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1 Notation

Let N denote the set of nonnegative integers. For α ∈ Nn, we write

|α| = α1 + · · ·+ αn,

and
∂α = ∂α1

1 · · · ∂αn
n .

We denote by Br(x) the open ball with center x and radius r.

2 Open sets

Let Ω be an open subset of Rn and let k be either a nonnegative integer or ∞.
We define Ck(Ω) to be the set of those functions f : Ω → C such that for each
α ∈ Nn with |α| ≤ k, the derivative ∂αf exists and is continuous. We write
C(Ω) = C0(Ω).

One proves that there is a sequence of compact sets Kj such that each Kj is
contained in the interior of Kj+1 and Ω =

⋃∞
j=1 Kj ; we call this an exhaustion

of Ω by compact sets. For f ∈ Ck(Ω), we define

pk,N (f) = sup
|α|≤min(k,N)

sup
x∈KN

|(∂αf)(x)|;

this definition makes sense for k = ∞. If f is a nonzero element of Ck(Ω), then
there is some x ∈ Ω for which f(x) ̸= 0 and then there is some N for which
x ∈ KN , and hence pk,N (f) ≥ supy∈KN

|f(y)| ≥ |f(x)| > 0. Thus, pk,N is a

separating family of seminorms on Ck(Ω). Those sets of the form

Vk,N =

{
f ∈ Ck(Ω) : pk,N (f) <

1

N

}
form a local basis at 0 for a topology on Ck(Ω), and because pk,N is a separat-
ing family of seminorms, with this topology Ck(Ω) is a locally convex space.1

1Walter Rudin, Functional Analysis, second ed., p. 27, Theorem 1.37.
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Because pk,N is a countable separating family of seminorms, this topology is
metrizable. We prove in the following theorem that C(Ω) is a Fréchet space.2

Theorem 1. If Ω is an open subset of Rn, then C(Ω) is a Fréchet space.

Proof. Let fi ∈ C(Ω) be a Cauchy sequence. That is, for every N there is some
iN such that if i, j ≥ iN then

fi − fj ∈ V0,N =

{
f ∈ C(Ω) : sup

x∈KN

|f(x)| < 1

N

}
.

For each x ∈ Ω, eventually x ∈ KN . If x ∈ KN and i, j ≥ iN , then

|fi(x)− fj(x)| <
1

N
.

Therefore, fi(x) is a Cauchy sequence in C and hence converges to some f(x) ∈
C. We have thus defined a function f : Ω → C. We shall prove that f ∈ C(Ω)
and that fi → f in C(Ω).

Let K be a compact subset of Ω, let ϵ > 0, and let N be large enough both
so that K ⊆ KN and so that N ≥ 1

ϵ . For i, j ≥ iN ,

sup
x∈KN

|fi(x)− fj(x)| <
1

N
≤ ϵ.

Let i ≥ iN and x ∈ KN . There is some jx such that j ≥ jx implies that
|fj(x)− f(x)| < ϵ, and hence for j ≥ max(iN , jx),

|fi(x)− f(x)| ≤ |fi(x)− fj(x)|+ |fj(x)− f(x)|
< ϵ+ ϵ.

This shows that for i ≥ iN ,

sup
x∈K

|fi(x)− f(x)| ≤ sup
x∈KN

|fi(x)− f(x)| ≤ 2ϵ.

We have proved that for any compact subset K of Ω, we have supx∈K |fi(x)−
f(x)| → 0 as i → ∞.

Let x ∈ Ω, let ϵ > 0, and let N be large enough both so that x lies in the
interior of KN and so that N ≥ 1

ϵ . Because supx∈KN
|fi(x) − f(x)| → 0 as

i → ∞, there is some i0 so that i ≥ i0 implies

sup
x∈KN

|fi(x)− f(x)| < ϵ.

Let i = max(i0, iN ). Because fi is continuous, there is some δ > 0 so that
|x−y| < δ implies that |fi(x)−fi(y)| < ϵ; take δ small enough so that the open
ball with center x and radius δ is contained in KN . For |y − x| < δ,

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)|

≤ sup
z∈KN

|f(z)− fi(z)|+
1

N
+ sup

z∈KN

|f(z)− fi(z)|

< ϵ+ ϵ+ ϵ.
2Walter Rudin, Functional Analysis, second ed., p. 33, Example 1.44.
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This shows that f is continuous at x and x was an arbitrary point in Ω, hence
f ∈ C(Ω).

We have already established that for any compact subset K of Ω, we have
supx∈K |fi(x) − f(x)| → 0 as i → ∞. Thus, for any N , there is some jN so
that if i ≥ jN then supx∈KN

|fi(x)− f(x)| < 1
N . In other words, if i ≥ jN , then

p0,N (fi − f) < 1
N , i.e. fi − f ∈ V0,N , showing that fi → f in C(Ω).

Theorem 2. If Ω is an open subset of Rn and k is a positive integer, then
Ck(Ω) is a Fréchet space.

Proof. We have proved in Theorem 1 that C(Ω) = C0(Ω) is a Fréchet space.
We assume that Ck−1(Ω) is a Fréchet space, and using this induction hypothesis
we shall prove that Ck(Ω) is a Fréchet space.

Let fi ∈ Ck(Ω) be a Cauchy sequence in Ck(Ω). fi is in particular a Cauchy
sequence in the Fréchet space C(Ω), hence there is some g ∈ C(Ω) such that
fi → g in C(Ω). We shall prove that g ∈ Ck(Ω) and that fi → g in Ck(Ω).

For each 1 ≤ p ≤ n we have ∂pfi ∈ Ck−1(Ω), and ∂pfi is a Cauchy sequence
in Ck−1(Ω). Because Ck−1(Ω) is a Fréchet space, for each p there is some
gp ∈ Ck−1(Ω) such that ∂pfi → gp in Ck−1(Ω). Fix p, and let α ∈ Nn have pth
entry 1 and all other entries 0. Then, fix x ∈ Ω, and take N large enough so
that x lies in the interior of KN . For each i, define Fi(t) = f(x+ tα), for which

F ′
i (t) = (∇f)(x+ tα) · α = (∂pfi)(x+ tα).

For nonzero τ small enough so that the line segment from x to x+τα is contained
in KN ,

Fi(τ)− Fi(0) =

∫ τ

0

F ′
i (t)dt,

i.e.

fi(x+ τα)− fi(x) =

∫ τ

0

(∂pfi)(x+ tα)dt.

Because fi → g in C(Ω) and ∂pfi → gp in C(Ω), we have supy∈KN
|fi(y) −

g(y)| → 0 and supy∈KN
|(∂pfi)(y)− gp(y)| → 0, from which it follows that

g(x+ τα)− g(x) =

∫ τ

0

gp(x+ tα)dt,

or
g(x+ τα)− g(x)

τ
=

1

τ

∫ τ

0

gp(x+ tα)dt.

As τ tends to 0, the right hand side tends to gα(x), showing that (∂pg)(x) =
gp(x). But x was an arbitrary point in Ω, so ∂pg = gp ∈ Ck−1(Ω). Thus, for each
1 ≤ p ≤ n we have ∂pg ∈ Ck−1(Ω), from which it follows that g ∈ Ck(Ω).

Theorem 3. If Ω is an open subset of Rn, then C∞(Ω) is a Fréchet space.

Proof. Let fi ∈ C∞(Ω) be a Cauchy sequence in C∞(Ω). Thus, for each k, fi
is a Cauchy sequence in Ck(Ω), and so by Theorem 2 there is some gk ∈ Ck(Ω)
for which fi → gk in Ck(Ω). Define g = g0, and check that g0 = g1 = g2 = · · · ,
and hence that g ∈ C∞(Ω).
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3 Closed sets

Let Ω be an open subset of Rn such that Ω is compact, i.e. Ω is a bounded open
subset of Rn. If k is a nonnegative integer, let Ck(Ω) be those elements f of
Ck(Ω) such that for each α ∈ Nn with |α| ≤ k, the function ∂αf is continuous
Ω → C and can be extended to a continuous function Ω → C; if there is such a
continuous function Ω → C it is unique, and it thus makes sense to talk about
the value of ∂αf at points in ∂Ω, and thus to write ∂αf : Ω → C. We write
C(Ω) = C0(Ω). For f ∈ Ck(Ω), we define

∥f∥k = sup
|α|≤k

sup
x∈Ω

|(∂αf)(x)|.

It is straightforward to check that this is a norm on Ck(Ω).

Theorem 4. If Ω is a bounded open subset of Rn, then C(Ω) is a Banach space.

Proof. Let fi ∈ C(Ω) be a Cauchy sequence. Thus, fi : Ω → C are continuous,
and for any ϵ > 0 there is some iϵ such that if i, j ≥ iϵ then

sup
x∈Ω

|fi(x)− fj(x)| < ϵ.

Then, for each x ∈ Ω we have that fi(x) is a Cauchy sequence in C and hence
converges to some f(x) ∈ C, thus defining a function f : Ω → C. For x ∈ Ω
and ϵ > 0, because fi(x) → f(x), there is some jx such that j ≥ jx implies that
|fj(x)− f(x)| < ϵ. For i ≥ iϵ and j ≥ max(iϵ, jx),

|fi(x)− f(x)| ≤ |fi(x)− fj(x)|+ |fj(x)− f(x)| < ϵ+ ϵ.

This shows that supx∈Ω |fi(x)− f(x)| → 0 as i → ∞.
Fix x ∈ Ω and let ϵ > 0. What we just proved shows that there is some i0 for

which i ≥ i0 implies that supz∈Ω |fi(z)−f(z)| < ϵ. As fi0 : Ω → C is continuous,

there is some δ > 0 such that for y ∈ Bδ(x) ∩ Ω, we have |fi0(x) − fi0(y)| < ϵ.
Then, for y ∈ Bδ(x) ∩ Ω,

|f(x)− f(y)| ≤ |f(x)− fi0(x)|+ |fi0(x)− fi0(y)|+ |fi0(y)− f(y)|
< ϵ+ ϵ+ ϵ.

This proves that f is continuous at x, and because x was an arbitrary point in
Ω, we have that f ∈ C(Ω).

Theorem 5. If Ω is a bounded open subset of Rn and k is a positive integer,
then Ck(Ω) is a Banach space.

Proof. We proved in Theorem 4 that C(Ω) = C0(Ω) is a Banach space. We
assume that Ck−1(Ω) is a Banach space, and using this induction hypothesis
we shall prove that Ck(Ω) is a Banach space.
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Let fi ∈ Ck(Ω) be a Cauchy sequence. In particular, fi is a Cauchy sequence
in C(Ω), and because C(Ω) is a Banach space, there is some g ∈ C(Ω) for which
∥fi − g∥0 → 0. For each 1 ≤ p ≤ n we have ∂pfi ∈ Ck−1(Ω). Because
Ck−1(Ω) is a Banach space, for each p there is some gp ∈ Ck−1(Ω) for which
∥∂pfi − gp∥k−1 → 0.

Let α ∈ Nn have pth entry 1 and all other entries 0, and let x ∈ Ω. For
nonzero τ small enough so that the line segment from x to x+ τα is contained
in Ω,

fi(x+ τα)− fi(x) =

∫ τ

0

(∂pfi)(x+ tα)dt.

Because ∥fi−g∥0 → 0 and ∥∂pfi−gp∥0 → 0 (the latter because ∥∂pfi−gp∥k−1 →
0), we obtain

g(x+ τα)− g(x) =

∫ τ

0

gp(x+ tα)dt,

or
g(x+ τα)− g(x)

τ
=

1

τ

∫ τ

0

gp(x+ tα)dt.

As τ tends to 0 the right hand side tends to gp(x), which shows that (∂pg)(x) =
gp(x). We did this for all x ∈ Ω, and so ∂pg = gp ∈ Ck−1(Ω). Because this is
true for each 1 ≤ p ≤ n, we obtain g ∈ Ck(Ω).

If Ω is a bounded open subset of Rn, then

C∞(Ω) =

∞⋂
k=0

Ck(Ω).

It can be proved that C∞(Ω) is the projective limit of the Banach spaces Ck(Ω),
k = 0, 1, . . ..3 A projective limit of a countable projective system of Banach
spaces is a Fréchet space, and thus C∞(Ω) is a Fréchet space.

4 Test functions

Let Ω be an open subset of Rn. If f : Ω → C is a function, the support of f
is the closure of the set {x ∈ Ω : f(x) ̸= 0}. We denote the support of f by
supp f . If supp f is a compact set, we say that f has compact support, and we
denote by C∞

c (Ω) the set of all elements of C∞(Ω) with compact support. We
write D(Ω) = C∞

c (Ω).
For f ∈ D(Ω), we define

∥f∥N = sup
|α|≤N

sup
x∈Ω

|(∂αf)(x)|.

If K is a compact subset of Ω, we define

D(K) = {f ∈ C∞
c (Ω) : supp f ⊆ K}.

3See Paul Garrett, Banach and Fréchet spaces of functions, http://www.math.umn.edu/

~garrett/m/fun/notes_2012-13/02_spaces_fcns.pdf
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The restriction of these norms to D(K) are norms, in particular seminorms.
Hence, with the topology for which a local basis at 0 is the collection of sets
of the form {f ∈ D(K) : ∥f∥N < 1

N }, we have that D(K) is a locally convex
space, and because there are countably many seminorms ∥ · ∥N , the space is
metrizable. One checks that the topology on D(K) is equal to the subspace
topology it inherits from C∞(Ω).4 Theorem 3 tells us that C∞(Ω) is a Fréchet
space, and in the following theorem we show that D(K) is a closed subspace of
this Fréchet space, and hence is a Fréchet space itself.

Theorem 6. If Ω is an open subset of Rn and K is a compact subset of Ω,
then D(K) is a closed subspace of the Fréchet space C∞(Ω).

Proof. Let fi ∈ D(K), f ∈ C∞(Ω), and suppose that fi → f in C∞(Ω). If
x ∈ Ω \ K, then fi(x) = 0. There is some KN that contains K, and the fact
that fi → f gives us in particular that

|f(x)| = |0− f(x)| = |fi(x)− f(x)| ≤ sup
y∈KN

|fi(y)− f(y)| → 0,

hence f(x) = 0. This shows that supp f ⊆ K, and hence that f ∈ D(K).

Let Kj be an exhaustion of Ω by compact sets. Check that D(Kj) is a
closed subspace of D(Kj+1) and that the inclusion D(Kj) ↪→ D(Kj+1) is a
homeomorphism onto its image. We define the following topology on the set
D(Ω). Let B be the collection of all convex balanced subsets V of D(U) such
that for all j, the set V ∩D(Kj) is open in D(Kj). (To be balanced means that
αV ⊆ V if |α| ≤ 1.) We define T be the collection of all subsets U of D(Ω) such
that x0 ∈ U implies that there is some V ∈ B for which x0 + V ⊆ U . We check
that T is a topology on D(Ω), which we call the strict inductive limit topology.
One proves5 that with this topology, D(Ω) is a locally convex space. With the
strict inductive limit topology, we call the locally convex space D(Ω) the strict
inductive limit of the Fréchet spaces D(K1) ↪→ D(K2) ↪→ · · · , and write

D(Ω) = lim−→D(Kj).

4Walter Rudin, Functional Analysis, second ed., p. 151.
5John B. Conway, A Course in Functional Analysis, second ed., pp. 116–123, chap. IV, §5;

this is presented without using the language of inductive limits in Walter Rudin, Functional
Analysis, second ed., p. 152, Theorem 6.4.
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