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2 JORDAN BELL

1. BABYLONIA

Neugebauer and Sachs [84, pp. 42-43], YBC 7289: in a square of side 2, the
diagonal is 1 + % + % + %. Neugebauer and Sachs suggest that this value was
obtained by the following method. Given a, let oy satisfy ay > v/a. Then let 3
be such that /a is the geometric mean of oy and f$1, that is, a1 : va = va : b1,

which means ; = ail < v/a. Then let as be the arithmetic mean of a; and Sy,
ie. ap = O”T%, and as ao is the arithmetic mean of «; and (; and +/a is the
geometric mean of a; and Sy it holds that ay > +/a. Then let B2 be such that
Va is the geometric mean of ay and Bs, that is, ay : v/a = v/a : Sz, which means
B2 = O% < \/6

For a = 2, take oy = % = 1+%, which satisfies a2 = 2+% > 2 and so a; > V2.
Then
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Fowler and Robson [39]

Neugebauer [81] on square root approximations in Babylonian mathematics

YBC 7243 |84, pp. 136-139], Neugebauer and Sachs, v/2 ~ 1;245110.

BM 15285, B 1 [I10, p. 54]: draw a first square whose side is 1, then draw a
second square inside that touches the first. Then draw a third square inside the
second that touches the second. What is the surface of the third square?

AO 6484, Problem 8 [I10] p. 78]: if the diagonal of a square is 10 cubits, what
is the side of the square? Mutiply 10 by 42'30" = % + %, getting 7°5' = 7 + 6%.
In fact, the side of the square has length /50, so this amounts to v/50 ~ 7 + 65—0.

YAT 6598, Problem 6 [I10, p. 130]: for a rectangle whose height is one demi-
ninda 2 cubits and whose width is 2 cubits, what is the diagonal? (A ninda is 12
cubits, a demi-ninda is 6 cubits, and =’ means z’ ninda, e.g. 10’ means é ninda,
namely 2 cubits.) Square 10’, the width, getting 1'40”. Divide this by 40’, the
height, getting 1’40” - 4%), = 2/30". Take half of this, getting 1'15”. Add this and
the height, getting 1'15” + 40" = 41’15”. This is an instance of

1 1
Va2 +b2~a+ =% =,
2 a

with @ = 40’, the height and b = 10, the width. See Weidner [116].

Hoyrup [65]

Friberg [42] W 23291 §4b: area of equilateral triangle triangle with side length
lis 28 + &5,

Friberg [42], p. 286] W 23291 §4c; pp. 302-304, VAT 7848 §1.
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Friberg [43] Kassite MS3876, 3

Friberg [41], p. 548], Ist Sippar 428

Goetze [45], Old Babylonian IM 52916: the height of an equilateral triangle with
side length s is s — %s. (“an eighth is torn out”). The area is ;2615 s2.

Tell Harmal [47], IM 52301

Bruins [14] and [13]

Bruins and Rutten [16], TMS 3, 27, regular hexagon, no. 31, no. 34

Old Babylonian tablet BM 80209, Problem 2 [40]: “if each square-side is | ... |
20, what is the transversal?”

Neugebauer [82] MKT: 11.43; BM 85194, Problem 4

Robson [93] and [92]

2. EGYPT

P. P11529, Schubart [103]

Rhind Mathematical Papyrus, Problems 41-60. The area of a regular octagon
with side length a is A = 2(1+v/2)a®. The length of an apothem is r = 3 (1+v/2)a.
Thus, if 7 =  then a = 1+9\/§ and A = 116\2@. In Problem 50, 1/7/9 ~ 8/9.

Problem 48: octagon. See Vogel [113] p. 66].

Problem 58 [2I], p. 167]

Gillings [44]

Parker, Demotic Mathematical Papyri [87], Problem 7:

2 1
V1500 ~ p—
500 ~ 38 + o + o

Demotic Mathematical Papyri, Parker, Problem 32, Problem 36

/ 1 1 1
Parker [86]

P. Dem. Heidelberg 663, Parker [88]
Cairo papyrus JE 89127, Problem 33
Berlin Papyrus 6619

BM 10520, Problem 62:

1
\/10'\‘3‘1'6

Papyrus Berlin 11529

1 1 1 99
Pl b — =
(R R R Teat
Knorr [72] fractions

Bagnall, wax tablets, TVarie 71 [3]

3. Music

Philolaus, Fragment 6a [66, pp. 146-147|, from Nicomachus, Manual of Harmon-
1cs 9t
The magnitude of harmonia (fitting together) is the fourth (syllaba)
and the fifth (di’ ozeian). The fifth is greater than the fourth
by the ratio 9 : 8 [a tone]. For from hypate [lowest tone] to the
middle string (mese) is a fourth, and from the middle string to
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neate [highest tone] is a fifth, but from neate to the third string is a
fourth, and from the third string to hypate is a fifth. That which is
in between the third string and the middle string is the ratio 9 : 8
[a tone], the fourth has the ratio 4 : 3, the fifth 3 : 2, and the octave
(dia pason) 2 : 1. Thus the harmonia is five 9 : 8 ratios [tones| and
two dieses [smaller semitones|. The fifth is three 9 : 8 ratios [tones]
and a diesis, and the fourth two 9 : 8 ratios [tones] and a diesis.

Huffman [66], p. 164] gives a nihil obstat for the following suggestion of Tannery.
From the fifth 3 : 2 take away the fourth 4 : 3, getting the tone 9 : 8, which is
lesser than 4 : 3. From 4 : 3 take away 9 : 8, getting 32 : 27, which is greater than
9 : 8. From 32 : 27 take away 9 : 8, getting the diesis 256 : 243, which is lesser than
9 : 8. This procedure can be continued. From 9 : 8 take away 256 : 243, getting the
apotome 2187 : 2048, which is greater than 256 : 243. From 2187 : 2048 take away
256 : 243, getting the comma 531441 : 524288, which is lesser than 256 : 243.

Philolaus, Fragment 6b [66, p. 364], from Boethius, De Institutione Musica 111.8
(according to Huffman, it is uncertain if this fragment is genuine):

Philolaus, then, defined these intervals and intervals smaller than
these in the following way: diesis, he says, is the interval by which
the ratio 4 : 3 is greater than two tones. The comma is the interval
by which the ratio 9 : 8 is greater than two dieses, that is than two
smaller semitones. Schisma is half of a comma, diaschisma half of
a diesis, that is a smaller semitone.

Archytas of Tarentum. Boethius, De Institutione Musica I11.11, a superparticu-
lar ratio cannot be divided into equal parts.

Octave is 2 : 1, whole tone is 9 : 8, fourth is 4 : 3, fifth is 3 : 2. A semitone
satisfies 2 = 2 : 1. A tone is a minor semitone and an apotome; an apotome is
37 : 21 an apotome is a minor semitone and a comma; a comma is 32 : 219,

A superparticular ratio is a pair of numbers A and B such that A > B and B is
a proper divisor of A — B.

Archytas’s theorem is in Sectio canonis 3

Archytas’s theorem says that an interval whose ratio is epimoric cannot be
halved: Sectio canonis 16, 18; Theo of Smyrna 53.1-16, 70.14-19; Ptolemy, Har-
monics 24.10-11.

Divide the fourth into three intervals, two of which are equal: 4 : 3 =x -z - y.
Take = to be a whole tone: x =9 : 8. Then y = 256 : 243. y is called the leimma.
cf. diesis

Sectio canonis, Postulate ix, notes are related in a ratio of number.

Barker [5, p. 223]: Theon of Smyrna, On Mathematics Useful for the Under-
standing of Plato,

9
8 16"

Aristides Quintilianus, De Musica 95.20ff. [5, p. 496]: \/g ~ %.

Ptolemy, Harmonics 1.10 [5, pp. 297-298]

Ptolemy, Harmonics 1.11 [5, pp. 298-299]

Ptolemy, Harmonics 1.16 [5, pp. 312-313]

Nicomachus, Manual of Harmonics

Macrobius, Commentary on the Dream of Scipio [105], pp. 188-189] 2.1.21-23:
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[21] The ancients chose to call the interval smaller than a tone a
semitone, but this must not be taken to mean half a tone any more
than we would call an intermediate vowel a semivowel. [22] The
tone by its very nature cannot be divided equally: inasmuch as it
originates in the number nine, which cannot be equally divided,
the tone refuses to be divided into two halves; they have merely
called an interval smaller than a full tone a semitone, but it has
been discovered that there is as little difference between it and a
full tone as the difference between the numbers 256 and 243. [23]
The early Pythagoreans called the semitone diesis, but those who
came later decided to use the word diesis for the interval smaller
than the semitone. Plato called the semitone leimma.

Censorinus, De Die Natali 10.7 [85] p. 18]: according to Aristoxenus the octave is
6 tones, while according to the Pythagoreans the octave is 5 tones and 2 semitones,
“so Pythagoras and the mathematicians, who pointed out that two semi-tones do
not necessarily add up to a full tone”.

Proclus, Commentary on Plato’s Timaeus [4]

Cohen and Drabkin |22 p. 286]

4. JEWS

Sukkah 8a,b, Eruvin 23a—b, 57a, 76b, Bava Batra 101b.

5. HIPPOCRATES OF CHIOS

Square lunes: vV N, N positive integers.

6. PLATO

Bulmer-Thomas [17]

Mueller [80]

Hippias Major 303c

Parmenides 149a—c, complete induction and continued fractions. Allen [2], pp. 238
258]

Statesman 266b

Meno 82b-85b [T, pp. 102-111]. Let ABCD be a square and let f,u,g,t be the
midpoints respectively of AB, BC,CD, DA. Socrates asks the slave boy what the
area of ABC'D is, and to explain what sort of answer he wants he explains that
the area of the rectangle fBCg is 1 -2 square feet, and then says that the area
of ABCD is 2 -2 square feet, which the slave boy then says is 4 square feet. The
slave boy agrees that there exists a square whose area is double that of ABCD, and
when asked by Socrates what its area is, says correctly 8 square feet, and then says
incorrectly that a side of this bigger square is twice a side of ABC'D. Further draw
a square Y BW X where A is the midpoint of Y B, C' is the midpoint of BW, and
D is the center of the square. Socrates explains that the area of Y BW X is 4 times
the area of ABC'D, namely 16 square feet. Socrates then states a square whose
area is 8 square feet is twice the area of ABC'D and half the area of Y BW X, and
therefore that a side of the desired square is greater than BC' (2 feet) and less than
BW (4 feet). When Socrates asks what the slave boy thinks the side of the desired
square is, and the slave boy tentatively answers 3 feet. Now let M be the midpoint
of YA, let K be the midpoint of CW, and let M BKL be a square, whose sides
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are thus each 3 feet. The slave boy is asked the area of the square M BK L and
correctly answers 9 square feet, which is greater than 8 square feet. Then 83e-84a
[7, p. 108]:

Socrates: Ah. So we still haven’t got our square of eight square
feet; we don’t get it from the three-foot line either.

Slave: No, we don’t.

Socrates: Well, what line do we get it from? Try and tell us
exactly. And if you don’t want to use numbers, you can just show
us. [He hands the slave his stick.] What line?

Slave: [He stares at the drawing.] Homest to god, Socrates, I
don’t know!

Socrates newly draws the square ABCD, with each side 2 feet. Further draw a
square whose area is 4 times that of ABCD, with A the midpoint of the left side,
C the midpoint of the bottom side, G the midpoint of the right side, and T the
midpoint of the top side; D is the center of this square. Then ACGT is a square.
Socrates then guides the slave boy thus: the square ABCD has twice the area of
the triangle ACD, namely ABCD : ACD = 2 : 1, and the square ACGT is made
of 4 triangles each congruent to the triangle ACD, namely ACGT : ACD =4: 1.
Therefore ACGT : ABCD = 2:1, and as ABCD is 4 square feet this means that
ACGT is 8 square feet, and thus AC' is a side of a square twice the square ABCD.
Klein [70, pp. 99-102] comments on this passage, and writes, “At best, this side can
only be drawn or ‘shown.” And Socrates will hint at this situation at every decisive
turn of the search.”

Laws 819d-820d

Theaetetus 147a-b [24], p. 22|, Socrates says, “Suppose we were asked about some
obvious common thing, for instance, what clay is; it would be absurd to answer:
potters’ clay, and oven-makers’ clay, and brick-makers’ clay.” “To begin with, it is
absurd to imagine that our answer conveys any meaning to the questioner, when we
use the word ‘clay’, no matter whose clay we call it — the doll-maker’s or any other
craftsman’s. You do not suppose a man can understand the name of a thing, when
he does not know what the thing is?” Then (147c), “And besides, we are going an
interminable way round, when our answer might be quite short and simple. In this
question about clay, for instance, the simple and ordinary thing to say is that clay
is earth mixed with moisture, never mind whose clay it may be.”

Then (147d-148b):

Theaetetus: Theodorus here was proving to us something about
square roots, namely that the sides (or roots) of squares represent-
ing three square feet and five square feet are not commensurable in
length with the line representing one foot; and he went on in this
way, taking all the separate cases up to the root of seventeen square
feet. There for some reason he stopped. The idea occurred to us,
seeing that these square roots were evidently infinite in number, to
try to arrive at a single collective term by which we could designate
all these roots.

Socrates: And did you find one?

Theaetetus: I think so; but I should like your opinion.

Socrates: Go on.
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Theaetetus: We divided number in general into two classes. Any
number which is a product of a number multiplied by itself we
likened to the square figure, and we called such a number ‘square’
or ‘equilateral’.

Socrates: Well done.

Theaetetus: Any intermediate number, such as 3 or 5 or any
number that cannot be obtained by multiplying a number by itself,
but has one factor either greater or less than the other, so that the
sides containing the corresponding figure are always unequal, we
likened to the oblong figure, and we called it an oblong number.

Socrates: Excellent; and what next?

Theaetetus: All the lines which form the four equal sides of
the plane figure representing the equilateral number we defined as
length, while those which form the sides of squares equal in area to
the oblongs we called ‘roots’ (surds), as not being commensurable
with others in length, but only in the plane areas to which their
squares are equal. And there is another distinction of the same sort
in the case of solids.

Brown [12] on Theaetetus.
Timaeus 36b [23, pp. 71-72]:

And he went on to fill up all the intervals of 3 (i.e. fourths) with
the interval % (the tone), leaving over in each a fraction. This
remaining interval of the fraction had its terms in the numerical
proportion of 256 to 243 (semitone).

54c—d 23] p. 212]:
Now all triangles are derived from two, each having one right angle
and the other angles acute...

53d — 54b |23} pp. 213-214]: among scalene triangles, the best of them for the
construction of bodies is that a pair of which is an equilateral triangle, which has
“the greater side triple in square of the lesser”; among the isosceles triangles...

Constructs the tetrahedron, octahedron, icosahedron, and cube 54d-55¢ [23]
pp. 216-218].

57c—d |23} p. 235]

cf. Chalcidius, On Plato’s Timaeus

Republic 546

Republic 546b—d, translated by Thomas [I08] pp. 398-401].

McNamee and Jacovides [77]

Fossa and Erickson [37]

7. ARISTOTLE

Topics VIIL.3, 158b29-35 |53, p. 80]:

In mathematics, too, some things would seem to be not easily
proved for want of a definition, e.g. that the straight line, parallel
to the side, which cuts a plane [a parallelogram| divides similarly
both the line and the area. But, once the definition is stated, the
said property is immediately manifest; for the (operation of) recip-
rocal subtraction applicable to both the areas and the lines is the
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same (or gives the same result); and this is the definition of the
same ratio.

Alexander of Aphrodisias [I08, p. 507] writes in his commentary on this passage:

For likewise when this is stated it is not obvious; but when the
definition of proportion is enunciated it becomes obvious that both
the line and the area are cut in the same proportion by the line
drawn parallel. For the definition of proportions which those of
old time used is this: Magnitudes which have the same alternating
subtraction (anthyphairesis) are proportional. But he has called
anthyphairesis antanairesis.

8. PLUTARCH

Plutarch, De animae procreatione in Timaeo 17 (Moralia XI1I) [20] pp. 303-309]:

What the “leimma” is and what is Plato’s meaning you will perceive
more clearly, however, after having first been reminded briefly of
the customary statements in the Pythagorean treatises. For an in-
terval in music is all that is encompassed by two sounds dissimilar
in pitch; and of the intervals one is what is called the tone, that by
which the fifth is greater than the fourth. The harmonists think
that this, when divided in two, makes two intervals, each of which
they call a semitone; but the Pythagoreans denied that it is divis-
ible into equal parts and, as the segments are unequal, name the
lesser of them “leimma” because it falls short of the half. This is
also why among the consonances the fourth is by the former made
to consist of two tones and a semitone and by the latter of two and
a “leimma.” Sense-perception seems to testify in favour of the har-
monists but in favour of the mathematicians demonstration, the
manner of which is as follows. It has been found by observation
with instruments that the octave has the duple ratio and the fifth
the sesquialteran and the fourth the sesquitertian and the tone the
sesquioctavan. It is possible even now to test the truth of this
either by suspending unequal weights from two strings or by mak-
ing one of two pipes with equal cavities double the length of the
other, for of the two pipes the larger will sound lower as hypaté to
nété and of the strings the one stretched by the double weight will
sound higher than the other as nété to hypaté. This is an octave.
Similarly too, when lengths and weights of three to two are taken,
they will produce the fifth and of four to three the fourth, the lat-
ter of which has sesquitertian ratio and the former sesquialteran.
If the inequality of the weights or the lengths be made as nine to
eight, however, it will produce an interval, that of the tone, not
concordant but tuneful because,to put it briefly, the notes it gives,
if they are struck successively, sound sweet and agreeable but, if
struck together, harsh and painful, whereas in the case of conso-
nances, whether they be struck together or alternately, the sense
accepts with pleasure the combination of sounds. What is more,
they give a rational demonstration of this too. The reason is that
in a musical scale the octave is composed of the fifth and the fourth
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and arithmetically the duple is composed of the sesquialter and the
sesquiterce, for twelve is four thirds of nine and half again as much
as eight and twice as much as six. Therefore the ratio of the duple
is composite of the sesquialter and the sesquiterce just as that of
the octave is of the fifth and the fourth, but in that case the fifth is
greater than the fourth by a tone and in this the sesquialter greater
than the sesquiterce by a sesquioctave. It is apparent, then, that
the octave has the duple ratio and the fifth the sesquialteran and
the fourth the sesquitertian and the tone the sesquioctavan,

18 |20, pp. 309-315]:

Now that this has been demonstrated, let us see whether the sesquioc-
tave is susceptible of being divided in half, for, if it is not, nei-
ther is the tone. Since nine and eight, the first numbers producing
the sesquioctavan ratio, have no intermediate interval but between
them when both are doubled the intervening number produces two
intervals, it is clear that, if these intervals are equal, the sesquioc-
tave is divided in half. But now twice nine is eighteen and twice
eight sixteen; and between them these numbers contain seventeen,
and one of the intervals turns out to be larger and the other smaller,
for the former is eighteen seventeenths and the second is seventeen
sixteenths. It is into unequal parts, then, that the sesquioctave is
divided; and, if this is, the tone is also. Neither of its segments,
therefore, when it is divided, turns out to be a semitone; but it has
rightly been called by the mathematicians “leimma.” This is just
what Plato says god in filling in the sesquiterces with the sesquioc-
taves leaves a fraction of each of them, the ratio of which is 256
to 243. For let the fourth be taken as expressed by two numbers
comprising the sesquitertian ratio, 256 and 192; and of these let
the smaller, 192, be placed at the lowest note of the tetrachord
and the larger, 256, at the highest. It is to be proved that, when
this is filled in with two sesquioctaves, there is left an interval of
the size that numerically expressed is 256 to 243. This is so, for,
when the lower note has been raised a tone, which is a sesquioctave,
it amounts to 216; and, when this has been raised again another
tone, it amounts to 243, for the latter exceeds 216 by 27 and 216
exceeds 192 by 24, and of these 27 is an eighth of 216 and 24 an
eighth of 192. Consequently, of these three numbers the largest
turns out to be sesquioctavan of the intermediate and the inter-
mediate sesquioctavan of the smallest; and the interval from the
smallest to the largest, i.e. that from 192 to 243, amounts to an
interval of two tones filled in with two sesquioctaves. When this is
subtracted, however, there remains of the whole as an interval left
over what is between 243 and 256, that is thirteen; and this is the
very reason why they named this number “leimma.” So I, for my
part, think that Plato’s intention is most clearly explained by these
numbers.

19 |20, pp. 315-317]:
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As terms of the fourth, however, others put the high note at 288
and the low at 216 and then determine proportionally those that
come next, except that they take the “leimma” to be between the
two tones. For, when the lower note has been raised a tone, the
result is 243 and, when the higher has been lowered a tone, it is
256, for 213 is nine eighths of 216 and 288 nine eighths of 256, so
that each of the two intervals is that of a tone and there is left
what is between 243 and 256; and this is not a semitone but is
less, for 288 exceeds 256 by 32 and 243 exceeds 216 by 27 but 256
exceeds 243 by thirteen, which is less than half of both the excesses
32 and 27. Consequently it turns out that the fourth consists of
two tones and a “leimma,” not of two tones and a half. Such, then,
is the demonstration of this point. As to the following point, from
what has been said before it is not very difficult either to see why,
after Plato had said that there came to be intervals of three to two
and of four to three and of nine to eight, when saying that those
of four to three are filled in with those of nine to eight he did not
mention those of three to two but omitted them. The reason is that
the sesquialter (is greater than) the sesquiterce by the sesquioctave
(so that with the sesquioctave’s) addition to the sesquiterce the
sesquialter is filled in as well.

20 [20] pp. 317-321]:

After the exposition of these matters the task of filling in the in-
tervals and inserting the means I should still have left to you for
an exercise to do yourselves though no one at all had happened
to have done it before; but now that this has been worked out by
many excellent men and especially by Crantor and Clearchus and
Theodorus, all of Soli, it is not unprofitable to say a few words
about the way in which they disagree. For Theodorus unlike those
others does not make two rows but sets out the double and the triple
numbers one after another in a single straight line, relying for this
in the first place upon what is stated to be the cleavage of the sub-
stance lengthwise that makes two parts presumably out of one, not
four out of two, and in the second place saying that it is suitable
for the insertions of the means to be arranged in this sequence, as
otherwise there will be disorder and confusion and transpositions
to the very first triple from the first double of the terms that ought
to fill in each of the two. Crantor and his followers, however, are
supported by the position of the numbers, paired off with plane
numbers over against plane and square over against square and cu-
bic over against cubic numbers, and in their being taken not in
order but alternately even and (30 b.) odd by (Plato himself). For
after putting at the head the unit, which is common to both, he
takes eight and next thereafter twenty-seven, all but showing us the
position that he assigns to each of the two kinds. Now, to treat this
with greater precision is a task that belongs to others; but what
remains is a proper part of our present disquisition.
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9. EucLID

Euclid, Elements [54], [55], [56]

1.32: in a triangle the exterior angle is equal to the sum of the opposite interior
angles, and the sum of all the interior angles is two right angles.

1.43: complements in a parallelogram

[.45: to construct a parallelogram with a given angle and area equal to a given
rectilinear figure

1.47: Pythagorean theorem

I1.2: let AB be a line and let C' be point on AB, then square on AB is the
rectangle with sides AB, BC and the rectangle AB, AC.

I1.4: let AB be a line and let C be a point on AB, then the square on AB is the
square on AC and the square on C'B and twice the rectangle on AC, CB.

I1.5: let AB be a line divided into unequal segments AD, DB and let C' be the
midpoint of AB. Then the rectangle on AD, DB and the square on C'D is the
square on C'B.

I1.6: let AB be aline and C' its midpoint. Extend AB to AD. Then the rectangle
on AD, DB and the square on CB is the square on CD.

I1.10: let AB be a line with C its midpoint, and extend AB to AD. Then the
square on AD and the square on DB is twice the square on AC and twice the
square on C'D.

I1.11: to divide a line AB into two segments, the larger AH and the smaller H B,
such that the square on AH is the rectangle on AB, BH.

I1.14: to construct a square whose area is the a given rectilineal figure.

I11.20: let BC be points on the circumference of a circle, with center O. Let A
be on the circumference. Then the central angle BOC is twice the inscribed angle
BAC.

I11.26: let BC' and E'F be arcs of equal circles and suppose the central angles
BOC and EOF are equal, then the arcs BC' and E'F are equal, and likewise if the
inscribed angles BAC and EDF are equal.

II1.27: if the arcs are equal then the angles are equal.

II1.28: in two equal circles if chords C'B and EF are equal then the arc C'B is
equal to the arc E'F.

II1.29: in two equal circles if arcs CB and E'F are equal, then chords C'B and
EF are equal.

I11.32: let BC be the arc of a circle and BF' the tangent at point B. Let D lie on
the arc determined by B and C not included in the angle CBF. Then the angles
BDC and FBC are equal.

IT1.37: let D be a point outside a circle with center F' and let DA be a secant
that cuts the circle at C. Let B be a point on the circle such that the rectangle on
AD, DC' is equal to the square on DB. Then the line DB is tangent to the circle
at B.

IV.2: to inscribe a given triangle in a circle.

IV.6: to inscribe a given square in a circle.

IV.10: to construct an isosceles triangle where each base angle is twice the
summit angle.

IV.11: to inscribe a regular pentagon in a given circle.

IV.12: to circumscribe a regular pentagon about a given circle.

IV.13: to inscribe a circle in a given regular pentagon.



12 JORDAN BELL

IV.14: to circumscribe a circle about a given regular pentagon.

IV.15: to inscribe a regular hexagon in a circle.

V.ib: leta:b=c:d. If a > cthen b > d, if a = ¢ then b = d, and if a < ¢ then
b<d.

VI.1: if two triangles hae the same altitude then the areas of the triangles have
the same ratio as their bases, and likewise for parallelograms.

VI.8: in a right triangle drop a perpendicular from the vertex of the right angle
to the hypotenuse. Then the two new right triangles are similar to the original.

VI.14

VI.16 mean, extreme

VI.17 mean, extreme

VI.25: to construct a rectilinear figure similar to a given rectilinear figure and
with the same area as another given rectilinear figure.

Plutarch, Quaestiones Convivales VII1.2.4, 720A [I08, p. 177]:

Among the most geometrical theorems, or rather problems, is this
— given two figures, to apply a third equal to the one and similar
to the other; it was in virtue of this discovery they say Pythagoras
sacrificed. This is unquestionably more subtle and elegant than
the theorem which he proved that the square on the hypotenuse is
equal to the squares on the sides about the right angle.

VI.28

VI.30: mean and extreme ratio
VI.33

X.1

X.2

X.3

X.9

X.21 medial

X.24 medial area

X.36 binomial

X.73 apotome

X.76 minor

XIII.1

XII1.2

XIII.3

XII1.4

XIIL.5

XIII.6: apotome

XIII.8: regular pentagon
XII1.9

XIIT.10

XIII.11: minor

XIIT.12

XIII.13, Lemma

X1V, Theorem 1

XIV, Lemma to Theorem 3
Knorr [71]
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Optics, Proposition VIII [22] pp. 260-261]: if «, 8 are acute angles and « < 3
then tana : tan 8 < a : B.

10. ARCHIMEDES

Archimedes, Measurement of a Circle, Proposition 3 states that if d is the diame-
ter of a circle and c is the circumference of the circle then (3 + %) d<c< (3 + %) d
[26, pp. 223-238]. To prove ¢ < (3 + %) d, it is taken as granted that v/3 : 1 > 265 :
153. To prove ¢ > (3 + %) d, it is taken as granted that /3 : 1 < 1351 : 780.

Heath [58]

Sand Reckoner

Knorr [73] p. 522]: Eutocius

Hultsch [68]

Hofmann [63]

11. ARISTARCHUS OF SAMOS

Aristarchus, On the Sizes and Distances of the Sun and Moon, Proposition 4
[50, p. 367]. In the proof of this proposition, the following is taken as granted:
in a triangle BAD where ADB = 90° and BAD = 1°, BAD : 45° > BD : DA.
(This is an instance of % < g when « and S are acute angles with 8 < «; here
o =3ADB =45° and 8 = BAD = 1°.) It follows that tan1° = BD : DA < 4= in
fact, tan1° =;1,2,50,... and 4% =:;1,20. In this proposition, BD is the radius of
a circle such that DA touches the circle at D. Furthermore, let BF be the radius
of the circle that is perpendicular to BA, the line BA cuts this circle at G, and H
is taken on the circle such that the arc F'D is equal to the arc HG.

Proposition 7 [50, p. 379]: let B be the center of a circle with radii BE, BA
that are perpendicular. Let when ABEF' is a square and AG bisects F'E, then
FB? . BE? = FG? : GE?. But FB> : BE? =2 : 1,50 FG? : GE> =2 : 1.
It is stated that because 49 : 25 < 2 : 1, then FG? : GE? > 49 : 25, and then
FG:GE > 7:5. If BCA is a right triangle where CAB = 3°, then AB > 18BC,
which amounts to sin3° < 1—18. Conversely, let DK B be a right triangle, with
BDK = 3°. Circumscribe this triangle, and in the circumscribed circle, inscribe
a regular hexagon one of whose sides is BL. Now, because DK B is a right angle,
BD is a diameter of the circle. The side of the inscribed hexagon is equal to the
radius of the circle (Elements IV.15). Thus, BD : BL = 2 : 1. The arc BL is 60°
and the arc BK is 6°. But the arc BL has to the arc BK a ratio greater than BL
has to BK. (This is an instance of « : 8 > chord « : chord § when « and S are
acute angles and « > .) Therefore 10: 1 > BL : BK, and as BD : BL=2:1 we
get BD : BK < 20 : 1. This means sin3° =sin BDK = % > 2—10.

Proposition 13 [50}, p. 397]: 7921 : 4050 > 88 : 45. This can be found as follows.

7921 3871 4050 179
7921 = 4050 + 3871, 4050 = 3871 + 179, thus 1920 = 1 4 3871 g 4050 _ 1 4 179
SO

7921

3871 ) 1
4050

4050 + 179
* 3871

1+
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Next, 3871 = 21 - 179 + 112, 179 = 112 4 67, thus
3871 112

ﬁ:21+1—79:21+ 57
1+ 112
hence
Ay, !
4050 1
1+
21+ o7
Finally, 112 = 67 4 45, whence
7921 14 1
4050 1
1+ 7
21 4+ 1
1+ VT
1+ 67
Then
1 88
1+ 1 = 5
1+ 1
21 4 7

: : : 7921
is an approximation from below to 15z5.

Proposition 15 [50, p. 407]: 71755875 : 61735500 > 43 : 37. This can be found
as follows. 71755875 = 61735500 + 10020375, 61735500 = 6 - 10020375 + 1613250,
10020375 = 6 - 1613250 + 340875.

71755875 1
61735500 N 1
N 340875
1613250
Then
61 1 37
640

71755875
61735500 °

is an approximation from below to
Neugebauer [83]

12. THEODOSIUS

There are scarcely any detailed modern expositions of spherical trigonometry;
one is Ratcliffe [91], Chapter 2.
Theodosius, Sphaerica II1.11: ver Eecke [32] and Heiberg [59]



APPROXIMATING SQUARE ROOTS IN ANTIQUITY 15

13. MENELAUS
Menelaus [9]

14. ERATOSTHENES

Goldstein [46]
Neugebauer [83], pp. 336, 746-748|

15. HIPPARCHUS

V9750000 ~ 3122—|—%. cf. Heron, Metrica [I02] pp. 18-20] and Ptolemy, Almagest
IV.11. Toomer [I11] p. 211].

Hipparchus, Commentary on Aratus 1.3.5-7 [62, p. |, cf. Manitius [76, p. 27],
says the following about Aratus, Phaenomena 497:

In the first place, Aratus seems to me to be mistaken in thinking the
latitude of Greek lands to be such that the ratio of the longest day
to the shortest is as 5 to 3; for he says of the summer tropic, ‘If you
measure it as accurately as possible and divide it into eight parts,
five in the daylight will turn above the earth, and three below it.’
Now it is agreed that in Greek lands the gnomon at the equinox is to
its midday shadow in the ratio of 4 to 3. Consequently the longest
day has a length of 14% hours and the latitude is approximately
37°. Where, however, the longest day is to the shortest as 5 to
3, the longest day has 15 hours and the latitude is approximately
41°. Consquently it is evident that the latter ratio does not hold
for Greek lands, but rather for the region about the Hellespont.

Hipparchus says
1
sin i(a —12)15° = tan ¢ tan w,

where a is the number of hours in the longest day, ¢ is the latitude of the place,
and w is the latitude of the tropic.

Cohen and Drabkin [22] pp. 82-86]

Neugebauer [83]

Hipparchus, Fragment 41 [25] p. 91|, in the Almagest 1.67.22 and Theon of
Alexandria’s Commentary on the Almagest:

I have taken the arc from the northernmost limit to the most
southerly, that is the arc between the tropics, as being always 47°
and more than two-thirds but less than three-quarters of a degree,
which is nearly the same estimate as that of Eratosthenes and which
Hipparchus also used; for the arc between the tropics amounts to
almost exactly 11 of the units of which the meridian contains 83.

[Theon’s comment.] This ratio is nearly the same as that of
Eratosthenes, which Hipparchus also used because it had been ac-
curately mearued; for Eratosthenes determined the whole circle as
being 83 units, and found that part of it which lies between the
tropics to be 11 units; and the ratio 360° : 47°42'40” is the same
as 83 : 11.

In fact, 360° : 47°42'40"” = 16200 : 2147, and using the Euclidean algorithm we
get the approximations 7,8,15: 2,83 : 11,16200 : 2147.
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16. GEOGRAPHERS

Strabo, Geography 1.1.8 [99], p. 40]: “That the inhabited world is an island must
be assumed both from the senses as well as experience.”
1.1.12, Hipparchus Fragment 11 [25, p. 65]:

At all events it is a fact that many men have spoken of the neces-
sity for wide learning in relation to this subject [i.e. geography].
Hipparchus also rightly points out in his treatise aginst Eratos-
thenes that, while geographical knowledge is the concern of every-
one whether layman or scholar, it is impossible to attain it with-
out consideration of the heavens and of the observations of eclipses;
thus one cannot determine whether Alexandria in Egypt is north or
south of Babylon, or by how much, without investigation by means
of the climata. Similarly one cannot decide accurately whether
places are situated to a greater or less degree towards the east or
west except by comparison of [the times of] eclipses of the sun and
moon. This is what Hipparchus says, anyway.

1.1.20 [99, p. 45]: “One must assume that the universe is sphere-shaped, and
that the surface of the earth is sphere-shaped, and moreover, what is fundamental
to this, that the motion of the [heavenly| bodies is toward the center.”

2.1.29, Hipparchus Fragment 22 [25] pp. 73-75]:

Hipparchus, taking these things for granted and having shown, as
he thinks, that according to Eratosthenes Babylon is a little more
than 1000 stades further east than Thapsacus, again gratuitously
fabricates an assumption for his own use in his next argument; for
he says that, if a straight line is assumed drawn from Thapsacus
towards the south, and a line perpendicular to it from Babylon,
a right-angled triangle will be formed composed of the side drawn
from Thapsacus to Babylon, of the perpendicular drawn from Baby-
lon to the meridian through Thapsacus, and of the meridian itself
through Thapsacus. In this triangle he makes the hypotenuse the
line from Thapsacus to Babylon, which he says is 4800 stades, and
the perpendicular from Babylon to the meridian through Thap-
sacus a little more than 1000 stades, which is the amount by which
the line to Thapsacus [from the Caspian Gates| exceeds that up
to Babylon [from the frontier between Carmania and Persial; and
from this he also calculates the remaining side about the right angle
to be many times longer than the said perpendicular.

Using 4800 stades for the hypotenuse and 1000 stades for one side, the other side
will be about 4695 stades, which is indeed much longer than 1000 stades.
2.1.34, Hipparchus Fragment 24 [25], p. 77]:

Neither is his subsequent conclusion correct. For, since Eratos-
thenes had given the distance from the Caspian Gates to Baby-
lon as stated above [i.e. 6700 stades|, from the Caspian Gates to
Susa 4900 stades, and from Babylon to Susa as 3400 stades, Hip-
parchus, again starting from the same hypotheses, says that an
obtuse-angled triangle is formed with the Caspian Gates, Susa and
Babylon at its vertices, having the obtuse angle at Susa and the
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lengths of its sides as set out above. Then he concludes that it will
follow from these hypotheses that the point of intersection of the
meridian line through the Caspian Gates and the parallel through
Babylon and Susa is more than 4400 stades further west than the
intersection of the same parallel with the straight line running from
the Caspian Gates to the borders of Carmania and Persia; and that,
in fact, this latter line makes an angle of about 45° with a direction
half-way between the south and the equinoctial east; and that the
river Indus runs parallel to this line, so that this river also does not
flow due south from the mountains, as Eratosthenes says it does,
but in a direction between south and the equinoctial east, just as
it has been drawn in the ancient maps.

2.5.7, Eratosthenes Fragment 34 [98| p. 63]:

Since, according to Eratosthenes, the equator is 252,000 stadia, one
fourth would be 63,000. This is the distance from the equator to the
pole, fifteen sixtieths of the sixty [intervals| of the equator. From
the equator to the summer tropic is four [sixtieths], and this is the
parallel drawn through Syene. Each of these distances is computed
from known measurements. The tropic lies at Syene because there
at the summer solstice a gnomon has no shadow in the middle of the
day. The meridian through Syene is drawn approximately along the
course of the Nile from Meroé to Alexandria, which is about 10,000
stadia. It happens that Syene lies in the middle of that distance,
so that from there to Meroé is 5,000.

Meroé is between the 5th and 6th cataracts of the Nile.

2.5.10 [99, p. 134]: it will make only a small difference if a map of the inhabited
earth is drawn on a flat surface at least 7 feet long rather than a sphere with
diameter at least 10 feet:

It will make only a small difference if we draw the parallels and
meridians with straight lines, by which we plainly show the lati-
tudes, winds, and other differences, as well as the positioning of
the parts of the earth relative to each other and the heavens, paral-
lel [lines| for the parallels, and ones at right angles for those at right
angles, for the difference can easily be transferred from what is seen
by the eye on a flat surface to the form and size carried around the
sphere. We can say that the oblique circles and their straight lines
are analogous. Although the various meridians drawn through the
pole converge on the sphere toward a single point, on the surface of
the plan there is no difference if the straight lines converge slightly,
but there is often no necessity for this, nor is it obvious when the
circumferential and converging lines are transferred to the surface
of the plan and drawn as straight lines.

2.5.16, Eratosthenes Fragment 46 [98], p. 69]:

Such being the shape of the entire [inhabited world], it appears
useful to take two straight lines, which cut across each other at a
right angle, one going through all the greatest width and the other
the length, and the first will be one of the parallels and the other one
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of the meridians. Then one should think of lines parallel to these
on either side, which are used to divide the land and the sea that
we happen to use. Thus the shape will be somewhat more clear, as
I have described, according to the length of the line, with different
measurements for both the length and width, and the terrestrial
regions will be better manifested, both in the east and west as well
in as the south and north.

2.5.38, Hipparchus Fragment 48 [25] p. 95]:

In the regions some 400 stades south of the parallel through Alexan-
dria and Cyrene, where the longest day is 14 equinoctial hours,
Arcturus reaches the zenith, but decline a little towards the south.
In Alexandria the gnomon bears to its equinoctial shadow a ratio of
5 : 3. These regions are 1300 stades south of Carthage, if it be true
that in Carthage the gnomon has a ratio of 11 : 7 for its equinoctial
shadow.

2.5.39, Eratosthenes Fragment 60 [99 pp. 148-149]: “In the region of Ptolemais
— the one in Phoenicia — and Sidon and Tyre, the longest day has 14% equinoctial
hours [Hipparchos, F49]. These regions are about 1,600 stadia father north than
Alexandria and about 700 from Karchedon. In the Peloponnesos and around the
middle of the Rhodia, around Xanthos in Lykia or a little to the south, and also 400
stadia south of Syracuse, the longest day has 14% equinoctial hours [Hipparchos,
F50]. These places are 3,640 from Alexandria and ( 2,740 from Karchedon ).”

2.5.40, Eratosthenes Fragment 60 [99, p. 149]: “In the area around Alexandria
Troas, around Amphipolis, Apollonia in Epeiros, and south of Rome but north of
Neapolis, the longest day has 15 equinoctial hours [Hipparchos, F51|. The parallel
is about 7,000 stadia north of the one through Alexandria next to Egypt and more
than 28,800 from the equator, 3,400 from the one through Rhodes, and 1,500 south
of Byzantion, Nikaia and the region around Massalia.”

2.5.41, Eratosthenes Fragment 60 [99] p. 149]: “In the regions around Byzantion
the longest day has 15% equinoctial hours and the relationship of the gnomon to
its shadow at the summer solstice is 120 to 42 less a fifth [Hipparchos, F52]. These
places are 4,900 [stadia] from [the parallel] through the center of the Rhodia and
about 30,300 from the equator.”

2.5.42 [99, p. 149]: “In the regions 3,800 [stadia] to the north of Byzantion the
longest day has 16 equinoctial hours, and thus Cassiopeia appears within the arctic
circle [Hipparchos, F57]. These are the places around the Borysthenes and the
southern parts of the Maiotis, about 34,100 from the equator.”

Strabo in Books I and IT of the Geography [99] reports distances between various
locations stated by Eratosthenes, Hipparchus, and Polybius. We organize these in
Table[ll (Thapsacus = Euphrates)

Agathemerus, Sketch of Geography IV |27, pp. 69-70] states distances between
various places, and says that the length of the inhabited earth from the Ganges to
Gades is 68545 stades. IV.15: from the Caspian Gates to the Euphrates is 10050
stades. IV.18: from Meroé to Alexandria is 10000 stades, and from Alexandria to
Linus in Rhodes is 4500 stades. IV.19: “city to city”, from Alexandria to Rhodes is
4670 stades.

Pliny, Natural History 2.186; Books 3-6; 37.108, Philo on Meroé
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TABLE 1. Distances between locations reported in Strabo

Lycia, Rhodes Alexandria 4000 stades  1.2.17
Meroé Alexandria 10000 stades 1.4.2
Alexandria Hellespont 8100 stades 1.4.2
Hellespont Borysthenes 5000 stades  1.4.2
Caspian Gates Euphrates 10000 stades 1.4.5
Euphrates Nile 5000 stades  1.4.5
Nile Canopic mouth 1300 stades  1.4.5
Canopic mouth Carthage 13500 stades 1.4.5
Merée Hellespont 18000 stades 2.1.3
Byzantium Borysthenes 3700 stades  2.1.12
Babylon Thapsacus 4800 stades  2.1.21
Caspian Gates Thapsacus 10000 stades 2.1.24, 2.1.39
Carthage meridian Thapsacus meridian 6300 stades  2.1.39
Babylon Carmania 9200 stades  2.1.23, 2.1.25
Thapsacus Babylon 4800 stades  2.1.26
Thapsacus Armenian Gates 1100 stades  2.1.26
Thapsacus Caspian Gates 10000 stades 2.1.27
Babylon Carmania 9000 stades  2.1.27
Thapsacus Babylon 4800 stades  2.1.27
Rhodes Alexandria 4000 stades  2.1.33
Babylon Caspian Gates 6700 stades  2.1.34
Babylon Carmania 9000 stades  2.1.34
Caspian Gates Susa 4900 stades  2.1.34
Susa Babylon 3400 stades  2.1.34
Syene Meroé 5000 stades  2.5.7
Meroé Alexandria 5000 stades  2.5.7
Rhodia Byzantium 4900 stades  2.5.8

19

Pliny, Natural History 5.36: “But the most beautiful is the free island of Rhodes,

which measures 125, or, if we prefer to believe Isidore, 103 miles round, and which
contains the cities of Lindus, Camirus and lalysus, and now that of Rhodes. Its
distance from Alexandria in Egypt is 583 miles according to Isidore, 468 according
to Eratosthenes, 500 according to Mucianus; and it is 176 miles from Cyprus.” The
distance given by Eratosthenes corresponds to 3750 stades.

17. PTOLEMY

Ptolemy, Planetary Hypotheses, Duke [29]
Ptolemy, Geography [8, p. 90]: for a right triangle BEZ where the base EZ is
23% units and the height BE is 90 units, the hypotenuse BZ is

1
BZ ~93—.
10

Pedersen [89] on the Almagest. See page 60 on the half-angle formula.
sin 30° = %, sin45° = %, and sin 36° = 7”02\/5
are given, so is sin 75°, and because sin 36° is given, so is sin 72°. Therefore sin 3°

. Because sin 30° and sin 45°
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is given; it turns out that
2(1 - V3)V5 +v5+ (V10 - vV2) (V3 + 1)

16 ’
which is sin3° = 6% + % + % + ---. Since sin 3° is given, so is sin %O and then
sin %O. When £ < a < 90° it holds that % > :2‘;, this is proved in Almagest 1.10
[I11, pp. 54-55]. Therefore,

sin 3° =

o o]

4
§Sin§ <sinl® < gsinz .

This yields
;1,2,49,28 50,... < sinl° <;1,2,49,48,12,...,
so sin1° =;1,2,49,.... In fact, sin1° =;1,2,49,43,11,14,.. ..
Ptolemy, Almagest 1.10 [I11, p. 49]:
4 55
V4500 ~ 67 + 50 + 602
1.10 [ITT} p. 49]:

4 15 32
497+ —+ —S ~710+ — + —.
\/ +60+602 +60+602

I.11, the table of chords. For a circle with diameter 120, for an arc of the circle
of 6 degrees, let chord # be the length of the chord that joins the endpoints of the

arc. This means chord § = 120sin (%). Now, sin (%) = g; % = 7 is equivalent

to 8 = 90, so chord90 = 120 - g, i.e. chord90 = 60 - v/2. In the table of chords,
for the arc 90 the chord is 84 + % + %, SO
chord 90 24 51 10
\/i _

I+
60 50 " 602 608

Similarly, sin (g) = @; % = 7% is equivalent to 6§ = 120, so chord 120 = 120 - @,
i.e. chord120 = 60 - /3. In the table of chords, for the arc 120 the chord is
103 + % + %, SO
chord 120 43 955 23
3= O 2222
V3 60 + 60 + 602 + 603
IL5 [I1T} p. 158]: if DK = 141 and KOZ = 62+ 22, then for DK2+ K©Z2 =
ZD?,

11
ZD ~ 62+ —.
50
IIL5 [II1} p. 160]: if ZK = 1+ &2 and KD = 62+ £, then for ZK*+ KD? = ZD?,
11
ZD ~ 62+ —.
50
IIL5 [I11, p. 162]: if DK = 14 §2 and KZ = 57+ 23, then for DZ? = DK?+ K Z?,
51
DZ ~ 57+ —.
50

IV.6 [111} pp. 195-196]:

14 36 3 o7
2914+ —+—~1 — + —.
) +60+602 7+60+602
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IV.6 [1111, p. 197]:

5) 32 8 42
476300 + — + ——5 ~ 690 + — + —..
\/ +60+602 +60+602

V.6 [I11 p. 201]:
43 38 37 10
23+ o o~ 1d o
50 T 602 50 T 602
IV.6 [LII, pp. 201-202]:

617 8
474904 + 28 ~ 689 + >
\/ * 60 T 602 60

V.5 [I11) p. 231]: if BD = 49+ 3t and DK = 10+ £, then for BK? = BD?*—~ DK?,
36
BEK ~ 48+ —
60

V.6 [II1L p. 234]: if BX = 48+ 2% and XN = 10+ 12
31
BN ~ 49+ —
%0

V.6 |11 p. 234]: if BE =48+ 31, LB=5+ &, FL=BE+ LB, LH =1+ 2,

then for EL? + LH? = EH?,

19 then for BX2+XN? = BN?,

37
EH ~ 53+ —
50

V.10 [I11} p. 241]: if BD = 49+ & and DM = 2+ 28, then for BM? = BD?*~DM?,
37
BM ~49 + —
50

V.10 [I11} p. 242]: if BD =49 + 5 41 and DM = 2(1), then for BM? = BD? — DM?,
41
BM ~ 49+ —
T 60

V.13 [I11 p. 250]: if BD = 49+ &% and DM = 4+ £, then for BM? = BD?*~DM?,
31
BM ~49 + —
50

V.13 [I11, p. 251]: if BL =5+ 45 and EB = 40+ &, then for EL? = BL? + EB?,
25
EL ~ 40+ =
50

V.17 [I11] p. 261]: if ZH = 62+ 25 and HB = 4+ 33, then for ZB% = ZH? + H B2,
48
ZB ~ 62+ —
50

V.17 [IIL, p. 262 if BH = GO = 6+ 25, ZH = 64, and ZO© = 56, then for

ZB? = ZH? + BH? and ZG? = Z0? + GO?,

23 26
ZB ~ 64+ — ZG ~ 56 + —
+60 +60
V.17 [I11} p. 263]: if BE = 49+ 2% and EH = 8+ 38, then for BH? = BE*— EH?,
BH~%+§

60
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V.19 [I111 p. 273]:

302 20 2 46 30\ 2 20\ ? 44
42 + = 4+ ) ~a24 2 474+ = A+ 2) ~ar4 .
\/< 50 +< +60> * 50’ \/( 7+60> +( +60) %0

VL7 [I11} p. 299):

/ 32 43 / 52 28 / 15 41
42 — ~2 — 4 — ~ 214+ — 2+ —~2 —.
9+60 0-‘1-60, 60-‘1-60 +60, 8 +6O 8"1‘60
V1.7 [I111 p. 300]:
/ 35 20
1045+ — ~ 32+ —.
+ 60 + 60
VL7 [I11 p. 301]:
\/2883—1-@ 534—4*2 \/331-"-E 18-‘rE
60 60’ 60 60’
19 34 21 32
\/ D60+ s, /421 4+ -~ 20+ oo
3667 + &0 60 + 60’ + 50 0+ 50

IX.10 111} p. 463]: if DN = 2+ 2 and NZ = 55+ 33, then for DZ? = DN?+ N Z?,

51
DZ ~ 55+ —.
T 50
IX.10 [II1} pp. 465-466]: if ZH = 60 and HM =5+ &, then for ZM?* = ZH? —
HM?,

and

47
ZM ~ 59+ —.
+ 60
IX.10 [I11L p. 466]: DN = 84—1—% and ZN = 64+ 65—0, then for ZD? = ZN?+DN?,
7
ZD ~ 644+ —.
* 60
X.4 [I11], p. 476]: if ZG = 60 and GL = 33 then for ZG* — GL? = ZL?,
ZL ~ 60;
if ZM =58 + % and DM =1+ 6%7 then for ZD? = ZM? + DM?,
54
ZD ~ 58 4+ —.
+ 60
X.4 [I11), pp. 477-478]: if GZ = 60 and GL = g%, then for ZG? — GL? = ZL?,
Z L ~ 60.
X.4 111, p. 478): if ZM = 58+% and DM = 1—1—%, then for ZD? = ZM?+DM?,
59
ZD ~ 58 4+ —.
* 60
X.7 [ITT, p. 488]:
32 53
192 — ~1 —.
9289 + 60 38 + 60

X.7 [I11, p. 489]:

9 7
1724+ — ~1 —.
7+60 3+60
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X.7 [LI1} p. 493]: if DG = 60 and DF = 4+ &, then for GD* — DF? = GF?,
51
GF ~ 59+ —.
50

X.7 [IT1} p. 495]: if DA = 60 and DF =3 + 2 then for DA% — DF? = F A2,
50
FA~5H9 4+ —.
* 50

X.7 [I11}, p. 496]: if DB = 60 and DF = 3 + 32, then for DB? — DF? = BF?,

53
BF ~ 594 —.
* 60

X.7 [I11}, p. 498]: if DG = 60 and DF = 4 + “6;%, then for DG? — DF? = GF?,

51
60°

X.8 [I11}, p. 501]: if DB = 60 and DM =4 + &, then for DB* — DM? = BM?,
52
BM ~ 59+ —.
+ 60

XL1 [IT1} p. 512]: if DA =60 and DH =2+ 23, then for DA? — DH? = AH?,

o6
AH ~ 59+ —.
+ 60

XL1 [I11} p. 514]: if DG = 60 and DH =1+ 23, then for GD* — DH? = GH?,

99
GH ~ 59+ —.
* 60
XL1 [IIT, p. 516]: if DA = 60 and DH = 2+ 4L then for AH? = AD? — DH?,

56
AH ~ 59+ —.
* 60

XIL.2 [I11] p. 521]: if DB = 60 and DM = 2 + 3, then for DB* — DM? = M B2,
56

MB ~ 59+ —.
Jr60

GF ~ 59+

XL5 [I11} p. 528):

51 8

XL5 [I11], p. 529]: if DA = 60 and DH = 2+ 37 then for DA? — DH? = AH?,

56
AH ~59 + 2.
50
XL5 [II1} p. 531]: if DB = 60 and DH =1+ 3, then for DB*> — DH? = BH?,
59
BH ~ 59 + —.
50

XL5 [I11], p. 533]: if DG = 60 and DH = 3 + &5, then for DG* — DH? = GH?,

96
GH ~ 59+ —.
+ 60
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XL5 [I11} p. 534]: if DA = 60 and DH =2+ 52 then for AD*> — DH? = AH?,

60°
o6

AH ~ 59 + —.
+60

XL5 [I11} pp. 535-536]: if DB = 60 and DH = 1+, then for DB?*~DH? = BH?,

60°
59

BH ~ 59+ —.
+60

XL5 [I11}, p. 537]: if DG = 60 and DH = 2 + 2%, then for DG? — DH? = GH?,

60°
o6

GH ~59+ 2.
%0

XI.6 [TIT1}, p. 540]: if DB = 60 and DM = 3 + 23 then for DB? — DM? = BM?,

60
54

BM ~ 59+ —.
+60

XIL2 [I11] p. 564]:

1424 B ey Ly 20
60 602 60 602

XII.2 [I11}, p. 566]:

1420 8,2
60 602 60 602

XI1.2 [I11} p. 568):

S
60 602 60 602

XIL3 [II1} p. 570]:

50 9 99
244+ —4+ = ~44+ -+ —=.
+60+602 +60+602

XIL3 [I11} p. 571]:

XIL3 [I11] p. 571]:

XIL4 [I11} p. 572J:

XIL4 [I11] p. 574]:

4
602"

-

B, 20 s B

60 ' 602 60 ' 6

2454+ D ar

,/803+%+%~28+%+%.
é§+%~31+%+

/ 41
964 + — —.
+ 602

XII.4 [I11, pp. 574-575]:

13 25 38
672+ 2 254 2
672+ = ~ 25+ oo+ oo

XIL5 [I11] pp. 575-576):

51 31 29
\/1 324
057+ o5 ~ 32+ o + oo
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XIL5 [I11] p. 577]:

16 23 3 53
10934 — 4+ —=5 ~33+ -+ —.
\/ +6()—i_602 +60+602

XIL5 [I11} p. 578:

54 7 58 58
1022+ —+ — ~ 31+ — + —.
\/ +in—i_GO2 +60+602

XI11.6 [I11} p. 579]:

29 31 48 7
1904+ — + — ~ 134+ — + —.
0+ 50 T 602 50 T 602
XI1.6 [I11} p. 580
22 44 2 35
2 16— —.
ST+ 50 T 602 60 60
XI1.6 [I1T} p. 581]:
21 29 39 48
1604+ — + — ~ 124+ — + —.
00+ 50 T 602 50 602
XIL9 [IT1, p. 591]: if BM = 14£ and M Z = 60+ 45, then for BZ? = BM?+M Z?,
17
BZ ~ 60+ —.
50
XII1.4 [IT1} p. 608]: if AL = 29+323 and LM = 30+32, then for AM? = AL?*+LM?,
27
AM ~ 42 + ——;
50
if AB=60and AK =29+ 28 then for AK? + KO©? = A0?,
26
AO ~ 42 4+ —.
50
XII1.4 [I11, p. 610]: if AL = 40—&—% and LM = 15—1—%, then for AL?+LM? = AM?,
50
AM ~ 43 + —;
* 50
if AM =43+ % and OM =1+ %, then for AM? + OM? = AO?,
52
AO ~ 43+ .
50
XIIL4 [I11, p. 611]: if OK = 15+ 2% and AK = 40+ 32, then for AK?+K©? = A6?
45
AO ~ 43+ —.
50
XIIL4 [I11} p. 613]: if AM =57+3% and MK = 22, then for AK? = AM?*+MK?,
35
AK ~ 57+ —.
50
XIIL4 [I11} p. 614]: if AB =57+ 3} and BL = 4+ 35, then for AB? + BL? = AL?,
42
AL ~ 574 —,

60
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and if LO =2+ 33 then for AL? + LO? = A©?,
46
AO ~ 57+ —;
50’
if AB=119+ 2 and BL =4+ 38, then for AB? + BL? = AL?,
13
AL ~ 53 + —.
T %0
XII14 [I11} p. 615]: if AL =53+ &2 and OL = 2+ 35, then for AL*> + ©L?
17
AO ~ 53+ —;
T 50
if KO =4+ 2 and AK = 53 + g, then for AK? + K©? = A©?,
16
AO ~ 53+ —.
50
XIIL4 [I111 p. 617]: if AB =54+ 23 and BL = 8+ &, then for AB?+ BL?
56
AL ~ 54 + —
T 50
and if LO =1+ 25 then for AL? + LO? = A©?,
58
AO ~ 54+ —.
50
XIIL4 [I11} p. 618]: if AB =49+ 23 and BL = 8+ 5, then for AB%+ BL?
AL ~ 50,

and if OL =1+ %, then for AL? + ©L? = AG?,
2

AO =50 + =
0 =50+ o

ifOK =8+ 6% and AK =49+ %, then for AK? + K% = A62,
2

AO ~ —.
S} 50+60

= AO?,

= AL?,

— AL?,

XIIL4 [I11, p. 619]: if KM = 1+ & and AM = 38 + &, then for AK? =

AM? + KM?,
7
AK ~ 38 + —.
60
XIIL4 [I11} p. 620]: if AB = 38+ & and BL = 27+ 58, then for AB?+ BL?

607
14
AL ~ AT + —,
50

and if OL =1+ %, then for AL? + LO? = AO?,
16
AO ~ 47+ —.
+ 60
XI14 [I11, p. 621]: if KM = 1+ 6% and AM = 26 + 6%,
KM? + AM?,

7
AK ~ 26+ —;
+60’

— AL?,

then for AK? =
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if AB =26+ & and BL =27+ 58, then for AB? + BL? = AL?,

60°
12
AL ~ 38 + —
i 60’
and if LO =1+ %, then for AL? + LO? = AO?,
14
AO ~ 38 + —;
* 60’
if KO =27+ % and AK = 26 + %, then for AO2? = AK? + KO?2,
12
A© ~ 38+ —.
* 60
XII1.4 [II1} p. 626]: if AB =60 and BD = 43 + &2, then for AB? — BD? = AD?,
40
AD ~ 41+ —;
N 60’
if AD=41+ 23, DH =1+ 3, DZ =29+ 33, then for AD? — DH? = AH? and

ZD? — DH? = HZ2,

37 95
AH ~ 41+ — HZ ~2 —;
+607 9+60’

if AB =63 and BD =22+ 39, then for AB?> — DB? = AD?,

60°
51
AD ~ 58 + —.
50
XIIL4 [I11, p. 627]: if DH =2+ 23, AD =58+ 51, and DZ = 21 + &5, then for

DA% — DH? = AH? and DZ? — DH? = HZ?,

47 53
AH ~ 58+ — ZH ~20+ —.
+ 60’ * 60
XII1.4 [ITT), p. 628]: if AB = 61+£ and BD = 43+%, then for AB2—BD? = AD?,
27
AD ~ 43 4+ —.
+ 60
XII1.4 [I11], p. 629]: if BD = 43—|—£ and AB = 58+%, then for AB2—DB? = AD?,
51
AD ~ 394 —;
+ 60’
if AB=69 and BD =22+ %, then for AD? = AB? — BD?,
14
AD ~ 65+ —.
+ 60

18. HERON OF ALEXANDRIA

Bruins, Codex Constantinopolitanus, fol. 6r—6v [I5 p. 6]: for a square each side
of which is 50 feet, find the area and the diagonal. The area is 2500 square feet.
To find the diagonal, double the area, getting 5000 square feet. The square root of
this is said to be 70%i feet, which is said to be the diagonal.

Bruins, Codex Constantinopolitanus, fol. 6v [I5, p. 6]: for a rectangle whose
length is 50 feet and whose length is 30 feet, find the area and the diagonal. The
area is 1500 square feet. To find the diagonal, add the length squared, 2500 square
feet, and the width squared, 900 square feet, getting 3400 square feet. he square
root of this is said to be 58% feet, which is said to be the diagonal.
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Bruins, Codex Constantinopolitanus, fol. 7v [15, p. 9]: for an equilateral triangle
each side of which is 30 feet, find the diameter of an inscribed circle. It is stated
that the area of the triangle is 390 square feet. Generally, the area of a triangle
with side length a is A = f" ; for @ = 30, this satisfies 389 < A < 390. Multiply
the area by 4, getting 1560 square feet. The perimeter of the triangle is 90 feet.
Divide the area 1560 square feet by 90 feet, getting 17% feet. It is used that for

an equilateral triangle with side length a, the diameter of the inscribed circle is
4A _ a

3a ~ /3

Bru\igs7 Codex Constantinopolitanus, fol. 8r [I5], p. 10]: an equilateral triangle
whose sides are 30 is two right triangles each with hypotenuse 30 and base 15.
Square 30, getting 900, and square 15, getting 225, and subtract 225 from 900,
getting 675. The square root of this is the height of the right triangle, and it is
stated that /675 is “very near” to 25%. Using 26 as the altitude of the equilateral
triangle, the area of the equilateral triangle 390, and four times this is 1560. Divide
this by the perimeter of the equilateral triangle, getting 1560 = 171 which is said
to be the diameter of the inscribed circle. This is also Worked out using Heron’s
formula. For a triangle with sides a,b,c and with s = %b*c, Heron’s formula
states that the area of the triangle is A = \/s(s —a)(s —b)(s — ¢). The radius
of the inscribed circle is r = %, so r? = %. For a = b = ¢, this is
equivalent to 52 : s(s —a) = (s — a)? : r2. For a = 30 we have s = 45, s? = 2025,
s—a =15, (s —a)? = 225, s(s —a) = 45 - 15 = 675, thus 2025 : 675 = 225 : r?
Now, 2025 : 675 = 225 : 75, so 2 = 75. It is then stated that the square root of 75
is 8%, and that twice this is the diameter, 17%.

Bruins, Codex Constantinopolitanus, fol. 8r [15] p. 12]: Euclid XII1.12 is invoked,
which says that the square on the side of an equilateral triangle is three times the
square on the radius of the circumscribed circle. Thus for a triangle with side length
30, it is stated that the radius of the circumscribed circle is v/300. Twice this is the
diameter, and it is stated that the diameter is 34 . Thus, 24/300 ~ 342

Bruins, Codex Constantinopolitanus, fol. 17r [15 p- 42] for a pyramid whose
base is an equilateral triangle with side length 30 feet and with inclined side 20 feet,
find the altitude and the volume. Generally, let ABC be an equilateral triangle
with center D and let DE be perpendicular to the plane ABC. Then ABCE is a
pyramid, with altitude DE. It holds that AE? = DE?+ ATBZ, and the volume of the
pyramid is a third of the area of the base triangular multiplied by the altitude of the
pyramid (Elements XI1.7). Here, AB = 30 and AF = 20, so A?BZ) = % = 300 and

AE? = 400. Then DE? = AE? — A% — 400 — 300 = 100, and therefore DE = 10.
The altitude of the pyramid is thus found to be 10 feet. The area of ABC is found
thus: square 30, getting 900. A third and a tenth of this is 300 4+ 90 = 390. This
is the area of the base triangle. (This amounts to @ ~ % + %) A third of this is
130, and the product of this and the altitude is 130 - 10 = 1300.

Bruins, Codez Constantinopolitanus, fol. 20r [I5 p. 58]: for a regular decagon

with sides 10 feet, find the area. Generally, the area of a regular decagon of side

length a is 57”5;2\/5(12. Square 10, getting 100, multiply this by 38, getting 3800,
and take a fifth, getting 760, which is said to be the area.

Bruins, Codex Constantinopolitanus, fol. 57r—v [I5, p. 160]: for an isosceles
triangle with sides 8 12, 12, the height h satisﬁes h? = 122 4% = 128. It is stated

/ _ 249 249 / 249 1
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Bruins, Codex Constantinopolitanus, fol. 57r—v [I5, p. 165]: for a hexagonal
pyramid whose base edges are 12 feet and whose inclined edges are 35 feet, find the
height and the volume. The height h satisfies 352 = h? + 122, so h? = 1081 It is
stated that v/1081 ~ %i%@7 which is 3257 In fact, % — g < V1081 < e

Bruins, Codex Constantinopolitanus, fol 65r [15), p. 178] find the dlagonal of
a square piece of wood having each side 10 feet. 102 + 10?2 = 200, and it is stated
that the approximate square root of 200 is 14% and that this is the diagonal.

Euclid 1.22: if A, B,C are three straight lines and any two taken together are
greater than the remaining, to construct a triangle with sides equal to A, B, C.
Heron’s formula says that if a, b, c are the sides of a triangle and s = %b*'c then

the area of the triangle is \/s(s —a)(s — b)(s — ¢). Heron’s formula is proved in

Heron’s Metrica 1.8 [102, pp. 18-25]; Thomas [109, pp. 470-477] translates this

passages, and Heath [52] pp. 321-323] presents the proof. Heron gives the example

7,8,9. Here, s = # = 22—4 = 12. Then
s(s=T)(s—8)(s—9)=12-5-4-3=60-4-3=240-3 = 720.

Thus the area of the triangle is V720.

Heron works out an approximate value for v/720 as follows [52, pp. 323 326] cf.
[1]. The square mteger closest to 720 is 729 = 27 27. Then 22 = 26 + 2. Then
27+26 + £ = 53—|— and half of this is 26—|— —|— =, and this approxunates the square
root of 720. Then

1 1\? 1
264+~ + =) =720+ —
<6+2+3> 720 + o

is a square, and the difference between this square and 720 is %, which is smaller
than the difference between 729 and 720, which is 9. Heron states that this process
can be done again to get a difference smaller than but does not do any more

367
iterations. The next iteration is: 26+ +1 = 26+137, and then 26+4 + 5 +26+ 137 =
53+ 522 and half of that is 26 + }ggg Then
o6+ 1609)" _ 2687489281
1932 ) 3732624

is a square, and the difference between this square and 720 is m, which is
smaller than the difference between 720 + 55 and 720, which is % Cf. Bruins,
Codex Constantinopolitanus, fol. 70v [15] p. 189]
Metrica 1.9 [102], pp. 27-29]:
1 1 1 1
VB3~ T4 TSt
Metrica 1.15 [102] pp. 41-43]: for AB =13, BI' =10, TA = 20, AA = 17, let
ABT' A be a quadrilateral where BT'A is a right angle. Then BA? = 500. Let AE be

perpendicular to BA. For s = W we have AF = 2\/5(87AB)(BS;BA)(57AA),
which means

4 30+BA 4+BA 30—BA BA-14

AE? = —_. . . .
500 2 2 2 2
_ 1 900-500 500—16
T 1925 4 4
481

5
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Metrica 1.17 [102], p. 49]:
1
V1875 ~ 43 + 3

Metrica 1.18 [102, pp. 51-53]: the regular pentagon, with each side 10. 5 ~ %, and
this yields the approximate value 166—|—% for the area. (See Heath [52, pp. 326-329]
about the regular polygons in the Metrica.)

Metrica 1.19 [102], pp. 52-55]: the regular hexagon, with each side 10.

Metrica 1.20 [I02), pp. 54-57]: the regular heptagon, with each side 10.

Metrica 1.21 [102], pp. 57-59]: the regular octagon, with each side 10.

Metrica 1.22 [102], pp. 59-61]: the regular nonagon, with each side 10.

Metrica 1.23 [102, p. 61]: the regular decagon, with each side 10.

Metrica 1.24 [102], p. 63]: the regular 11-gon, with each side 10.

Metrica 1.25 [102], pp. 63-65]: the regular 12-gon, with each side 10.

Stereometrica [61]. 1.33, v/63 [61], pp. 34-35]: for oy =8 and 1 = & =7+ I,
we get ag = O”T% =7+ %g =8— %6. 1.63 [61l p. 65]:

11 1
V356 ~ 184 = + — + —.
+t5+1T 3

IL1 [61, p. 85]: V288 ~ 17. IL.2 [61] p. 87]: (/144 + & ~ 12. IL57 [61] p. 139):
V288 ~ 17, V1224 ~ 35. 1159 [61, p. 143]: /512 ~ 22+ 2, /72 ~ 8 + 1,
V1400 ~ 374+ % 4+ L. 1160 [61, p. 147]: V128 ~ 11+ 1 4+ L + L /593 ~
24+ 1+ 11163 [61, pp. 151-153]: 1125 ~ 33+ 1 + &, V108 ~ 10+ 1 + L.
I1.64 [61, p. 153]: V1081 ~ 32+ % + 1 + 1 4+ L 1165 [61, p. 155]: /50 ~ 7+ &4,
VB4 ~ T+1. 1166 [61, p. 157]: V75 ~ 845+ 4415, /43 + 35+ 5+ 5 ~6+35+3,
\/356 4+ & ~ 184+ 2+ 141
Geometrica 5.3 [60}, p. 203]:
11
V5000 ~ 70 + TR
6.1 [60, p. 209]:

1
V3400 ~ 58 + 3

10 [60, p. 223]: for an equilateral triangle with sides a, the area is agi/g, and the

area is stated to be approximately (% + 1%) a?. This amounts to

V3 o1 o1 12 44
AL 3mldot+o=14—.
4 3 + 10 V3 * 3 + 5 * 60
15 [60] pp. 286-301] states approximate values for several surds. 15.3:
1 1 1 2 1
—+ -+ —=n~2+-+4+-.
8+ 4 + 8 + 16 + 3 * 4
For, 8—1—%—1—%4—1—16 = %: %, and a square near to this is % = (2—1—%)2:
2+2+1)% 154
1 1 1 13
VI35~ 11+ -+ —+ — =11+ —

2 14 21 21°
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15.6:
/ 1 1 1 1 1 8
4 — — 4 — —
3+ +7 ~6+ = RETRET 6+13
15.10: . . "
V6300 ~ 79 + = st t1m - 79+ﬁ
15.11:
V1575 ~ 39 + = +i 39+§
51 51
15.12:
/ 1 1 1 1 39
= ~2 — =294+ ==
886 T 9+2+4+68 9+51
15.13:
/ 15 1 1 1 1 31
2460+1—6~49+ ettt T 9+5—1
15.14:

/ 15 1 41
1 — ~ 24 — 4+ =4+ =244 —.
65+64 +2+ +51+51+68 +51

16.34-35 [60, p. 323]:

2 1 23
~ — e ]_4 —_
V216~ 1t 5t oo + 33
16.36-37 [60, p. 325]:
11 5
V720~ 264 5+ 5 =26+ ¢

16.38 [60, p. 327]:

\/58+1+ TR A
478716 3

19.4 [60], p. 359]:

1 1
208 ~ 14 —
V208 t3+t 13
20.13 [60 p. 373]:
1
\ 444 + 5 + -~ 21+ —
* 3 + 9 4T
21.14 [60, p. 383]: for a regular pentagon with side a, the area is %-1/5(5 + 21/5).

For a = 35, this passage states the area as 35-35-12 - 7 = 2100.

The area of a regular hexagon with side a is 3—*2/5612. For a = 30, 21.16 states the
area as 30 - 30 - 13 - £ = 2340.

(The area of a regular heptagon involves cos(7/7).)

The area of a regular octagon with side a is 2(1 + v/2)a?. For a = 10, 21.19 [60,
p. 385| states the area as 10-10-29 - § = 483 + 1.

(The area of a regular nonagon involves cos(m/9).)

The area of a regular decagon with side a is ‘L%Q\/gag. For a = 10, 21.21 states
the area as 10-10-15- % = 750.

(The area of a regular 11-gon involves cos(mw/11).)

The area of a regular 12-gon with side a is 3(2 + v/3)a?. For a = 10, 21.23 [60,
p. 387] states the area as 10-10-45 - % = 1125.
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19. DIODORUS SICULUS

Diodorus Siculus, Bibliotheca historica 1.63.3—4 writes the following about the
Great Pyramids:

These pyramids, which are situated on the side of Egypt which is
towards Libya, are one hundred and twenty stades from Memphis
and forty-five from the Nile, and by the immensity of their struc-
tures and the skill shown in their execution they fill the beholder
with wonder and astonishment. For the largest is in the form of a
square and has a base length on each side of seven plethra and a
height of over six plethra; it also gradually tapers to the top, where
each side is six cubits long.

(A plethron is 100 feet.) For a pyramid whose base is a square whose sides have
length a and whose four other faces are equilateral triangles, let ¢ be the distance
from the apex of the pyramid to the midpoint of one of the sides of the square base.
Then ¢ + (a/2)? = a?, so ¢ = 24%. For Diodorus Siculus, a is seven plethra, so
c:ga. Now,6<§-7<%g.

Plutarch, The Dinner of the Seven Wise Men 147 (Moralia 11):

“Not for this alone,” said Neiloxenus, “but he does not try to avoid,
as the rest of you do, being a friend of kings and being called such.
In your case, for instance, the king finds much to admire in you,
and in particular he was immensely pleased with your method of
measuring the pyramid, because, without making any ado or asking
for any instrument, you simply set your walking-stick upright at the
edge of the shadow which the pyramid cast, and, two triangles being
formed by the intercepting of the sun’s rays, you demonstrated that
the height of the pyramid bore the same relation to the length of
the stick as the one shadow to the other....”

Pliny, Natural History 36.17:

The largest Pyramid occupies seven jugera of ground, and the four
angles are equidistant, the face of each side being eight hundred and
thirty-three feet in length. The total height from the ground to the
summit is seven hundred and twenty-five feet, and the platform on
the summit is sixteen feet and a-half in circuit.

Diogenes Laertius, Lives of Eminent Philosophers 1.27 writes about Thales: “Hi-
eronymus informs us that he measured the height of the pyramids by the shadow
they cast, taking the observation at the hour when our shadow is of the same length
as ourselves.”

20. GREEK AND ROMAN ART

Villa of Maxentius, Mausoleum of Romulus: hexagon, and area of the interior is
half the total.

Athens, Tower of the Winds

Temple of Hadrian, Maritime Theatre, v/3. Jacobson [69]

Pompeii [19]: 1.280,322,326,407,438,458; IV.48, 136, 660, 724, 748; V.505, 843.

Pompeii VII.7.5, House of Triptolemus

Pompeii VI.9.2, House of Meleager



APPROXIMATING SQUARE ROOTS IN ANTIQUITY 33

Herculaneum, Casa dell’Atrio a Mosaico, Casa del Rilievo di Telefo
House in Pella in Macedonia, pebble mosaic

Ostia, House of Cupid and Psyche, Room E [6]

Mediana, Moesia Superior: Nymphaeum

Gamzigrad, Serbia: Felix Romuliana temple, hexagonal labyrinth mosaic
Ammaedara, Haidra, Tunisia: hexagonal mausoleum

Salzmann [100]

Dunbabin [30]

21. VARRO

In De Re Rustica IIL.XVI.4-5 [64, p. 501], after stating that nature has given
great talent and art to bees, Varro writes:

Bees are not of a solitary nature, as eagles are, but are like human
beings. Even if jackdaws in this respect are the same, still it is not
the same case; for in one there is a fellowship in toil and in building
which does not obtain in the other; in the one case there is reason
and skill — it is from these that men learn to toil, to build, to store
up food. They have three tasks: food, dwelling, toil; and the food is
not the same as the wax, nor the honey, nor the dwelling. Does not
the chamber in the comb have six angles, the same number as the
bee has feet? The geometricians prove that this hexagon inscribed
in a circular figure encloses the greatest amount of space.

Aristotle, De caelo 111.8, 306b5—7 [63] p. 177]:

And, speaking generally, the attempt to give figures to the simple
elements is irrational, first, because it will be found that they do not
fill the whole (of a space). For, among plane figures, it is agreed that
there are only three which fill up space, the triangle, the square,
and the hexagon; while among solids there are only the pyramid
and the cube.

Pappus, Collection V.1-3 [109, pp. 589-593| writes about why cells of honey-
combs are hexagonal; cf. Collection VIII, Proposition 19.

22. VITRUVIUS

Vitruvius, De architectura, IV.1.11 [101], p. 93|, on the Corinthian order:

The modular system of this capital should be established in such a
way that the lower diameter of the column should equal the height
of the capital with the abacus. The breadth of the abacus is to be
proportioned so that the length of diagonals taken from corner to
corner should be twice the height of the capital. In that way the
faces of the abacus will have fronts of the right breadth on all sides.
The faces should curve inwards from the points of the angles of the
abacus by a ninth of the breadth of the face. At the bottom, the
capital should be as wide as the top of the column, disregarding
the apothesis and the astragal. The height of the abacus should be
a seventh that of the capital.

V1.3.3 [101] p. 172]:
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The lengths and breadths of atria fall into three categories: the first
category is laid out so that when the length has been divided into
five units, three should be allocated to the breadth; in the second,
the length should be divided into three units and two assigned to
the width; and in the third, the breadth of the atrium should be
incorporated in a square in which a diagonal should be drawn; the
length of the diagonal should be allocated to the atrium.

The first category is the Tuscan atrium; the second category is the Corinthian
atrium; the third category is the tetrastyle atrium; the other two types of courtyard
are displuviate and testudinatum.

IX, Introduction 4-5 [101] p. 243]:

[4] First of all, T will explain one of Plato’s many exceptionally
useful theorems as he formulated it. If there is a site or square
field, that is, one with equal sides, which we have to double, the
solution can be found by drawing lines accurately, since we will need
a type of number that cannot be arrived at by multiplication. The
proof of this is as follows: a square site ten feet long and ten feet
wide produces an area of a hundred square feet. If, then, we need
to double it and produce a square of two hundred feet, we must
find out how long the side of the square would be to obtain from
it the two hundred feet corresponding to the doubling of the area.
Nobody can discover this by calculation: for if we take the number
fourteen, multiplication will give a hundred and ninety-six square
feet; if we take fifteen, it will give two hundred and twenty-five
square feet.

[5] Therefore, since we cannot solve this problem arithmetically,
a diagonal line should be drawn in the ten foot square from angle to
angle so that it is divided into two triangles of equal size, each fifty
feet in area; a square with equal sides should be drawn along the
length of this diagonal. In this way four triangles will be produced
in the larger square of the same size and number of feet as the
two triangles of fifty square feet created by the diagonal in the
smaller square. The problem of doubling an area was solved by
Plato with this procedure using geometrical methods, as is shown
in the diagram at the foot of the page.

Then in IX, Introduction 6 [I0T], pp. 243-244]:

Again, Pythagoras demonstrated how to devise a set-square with-
out the intervention of workmen; the results which workmen arrive
at when they make set-squares, with considerable effort but without
great accuracy, can be arrived at with precision using the princi-
ples and methods derived from his teachings. For if we take three
rulers, three, four and five feet long, and assemble them with their
ends touching in the form of a triangle, they will form a perfect
set-square. If squares with equal sides are drawn along the lengths
of each ruler, the three-foot side will produce an area of nine square
feet, the four-foot side an area of sixteen square feet and the five-
foot side an area of twenty-five square feet.
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23. COLUMELLA
In De Re Rustica V.1.4-8 [36], pp. 5-7], Columella defines measures of area:

But to return to my subject, the extent of every area is reckoned
by measurement in feet, and a foot consists of 16 fingers. The
multiplication of the foot produces successively the pace, the actus,
the clima, the iugerum, the stadium and the centuria, and afterward
still larger measurements. The pace contains five feet. The smallest
actus (as Marcus Varro says) is four feet wide and 120 feet long.
The clima is 60 feet each way. The square actus is bounded by
120 feet each way; when doubled it forms a iugerum, and it has
derived the name of iugerum from the fact that it was formed by
joining. This actus the country folk of the province of Baetica
call acnua; they also call a breadth of 30 feet and a length of 180
feet a porca. The Gauls give the name candetum to areas of a
hundred feet in urban districts but to areas of 150 feet in rural
districts they also call a half-iugerum an arepennis. Two actus, as
I have said, form a iugerum 240 feet long and 120 feet wide, which
two numbers multiplied together make 28,800 square feet. Next a
stadium contains 125 paces (that is to say 625 feet) which multiplied
by eight makes 1000 paces, which amount to 5000 feet. We now call
an area of 200 iugera a centuria, as Varro again states; but formerly
the centuria was so called because it contained 100 iugera, but
afterwards when it was doubled it retained the same name, just as
the tribes were so called because the people were divided into three
parts but now, though many times more numerous, still keep their
old name. It was proper that we should begin by briefly mentioning
these facts first, as being relevant to and closely connected with the
system of calculation which we are going to set forth.

Then in V.I.8-13 [36, pp. 9-13] he defines different fractions of the iugerum:

Let us now come to our real purpose. We have not put down all the
parts of the iugerum but only those which enter into the estimation
of work done. For it was needless to follow out the smaller fractions
on which no business transaction depends. The iugerum, therefore,
as we have said, contains 28,800 square feet, which number of feet is
equivalent to 288 scripula. But to begin with the smallest fraction,
the half-scripulum, the 576th part of a jugerum, contains 50 feet;
it is the haif-scripulum of the iugerum. The 288th part of the
iugerum contains 100 feet; this is a scripulum. The 144th part
contains 200 feet, that is two scripula. The 72nd part contains
400 feet and is a sextula, in which there are four scripula. The
48th part, containing 600 feet, is a sicilicus, in which there are six
scripula. The 24th part, containing 1200 feet, is a semi-uncia, in
which there are 12 scripula. The 12th part, containing 2400 feet, is
the uncia, in which there are 24 scripula. The 6th part, containing
4800 feet, is a sextans, in which there are 48 scripula. The 4th part,
containing 7200 feet is a quadrans, in which there are 72 scripula.
The 3rd part, containing 9600 feet, is a triens, in which there are
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96 scripula. The 3rd part plus the 12th part, containing 12,000
feet, is the quincunz, in which there are 120 scripula. The half of
a jugerum, containing 14,400 feet, is a semis, in which there are
144 scripula. A half plus a 12th part, containing 16,800 feet, is a
septunz, in which there are 168 scripula. Two-thirds of a iugerum,
containing 19,200 feet, is a bes, in which there are 192 scripula.
Three-quarters, containing 21,600 feet, is a dodrans, in which there
are 216 scripula. A half plus a third, containing 24,000 feet, is a
dextans, in which there are 240 scripula. Two-thirds plus a quarter,
containing 26,400 feet, is a deunz, in which there are 264 scripula.
A iugerum, containing 28,800 feet, is the as, in which there are 288
scripula. If the form of the iugerum were always rectangular and,
when measurements were being taken, were always 240 feet long
and 120 feet wide, the calculation would be very quickly done; but
since pieces of land of different shapes come to be the subjects of
dispute, we will give below specimens of every kind of shape which
we will use as patterns.

The area A of an equilateral triangle whose sides have length «a is

2
a
A—\/§-Z.

In V.IL5 [36, pp. 15-17], Columella writes:

which implies ¥ ~ %, or V3~ Ie-
The area of a regular hexagon whose sides have length a is

But if you have to measure a triangle with three equal sides, you
will follow this formula. Suppose the field to be triangular, three
hundred feet on every side. Multiply this number by itself and
the result is 90,000 feet. Take a third part of this sum, that is
30,000. Likewise take a tenth part, that is 9,000. Add the two
numbers together; the result is 39,000. We shall say that this is the
total number of square feet in this triangle, which measure makes
1

a tugerum, plus a triens (%), plus a sicilicus (g3).

This amounts to

Awf+a72:a2.E’
3 10 30

V3 26

2
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In V.IL.10 [36, pp. 21-23], Columella writes:

If the area has six angles, it is reduced to square feet in the following
manner. Let there be a hexagon, each side of which measures 30
feet. I multiply one side by itself: 30 times 30 makes 900. Of this
sum I take one-third, which is 300, a tenth part of which is 90: total
390. This must be multiplied by 6, because there are 6 sides: the
product is 2310. We shall say, therefore, that this is the number
of square feet. It will, then, be equivalent to an wuncia (% of a
1

iugerum) less half a scripulum (z55) plus %0 of a scripulum.
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This amounts to

24. FRONTINUS

Frontinus, De Aquaeductu Urbis Romae 24-25 [96]:

[24] Water pipes have been calibrated to measurement either in
digits or in inches. Digits are employed in Campania and in most
parts of Italy, but inches are still accepted as standard in Apulia.
(2) A digit, by convention, is one-sixteenth part of a foot, while an
inch is one-twelfth. (3) Just as there is a distinction between the
inch and the digit, there are also two kinds of digits. (4) One is
called square, the other round. (5) The square digit is larger than
the round by three-fourteenths of its own size; the round digit is
smaller than the square by three-elevenths of its size (because, of
course, the corners are taken away). [25] Later, a pipe called the
5-pipe (quinaria) came into use in the City to the exclusion of all
former sizes. Its origin was based neither on the inch nor on either
of the two kinds of digit. Some think that Agrippa was responsible
for its introduction, others that this was done by the lead-workers
under the influence of the architect Vitruvius. (2) Those who credit
Agrippa with its currency derive its name from the suggestion that
into one such pipe were combined five of the slender ancient pipes
(we might say little tubes) used for distributing the supply of water
which in those times was not copious. Those who ascribe the 5-
pipe to Vitruvius and the lead-workers suppose that its origin lay
in producing a cylindrical pipe from a sheet of lead five digits in
width. (3) The latter explanation is inexact, because in forming
a cylindrical shape the inner surface is contracted while the outer
surface is extended. (4) Most probable is the explanation that
the name of the 5-pipe came from its diameter of five quarter-
digits, (5) according to a system which remains consistent in pipes
of increasing size up as far as the 20-pipe: the diameter of each
increases in size by the addition of one quarter-digit. For example,
the 6-pipe has a diameter of six quarter-digits, the 7-pipe has seven,
and so on by uniform increment up to a 20-pipe.

See Rodgers [97, pp. 209-211].

26-29 [96]:
[26] The size of any pipe is determined either by its diameter, or
its circumference, or the measure of its cross-section; from any one
of these factors its capacity is evident. (2) That we may more con-
veniently distinguish between the inch, the square digit, the round
digit, and the 5-pipe itself, we need to treat “the guinaria” (5-pipe
equivalent) as a unit of capacity, for its size is most accurate and its
standard best established. (3) The inch pipe has a diameter of 13
digits; its capacity is a little more than 1% quinariae, the fraction
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755+ (4) A square digit converted
to circular shape has a diameter of 13—56 digits; its capacity is % of a
quinaria. (5) A round digit has a diameter of 1 digit; its capacity
is % of a quinaria. [27] Now the pipes based on the 5-pipe are
increased in size in two ways. (2) One is by multiplying the 5-pipes
themselves, that is by including the equivalent of several 5-pipes
into one opening, with the size of that opening increasing accord-
ing to the addition of more 5-pipe equivalents. (3) This approach
is more or less limited to instances where a number of quinariae
have been granted: to avoid tapping the conduit too often, a single
pipe is used to lead the water into a delivery-tank, and from here
individual persons draw off their respective shares. [28] The second
way does not involve an increase in pipe size related to a necessary
number of 5-pipes. Instead, the increase is in the diameter of the
pipe itself, a change which alters both its name and its capacity.
Take, for example, the 5-pipe: add a sixth quarter-digit to its di-
ameter, and one has a 6-pipe, (2) but the capacity is not increased
by an entire 5-pipe equivalent (it has only 11—76 quinariae). (3) By
adding quarter-digits to the diameter in the same manner, as al-
ready explained, one gets larger pipes, a 7-pipe, an 8-pipe, and so
on up to the 20-pipe. [29] Beyond the 20-pipe the gauging is based
on the number of square digits which are contained in the cross-
section, that is the opening, of each pipe. From this same number
the pipes also take their names. (2) Thus that pipe with an area of
25 square digits is called the 25-pipe; likewise the 30-pipe, and so
on by increase in square digits, up to the 120-pipe.

See Rodgers [07, pp. 212-215].

being § plus 53¢ plus 2 of another

25. FAVENTINUS

Faventinus, De Diversis Fabricis Architectonicae 28 [90, p. 80]:

Quoniam ad omnes usus normae ratio subtiliter inventa videtur,
sine quo nihil utiliter fieri potest, hoc modo erit disponenda. suman-
tur itaque tres regulae, ita ut duae sint pedibus binis et tertia
habeat pedes duo uncias x. eae regulae aequali crassitudine com-
positae extremis acuminibus iungantur schema facientes trigoni. sic
fiet perite norma composita.

A norma is a set-square, a right triangle.
Faventinus, De Diversis Fabricis Architectonicae 28 [90], p. 81]:

Since the principle of the square was a clever discovery and useful
for all purposes — since, indeed, nothing can be done very practically
without it, this is how you will prepare one. Take three scales, two
of them 2 foot long, the third, 2 foot 10 inches. They are all to be
of one uniform width, and are to be joined at the ends to give the
shape of a triangle. Your square will thus be made to professional
standards.

cf. tequlae bipedales
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26. ROMAN CAMPS

Polybius, Histories VI.19-20 describes the formation of four legions, each of
which is said to be usually 4200 infantry, when there is special danger 5000 infantry,
and 300 cavalry. Polybius, VI.26-32 [104, pp. 324-329, 553] describes a Roman
camp for two legions. VI.26 [104] p. 324]: “No matter where this is done, one simple
formula for a camp is employed, which is adopted at all times and in all places.”
VIL.31 [104, p. 328]: “The result of these dispositions is that the whole camp is
laid out as a square, and the arrangement both of the streets and the general plan
gives it the appearance of a town. The rampart is dug on all sides at a distance
of 200 feet from the tents, and this empty space serves a number of important
purposes.” VI.32 [T04, p. 328]: “Given the numbers of cavalry and infantry, and on
the assumption that the strength of each legion is either 4,000 or 5,000 men, and
given likewise the depth and length and the number of the maniples and squadrons,
and besides these the dimensions of the passages and roads and all other details,
it is possible, for anybody who wishes, to calculate the area and perimeter of the
camp.” After stating that the market and the quaestor’s depot should be reduced
if there are exceptionally many allies, VI.32 continues [104] pp. 328-329]:

On occasions when the two consuls with their four legions are united
in one camp, all we need to do is to imagine two camps similar to
the one I have described placed back to back, the two adjoining
at the point where the extraordinarii infantry are quartered, the
troops whom we described as facing the ramparts to the rear of
each camp. In this case the shape of the camp becomes oblong, its
area is doubled, and the perimeter of the entire rampart measures
half as much again. Whenever the two consuls happen to encamp
together, this is the formation they adopt; when they are apart the
only difference is that the market, the quaestor’s depot and the
praetorium are placed between the two legions.

Walbank [I14, p. 715] determines from Polybius’s statements that the square
camp that is described has sides 2150 feet.
Josephus, The Jewish War I11.5.1 [I07, p. 599]:

The Romans never lay themselves open to a surprise attack; for,
whatever hostile territory they may invade, they engage in no battle
until they have fortified their camp. This camp is not erected at
random or unevenly; they do not all work at once or in disorderly
parties; if the ground is uneven, it is first levelled; a site for the camp
is then measured out in the form of a square. For this purpose the
army is accompanied by a multitude of workmen and of tools for
building.

Indeed, tetragonos usually means square according to LSJ. Gibbon, Chapter I,
“The camp of a Roman legion presented the appearance of a fortified city. As soon as
the space was marked out, the pioneers carefully levelled the ground, and removed
every impediment that might interrupt its perfect regularity. Its form was an exact
quadrangle; and we may calculate, that a square of about seven hundred yards
was sufficient for the encampment of twenty thousand Romans; though a similar
number of our troops would expose to the enemy a front of more than treble that
extent.”
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Vegetius, Epitoma Rei Militaris 1.22 [(8, p. 24]: “The camp should be built
according to the number of soldiers and baggage-train, lest too great a multitude
be crammed in a small area, or a small force in too large a space be compelled to
be spread out more than is appropriate.” 1.23 [T8, p. 24]: “Camps should be made
sometimes square, sometimes triangular, sometimes semicircular, according as the
nature and demands of the site require.”

I1.7 |78, pp. 38-39]: “Quartermasters measure out the places in camp according
to the square footage for the soldiers to pitch their tents, or else assign them billets
in cities.”

IT1.8 78, p. 80]: “When these conditions have been carefully and stringently
investigated, you may build the camp square, circular, triangular or oblong, as re-
quired by the site. Appearance should not prejudice utility, although those whose
length is one-third longer than the width are deemed more attractive. But survey-
ors should calculcate the square footage of the site-plan so that the area enclosed
corresponds to the size of the army. Cramped quarters constrict the defenders,
whilst unsuitably wide spaces spread them thinly.”

II1.15 |78, p. 97]: “We said that 6 ft. ought to lie between each line in depth from
the rear, and in fact each warrior occupies 1 ft. standing still. Therefore, if you
draw up six lines, an army of 10,000 men will take up 42 ft. in depth and a mile in
breadth. [If you decide to draw up three lines, an army of 10,000 will take up 21
ft. in depth and two miles in breadth.] In accordance with this system, it will be
possible to draw up even 20,000 or 30,000 infantry without the slightest difficulty,
if you follow the square footage for the size. The general does not go wrong when
he knows what space can hold how many fighting men.”

27. PALLADIUS

Palladius Rutilius Taurus Aemilianus, Opus agriculturae 11.11, De tabulis uin-
earum |95, p. 54]:

Tabulas autem pro domini uoluptate uel loci ratione faciemus siue
integrum iugerum continentes seu medium seu quaternariam tabu-
lam, quae quartam iugeri partem quadrata conficiet.

The word tabula is said by Souter, A Glossary of Later Latin to 600 A.D., s.v.,
to mean a “stretch (of land) in a vineyard”.
Fitch [34, p. 75]:

We shall make the planting-beds in accordance with the owner’s
inclination or the requirements of the place, covering a whole juger
or half or a quarter-bed, which consists of a fourth of a juger in
square footage.

I1.12, De mensura pastini Italica [95], p. 55]:

Mensura uero pastini haec est in tabula quadrata iugerali, ut cen-
teni octogeni pedes per singula latera dirigantur, qui multiplicati
trecentas uiginti et quattuor decempedas quadratas per spatium
omne conplebunt. secundum hunc numerum omnia quae uolueris
pastinare discuties. decem et octo enum decempedae decies et oc-
ties subputatae trecentas uiginti quattuor explebunt. quo exemplo
doceberis in maiore agri uel minore mensuram.
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The word iugeralis is said by Souter, A Glossary of Later Latin to 600 A.D., s.v.,
to mean “of the land-measure called iugerum” or “very large”. Rodgers [94], p. 96]:

With 32400 sq.ft., P.’s tabula iugeralis is larger by 3200 sq.ft. than
a normal iugerum (240 x 120 ft.), but P. is careful to explain that he
calculates his tabula with 180 ft. on a side. I wonder if he arrived
at the length of one side of his “squared” iugerum by dividing the
perimeter of a fugerum (2 x 240 + 2 x 120 = 720) by four equal
sides (720/4 = 180). He is at pains to tell us that the total area is
324 decempedae quadratae, and I suppose it is possible for him to
say (2.11) that the tabula will contain an integrum iugerum. With
medium (2.11) he must mean half the area of a sugerum (tradition-
ally called an actus, 120 ft. on a side) or 14400 sq.ft.; I doubt that
he would have been meaning half of 32400 sq.ft., which would be
10 x /162 ft. on a side. His quaternaria tabula, I think, would be
90 ft. on a side or 8100 sq.ft. (one-fourth of 32400) rather than
one-fourth the area of a ugerum, 7200 sq.ft., 10 x /72 ft. on a
side. No-one, I am sure, would object to these rough approxima-
tions, least of all P. himself (for his mathematical inexactitude, see
my note on 3.9.9).
Fitch [34, p. 75]:

In a square planting-bed covering one juger, the measurement of the
prepared ground is 180 feet on each straight side; when multiplied
this will yield 324 10-foot square units across the whole area. Using
this figure, you will divide up all the ground you want to prepare.
For 18 10-foot lengths multiplied 18 times will yield 324. This
example will show you how to measure a larger or smaller field.

28. AGRIMENSORES

Folkerts [35]

Podismus §7 [48] pp. 134-137| states Heron’s formula for the right triangle with
sides 6, 8, 10; the area of the triangle is 26.

We refer to the tractate in the Corpus agrimensorum attributed to Epaphroditus
and Vitruvius Rufus by EVR. EVR §10 [48] pp. 140-141]: let ABCD be a right
trapezium where AB and DC' are parallel, ADC is a right angle, AB = 25 feet,
DC = 40 feet, DA = 30 feet; call AB the summit, BC the hypotenuse, DC' the
base, and AD the height. The recipe given for finding the area of the right triangle
with height AD and hypotenuse BC' is the following: add the base DC and the
summit AB, getting 65, take half of this, getting 32%, and multiply this by the
height AD, getting 975. The recipe given for finding the hypotenuse BC' is the
following: add the squares on the summit, the base, and the height, getting 3125.
Subtract from this twice the product of the base and the summit, i.e. subtract
2-25-40 = 2000 from 3125, getting 1125. Then BC' is the side of the square 1125,
namely BC? = 1125. That is,

BC? = AB?> + DC? + AD? —2DC - AB = (DC — AB)? + AD?.
It is stated that BC is 331; indeed, 33% = 1089 and 342 = 1156.

27
EVR §11 [48, pp. 140-143]: for an equilateral triangle whose sides are 30 feet,

multiply a side by itself, getting 30-30 = 900. Multiply half a side by itself, getting



42 JORDAN BELL

15 - 15 = 225. Then take away 225 from 900, getting 675, which is the area. It is
stated that the side of the square 675 is 26. (Indeed, 252 = 625 and 262 = 676.)
This is the height of the triangle. Then multiply the height by half the base, getting
26 - 15 = 390. This is the area of the triangle.

EVR §28 [48, pp. 158-163|: for an equilateral triangle whose sides are even
numbers, to find the area. Guillaumin explains that in §§28, 30-37 figurate numbers
are being used: for the triangular number whose each have n pebbles, the figure
contains "2% pebbles; cf. Nicomachus, Introductio ArithmeticaI1.7-12 [28, pp 239—
249] and Heath [51l p. 76]. The example is given of the equilateral triangle whose
sides are 28 feet, multiply a side by itself, getting 28 - 28 = 784. Add a side to this,
getting 784 + 28 = 812. Take half of this, getting 406. It is asserted that this is the
area of the triangle. (The height of the triangle is h = /282 — 142 = /588, which
satisfies 24 < h < 24%. Then the area of the triangle is half the product of the base
and the height, i.e. @, and using h = 24% this is 339%.) Conversely the side of
a triangle is found given the area. Multiply the area by 8, getting 8 - 406 = 3248.
Add 1 to this, getting 3249. The side of this square is 57. Remove 1 from this,
getting 56. Take half of this, getting 28, which is the side of the triangle.

For an a-gonal number with n pebbles on each side, the figure contains

2+ 2n—1)(a—2))2 - (a—4)2
8(a — 2)
pebbles; cf. Heath [52], p. 516]. Conversely, if the figure contains P pebbles, then

n1<\/8P(a—2)+(a—4)2—2+1>.

2 a—2

EVR §29 [48] pp. 164-167] states that for a pentagon with equal sides, multiply a
side by itself, multiply this by 3, then add one side, and that this gives the pentagon.
If the sides are each 10 feet, multiply a side by itself, getting 100. Multiply this by
3, getting 300. Add a side to this, getting 310. Take half of this, getting 155, which
is said to be the area of the pentagon. Conversely, if the area is 155, to find the
side do the following: multiply the area by 24, getting 24 - 155 = 3720. Add 1 to
this, getting 3721. Find the side of the square 3721, which is 61. Remove 1 from
this number, getting 60. Take a sixth of this, getting 10, which is the said to be
the side of the pentagon.

EVR §31 [48, pp. 172-177]: for a hexagon with equal sides, multiply a side by
itself, multiply this by 4, add twice a side to this, and then take half of this, and it
is asserted that this gives the pentagon. If the sides are 10 feet, multiply a side by
itself, getting 100. Multiply this by 4, getting 400. Add twice a side to this, getting
400+ 2- 10 = 420. Take half of this, getting 210. It is asserted that this is the area
of the hexagon. Conversely, given the area of the hexagon, find the side. Multiply
the area by 32, getting 32 - 210 = 6720. Add 4 to this, getting 6724. Find the side
of the square 6724, which is 82. Remove 2 from this, getting 80. Take an eighth of
this, getting 10. It is asserted that this is the side of the hexagon.

EVR §32 [48, pp. 176-179] states that for a heptagon with equal sides, multiply
a side by itself, multiply this by 5, remove three times a side from this, and then
take half of this, and it is asserted that this is gives the heptagon. If the sides are 10
feet, multiply a side by itself, getting 100. Multiply this by 5, getting 500. Remove
three times a side from this, getting 500 — 3 - 10 = 470. Take half of this, getting
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235, which is asserted to be the area of the hexagon. Conversely, given the area of
the heptagon, find the side. Multiply the area by 40, getting 40 - 235 = 9400. Add
9 to this, getting 9409. Find the side of the square 9409, which is 97. Add 3 to this,
getting 100. Take a tenth of this, getting 10. It is asserted that this is the side of
the heptagon.

EVR §33 [48, pp. 178-179] states that for an octagon with equal sides, multiply
a side by itself, multiply this by 6, remove four times a side from this, and then
take half of this, and it is asserted that this gives the octagon. If the sides are 10
feet, multiply a side by itself, getting 100. Multiply this by 6, getting 600. Remove
four times a side from this, getting 600 — 4 - 10 = 560. Take half of this, getting
280, which is asserted to be the area of the octagon. Conversely, given the area of
the octagon, find the side. Multiply the area by 48, getting 48 - 280 = 13440. Add
16 to this, getting 13456. Find the side of the square 13456, which is 116. Add 4
to this, getting 120. Take a twelfth of this, getting 10, which is asserted to be the
side of the octagon.

EVR §§34-37 [48| pp. 180-187] treat respectively the enneagon, the decagon, the
hendecagon, and the dodecagon.

De iugeribus metiundis §54 [48, pp. 198-201], cf. |10, p. 354-356]:

Castrense iugerum quadratas habet perticas CCLXXXVIII, pedes
autem quadratos XXVIIIDCCC, id est per latus unum perticas
XVIII, quae in quattuor latera faciunt perticas LXXII; habet itaque
tabula una quadratas perticas LXXII. Si ergo fuerit ager tetragonus
isopleurus, habens per latus unum perticas L, ita eum metiri oportet
ut sciamus quot iugera habeat intra se. Duco unum latus per aliud:
fiunt perticae IID, quae faciunt iugera VIII, tabulas II, perticas LII.
Itaque castrense iugerum capit k(astrenses) modios III.

It is first stated that a ‘ugerum contains 288 square perticae. A iugerum is a
rectangle with sides 240 feet and 120 feet, thus whose area is 28800 square feet. A
pertica is a length of 10 feet; see Balblus, Ezpositio et ratio omnium formarum [I8],
p. 207|, Centuriarum quadratarum deformatio sive mensurarum diversarum ritus
[18, p. 241], and De mensuris agrorum [18, p. 271]. (Thus, one iugerum contains
288 square perticae.) Next it is asserted that the side of the square 28800 is 18
perticae, whose perimeter is 72 perticae. In fact, 1692 < 28800 < 1702, while a
square with side 18 perticae contains 32400 square feet. Guillaumin remarks that
the sides of the iugerum are 24 perticae and 12 perticae, and 18 perticae is the
arithmetic mean of these. If a rectangle has sides a and b with b > a, then the

square with side ‘IT“’ has the same perimeter as the rectangle, namely a4+ a+ b+ b,

and has area (“7“’)2 = M, while the rectangle has area ab, for which
2 2 2 2 2 2 1
b 2eb @b b L e

4 4 4

Thus, the square with the same perimeter as the rectangle has greater area. It is
stated that one tabula contains 72 square perticae, i.e., one tabula contains 7200
square feet, namely, one tabula is a quarter of one iugerum. Then, for a square field
whose sides are 50 perticae, find how many iugera it contains. Multiply one side of
the square by another, getting 2500 square perticae. As 2500 = 8 - 288 + 196, this
field contains 8 iugera and 196 square perticae. As 196 = 272+ 52, the remaining
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196 square feet contain 2 tabulae and 52 square feet; thus the field contains 8 iugera,
2 tabulae, and 52 square perticae.
§56 48] pp. 202-203]:

Ager si fuerit trigonus isopleurus, habens tria latera per quae sex-
agenas perticas habeat, duco unum latus per alterius lateris medi-
etatem, id est LX per XXX: fiunt perticae MDCCC, quae faciunt
iugera VI, tabulam unam.

If a field is an equilateral triangle whose sides are 60 perticae, multiply one side
by half another, giving 60 - 30 = 1800 square perticae. 1800 = 6 - 288 + 72, so this
is 6 iugera 1 tabula.

§57 [48, pp. 202-203):

Ager si caput bubulum fuerit, id est duo trigona isopleura iuncta,
habentia per latus unum perticas L, unius trigoni latus in alterius
trigoni latus duco, id est L per L: fiunt IID, quae sunt iugera VIII,
tabulae IIS, perticae XVI.

If a field is two joined equilateral triangles (a “head of beef”), whose sides are 50
perticae, multiply the side of one triangle by the side of the other triangle, that is
50-50 = 2500 = 8-288+2- 72+ 36 + 16. That is, the area is 2500 square perticae,
which is 8 iugera, 2% tabulae, 16 square perticae.

§63 [48, pp. 210-211]:

Ager si fuerit sex angulorum, in quadratos pedes sic redigitur. Esto
exagonum in quo sint per latus unum perticae XXX. Latus unum
in se multiplico, id est tricies triceni: fiunt perticae DCCCC. Huius
summae tertiam partem statuo, id est CCC. Nihilominus ex eadem
pleniori summa decimam partem tollo, id est XC. Quae pariter
iunctae faciunt CCCXC. Quae sexies ducendae sunt, quia sex latera
habet: quae summa colligit perticas IICCCXL. Tot igitur quadratas
perticas in hoc agro esse dicimus.

For a field that is a hexagon where each side is 30 perticae. Multiply one side by
itself, getting 30 x 30 = 900. Take a third of 900, which is 300, and a tenth of 900,
which is 90. The sum of these two is 300 + 90 = 390. Multiply this by 6, getting
2340. The area of the field is 2340 square perticae. cf. Heron in Heath [52] p. 327]

Marcus Junius Nipsus, Limitis Repositio [I1], p. 51]:

In agris divisis subsiciva fiunt, in quibus trigona, trapezea et pen-
tagona sunt, et nihil alius nisi modus iugerum adsignatorum et
nomen scriptum est. Actus tamen in base sunt xx. Sic ut puta in
pentagono liis, bis ducti, faciunt cv. Qui in se ducti, faciunt iugera
Ixv. Cathetum sic quaerimus semper. Embadum duco quater —
id est Ixv —; fiunt cclx. Huius summae pars vicesima fit xiii; erit
cathetus. In trigono sunt actus xlii, iugera cl. Insequentem actum
iunctum trigono ac trapezeo similiter. Quae si autem fuerint in
trapezeo iugera c, iugera ducta quater, erunt cccc. Horum pars
vicesima — hoc est xx — erit basis. Deducto contrario — id est xx —
fit reliquum vii. Erit contraria basis actus vii. Similiter in reliquius
pedibus, si fuerint cc.

Bouma [I1] p. 73] translates:
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When dividing land, pieces of land remain; these can be trian-
gles, trapeziums and pentagons; and nothing else but the number
of iugera assigned and their name has been written down (on the
forma). Yet there are 20 actus at the base. Thus for instance 52%
(actus) in a pentagon make, multiplied by two, 105 (actus). To-
gether they comprise 65 iugera. We always seek the perpendicular
as described below. I multiply the area (of the pentagon) — that is
65 iugera — by four. This makes 260 (iugera). From these the 20th
part makes 13. This will be the perpendicular.

In a triangle are 42 actus, 150 iugera. Likewise (we want to
know) the next (number of) actus of triangle and trapezium. If
there are 100 iugera in a trapezium, there will be, when multiplied
by four, 400 (iugera). The 20th part of these (400 iugera) — that
is 20 — will be the base. When subtracted from the opposite base
— that is 20 —, 7 remain: The opposite base will be 7 actus. The
same goes for the other feet, if they are 200.

For an isosceles trapezium with base a, summit b, and sides ¢ and ¢, with b > a,
let h be its height. Then h% + (”‘T‘l)2 = 2, and the area of the trapezium is
A=ah+ 3(b—a)h = 3(b+a)h. Now,

b+a c+c b+ a 1 b+ a
EEC a- = =(b+a)h = —h).
2 2 ;e g+ g le=h
Thus, 252 - <E< is greater than the area of the trapezium, as ¢ > h.

Vaticanus Palatinus graecus 367, ff. 94r-97v, no. 23 [74, p. 51]: for a trapezium
with base 16 orgyiai, summit 20 orgyiai, and sides each 25 orgyiat, the area is said
to be 16J2r720 . 25325 = 18 - 25 = 450 square orgyiai, which is 2% modios; an orgyia
is six feet, and a modios is an area equal to 200 square orgyiai. In fact the area is

54+/69 square orgyiai, and 448 < 54/69 < 449.

29. DIOPHANTUS OF ALEXANDRIA

Let ¢ and b be numbers and let S be those numbers z such that az? — b is a
square. Diophantus, Arithmetica, Lemma to VI.15 [57) p. 238] states that if p € S
then there is some g > p such that ¢ € S. For a = 3 and b = 11, it is the case that
3-25— 11 = 64 is a square, and take p = 8. Find ¢ = 2 + 5 such that 3¢? — 11 is
a square, namely 322 4+ 30 4 64 is a square. It is supposed that it is possible that
this square is (8 — 27)2, and so 322 + 30z + 64 = 64 — 32z + 422 which is 2? = 62z,
and thus = 62. Then ¢ = 67. Then 3 - ¢ — 11 = 13456 = 1162, so 67 € S.

Heath [57, pp. 279-280] explains a generalization of this by Tannery. Given that
(p,q) is an integral solution of 22 — Ay? = 1, put

p1=mz — p, G =x+q

with o # 0 and m? # A. Analytically, for (p1,q1) to be a solution of 22 — Ay? =1
means

m2x® — 2mpx 4 p* — Ax? — 2Aqx — Ag® =1,

and because (p, ¢) is a solution of 22 — Ay? = 1 this is equivalent with

m2z?® — 2mpx — Az? — 2Aqx = 0.
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This is equivalent with m2?z — Az = 2mp — 2Aq, which is equivalent with

2mp + 2Aq
T TmZ-oA
which finally is equivalent with
(1) pr = 2m?2p + 2Amgq = 2m?2p + 24Amq — m?p + Ap _ (m? + A)p + 24Amgq
m2— A m? — A m2— A
and

@ o= 2mp + 2Aq L= 2mp + 2Aq + m?q — Aq _ 2mp+ (m? +A)q.
m2—A m2—A m2— A

Synthetically, given the final expressions for p; and ¢,

A2p? — 2Am2p? + mip? — A3 + 242m2¢2 — Amiq?

2 2
b1 — Aql = (mg . A)Q
_(m?— A (p* — Ag®)
(m? = A7
—_ p2 o Aq2

=1.
Now take z # 0 and m = ¢ and m? # A. Then and are equivalent with
B pu? 4+ 2Aquv + Apv? B qu? + 2puv + Aqu?
N u? — Av? ’ “= u? — Av? '
For p1,q2 to be integral is equivalent with (u,v) being a solution of 2% — Ay? = 1.

Therefore, if (p,q) and (u,v) are integral solutions of 22 — Ay? = 1 then (p1,q;)
defined by is an integral solution of 22 — Ay? = 1.

(3) P1

30. PAPPUS OF ALEXANDRIA

Pappus [67, pp. 1057-1059]|, Collection VIII, Proposition 9: if a weight of 200
talents needs a force of 40 men to be moved on a horizontal plane, to find the force
needed to move it on a plane inclined at 60°. In this calculation,

1 60° 104
sin ~ 130"
Pappus V, Proposition 42
Pappus V, Proposition 45
Pappus V, Proposition 46
Pappus [67, p. 1244], V, Proposition 51, p. 451.

31. THEON OF ALEXANDRIA

Euclid I1.4 [54, p. 379]: “If a straight line be cut at random, the square on the
whole is equal to the squares on the segments and twice the rectangle contained by
the segments.” This means that if z = y + z then 22 = y? + 22 + 2yz.

Theon of Alexandria, Commentary on Ptolemy’s Syntazis [108, pp. 52-61], cites
this proposition and works out an approximation to 1/4500; this is explained by
Heath [51, pp. 60-63]. 672 = 4489, and take

z Y
V4500 = 67 + — + —.
* 60 + 602
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Then )
oy x|y
4500 = 4489 (— —) 2.67- (— —) ,
6o Teo2) 60 602
which is ) )
x Y 2zy 134z 134y
=2 ;¥ 2o, o .
602 T 60% T 603 T 60 ' 60°
13 330

Determine x so that

4z : —
co- < 11,ie. z < %= For x =4,

16 y2 8y 536 134y

N=_-0t L 4 2 2P
602 604 603 60 602’
then 124
742 Y Y 8
S (L S 134
602~ 602 (602 o0t )
When &8 ~ 0,
84+ 60-134 60 - 7424
424 ~ ¢y —m—— ~—
Y 60 Y7 T R0a8

which is y ~ 55 4 185, Using y = 55 yields

503 °
4 55
V4500 ~ 67+ — + —
* 60 i 602’

the approximation that appears in Almagest 1.10.

32. SIDE AND DIAGONAL NUMBERS

Hgyrup [65] p. 261]
Heath [54] pp. 392-402]: Euclid 11.9,10. 11.9:

(;(a—kb))z—k (;(a—kb) —bﬂ .

(2a + b)? + b* = 2(a® + (a + b)?).
Theon of Smyrna, On Mathematics Useful for the Understanding of Plato 1.31
[31, pp. 70-75],
Theon of Smyrna and Proclus, translated by Thomas [I08, pp. 132-139].
Proclus, Commentary on Plato’s Republic, dissertation XIII [33] pp. 133-135].
Waterfield [115, pp. 107-108] translates Proclus:

The Pythagoreans proposed the following elegant theorem about
diameter and side numbers. When to a diameter there is added the
side of which it is the diameter, it becomes a side, while the side,
when added to itself and receiving its own diameter in addition as
well, becomes a diameter. This is proved with the aid of a diagram
by Euclid in the second book of the Elements. If a straight line is
bisected and a straight line is added to it, the square on the whole
line (that is, including the added line) plus the square on the added
line by itself are together double the square on the half and of the
square on the straight line made up of the half and the added line.

Tamblichus, Commentary on Nicomachus [112], IV.144-156.

Cohen and Drabkin [22] pp. 42-43].

Proclus, Commentary on the First Book of Euclid’s Elements [9]

Taylor on Timaeus [106]

a?+v:=2

I1.10:
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33. ARABIC

Ibn Labban [75]

34. CONTINUED FRACTIONS

Hardy and Wright [49], §10.6: For 0 < &, < 1,

x = ag + &,
1
— =a)=a1 +&,

— =ay =azs+&a,

— =a3 =a3+ &3,

Let * = a = v10. ag = [ag] = 3, af = ao + &; @} = E%)’ ap = [a}] = 6,

/ o0 1 _ A ! o0 1
ay = ay + &1; az—g,QQ—[ag]—ﬁ,az—az—F&, a3 = g, 03

I
=
i
o

ag = ag + &3. Thus,

721
V10~ (3,6,6,6| =3+ —— = —.
13,6,6,6] + 6 1 228
Jr -
6 + !
6
Fowler [38]
Weil [117]
Euclid X.1,2.
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