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1 Bernoulli polynomials
For k£ > 0, the Bernoulli polynomial By (z) is defined by
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The Bernoulli numbers are Bj, = Bj(0), the constant terms of the Bernoulli
polynomials. For any z, using L’Hospital’s rule the left-hand side of (1) tends
to 1 as z — 0, and the right-hand side tends to By(z), hence By(x) = 1.
Differentiating (1) with respect to z,
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so B{(z) = 0 and for k > 1 we have B’,;’C(!m) = 13(2111():1!-)’ ie. Bj(x) = kBi_1(x).

Furthermore, for k > 1, integrating (1) with respect to z on [0, 1] produces
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hence fol Bo(z)dr =1 and for k > 1,

/01 By (x)dz = 0.

The first few Bernoulli polynomials are
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The Bernoulli polynomials satisfy the following;:
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hence for k > 1 it holds that By(z + 1) = kz¥~! + By(z). In particular, for
k> 2, B(1) = By(0).

Using (1),
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hence for & > 0,
Bi(1—z) = (=1)" By ().

Finally, it is a fact that for & > 2,
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2 Periodic Bernoulli functions

For z € R, let [x] be the greatest integer < x, and let R(x) = x — [z], called
the fractional part of x. Write T = R/Z and define the periodic Bernoulli
functions P, : T — R by

Pu(t) = Bi(R(t)),  teT.



For k > 2, because By (1) = By(0), the function Py is continuous. For f : T — C
define its Fourier transform f :Z — C by

f@%iéﬂﬂf%m%u ner.

For k£ > 1, one calculates ﬁk(O) = 0 and using integration by parts,
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for n # 0. Thus for k > 1, the Fourier series of Py, is'
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For k> 2, -, \]Sk(n)| < 00, from which it follows that >, -y ﬁk(n)ezﬂm
converges to Py (t) uniformly for ¢ € T. Furthermore, for t € Z,?
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Pi(t) = —— — sin 27nt.
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For f,g € LY(T) and n € Z,

Frg(n) = /TF ( /Tr f(x—y)g(y)dy) e P g
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= f(n)g(n).
For k,1 > 1 and for n # 0,

P v Bi(n) = Ba(n)Pu(n)
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and Im(()) =0= flgkz(()), 50 Py x P = —Pyyy.

Lcf. http://www.math.umn.edu/~garrett/m/mfms/notes_c/bernoulli.pdf
2Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I: Classical
Theory, p. 499, Theorem B.2.



3 Euler-Maclaurin summation formula

The Euler-Maclaurin summation formula is the following.? If a < b are
real numbers, K is a positive integer, and f is a C¥ function on an open set
that contains [a, b], then

Applying the Euler-Maclaurin summation formula with a = 1,6 = n, K =
2, f(z) = log z yields*
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Stirling’s approximation.
Write a, = —logn + Y., ..., . Because log(1 — z) is concave,
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which means that the sequence a,, is nonincreasing. For f(z) = %7 because f is
positive and nonincreasing,
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hence a,, > 0. Because a,, is positive and nonincreasing, there exists some non-
negative limit, -, called Euler’s constant. Using the Euler-Maclaurin summa-
tion formula with a =1,b=n,K =1, f(z) = 1, as Py (z) = [2] — 3,
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3Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I: Classical
Theory, p. 500, Theorem B.5.

4Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I: Classical
Theory, p. 503, Eq. B.25.

which is




as 0 < R(x)x=2 < 272, the function x — R(z)z~? is integrable on [1,00). Since
0< f:o R(z)z2dx < f;o 7 2de =n"1,
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for C' = l—floo R(z)z~2 But —logn+>,.,. -, % — 7y as n — oo, from which
it follows that C' = ~, and thus -
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4 Hurwitz zeta function

For 0 < a <1 and Res > 1, define the Hurwitz zeta function by

((s,0) = Y (n+a) ",

n>0

For Res > 0,
I'(s) = / t e tdt,
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and for n > 0 do the change of variable t = (n + a)u,
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For real s > 1,
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fn(s,u) > 0 and the sequence fy(s,u) is pointwise nondecreasing, and
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By the monotone convergence theorem,
/000 fn(s,u)du — /000 f(s,u)du,
which means that, for real s > 1,
C(s,a)T(s) = /000 f(s,u)du.

Write - L -
du = d du.
/0 f(s,u)du /0 f(s,u) u—|—/1 f(s,u)du

Now, by (1), for 0 < u < 2,
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For k > 2, real s > 1, and 0 < u < 27, by (2),
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which is summable, and thus by the dominated convergence theorem,
uk+sf2
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Check that s — Y% ((=1)* Bi(@) # ;== is meromorphic on C, with poles of
order Oor 1 at s = —k+1, k > 0 (the order of the pole is 0 if By (a) = 0), at which
the residue is (—1)*Bj,(«)2;.> On the other hand, check that s — [ f(s,u)du
is entire. Therefore ((s,«)T'(s) is meromorphic on C, with poles of order 0
or 1 at s = —k+ 1, k > 0 and the residue of ((s,a)['(s) at s = —k + 1 is
(=1)*By(ar) . But it is a fact that I'(s) has poles of order 1 at s = —n, n > 0,
with residue % Hence the only pole of ((s,a) is at s = 1, at which the
residue is 1.

5Kazuya Kato, Nobushige Kurokawa, and Takeshi Saito, Number Theory 1: Fermat’s
Dream, p. 96.



Theorem 1. Forn > 1 and for 0 < o < 1,
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Proof. For n > 1, because ((s, «) does not have a pole at s = 1 —n and because

I'(s) has a pole of order 1 at s = 1 — n with residue ((nllz)_!l,
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On the other hand, ((s,a)I'(s) has a pole of order 1 at s = 1 — n with residue
(=1)"By,(a);. Therefore
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5 Sobolev spaces

For real s > 0, we define the Sobolev space H*(T) as the set of those f € L?(T)
such that

FOPR+ Y 170 < .

nezZ\{0}

For f,g € H*(T), define

(£ 9oy = FOO) + D Fm)gn)|nl>.
nez\{0}

This is an inner product, with which H*(T) is a Hilbert space.®

6See http://www.math.umn.edu/~garrett/m/mfms/notes/09_sobolev.pdf
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For f € H*(T), the partial sums Z\nISN f(n)eg’”"‘” are a Cauchy sequence in

H#(T) and by the above are a Cauchy sequence in the Banach space C"(T) and
so converge to some g € C"(T). Then g = f, which implies that g = f almost
everywhere.

For k > 1, Py(0) = 0 and Py(n) = —(2xin)~* for n # 0. For k,1 > s + 1
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For s > r + 3,
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Thus if k¥ > s+ L then P, € H*(T), and in particular P, € H*1(T) for k > 1.
if f € H*(T) then there is some g € C"(T) such that g = f
almost everywhere. Thus if r 4 % <s<k—42% ie k> r+1, then there is
some g € C"(T) such that g = Py almost everywhere. But for k # 1, Py is
continuous, so in fact g = Py. In particular, P, € C*=2(T) for k > 2.



6 Reproducing kernel Hilbert spaces

For z € T and f: T — C, define (7,.f)(y) = f(y — ). We calculate
mof ) = [ fly - a)e 2y
T

_ e—?ﬂ'inw / f(y)e—27rinydy
T
— 6727rmmf(n).
Let r > 1. For x € T, define F, : T — R by
F, =14 (—=1)""'(2m)?" 1, Py,.

For n € Z,
Fu(n) = 6o(n) + (=1)""1(2m)?" - €727 B, (n).
F;(O) =1, and for n # 0,
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For f € H"(T),
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This shows that H"(T) is a reproducing kernel Hilbert space.
Define F: T x T — R by

F(x,y) = <Fa:aFy>HT(T)
=1+ (1)1 (2m)" Par(y — x).

Thus the reproducing kernel of H"(T) is”

F(z,y) =1+ (—1)T*1(27r)2TP2r(y —x).

7cf. Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in
Probability and Statistics, p. 318, who use a different inner product on H" (T) and consequently
have a different expression for the reproducing kernel.



