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1 Introduction
A trigonometric polynomial of degree n is an expression of the form
n
Z cpe't, ¢, € C.
k=—n

Using the identity e’ = cost + isint, we can write a trigonometric polynomial
of degree n in the form

ao—l—Zak coskt—i—Zbksinkt, ag, b € C.
k=1 k=1

For 1 < p < oo and for a 27-periodic function f, we define the LP norm of

f by
27
= (5 [ Irorar)

For a continuous 2m-periodic function f, we define the L> norm of f by

[flloo = max |f(2)].

0<t<2r

1/p

If f is a continuous 27-periodic function, then there is a sequence of trigono-
metric polynomials f,, such that ||f — fnllcc — 0 as n — oo [31, p. 54, Corol-
lary 5.4].

If 1 <p<ooand f is a continuous 27-periodic function, then

27 1/p 27 1/p
= (55 [ ora) < (o [Tinia) =1

Jensen’s inequality [16, p. 44, Theorem 2.2] (cf. [30, p. 113, Problem 7.5]) tells
us that if ¢ : [0, 00) — R is convex, then for any function h : [0, 2] — [0, 00) we
have

6 (;ﬂ /0 - h(t)dt) <o 02W¢7(h(t))dt.



If 1 <p<q< oo, then ¢ : [0,00) — R defined by ¢(x) = %7 is convex. Hence,
if 1 <p < g < oo then for any 27-periodic function f,

£l = (el Sl

(o(5 [ " If(t)Ipdt>>1/q

< (2 [Toroma)

(3 [ - feeat) "

= |[Ifll-
The Dirichlet kernel D,, is defined by

D,(t)= i et =1+ 2i00skt.

k=—n k=1

One can show [14, p. 71, Exercise 1.1] that

| Dnlli = % -logn+ O(1).
(On the other hand, it can quickly be seen that || D, || = 2n+ 1, and it follows
from Parseval’s identity that ||Dy|l2 = v2n + 1.)

Pélya and Szegd [27, Part VI] present various problems about trigonomet-
ric polynomials together with solutions to them. A result on L° norms of
trigonometric polynomials that Pélya and Szegd present is for the sum A, (t) =
S h_; S8kt The local maxima and local minima of A4,, can be explicitly deter-

k
mined [27, p. 74, no. 23], and it can be shown that [27, p. 74, no. 25]

T sint
1Az || oo ~/ —dt.
0 t

2 LP norms

If 1 <p<gq< oo, then [14, p. 123, Exercise 1.8] (cf. [7, p. 102, Theorem 2.6])
there is some C(p, ¢) such that for any trigonometric polynomial f of degree n,
we have

1l < Clp,q)ns = ||f]l,-

This inequality is sharp [33, p. 230]: for 1 < p < ¢ < oo there is some C’(p, q)
such that if F,(f) = 1 Z;& Dy (t) (F, is called the Fejér kernel) then

1_1
1Fallg > C'(p, )07 | Fallp-



Theorem 1. Let 1 < p < ¢ < oo. If f(j) =0 for |j| > n+1 then
1_1
1fllqg <5(n+1)77a ]| flp.

Proof. Let K, (t) = Z?zfn (1— n%‘l) €'t the Fejér kernel. From this expression

we get |K,(t)] < K,(0) = n+ 1. It’s straightforward to show that K, (t) =

(32 e sint > L for 0 < £ < t [Kn(t)] <
i\ Sty ) - Since sing > £ for m, we get |K,(t)] <

thus we obtain

2
us
[CESER and

: w?

Then, for any r > 1,

1 27
1Kl = o ; (K (8)]"dt

1 [fa 1 w2 \T

< L e+ [ ()
(n+1)t 1 1 1 ( 9r 1 1

= —_— 1 T _7>

> 3wy i\ tY 92r—1

(n+1rt 1 1 1 or1

< — 1)°"

= > 3wz oty

< (n+1)"h

Hence ||[Kyp|l, < (n+ 1)+,
Let V,,(t) = 2K9,41(t) — K,.(t), the de la Vallée Poussin kernel. Then

IVallr < 20 Konsalle + [ Knlle € 2204+ 2)77 4 (04 1)177 < 5(n+ 1)1
For |j| < n+ 1 we have ‘//\n(j) = 1, and one thus checks that V,, * f = f.
Take % +1= zl) + 71 By Young’s inequality we have
11
[fllg = Ve * fllg < (IVallelFllp < 50+ 12w (| £,
O

Let X,, = {ao+Y_p_, ak cos kt + by sin kt : ag, by, € R}, the real vector space
of real valued trigonometric polynomials of degree n, have norm

[fllx, = max{lao|, ar], ..., lanl; [bal, - -, [bn}-

Let Y, , be the same vector space with the LP norm. Ash and Ganzburg [1]
give upper and lower bounds on the operator norm of the map ¢ : X,, = Y,
defined by i(f) = f.

Bernstein’s inequality [14, p. 50, Exercise 7.16] states that for 1 < p < oo, if
f is a trigonometric polynomial of degree n, then

1Ml < nll f1lp-



In the other direction, if f € C*' then

1 2m 27
— f(s ds+—/ d5+—/ (s —2m)f'(s)ds

2m
1 271' 27 27
)d — "(5)ds — "(s)d
3 | 1@ g [ [ s
1 271' 21 1 27 21

1
Flo)ds + 5 -sf(s)],

5 |, feds— 5],

727r
=f(t )-

Hence
2m 2m
101 < 5 [ s+ o [ lds o [ er - ol
27r 2
< —/ sogas+ [ 17N+ [ 17 s
= i+ 2l 7,
SO

1fllso < If1l+ 271 f 12

This is an instance of the Sobolev inequality [26].

It turns out that for a trigonometric polynomial the mass cannot be too
concentrated. More precisely, the number of nonzero terms of a trigonometric
polynomial restricts how concentrated its mass can be. Let du = g—; Thus
1([0,27]) = 1. A result of Turdn [20, p. 89, Lemma 1] states that if A1,..., Ay €
Z and T(t) = ij:l bpent b, € C, then for any closed arc I C [0, 27],

N-1
e < (5)  mexirool

Nazarov [11, p. 452] shows that there is some constant A such that if F is a
closed subset of [0, 27] (not necessarily an arc), then

N
17 < () mxlrn

Nazarov [23] proves that there exists some constant C such that if 0 < ¢ < 2
and p(E) > %, then

1/q
Il < CND0=52) (1 / |T(t)lth> '
27T E

These results of Turan and Nazarov are examples of the uncertainty principle
[9], which is the general principle that a constrain on the support of the Fourier
transform of a function constrains the support of the function itself.




In [10], Hardy and Littlewood present inequalities for norms of 27-periodic
functions in terms of certain series formed from their Fourier coefficients. Let
¢ € C, k € Z, besuch that ¢, — 0 as kK — o0, and define ¢, ¢}, ¢’ 1, ¢35, ¢, . ..
to be the absolute values of the ¢ ordered in decreasing magnitude. For real
r > 1, define

50 1/r
St(e) = < ) czr<|k|+1>f—2> .

k=—oc0

For instance, if ¢4 = 1 for —N < k < N and ¢; = 0 for |k| > N, then

1/r
Sx(e) = (1 +22}1€\/=+21 kT’Q) . Hardy and Littlewood state the result [10,
p. 164, Theorem 2] that if 1 < p < 2 then there is some constant A(p) such
that for any sequence ¢, with ¢, — 0 as k — oo, if f(t) = > po _ cxe’™™ and
| fllp < oo then
Sp(e) < A fllp-

A proof of this is given in Zygmund [35, vol. II, p. 128, chap. XII, Theorem 6.3].
Asking if this inequality holds for p = 1 suggests the following question that
Hardy and Littlewood pose at the end of their paper [10, p. 168]: Is there a
constant A such that for all distinct positive integers myg,k =1,..., N, we have

N
I Zcosmktﬂl > Alog N?

k=1
McGehee, Pigno and Smith [18] prove that there is some K such that for all NV,
if nq,...,ny are distinct integers and ¢y, ...,cy € C satisfy |cg| > 1, then

N
I chemktﬂl > Klog N.
k=1

Thus

3

N N
I3 cosmatl = 5 - 34 e 2 5 Klog(2N).
k=1 k=1

For k > 2, define Ty (t) = YN, "t Since || T ||l = N, for each p > 1 we
have | Tw||, < N. Hua’s lemma [22, p. 116, Theorem 4.6] states that if e > 0,
then .

I Txllye = O (N'7587).

Hua’s lemma is used in additive number theory. The number of sets of integer
solutions of the equation

f(x17"'?‘/1’.n):N7 a/rg.’l,'rgbr
is equal to (cf. [12, p. 151])

Z . Z /1 627Ti(f(x1""’x")_N)tdt.

a1<z1<by Ap STy <by, 0



Borwein and Lockhart [4]: what is the expected LP norm of a trigonometric
polynomial of order n? Kahane [13, Chapter 6] also presents material on random
trigonometric polynomials.

Nursultanov and Tikhonov [25]: the sup on a subset of T of a trigonometric
polynomial f of degree n being lower bounded in terms of || f|loc, 7, and the
measure of the subset.

3 /P norms

For a 2m-periodic function f, we define f :Z — C by

T o

Fky = /O " e ()t

For 1 < p < oo, we define the /P norm of f by
) l/p
11y = ( > If(k)|p> :
k=—o0
and we define the £*° norm of f by

Il = max|F(0)].

Parseval’s identity [31, p. 80, Theorem 1.3] states that || f||2 = || ]2
If 1 <p < oo, then

. R 1/p "
1lloo < (o 41U+ ) = 1l

FR) <
T

A a\ 1/q A p\ 1/q o
= (If (k)] = (If )] 1115/
1= LAl > = = .
<k_§o ( ||f||q> ) - <k;w ( llfq> ) 17115/

Hence for 1 < p < p < o0,

If 1 < p < g < oo, then, since for each k

1 £llg < 1A 1lp-

For 1 <p < o0, if f is a trigonometric polynomial of degree n then

n 1/p n 1/p
11l = (Z If(k’)l”> < (Z IIfI’éo) = 20+ D)"?[| flloo-

k=—n k=—n

For 1 < p < ¢ < oo, we have [30, p. 123, Problem 8.3] (this is Jensen’s
inequality for sums)

n 1/p n 1/q
1 A 1 .
(Z 2n+1|f<k>|p> < (Z 2n+1|f(k>lq> ,

k=—n k=—n




i.e.
20+ 1)"YP(|fll, < 20+ 1) fll,

Hence for 1 < p < g < o0,

11l < @n+1)5 75| fl,-

For any ¢,
FOI=] D fRe™| < Y7 1fke™ = Y 1fE)] =11l
k=—o0 k=—o00 k=—o00
Hence .
1 fllee < IIf]1-
For any k € Z,
R 1 2w ) 1 2w
Fol= g [ e < oo [T 1= 151

Hence

1 lloe < 1L£11-

The Hausdorfl-Young inequality [32, p. 57, Corollary 2.4] states that for 1 <
p§2and%+%:1,iff€Lpthen

1£llg < 11£1lp-

The dual Hausdorfl-Young inequality [32, p. 58, Corollary 2.5] states that for
1§p§2and%+%:17iffelﬂthen

1£llg < 11F1lq-

A survey on the Hausdorff-Young inequality is given in [6])
For M+1<k <M+ N,let a, € C and let S(t) = Z,JCV:J&IH are*t. Let
t1,...,tr € R, and let § be such that if r # s then

||t7' - ts” 2 67

where ||t|| = miny |t — k| is the distance from ¢ to a nearest integer. The large
sieve [19] is an inequality of the form

R M+N
D IS@at)? < AN,S) Y al®.
r=1 k=M+1

A result of Selberg [19, p. 559, Theorem 3] shows that the large sieve is valid
for A=N—-1+6""1
Kristiansen [15]



Boas [2]
For F : Z/n — C, its Fourier transform F : Z/n — C (called the discrete

Fourier transform) is defined by

l Z —27rljk/n 0<k<n-— 1,
o SRS
§=0
and one can prove [31, p. 223, Theorem 1.2] that
n—1
:ZF(k)t?Qﬂ—ikj/N, OS]SN—I

)

One can also prove Parseval’s identity for the Fourier transform on Z/n |

p. 223, Theorem 1.2]. It states

n n—1
PP =~ ST RGP
§=0

|
—_

k=0
Let P(t) = Y 71—y axe’**. Define F : Z/n — C by
n—1 o
F(j):ZakeQMkJ/", 0<j<n-1.
k=0

ar.) We then have

n—1 ) 1 n—1 o 1 n—1 271’] )
Solal = - ST IFGE = 3" [P(Z2))]
k=0 7=0 7=0

(That is, F(k) =

Thus 12

1]l = Z P(Z)

The Marcinkiewicz-Zygmund inequalities [35, vol. II, p. 28, chap. X, Theo-
rem 7.5] state that there is a constant A such that for 1 < p < oo, if f is a

trigonometric polynomial of degree n then

1/p
27k p

and for each 1 < p < oo there exists some A, such that if f is a trigonometric

polynomial of degree n then

1/p
2’/T]€ p
£l < A (2 +1Z|f(2n+1)> |




Mété and Nevai [17, p. 148, Theorem 6] prove that for p > 0, if S, is a
trigonometric polynomial of degree n then

(14 np)e)”
1.0k < (45 IS0l

Mété and Nevai [17] prove a version of Bernstein’s inequality for 0 < p < 1, and
their result can be sharpened to the following [34]: For 0 < p < 1, if T}, is a
trigonometric polynomial of order n then

1Tl < 2l Tollp-

Let supp f = {k € Z : f(k) # 0}. A subset A of Z is called a Sidon set
[28, p. 121, §5.7.2] if there exists a constant B such that for every trigonometric
polynomial f with supp f € A we have

£l < BJlf]loo-

Let B(A) be the least such B. A sequence of positive integers Ay is said to
be lacunary if there is a constant p such that A\py1 > pAg for all k. If Ay is a
lacunary sequence, then {\} is a Sidon set [21, p. 154, Corollary 6.17]. If A C Z
is a Sidon set, then [28, p. 128, Theorem 5.7.7] (cf. [21, p. 157, Corollary 6.19])
for any 2 < p < o0, for every trigonometric polynomial f with supp f C A we
have

1£ll» < BA)vDI fll2,
and
12 < 2B £l

Let 0 < p < oo. A subset E of Z is called a A(p)-set if for every 0 <
r < p there is some A(E, p) such that for all trigonometric polynomials f with
supp f C F we have

1fllp < AE, p)[If]l2-

A(p) sets were introduced by Rudin, and he discusses them in his autobiography

[29, Chapter 28]. A modern survey of A(p)-sets is given by Bourgain [5].
Bochkarev [3] proves various lower bounds on the L' norms of certain trigono-

metric polynomials. Let ¢, € C, k > 1. If there are constants A and B such

that .

§|Ck|§BM, k>1,

Vk

(log k)*
VE
then [3, p. 58, Theorem 19]

1 e, s § doBm) 5>
P loglog n, s

A

)

N N

If P(t) = Y p_,are’*® with a, € {-1,1}, then by the Cauchy-Schwarz
inequality and Parseval’s identity we have

1 2w R
1Pl =5 [ 1 1Pl < [l [Pl =1 [P = Va1



Newman [24] shows that in fact we can do better than what we get using the
Cauchy-Schwarz inequality and Parseval’s identity:

|||, < v/n + 0.97.

A Fekete polynomial is a polynomial of the form 22;11 (%) 2% | prime, where
(%) is the Legendre symbol. Let P,(t) = 2;11 (%) e’**. Erdélyi [8] proves upper

1/q
and lower bounds on (ﬁ I; |Pl(t)\‘1dt) , ¢ > 0, where I is an arc in [0, 27].
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