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1 Introduction

A trigonometric polynomial of degree n is an expression of the form

n∑
k=−n

cke
ikt, ck ∈ C.

Using the identity eit = cos t+ i sin t, we can write a trigonometric polynomial
of degree n in the form

a0 +

n∑
k=1

ak cos kt+

n∑
k=1

bk sin kt, ak, bk ∈ C.

For 1 ≤ p < ∞ and for a 2π-periodic function f , we define the Lp norm of
f by

∥f∥p =

(
1

2π

∫ 2π

0

|f(t)|pdt
)1/p

.

For a continuous 2π-periodic function f , we define the L∞ norm of f by

∥f∥∞ = max
0≤t≤2π

|f(t)|.

If f is a continuous 2π-periodic function, then there is a sequence of trigono-
metric polynomials fn such that ∥f − fn∥∞ → 0 as n → ∞ [31, p. 54, Corol-
lary 5.4].

If 1 ≤ p < ∞ and f is a continuous 2π-periodic function, then

∥f∥p =

(
1

2π

∫ 2π

0

|f(t)|pdt
)1/p

≤
(

1

2π

∫ 2π

0

∥f∥p∞dt

)1/p

= ∥f∥∞.

Jensen’s inequality [16, p. 44, Theorem 2.2] (cf. [30, p. 113, Problem 7.5]) tells
us that if ϕ : [0,∞) → R is convex, then for any function h : [0, 2π] → [0,∞) we
have

ϕ

(
1

2π

∫ 2π

0

h(t)dt

)
≤ 1

2π

∫ 2π

0

ϕ(h(t))dt.
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If 1 ≤ p < q < ∞, then ϕ : [0,∞) → R defined by ϕ(x) = xq/p is convex. Hence,
if 1 ≤ p < q < ∞ then for any 2π-periodic function f ,

∥f∥p = (ϕ(∥f∥pp))1/q

=

(
ϕ

(
1

2π

∫ 2π

0

|f(t)|pdt
))1/q

≤
(

1

2π

∫ 2π

0

ϕ(|f(t)|p)dt
)1/q

=

(
1

2π

∫ 2π

0

|f(t)|qdt
)1/q

= ∥f∥q.

The Dirichlet kernel Dn is defined by

Dn(t) =

n∑
k=−n

eikt = 1 + 2

n∑
k=1

cos kt.

One can show [14, p. 71, Exercise 1.1] that

∥Dn∥1 =
4

π2
· log n+O(1).

(On the other hand, it can quickly be seen that ∥Dn∥∞ = 2n+1, and it follows
from Parseval’s identity that ∥Dn∥2 =

√
2n+ 1.)

Pólya and Szegő [27, Part VI] present various problems about trigonomet-
ric polynomials together with solutions to them. A result on L∞ norms of
trigonometric polynomials that Pólya and Szegő present is for the sum An(t) =∑n

k=1
sin kt

k . The local maxima and local minima of An can be explicitly deter-
mined [27, p. 74, no. 23], and it can be shown that [27, p. 74, no. 25]

∥An∥∞ ∼
∫ π

0

sin t

t
dt.

2 Lp norms

If 1 ≤ p < q < ∞, then [14, p. 123, Exercise 1.8] (cf. [7, p. 102, Theorem 2.6])
there is some C(p, q) such that for any trigonometric polynomial f of degree n,
we have

∥f∥q ≤ C(p, q)n
1
p−

1
q ∥f∥p.

This inequality is sharp [33, p. 230]: for 1 ≤ p < q < ∞ there is some C ′(p, q)

such that if Fn(t) =
1
n

∑n−1
k=0 Dk(t) (Fn is called the Fejér kernel) then

∥Fn∥q > C ′(p, q)n
1
p−

1
q ∥Fn∥p.
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Theorem 1. Let 1 ≤ p ≤ q ≤ ∞. If f̂(j) = 0 for |j| > n+ 1 then

∥f∥q ≤ 5(n+ 1)
1
p−

1
q ∥f∥p.

Proof. LetKn(t) =
∑n

j=−n

(
1− |j|

n+1

)
eijt, the Fejér kernel. From this expression

we get |Kn(t)| ≤ Kn(0) = n + 1. It’s straightforward to show that Kn(t) =

1
n+1

(
sin n+1

2 t

sin 1
2 t

)2
. Since sin t

2 > t
π for 0 < t < π, we get |Kn(t)| ≤ π2

(n+1)t2 , and

thus we obtain

|Kn(t)| ≤ min
(
n+ 1,

π2

(n+ 1)t2

)
.

Then, for any r ≥ 1,

∥Kn∥rr =
1

2π

∫ 2π

0

|Kn(t)|rdt

≤ 1

2π

∫ π
n+1

0

(n+ 1)rdt+
1

2π

∫ 2π

π
n+1

( π2

(n+ 1)t2

)r
dt

=
(n+ 1)r−1

2
+

1

2

1

(n+ 1)r
1

2r − 1

(
(n+ 1)2r−1 − 1

22r−1

)
≤ (n+ 1)r−1

2
+

1

2

1

(n+ 1)r
1

2r − 1
(n+ 1)2r−1

≤ (n+ 1)r−1.

Hence ∥Kn∥r ≤ (n+ 1)1−
1
r .

Let Vn(t) = 2K2n+1(t)−Kn(t), the de la Vallée Poussin kernel. Then

∥Vn∥r ≤ 2∥K2n+1∥r + ∥Kn∥r ≤ 2(2n+ 2)1−
1
r + (n+ 1)1−

1
r ≤ 5(n+ 1)1−

1
r .

For |j| ≤ n + 1 we have V̂n(j) = 1, and one thus checks that Vn ∗ f = f .
Take 1

q + 1 = 1
p + 1

r . By Young’s inequality we have

∥f∥q = ∥Vn ∗ f∥q ≤ ∥Vn∥r∥f∥p ≤ 5(n+ 1)
1
p−

1
q ∥f∥p.

Let Xn = {a0+
∑n

k=1 ak cos kt+ bk sin kt : ak, bk ∈ R}, the real vector space
of real valued trigonometric polynomials of degree n, have norm

∥f∥Xn
= max{|a0|, |a1|, . . . , |an|, |b1|, . . . , |bn|}.

Let Yn,p be the same vector space with the Lp norm. Ash and Ganzburg [1]
give upper and lower bounds on the operator norm of the map i : Xn → Yn,p

defined by i(f) = f .
Bernstein’s inequality [14, p. 50, Exercise 7.16] states that for 1 ≤ p ≤ ∞, if

f is a trigonometric polynomial of degree n, then

∥f ′∥p ≤ n∥f∥p.
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In the other direction, if f ∈ C1 then

1

2π

∫ 2π

0

f(s)ds+
1

2π

∫ t

0

sf ′(s)ds+
1

2π

∫ 2π

t

(s− 2π)f ′(s)ds

=
1

2π

∫ 2π

0

f(s)ds+
1

2π

∫ 2π

0

sf ′(s)ds−
∫ 2π

t

f ′(s)ds

=
1

2π

∫ 2π

0

f(s)ds+
1

2π
sf(s)

∣∣∣2π
0

− 1

2π

∫ 2π

0

f(s)ds− f(s)
∣∣∣2π
t

=f(t).

Hence

|f(t)| ≤ 1

2π

∫ 2π

0

|f(s)|ds+ 1

2π

∫ t

0

s|f ′(s)|ds+ 1

2π

∫ 2π

t

(2π − s)|f ′(s)|ds

≤ 1

2π

∫ 2π

0

|f(s)|ds+
∫ t

0

|f ′(s)|ds+
∫ 2π

t

|f ′(s)|ds

= ∥f∥1 + 2π∥f ′∥1,

so
∥f∥∞ ≤ ∥f∥1 + 2π∥f ′∥1.

This is an instance of the Sobolev inequality [26].
It turns out that for a trigonometric polynomial the mass cannot be too

concentrated. More precisely, the number of nonzero terms of a trigonometric
polynomial restricts how concentrated its mass can be. Let dµ = dt

2π . Thus
µ([0, 2π]) = 1. A result of Turán [20, p. 89, Lemma 1] states that if λ1, . . . , λN ∈
Z and T (t) =

∑N
n=1 bne

iλnt, bn ∈ C, then for any closed arc I ⊂ [0, 2π],

∥T∥∞ ≤
(

2e

µ(I)

)N−1

max
t∈I

|T (t)|.

Nazarov [11, p. 452] shows that there is some constant A such that if E is a
closed subset of [0, 2π] (not necessarily an arc), then

∥T̂∥1 ≤
(

A

µ(E)

)N

max
t∈E

|f(T )|.

Nazarov [23] proves that there exists some constant C such that if 0 ≤ q ≤ 2
and µ(E) ≥ 1

3 , then

∥T∥q ≤ eC(N−1)(1−µ(E)
2π )

(
1

2π

∫
E

|T (t)|qdt
)1/q

.

These results of Turan and Nazarov are examples of the uncertainty principle
[9], which is the general principle that a constrain on the support of the Fourier
transform of a function constrains the support of the function itself.
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In [10], Hardy and Littlewood present inequalities for norms of 2π-periodic
functions in terms of certain series formed from their Fourier coefficients. Let
ck ∈ C, k ∈ Z, be such that ck → 0 as k → ±∞, and define c∗0, c

∗
1, c

∗
−1, c

∗
2, c

∗
−2, . . .

to be the absolute values of the ck ordered in decreasing magnitude. For real
r > 1, define

S∗
r (c) =

( ∞∑
k=−∞

c∗k
r(|k|+ 1)r−2

)1/r

.

For instance, if ck = 1 for −N ≤ k ≤ N and ck = 0 for |k| > N , then

S∗
r (c) =

(
1 + 2

∑N+1
k=2 kr−2

)1/r
. Hardy and Littlewood state the result [10,

p. 164, Theorem 2] that if 1 < p ≤ 2 then there is some constant A(p) such
that for any sequence c, with ck → 0 as k → ±∞, if f(t) =

∑∞
k=−∞ cke

ikt and
∥f∥p < ∞ then

S∗
p(c) ≤ A(p)∥f∥p.

A proof of this is given in Zygmund [35, vol. II, p. 128, chap. XII, Theorem 6.3].
Asking if this inequality holds for p = 1 suggests the following question that
Hardy and Littlewood pose at the end of their paper [10, p. 168]: Is there a
constant A such that for all distinct positive integers mk, k = 1, . . . , N , we have

∥
N∑

k=1

cosmkt∥1 > A logN?

McGehee, Pigno and Smith [18] prove that there is some K such that for all N ,
if n1, . . . , nN are distinct integers and c1, . . . , cN ∈ C satisfy |ck| ≥ 1, then

∥
N∑

k=1

cke
inkt∥1 > K logN.

Thus

∥
N∑

k=1

cosmkt∥1 =
1

2
· ∥

N∑
k=1

eimkt + e−imkt∥1 ≥ 1

2
·K log(2N).

For k ≥ 2, define TN (t) =
∑N

n=1 e
inkt. Since ∥TN∥∞ = N , for each p ≥ 1 we

have ∥TN∥p ≤ N . Hua’s lemma [22, p. 116, Theorem 4.6] states that if ϵ > 0,
then

∥TN∥2k = O
(
N1− k

2k
+ϵ
)
.

Hua’s lemma is used in additive number theory. The number of sets of integer
solutions of the equation

f(x1, . . . , xn) = N, ar ≤ xr ≤ br

is equal to (cf. [12, p. 151])∑
a1≤x1≤b1

· · ·
∑

an≤xn≤bn

∫ 1

0

e2πi(f(x1,...,xn)−N)tdt.
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Borwein and Lockhart [4]: what is the expected Lp norm of a trigonometric
polynomial of order n? Kahane [13, Chapter 6] also presents material on random
trigonometric polynomials.

Nursultanov and Tikhonov [25]: the sup on a subset of T of a trigonometric
polynomial f of degree n being lower bounded in terms of ∥f∥∞, n, and the
measure of the subset.

3 ℓp norms

For a 2π-periodic function f , we define f̂ : Z → C by

f̂(k) =
1

2π

∫ 2π

0

e−iktf(t)dt.

For 1 ≤ p < ∞, we define the ℓp norm of f̂ by

∥f̂∥p =

( ∞∑
k=−∞

|f̂(k)|p
)1/p

,

and we define the ℓ∞ norm of f̂ by

∥f̂∥∞ = max
k∈Z

|f̂(k)|.

Parseval’s identity [31, p. 80, Theorem 1.3] states that ∥f∥2 = ∥f̂∥2.
If 1 ≤ p < ∞, then

∥f̂∥∞ ≤
(
· · ·+ ∥f̂∥p∞ + · · ·

)1/p
= ∥f̂∥p.

If 1 ≤ p < q < ∞, then, since for each k, |f̂(k)|
∥f̂∥q

≤ 1,

1 =

( ∞∑
k=−∞

(
|f̂(k)|
∥f̂∥q

)q)1/q

≤

( ∞∑
k=−∞

(
|f̂(k)|
∥f̂∥q

)p)1/q

=
∥f̂∥p/qp

∥f̂∥p/qq

.

Hence for 1 ≤ p < p ≤ ∞,
∥f̂∥q ≤ ∥f̂∥p.

For 1 ≤ p < ∞, if f is a trigonometric polynomial of degree n then

∥f̂∥p =

(
n∑

k=−n

|f̂(k)|p
)1/p

≤

(
n∑

k=−n

∥f̂∥p∞

)1/p

= (2n+ 1)1/p∥f̂∥∞.

For 1 ≤ p < q < ∞, we have [30, p. 123, Problem 8.3] (this is Jensen’s
inequality for sums)(

n∑
k=−n

1

2n+ 1
|f̂(k)|p

)1/p

≤

(
n∑

k=−n

1

2n+ 1
|f̂(k)|q

)1/q

,
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i.e.
(2n+ 1)−1/p∥f̂∥p ≤ (2n+ 1)−1/q∥f̂∥q.

Hence for 1 < p < q < ∞,

∥f̂∥p ≤ (2n+ 1)
1
p−

1
q ∥f̂∥q.

For any t,

|f(t)| =

∣∣∣∣∣
∞∑

k=−∞

f̂(k)eikt

∣∣∣∣∣ ≤
∞∑

k=−∞

|f̂(k)eikt| =
∞∑

k=−∞

|f̂(k)| = ∥f̂∥1.

Hence
∥f∥∞ ≤ ∥f̂∥1.

For any k ∈ Z,

|f̂(k)| =
∣∣∣∣ 12π

∫ 2π

0

e−iktf(t)dt

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f(t)|dt = ∥f∥1.

Hence
∥f̂∥∞ ≤ ∥f∥1.

The Hausdorff-Young inequality [32, p. 57, Corollary 2.4] states that for 1 ≤
p ≤ 2 and 1

p + 1
q = 1, if f ∈ Lp then

∥f̂∥q ≤ ∥f∥p.

The dual Hausdorff-Young inequality [32, p. 58, Corollary 2.5] states that for
1 ≤ p ≤ 2 and 1

p + 1
q = 1, if f ∈ Lq then

∥f∥q ≤ ∥f̂∥q.

A survey on the Hausdorff-Young inequality is given in [6])

For M + 1 ≤ k ≤ M + N , let ak ∈ C and let S(t) =
∑N+1

k=M+1 ake
ikt. Let

t1, . . . , tR ∈ R, and let δ be such that if r ̸= s then

∥tr − ts∥ ≥ δ,

where ∥t∥ = mink |t − k| is the distance from t to a nearest integer. The large
sieve [19] is an inequality of the form

R∑
r=1

|S(2πtr)|2 ≤ ∆(N, δ)

M+N∑
k=M+1

|ak|2.

A result of Selberg [19, p. 559, Theorem 3] shows that the large sieve is valid
for ∆ = N − 1 + δ−1.

Kristiansen [15]

7



Boas [2]
For F : Z/n → C, its Fourier transform F̂ : Z/n → C (called the discrete

Fourier transform) is defined by

F̂ (k) =
1

n

n−1∑
j=0

F (j)e−2πijk/n, 0 ≤ k ≤ n− 1,

and one can prove [31, p. 223, Theorem 1.2] that

F (j) =

n−1∑
k=0

F̂ (k)e2πikj/N , 0 ≤ j ≤ n− 1.

One can also prove Parseval’s identity for the Fourier transform on Z/n [31,
p. 223, Theorem 1.2]. It states

n−1∑
k=0

|F̂ (k)|2 =
1

n

n−1∑
j=0

|F (j)|2.

Let P (t) =
∑n−1

k=0 ake
ikt. Define F : Z/n → C by

F (j) =

n−1∑
k=0

ake
2πikj/n, 0 ≤ j ≤ n− 1.

(That is, F̂ (k) = ak.) We then have

n−1∑
k=0

|ak|2 =
1

n

n−1∑
j=0

|F (j)|2 =
1

n

n−1∑
j=0

∣∣P(2πj
n

)∣∣2.
Thus

∥P∥2 =

 1

n

n−1∑
j=0

∣∣P(2πj
n

)∣∣21/2

.

The Marcinkiewicz-Zygmund inequalities [35, vol. II, p. 28, chap. X, Theo-
rem 7.5] state that there is a constant A such that for 1 ≤ p ≤ ∞, if f is a
trigonometric polynomial of degree n then(

1

2n+ 1

2n∑
k=0

∣∣f( 2πk

2n+ 1

)∣∣p)1/p

≤ A(2π)1/p∥f∥p,

and for each 1 < p < ∞ there exists some Ap such that if f is a trigonometric
polynomial of degree n then

∥f∥p ≤ Ap

(
1

2n+ 1

2n∑
k=0

∣∣f( 2πk

2n+ 1

)∣∣p)1/p

.

8



Máté and Nevai [17, p. 148, Theorem 6] prove that for p > 0, if Sn is a
trigonometric polynomial of degree n then

∥Sn∥∞ ≤
(
(1 + np)e

2

)1/p

∥Sn∥p.

Máté and Nevai [17] prove a version of Bernstein’s inequality for 0 < p < 1, and
their result can be sharpened to the following [34]: For 0 < p < 1, if Tn is a
trigonometric polynomial of order n then

∥T ′
n∥p ≤ n∥Tn∥p.

Let supp f̂ = {k ∈ Z : f̂(k) ̸= 0}. A subset Λ of Z is called a Sidon set
[28, p. 121, §5.7.2] if there exists a constant B such that for every trigonometric

polynomial f with supp f̂ ⊆ Λ we have

∥f̂∥1 ≤ B∥f∥∞.

Let B(Λ) be the least such B. A sequence of positive integers λk is said to
be lacunary if there is a constant ρ such that λk+1 > ρλk for all k. If λk is a
lacunary sequence, then {λk} is a Sidon set [21, p. 154, Corollary 6.17]. If Λ ⊂ Z
is a Sidon set, then [28, p. 128, Theorem 5.7.7] (cf. [21, p. 157, Corollary 6.19])

for any 2 < p < ∞, for every trigonometric polynomial f with supp f̂ ⊆ Λ we
have

∥f∥p ≤ B(Λ)
√
p∥f∥2,

and
∥f∥2 ≤ 2B(Λ)∥f∥1.

Let 0 < p < ∞. A subset E of Z is called a Λ(p)-set if for every 0 <
r < p there is some A(E, p) such that for all trigonometric polynomials f with

supp f̂ ⊂ E we have
∥f∥p ≤ A(E, p)∥f∥2.

Λ(p) sets were introduced by Rudin, and he discusses them in his autobiography
[29, Chapter 28]. A modern survey of Λ(p)-sets is given by Bourgain [5].

Bochkarev [3] proves various lower bounds on the L1 norms of certain trigono-
metric polynomials. Let ck ∈ C, k ≥ 1. If there are constants A and B such
that

A
(log k)s√

k
≤ |ck| ≤ B

(log k)s√
k

, k ≥ 1,

then [3, p. 58, Theorem 19]

∥
n∑

k=1

cke
ik2t∥1 ≫

{
(log n)s−

1
2 , s > 1

2 ,

log log n, s = 1
2 .

If P (t) =
∑n

k=0 ake
ikt with ak ∈ {−1, 1}, then by the Cauchy-Schwarz

inequality and Parseval’s identity we have

∥P∥1 =
1

2π

∫ 2π

0

1 · |P (t)|dt ≤ ∥1∥2 · ∥P∥2 = 1 · ∥P̂∥2 =
√
n+ 1.
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Newman [24] shows that in fact we can do better than what we get using the
Cauchy-Schwarz inequality and Parseval’s identity:

∥P∥1 <
√
n+ 0.97.

A Fekete polynomial is a polynomial of the form
∑l−1

k=1

(
k
l

)
zk, l prime, where(

k
l

)
is the Legendre symbol. Let Pl(t) =

∑l−1
k=1

(
k
l

)
eikt. Erdélyi [8] proves upper

and lower bounds on
(

1
|I|
∫
I
|Pl(t)|qdt

)1/q
, q > 0, where I is an arc in [0, 2π].
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