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1 Introduction

A trigonometric polynomial of degree n is an expression of the form

n∑
k=−n

cke
ikt, ck ∈ C.

Using the identity eit = cos t+ i sin t, we can write a trigonometric polynomial
of degree n in the form

a0 +

n∑
k=1

ak cos kt+

n∑
k=1

bk sin kt, ak, bk ∈ C.

The trigonometric functions cos kt and sin kt, k ∈ Z, are the building blocks
for 2π-periodic functions (cf. [6]). To formalize the idea of the size of a 2π-
periodic function and to formalize the idea of approximating 2π-periodic func-
tions using trigonometric polynomials, we introduce Lp norms.

For 1 ≤ p < ∞ and for a 2π-periodic function f , we define the Lp norm of
f by

∥f∥p =

(
1

2π

∫ 2π

0

|f(t)|pdt
)1/p

.

For a continuous 2π-periodic function f , we define the L∞ norm of f by

∥f∥∞ = max
0≤t≤2π

|f(t)|.

If f is a continuous 2π-periodic function, then there is a sequence of trigono-
metric polynomials fn such that ∥f − fn∥∞ → 0 as n → ∞ [11, p. 54, Corol-
lary 5.4].

The Dirichlet kernel Dn is defined by

Dn(t) =

n∑
k=−n

eikt = 1 + 2

n∑
k=1

cos kt.
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One can show [5, p. 71, Exercise 1.1] that

∥Dn∥1 =
4

π2
· log n+O(1).

(On the other hand, it can quickly be seen that ∥Dn∥∞ = 2n+1, and it follows
immediately from Parseval’s identity that ∥Dn∥2 =

√
2n+ 1.)

Pólya and Szegő [8, Part VI] present various problems about trigonomet-
ric polynomials together with solutions to them. A result on L∞ norms of
trigonometric polynomials that Pólya and Szegő present is for the sum An(t) =∑n

k=1
sin kt

k . The local maxima and local minima of An can be explicitly deter-
mined [8, p. 74, no. 23], and it can be shown that [8, p. 74, no. 25]

∥An∥∞ ∼
∫ π

0

sin t

t
dt.

In [2, p. 532, Theorem 2], the author proves the following.

Theorem 1. Let Fn(t) =
∏n

k=1 sin(kt), let M be the maximum value of

1

w

∫ w

0

log sin tdt

for w ∈ (0, π), let A = eM , and let B = 4eM
(
1− e2M

)− 1
4 . We have

∥Fn∥1 ∼ B

n
·An.

We compute that M = −0.49452 . . . and A = 0.60985 . . ..
When I was working on this problem, I first found simpler weaker estimates

that apply to a larger class of products.
For k ≥ 1, let ak be a positive integer, and let

F a
n (t) =

n∏
k=1

sin(akt), a = (ak).

In this paper we show that we can use simpler methods to obtain nontrivial
upper and lower bounds on ∥F a

n∥1. The results are substantially weaker than
Theorem 1, but hold for any sequence a. As well, their proofs can be more
readily understood. We present an asymptotic result showing that the L1 norm
of sin(t) sin(qmt) · · · sin(qm(n−1)t) approaches

(
2
π

)n
as m → ∞, for q ≥ 2 an

integer. We present inequalities for the norms of trigonometric polynomials.
In Figure 1 we plot

∏8
k=1 | sin(kt)| for 0 ≤ t ≤ 2π. In Figure 2 we plot∏4

k=1 | sin(pkt)| for 0 ≤ t ≤ 2π, where pk is the kth prime. In Figure 3 we plot∏10
k=1 | sin(⌈

√
k⌉t)| for 0 ≤ t ≤ 2π, where ⌈x⌉ is the least integer ≥ x. We want

upper and lower bounds on the areas under these graphs.
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Figure 1:
∏8

k=1 | sin(kt)| for 0 ≤ t ≤ 2π
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Figure 2:
∏4

k=1 | sin(pkt)| for 0 ≤ t ≤ 2π, where pk is the kth prime
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Figure 3:
∏10

k=1 | sin(⌈
√
k⌉t)| for 0 ≤ t ≤ 2π

2 Upper and lower bounds

Hölder’s inequality is the first tool for which we reach when we want to bound
the norm of a product.

Theorem 2. For any sequence a, we have

∥F a
n∥1 = O

( 1√
n

)
.

Proof. Hölder’s inequality [7, p. 45, Theorem 2.3] (cf. [10, p. 151, Exercise 9.9])
states that if

∑n
k=1

1
pk

= 1 then

∥f∥1 ≤
n∏

k=1

∥f∥pk
.

As 1 =
∑n

k=1
1
n , this implies that

∥F a
n∥1 ≤

n∏
k=1

∥ sin(akt)∥n.
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For each k,∫ 2π

0

| sin(akt)|ndt =
1

ak

∫ 2πak

0

| sin t|ndt

=
1

ak

ak∑
j=1

∫ 2πj

2π(j−1)

| sin t|ndt

=
1

ak

ak∑
j=1

∫ 2π

0

| sin(t+ 2π(j − 1))|ndt

=
1

ak

ak∑
j=1

∫ 2π

0

| sin t|ndt

=

∫ 2π

0

| sin t|ndt

= 2

∫ π

0

sinn tdt.

Let Gn =
∫ π

0
sinn tdt. Doing integration by parts, for n ≥ 2 we have

Gn =

∫ π

0

sinn−1 t sin tdt

= − sinn−1 t cos t
∣∣∣π
0
+ (n− 1)

∫ π

0

sinn−2 t cos2 tdt

= (n− 1)

∫ π

0

sinn−2 t(1− sin2 t)dt

= (n− 1)Gn−2 − (n− 1)Gn.

Thus,

Gn =
n− 1

n
Gn−2.

Say n = 2m+1, m ≥ 1. For m = 1, we have G2m+1 = G3 = 2
3G1 = 4

3 . Assume
that for some m ≥ 1 we have

G2m+1 =
22m+1m!m!

(2m+ 1)!
. (1)

Then

G2m+3 =
2m+ 2

2m+ 3
G2m+1

=
2m+ 2

2m+ 3

22m+1m!m!

(2m+ 1)!

=
22m+3(m+ 1)!(m+ 1)!

(2m+ 3)!
.
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Therefore, by induction (1) holds for all m ≥ 1. By applying Stirling’s approx-
imation to (1) we get

G2m+1 ∼
22m+1

√
2πm

(
m
e

)m√
2πm

(
m
e

)m
√
2π(2m+ 1)

(
2m+1

e

)2m+1

=
22m+1 · 2π√
2π(2m+ 1)

·
(

m

m+ 1
2

)2m+1

· 1

22m+1
· e

2m+1

e2m

=
e
√
2π√

2m+ 1
·
(

m

m+ 1
2

)2m+1

<
e
√
2π√

2m+ 1
.

Thus,

G2m+1 = O
( 1√

2m+ 1

)
.

Say n = 2m, m ≥ 1. For m = 1, we have G2m = G2 = 1
2G0 = π

2 . Assume
that for some m ≥ 1 we have

G2m = π
(2m)!

22mm!m!
. (2)

Then

G2m+2 =
2m+ 1

2m+ 2
G2m

=
2m+ 1

2m+ 2
· π (2m)!

22mm!m!

= π
(2m+ 2)!

22m+2(m+ 1)!(m+ 1)!
.

Therefore, by induction (2) holds for all m ≥ 1. Like for n = 2m+1, by applying

Stirling’s approximation to (2) we get G2m ∼
√
2π√
2m

, and so

G2m = O
( 1√

2m

)
.
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Hence Gn = O
(

1√
n

)
. It follows that

∥F a
n∥1 ≤

n∏
k=1

(
1

2π

∫ 2π

0

| sin(akt)|ndt
)1/n

=

n∏
k=1

(
Gn

π

)1/n

=
Gn

π

= O
( 1√

n

)
.

In the proof of Theorem 2, we saw that for any ak ≥ 1, we have∫ 2π

0

| sin(akt)|ndt = 2Gn, Gn =

∫ π

0

sinn tdt,

We showed that

G2m+1 ∼ e
√
2π√

2m+ 1
·
(

m

m+ 1
2

)2m+1

.

We can check, by taking logarithms and using L’Hospital’s rule, that

lim
m→∞

(
m

m+ 1
2

)2m+1

= e−1.

Therefore, there is some C1 > 0 such that for all m ≥ 1 we have

G2m+1 ≥ C1√
2m+ 1

.

We also showed that

G2m ∼
√
2π√
2m

,

and hence there is some C2 > 0 such that for all m ≥ 1 we have

G2m ≥ C2√
2m

.

If C = min{C1, C2}, then for all n ≥ 2 we have

Gn ≥ C√
n
.

It follows that for any positive integer a, if ak = a for all k ≥ 1 then

∥F a
n∥1 =

Gn

π
≥ C√

π
· 1√

n
.
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In other words, if all the terms in the sequence a are the same then the inequality
given by Theorem 2 is sharp.

In the above theorem we gave an upper bound on ∥F a
n∥1, and in the following

theorem we give a lower bound on ∥F a
n∥1.

Theorem 3. For any sequence a, we have

∥F a
n∥1 >

1

2n
.

Proof. Since − log is a convex function on (0,∞), by Jensen’s inequality [7,
p. 44, Theorem 2.2] we have for any nonnegative function f with ∥f∥1 < ∞
that

− log

(
1

2π

∫ 2π

0

f(t)dt

)
≤ 1

2π

∫ 2π

0

− log(f(t))dt,

and the two sides are equal if and only if f is constant almost everywhere (for
continuous f this is equivalent to f being constant). Hence, as there is no
sequence a of positive integers such that F a

n is constant,

log

(
1

2π

∫ 2π

0

|F a
n (t)|dt

)
>

1

2π

∫ 2π

0

log(|F a
n (t)|)dt. (3)

The left-hand side of (3) is log ∥F a
n∥1, and the the right-hand side is equal to

1

2π

∫ 2π

0

n∑
k=1

log | sin(akt)|dt =
1

2π

n∑
k=1

∫ 2π

0

log | sin(akt)|dt.

But for each k,∫ 2π

0

log | sin(akt)|dt =
1

ak

∫ 2πak

0

log | sin t|dt

=
1

ak

ak∑
j=1

∫ 2πj

2π(j−1)

log | sin t|dt

=
1

ak

ak∑
j=1

∫ 2π

0

log | sin(t+ 2π(j − 1))|dt

=
1

ak

ak∑
j=1

∫ 2π

0

log | sin t|dt

=

∫ 2π

0

log | sin t|dt.

Hence (3) is

log ∥F a
n∥1 >

n

2π

∫ 2π

0

log | sin t|dt.
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We calculate
∫ 2π

0
log | sin t|dt in the following way. (The earliest evaluation

of this integral of which the author is aware is by Euler [4], who gives two
derivations, the first using the Euler-Maclaurin summation formula, the power

series expansion for log
(

1+x
1−x

)
, and the power series expansion of x cot(x), and

the second using the Fourier series of log | sin t|.) First,∫ 2π

0

log | sin t|dt = 4

∫ π
2

0

log sin tdt.

We have ∫ π
2

0

log sin tdt =

∫ 0

−π
2

log
(
sin
(
t+

π

2

))
dt

=

∫ 0

−π
2

log
(
sin t cos

π

2
+ sin

π

2
cos t

)
dt

=

∫ 0

−π
2

log cos tdt

=

∫ π
2

0

log cos tdt.

Therefore,

2

∫ π
2

0

log sin tdt =

∫ π
2

0

log sin tdt+

∫ π
2

0

log cos tdt

=

∫ π
2

0

log (2 sin t cos t)− log 2dt

=

∫ π
2

0

log sin(2t)dt− π

2
log 2

=
1

2

∫ π

0

log sin tdt− π

2
log 2.

Because
∫ π

0
log sin tdt = 2

∫ π
2

0
log sin tdt, we have

2

∫ π
2

0

log sin tdt =

∫ π
2

0

log sin tdt− π

2
log 2,

and so ∫ π
2

0

log sin tdt = −π

2
log 2.

Thus ∫ 2π

0

log | sin t|dt = −2π log 2.

Therefore we have

log ∥F a
n∥1 >

n

2π
· −2π log 2 = −n log 2 = log(2−n),
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and thus
∥F a

n∥1 > 2−n.

In the above theorem we gave a lower bound for ∥F a
n∥1. In the following

theorem we give another lower bound for ∥F a
n∥1, and we then construct examples

where one lower bound is better than the other.

Theorem 4. For any sequence a, if

An = max
1≤k≤n

ak,

then

∥F a
n∥1 >

1

4
· 1

n+ 1
· 1

An+1
n

n∏
k=1

ak.

Proof. If 0 ≤ t ≤ π
2 then sin t ≥ 2

π t [13]. In words, if 0 < t < π
2 , then (t, sin t)

lies above the line joining (0, 0) and (π2 , 1).∫ 2π

0

|F a
n (t)|dt =

∫ 2π

0

n∏
k=1

| sin(akt)|dt

>

∫ π
2An

0

n∏
k=1

sin(akt)dt

≥
∫ π

2An

0

n∏
k=1

(
2

π
akt

)
dt

=

(
2

π

)n
(

n∏
k=1

ak

)∫ π
2An

0

tndt

=

(
2

π

)n
(

n∏
k=1

ak

)
1

n+ 1

(
π

2An

)n+1

=
π

2
· 1

n+ 1
· 1

An+1
n

n∏
k=1

ak.

If, for instance, ak = 2k, the above inequality is

∥F a
n∥1 >

1

4
· 1

n+ 1
· 1

2n(n+1)
· 2

n(n+1)
2 =

1

4
· 1

n+ 1
· 2−

n(n+1)
2 ,

which is worse than (i.e. less than) the inequality given by Theorem 3.
If ak = k, the inequality is

∥F a
n∥1 >

1

4
· 1

n+ 1
· 1

nn+1
· n!,
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and applying Stirling’s approximation we get

∥F a
n∥1 ≫ 1

n+ 1
· 1√

n
· 1

en
,

which is also worse than the inequality given by Theorem 3.
But if ak = ⌈

√
k⌉, the inequality is

∥F a
n∥1 >

1

4
· 1

n+ 1
· 1

(n+ 1)
n+1
2

n∏
k=1

k
1
2 =

1

4
· 1

n+ 1
· 1

n
n+1
2

· 1(
1 + 1

n

)n+1
2

n∏
k=1

k
1
2 .

Taking logarithms and using L’Hospital’s rule, we get

lim
n→∞

(
1 +

1

n

)n+1
2

= e
1
2 .

Then using Stirling’s approximation we obtain

∥F a
n∥1 ≫ n− 5

4 e−
n
2 ,

and since e1/2 < 2, this lower bound is better than (i.e. greater than) the lower
bound 2−n in Theorem 3.

3 Mixing

This section talks about measure spaces and mixing. These topics take repeated
exposure to become comfortable with, but Theorem 5 is a pretty result whose
statement can be understood without understanding its proof. The notion of
mixing is related to independent random variables, for which the expectation of
their product is equal to the product of their expectations.

Let X be a measure space with probability measure µ. Following [9, p. 21,
Definition 3.6], we say that a measure preserving map T : X → X is r-fold
mixing if for all g, f1, . . . , fr ∈ Lr+1(X) we have

lim
m1→∞,...,mr→∞

∫
X

g(t) ·
r∏

k=1

fk

(
T

∑k
j=1 mj (t)

)
dµ(t)

=

(∫
X

g(t)dµ(t)

) r∏
k=1

(∫
X

fk(t)dµ(t)

)
.

(4)

If for each r the map T is r-fold mixing, we say that T is mixing of all orders.
Let λ be Lebesgue measure on [0, 1]. Let q ≥ 2 be an integer, and define

Tq : [0, 1] → [0, 1] by Tq(t) = R(qt); R(x) = x − [x], where [x] is the greatest
integer ≤ x. Tq is mixing of all orders. This can be proved by first showing
that the dynamical system ([0, 1], λ, Tq) is isomorphic to a Bernoulli shift (cf.
[3, p. 17, Example 2.8]). This implies that if the Bernoulli shift is r-fold mixing
then Tq is r-fold mixing. One then shows that a Bernoulli shift is mixing of all
orders [3, p. 53, Exercise 2.7.9]. Using that Tq is mixing of all orders gets us the
following result.
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Theorem 5. Let q ≥ 2 be an integer. For each n ≥ 1 we have

lim
m→∞

∫ 1

0

| sin(2πt)| ·
n∏

k=1

∣∣sin (2πqkmt
)∣∣ dt = ( 2

π

)n+1

.

Proof. Define g(t) = f1(t) = · · · = fn(t) = | sin(2πt)|. For any nonzero integer
N we have ∫ 1

0

| sin(2πNt)|dt = 2

π
,

and it follows from (4), using m = max{m1, . . . ,mn}, that

lim
m→∞

∫ 1

0

| sin(2πt)| ·
n∏

k=1

∣∣sin (2πqkmt
)∣∣ dt = ( 2

π

)n+1

.

In other words, if for k ≥ 1 we set ak(m) = q(k−1)m, then for each n we have

lim
m→∞

∥F a(m)
n ∥1 =

(
2

π

)n

, a(m) = (ak(m)).

It would be overwhelming for a reader without experience in ergodic theory
to work out the details of the reasoning that we indicated above Theorem 5
for why Tq is mixing of all orders. In the following we explain a more under-
standable derivation of the case n = 1 of Theorem 5. For a measure space X
with probability measure µ, we say that a measure preserving transformation
T : X → X is mixing (in other words, 1-fold mixing), if for all f, g ∈ L2(X) we
have

lim
m→∞

∫
X

f (Tm(t)) g(t)dµ(t) =

(∫
X

f(t)dµ(t)

)(∫
X

g(t)dµ(t)

)
.

Stein and Shakarchi [12, p. 305] prove that T2 : [0, 1] → [0, 1] (for Tq(t) = R(qt))
is mixing, and their argument works to show that Tq : [0, 1] → [0, 1] is mixing
for q ≥ 2 an integer. Hence, taking f(t) = g(t) = | sin(2πt)|, we get

lim
m→∞

∫ 1

0

| sin(2πqmt)| · | sin(2πt)|dt =
(
2

π

)2

.
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4 Sequences of powers

If Sn =
∑n

k=1 ak, then

F a
n (t) =

n∏
k=1

sin(akt)

=

n∏
k=1

eiakt − e−iakt

2i

=

n∏
k=1

(
−e−iakt

2i

)(
1− e2iakt

)
=

1

2n
exp

(
inπ

2
− iSnt

) n∏
k=1

(
1− e2iakt

)
.

Thus |F a
n (t)| = 2−n

∏n
k=1

∣∣1− e2iakt
∣∣. Define P a

n (t) =
∏n

k=1

(
1− eiakt

)
. Bell,

Borwein and Richmond [1] estimate ∥P a
n∥∞ when ak is a power of k or is

quadratic in k. They prove that if ak = km, with m ≥ 2 an integer, then
there exists a constant 1 < c < 2 such that ∥P a

n∥∞ > cn for all sufficiently large
n. The product P a

n (t) =
∏n

k=1(1− eiakt) can be written as a sum,

n∏
k=1

(1− eiakt) =

Sn∑
k=0

ake
ikt, ak =

1

2π

∫ 2π

0

e−iktP a
n (t)dt,

for Sn =
∑n

k=1 ak. We have

|P a
n (t)| =

∣∣∣∣∣
Sn∑
k=0

ake
ikt

∣∣∣∣∣ ≤
Sn∑
k=0

|eiktak| =
Sn∑
k=0

|ak|.

But

|ak| ≤
1

2π

∫ 2π

0

∣∣e−iktP a
n (t)

∣∣ dt = 1

2π

∫ 2π

0

|P a
n (t)|dt = ∥P a

n∥1.

Hence
∥P a

n∥∞ ≤ (Sn + 1)∥P a
n∥1.

It follows that

∥F a
n∥1 =

1

2n
· ∥P a

n∥1 ≥ 1

2n
· ∥P

a
n∥∞

Sn + 1
>

1

Sn + 1
·
( c
2

)n
.

As Sn =
∑n

k=1 k
m = O(nm+1), the above lower bound on ∥F a

n∥1 is better than
the one given by Theorem 3.
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[8] George Pólya and Gábor Szegő. Problems and theorems in analysis, volume
II, volume 216 of Die Grundlehren der mathematischen Wissenschaften.
Springer, 1976. Translated from the German by C. E. Billigheimer.

[9] Ya. G. Sinai, editor. Dynamical systems, ergodic theory and applications,
volume 100 of Encyclopaedia of Mathematical Sciences. Springer, second
edition, 2000.

[10] J. Michael Steele. The Cauchy-Schwarz master class: an introduction to the
art of mathematical inequalities. MAA Problem Books Series. Cambridge
University Press, 2004.

[11] Elias M. Stein and Rami Shakarchi. Fourier analysis: an introduction,
volume I of Princeton Lectures in Analysis. Princeton University Press,
2003.

[12] Elias M. Stein and Rami Shakarchi. Real Analysis: measure theory, inte-
gration, and Hilbert spaces, volume III of Princeton Lectures in Analysis.
Princeton University Press, 2005.

[13] Feng Yuefeng. Proof without words: Jordan’s inequality 2x
π ≤ sinx ≤ x,

0 ≤ x ≤ π
2 . Math. Mag., 69(2):126, 1996.

14


