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ABSTRACT. There is not much that can be said for all  and for all n about

the sum
n

> o

= |sinkmal

However, for this and similar sums, series, and products, we can establish
results for almost all x using the tools of continued fractions. This story
includes various parts of late 19th century and early 20th century mathematics.
etc.

Grattan-Guinness, p. 158

Hobson, Ch. VII, The Theory of Functions of a Real Variable and the Theory
of, Volume 1, p. 730

Define (z) to be 0 if z € Z + %; if ¢ Z + 1 then there is an integer m, for
which |z — my| < |x — n| for all integers n # m,, and we define (z) to be x — m,.
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Riemann [4, p. 105, §6] defines

=3 ),

n

for any x, the series converges absolutely because |(—nz)| < 1. Riemann states

that if p and m are relatively prime and x = &, then

2m?
7T2 7T2
f@) = lim feth) = @)~ o fl@7) = lm fle+h) = f@)+ 5,
thus
2
f@) = flah) = 5=,

and hence that f is discontinuous at such points, and says that at all other points
f is continuous; see Neuenschwander [2] about Riemann’s work on pathological
functions, and also [3, p. 37]. For any interval [a,b] and any o > 0, it is apparent
from the above that there are only finitely many x € [a,b] for which f(z~) —
f(z1) > o, and Riemann deduces from this that f is Riemann integrable on [a, b];
cf. Hawkins [1, p. 18] on the history of Riemann integration. Later in the same
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paper [4, p. 129, §13], Riemann states that the function

o~ (n2)
ro Y )
n=1

is not Riemann integrable in any interval.
Hankel 1871 199-200
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