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1 Complex Borel measures and the Fourier trans-
form

Let M(Rd) = rca(Rd) be the set of complex Borel measures on Rd. This is a
Banach algebra with the total variation norm, with convolution as multiplica-
tion; for µ ∈ M(Rd), we denote by |µ| the total variation of µ, which itself
belongs to M(Rd), and the total variation norm of µ is ∥µ∥ = |µ|(Rd).

For µ ∈ M(Rd), it is a fact that the union O of all open sets U ⊂ Rd such
that |µ|(U) = 0 itself satisfies |µ|(O) = 0. We define suppµ = Rd \O, called the
support of µ.

For µ ∈ M(Rd), we define µ̂ : Rd → C by

µ̂(ξ) =

∫
Rd

e−2πiξ·xdµ(x), ξ ∈ Rd.

It is a fact that µ̂ belongs to Cu(R), the collection of bounded uniformly con-
tinuous functions Rd → C. For ξ ∈ Rd,

|µ̂(ξ)| ≤
∫
Rd

|e−2πiξ·x|d|µ|(x) = |µ|(Rd) = ∥µ∥ . (1)

Let md be Lebesgue measure on Rd. For f ∈ L1(Rd), let

Λf = fmd,

which belongs to M(Rd). We define f̂ : Rd → C by

f̂(ξ) = Λ̂f (ξ) =

∫
Rd

e−2πiξ·xdΛf (x) =

∫
Rd

f(x)e−2πiξ·xdmd(x), ξ ∈ Rd.

The following theorem establishes properties of the Fourier transform of a
complex Borel measure with compact support.1

1Thomas H. Wolff, Lectures on Harmonic Analysis, p. 3, Proposition 1.3.
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Theorem 1. If µ ∈ M(Rd) and suppµ is compact, then µ̂ ∈ C∞(Rd) and for
any multi-index α,

Dαµ̂ = F ((−2πix)αµ).

For R > 0, if suppµ ⊂ B(0, R), then

∥Dαµ̂∥∞ ≤ (2πR)|α|1 ∥µ∥ .

Proof. For j = 1, . . . , d, let ej be the jth coordinate vector in Rd, with length
1. Let ξ ∈ Rd, and define

∆(h) =
µ̂(ξ + hej)− µ̂(ξ)

h
, h ̸= 0.

We can write this as

∆(h) =

∫
Rd

e−2πihxj − 1

h
e−2πiξ·xdµ(x).

For any x ∈ Rd,∣∣∣∣e−2πihxj − 1

h

∣∣∣∣ = |e−2πihxj − 1|
|h|

≤ | − 2πihxj |
|h|

= 2π|xj |.

Because µ has compact support, 2π|xj | ∈ L1(µ). Furthermore, for each x ∈ Rd

we have
e−2πihxj − 1

h
→ −2πixj , h → 0.

Therefore, the dominated convergence theorem tells us that

lim
h→0

∆(h) =

∫
Rd

−2πixje
−2πiξ·xdµ(x).

On the other hand, for αk = 1 for k = j and αk = 0 otherwise,

(Dαµ̂)(ξ) = lim
h→0

∆(h),

so

(Dαµ̂)(ξ) =

∫
Rd

(−2πix)αe−2πiξ·xdµ(x) = F ((−2πix)αµ)(ξ),

and in particular, µ̂ ∈ C1(Rd). (The Fourier transform of a regular complex
Borel measure on a locally compact abelian group is bounded and uniformly
continuous.2) Because µ has compact support so does (−2πix)αµ, hence we
can play the above game with (−2πix)αµ, and by induction it follows that for
any α,

Dαµ̂ = F ((−2πix)αµ),

2Walter Rudin, Fourier Analysis on Groups, p. 15, Theorem 1.3.3.
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and in particular, µ̂ ∈ C∞(Rd).
Suppose that suppµ ⊂ B(0, R). The total variation of the complex measure

(−2πix)αµ is the positive measure

(2π)|α|1 |x1|α1 · · · |xd|αd |µ|,

hence

∥(−2πix)αµ∥ = (2π)|α|1
∫
Rd

|x1|α1 · · · |xd|αdd|µ|(x)

= (2π)|α|1
∫
B(0,R)

|x1|α1 · · · |xd|αdd|µ|(x)

≤ (2π)|α|1
∫
B(0,R)

Rα1 · · ·Rαdd|µ|(x)

= (2πR)|α|1
∫
B(0,R)

d|µ|(x)

= (2πR)|α|1
∫
Rd

d|µ|(x)

= (2πR)|α|1 ∥µ∥ .

Then using (1),

∥F ((−2πix)αµ)∥∞ ≤ ∥(−2πix)αµ∥ ≤ (2πR)|α|1 ∥µ∥ .

But we have already established that Dαµ̂ = F ((−2πix)αµ), which with the
above inequality completes the proof.

2 Test functions

For an open subset Ω of Rd, we denote by D(Ω) the set of those ϕ ∈ C∞(Ω)
such that suppϕ is a compact set. Elements of D(Ω) are called test functions.

It is a fact that there is a test function ϕ satisfying: (i) ϕ(x) = 1 for |x| ≤ 1,
(ii) ϕ(x) = 0 for |x| ≥ 2, (iii) 0 ≤ ϕ ≤ 1, and (iv) ϕ is radial. We write, for
k = 1, 2, . . .,

ϕk(x) = ϕ(k−1x), x ∈ Rd.

For any multi-index α,

(Dαϕk)(x) = k−|α|1(Dαϕ)(k−1x), x ∈ Rd,

hence
∥Dαϕk∥∞ = k−|α|1 ∥Dαϕ∥∞ . (2)

We use the following lemma to prove the theorem that comes after it.3

3Thomas H. Wolff, Lectures on Harmonic Analysis, p. 4, Lemma 1.5.
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Lemma 2. Suppose that f ∈ CN (Rd) and Dαf ∈ L1(Rd) for each |α| ≤ N .
Then for each |α| ≤ N , Dα(ϕkf) → Dαf in L1(Rd) as k → ∞.

Proof. Let |α| ≤ N . In the case α = 0,

∥ϕkf − f∥1 =

∫
Rd

|ϕk(x)f(x)− f(x)|dx

=

∫
|x|≥k

|ϕk(x)f(x)− f(x)|dx

≤
∫
|x|≥k

|f(x)|dx.

Because f ∈ L1(Rd), this tends to 0 as k → ∞.
Suppose that α > 0. The Leibniz rule tells us that with cβ =

(
α
β

)
, we have,

for each k,

Dα(ϕkf) = ϕkD
αf +

∑
0<β≤α

cβD
α−βfDβϕk.

For C1 = maxβ |cβ |,

∥Dα(ϕkf)− ϕkD
αf∥1 ≤

∑
0<β≤α

∥∥cβDα−βfDβϕk

∥∥
1

≤ C1

∑
0<β≤α

∥∥Dβϕk

∥∥
∞

∥∥Dα−βf
∥∥
1
.

Let C2 = max0<β≤α

∥∥Dβϕ
∥∥
∞. By (2), for 0 < β ≤ α we have∥∥Dβϕk

∥∥
∞ = k−|β|1

∥∥Dβϕ
∥∥
∞ ≤ C2k

−|β|1 ≤ C2k
−1.

Thus
∥Dα(ϕkf)− ϕkD

αf∥1 ≤ C1C2k
−1

∑
0<β≤α

∥∥Dα−βf
∥∥
1
,

which tends to 0 as k → ∞. For any k,

∥ϕkD
αf −Dαf∥1 =

∫
Rd

|ϕk(x)(D
αf)(x)− (Dαf)(x)|dx

=

∫
|x|≥k

|ϕk(x)(D
αf)(x)− (Dαf)(x)|dx

≤
∫
|x|≥k

|(Dαf)(x)|dx,

and because Dαf ∈ L1(Rd), this tends to 0 as k → ∞. But

∥Dα(ϕkf)−Dαf∥1 ≤ ∥Dα(ϕkf)− ϕkD
αf∥1 + ∥ϕkD

αf −Dαf∥1 ,

which completes the proof.
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Now we calculate the Fourier transform of the derivative of a function, and
show that the smoother a function is the faster its Fourier transform decays.4

Theorem 3. If f ∈ CN (Rd) and Dαf ∈ L1(Rd) for each |α| ≤ N , then for
each |α| ≤ N ,

D̂αf(ξ) = (2πiξ)αf̂(ξ), ξ ∈ Rd. (3)

There is a constant C = C(f,N) such that

|f̂(ξ)| ≤ C(1 + |ξ|)−N , ξ ∈ Rd.

Proof. If g ∈ C1
c (Rd), then for any 1 ≤ j ≤ d, integrating by parts,∫
Rd

(∂jg)(x)e
−2πiξ·xdx = 2πiξj

∫
Rd

g(x)e−2πiξ·xdx.

It follows by induction that if g ∈ CN
c (Rd), then for each |α| ≤ N ,

D̂αg(ξ) = (2πiξ)αĝ(ξ), ξ ∈ Rd.

Let |α| ≤ N . For k = 1, 2, . . ., let fk = ϕkf . For each k we have fk ∈
CN (Rd), hence

D̂αfk(ξ) = (2πiξ)αf̂k(ξ), ξ ∈ Rd.

On the one hand,∥∥∥D̂αfk − D̂αf
∥∥∥
∞

= ∥F (Dαfk −Dαf)∥∞ ≤ ∥Dαfk −Dαf∥1 ,

and Lemma 2 tells us that this tends to 0 as k → ∞. On the other hand, for
ξ ∈ Rd,

|D̂αfk(ξ)− (2πiξ)αf̂(ξ)| = |(2πiξ)αf̂k(ξ)− (2πiξ)αf̂(ξ)|
= |(2πiξ)α||F (fk − f)(ξ)|
≤ |(2πiξ)α| ∥fk − f∥1 ,

which by Lemma 2 tends to 0 as k → ∞. Therefore, for ξ ∈ Rd,

|D̂αf(ξ)− (2πiξ)αf̂(ξ)| ≤
∥∥∥D̂αfk − D̂αf

∥∥∥
∞

+ |D̂αfk(ξ)− (2πiξ)αf̂(ξ)|,

and because the right-hand side tends to 0 as k → ∞, we get

D̂αf(ξ) = (2πiξ)αf̂(ξ).

If y ∈ Sd−1 then there is at least one 1 ≤ j ≤ d with yj ̸= 0, from which we
get ∑

|β|1=N

|yβ | > 0.

4Thomas H. Wolff, Lectures on Harmonic Analysis, p. 4, Proposition 1.4.
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The function y 7→
∑

|β|1=N |yβ | is continuous Sd−1 → R, so there is some
CN > 0 such that

1

CN
≤

∑
|β|1=N

|yβ |, y ∈ Sd−1.

For nonzero x ∈ Rd, write x = |x|y, with which
∑

|β|1=N |xβ | = |x|N
∑

|β|1=N |yβ |.
Therefore

|x|N ≤ CN

∑
|β|1=N

|xβ |, x ∈ Rd.

For |α| ≤ N , because the Fourier transform of an element of L1 belongs to

C0, we have by (3) that ξ 7→ ξαf̂(ξ) belongs to C0(Rd), and in particular is
bounded. Then for ξ ∈ Rd,

|ξ|N |f̂(ξ)| ≤ CN

∑
|β|1=N

|ξβ ||f̂(ξ)|

= CN

∑
|β|1=N

|ξβ f̂(ξ)|

≤ CN

∑
|β|1=N

∥∥∥ξβ f̂(ξ)∥∥∥
∞

= C ′.

On the one hand, for |ξ| ≥ 1 we have

1 + |ξ| ≤ 2|ξ|,

hence

|ξ|−N ≤
(
1 + |ξ|

2

)−N

= 2N (1 + |ξ|)−N ,

giving
|f̂(ξ)| ≤ C ′|ξ|−N ≤ C ′2N (1 + |ξ|)−N .

On the other hand, for |ξ| ≤ 1 we have

1 + |ξ| ≤ 2,

and so
|f̂(ξ)| ≤

∥∥∥f̂∥∥∥
∞

2N2−N ≤
∥∥∥f̂∥∥∥

∞
2N (1 + |ξ|)−N .

Thus, for

C = max
{
2NC ′, 2N

∥∥∥f̂∥∥∥
∞

}
we have

|f̂(ξ)| ≤ C(1 + |ξ|)−N , ξ ∈ Rd,

completing the proof.
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3 Bernstein’s inequality for L2

For a Borel measurable function f : Rd → C, let O be the union of those open
subsets U of Rd such that f(x) = 0 for almost all x ∈ U . In other words, O is
the largest open set on which f = 0 almost everywhere. The essential support
of f is the set

ess supp f = Rd \O.

The following is Bernstein’s inequality for L2(Rd).5

Theorem 4. If f ∈ L2(Rd), R > 0, and

ess supp f̂ ⊂ B(0, R), (4)

then there is some f0 ∈ C∞(Rd) such that f(x) = f0(x) for almost all x ∈ Rd,
and for any multi-index α,

∥Dαf0∥2 ≤ (2πR)|α|1 ∥f∥2 .

Proof. Let χR be the indicator function forB(0, R). By (4), the Cauchy-Schwarz
inequality, and the Parseval identity,∥∥∥f̂∥∥∥

1
=
∥∥∥χRf̂

∥∥∥
1
≤ ∥χR∥2

∥∥∥f̂∥∥∥
2
= md(B(0, R))1/2 ∥f∥2 < ∞,

so f̂ ∈ L1(Rd). The Plancherel theorem6 tells us that if g ∈ L2(Rd) and
ĝ ∈ L1(Rd), then

g(x) =

∫
Rd

ĝ(ξ)e2πix·ξdξ

for almost all x ∈ Rd. Thus, for f0 : Rd → C defined by

f0(x) =

∫
Rd

f̂(ξ)e2πix·ξdξ = F (f̂)(−x), x ∈ Rd,

we have f(x) = f0(x) for almost all x ∈ Rd. Because f = f0 almost everywhere,

f̂0 = f̂ .

Applying Theorem 1 to dµ(ξ) = f̂0(−ξ)dξ, we have f0 ∈ C∞(Rd) and for
any multi-index α,

Dαf0 = F ((−2πiξ)αf̂(−ξ)).

5Thomas H. Wolff, Lectures on Harmonic Analysis, p. 31, Proposition 5.1.
6Walter Rudin, Real and Complex Analysis, third ed., p. 187, Theorem 9.14.
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By Parseval’s identity,

∥Dαf0∥2 =
∥∥∥(−2πiξ)αf̂(−ξ)

∥∥∥
2

=
∥∥∥(2πiξ)αχR(ξ)f̂(ξ)

∥∥∥
2

≤ ∥(2πiξ)αχR(ξ)∥∞
∥∥∥f̂∥∥∥

2

≤ (2πR)|α|1
∥∥∥f̂∥∥∥

2

= (2πR)|α|1 ∥f∥2 ,

proving the claim.

4 Nikolsky’s inequality

Nikolsky’s inequality tells us that if the Fourier transform of a function is
supported on a ball centered at the origin, then for 1 ≤ p ≤ q ≤ ∞, the Lq

norm of the function is bounded above in terms of its Lp norm.7

Theorem 5. There is a constant Cd such that if f ∈ S (Rd), R > 0,

supp f̂ ⊂ B(0, R),

and 1 ≤ p ≤ q ≤ ∞, then

∥f∥q ≤ CdR
d( 1

p−
1
q ) ∥f∥p .

Proof. Let g = fR, i.e.

g(x) = R−df(R−1x), x ∈ Rd.

Then for ξ ∈ Rd,

ĝ(ξ) =

∫
Rd

g(x)e−2πiξ·xdx =

∫
Rd

R−df(R−1x)e−2πiξ·xdx = f̂(Rξ),

showing that supp ĝ = R−1supp f̂ ⊂ B(0, 1). Let χ ∈ D(Rd) with χ(ξ) = 1 for
|ξ| ≤ 1, with which

ĝ = χĝ.

Then g = (F−1χ) ∗ g, and using Young’s inequality, with 1 + 1
q = 1

r + 1
p ,

∥g∥q ≤
∥∥F−1χ

∥∥
r
∥g∥q = ∥χ̂∥r ∥g∥q . (5)

7Camil Muscalu andWilhelm Schlag, Classical and Multilinear Harmonic Analysis, volume
I, p. 83, Lemma 4.13.
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Moreover,

∥g∥a =

(∫
Rd

|R−df(R−1x)|adx
)1/a

=

(∫
Rd

R−da+d|f(y)|ady
)1/a

= Rd( 1
a−1) ∥f∥a ,

so (5) tells us

Rd( 1
q−1) ∥f∥q ≤ ∥χ̂∥r R

d( 1
p−1) ∥f∥p ,

i.e.
∥f∥q ≤ ∥χ̂∥r R

d( 1
p−

1
q ) ∥f∥p .

Now, 1
r = 1+ 1

q − 1
p , so 0 ≤ 1

r ≤ 1 because 1 ≤ p ≤ q ≤ ∞, namely, 1 ≤ r ≤ ∞.

By the log-convexity of Lr norms, for 1
r = 1− θ we have

∥χ̂∥r ≤ ∥χ̂∥1−θ
1 ∥χ̂∥θ∞ .

Thus with
Cd = max{∥χ̂∥1 , ∥χ̂∥∞}

we have proved the claim.

5 The Dirichlet kernel and Fejér kernel for R

The function DM ∈ C0(R) defined by

DM (x) =
sin 2πMx

πx
, x ̸= 0

and DM (0) = 2M , is called the Dirichlet kernel. Let χM be the indicator
function for the set [−M,M ]. We have, for x ̸= 0,

χ̂R(x) =

∫
R
χR(ξ)e

−2πixξdξ

=

∫ M

−M

e−2πixξdξ

=
e−2πixξ

−2πix

∣∣∣∣M
−M

=
e−2πiMx

−2πix
+

e2πiMx

2πix

=
1

πx

e2πiMx − e−2πiMx

2i

=
sin 2πMx

πx
.
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For x = 0, χ̂R(0) = 2M = DM (0). Thus,

DM = χ̂R.

For f ∈ L1(R) and M > 0, we define

(SMf)(x) =

∫ M

−M

f̂(ξ)e2πiξxdξ, x ∈ R.

It is straightforward to check that

(SMf)(x) =

∫
R

sin 2πMt

πt
f(x− t)dt = (DM ∗ f)(x), x ∈ R.

For f ∈ L1(R), M > 0, and x ∈ R,

1

M

∫ M

0

(Smf)(x)dm =
1

M

∫ M

0

(∫ m

−m

f̂(ξ)e2πiξxdξ

)
dm

=
1

M

∫ M

0

(∫ m

−m

(∫
R
f(y)e−2πiξydy

)
e2πiξxdξ

)
dm

=
1

M

∫
R
f(y)

(∫ M

0

(∫ m

−m

e−2πiξ(y−x)dξ

)
dm

)
dy

=
1

M

∫
R
f(y)

(∫ M

0

Dm(y − x)dm

)
dy

=
1

M

∫
R
f(y)

(∫ M

0

sin 2πm(y − x)

π(y − x)
dm

)
dy

=
1

M

∫
R
f(y)

(
−cos 2πm(y − x)

2π2(y − x)2

∣∣∣∣M
0

)
dy

=
1

M

∫
R
f(y)

(
1

2π2(y − x)2
− cos 2πM(y − x)

2π2(y − x)2

)
dy.

We define the Fejér kernel KM ∈ C0(R) by

KM (x) =
1− cos 2πMx

2Mπ2x2
, x ̸= 0,

and KM (0) = M . Thus, because KM is an even function,

1

M

∫ M

0

(Smf)(x)dm = (KM ∗ f)(x).

One proves that KM is an approximate identity: KM ≥ 0,∫
R
KM (x)dx = 1,
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and for any δ > 0,

lim
M→∞

∫
|x|>δ

KM (x)dx = 0.

The fact that KM is an approximate identity implies that for any f ∈ L1(R),
KM ∗ f → f in L1(R) as M → ∞.

We shall use the Fejér kernel to prove Bernstein’s inequality for R.8

Theorem 6. If µ ∈ M(R), M > 0, and

suppµ ⊂ [−M,M ],

then
∥µ̂′∥∞ ≤ 4πM ∥µ̂∥∞ .

Proof. For x0 ∈ R, let dµx0
(t) = e−2πix0tdµ(t). µx0

has the same support has
µ, and

µ̂x0
(x) =

∫
R
e−2πixtdµx0

(t) =

∫
R
e−2πixte−2πix0tdµ(t) = µ̂(x+ x0).

It follows that to prove the claim it suffices to prove that |µ̂′(0)| ≤ 4πM ∥µ̂∥∞.
Write f = µ̂ ∈ Cu(R). Define ∆M ∈ Cc(R) by

∆M (t) =

{
M − |t| |t| < M

0 |t| ≥ M,
t ∈ R.

We calculate, for x ̸= 0,∫
R
∆M (t)e−2πixtdt = −e−2πiMx(−1 + e2πiMx)2

4π2x2

=
(sinπMx)2

π2x2

=
1− cos 2πMx

2π2x2
.

so
∆̂M (x) = MKM (x).

Then for t ∈ [−M,M ],∫
R
(e2πiMξ − e−2πiMξ)KM (ξ)e−2πiξtdξ = K̂M (t−M)− K̂M (t+M)

=
∆M (−t+M)−∆M (−t−M)

M

=
t

M
.

8Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 122, Theorem 2.3.17.
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On the one hand, the integral of the left-hand side with respect to µ is∫
R

∫
R
(e2πiMξ − e−2πiMξ)KM (ξ)e−2πiξtdξdµ(t)

=

∫
R
(e2πiMξ − e−2πiMξ)KM (ξ)f(ξ)dξ.

On the other hand, the integral of the right-hand side with respect to µ is∫
R

t

M
dµ(t) =

1

−2πiM

∫
R
−2πitdµ(t)

=
1

−2πiM
F ((−2πit)µ)(0)

=
1

−2πiM
f ′(0).

Hence
1

−2πiM
f ′(0) =

∫
R
(e2πiMξ − e−2πiMξ)KM (ξ)f(ξ)dξ,

giving
|f ′(0)| ≤ 4πM ∥f∥∞ ∥KM∥1 = 4πM ∥f∥∞ ,

proving the claim.
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