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1 Notation

Let N denote the set of nonnegative integers. For o € N, we write
laf = oy + - + ap,

and

0% =07t --- o,
We denote by B,(x) the open ball with center x and radius r.

2 Open sets

Let Q be an open subset of R™ and let k£ be either a nonnegative integer or co.
We define C*(€2) to be the set of those functions f : Q — C such that for each
a € N with |o| < k, the derivative 0% f exists and is continuous. We write
C() =C%Q).

One proves that there is a sequence of compact sets K; such that each K is
contained in the interior of K;;, and € = U;)il K;; we call this an ezhaustion

of Q by compact sets. For f € C*(2), we define

peN(f) = sup sup [(0”f)(z);

|a|<min(k,N) z€K N

this definition makes sense for k = co. If f is a nonzero element of C*(2), then
there is some z € Q for which f(x) # 0 and then there is some N for which
z € Ky, and hence py n(f) > supyeg, [f(y)] > |f(z)] > 0. Thus, px n is a
separating family of seminorms on C*(£2). Those sets of the form

VkJ\/ = {f € Ok(Q) :pk,N(f) < ]17}

form a local basis at 0 for a topology on C*(€), and because py v is a separat-
ing family of seminorms, with this topology C*() is a locally convex space.’

IWalter Rudin, Functional Analysis, second ed., p. 27, Theorem 1.37.



Because pi n is a countable separating family of seminorms, this topology is
metrizable. We prove in the following theorem that C(£) is a Fréchet space.?

Theorem 1. If Q is an open subset of R™, then C(Q) is a Fréchet space.

Proof. Let f; € C(2) be a Cauchy sequence. That is, for every N there is some
iy such that if 4,5 > iy then

fiijVO,N—{fEC(Q): sup |f(z)|<1}.

rzeK N N

For each x € 2, eventually z € K. If x € Ky and 4,5 > iy, then

1

|fi(z) — fi(2)] < N

Therefore, f;(x) is a Cauchy sequence in C and hence converges to some f(x) €
C. We have thus defined a function f : Q@ — C. We shall prove that f € C()
and that f; — f in C(Q).

Let K be a compact subset of 2, let € > 0, and let N be large enough both
so that K C Ky and so that N > % For i,5 > in,

1
fél}gv |fi(w) — fi(2)] < N <e

Let ¢ > iy and z € Kpy. There is some j, such that j > j, implies that
|fj(z) — f(z)] <€, and hence for j > max(in, jz),

[file) = f@)] < [fi(z) = fi(@)] + | f(x) = f(2)]

< €e+e

This shows that for ¢ > iy,
sup |fi(z) — f(@)] < sup |fi(x) — f(=)| < 2e.
zeK rzeK N

We have proved that for any compact subset K of , we have sup, ¢y |fi(z) —
f(x)] = 0asi— co.

Let z € Q, let € > 0, and let NV be large enough both so that = lies in the
interior of Ky and so that N > 1. Because sup,cg, |fi(z) — f(z)| = 0 as
1 — 00, there is some iy so that ¢ > 4o implies

sup |fi(z) — f(z)] <e
zeKN
Let ¢ = max(ig,in). Because f; is continuous, there is some § > 0 so that

| —y| < ¢ implies that | f;(z) — fi(y)| < €; take 6 small enough so that the open
ball with center z and radius § is contained in K. For |y — x| < 0,

(@)= f)l < [f(@) = filo)[ +[fi(x) = fi)] + [ fily) — FW)]
< sw ()~ FiE)|+ e+ swp 17() ~ fiC2)
zeKnN zeEKnNn
< €et+ete
2Walter Rudin, Functional Analysis, second ed., p. 33, Example 1.44.
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This shows that f is continuous at z and x was an arbitrary point in 2, hence
feCQ).

We have already established that for any compact subset K of ), we have
SUp,ex |filz) — f(x)] — 0 as i — oo. Thus, for any N, there is some jy so
that if i > jy then sup,c g, |fi(z) — f(2)] < %. In other words, if i > jy, then
pon(fi—f) < %, ie. fi —f € Vo,n, showing that f; — f in C(Q). O

Theorem 2. If Q) is an open subset of R™ and k is a positive integer, then
C*(Q) is a Fréchet space.

Proof. We have proved in Theorem 1 that C(Q) = C°(Q) is a Fréchet space.
We assume that C*~1(Q) is a Fréchet space, and using this induction hypothesis
we shall prove that C*(Q) is a Fréchet space.

Let f; € C*(Q) be a Cauchy sequence in C*(Q). f; is in particular a Cauchy
sequence in the Fréchet space C(2), hence there is some g € C(€) such that
fi — g in C(92). We shall prove that g € C*(Q) and that f; — g in C*(Q).

For each 1 < p < n we have 9, f; € C¥~1(Q), and 9, f; is a Cauchy sequence
in C*=1(Q). Because C*~1(Q) is a Fréchet space, for each p there is some
gp € C*~1(Q) such that d,f; — g, in C*~1(Q). Fix p, and let a € N have pth
entry 1 and all other entries 0. Then, fix x € €2, and take N large enough so
that x lies in the interior of K. For each i, define F;(t) = f(z + ta), for which

Fi(t) = (V) (z +ta) - a = (Opfi) (x + ta).

For nonzero 7 small enough so that the line segment from x to x47« is contained
in KN,

filz +1a) — fi(z) = /OT(apfi)(ac + tar)dt.

Because f; — g in C(Q2) and 0, fi — g, in C(Q), we have sup, ¢k, |fi(y) —
g(y)| — 0 and sup,c g, [(9°fi)(y) — gp(y)| — 0, from which it follows that

gz +71a)—g(x) = /OT gp(x + ta)dt,

or

glz+7a)—g(x) 1 /T gp(T + ta)dt.
T Jo

-
As 7 tends to 0, the right hand side tends to go(z), showing that (9,9)(z) =
gp(x). But  was an arbitrary point in €, so 9,9 = g, € C*~1(Q). Thus, for each
1 < p < n we have 9,9 € C¥~1(Q), from which it follows that g € C*(Q). O

Theorem 3. If Q) is an open subset of R™, then C*°(Q) is a Fréchet space.

Proof. Let f; € C*°() be a Cauchy sequence in C*°(Q2). Thus, for each k, f;
is a Cauchy sequence in C*((2), and so by Theorem 2 there is some g, € C*(Q)
for which f; — gx in C*(Q). Define g = go, and check that go = g1 = go = - - -,
and hence that g € C(Q). O



3 Closed sets

Let 2 be an open subset of R” such that  is compact, i.e.  is a bounded open
subset of R™. If k is a nonnegative integer, let C*(Q) be those elements f of
C*(Q) such that for each a € N with |a| < k, the function 9% f is continuous
1 — C and can be extended to a continuous function Q — C; if there is such a
continuous function Q — C it is unique, and it thus makes sense to talk about
the value of 8% f at points in 99, and thus to write 8%f : Q@ — C. We write
C(Q) = C°Q). For f € C*(2), we define

1flls = sup sup |8 ) ()]

la|<k zeQ
It is straightforward to check that this is a norm on C*(Q).

Theorem 4. If) is a bounded open subset of R™, then C(Q) is a Banach space.

Proof. Let f; € C(Q) be a Cauchy sequence. Thus, f; : Q@ — C are continuous,
and for any € > 0 there is some 7. such that if 7, j > i, then

sup | fi(z) — fj(z)| <e

zeQ
Then, for each x € Q we have that f;(z) is a Cauchy sequence in C and hence
converges to some f(x) € C, thus defining a function f : Q@ — C. For z € Q
and € > 0, because f;(z) — f(z), there is some j, such that j > j, implies that
|fi(x) — f(z)] < e Fori>i. and j > max(ic, jz),

[filx) = f(@)] < |fi(x) = fi(@)| + fi(2) — f(2)| <e+e

This shows that sup, g |fi(z) — f(z)] = 0 as i — oo.

Fix x € Q2 and let € > 0. What we just proved shows that there is some ¢ for
which i > ig implies that sup, g | fi(2)— f(2)| < €. As fi, : Q@ — C s continuous,
there is some § > 0 such that for y € Bs(z) N Q, we have |fi, (z) — fi, (y)] < €.
Then, for y € Bs(z) N Q,

@) = fW)l < [f(@) = fio(@)] + | fio(®) = fio W] + | fio (W) — f(y)]
< €ete+te

This proves that f is continuous at x, and because z was an arbitrary point in
Q, we have that f € C(Q). O

Theorem 5. If ) is a bounded open subset of R™ and k is a positive integer,
then C*(Q) is a Banach space.

Proof. We proved in Theorem 4 that C(€2) = C°(Q) is a Banach space. We
assume that C*~1(Q) is a Banach space, and using this induction hypothesis
we shall prove that C*(Q) is a Banach space.



Let f; € C*(Q) be a Cauchy sequence. In particular, f; is a Cauchy sequence
in C(9), and because C(Q) is a Banach space, there is some g € C(Q) for which
lfi —gllo = 0. For each 1 < p < n we have d,f; € C*71(Q). Because
C*=1(Q) is a Banach space, for each p there is some g, € C*¥~1(Q) for which
10pfi = gpllk—1 — 0.

Let @ € N™ have pth entry 1 and all other entries 0, and let = € Q. For
nonzero 7 small enough so that the line segment from x to x 4+ T« is contained
in Q,

filz +7a) — fi(x) = /OT(apfi)(x + ta)dt.

Because || f;—gllo — 0 and ||0, fi—gpllo — 0 (the latter because |0, fi —gp|lk—1 —
0), we obtain

o(z +7a) - g(x) = / "ol + ta)dt,

or

gz +70) —g(x) 1 /T gp(x + ta)dt.
T T Jo

As 7 tends to 0 the right hand side tends to g, (), which shows that (9,9)(z) =
gp(x). We did this for all z € Q, and so dpg = g, € C*1(Q). Because this is
true for each 1 < p < n, we obtain g € C*(Q). O

If Q2 is a bounded open subset of R™, then
J— 0 J—
C>(@Q) = [ C*@.
k=0

It can be proved that C°°(Q) is the projective limit of the Banach spaces C*(Q),
k =0,1,....2 A projective limit of a countable projective system of Banach
spaces is a Fréchet space, and thus C*° () is a Fréchet space.

4 Test functions

Let © be an open subset of R™. If f : & — C is a function, the support of f
is the closure of the set {z € Q : f(x) # 0}. We denote the support of f by
supp f. If supp f is a compact set, we say that f has compact support, and we
denote by CS°(€) the set of all elements of C*°(§2) with compact support. We
write Z(Q2) = C ().

For f € 2(9), we define

[fllx = sup sup [(0%f)(x)].

|a|<N z€Q
If K is a compact subset of 2, we define
2(K)={fe€Cx(Q):supp f C K}.

3See Paul Garrett, Banach and Fréchet spaces of functions, http://www.math.umn.edu/
~garrett/m/fun/notes_2012-13/02_spaces_fcns.pdf




The restriction of these norms to Z(K) are norms, in particular seminorms.
Hence, with the topology for which a local basis at 0 is the collection of sets
of the form {f € 2(K) : ||f|ln < %}, we have that 2(K) is a locally convex
space, and because there are countably many seminorms || - ||, the space is
metrizable. One checks that the topology on Z(K) is equal to the subspace
topology it inherits from C°°(£2).* Theorem 3 tells us that C*°(Q) is a Fréchet
space, and in the following theorem we show that Z(K) is a closed subspace of
this Fréchet space, and hence is a Fréchet space itself.

Theorem 6. If Q is an open subset of R™ and K is a compact subset of €,
then 2(K) is a closed subspace of the Fréchet space C*(£2).

Proof. Let f; € 2(K), f € C*(Q), and suppose that f; — f in C*(Q). If
x € Q\ K, then f;(x) = 0. There is some Ky that contains K, and the fact
that f; — f gives us in particular that

[f(@)] =10 = f(x)] = |fi(z) = f2)] < sup |fi(y) = F(y)] =0,

yeEKN
hence f(z) = 0. This shows that supp f C K, and hence that f € 2(K). O

Let K; be an exhaustion of Q by compact sets. Check that Z(Kj) is a
closed subspace of Z(K;41) and that the inclusion 2(K;) — 2(K;+1) is a
homeomorphism onto its image. We define the following topology on the set
2(92). Let B be the collection of all convex balanced subsets V' of Z(U) such
that for all j, the set V N Z(Kj;) is open in Z(K;). (To be balanced means that
aV CVif|a| <1.) We define 7 be the collection of all subsets U of 2(§2) such
that zg € U implies that there is some V € £ for which zo +V C U. We check
that 7 is a topology on 2(Q), which we call the strict inductive limit topology.
One proves® that with this topology, 2(f2) is a locally convex space. With the
strict inductive limit topology, we call the locally convex space Z(Q) the strict
inductive limit of the Fréchet spaces Z(K;) — Z(Kz) < ---, and write

7(Q) = lim 9(K;).

4Walter Rudin, Functional Analysis, second ed., p. 151.

5John B. Conway, A Course in Functional Analysis, second ed., pp. 116-123, chap. IV, §5;
this is presented without using the language of inductive limits in Walter Rudin, Functional
Analysis, second ed., p. 152, Theorem 6.4.



