [ Ro(R D) = fRe),

R4

showing that supp § = R~'supp f € B(0,1). Let x € 2(R%) with x(¢) = 1 for
|€] <1, with which
9= X9
Then g = (% 'x) * g, and using Young’s inequality, with 1 + % =14 1%,
lgll, < 177 X1, gl = 11X, gl - (5)

7Camil Muscalu and Wilhelm Schlag, Classical and Multilinear Harmonic Analysis, volume
I, p. 83, Lemma 4.13.




Moreover,

1/a
ol = ([ 1rrr >|adx)

(L.
([, 7o >|ady>1/a
R

1

“DYfN,

so (5) tells us
1_ N 1_
RIGY 1111, < %I, REGD ) 1),

i.e.

~ d(i-1
171, < 1l REG=3) £1,-
Now, l:1—|—1—1,SOO§lS1becauuse1§p§q§oo,namely,1§7“§oo.
T q P T
By the log-convexity of L™ norms, for % =1— 0 we have

~ Anl—60~16
1l < el 1l -

Thus with
Ca = max{||x|l, , X[l }

we have proved the claim. O

5 The Dirichlet kernel and Fejér kernel for R

The function Dys € Co(R) defined by

in 2w M
Da(a) = 22TEE 2

T™r

and Dy (0) = 2M, is called the Dirichlet kernel. Let xas be the indicator
function for the set [—M, M]. We have, for = # 0,

alz) = / Xr(€)e e

M
— / e—27rix§d£
-M

Comize | M
e 2mixé
—2mix |_,y
6—2771']\4;3 N eQTriMw
—2mix 2mix
1 eQﬂ'i]Wa: _ 6727riM:c
T 21
sin 2 M x

T



For 2 =0, Xr(0) = 2M = Dj;(0). Thus,
Dy = Xr&-
For f € L'(R) and M > 0, we define

(Saf)(z / f(&)e?™Er e, r €R.

It is straightforward to check that

sin 2w Mt
it

(Surf) (@) = /R f@—t)dt = (Dar # f)(@),  z€R.

For f € LY(R), M > 0, and = € R,

i), s M/ ([, o)
(L (L) i) an

oL (e

/ D, —x)dm) dy

i /Rf (/OMSm%m sty
< cos 2mm(y — x)
(

I
Sl
— S

Kﬁ

M
dy
271—2 2 0 )

cos 27 M (y — )
27 22 (y —a)? )dy.

=y

We define the Fejér kernel K, € Cy(R) b

1 —cos2nMz

K (@) = 2Mm222

x #0,

and K7(0) = M. Thus, because K/ is an even function,

1 M
27 | San@n = (< pla).

One proves that K is an approximate identity: Ky, > 0,

/R Koo (2)dz =

10



and for any d > 0,

M — o0 ‘:E|>§

The fact that Kjs is an approximate identity implies that for any f € L*(R),
Ky * f — fin LY(R) as M — oo.
We shall use the Fejér kernel to prove Bernstein’s inequality for R.8

Theorem 6. If un € M(R), M > 0, and
supp pu C [—M, M],

then
140 < 4mM |14l -

Proof. For xg € R, let dyg,(t) = e 2 @otdy(t). u,, has the same support has
1, and

lj\zo(l') _ / 6_2mxtdu$0(t) — / e_gﬂxte_meOtdu(t) _ ,ll(l‘-f—l’o)-
R R

It follows that to prove the claim it suffices to prove that |4/(0)| < 47M |4 .-
Write f = i € C,(R). Define Ay € C.(R) by

M—lt |t|<M
An(t) = {O i > M teR.

We calculate, for x # 0,

—27riJW:r(_1 + e27riMw)2

/ A (t)e 2Tt = _¢
R

422
_ (sinmMuz)?
w22
1 —cos2nrMx
n 2m2x2

An(z) = MKy ().

Then for t € [-M, M],
/ (e2mME _ o=2miME) [0 (€)e= 2T g — Ky (t — M) — Ky (£ + M)
R

_ Ap(—t+ M) — Ay (—t — M)
B M

8Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 122, Theorem 2.3.17.

11



On the one hand, the integral of the left-hand side with respect to p is

/R/R(QQﬂ'ng . ef2m'M§)KM(5)6727ri§td£d,u(t)
= [ — e gy (€€

On the other hand, the integral of the right-hand side with respect to u is

t 1 _
/R ) = —— /]R —2mitdp(t)
1 .
= —5—p 7 (=2mit)u)(0)
1 !
= e’ O
Hence .
0 = (@M= Ky )
giving

[F' )] < AxM (| flloo [ Knelly = 4mM || fll .
proving the claim.

12



