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Abstract. There is not much that can be said for all x and for all n about

the sum
n∑

k=1

1

| sin kπx|
.

However, for this and similar sums, series, and products, we can establish
results for almost all x using the tools of continued fractions. This story

includes various parts of late 19th century and early 20th century mathematics.

etc.

Grattan-Guinness, p. 158
Hobson, Ch. VII, The Theory of Functions of a Real Variable and the Theory

of, Volume 1, p. 730
Define (x) to be 0 if x ∈ Z + 1

2 ; if x 6∈ Z + 1
2 then there is an integer mx for

which |x−mx| < |x− n| for all integers n 6= mx, and we define (x) to be x−mx.
Jahnke
22
31
Riemann [4, p. 105, §6] defines

f(x) =

∞∑
n=1

(nx)

n2
;

for any x, the series converges absolutely because |(−nx)| < 1
2 . Riemann states

that if p and m are relatively prime and x = p
2m , then

f(x+) = lim
h→0+

f(x+h) = f(x)− π2

16m2
, f(x−) = lim

h→0−
f(x+h) = f(x)+

π2

16m2
,

thus

f(x−)− f(x+) =
π2

8m2
,

and hence that f is discontinuous at such points, and says that at all other points
f is continuous; see Neuenschwander [2] about Riemann’s work on pathological
functions, and also [3, p. 37]. For any interval [a, b] and any σ > 0, it is apparent
from the above that there are only finitely many x ∈ [a, b] for which f(x−) −
f(x+) > σ, and Riemann deduces from this that f is Riemann integrable on [a, b];
cf. Hawkins [1, p. 18] on the history of Riemann integration. Later in the same
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paper [4, p. 129, §13], Riemann states that the function

x 7→
∞∑

n=1

(nx)

n
,

is not Riemann integrable in any interval.
Hankel 1871 199-200
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