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Preface

In 1988 I published a little book [70] on the later, largely unpublished work of
the Scottish mathematician James Stirling (1692-1770). Much of the back­
ground work for the present volume was also done about that time and my
original intention was to produce an edition of Stirling's Methodus Differ­
entialis (1730) soon after the publication of my earlier book. However, the
demands of other mathematical projects led to my neglecting Stirling and
the Methodus Differentialis throughout much of the 1990s (but see [71]). I
returned to the task with some trepidation in 2000 but I soon found great
pleasure in the work and I believe that the long fallow period has resulted in a
much better account of Stirling's important work than anything I could have
produced 10 years ago. I hope that mathematical historians, analysts, numer­
ical analysts and others will find something of interest and even present-day
relevance in what I have produced.

I am indebted to many people and institutions for assistance, advice and
encouragement. I would like to record my thanks to the following in partic­
ular:

Col. James Stirling of Garden who allowed me to consult Stirling's own
annotated copy of the Methodus Differentialis and some of his notebooks
and to quote material from these sources;

Professor G.J. Toomer for his helpful comments and especially for his
guidance on some of the finer points of translation;

an anonymous reviewer for some valuable suggestions on presentation;

the Department of Special Collections, Glasgow University Library, for
providing me with much of my material;

the Special Collections staff of the Andersonian Library, University of
Strathclyde, for help with material and references;

the Royal Society for access to its archives and permission to quote from
its Journal Book;

my wife, Grace, and my son, Edward, for their general support;

the University of Strathclyde for providing me with suitable technical
facilities and other support for my work.
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Finally, it is a great pleasure to acknowledge my indebtedness to all the
editorial and production staff of Springer-Verlag London with whom I have
worked.

IT
Glasgow
January 2003
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Introduction

Background

The Methodus Differentialis: sive Tractatus de Summatione et Interpolatione
Serierum Infinitarum (London, 1730) of James Stirling (1692-1770) is surely
one of the early classics of numerical analysis. It contains not only the results
and ideas for which Stirling is chiefly remembered today (the Stirling num­
bers, Stirling's interpolation formula, Stirling's formula for In n!), but also
a wealth of material on transformations of series and limiting processes. In­
verse factorial series, especially hypergeometric series, are much in evidence
and asymptotic series (including that for In n!) also appear.1 Interpolation
and quadrature are discussed and there is an impressive collection of calcu­
lations throughout to illustrate the efficacy of the methods presented.

Stirling's book was well received by his contemporaries. For example, Eu­
ler expressed his admiration for the work (see the note on Proposition 14),
De Moivre employed some of Stirling's results to improve earlier work of his
own and to develop his own series for In(n - I)! (see the notes on Propo­
sition 23 and Proposition 28, and the Appendix), and MacLaurin discussed
or referred to several of Stirling's results in his Treatise of Fluxions (1742)
(see [39, Articles 357, 361, 838, 842, 844]). Two enthusiastic reviews ([1]' [2])
appeared in 1732 and 1734.2

However, the book's influence has extended over more than two and a half
centuries. A vast number of articles have been devoted to "Stirling's formula"
(proofs, extensions, pedagogical aspects) and the modern development of
combinatorial theory has ensured a central place for the Stirling numbers. In
the 1860s K. Schellbach [53] developed the process for obtaining limits which
Stirling presents in his Proposition 30 and this in turn was discussed as the
"Stirling-Schellbach algorithm" by LJ. Schoenberg in 1981 [56]. Nielsen's
Handbuch der Theorie der Gammafunktion (1906) [51] has many references
to Stirling's work and includes a chapter entitled "Methoden von Stirling".

1 G.A. Gibson remarks in his important article on the history of mathematics in
Scotland [18]: "next to Newton I would place Stirling as the man whose work is
specially valuable where series are in question."

2 Although these reviews were published anonymously, we know from correspon­
dence that the author of the first was Louis Castel (see [74, p.151]).

I. Tweddle, James Stirling's Methodus Differentialis
© Springer-Verlag London Limited 2003



2 Introduction

More recently (1976) R.W. Gosper asserted in his article "A calculus of series
rearrangements" [20]: "We will be taking up almost exactly where James
Stirling left off ... " .

Stirling's work is founded on Newton's "Methodus Differentialis", which
was published in 1711 under the editorship of William Jones as the penul­
timate item (pp.93-101) in [47].3 In this short treatise Newton presents six
propositions and a scholium in which he discusses differences, interpolation
formulae and quadrature. Roger Cotes (1682-1716), starting from results
in Newton's Principia, had already produced related material in 1708 and
was stimulated by the publication of Ne~ton's treatise to pursue the matter
further. Unfortunately, Cotes's papers were only published posthumously in
1722 [13], as a result of which his priority in certain results and the impor­
tance of his contributions have not been generally recognised.4 Another early
proponent of Newton's ideas was Brook Taylor (1685-1731), who developed
"Taylor's theorem" as a limiting case of an interpolating series [66].

Stirling's first contribution to this area was his paper "Methodus Differ­
entialis Newtoniana Illustrata" [61], which was communicated to the Royal
Society5 at its meeting on 18 June 1719. The first part is, as the title suggests,
essentially an explanation of Newton's treatise. In the second part6 we have
an early attempt at a problem which he pursued with conspicuous success in
his later book, namely the transformation of a slowly converging series into
one which converges rapidly to the same sum. He also gives there a rather ob­
scure account of a process for finding limits, to which he returns with greater
clarity in the book (Proposition 30 - the Stirling-Schellbach algorithm); this
may be explained in terms of interpolation (see the note on Proposition 30).
The paper concludes with the indication of a possible sequel, but nothing
more seems to have appeared in print before the publication of the book in
1730.

By 1725 Stirling had settled in London, where he became a teacher and
later a partner in Watt's Academy in Little Tower Street, Covent Garden.
He was soon established in the scientific community and was elected a Fellow
of the Royal Society in 1726.7 Apparently he had already been working on
the book by this time, but his duties at the Academy did not allow rapid

3 Concerning the origins of Newton's work see [77, Vol. VIII, pp.236-257].
4 Cotes's work is discussed in [21]. See especially its pp. 112-133.
5 The first record I have found of Stirling's involvement with the Royal Society is of

his attendance at the meeting on 4 April 1717, when Taylor presented a paper on
the numerical solution of equations and the construction of logarithms (Journal
Book of the Royal Society). Stirling's first publication [60] appeared in the same
year. He was at that time a student at Balliol College, Oxford, but was shortly
to leave for the Venetian Republic, where he remained until 1721 or 1722.

6 I have discussed the second part of Stirling's paper in [71].
7 The minutes of the meeting of the Royal Society on 27 October 1726 record that

"Mr Sterling was proposed for a Fellow by Dr Arbuthnot and recommended by Sir
Alexander Cuming." He was elected on 3 November and admitted on 8 December
(Journal Book of the Royal Society).
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progress and the final production was rather rushed. For example, on 22 July
1729 he wrote to his brother John Stirling ([74, p. 14]):

I designed to have spent some time this summer among you, but on
second thoughts I choose to publish some papers during my Leisure
time which have long lain by me.

And, in a letter to Gabriel Cramer written in September 1730 and accompa­
nying copies of the book for Cramer and Nikolaus Bernoulli,8 Stirling said of
its contents ([74, pp.118-119]):

This first part has been written 8 or 9 years ago, so that if I were to
write it again I should scarce change anything in it; But indeed that is
more than I can say for the second part, because there was not above
one half of it finished, when the beginning of it was sent to the Printer.
And altho' I am not conscious of any Errors in it but typographical
ones, yet I am sensible that it might have been better done.
Stirling's Methodus Differentialis [62] was printed by William Bowyer for

G. Strahan, London. It was reissued in 1753 by Richard Manby, Ludgate
Hill, London and in 1764 by J. Whiston and B. White, Fleet Street, London.
Apart from the title pages and variations in the setting of pages 1-4,9 the
three issues are identical.

A translation by Francis Holliday,10 Master of the Free-School at Haugh­
ton Park, near Retford, Nottinghamshire was published in 1749 [64]. It was

8 One of Stirling's notebooks contains the names of intended recipients of the
book, which provide an idea of Stirling's mathematical connections. One list is
headed "Books given to" and contains the names Smith, Halley, Jones, Foulks,
Pemberton, Moivre, Ouchterlony, Robins, Grahame, Klingenstierna, Campbell,
Dr Stuart, Dr Arbuthnot, Mr Montague, Dr Taylor. The names in the other
list, headed "Not yet given", are Dr Johnston, Symson, Mclaurin, Sanderson,
N. Bernoulli, Cramer, Bradley as well as several also on the first list. Most of
these can be identified with certainty (see [59] and the Royal Society website).
Edmund Halley, William Jones, Abraham De Moivre and Brook Taylor are all
mentioned in the Methodus Differentialis. Other British mathematicians on the
lists are (probably) Robert Smith (Cotes's cousin, responsible for [13]), Benjamin
Robins, George Campbell, Robert Simson, Colin MacLaurin and Nicholas Sander­
son or Saunderson (the blind Lucasian Professor); Henry Pemberton and John
Arbuthnot were physicians who also had mathematical training (Pemberton su­
perintended the third edition of Newton's Principia) and James Bradley was
a celebrated astronomer. George Graham was a famous instrument maker and
Alexander Ouchterlony a London merchant (Stirling proposed him for Fellow­
ship of the Royal Society in November 1733). Martin Folkes was at that time
Vice-President of the Royal Society. Dr Stuart is probably Charles Stuart. The
inclusion of the Swedish mathematician Samuel Klingenstierna is interesting: he
became a Fellow of the Royal Society in April 1730 and in April 1731 a paper
of his was communicated to the Royal Society by Stirling. With the exception
of Robert Simson (Professor at Glasgow) all those I have identified, as well as
Bernoulli and Cramer, were or became Fellows of the Royal Society.

9 Presumably copies of the original printing of these pages were not available for
the later issues.

lOHolliday also published a translation [63] of Stirling's 1719 paper in [30].
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printed for E. Cape, St John's Gate, London. The translation was made
with Stirling's approval and a certain amount of cooperation: there are in
existence two letters from Holliday to Stirling concerning typographical and
other errors in the original- in the first of these, dated 15 April 1747, Holliday
includes a list of errors he had found, in the second (undated) he acknowledges
receipt of Stirling's list of corrections. Stirling's own copy of his book has
been annotated with these corrections and I have incorporated them in the
present work. The few additional points which I believe require correction
are identified in my notes.

My translation is fairly literal except that I have occasionally recast a
phrase or sentence to avoid unsatisfactory English. I thought at one time of
reformulating the mathematics in modern notation but rejected this idea as
being too destructive, although I have used a modern system of bracketing
and have written squares in the form x2 rather than xx, which is often used by
Stirling. I have employed modern notation in the notes for explanations where
this seemed desirable. Stirling's proofs are often contracted and sometimes,
in my opinion, a little obscure, so I have tried to remedy these deficiencies
in the notes, which also contain material on historical background. Stirling's
methods succeed spectacularly with his chosen examples, for which the true
values are often known. However, he rarely says anything about error bounds,
one of the key concepts of numerical analysis. I have therefore endeavoured
to justify the perceived accuracy of his methods by calculating effective error
bounds for almost all of his calculations.

In Parts I and II Stirling presents his results in thirty-three propositions,
which are illustrated by examples and supported by notes in the form of
scholia. 11 Many of the propositions contain formal statements of results which
are then established, while others are just statements of intent and depend on
the accompanying examples for their substance. Usually I have discussed a
proposition, its examples and scholion in a single note. Occasionally, however,
a scholion contains substantial new material and merits its own note. The
page number of the start of a note is given in the left-hand margin opposite
the heading of the item to which the note refers. Each note is intended to
be read as a whole. However, I have italicised the terms proposition, corol­
lary, example, scholion, and case where this might help the reader to locate
particular points of interest.

It is a humbling experience to study the work of Stirling and his contem­
poraries and to discover how much they were able to achieve without the
understanding, developments and facilities which we have today. However,
we must resist the temptation to assume that, because they knew a certain
result, they must also have been aware of what we regard as its immediate
consequences, or that they obtained a stated result in a way which we now
regard as standard. In attempting to explain Stirling's results in a manner

llStirling uses the Greek singular form scholion, which I have retained, although
scholium seems to be more common in English.
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acceptable to the modern reader, I am not seeking to attribute to Stirling
any results or techniques other than those which are to be found explicitly
in his book or other writings.

The definitive work on James Stirling is Charles Tweedie's James Stirling:
a sketch of his life and works along with his scientific correspondence [74].
In it Tweedie gives a useful commentary on the principal results of Stirling's
Methodus Differentialis. My own book [70] is chiefly concerned with Stirling's
later unpublished work, but it does contain an updated biographical sketch
and has many points of contact with the present work. In addition to works
already cited we should note the following books and papers which discuss
material from Stirling's text: [10], [14], [19], [28], [34], [37], [52], [54], [55],
[67], [69], [72], [73]. Specific references will be given in the notes.

My aim in producing this annotated translation has been to make Stir­
ling's work more generally accessible. It certainly has historical importance,
but I believe that the reader will find in it much that is still relevant today.

Some Mathematical Points

1. Hypergeometric Series

Many of Stirling's results and examples can be explained in terms of the
hypergeometric series12

F(a b' C' z) = ~ (a)n(b)n zn
'" L...J I() ,n=O n. en

where

{

I for n = 0,
(d)n =

d(d + 1) ... (d + n - 1) for n = 1,2, ....

If none of a, b, c is a negative integer or zero, the series has radius of conver­
gence equal to 1. We will require Gauss's theorem which states that

T(c) T(c - a - b)
F(a,b;c;I)= T(c-a)T(c-b) , (1)

provided c =I 0, -1, -2, ... and Re(c - a - b) > °(see, for example, [40,
pp.261-262]).

We will also encounter cases where F(a, b; c; 1) does not converge. The
partial sums will then be of interest and for these we have Whipple's result
[76] (see also [3, p. 94]) that when a + b - c > -1

12Stirling's contributions to hypergeometric series and some of his other work are
discussed in [14).
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I: (a)n(b)n = r(l + a - c) r(l + b - c)
n=O n! (c)n r(l - c) r(l - c + a + b)

X{l- (a)m(b)m 3 F2[1-a,1-b,m]} (2)
m! (c - l)m 2 - c,m + 1 '

where

2. Inverse Factorial Series

Stirling may first have learned of these series and their applications from the
work of the French mathematician Franc;ois Nicole. 13 They are discussed in
Stirling's Introduction and find application in various transformations. It will
be useful to summarise some of their general properties here - for proofs and
further details see [40, Chapter Xl.

An inverse factorial series has the form14

()():2:: O:n 0:0 0:1 0:2

n=O z(z + l)(z + 2) ... (z + n) = -; + z(z + 1) + z(z + l)(z + 2) + ....

Either the series diverges for all z E C or there exists>. such that -00 ~ >. <
00 and the series

(a) diverges if Rez < >.,
(b) converges if Re z > >. and z is not a negative integer or zero.

The parameter>. is called the abscissa of convergence of the series.
Where the series does have points of convergence there is a second pa­

rameter IL, the abscissa of absolute convergence, such that >. ~ IL ~ >. + 1 and
the series converges

(c) absolutely if Rez > IL,
(d) only conditionally if >. < Re z < IL,

where in both cases z is not a negative integer or zero.
Moreover, if the series converges for z = Zo and t, r are any positive

quantities, the series converges uniformly on the set

()()

{z E C: Rez ~ Rezo + t}\ U{z E C: Iz + nJ < r}.
n=O

It then follows that, if the series has abscissa of convergence >., its sum func­
tion is analytic on the domain

13See the note on Stirling's Introduction.
14It is customary to write an as ann! but this has no advantage for the present

discussion.
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{z E C: Rez > A}\{0,-1,-2, ...}

and has simple poles at any of the points 0, -1, -2, ... which are greater
than A.

The more general series

00 /3n
~ az(az + k)(az + 2k) ... (az + nk) ,

where a, k are nonzero constants, may be reduced to the inverse factorial
case by a simple change of variable.

3. Stirling's Summation Procedure

Stirling's aim is to find accurate values for the sums of numerical series and
to this end he develops various transformations which accelerate convergence.
He has

0000 no+N-l

L an = L an + L an
n=no+Nn=no n=no

00

n=no

no+N-l

I: an + I: bn ,
n=no+N

=

where the bn are obtained from the an by an appropriate transformation, and
he takes a suitable number of terms of 2: bn to give the required accuracy.
There are therefore two questions to be answered:

(i) How big should N be?
(ii) How many terms of 2: bn should be taken?

It is unfortunate, but perhaps not surprising, that Stirling has little to say
about these questions. For instance, in Example 5 of Proposition 2 he re­
marks, "Therefore I substitute for z its fourteenth value 13~, so that z is
sufficiently large to make the series converge rapidly"; here z = n + ~, so he
is proposing to add the first thirteen terms directly and to transform from
the fourteenth term, but there is no justification of why the chosen value is
sufficiently large - presumably trial and error is the approach. The unstated
stopping criterion for the second question appears to be that individual terms
are to be neglected when they have only zeros in the required decimal places.
This succeeds in practice because the transformed series converge very rapidly
in the chosen examples.
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4. Error Bounds

As noted above I have tried to provide effective error bounds for Stirling's
calculations, which in most cases amounts to finding bounds for the sum of
the terms of the transformed series which are neglected. For this purpose we
note some simple inequalities.

For a decreasing, non-negative function we have15

LOO

f(x) dx ~ k~ f(k) ~ L~l f(x) dx.

The midpoint rule asserts that

l
q +h ~

g(x)dx = hg(xo + ~h) + 24 l '(O
Xo

for some ~ between Xo and Xo + h. Thus if g" is non-negative we have

l
xo+h

g(x) dx ~ hg(xo + ~h).
Xo

(3)

(4)

Usually our decreasing, non-negative function has non-negative second deriva­
tive, being concave-up, in which case we can replace the upper bound in (3)
by

L~! f(x)dx,
2

since we have from (4) with Xo = k - ~, h = 1 that

(5)

Occasionally the terms of the transformed series alternate in sign, in which
case we may be able to use the following simple bounds which apply when f
is non-negative and decreases to zero (cf. Leibniz's Test):

00

f(m) - f(m - 1) ~ L (_1)k-m f(k) ~ f(m).
k=m

(6)

15These inequalities provide the proof of the Integral Test for convergence of a
series.
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5. Notation and Terminology 

Stirling employs series for the modern idea of sequence, whether or not he 
wishes to add up the terms, and he sometimes writes series in what he refers 
to as the Newtonian style in which a single letter is used to denote the entire 
preceding term. For example (Stirling's Introduction, p.30), 

1 I-n 2-n 3-n 
---:---+ --A+--B+--C+ ... 
z(z + 1) z + 2 z + 3 z + 4 

stands for 
1 1 - n (1 - n)(2 - n) --,-----:- + + -..,.---'---,-:-'-'---:--:---,-

z(z + 1) z(z + I)(z + 2) z(z + I)(z + 2)(z + 3) 

(1 - n)(2 - n)(3 - n) 
+ z(z + I)(z + 2)(z + 3)(z + 4) + ... . 

It is generally clear from the context whether A, B, C, ... are being used in 
this way or are simply constants. 

As was common practice at the time, Stirling often includes an asterisk in 
a formula to indicate the absence of an expected term. For example (Example 
2 of Proposition 26, p.I46), in 

T = A 3'z x (1 _ ~ * ~ 11 _ 77 + &c ) 
V £ 9z + 2I87z3 + I9683z4 59049z5 . 

the asterisk indicates that there is no term in Z-2. 

Stirling sometimes uses a system of dots to divide decimal digits into 
groups, for example .43429.44819.03252 (Proposition 28). The initial dot is 
of course the decimal point, but this and leading zeros may be omitted in 
tabulated calculations as in the examples of Proposition 11. 

I have retained the following terms as used by Stirling: affected, assignable, 
dimension, fluent, fluxion. An affected equation is one involving three or more 
terms (see [68, II, p.42 (7))) and the dimension of an equation or a quantity 
is its degree. A quantity is assignable if there is a formula from which it 
can be calculated. Fluxions were conceived in terms of flow: the ordinate y 
and the abscissa x both have fluxions (parametric derivatives), but usually 
x is assumed to flow uniformly (x is constant) or, more particularly, x is 
taken as 1, in which case we have an ordinary derivative. In Stirling's text we 
may interpret fluxion (fluxional) as derivative (differential). A fluent is just a 
varying quantity, but the term generally refers to the solution of a fluxional 
equation; in particular, fluents arise as antiderivatives. 

The term parabola or parabolic curve is applied to any curve with equation 
y = p(x), where p(x) is a polynomial - here the p(x) arise as interpolating 
polynomials; the corresponding interpolating series are also allowed. Stirling 
uses hyperbola and hyperbolic in ways that may not be familiar. Such usages 
are explained in the text or in my notes. 
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6. Checking Stirling's Calculations

I have made use of the computer algebra system Maple as well as programs
written in Basic (double precision) and Fortran (quadruple precision). Values
obtained by such means are identified in the notes where appropriate. I have
used the abbreviation DP to denote places after the decimal point.

Summary of the Contents of Stirling's Text

Introduction. This has three sections: (i) On the Relation of Terms, (ii)
On Difference Equations Which Define Series, and (iii) On the Form and
Reduction of Series. The first two are largely concerned with notation and
simple illustrations. The third section is much more substantial. It deals first
with the representation of polynomials, in particular z, z2, z3, . .. ,in terms
of the factorial polynomials z, z(z - 1), z(z - 1)(z - 2), ... and then the
representation of z-2, z-3, Z-4, .,. by means of inverse factorial series. The
Stirling numbers arise in connection with these operations and short tables
are given along with rules for the calculation of these numbers. The section
ends with a rule for transforming an inverse factorial series into a series of
reciprocal powers.

Part I (Propositions 1-15). The initial sections, (i) On Simpler Series,
(ii) On Series Which Converge More Rapidly, and (iii) On Successive Sums,
establish notation and basic ideas. Next, Propositions 1-3 deal with the sum­
mation of series where the terms are given by certain factorial expressions.
Propositions 4 and 5 are concerned with the determination of series when
there is a known relationship between the successive sums. In Proposition 6
the situation where the ratio of successive sums is a rational function is con­
sidered. Propositions 7 and 8 find the sum of series where the terms satisfy
certain two-term recurrence relations. The problem of determining the terms
of one series from those of another given a relation between the successive
sums of the two series and a relation between the terms of the other series is
considered in Proposition 9. Propositions 10-12 and their scholia give rules
for the transformation of certain types of series to improve convergence. The
MacLaurin series of a rational function which is analytic at the origin and
the relation between the terms of such a series are the subject of Proposition
13. The important idea of the ultimate relation of the terms, a limiting case
of the relation determining the terms, is used in Proposition 14 to split a
suitable series into two parts. Proposition 15 discusses techniques for finding
equations, algebraic or fluxional (differential), which are satisfied by a given
series. Part I ends with some observations on fluxional equations.
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Part II (Propositions 16-33). Propositions 16-18 and the section which
follows them, On the Differences of Quantities, lay down some basic prici­
pIes to be used in interpolation. Next we have the section On the Descrip­
tion of Curves Through Given Points, which refers to Newton's contributions
and presents in Proposition 19 Newton's forward difference formula and in
Proposition 20 what have become known as Stirling's and Bessel's interpola­
tion formulae. Propositions 21 and 22 are concerned with practical aspects of
interpolation. In Proposition 23 we have four series from which the quantity

( 2: ) j22n may be determined; here the methods are analytic in contrast

to the interpolation methods by which this problem was treated in the first
example of the preceding proposition. Propositions 24 and 25 are concerned
with properties of what is in effect the Beta function: in the former Stirling
discusses the sequence An = B(r + n,p - r) and in the latter the sequence
Bm = B(p-m+ 1, r+m). In Proposition 26 he finds an asymptotic series for
a function which may be expressed as r(z +r - p) r(p)j(r(z) r(r)). Propo­
sition 27 returns to inverse factorial series; here Stirling uses them to solve a
two-term quadratic difference equation. Proposition 28 and its second exam­
ple contain perhaps the most famous of all Stirling's results, although it is
generally De Moivre's form which is quoted, with Stirling's name erroneously
attached: "To find the sum of any number of logarithms, whose arguments
are in arithmetic progression." The general Newton-Lagrange interpolation
formula is given in Proposition 29 and Proposition 30 applies what may be
interpreted as interpolation techniques to find limits. Proposition 31 deals
with quadrature and presents in its scholion several Newton-Cotes formulae
with corrections. In Proposition 32 Stirling shows how to approximate to
anyone of n + 1 equidistant ordinates given the other n of them by equat­
ing to zero the nth difference. Finally in Proposition 33 Stirling deals with
"interpolation to halves" .

Stirling's Principal Calculations

Part I (All by transformation of the stated series.)

Proposition 2.

Example 5.

Example 6.

00 1
In 2 = '"" -....,.--....,.

~ 2n(2n -1)

71"2 00 1
- - '"" - (9DP).6 - L..J n2

n=l

(9DP) (Brouncker) .
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Proposition 3.

00 ( l)r
Example 1. ~ = L ---- (lODP) (Leibniz).

4 r=O 2r + 1

Proposition 7.

1T _1 ( .3.1)_' _1 1
Example 1. 4" - 2" F 1, 1 , 2" '2" - sm V2

Example 2. ~ = F(I,!; 1; -1) = (1 + 1)-1/2

Proposition 8.

(llDP).

(lODP).

Example 1.

Example 2.

1T _ • -1 1 _ 1 ~ rr~-1 (2r - 1)2 (9DP).
2" - sm - +~ (2k + I)!

k=l

00 1
In 2 = '" (no numerical work) (Brouncker).

~ 2n(2n -1)

Example 1.

Proposition 11.

1T2 00 1
- - '" - (17DP).6 - ~n2

n=l

Example 2.

Example 3.

Example 4.

Scholion, Example.

Proposition 12.

(17DP).Example 2.

_ 1 00 (_I)i
Example 1. 1T = 6 tan 1 J3 =2J3~ (2i + 1)3i (21DP) (Halley).

1T2 00 (_I)i

12 =L (1 + i)2
t=O

Example 3.
00 ( l)i

~4 =L --;.- (17DP) (Leibniz).
. 2z + 1
t=O
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Part II (Interpolations, partial sums, asymptotic series, quadrature.)

Proposition 21. (From Bessel's interpolation formula.)

Example 2. r(t) = V; (lODP), r(!) ="fi (lODP).

Proposition 22.

Example 1. 2
200

/ (~~~)

Proposition 23.

First Solution. 2100/ (1
5
0
0
0) = V501fF(!,!; 51 j 1) (lODP).

(
200) / 100 _ 2 (1 1. .)Second Solution. 100 2 - lOb F 2' 2 ,51.5,1 (13DP).

Proposition 26. (Evaluation of leading coefficient in asymptotic series.)

Example 1.

Example 2.

1
"fi (12DP).

(r(l))2 v'3 (6DP).
21f

Proposition 27. (Evaluation of leading coefficient in asymptotic series.)

Example.
2

(8DP).

Proposition 28. (From Stirling's formula.)

9

Example 1. Llog10(101+2k) (llDP).
k=O

1000
Example 2. L log10 k (lODP), log10(1000!) (lODP).

k=ll

Example 3. (1000) (lODP).
499

Proposition 30. (From Stirling-Schellbach algorithm.)

sin (1f2 Z
-

1 )
Example. 1f = lim (14DP).

z-t-oo 2z - 1

Proposition 31. (From quadrature formulae.)

Example. In 2 = r1

_1_ dx (8DP).io 1 + x
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(p.169) Preface

Since it happens very often that series converge to the true value so slowly
that they are no more use for the intended purpose than if they were in fact
divergent, I have presented certain theorems in the first part of this treatise,
by means of which one may arrive promptly at the values of those series which
approximate most slowly of all: and indeed with that intention that Problems
which depend upon quadratures can be considered for solution with the same
authority as those which are reduced to affected equations. For here I do not
examine which series are summable (as some may perhaps infer from the
title) but by what methods we may come up with the values of those which
are not able to be summed.

James Gregory published a treatise of this type in the Appendix to Vera
Circuli et Hyperbolae Quadratura, where he taught a very easy method of
approximating to the areas of these curves from a very few given polygons of
a small number of sides. In this way he has rendered the method of exhaustion
of Archimedes so convenient that, if the same method could be extended to
other curves with equal success, further effort on the determination of areas
would be expended to no purpose. And we present here almost the same as
Gregory did there for series of polygons, but in a more general way for any
other series which enjoys a simple relation of the terms.

That Newton had previously thought about this matter is confirmed by his
first letter to Oldenburg which is found printed in the Commercium Epis­
tolicum of Collins. Certainly, after he had produced the area of the circle to
sixteen decimals by a computation, he says, If I had used other methods,
I could have attained many more places of figures, perhaps twenty-five or
more, using the same number of terms of the series: but the intention here
was to show what could be achieved through simple computation of a series.
Nevertheless, among his writings (at least those published up to this time)
there is not even a trace from which we may make a conjecture about these
methods, although he had a conspicuous opportunity for presenting them in
this very letter. Also in the first letter to Oldenburg, published in the same
place, he relates that he had thought out certain things about the reduction of
infinite series to finite series where the nature of the thing permits: If these
survive among his posthumous works, without doubt they will shed no small
light on this topic: For general theorems which provide the values of series
accurately, when it can be done, will necessarily approximate in other cases,
provided they are applied correctly.

The principle which is commonly applied for this purpose is the taking
of the difference of two successive values of some quantity, so that terms
may then be formed whose sum was known before; in fact this is the same
principle as Newton used previously for obtaining the ordinate of a curve from
its given area. Although this is universal in quadratures, it is only particular
in summations; in fact it is only applicable to those series whose terms can be
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assigned: however the assignment of sums and terms is equally easy in those
series which usually arise for the most part in quadratures.

Newton's Method of Differences has provided a much more general foun­
dation: in particular, he describes the parabolic curve through the extremities
of any number of ordinates or terms, and in that way he assigns the value of
any intermediate one by means of an infinite series; but this will not approach
the true value if that term is far removed from the beginning. Therefore, in
order that I may obtain very remote terms of series, I have described the hy­
perbolic figure through the extremities of the terms; and the matter has turned
out successfully, the value of a term as far removed as you wish resulting from
a convergent series. But with this problem having been solved in general, its
easiest case, namely the determination of the term at an infinite distance
from the beginning, did not escape notice; in fact this is equally effective for
the summation of series. However, the description of any geometrical curve
through given points suffices for only one type of series: and yet there are
countless others which cannot be dealt with at all on this basis. For the value
of the term found by means of the parabola or the hyperbola does not approx­
imate except where the differences taken according to the Newtonian rules
form a sufficiently rapidly decreasing progression.

When these things had been examined, I devoted myself finally to the con­
sideration of the relation of the terms, a very significant and simple property
of series, which is commonly applied for their continuation: For I was not
unaware that De Moivre had introduced this property of the terms into alge­
bra with the greatest success, as the basis for solving very difficult problems
concerning recurrent series: And so I decided to find out whether it could also
be extended to others, which of course I doubted since there is so great a dif­
ference between recurrent and other series. But, the practical test having been
made, the matter has succeeded beyond hope, for I have found out that this
discovery of De Moivre contains very general and also very simple principles
not only for recurrent series but also for any others in which the relation of
the terms varies according to some regular law. For even if the relation of
the terms is variable, it is, however, easily assignable: And then summations
and interpolations and other more difficult problems of that type are reduced
to a certain class of equations, which apart from the root to be extracted in­
volve other unknown quantities which cannot be eliminated; in spite of this,
the resolution of these equations is sometimes carried out with the greatest
ease, but sometimes it does not succeed unless the discoveries of De Moivre
concerning the assignation of terms in recurrent series are applied. And this
little book deals with almost everything about this topic.

The problem about finding the middle coefficient in a very large power of
the binomial had been solved by De Moivre some years before I considered
it: And it is probable that to this very day I would not have thought about
it, unless that most esteemed man, Mr Alex. Cuming, had not stated that he
very much doubted that it could be solved by Newton's Method of Differences.
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A TREATISE

ON

SUMMATION & INTERPOLATION

OF INFINITE SERIES

INTRODUCTION

Just as curves are not determined by some given ordinates no matter how
many, but by the general relation between the abscissae and the ordinates,
so series are not determined by some given terms no matter how many, but
by the relation between successive terms. For any quantities which are finite
in number can form terms in different series: in fact the series is unique
which has the same initial terms and the same law for forming the remaining
terms up to infinity. Therefore in the first place the relations of the terms
have to be investigated; then when these have been found they are to be
specified by difference equations just as Des Cartes has defined curves by
algebraic equations: when these things have been obtained, problems about
summation and interpolation and other matters of that type concerning series
will be solved by an analysis no less exact than common algebra is.

On the Relation of Terms

The terms of a series taken two at a time, three at a time, or in greater number
will maintain to a large extent a certain relation among themselves which is
simple and obvious and by which the series is determined and continued
indefinitely. Thus if one is divided by 1 - x, the geometric progression will
come forth in which any subsequent term is to that immediately preceding it
as x is to one. For by this property the series

1 + x + X
2 + X

3 + X
4 + X

5 + &C.

is distinguished from any other and is continued to infinity.

Suppose that the fraction 1 2 is to be resolved into a series:
r + sx + tx

to that end set y = 1 and by multiplying both parts by the
r + sx + tx2 '

denominator

y x (r + sx + tx2
) = 1, or y x (r + sx + tx2

) - 1 = 0,

will be obtained. For y substitute a series of the required form

A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + &c.

and

I. Tweddle, James Stirling's Methodus Differentialis
© Springer-Verlag London Limited 2003
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rA
-1

+rD } +rE } +rF }
+sC x3 +sD x4 +sE x5 + &c. = O.
+tB +tC +tD

will result.
Here, by setting like members equal to zero for the determination of the

assumed coefficients, there will be r A-I =0, r B + sA =0; then rC + sB +
tA = 0, rD + sC + tB = 0, rE + sD + tC = 0, etc. and so on to infinity.
From these it is obvious that the same relation holds everywhere between
any three successive terms. Similarly, by using for y a series of this form
Ax-2 + Bx-3 + Cx- 4 + Dx-5 + &c. and substituting it into the equation,

tA +tB} +tC } +tD } +tE }
-1 +sA X-I +sB x-2 +sC x-3 +sD x-4 + &c. = O.

+rA +rB +rC

will result.
And now for determining the coefficients we have the equations tA -1 = 0,

tB + sA = 0; then r A + sB + tC = 0, r B + sC + tD = 0, rC + sD + tE = 0,
and so on with the rest. It is clear that here the same relations come forth
as in the previous calculation, except that the coefficients have been taken
in the reverse order. And the quantities r, s, t, which show the relation of
the terms, are the same as those in the denominator of the fraction. Now,
however obvious it may be, it was Mr De Moivre who first of all brought
this property of these series into use in the solution of problems concerning
infinite series, which otherwise would have been very involved.

But in very many series the relation of the terms is not constant as in
those which result from division; but it very often varies according to some
well known law which is obvious at a glance; examples of this matter are
series which are commonly produced by quadrature, and countless others.
Thus in this series

the terms are continued to infinity by repeated multiplication of these frac-
t · 2 4 6 8 tAd· h·Ions 3' 5' 7' 9' e c. n In t IS

1 + kx + 430X2 + 1~2X3 + 1f~2X4 + &c.

it is by multiplication of

1x1
2x3'

3x3
4x5'

5x5
6x7' &c.

And these fractions vary according to a law which is obvious to anyone; and
so there will be no difficulty in assigning them.
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On Difference Equations Which Define Series

The equation defining the series is that which assigns the relation of the terms
generally from their distances given from the beginning. Now the terms are
to be imagined as standing above a straight line which is given in position,
just like so many ordinates, whose common distance is one. And for the sake
of simplicity I use one everywhere in what follows for the common interval:
let it suffice to have advised of this once.

I denote the initial terms of the series by the initial letters of the alphabet
A, B, C, D, etc. A is the first, B is the second, C is the third, and so on.
And I denote an arbitrary term generally by the letter T and the remaining
terms following it in order by the same letter T with the Roman numerals
I, II, III, IV, V, VI, VII, etc. attached to distinguish them. Thus if T is the
tenth term, then T' will be the eleventh, Til will be the twelfth, Till will be
the thirteenth, and so on. And in general, whatever term is defined by T, the
succeeding ones will be defined universally by T', Til, T'", Tiv, etc.

I denote by the indeterminate quantity z the distance of the term T from
any given term, or from any given intermediate point between any two terms:
in this way the distances of the terms T', Til, Till, etc. from the specified term
or point will be z + 1, z + 2, z + 3, etc. For the increment of the abscissa z is
equal to the common interval of the terms standing above the abscissa: and
the quantities z, z + 1, z + 2, z + 3, etc. follow each other as the subsequent
terms follow the preceding ones.

These things having been stated, let us consider the series

1, 63 5 &
256x , c.,

where the relations of the terms are

B- !Ax
-2 ' E -ID- 8 X, &c.;

z+!
in general the relation will be defined by the equation T' = __2 Tx, where

z+1
z denotes the distance of T from the first term of the series. For by writing
0, 1, 2, 3, 4, etc. successively for z, the relations of the terms in the proposed
series will come out. Likewise, if z denotes the distance of T from the second

z+3
term of the series, the equation will be T' = ---l TXj as will be established

z+2
by writing the numbers -1, 0, 1,2,3, etc. successively for z. Or if the inde-
terminate z denotes the position of the term T in the series, its successive

z-!
values will be 1, 2, 3, 4, etc. and the equation will be T' = __2 Tx, as will

z
be clear to anyone who tries it.

Therefore countless different difference equations can define the same se­
ries, according as the beginning of the abscissa z is taken at this or that
point. And on the other hand the same equation defines countless different
series as a result of using different successive values for z. For in the equation
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z-!.
T' = __2 Tx, which defines the series which we have now been discussing,

z
when 1, 2, 3, 4, etc. are the values of the abscissa in increasing order, write
successively 1~, 2~, 3~, 4~, etc. for z and the relations of the terms will come
forth as

B = ~Ax C = iBx D = -76CX, &c.
3' 5'

Whence the series is

16Ax3 128Ax4 &c
35 ' 315 ' .

which is different from the first. But the equation always determines the
series from the given values of the abscissa and at the same time from the
first term, where the equation involves only two terms of the series. As in
the last series all terms are given once the first is given. However, where the
equation involves three terms, it is necessary for the determination of the
series that two be given, and three where it involves four, and so on.

Now let us consider the series

x, 3 5
40 X ,

35 9 &1152X , c.,

where the relations of the terms are

B = ~Ax2 C - 3x3Bx2 D - 5X5CX2 &c
2x3 ' - 4x5 ' - 6x7 ' .

The equation for the same series will be

T' = (2z - 1) x (2z - 1) Tx2

2z x (2z + 1) ,
or T ' - 4z

2
- 4z + 1 T 2

- X ,
4z2 + 2z

where the successive values of the indeterminate z are 1, 2, 3, 4, etc. Therefore
in the equation defining the series the abscissa z can be of one, two, or more
dimensions.

Series whose terms are assignable can be defined by the equations which
assign the terms. Thus the series

1 - !.x + !.x2 - !.x3 + !.x4 - &c2 3 4 5 .

is defined by the equation T = (-xV, as will be confirmed by substituting
z+1

0, 1, 2, 3, etc. for z. And in the same way the series

x + !.x2 + !.x3 + ..!...x4 + ..!...x5 + &c4 9 16 25 .

is specified by this expression T = x: .Such equations can always be reduced
z

to those of the other type: for where the terms are assignable, their relations
will also be assignable. And the difference between the latter and the former
will rarely be so great that one may not safely proceed to either as seems
appropriate.
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It follows from what has been said up to this point that the relations of the
following terms are derived from those of the preceding terms by writing for z

its successive value z+1 in the difference equation. Consider the equation T I =
z+n . z+n+1 I
-- T; wnte z + 1 for z, T I for T, and Til for T I ; and Til = T

z z+l
will arise, which is the relation between the terms T I and Til. In this last
expression write the subsequent values of the variables z + 1, Til, Till for the

preceding values z, T I, Til, and you will obtain Till = z + n + 2 Til, which is
z+2

indeed the relation between Til and Till.
But also by the reverse operation one may go back to the relation of the

preceding terms given that of the subsequent ones. Let the equation be

Til = z2 -1 T'
z3 + 3z2 + 3z + 2 '

and in this write T for T I, T I for Til, and z - 1 for z; and you will have

T I = z2
3

- 2
1
Z T. By going backwards and forwards in this way series can be

z +
continued on this side or that side to infinity where their nature allows: and
even if it is not known which terms are denoted by T, T I, T'I, etc. one can
undertake the calculation upon them, just as if they had been completely
known.

The equations which we have been discussing up to this point involve
only two terms of the series; but they can involve more, and the terms just
as the indeterminate z can be of several dimensions. But I only deal with the
simpler cases in this account.

On the Form and Reduction of Series

After we have converted series to difference equations, it has to be shown how
these can be resolved in numbers. For it is the task of the analyst to extract
quantities, however they have been prescribed, exactly or very closely. Now
the roots of difference equations are resolved most appropriately into series
of the following types

A + Bz + Cz(z - 1) + Dz(z - l)(z - 2) + Ez(z - l)(z - 2)(z - 3) + &c.
BCD E

A+ - + + + +&c.
z z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

Indeed, where z is a small quantity, it will be appropriate to use the first
form, and the latter where z is large. And these series, which are built up from
factors in arithmetic progression, are much more suitable for this task than
the ordinary series which are made up from increasing or decreasing powers
of an indeterminate quantity. Besides, the latter form has this convenient
property that as a rule z can be as large as you please in it, which makes the
series very rapidly convergent.
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But if the forms of these series are changed by any operations whatsoever,
they have to be referred back to the same form as they had previously, in order
that the terms may be expressed in the same way and they can be collected
together as the matter requires. Suppose therefore that the following equation
is being used:

T = A + Bz + Cz(z - 1) + Dz(z - l)(z - 2) + Ez(z - l)(z - 2)(z - 3) + &c.

When this has been multiplied by z it loses its previous form, and assumes
a new one, namely

*

=Az,
= Bz + Bz(z - 1),

* 2Cz(z - 1) + Cz(z - l)(z - 2),
* * 3Dz(z - l)(z - 2)

+ Dz(z - l)(z - 2)(z - 3),
* 4Ez(z - l)(z - 2)(z - 3)

+&c.
Ez2 (z - l)(z - 2)(z - 3) = *

It is clear that from this its terms cannot be compared with the corre­
sponding terms in the former series. And so, in order that the required form
may be restored, I make use of

Az
Bz2

Cz2(z - 1)
Dz2 (z - l)(z - 2)

And so by collecting like terms into one, the series will be brought back
to the original form

+A} + B}Tz = +B z +2C z(z - 1) + C}+3D z(z - l)(z - 2)

+ D}+4E z(z - l)(z - 2)(z - 3) + &c.

Since without doubt the identity of the terms depends in no way on the
coefficients A, B, C, D, etc. but entirely on the indeterminate z, the first

term in this series 1~} z can be compared with the second term Bz in the

other series, likewise the second term in this series can be compared with the
third term in that series, and so on with the remaining terms.

Similarly, if in the first equation

T = A + Bz + Cz(z - 1) + Dz(z - l)(z - 2) + &c.

the succeeding values of the variables are written for the preceding values,
that is T' for T and z + 1 for z, then

T' = A+B(z+ 1) +C(z+ l)z+D(z+ l)z(z-l) +E(z+ 1)z(z-1)(z-2) +&c.
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arises.
Now there is

**

=A,
= B+Bz,
= * 2Cz+Cz(z-1),
= * * 3Dz(z - 1)

+ Dz(z - l)(z - 2),
4Ez(z - l)(z - 2) + &c.E(z + l)z(z - l)(z - 2) = *

A
B(z + 1)
C(z + l)z
D(z + l)z(z - 1)

And thence

T' = :~: 2~}z :3~} z(z - 1) :4~} z(z - l)(z - 2)
:5~ } z(z - l)(z - 2)(z - 3) + &c.

This is the desired form.
Now here is the basis of these operations. The quantity to be reduced

is reduced by multiplication to powers of the indeterminate z: then operate
in the manner of the following example. Let (z - 3)z(z + l)(z + 4) be the
quantity to be reduced; form

(z -3)z(z+ 1)(z+4) = az(z-l)(z - 2)(z -3) +bz(z -l)(z - 2) +cz(z -1) +dz.

Here the greatest number of factors in the resolved quantity is equal to the
number of the same in the quantity to be resolved. Let both quantities be re­
duced to powers of the indeterminate, the multiplication having been carried
out, and

-6a}6 +lla +2b
Z4 + 2z3 - 11z2 - 12z = az4 - a} Z3 -3b} Z2 z

+b -c
+c +d

will be obtained.
And by comparing like terms we will obtain

a=l, b-6a=2, c-3b+lla=-1l, d-c+2b-6a=-12,

from which is obtained a = 1, b = 8, c = 2, d = -20; hence the quantity set
forth is

Z4 +2z3 -llz2 -12z = z(z-l)(z - 2)(z -3) +8z(z-1)(z-2) +2z(z-1) -20z.

And one may proceed in exactly the same manner in other cases. But
for the sake of brevity take the following rule. Divide one repeatedly by the
terms of this progression n - 1, n - 2, n - 3, n - 4, etc., that is, divide one by
n -1, and the resulting quotient by n - 2, and this quotient by n - 3, and so
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on. Then display all the quotients produced in this way regularly in a table
as you see, the powers of n having been omitted and only the coefficients
retained, these alone being useful for this task; and you will have

First Table

I 1 1 1 1 1 1 1 1 1 &c.

1 3 7 15 31 63 127 255 &c.

1 6 25 90 301 966 3025 &c.

1 10 65 350 1701 7770 &c.

1 15 140 1050 6951 &c.

1 21 266 2646 &c.

1 28 462 &c.

1 36 &c.

1 &c.

&c.

Now take for the coefficients the numbers in the descending columns, and
you will have the following values of the powers:

z = z,

z2 = Z + z(z - 1),

z3 = Z + 3z(z - 1) + z(z - 1Hz - 2),

Z4 = Z + 7z(z - 1) + 6z(z - 1Hz - 2) + z(z - 1)(z - 2Hz - 3),

Z5 = Z + 15z(z - 1) + 25z(z - 1Hz - 2) + lOz(z - 1)(z - 2Hz - 3)

+ z(z - 1Hz - 2Hz - 3Hz - 4),

&c.

And so, once this table has been obtained, any quantity is reduced to
the form sought without tedious computation. Let the expression previously
reduced Z4 + 2z3 - llz2 - 12z be set forth. Extract the values of the powers
from the table, and when these have been multiplied by their respective
coefficients -12, -11, +2, and 1, you will obtain



Form and Reduction of Series 27

-12z =-12z,
-llz2 =-llz -llz(z - 1),
+2z3 = +2z + 6z(z - 1) + 2z(z - l)(z - 2),

+z4 = +z + 7z(z - 1) + 6z(z - l)(z - 2)
+ z(z - l)(z - 2)(z - 3),

Z4 + 2z3
}

-llz2 _ 12z = -20z + 2z(z - 1) + 8z(z - l)(z - 2)

+ z(z - l)(z - 2)(z - 3).

And the values of the members collected into one sum give the value of the
whole expression as it has now come forth. It is to be noted that an infinite
series which is made up from ascending powers of the indeterminate cannot
in general be reduced to another of the stated form: for each coefficient would
be an infinite series. However, in finite series, the matter succeeds as has been
shown above.

Series of the other form are also reduced similarly. For let us suppose some
quantity sought to be

ABC D
T = - + + + +&c.

z z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

Then if the need arises to investigate the successive value of T, write z + 1
for z, and the successive value comes out as

T'=~+ B + C
z + 1 (z + l)(z + 2) (z + l)(z + 2)(z + 3)

D
+ +&c.

(z + l)(z + 2)(z + 3)(z + 4)

And in order that this series may be brought back to the first form, I
make use of the following:

A
z+1

_A A
- Z - z(z+1) ,

D _
(z+1)(z+2)(z+3)(z+4) - *

B 2B
z(z+1) - z(z+1)(z+2) ,

*

B
(z+1)(z+2)

C
(z+1)(z+2)(z+3)

= *

= * *

*
&c.

C 3C
z(z+1)(z+2) - z(z+1)(z+2)(z+3) ,

D
z(z+1)(z+2)(z+3) +

And I have

I A B - A C - 2B D - 3C
T = - + ( ) + ( )( + + &c.,z z z + 1 z z + 1 z + 2) z(z + l)(z + 2)(z + 3)
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where the denominators are now the same as in the value of T; and for
this reason, it is possible to undertake the comparison of terms just as the
occasion demands. Now operations of this type are demonstrated as follows.

Put --..!--.1 = ~ - (a )' where a is a quantity which has to be found
z+ z zz+1

straightaway; then by multiplying by the denominator z(z + 1), there will
come forth z = z + 1 - a, or by eliminating z in both places, 0 = 1 - a

and a = 1; hence by substituting one for a, _1_ = 1 (1) will be
z+1 z zz+1

obtained. Likewise I form

1
(z+I)(z+2)

1 a
z(z + 1) z(z + l)(z + 2) ,

and by multiplying by the denominator there will be z = z + 2 - a, or a = 2,
and from this

1 1-----,--- = --:---,...
(z+I)(z+2) z(z+l)

Now let us consider

2
z(z + l)(z + 2) .

ABC-- + + ---,-----,----:----,--...,...
z + 2 (z + 2)(z + 3) (z + 2)(z + 3)(z + 4)

D
+ +&c.

(z + 2)(z + 3)(z + 4)(z + 5) ,

which it is required to reduce to another of the required form. The operation
is undertaken as just shown, and you will find

A
z+2

_ A 2A 2A
- Z - z(z+l) + z(z+l)(z+2) ,

D _
(z+2)(z+3)(z+4)(z+5) - *

B
(z+2)(z+3)

C
(z+2)(z+3)(z+4)

*

= *

B 4B 6B
z(z+l) - z(z+l)(z+2) + z(z+l)(z+2)(z+3) ,

* z(z+S(Z+2) - z(Z+l)(~~2)(Z+3) + &c.

* * Z(Z+1)(Z~2)(Z+3) - &c.

And in the required form the proposed series will be found to be

A B - 2A C - 4B + 2A D - 6C + 6B &
- + + + + c.
z z(z + 1) z(z + 1)(z + 2) z(z + l)(z + 2)(z + 3)

And the reduction in other cases is undertaken in this way. If the fraction

to be reduced is _1_, there will be two members in its value, as in the first
z+1

example above. If it is _1_, there will be three, as in the latter example.
z+2

And in general in the value of _1_ after reduction to the required form the
z+n
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number of members will exceed the number n by one. However, I suppose
here that n is a positive integer; for if it is fractional or negative, the value

1
of the fraction -- will go off to infinity.

z+n
But the general rule for transformations of this type is that which follows.

Multiply the terms of this progression n, 1 + n, 2 + n, 3 + n, etc. repeatedly
by themselves, and let the results be arranged in the following table in order
of the powers of the number n, only the coefficients having been retained,
and there will result:

Second Table

1
1 1
2 3 1
6 11 6 1
24 50 35 10 1
120 274 225 85 15 1
720 1764 1624 735 175 21 1

5040 13068 13132 6769 1960 322 28 1
40320 109584 118124 67284 22449 4536 546 36 1 I
&c. &c. &c. &c. &c. &c. &c. &c. &c. &c.

Then by taking the coefficients from the descending columns, you will
obtain the values of the powers,

1 1 1 2
- = + + ---:-----:-..,---.,....,..-----,-
z2 z(z + 1) z(z + 1)(z + 2) z(z + l)(z + 2)(z + 3)

+ 6 +&c.
z(z + 1)(z + 2)(z + 3)(z + 4)

113
- = + ---,-----:-..,------:-----,-
Z3 z(z + 1)(z + 2) z(z + 1)(z + 2)(z + 3)

11
+ +&c.

z(z + 1)(z + 2)(z + 3)(z + 4)

1 1 (6 35
Z4 = z(z + 1)(z + 2)(z + 3) x 1 + z + 4 + (z + 4)(z + 5)

225 )+ +&c.
(z + 4)(z + 5)(z + 6)
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And continue in this way for the remaining powers. And so, if a given series
is made up of powers, it can always be reduced to another of the desired form
by use of this table.

Or, if the series ~ + ~ + ~ + ~ + &c. is to be considered, take the
z z z z

coefficients from the transverse columns and put

a=A,

b=A+B,

c =2A+3B+C,

d = 6A + lIB + 6C + D,

e = 24A + 50B + 35C + lOD + E,

f = 120A + 274B + 225C + 85D + 15E + F,
&c.

And the series made up of powers will be transformed into the following
series of the required form

abc-..,...--..,... + + ---...,.--...,.----,-
z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2Hz + 3)

d
+ +&c.

z(z + l)(z + 2Hz + 3)(z + 4)

Now let us consider the fraction 2 1 ; I first resolve it using division
z +nz

into the ordinary series

1 n n2 n3 n4

- - - + - - - + - - &c
Z2 z3 Z4 z5 Z6 .

whence

A=l, B=-n, C=+n2, D=-n3
, E=+n4

, &c.

and, when these values have been substituted, there will come out

a = 1, b = 1 - n, C = 2 - 3n + n2, d = 6 - lIn + 6n2 - n3
, &c.

and so

1 1 1 - n 2 - 3n + n2

----:--- = + + -..,...---,--;-----:--:-;----,-
Z2 + nz z(z + 1) z(z + 1Hz + 2) z(z + 1Hz + 2)(z + 3)

6 - lIn + 6n2 - n3 &
+ )( ) + c.z(z + 1Hz + 2Hz + 3 z + 4

That is

1 1 1-n 2-n 3-n 4-n
--=--- = + --A + --B + --C + --D + &c.,
z2 + nz z(z + 1) z + 2 z + 3 z + 4 z + 5
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where the quantites A, B, C, D, etc. now denote terms of this series in the
style of Newton. And it is clear that the series terminates whenever n is a
positive integer. In other examples let z also denote the least factor in the
denominator, and the series will always terminate in this method where its

1
nature allows. Thus if the fraction is x(x _ 3)(x + 2) , I put z = x - 3, the

least of the three factors; then there will be x = z + 3 and x + 2 = z + 5.

And the fraction will become ( ~( )' or when the multiplication has
z z+3 z+5

been carried out, 3· 1
2

' which by division is
z + 8z + 15z

~ _ ~ + 49 _ 272 + 1441 _ 7448 + 37969 _ &c.
z3 Z4 z5 z6 Z 7 z8 Z9

Whence

A = 0, B = 1, C = -8, D = +49, E = -272, F = +1441, G = -7448, &c.

And from these come forth

a = 0, b = 1, c = -5, d = 12, e = -12;

but f and the remaining cofficients are zero: and in consequence the series
terminates, being exactly

1

z(z + 3)(z + 5)
1

""""7-----:--:------:- X
z(z + l)(z + 2) (

5 12
1 - -- + ~----=-:-;--C7

Z + 3 (z + 3)(z + 4)

12 )
- (z + 3)(z + 4)(z + 5) .

In an arbitrary fraction

1
z(z + a)(z + b)(z + c) &c.

let z be the least of the factors, and, provided that a, b, c, etc. are positive
and also integral, the series will be terminated, otherwise it will go off to
infinity. Now where the series terminates, it can be found in very many ways
and that more elegantly than by the above general rule: certainly it is far
removed from elegance to reduce first a finite fraction to an infinite series
so that its value may then be obtained in a finite number of terms: we have
done this here in order to illustrate the general rule, not to teach the best
method for the case where the series terminates.

If in the first table the numbers from the ascending columns are taken
out and we put
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a=A,

b = B - A,

c= G - 3B+A,

d=D-6G+7B-A,

e = E - 10D + 25G - 15B + A,

f = F - 15E + 65D - 90G + 31B - A,

&c.

then a series of this form

A B G
---+ + +&c.
z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

will transform into the following

abc d
2" + 3" + 4" + 5" + &c.,z z z z

which is made up from powers.
A

In these transformations we have had no discussion of the term - , since
z

without any transformation it belongs ambiguously both to the series of pow-
ers and to that of the factors.



PART ONE

On the Summation of Series

In this first part I have tried to shorten the calculations in the quadrature of
curves, and also in more difficult problems, namely by attaining the values of
infinite series more readily than by simple addition of terms as is commonly
done. For rapidly converging series this indeed amply achieves the purpose,
and there is no need for another method: but where they converge slowly,
immeasurable work is required for the most part, and it is indeed greater
according as the convergence is less; and therefore if they approximate very
slowly, they become wholly intractable. For it is very well known that some­
times more than a thousand terms are required in order that the sum may
be obtained exact to two or three figures. Therefore we will demonstrate in
what follows a method which is easy to apply for transforming those which
are slowest converging of all into others which approximate very rapidly; it
is clear that from these the sums can be calculated with very little effort to
very many places of figures.

Indeed the transformed series will terminate where those whose sums are
to be found are summable; and in that case the transformation will result in
the summation. But I am less concerned about summable series and I only
touch upon them in passing as they usually appear only rarely in quadratures.
For here I have devoted effort, not to producing useless series which can be
summed by available theorems, but to obtaining theorems by which useful
series can be readily summed to as many places of figures as any applications
require.

(p.174) On Simpler Series

It is not only the convergence of a series but also its simplicity which con­
tributes most to the carrying out of calculations. For this reason let us con­
sider transformations first of all. It should be known that the Newtonian
series in the Treatise on Quadrature of Curves not only terminate where the
nature of the thing allows, but are also the simplest of all when they go on to
infinity, and consequently they are to be preferred to those which are found
by the common method, namely reducing ordinates to convergent series, so
that areas may then be calculated.

Let xO- 1 x (e + fX 1J )>'-l be the ordinate of a curve, in which x is the
abscissa, e and f are coefficients, and () - 1, A-I, and TJ are the indices of

the powers: put r = () + TJ , s = () + ATJ , and following Newton the area will
TJ TJ

be

x
O

x (e + fx1J)>' _ ~A fx 1J _ s + 1Bfx1J _ S + 2Cfx1J _ S + 3 D fx1J _ &c.,
()e r e r + 1 e r + 2 e r + 3 e

where A, B, C, D, etc. denote the terms, each in its order from the beginning:
thus

I. Tweddle, James Stirling's Methodus Differentialis
© Springer-Verlag London Limited 2003
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B = _~Afx'1 ,
r e

c = _s + 1B fx'1, and so on.
r + 1 e

Now let it be proposed to find the arc from the given right sine x, or what is
1

equivalent, the quadrature of the curve whose ordinate is~ : expressed
1- x 2

in the required form, this is XO x (1- X 2 )-1/2, which on comparison with the
general ordinate gives

e = 1, f = -1, TJ = 2, () - 1 = 0, \ - 1 - _1.
.1\ - 2'

(p.175)

and so () = 1, >. = ~: and hence r = ~, s = 1; when these values have been
substituted into the theorem, the series

x ~ + ~Ax2 + !Bx2 + §.Cx2 + '§.Dx2 + 10 Ex
2 + &cV 1 - x~ 3 5 7 9 11 .

arises for the arc. But if the proposed ordinate is first resolved into a series
by Newton's Theorem for developing the binomial and then the fluent of each
term is taken, the series

x + !..ti.Ax2 + 3x3 Bx2 + 5X5CX2 + 7x7 Dx2 + ~EX2 + &c
2x3 4x5 6x7 8x9 10x11 .

will result for the same arc. Whence it is clear that the first series is much
simpler and consequently it can more easily be continued to infinity. For
example, if the arc required is an eighth part of the whole circumference, its

sine x will be equal to I'f and when this has been substituted the series

becomes

First series: ~ + tA + ~B + ¥C + ~D + 1
5
1 E + &c.

Second series: If+ 112 A + io B + ~~C + 1~4D + ~2~E + &c.

In this case the former is to be preferred for two reasons, first since it is
produced by simpler factors, and secondly because it is free from the surd
which is found in the latter. Nevertheless, where x is a rational quantity and
at the same time xVI - x2 is an irrational quantity, the latter series is to be
chosen, but only if x is of a sufficiently negligible magnitude which produces
a very rapidly converging series; for in this way the extraction of the square
root is avoided. Besides, if x = 1, from necessity we have to come back to
the second, since in that case the quantity~, by which the first is
multiplied, vanishes.

On Series Which Converge More Rapidly

Where an indeterminate quantity quickly becomes very large as the quan­
tity sought increases, and eventually becomes infinitely large, the terms of
the series made up from it will be alternately negative and positive, and
they will approximate more slowly than where the indeterminate quantity
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cannot increase beyond a given magnitude. Thus, if a circular area or arc is
required, it is better to use the right sine, which cannot exceed the radius,
than the tangent, which quickly increases to an immense length, as Newton
previously observed. But on the other hand, tangents are to be preferred in
the case of the hyperbola, in as much as they cannot exceed a given mag­
nitude, but are contained between prescribed limits, and so are sufficiently
confined. But what we have said here does not in the least mean that an area
or arc of moderate or insignificant magnitude cannot be sought out just as
seems appropriate to anyone of them: for the difference is only noteworthy in
those cases in which the quantities sought are large. And series whose terms
are alternately negative and positive are more tractable than others as far
as summation is concerned. Moreover, the things that have been said here
about binomial curves will also apply to those involving a larger number of
terms.

It is indeed true that rapidly converging series can be encountered in
many places, when Newton's Method of Differences has been used. But the
more they converge, the more complicated they usually are: consequently I
prefer simpler series even if they are more slowly convergent.

On Successive Sums

By successive sum I understand the quantity which follows the sum of all the
terms, when the subsequent terms come down in place of the preceding ones.
Thus, if the sum is T+T' +T" + Till +Tiv +Tv +&c., write the latter terms for
the former, and you will have the successive sum T' +T" + Till +Tiv +Tv +&c.
and if once more the following terms are substituted for the preceding ones
in this, the sum T" + Till + Tiv + TV + T vi + &c. will result which follows the
most recent one, and so on.

Hence, if S, S', S", S"', etc. denote the successive sums, there will be

S = T + T' + T" + Till + Tiv + &c.
S' = T' + T" + Till + Tiv + &c.
S" = T" + Till + Tiv + &c.
Sill = Till + Tiv + &c.

That is to say, from any infinite series let the first term be taken away,
and from what is left let the first term also be taken away, then from what
remains again let the first term be taken away, and so on indefinitely; the
series produced in this way by removing the first terms step by step will be
the successive sums; that is,

S' = S - T, S" = S' - T', Sill = S" - T", &c.,

or,
S' =S-T,
S" =S-T-T',
S'" = S - T - T' - T" ,
Siv = S - T - T' - T" - T'" , &c.
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Here we have been speaking about sums of all terms up to infinity, which
begin at some given term; for whatever term T may be, 8 will be the sum
of it and all subsequent terms, likewise 8' will be the sum of T' and all the
rest. In fact these things will hold where we are concerned with the sum of
an infinite number of terms: But if there is only a finite number of terms, 8
will be the sum of all terms from the beginning to some given term T, and
8' will be the sum of the same terms less T, and S" will be the sum of the
same terms less both T, T', and so on.

Hence, if z is the length of the abscissa which corresponds to the sum S in
the summation ofthe terms from some given term to infinity, then z+ 1, z+2,
z+3, etc. will be respectively its lengths corresponding to the successive sums
S', 8", 8 111

, etc. But on the other hand, in the summation of the terms from
some given term back to the beginning of the series, the lengths z - 1, z - 2,
z - 3, etc. will correspond to the sums S', 8", S"', etc., when the abscissa z
corresponds to S itself. For in the first case the distances of the sums from
the beginning increase constantly by the increment of the abscissa, and they
decrease by the same decrement in the latter.

a b c d e f g h k

ex

~ rJ 8 K

£ svi svjj svijj

8 ____ --- SV
Siv

y
/ Siii

f3 V Sii

(
Si

A B c D E F G H K L

Let SS' be any curve whose asymptote is ab and is such that the abscissa
AB is parallel to it. Let the abscissa be divided into infinitely many parts
all equal to each other, AB, BC, CD, etc. And from the points of division
A, B, C, D, etc. let perpendiculars to the asymptote be erected, cutting the
curve in the points 8, S', 8", etc. and the asymptote in a, b, c, etc. From
the points S', S", 8 111

, etc. to the immediately preceding ordinates let S'a,
S" (3, 8 111

"{, Siv6, etc. be drawn parallel to the abscissa; thus 8a, 8'(3, 8""{,
8 1116, etc. are the differences of the ordinates, both of those which extend
from the curve to the asymptote and of those which extend from the curve
to the abscissa. Therefore the ordinates intercepted between the curve and
the asymptote will express the sums and by continuing from these to infinity
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the differences will represent the terms. That is to say, if eSiv denotes the
sum, the successive ones will be f SV, gsvi, hsvii , etc., and the differences of
these ESiv , (SV, TJsvi , etc. up to infinity are the terms whose sum is eSiv .
And similarly if ESiv, DSIII

, CS", etc. denote successive sums, whose first
is ESiv, the preceding differences 6S III

, ,S", etc. will represent the finitely
many terms continuing from the ordinate ESiv back to the beginning of the
series. Therefore the summation of series is reduced to finding the ordinates
from their given differences. But it is to be noted that the final sum must
be zero in both caseSj this always happens when the curve passes through
the point A on the abscissa, and at the same time has ab as asymptote. This
caution is to be applied so that the sums which have to be investigated by
the methods presented are true, requiring no correction at all, as is very often
the case in the quadrature of curves.

Proposition 1

If the terms of some series are formed by writing the numbers 1, 2, 3, 4, 5,
etc. for z in the quantity

A + Bz + Cz(z - 1) + Dz(z - l)(z - 2) + Ez(z - l)(z - 2)(z - 3) + &c.,

then the sum of the terms from the beginning whose number is z will be

Az + (z + 1) x (tBz + ~Cz(z - 1) + tDz(z - l)(z - 2)

+ ~Ez(z - l)(z - 2)(z - 3) + &c.).

Here it is to be noted that the quantity z + 1 is multiplied into the whole
series which immediately follows it. Now the Proposition is demonstrated as
follows. Form the sum

S = Az + (z + 1) (tBz + ~Cz(z - 1) + tDz(z - l)(z - 2) + &c.)

or

S = Az+ tB(z+ l)z+ ~C(z+l)z(z-l) +tD(z+ 1)z(z-1)(z-2)(z-3)+&c.

Then write the next values of the variables for the present values; that is,
S - T for S, and z - 1 for Zj and you will obtain

S - T = A(z - 1) + tBz(z - 1) + ~Cz(z - l)(z - 2)

+ tDz(z - l)(z - 2)(z - 3) + &c.

Now subtract this equation from the former, and

T = A + Bz + Cz(z - 1) + Dz(z - l)(z - 2) + &c.

will remain. Hence conversely, if this value of the term is given as in the
Proposition, the sum will be that which has been assigned. Moreover, this
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sum evaluates to zero when z is zero: and so the Theorem is established.
Q.E.D.

Example 1

Let the series of natural numbers 1, 2, 3, 4, 5, 6, etc. be given; these are formed
by writing 1, 2, 3, etc. for z in that very quantity z, and so by comparison
with the term in the Theorem there will be A = 0, B = 1, and C, D, E,
and the subsequent coefficients will be zero; when these values have been

z2 + z
substituted the sum comes forth as (z +1) x ~z, or -2-' for the aggregate

of as many terms as there are units in z. Thus, if z = 6, then 36t6 = 21 will
come out as the sum of the first six terms.

Example 2

Now let the series of odd numbers 1, 3, 5, 7, 9, 11, etc. be given; these are
formed by writing 1, 2, 3, 4, etc. in the quantity 2z -1, that is, -1 + 2z, and
having been compared with the value of the general term, this gives A = -1,
B = 2, and C, D, E, etc. all zero; when these have been written in the sum,

2z
-z + (z + 1) x 2' or z2, comes out for the aggregate of as many terms

as z enumerates. And so indeed is the situation in the present case, for the
successive sums are the squares of the natural numbers.

Example 3

Suppose that the series of squares is to be summed, namely 1, 4, 9, 16, 25,
36, 49, etc., which are formed by the expression z2. By what is explained
in the Introduction the quantity z2, reduced to the form of the Theorem,
becomes z + z(z - 1) ; and so A = 0, B = 1, C = 1, and thence the sum is

(
z z(z - 1)) z(z + 1)(2z + 1) .

(z + 1) x 2+ 3 ' that is 6 . For example, wnte 7 for

z, and you will have 7.8615 = 140, which is the aggregate of seven terms.

Example 4

Now let us consider the squares of the odd numbers, 1,.9, 25, 49, 81, 121,169,
etc. which are formed by writing 1, 2, 3, 4, etc. successively in the expression
1 + 4z2 - 4z; when this is written as 1 + 4z(z - 1), it gives A = 1, B = 0,
C = 4, and D, E etc. zero: and when these have been substituted, the sum
comes out as

z + (z + 1) x ~z(z - 1), or
4z3 - z

3
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Example 5

If the cubes 1, 8, 27, 64, 125, 216, etc. are given which z3 assigns, let z3 be
reduced to the required form z + 3z(z - 1) + z(z - I)(z - 2); and there will
be A = 0, B = 1, C = 3, D = 1, and the remaining coefficients will be zero;
and consequently the sum is

(z + 1) x Uz + z(z -1) + tz(z - l)(z - 2)),

2

which after simplification becomes : x (z + 1)2. And hence it follows that

the sums of these cubes are the squares of the numbers 1, 3, 6, 10, 15, etc.,
namely of the triangular numbers.

Scholion

Series of this type are more easily summed by the differences of the terms;
for let A, A2 , A3 , etc. denote the series· to be summed; collect together the
first differences of the terms B, B2 , B3 , etc., the second C, C2 , C3 , etc., the
third D, D2 , etc., and so on until the last has been reached which here is E:

A A2 A3 A4 As
B B 2 B3 B4

C C2 C3

D D2

E

and the sum of the terms, z in number, will be

z z z-l z z-I z-2 z z-I z-2 z-3
A-+B- x --+C- x -- x --+D- x -- x -- x --+&c.
112 12 3 12 3 4

But it has to be noted that the differences have to be formed by taking the
former from the latter, that is, by putting B = A2 - A, B2 = A3 - A2 ,

etc., then C = B 2 - B, etc. Now the demonstration of this depends on the
Newtonian method of differences.

Let us consider the series 1, -1, 0, 8, 27, 61, 114, 190, etc. When the
differences have been collected together in the manner explained above, it
will be found that A = 1, B = -2, C = 3, D = 4, while the remaining
coefficients are zero:

1 -1 ° 8 27 61 114 190
-2 1 8 19 34 53 76

3 7 11 15 19 23
4 4 4 4 4

and so the sum comes out as

z z z-I z z-I z-2 z z-I z-2 z-3
- -2 x - x -- +3 x - x -- x -- +4 x - x -- x -- x--
I 12 12 3 12 3 4
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h' h' . Hi d £ . (z - 3)(z - 2)z(z + 2) M h"w lC m SImp 1 e orm IS 6 . oreover, t e senes IS

. . . 4z3
- 3z2

- 13z + 6
formed by wntmg 0, 1, 2, 3, 4, etc. in the quantIty 6

Proposition 2

If the terms of any series are formed by writing any numbers which differ by
one in the quantity

ABC
---,----:- + + ~---:7-;------:::7"7"-~
z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

D
+ ()() + &c.,z(z + l)(z + 2) z + 3 z + 4

the sum of all the terms beginning at any given term and continuing up to
infinity will be

ABC D
- + + + +&c.
z 2z(z + 1) 3z(z + l)(z + 2) 4z(z + l)(z + 2)(z + 3)

Put the sum

ABC D
S = - + + + +&c.

z 2z(z + 1) 3z(z + l)(z + 2) 4z(z + l)(z + 2)(z + 3)

Then write the values of Sand z, following for preceding, that is S - T for
Sand z + 1 for z, since we are now dealing with an infinite number of terms:
and

ABC
S - T = -- + + ~----:-:------:-.,-----..,-

Z + 1 2(z + l)(z + 2) 3(z + l)(z + 2)(z + 3)

+ D +&c.
4(z + l)(z + 2)(z + 3)(z + 4)

will result. When this equation has been subtracted from the previous one,
there remains

T= A + B + C
z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

D
+ +&c.

z(z + l)(z + 2)(z + 3)(z + 4)

Hence conversely, if this term is given, the sum will be what is assigned in
the Proposition. Q.E.D.

Corollary 1. If the term is ( )( / )( )&' throwawayz z + 1 z + 2 z + 3 z + 4 c.
the last factor, then divide what is left by the number of factors which are left
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behind, and you will have the sum of the terms. Let the term be z(z~ 1) ;

throwaway the last factor z + 1, and A will remain; and since there is a
z

single factor z left, A will be the sum of all the terms.
z

Now let the term consist of three factors ( ~( 2) ; throwaway the
z z+1 z+

B
last factor z + 2, and ( ) will remain, which on division by 2, namely

zz+1
B

the number of factors which are left behind, will produce 2z(z + 1) for the
sum.

Similarly, if from the term ( )( C)( ) , which is made up of
zz+1 z+2 z+3

four factors, the last factor z + 3 is thrown away, and what is left is divided

by 3, the sum will be obtained as ( ~( )
3z z + 1 z + 2

If the term is .i, throwaway the factor z, and since nothing remains,
z

divide A by zero, and you will have for the sum an infinitely large quantity,
as is known. And as far as I know it was Mr Taylor who first dealt with
this matter in the Method of Increments. The same topic was also discussed
in greater detail and most elegantly by M. Nicol in the Acts of the Royal
Academy of Paris.

Corollary 2. By the things which are presented in the Introduction con-

cerning this material, it is known that any term ( )( A
b
)( )&

z z + a z + z + c c.
can always be resolved into two or perhaps more summable terms, finite in
number, when a, b, c, etc. are whole numbers; therefore in that case the se-

ries will be summable. Thus, if the term is (1 )' it is resolved into three
zz+3

summable terms

122
z(z + 1) - z(z + 1)(z + 2) + z(z + 1)(z + 2)(z + 3) .

Hence by the preceding Corollary, the sum will be

1 1 2- - + -.,....--...,....,----,-
z z(z + 1) 3z(z + 1)(z + 2) ,

h· h h b' d 3z
2

+ 6z + 2 A d 10 k . 'f h 0 f h'w lC w en com me are 3 3 2 . n 1 eWlse, 1 t e term is 0 t is
Z + 9z + 6z

A + Bz2 + Cz3 + Dz4 + &c.
z(z + a)(z + b)(z + c)(z + d)&c. '
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the series will be summable as long as a, b, C, d, etc. are whole numbers and
the number of factors in the denominator exceeds the highest power of z in
the numerator by at least two. But I except the cases in which two or more
factors in the denominator are equal to each other; in those cases the series
are not summable.

Example 1

Suppose that the series

1 1 1 1 1
--+--+--+ + +&c.
104.7 4.7.10 7.10.13 10.13.16 13.16.19

is to be summed. The terms of this series are assigned by the quantity

1

3z(3z + 3)(3z + 6) ,

as will be clear on writing ~, 1~, 2~, 3~, etc. successively for z, that is,

1
27z(z + l)(z + 2) ,

hence the sum is ( 1 ) . For instance, on writing for z its first value ~ in
54z z + 1

this, 2~ will result for the sum of the whole series. If for z its second value 1~

is written, 1~8 will result for the sum of the whole series less the first term.
If for z its third value 2~ is written, 4~O will result for the sum of the whole
series less the first two terms. And so on to infinity.

Example 2

Let us consider the series

1 1 111
1.4 + 2.5 + 3.6 + 4.7 + 5.8 + &c.

The terms of this are assigned by the quantity (1 )' in which 1, 2, 3, 4,
zz+3

etc. are to be written successively for z. Now the quantity (1 ) is reduced
zz+3

to three summable terms, namely

122-..,------,- - + -...,---...,-..,....--..,....,...--,...
z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3) .

Hence the sum will be

1 1 2
-- +-=--..,....---,--:-;---=-:-
z z(z + 1) 3z(z + l)(z + 2)

or
3z2 + 6z + 2

3z(z + l)(z + 2) .
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Now if you wish the aggregate of everyone of the terms, substitute one for z
in the sum, and you will obtain t1~t~ ' that is ~~ ' for the value of the series
set forth.

Example 3

Now let the series

1 4 9 16 25
-- + -- + -- + -- + -- +&c.
2.3.4.5 3.4.5.6 4.5.6.7 5.6.7.8 6;7.8.9

be given, where the numerators are the squares of the natural numbers; in
z2 - 2z + 1

general each term will be assigned by the expression z(z + l)(z + 2)(z + 3) ,

the successive values of the indeterminate being 2, 3, 4, 5, etc. And that
quantity is resolved into three summable terms, namely

1 7 16---,--- - + .
z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3) ,

and thence the sum is

1 7 16- - + -,.---------,,....,.....---,..
z 2z(z + 1) 3z(z + l)(z + 2) ,

that is,
6z2 - 3z + 2

6z(z + l)(z + 2) ,

and if you substitute 2 for z in this, you will have 3
5
6 for the value of the

series.

Example 4

Let the value of the series

1 27 125 343 &
---+ + + + c.
1.2.3.4.5 2.3.4.5.6 3.4.5.6.7 4.5.6.7.8

be required, where the numerators are the cubes of the odd numbers 1, 3, 5,
7, etc. Now if 1,2,3,4,5 etc. are put for the successive values of z, the terms

'11 b . d b h 8z
3

- 12z
2

+ 6z - 1 h' h .WI e assIgne y t e expression , w IC IS
z(z + l)(z + 2)(z + 3)(z + 4)

resolved into

8 84 386---;----,- - + ---;-----:-.,...--.,...----,-
z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

729
z(z + l)(z + 2)(z + 3)(z + 4) .

Therefore the sum is

8 84 386 729
; - 2z(z + 1) + 3z(z + l)(z + 2) - -4z-(-z-+-1:-)('-z-+-2-:-)(:-z-+-3"'7") ,
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96z3 + 72z2 + 80z - 3 . .
that is, ( )( )( ) , and If you wrIte the first value of z, that

12z z + 1 z + 2 z + 3
is one for z, you will find ~:~ to be the value of the series.

Example 5

Let us consider the series

1 1 1 1 1
1.2 + 3.4 + 5.6 + 7.8 + 9.10 + &c.,

which Viscount Brouncker found for the quadrature of the hyperbola; in
1

general each term is assigned by the expression ( 1) , where the values
4z z + 2

of z are ~, 1~, 2~, 3~, etc. And having been reduced to summable form, the
quantity becomes

1 1 1.3---- + + --.,...-----:--,-------,,...,.....,.-----,--,-
4z(z + 1) 8z(z + l)(z + 2) 16z(z + l)(z + 2)(z + 3)

1.3.5 &
+ ) + c.32z(z + l)(z + 2)(z + 3)(z + 4

Indeed it expands into an infinite series because the difference of the factors
in the expression which assigns the terms is a fraction; in any case this is an
indication that the series is not summable. But going back from the term to
the sum,

1 1 1.3 1.3.5 &- + + + + c.
4z 16z(z + 1) 48z(z + l)(z + 2) 128z(z + l)(z + 2)(z + 3)

will be obtained. This is a series which converges more rapidly the larger z
is. But for an easier calculation put

A=2- B=_A_ C=~ D=~
4z ' 2z + 2 ' 2z + 4 ' 2z + 6 '

E=~ F= 9E &,
'

c.,
2z + 8 2z + 10

and the sum will be A + ~B + tC + ~D + iE + &c. If in this for z its first
value ~ is substituted, the value of the whole series which has to be summed
will be obtained: if for z its second value is substituted, the sum of all the
terms less the first will come out; if for z its third value is substituted, the
sum of all terms except the first two will come out, and so on. Therefore I
substitute for z its fourteenth value 13~, so that z is sufficiently large to make
the series converge rapidly; and I have

A _I B- 1 A C - 3 B D - 5 C E - 7 D F - 9 E &c
- 54 ' - 29 ' - 31 ' - 33 ' - 35 ' - 37' .,

in which case the sum A + ~B + tC + ~D + &c. will be equal to
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1 1 1
27.28 + 29.30 + 31.32 + &c.,

in fact to the whole series to be summed less its first thirteen terms. Therefore
I seek the sum of these by addition, and I find it to be .674285961. Then, in
order to obtain the sum of the rest, I extract by calculation A, B, C, D, etc.
to as many places of decimals as is desired; and when these have been found
I divide them by 1, 2, 3, 4, 5, etc. respectively as you see:

A =.018518519
B = 638570
C= 61797
D = 9363
E= 1873
F = 455
G= 128
H= 41
I = 14

.018518519
319285

20599
2341
375

76
18
5
1

.018861219

And in that way I obtain .018861219 for the sum of all the terms after the
thirteenth; finally, when this has been added to the aggregate of the initial
terms found first of all, it makes up .693147180 for the value of the series
which had to be summed, that is, for the hyperbolic logarithm of two.

The more terms are collected together at the beginning, the more rapidly
the series which gives the sum of the remaining terms will converge on account
of z being so much the greater. And the superiority of this method is especially
conspicuous in the fact that, by adding terms to the aggregate of the initial
terms, z is increased by so many units and as a rule the series transformed
at will in this way will converge.

Now it will be clear from the following calculation that in practice it
is impossible to come up with the sums of these series by straightforward
collection of the terms; here the sum of a hundred, a thousand, ten thousand,
and so on up to ten thousand hundred-thousands of terms are given:

The sum of

100
1000
10000
100000
1000000
10000000
100000000
1000000000

terms is

.690653446

.692897242

.693122181

.693144680

.693146930

.693147155

.693147178

.693147180

From this calculation it appears that a hundred terms give the sum accurate
to two figures; and by collecting together at each stage ten times the previous
number of terms, only one figure more or less is gained: thus, if someone
should wish to work out the value of this series accurate to nine places of
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figures using no technique other than addition, about ten thousand hundred­
thousands of terms would be required. And this series converges far more
rapidly than very many others whose values are finite quantities.

Example 6

Suppose that the series 1 + t + ! + /6 + 2
1
5 + 3

1
6 + &c. is to be summed,

where the denominators are the squares of the numbers 1, 2, 3, 4, etc. and

the term is in general ~ : reduced to summable form, this becomes
z

1 1 1.2--,------:- + + ----,----,-----,-
z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

1.2.3 &
+ z(z + l)(z + 2)(z + 3)(z + 4) + c.

Therefore the sum is equal to

1 1 1.2 1.2.3 &- + + + + c.
z 2z(z + 1) 3z(z + 1)(z + 2) 4z(z + l)(z + 2)(z + 3)

By putting

A = ~ B =~ C = 2B D = 3C E 4D &
z ' z + 1 ' z + 2 ' z + 3 ' = z + 4' c.

this becomes A + ~B + ~C + tD + &c. Now if for z its thirteenth value 13 is
substituted, the sum of all terms in the series to be summed after the twelfth
term will be obtained; in this case there will be

A = 113 ' B = 1~ A, C = 1
2
5 B, D = 1

3
6 C, E = 1~ D, &c.

And A + ~B + ~C + tD + &c. will be the sum of the terms

1 1 1 1
169 + 196 + 225 + 256 + &c.

Now the calculation is as follows:

A =.076923077
B = 5494505
C = 732601
D = 137363
E= 32321
F = 8978
G = 2835
H = 992
1= 378

K = 155
L = 67

M = 31
N = 15

.076923077
2747252

244200
34341
6464
1496
405
124
42
16
6
3
1

.079957427
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Hence .079957427 comes out for the sum of the terms 1~9 + 1~6 + 2~5 +&c.
which when added to the aggregate of the twelve initial terms, or 1.564976638,
produces 1.644934065 for the value of the whole series 1 + t + ~ + 116 + &c.
Now this series converges less rapidly than that of Brouncker in the previous
example.

Proposition 3

If the terms of any series are formed by writing any numbers which differ by
one for z in the quantity

xz+n X (~+ b + c + d + &c )
z z(z + 1) z(z + 1)(z + 2) z(z + 1)(z + 2)(z + 3) .,

the sum will be equal to

z+n (a b - Ax c - 2Bxx x + + --..,-------..,...--.,..
(1 - x)z (1 - x)z(z + 1) (1 - x)z(z + 1)(z + 2)

d - 3Cx )
+ (1 - x)z(z + 1)(z + 2)(z + 3) + &c. .

The quantities A, B, C, D, etc. denote the coefficients of the terms pre­
ceding those in which they are found; thus,

b-Ax
B=---,

I-x
C = c- 2Bx,

I-x
&c.

But I except the case in which x is equal to one: where this happens, the series
will be summable by the previous proposition. Now here is the demonstration.
Form the sum

S = x z+n X (A + B + ----,-_--,C,...-;-_--,-
z z(z + 1) z(z + 1)(z + 2)

D )+ +&c. ,
z(z + 1Hz + 2Hz + 3)

then write the next values of the variables S-T and z+1 for their predecessors
Sand z respectively, and you will have

S - T = x z+n+1 X (~ + B + C
z + 1 (z + l)(z + 2) (z + 1Hz + 2)(z + 3)

+ (z + l)(z + 2~Z + 3)(z + 4) + &c').

This is
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S _ T = xz+n x (AX + Bx + Cx
z + 1 (z + 1)(z + 2) (z + 1)(z + 2)(z + 3)

Dx )+ +&c.
(z + 1)(z + 2)(z + 3)(z + 4) ,

which, when reduced to the form of S, becomes

S-T=xz+n x (AX + Bx-Ax + Cx-2Bx
z z(z+l) z(z+I)(z+2)

Dx-3Cx & )
+ z(z + 1)(z + 2)(z + 3) + c. .

Now subtract the value of S - T from the value of S and the term

T z+n (A(I-X) B(I-x)+Ax C(I-x)+2Bx=x x + + --'----"--,---..,.--
z z(z + 1) z(z + 1)(z + 2)

D(1 - x) + 3Cx &)
+ z(z + l)(z + 2)(z + 3) + c.

will be left. Finally, if this value is compared with that in the proposition, it
gives

A(1 - x) = a, B(1 - x) + Ax = b, C(1 - x) + 2Bx = c, and so on.

These equations show the values of the coefficients as above. Thus the value
of the sum is correctly assigned. Q.E.D.

Example 1

Suppose that the series

1 + It + lt2 + lt3 + lt4 + &c3 5 7 9 .

1

has to be summed. The equation for this is T = t Z -! x 1., for the terms
z

of the series will come out if we write !' I!, 2!, 3!, etc. successively for z.
Now by comparing this term with that in the theorem, there will be x = t,
n = -~, a = ~, while b, c, d, e, and the remaining coefficients are zero. And
finally, when these values have been written in, there arises

S = tZ-~ x ( ! + At + 2Bt
(1- t)z (t - l)z(z + 1) (t - l)z(z + 1)(z + 2)

3Ct )
+ (t - l)z(z + 1)(z + 2)(z + 3) + &c. .



or

S = .0207974719

.0200000000
7407407

510856
49438

5992
856
139

25
5
1
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Let us suppose, for example, that t = -1; and the series to be summed
will be

1 1 1 1
1 - - + - - - + - - &c.

3 5 79'
and the sum will turn out to be

S = ±1 x (2- + A + 2B
4z 2z(z + 1) 2z(z + l)(z + 2)

3C )+ +&c.
2z(z + l)(z + 2)(z + 3)

(
1 A 2B 3C 4D )

S=±lx -+--+--+--+--+&c. ,
4z 2z + 2 2z + 4 2z + 6 2z + 8

where A, B, C, D, etc. now denote whole terms in the Newtonian manner,
and no longer just coefficients. And one with the ambiguous sign by which
the whole series is multiplied will be positive where z - ~ is an even number,
and negative where it is odd. Now collect together twelve initial terms, or
equivalently six in this series

2 2 2
1.3 + 5.7 + 9.11 + &c.,

each pair in the former series having been combined: and you will find their
sum to be .7646006915. Then write for z its thirteenth value 12~, and you
will obtain

which is a simple and rapidly converging series: for
ten terms give S = .0207974719 as is clear from
the adjacent calculation: and when this quantity has
been added to the aggregate of the initial terms,
.7853981634 will result for the value of the series to be
summed: however it would never be possible to attain
this by addition of terms. And by collecting together
more initial terms, the value of S will approximate far
more rapidly. And so, by means of this proposition the
circumference of the circle can be produced with very
little effort to a great many figures from this series, al­
beit it a slowly converging one; some time ago Leibniz
was very desirous of such a result.

The circumference of the circle will also be obtained very accurately by
means of the following series of Newton

1111111
1 + - - - - - + - + - - - - - + &c.

3 5 7 9 11 13 15 '
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where each pair of terms are alternately negative and positive. The same is
also achieved by this series

1111111
1 + - - - - - + - + - - - - - + &c.

2457810 11 '

in which the denominators form the progression of natural numbers with
every third one removed. The former is equal to a fourth and the latter to a
third part of the whole circumference if it is assumed that the chords of these
arcs are one. However, before they can be treated by this proposition, both
have to be separated into two, the former into

1 1 1 1 1
1 - - + - - - + - - - + &c.

5 9 13 17 21 '
1 1 1 1 1 1- - - + - - - + - - - + &c.
3 7 11 15 19 23 '

and the latter into

1 1 1 1 1
1 - 4" + "7 - 10 + 13 - 16 + &c.,
1 1 1 1 1 1- - - + - - - + - - - + &c.
2 5 8 11 14 17

Then each of these four series is to be considered separately, and the
operation is to be set up as in the above example.

Example 2

If the series is
X x2 x 3 x4 x5

1.2 + 3.4 + 5.6 + 7.8 + 9.10 + &c.,

the equation will be T = X
Z x 1 1 ' which, when resolved into a series,

4z(z - 2)
becomes

T z (1 3 15= x x + + --,----,--.,...---:-:----,-
4z(z + 1) 8z(z + l)(z + 2) 16z(z + l)(z + 2)(z + 3)

105 )+ +&c..
32z(z + l)(z + 2)(z + 3)(z + 4)

Hence on comparing the members, there will be

n = 0,

And so

a - 1
- 4' b-l

- 8' C = 15 d - 105
16 ' - 32 '

e - 945
- 64 ' &c.
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S
z (1 3 - 8Ax 15 - 32Bx= x x + + -.,---...,.--;---:-:-;-__=_:_

4(1 - x)z 8(1 - x)z(z + 1) 16(1 - x)z(z + 1)(z + 2)

105 - 96Cx & )
+ )( ) + c..32(1 - x)z(z + l)(z + 2 z + 3

The progression of this series is clear to anyone. And where the value of x
is given in any particular case, the sum will be given as accurately as desired;
namely, by first adding a sufficient number of initial ~erms with the purpose
that z may be sufficiently big to cause the value of S to converge rapidly.
And now that these things have been set forth about series whose terms are
assignable, it is appropriate to move on to those which are determined by the
relation of the terms.

(p.187) Proposition 4

To find the relation between the terms when that between the successive sums
has been given.

In the equation defining the relation between the sums substitute for S',
S", Sill, etc. their actual values S - T, S - T - T', S - T - T' - Til, etc.
and you will have an equation involving the one sum Sj in this write the
following values of the variables for the preceding ones, and you will have a
new equation involving that sum S: finally, let S be eliminated by means of
these equations, and what results will show the relation of the terms. Q.E.I.

Example 1

Let the equation for the sums be (z - n)S = (z - I)S'j substitute for S' its
value S - T, and the equation will become (n -1)S = (z -1)Tj in this write
the following values of the variables for the preceding ones, that is, S - T
for S, T' for T, and z + 1 for Zj and (n - I)S = (n - I)T + zT' will resultj
subtract this from the first equation (n - I)S = (z - I)T, and there will
remain (z - n)T = zT', which is the equation for the terms of the series.

Example 2

Consider the equation for the sums Sx (8z2+20z+9)+3S'x (8z2+4z-3) = 0;
substitute S - T for S', and you will find

S =~T X 8z
2 + 4z - 3

32 Z2 + z

then, in accordance with the method of differences, write S - T for S, T' for
T, and z + 1 for z, and

S _ T = ~T' X 8z
2 + 20z + 9

32 z2 + 3z + 2
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will be produced; when 5 has been eliminated by means of these equations,
(z + 2)T + 3T'z = 0 will be obtained, which is the equation showing the
relation of the terms.

And by the same method three or more successive sums can be eliminated.

Proposition 5

To find as many summable series as you wish.

The equation for the sums will give the sum of the terms, while that for
the terms will give the series; the former is taken at will and from it the latter
is deduced by the previous proposition: therefore the terms and their sum are
obtained. Q.E.I.

Example 1

Let the equation for the sums be (z - n)5 = (z - 1)5' as in the first example
of the preceding proposition; you will find that for the terms to be (z - n)T =
zT'. But on substituting 5 - T for 5', the equation for the sums will give the

sum 5 = z - 1 T. Now let A, B, C, D, etc. denote the terms of this series,
n-1

and in the equation for them write m, m + 1, m + 2, m + 3, etc. successively
for z, where m is any number, integer or fraction, negative or positive; and
the relations of the terms will come out as

B_m-nA
-~'

C=m-n+1 B
m+1 '

D=m-n+2 C
m+2 '

E= m-n+3 D
m+3 '

&c.

Then in the equation 5 = z - 1 T write the first term of the series, that is
n-1

A, for T, and the first value of z, that is m, for z, and you will find

5 = m - 1A = A + m - n A + m - n + 1B + m - n + 2 C + &c.,
n-1 m m+1 m+2

where any numbers may be substituted for m and n. For example, let m = 5,
n = 2, A = 1

1
2' and

1 _ 1 3A 4B 5C 6D + &3 - 12 + 5 + 6' +"7 + 8' c.

will result, that is

1 1 1 1 1 1
3 = 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + &c..

Here it is clear that the terms are assignable, which will always happen when
n is an integer: indeed there will be as many factors in the denominators as
there are units in n. Thus, in the present example n = 2, and because of that
there are two factors in the denominators of the terms.

Now let m = 2 n - ~ A-I and, - 2' -,
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5 = 2 = 1 + ~A + ~B + ic + 170D + t2E + &C.

will result, that is,

5 = 2 = 1 + ~ + ~ + 6
5
4 + 1;8 + 5

2
1; + &c.

But in this case it is known that the terms are not assignable, since n is a
fraction. It should be noted that the series terminates and has a finite number
of terms whenever m - n is zero or a negative integer. And if n - 1 is zero or
a negative number, the value of the series will be infinitely great, as is shown

m-l
by the value of the sum, namely --A.

n-l

Example 2

Let the equation for the sums be 5 x (8z 2 +20z +9) +35' X (8z2 +4z - 3) = 0
as in the last example of the previous proposition, where it was found that

5 =~ T X 8z
2 + 4z - 3

32 z2 + z

and the relation of the terms was (z + 2)T + 3zT' = O. And if one is taken
for the first term, and the first value of z is also set equal to one,

5 - 27 - 1 3 6 10 15 21 + &
- 64 - - 3 + 9 - 27 + 81 - 243 c.

will be obtained. Here the denominators are the powers of three, while the
numerators are the triangular numbers. In these examples I have not digressed
into the deduction of series from equations which define the relations of the
terms, since I suppose this known already from the Introduction.

Scholion

The summation of series in the Method of Differences corresponds to the
quadrature of curves in the Method of Fluxions, and because of this similar
difficulties usually arise in both; these require to be outlined here. We have
said that series can be continued to infinity on both sides: for example, the

series 1 + x + x2 + x3 + &c. continued backwards is .!. + -;. + -;. + &c. And
x x x

these two joined together form one series going off to infinity on both sides,
namely

1111 234
&c. + 4" + 3" + 2" + - + 1 + x + x + x + x + &c.x x x x

For these terms are in an unbroken geometric progression, the preceding
terms being to their successors as one to x. In the summation of this series
we will find

1
-1- = 1 + x + x2 + x3 + &c.-x
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which is indeed true when x is less than one; however, if it is greater than

one, this series will be infinitely large, and the sum _1_ will no longer be
I-x

the sum of these terms; but after the sign has been changed, it will be equal
to the series going off on the other side; that is, there will be

-1 1 1 1 1
--, or -- = - + - + - + &c.
1 - x x-I X x 2 x3

But if x is one, the sum will be _1_, and then both parts of the series will
1 - 1

be infinitely large, being equal to one taken infinitely often.
In the same way if the equation for the series is (z - n)T = zT', and the

series is continued on both sides to infinity, one part will converge and the

other part will diverge except where n = 1; and the sum z - 1 T will always
n-l

be equal to the convergent part of the series.
It is no different in quadratures: if z-n is the ordinate of a hyperbolic

curve, the fluent _1_ z1 - n will represent the part of the area on one side or
I-n

the other side of the ordinate according as n is less than or greater than one:
however, if n is one, the area on both sides of the ordinate will be infinitely
large, as in the hyperbola of Apollonius.

Indeed series very often become infinitely large as a result of divergence,
even although the quantites which are being investigated by them are of
finite magnitude, but in those cases, when continued on the other side, they
sometimes converge and are equal to the roots sought or they differ from
them by a prescribed amount. Sometimes they also diverge when continued
on both sides: also more often they cannot go off to infinity on both sides on
account of terms which are impossible or infinitely small.

Moreover, just as areas of curves have to be sometimes increased, some­
times decreased, by given quantities so that they come out true, so also sums
found by this proposition sometimes differ from the true values, in which case
they have to be corrected by the addition or subtraction of a given quantity.
For instance, where the equation for the sums is such that it causes the last of
them to be a quantity of finite or infinitely large magnitude, there is always
need of correction: I will therefore show in the following proposition how the
equation is to be taken which always causes the last one to be zero; and the
sum found in this way will be true, requiring neither to be increased nor to
be decreased, as has previously been pointed out.

Proposition 6
If the equation for the sums is

S x (zo + azO
- 1 + bzo- 2 + &c.) = mS' x (zo + czO

-
1 + dzO

-
2 + &c.),

the last of the sums will be of finite magnitude only in the case where m = 1
and at the same time a = c.
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For demonstrating this proposition, it has to be known that the sum S
can be investigated from the equation defining the relation between it and
its successive value S' in almost the same way as a fluxional quantity from
its equation. To that end a series of the following form is to be taken for S,

zn ( BCD )- x A + - + - + - + &c. ,pz Z z2 z3

where n, p, A, B, C, D, etc. are constant quantities. But in the present case
where the sum sought is the last of all, and so at infinite distance, z will also
be infinitely large, being either equal to that distance or different from it by
a finite quantity: for this reason the later terms of the series are infinitely
smaller than the initial terms. Therefore to shorten the calculation, I throw
away all terms after the first, these being of no use in this demonstration:

thus I have S = Azn ; by writing S' for Sand z + 1 for z in this, I obtainpz

S' = A(;Z:11)n . Substitute these values for Sand S' in the equation for

the sums, or what comes back to the same, in this expression S x (z + a) =
mS' x (z + c), the remaining members having been neglected for the reasons
stated above; and

Azn ( ) mA(z + l)n ( )
-- x z + a = +1 X Z + cpZ pz

will result, or by multiplying by pz+l and dividing by A

pzn X (z + a) = m x (z + l)n X (z + c).

But by Newton's Theorem for expanding the binomial (z + l)n = zn +nzn-1,
and it is accurate since z is infinitely large. Substitute this value, and the
equation will becomepzn x (z+a) = m x (zn+ nzn-1) x (z+c), which after
division by zn-1 is pz x (z + a) = m x (z + n) x (z + c), or

pz2 + paz =mz2 + (n + c) x mz + mnc;

by comparing like terms in this, there will be p = m and pa = (n + c) x m,
Azn

hence n = a - c: and thence the last sum S, which previously was --,pz
Aza-c

now becomes ---, where it is to be noted that the coefficient A is not
m Z

determined. Now set m = 1 and at the same time a = c; and the sum will
Azo

become -- : now zO = 1 and 1z = 1, even if z is infinitely large; and so thep
last of the sums is finite, for it is equal to the quantity A where m = 1 and

A a-c
at the same time a = c: but there is no other case where _z_ is a finite

m Z

quantity when z is infinitely large. Therefore the proposition is established.
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Corollary

If m is less than one, the last sum will be infinitely large; and it will be
infinitely small when m is greater than one. And if m is one, that sum will
be infinitely large or infinitely small according as a is greater or less than c.
Therefore, if in the equation for the sums m is greater than one, or it is equal
to one and at the same time a is less than c, the last sum will always be zero
and no correction will be required.

Example

Let the first sum be A = 1, the second B = ~A, the third C = ;~B, the
fourth D = :~ C, the fifth E = :~ D, etc. And the equation for these will
be S x (Z2 + z + t) = s' X (z2 + z); when this has been compared with the
general equation it gives m = 1, a = 1, c = 1, and thence a - c = 0; hence by
this proposition the last of the sums, that is the product of all the numbers

9 25 49 81 121
1 x - x - x - x - x - x &c. up to infinity,

8 24 48 80 120

is a finite quantity.
In the equation for the sums substitute S - T for S', and you will find

S = -4T X (z2 + z) which, since it turns out negative with respect to T,
shows the sum of the terms not from a given term up to infinity, but from a
given term back to the beginning of the series.

So that it might be clearer, consider the two equations

SZ2 = S' X (z2 - 1) and Sz = S'(z + 1);

both of these will give the same equation for the terms, namely Tz =T'(z+2).
However, S = -T X (Z2 - 1) is deduced from the former, and S = T'(z + 2)
from the latter. In the first case S is the sum of the terms from the beginning
up to T, while in the second it is the sum of T and all subsequent terms up
to infinity. Let the numbers 1,2, 3, 4, etc. be written successively for z in the
equation for the terms, and let ~ be used for the first term; and the series
will come out as

1 1 1 1 1 1 1
1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + &c.

Here, if the aggregate of the first four terms is sought, write 5 for z in T x
(z2 - 1), the former value of the sum S, and the fifth term 5~6 for T, and you
will obtain

25 - 1 4 1 1 1 1--=-=-+-+-+-,
5.6 5 1.2 2.3 3.4 4.5

the four initial terms. But if you wish the sum of the whole collection of terms
with the exception of those four, write 5 for z and 5~6 for T in T(z + 1), the
latter value of S, and you will have
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6 1 1 1 1 1
5.6 = 5 = 5.6 + 6.7 + 7.8 + 8.9 + &c.

And these two values of 5 added together, that is, the sum of the numbers t
and ~, produces ~ = 1 for the value of the whole collection of terms from
the beginning up to infinity.

(p.191) Proposition 7

If the equation for the series is (z - n)T + (m - l)zT' = 0, there will be

m-1 n A n+1 B n+2 C n+3 D n+4 E
5 = --T+-x-+--x-+--x-+--x-+--x-+&c.

m z m z+l m z+2 m z+3 m z+4 m

Suppose that the sum 5 is equal to the term T multiplied by the quantity
y, that is 5 = Ty; then write the next values of the indeterminates 5 - T,
T', y' for the previous ones 5, T, and y respectively, and 5 - T = T'y' will
be obtained; when this has been subtracted from the previous expression

y-1
5 = Ty, there remains T = Ty - T'y', from which T' = T x --. But

. ~

from the equation for the series, namely (z - n)T + (m - l)zT' = 0, there
. T' (z - n)T ,
IS = - ( ) . And so by equating the two values of T to each other,

z m-1
there will be

y - 1 (z - n)T
Tx--=- ;

y' z(m -1)

when this has been divided by T and multiplied by (m - l)y', it becomes

(m - l)y - m + 1 = -y' + !!:.y', or
z

(m - l)y + y' - !!:.y' - m + 1 =0;
z

this is a difference equation whose resolution will produce the root y. To that
end take

bed e
y = a + - + + + . + &c.

z z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

Then write for y and z their next values y' and z + 1 respectively, and you
will have

, bed
y = a + -- + + --...,.....,--...,.....,-..,.--..,..

z + 1 (z + l)(z + 2) (z + l)(z + 2)(z + 3)

e
+ +&c.

(z + l)(z + 2)(z + 3)(z + 4) ,

that is,
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b e - b d - 2e e - 3d
y' = a + - + + + + &c.

z z(z + 1) z(z + 1)(z + 2) z(z + 1)(z + 2)(z + 3)

And after multiplication by ~ the first value of y' becomes
z

n, na nb ne nd &
-y = - + + + + c.
z z z(z + 1) z(z + 1)(z + 2) z(z + l)(z + 2)(z + 3)

Substitute into the equation these values which have now been reduced to
the same form, and

mb - na me - (n + l)b md - (n + 2)e & 0
ma - m + 1 + + + + c. =

z z(z + 1) z(z + l)(z + 2)

will result. On setting like members in this equal to zero,

m-l
a=--,

m
n

b= -a,
m

e = n + 1 b,
m

d = n + 2 e,
m

e = n + 3 d,
m

&c.

will be obtained. And these things having been given, the value of the root
y will be given, which, when multiplied finally by T, will produce for S the
series stated in the proposition. Q.E.D.

Corollary. If n is a negative integer or zero, the value of S will terminate,
the series being summable. And where m is negative, the series will be in­
finitely large. But here I except the case in which m = 0, for then the series
will be summable by Example 1 of Proposition 5.

Example 1

Let the series

t + ~A + ~B + ¥C + ~D + 1
5
1 E + &c.

be proposed for summation. The equation defining it is (z - ~)T - 2zT' = 0,
where the successive values of z are 1t, 2~, 3t, 4~, etc., and when that has
been compared with the general equation it gives n = ~, m - 1 = -2, or
m = -1; when these have been substituted,

A 3B 5C 7D 9E
S = 2T- - - -- - -- - -- - -- -&c.

2z 2z + 2 2z + 4 2z + 6 2z + 8

arises. If any term is substituted in this for T along with the corresponding
value for z, then S will be the sum of T and of all the following terms up to
infinity. And so I collect twelve initial terms; and their aggregate comes out
as .78533961813. Then, in order that I may obtain the sum of the remaining
terms, I write the thirteenth term, that is .00003029411 for T and for zits
required value 13t; and I have

S = .00006058822 - 2
1
7 A - 2

3
9 B - 3

5
1 C - ;3 D - ;5 E - &c.
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Here the terms come out alternately negative and positive; the latter I put
in the first column and the former in the second as you see:

.00006058822
23214

794
61

7
1

+.00006082899

.00000224401
3744

204
20
3
1

-.00000228373

Then, taking the sum of the negative terms .00000228373 from that of the
positive terms .00006082899, I have S = .00005854526, which added to the
sum of the initial terms produces .78539816339 for the value of the series
under consideration, that is, for the area of the circle whose diameter is one.

Example 2

Let the value of the series

1- ~A - tB - ~C - ~D - 190E - &c.

be sought. The equation defining the relation of the terms is (z - ~)T + zT' =
0, in which the values of the abscissa z are 1, 2, 3, 4, etc. and on comparing
this equation with that in the theorem, there will be n = ~, m - 1 = 1, and
m = 2 : and thence

1 A 3B 5C 7D 9E
S= -T+ - + -- + -- + + +&c.

2 4z 4z + 4 4z + 8 4z + 12 4z + 16

Now collect together ten initial terms of the series to be transformed, and
you will find their sum to be .6168670654. Then, in order that the sum of the
remaining terms may be obtained, write in the value of S the eleventh term,
that is, .1761970520 for T, and 11 for z; and

S =.0880985260

+ 4
1
4 A + laB + 552C + 5

7
6 D + ioE + &c.

will come out.

And by performing the calculation as at the side,
it will be found that S = .0902397156, which when
added to the aggregate of the initial terms first found
produces.7071067810 for the value of the series, that
is for J~. For if J~ is written as (1 + 1)-1/2 and
expanded by Newton's Theorem, the series which we
have just been discussing comes out.

.0880985260
20022392
1251400

120327
15041

2256
388

74
15
3

S = .0902397156
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Scholion

Every series whose terms are alternately negative and positive will change into
another more rapidly convergent series whose terms are of the same sign, if
it is transformed according to this proposition. And on the other hand, every
series whose terms are of the same sign will change into another whose terms
are alternately negative and positive; however, this will not converge more
rapidly than the former except where the transformation is begun from terms
sufficiently far removed from the beginning. And if the series is transformed
and again the series which results from this transformation is transformed,
the series first considered will come out. For example, if the series

1 1 1 1
1 - - + - - - + - - &c.

3 5 7 9

is transformed,
~ + ~A + tB + ¥C + ~D + &c.

will result, and then if this last series is transformed, the first

1 1 1
1 - - + - - - + &c.

357

will come out, that is, it translates the series for the tangent into that for
the sine, or the series for the sine into that for the tangent. But in these
cases the operation must be begun at the first term of the series, since we
are concerned with the transformation of the whole series.

Proposition 8

If the equation for the series is

T ' _ z -m z -n T
- x ,

z z-n+l

and we put

A=(z-n)T, B=~A,
z

then there will be

C=n+1 B
z+ 1 '

&c.,

D=n+2 C
z+2 '

E= n+3 D
z+3 '

ABC D
S = - + -- + -- + -- + &c.

m m+l m+2 m+3

For by supposing S = T x (z - n) x y and by the Method of Differences
there will be S - T = T' x (z - n +1) X y' and the difference of these equations
will give T = T x (z - n) x y - T' x (z - n + 1) x y'. For T' write its value
z-m z-n
-- x 1 T, and

z z-n+
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z-m
T =T X (z - n) X y - T X -- X (z - n) X yl

z

will be obtained which, when divided by T x (z - n), becomes

1 z-m I I m I 1 0-- = y - --y, or y - y + -y - -- = .
z-n z z z-n

Now the root y will be extracted from this equation in the following manner.
Suppose

abc d
y = - + + + +&c.

m (m + 1)z (m + 2)z(z + 1) (m + 3)z(z + 1)(z + 2)

There will be

I a b e
y = m + (m + 1)(z + 1) + (m + 2)(z + 1)(z + 2)

d
+ +&c.

(m + 3)(z + 1)(z + 2)(z + 3)

And

I b 2e
y - y = + ...,----....,....--.,..--,----,-

(m + 1)z(z + 1) (m + 2)z(z + 1)(z + 2)

+ 3d +&c.
(m + 3)z(z + 1)(z + 2)(z + 3)

And
m I am bm em
-;y = mz + (m + 1)z(z + 1) + (m + 2)z(z + 1)(z + 2)

dm
+ +&c.

(m + 3)z(z + 1)(z + 2)(z + 3)

And so

I m I
y -y + -y =

z
abc d
- + + + +&c.
z z(z + 1) z(z + 1)(z + 2) z(z + 1)(z + 2)(z + 3)

Now

_1_ = ~ + n + n(n + 1) + n(n + 1)(n + 2) + &c.
z - n z z(z + 1) z(z + 1)(z + 2) z(z + 1)(z + 2)(z + 3)

Therefore

I m 1
y-y +-y- -- =

z z-n

a - 1 b - n c - n(n + 1) d - n(n + 1)(n + 2) & 0
--+ + + + c.= .

z z(z + 1) z(z + 1)(z + 2) z(z + 1)(z + 2)(z + 3)
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Now put the numerators equal to zero, so that the terms vanish; and for the
determination of the coefficients you will have the following equations

a = 1, b = n, c = n(n + 1), d =n(n + l)(n + 2), &c.

Substitute these values in place of a, b, c, d, etc. in the series which has been
taken for y, and the value of y which results when multiplied by (z - n)T will
provide for S the series given in the theorem. Q.E.D.

Corollary. If n is a negative integer or zero, the series will be exactly
summable by this theorem. And if m is zero or a negative integer, the series
will be infinitely large. Moreover, this proposition and the previous one are
of use for the quadrature of binomial curves. This one comes into use where
in the ordinate xO(e + jxTJ ). the term e + jxTJ = 0, while the previous one is
to be used where the contrary happens.

Example 1

Let the value of the series

1 +!..:.!.A +!idB + 5.5C + 7.7 D +~E + &c.
2.3 4.5 6.7 8.9 10.11

be sought. The equation defining it is

z_l z_l
T' = __2 X __2 T,

z z+ 1
2

as will be clear on writing the values 1, 2, 3, 4, etc. successively for z. Now
when the equation in the theorem has been compared with this, it gives
m = 1 n - 1· hence2' - 2'

A=(z-~)T,

and

A
B=-,

2z
3B

C = 2z + 2'

&c.

5C
D = 2z +4' E = ...!.!!­

2z+ 6'

S - ~A + ~B + ~C + ~D + ~E + &c-1 3 5 7 9 .

To begin the calculation I find 1.407397508 to be the aggregate of twelve
terms. Then I substitute the thirteenth term, that is, 2

1
5 X .161180258, for T

and for z its corresponding value 13, and it comes out thus
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A = ~ x .161180258,

B = ~x

C = ~x

D = ~x

E = ~x

F = ~x

G = ~x

H = ~x

I = !x
K = ~x

L = ~x

M= ~x

6199241,

664204,

110701,

24216,

6410,

1959,

670,

250,

102,

44,

20,

.161180258

2066414

132841

15814

2691

583

151

45

15

5

2

1

s =.163398820

From this calculation I have S = .163398820, that is the value of all the terms
after the twelfth; and so when this has been added to the sum of the initial
terms, 1.407397508, I have 1.570796328 for the value of the series which was
to be summed, that is, for the length of the semicircular arc whose diameter
is one.

When their sum is being worked out, the initial terms can be reduced
very easily to decimal fractions by the following rule: put

a = 1, b - a -!a- 2' e = b - ib, d = e - !e, e =d- kd, &c.

and the terms will be a, ~b, ie, ~d, ~e, etc.

Example 2

Consider Brouneker's series

1 1 1 1
1.2 + 3.4 + 5.6 + 7.8 + &c.

The equation for this is

z-l z-!T'---x __2 T
- z z+!'

2

or also
z-l z-;i

T' = -- x --i T,
z z-2"

namely by taking the beginning of the abscissa z at different points. In the
former the values of z are ~, ~, ~, ~, etc. and

D=~
2z+4 '

3B
C = 2z+ 2'A - (z - !)T- 2'n-!

- 2'm=l,
A

B=-,
2z

&c.

In the latter the values of z are 2, 3, 4, 5, etc. and
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m= 1, n- l
- 2' A - (z - l)T- 2'

B= 3A,
2z

&c.

5B
C = 2z+ 2' D=~2z+4 '

and in both cases there will be

5 = A + ~B + tC + iD + &c.

Therefore 5 will be given to more figures by taking for T anyone of the terms
which are sufficiently far from the beginning. And the. calculation may be set
up similarly in other cases with two different methods where the the terms
are assignable. But this series written in this manner

1 1 1 1
1 - - + - - - + - - &c.

234 5

will be more easily handled by Proposition 3 or Proposition 7.

Scholion

Thus far we have been concerned with the summation of series which arise in
the quadrature of binomial curves and like matters. But one may proceed in
the same way in more difficult cases: for the sum of the series is determined
by and can be extracted from the given relation of the terms, namely by
resolving the difference equation as in the last two propositions. But it would
be a wearisome task to investigate the sums independently of the terms, when
the terms are not assignable; and so I have sought the quantity which when
multiplied by the term T produces the sum 5. In this way also the areas of
curves are more easily obtained by means of ordinates, for the series produced
in this way are very simple. And these things having been set out I proceed
to the method for resolving the roots of difference equations into series which
are indeed more involved but at the same time far more convergent than the
previous ones; I have shown these only because they are simple and sufficient
for ordinary uses.

Hitherto we have denoted any sum by 5, and its terms by T, T ' , Til, etc.
However, in what follows we will also denote series or sums by 52, 53, 54,
etc. and their terms by T2 , T~, T~', T~", etc. T3 , T~, T~', etc. and so on: thus

52 =T2 + T~ + T~' + &c.

53 = T3 + T~ + T~' + &c.
54 = T4 + T~ + T~' + &c.

&c.

And just as in the series 5, the successive sums are denoted by 5', 5", etc.,
so in the series 52 they will be denoted by 5~, 5~, etc. and in the series 53 by
5~, 5~, etc., and so on in the rest. Now I have been compelled to introduce
this notation because of the fact that sums and terms of different series come
into consideration together in the same equation.
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Proposition 9

Given the relation between two sums in different series and the equation for
the terms in one of them, to find the equation for the terms in the other.

The problem is solved by going from the present relation of the variables
to the following one, in order that the sums may hence be eliminated; this
will be clear from examples.

Example 1

Let 8 and 82 be two sums in different series, and let their relation be

8 = (m + l)z - n T 8.
m(m + 1) + 2,

and let
T' = (z - m) x z - n T

z z-n+l

be the relation of the terms of the series 8: and from these given equations
it is required to determine the equation for the terms of the series 82 . In the
equation

8 = (m + l)z - n T 8
m(m + 1) + 2,

which shows the relation of the sums, substitute the following values of the
variables for the preceding ones, that is, 8' or 8 - T for 8, 8~ or 52 - T2 for
82 , T' for T and z + 1 for z; and you will have

8 _ T = (m + 1) (z + 1) - n T' 5 _ T
m(m+l) + 2 2,

and when this has been subtracted from the first equation it leaves an equa­
tion free from sums, namely

T = (m + l)z - n T _ (m + 1)(z + 1) - n T' + T
2

,

m(m + 1) m(m + 1)

from which there is

T
2
= (m + 1Hz + 1) - n T' _ (m + 1)(z - m) - n T;

m(m + 1) m(m + 1)

substitute in this for T' its own value (z - m) x z - n T, and you will
z z-n+l

obtain
T

2
= n(m - n + 1) T.

(m + l)z(z - n + 1)

Moreover, write in this value the next values of the indeterminates T~, T',
and z + 1 for the present ones T2 , T, and z, and
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T~= n(m-n+1) T'
(m + l)(z + l)(z - n + 2)

will arise; here on substituting again for T' its value,

n(m - n + 1) T (z - m) z - n
T~= x x ---

(m + l)(z + l)(z - n + 2) z z - n + 1

comes out, from which

T = (m + l)z(z + l)(z - n + l)(z - n + 2) T~

n(m - n + l)(z - m)(z - n)

results. But the equation found previously

T
2

= n(m - n + 1) T
(m + l)z(z - n + 1)

gives
T = (m + l)z(z - n + 1) T

2
•

n(m - n + 1)

Now let the two values of the term T be equated to each other, and you will
come upon the equation

T.' - z - m z - n r.
2 - Z + 1 x z _ n + 2 2,

which expresses the relation of the terms of the series 8 2 . Q.E.I.

Example 2

Now let the relation between the sums and the equation for the series 8 be

3 4z+3
8 = - x -- T + 8 2 and zT + 3T' x (z + 1) = O.

4 4z+ 2

Write the next values of the variables in the equation for the sums, and

3 4z+7,
8 - T = - x -- T + 82 - T24 4z +6

will be obtained: taking this away from the former you will have

T = ~ x 4z + 3 T _ ~ x 4z + 7 T' r..
4 4z + 2 4 4z + 6 + 2,

from this you will obtain

r. = ~ x 4z - 1 T + ~ x 4z + 7 T'.
2 4 4z + 2 4 4z + 6

But by the equation for the series 8 there is 3T' = - ~1 T, and when this
z+

has been written in,
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1 4z - 1 1 4z + 7 - Z
T2 =+- X --T+- X -- X --T,

4 4z + 2 4 4z + 6 z + 1

3 1 1 1
T2 =--Tx -- X -- X --,

4 2z + 1 2z + 2 2z + 3
comes out. And again by proceeding to the next values of the indeterminates,

, 3, 1 1 1
T. =--T X--X--X--

2 4 2z + 3 2z + 4 2z + 5

will be obtained, or on substituting - _z- T for 3T',
z+l

,z 1 1 1 1
T. = - x -- x -- x -- x --T,

2 2 2z + 2 2z + 3 2z + 4 2z + 5

from which T = ~ x (2z + 2) x (2z + 3) x (2z + 4) x (2z + 5)T~; and from the
z

value of T2 this same T = -t x (2z + 1) x (2z + 2) x (2z + 3)T2; when these
two values have been equated to each other,

(Z2 + !z) X T2+ (z2 + ~z + 5) x 3T~ = 0

will be obtained. This is in fact the equation for the terms of the series 82 •

And the matter is to be dealt with similarly in other cases.

Scholion

Infinite series can be compared with each other by means of this proposition.
For the equation which shows the relation between the sums 8 and 82 will
give one when the other is given: and the terms of 8 and 82 will be given by
their equations, of which one is assumed while the other is extracted from the
one which has been assumed, as in the examples of this proposition. Thus if

the relation of the sums is 8 = 2z ; 1 T + 82 and the equation for the series

8
. T' Z2 - 2z + 1 . T, Z2 - 2z + 1 r'f"' £

IS = 2 T, you wIll find T2 = -22 and T2 = 2 2 1 .L 2 lor
z z z + z+

the equation for the series 82 • Now let 2, 3, 4, 5, etc. be the successive values
of the indeterminate z; and by taking one for T you will find

1 1 1 1 1
8 = 1 + 4+ 9 + 16 + 25 + 36 + &c.,

1 (1111 )
82 = 8 x 1 + 9+ 36 + 100 + 225 + &c. .

The denominators in the first are the squares of the natural numbers and
in the second they are the squares of the triangular numbers. Moreover, on

writing 2 for z and one for T, the relation between the series, 8 = 2z ; 1 T +

8 2 , will give 82 = 8 - ~, and on multiplying by 8 there will be
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1 1 1 1
83 - 12 = 832 = 1 + 9 + 36 + 100 + 225 + &c.

And likewise series where the denominators are the squares of the pyramidal
numbers, or of the tetrahedral numbers, etc. can be compared with a series
in which the denominators are the squares of the natural numbers. And
in general all series can be compared which are defined by the following
equations

2
T' = z +a T

(z + b)(z + c) ,
T'- Z2+ a T

- (z + b+ l)(z + c + 1) ,

(p.202)

T' = Z2 + a T, &c.
(z + b+ 2)(z + c + 2)

Here the numerator remains the same, but the denominators are formed by
writing repeatedly z + 1 in place of z.

Proposition 10

To find approximately the value of a series which is defined by an equation
of this form

T x (zl/ + azl/-1 + bzl/-2 + &c.) = rT' x (zl/ + CZI/- 1 + dZ I/-2 + &c.).

Case 1

First let r = 1, and let us suppose that the equation for the series is

T'-~ z-n T- x .
z z-n+l

Let us put

3 = z +P T approximately, or 3 = z +P T + 3 2 exactly;
q q

and by going to the next values of the indeterminates, there will be

3 - T = z + P+ 1 T' + 32 - T2 ;
q

the difference of these equations will give

T = z + P T _ z +P + 1 T' + T
2

;
q q

hence
T

2
= z + P+ 1 T' _ z +P - q T.

q q
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z-m z-n
For T' substitute its value -- x T, and

z z-n+l

T
2
= z + P+ 1 x z - m x z - n T _ z + p - q T

q z z-n+l q

will come out: when this has been reduced to a common denominator it gives

T
2

= (q - m)z2 + ((m - q)(n - 1) - n - p(m + 1)) z + mn(p + 1) T.
qz(z - n + 1)

Now the smaller the sum 32 is, the closer the quantity z + p T approaches
q

the true value of 3; and the smaller its first term T2 , the smaller 32 will be:
now the term will turn out very small where the variable z is of the smallest
dimensions in the numerator of its value; for here z is assumed to be large:
therefore let the coefficients of the powers Z2 and z be set equal to zero, and
two equations will be obtained,

q - m = 0, and (m - q)(n - 1) - n - p(m + 1) = 0,

for the determination of the two quantities assumed p, q. The first gives q = m

and from this and the second p = - _n_ is extracted. Hence there will be
m+l

'T' _ n(m - n + 1) T d.L2 - an
(m + l)z(z - n + 1) ,

Q.E.I.

3 = (m + l)z - n T approximately.
m(m + 1)

And the approximation will be found in exactly the same manner where

the equation for the series is T' = z: + az + bT, or is more involved; but the
z +cz+d

coefficients after band d do not enter into this calculation.

Case 2

Now let the equation be T x (Z2 + az + b) + rT' x (z2 + cz + d) = 0, where

r is any number apart from -1. Suppose that 3 = p x z + m T + 32 ; then
z+n

write the next values of the variables for the first, and

z+m+l ,
3 ..,.. T = p x T + 32 - T2,

z+n+l

will come out, and when this has been subtracted from the previous equation,
there remains

T z+mT z+m+1 T , 'T'=px -- -px +.L2;
z+n z+n+l

this equation will give
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'T' Z - pz - mp + n T z + m + 1 T'
12= +px ;

z+n z+n+l

T Z2 + az + b
but by the equation for the series S, there is T' = - - X 2 d ; when

r z +cz+
this has been written for T', it produces

'T' z - pz - mp + n pT z + m + 1 Z2 + az + b
12 = T - - x x .

z + n r z + n + 1 z2 + cz + d

If the members of this value are reduced to a common denominator and the
coefficients of the three highest powers of z are set equal to zero, the first
equation will give rp + p = r, the second (m - n)(r + 1) = c - a, and finally
the third (c - a)(2n + 1) + d - b = (m - n)(rc + rn + r + n) + ma: and these
three equations give

r b-d 1 a-c
p = r + l' m = c - a _ c - r + l' and n = m + r + 1 .

And so the assumed quantities p, m, and n are given; and thence also the

quantity p x z + m T which is approximately equal to the series S. Q.E.I.
z+n

(p.206) Proposition 11

If T' = z - m x z - nTis the equation expressing the relation of the
z z-n+l

terms of the series S, put

'T' 1 m n m-n+l
T12 = - X -- X - X ,

m m+l z z-n+l
'T' 2 m+l n+l m-n+2'T'
13 =-- X -- X -- X 12,

m+2 m+3 z+1 z-n+2
'T' 3 m+2 n+2 m-n+3'T'
14 =-- X -- X -- X 13,

m+4 m+5 z+2 z-n+3
r, 4 m+3 n+3 m-n+4

T
5 = m + 6 x m + 7 x z + 3 x z _ n + 4 4,

T
6
= _5_ x m + 4 x n + 4 x m - n + 5 T

5
m+8 m+9 z+4 z-n+5 '

&c.

A nd there will be

S = (m + l)z - In T + (m + 3Hz + 2) - 2(n + 1) T
2

m(m + 1) (m + 2)(m + 3)

(m + 5Hz + 4) - 3(n + 2) r. (m + 7)(z + 6) - 4(n + 3) T
+ (m + 4)(m + 5) 3 + (m + 6)(m + 7) 4

(m + 9)(z + 8) - 5(n + 4) r, &
+ (m + 8)(m + 9) 5 + c.
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B h d· . . h . (m + l)z - n T . . t Iy t e prece mg proposItiOn t e quantIty ( ) IS approxima e y
mm+1

(m+1)z-n
equal to the series 8. Therefore let 8 = ( ) T + 82 exactly, and

m m+1
you will find

1 m n m-n+1 ,z-m z-n
T2 = - X -- X - x T, and T2 =-- X T2

m m+1 z z-n+1 z+l z-n+2

for the equation for the terms of the series 82 : this, having been given, by
. . . . (m + 3)(z + 2) - 2(n + 1)

the previOUS proposItion the quantIty (m + 2)(m + 3) T2 turns out

approximately equal to the series 82 • Then by taking

8 - (m + 3)(z + 2) - 2(n + 1) To 8
2 - (m + 2)(m + 3) 2 + 3,

it will be found that

rp 2 m+1 n+1 m-n+2rp z-m z-n
13 = --x--x--x 12 and T~ = --x 3 T3m+2 m+3 z+l z-n+2' z+2 z-n+

is the equation for the terms of the series 83 : hence you will find that the
. (m + 5)(z + 4) - 3(n + 2) rp • • I I h .

quantIty (m + 4)(m + 5) 13 IS approxImate y equa to t e senes

83 . And the process continues on in this way. Therefore the first term in the
value of 8 is approximately equal to 8; and the second term is approximately
equal to 82 ; then the third is approximately equal to 83 , and so on with the
rest: this is to say, the first term is approximately equal to the series whose
value is being sought, the second is approximately equal to the discrepancy
between the first term and the true value, the third is approximately equal
to the discrepancy of the first two from the true value, the fourth is approx­
imately equal to the discrepancy of the first three from the true value, and
so on. Therefore the value of the sum 8 is true and converges very rapidly.
Q.E.D.

Corollary. The value of the series 8 shown here will terminate, where n
or m - n + 1 is zero or a negative integer: and in other cases it will go off to
infinity approaching very rapidly the true value, except where, on account of
m being zero or negative, the value of the series'is infinitely large.

Example 1

Let the value of the series

1 1 1 1 1
1 + - + - + - + - + - + &c.

4 9 16 25 36

be sought. The equation defining the relation of the terms is T' = z - 1 x
z

z-l
-- T, where 2, 3, 4, 5, etc. are the values of the indeterminate z. Now when

z
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this has been compared with the equation in the theorem, it gives m = 1,
n = 1; when these have been written in,

T _ 8T2

3 - 6(z + 1)2 '
T _ 64T4

5 - 14(z + 3)2 '
&c.

and

S - 2z - 1 T 2z + 2 T 2z + 5 T 2z + 8 T. 2z + 11 T &c
- 2 + 6 2 + 10 3 + 14 4 + 18 5 + .

come out. Now collect together the ten initial terms, and you will find their
aggregate to be 1.5497.6773.1166.5406.9. Then for z write its eleventh value,
or 12, and the eleventh term l~l for T, and you will find by calculation

T = .0082.6446.2809.9173.55
T2 = 2869.6051.4233.24
T3 = 22.6398.8277.97
T4 = 3118.7593.62
T5 = 63.3652.70
T6 = 1.7188.93
T7 = 583.96
~= 23.78
Tg = 1.12

.0950.4132.2314.0495.8
1.2434.9556.1677.4

65.6556.6006.1
7128.5928.3
123.2102.5

2.9690.0
920.9
34.9

1.5

S =.0951.6633.5681.6857.4

From this calculation we have S = .0951.6633.5681.6857.4, which, when
added to the aggregate of the initial terms, will produce for the value of
the proposed series 1.6449.3406.6848.2264.3.

EXaIIlple 2

Let the series to be summed be

1 + l:.!.A + 3.3 B + 5.5C + 7.7 D + .:t:!LE + &c.
2.3 4.5 6.7 8.9 10.11

z_l z_l
The equation specifying this is T' = __2 X --i T, as will be clear on

z z + 2"
writing the values 1, 2, 3, 4, etc. successively for z. Now when the equation
in the theorem has been compared with this, it gives m = !' n = ! 'and so

To - 2.1.1 To _ 2.4.9 To
2 - 1.3z(2z + 1) T, 3 - 5.7(z + 1)(2z + 3) 2,

T. - 2.9.25 T &
4 - 9.11(z + 2)(2z + 5) 3, C.

and
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s - 6z - 1.2 T 14(z + 2) - 3.4 r. 22(z + 4) - 5.6 r. &
- 1.3 + 5.7 2+ 9.11 3+ c.

By addition you will find 1.3916.9464.5943.2880.5 to be the sum of the ten
initial terms; then, in order that the sum of the rest may be obtained, write
11 for z and the eleventh term for T, and you will have

T = .0083.9003.5809.6168.15
T2 = 2210.8921.7644.71
T3 = 15.1604.0349.56
T4 = 1963.2742.16
T5 = 38.8835.92
T6 = 1.0484.94
T7 = 358.18
Ts = 14.77
T9 = 71

.1789.9383.0605.1587.3
1.0738.6191.4274.3

45.9406.1665.3
4570.9051.0

76.0818.3
1.8104.4

562.5
21.5
1.0

s =.1791.0168.0851.6085.6

Now let S be added to the aggregate of the initial terms, and for the value
of the series, that is, for the semicircumference of the circle whose diameter
is one, 1.5707.9632.6794.8966.1 will come out.

Example 3

Now consider the series

! + !.dA + .1:1..B + UlC + LllD + &c3 2.7 4.11 6.15 S.19 .,

z-! z-!
which is defined by the equation T' = __2 X -4 T, in which the values

z z +:4
of the indeterminate z are 1, 2, 3, 4, etc. And there will be m = ~, n = i-;
and consequently

r. - 5.1.1 T r. - 9.2.3 r.
2 - 6z(4z + 3)' 3- 14(z + 1)(4z + 7) 2,

T. - 13.3.5 r. &
4 - 22(z + 2)(4z + 11) 3, c.

and

S - 6z - 1.1 T 14(z + 2) - 2.5 22(z + 4) - 3.9 To &
- 1.3 + 5.7 T2 + 9.11 3+ c.

I now collect together the nine initial terms, the sum of which comes out as
.5055.0041.4718.3195.8, and on writing 10 for z and the tenth term for T, I
have
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T =.0047.5565.5924.4791.67
T2 = 921.6387.4505.41
T3 = 6.8760.0058.48
T4 = 995.8557.00
T5 = 22.0991.75
T6 = 6653.41
T7 = 252.54
Ts = 11.51
T9 = 61

.0935.2789.9848.0902.9
4160.5406.2053.0

19.5167.2893.3
2185.7755.9

40.9826.8
1.0937.5

379.0
16.1

8

S =.0935.6970.2649.4765.3

Finally, when the sum of the initial terms has been added to S, it makes up
.5990.7011.7367.7961.1 for the value of the series, that is, for the ordinate of
the elastic curve. And Jakob Bernoulli found correctly that this number is
contained between the limits .5983 and .6004.

Example 4

Consider the series

1 + !.:.!A + 3.5 B + ..2J!...C + 7.13 D + 9.17 E + &c
2.5 4.9 6.13 8.17 10.21 .,

Z_l z-;!
which is defined by the equation T' = __2 X --1 T, where 1, 2, 3, 4,

z z + 4
etc. are the successive values of the indeterminate. Now m = ~, n = ~ and
consequently

To _ 1.1.3 3.2.7
2 - 2z(4z + 1) T, T3 = lO(z + 1)(4z + 5) T2

,

T. - 5.3.11 To &
4 - 18(z+2)(4z+9) 3, c.

and

S = 2z - 1 T 2z + 2 2z + 5 To 2z + 8 T. 2z + 11 T &c
1 + 5 T2 + 9 3 + 13 4 + 17 5 + .

The sum of the nine initial terms is 1.2157.0599.7306.1360.6. And, in order
that the sum of the rest may be obtained, put 10 for z and the tenth term
for T, and by calculation you will obtain
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T2 = 1833.9213.6837.20
T3 = 15.5605.4494.38
T4 = 2425.8219.16
T5 = 56.8742.44
T6 = 1.7922.51
T7 = 707.95
Ts = 33.45
T9 = 1.83
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.0952.4164.9730.7854.7
8069.2540.2083.7

43.2237.3595.5
5224.8472.0

103.7118.6
2.9017.4

1047.8
46.1

2.3

S = .0953.2277.9839.9238.1

(p.213)

Now let S be added to the aggregate of the initial terms, and you will obtain
for the value of the series 1.3110.2877.7146.0598.7, that is, for the length of
the elastic curve if it were straightened out into a straight line. Now Bernoulli
showed that this number lies between the limits 1.308 and 1.315. And there­
fore if its ordinate is added to the length of the elastic curve, the number
1.9100.9889.4513.8559.8 will be obtained, which is the semiperimeter of the
ellipse having 1 and J2 as axes. And these examples are sufficient; for I do
not dwell upon series which can be summed exactly by this proposition.

Scholion

With almost no effort this theorem produces the areas of binomial curves
whose ordinates are comprised under the form x8 x (e + fx'1)A, but in the
special case where e + f x'1 = 0, or x'1 = - ~, that is, in that case in which the
series for the area converges very slowly. aut where the areas do not have to
be produced beyond eight or nine figures, it suffices to investigate the sum of
four initial terms, for S will give that of the rest with little effort; even if no
initial terms are collected together, but the transformation is begun at the
first term, the value of S will approximate to the value of the whole series
sufficiently rapidly. Now the series in the theorem is expressed more generally,
and is extended to cases which do not relate to quadratures, as follows. Let

2

the equation for the series be T' = 2 Z + m T and set
z + nz +r

a = n - !=..!!!
n '

b = n + 2 _ r-m+n±1
n+2 '

c = n + 4 _ r-m+2n+4
n+4 '

d = n + 6 _ r-m+3n+9
n+6 '

e = n + 8 _ r-m+4n+16
n+S '

&c.

And there will be

To - T X ma+(n-a)r
2 - n-l z2+nz+ r '

To -..I2.... x mb+(n-b+2)(r+n±1)
3 - n+l z2+(n+2)z+r+n+l'

T. - ..Th- x mc+(n-cH)(r+2nH)
4 - n+3 z2+(n+4)z+r+2n+4'
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S
_z+a-1

T
z+b-1rp z+c-1rp

- + .L2 + .L3
n-1 n+1 n+3

z+d-1
T

z+e-1rp &
+ 5 4 + 7.L5 + c.n+ n+

Example

Consider the series

! + !.:.!A + 3.3 B + 5.5C + .1.:lD +~E + &c
2 2.4 4.6 6.8 8.10 10.12 .,

which is defined by the equation T' =~ x~ T, where the successive
z+2 z+2

values of the abscissa z are!, !, ~, ~, etc. This equation cannot be compared

with T' = z - m x z - n T, namely the equation in the proposition; in
z z-n+1

this equation there are two factors z - nand z - n + 1 differing by one,
of which one is in the numerator, the other in the denominator: however in
the equation defining the proposed series the differences of the factors in the
numerator and the denominator are !' and !. Therefore I multiply the factors

2

together and T' = 2 Z 3 T results, and I proceed to the equation in
z + 2z + 4"

the scholion; comparing this with the other, I have m = 0, n = 2, and r = i;
and when these things have been written in there arise

And

13
a=S'

49
b = 16'

109
c= 24'

d = 193
32 '

301
e= 40'

&c.

1 9
T2 = 8 X 4z2 + 8z + 3 T,

T =~ x 25 T
3 16 4z2 + 16z + 15 2,

T - 5 x 49 T
4 - 24 4z2 + 24z + 35 3,

T - !..- x 81 T
5 - 32 4z2 + 32z + 63 4,

To - .2.. x 121 T,
6 - 40 4z2+40z+99 5,

&c.

s - 8z + 5 T 16z + 33 T 24z + 85 T 32z + 161 T &
- 1.8 + 3.16 2 + 5.24 3 + 7.32 4 + c.

Now find the aggregate of the six initial terms, and .6106,6818,2373,0 will
come out. Then substitute the seventh term for T and the seventh value 123

for z; and you will find by calculation



T =.0036.3492.9656.98
T2 = 1825.5785.11
T3 = 29.7131.92
T4 = 8425.62
Ts = 339.30
T6 = 17.50
T7 = 1.09
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.0258.9887.3806.0
5210.5053.3

59.6739.9
1.3879.7

491.0
23.1

1.3

8 =.0259.5158.9994.3

(p.218)

After 8 has been calculated in this way, it is added to the sum of the initial
terms and .6366.1977.2367.3 will come out for the value of the proposed
series. Now if one is divided by this number, the quotient will give the area
of the circle. And series which are defined by an equation of this type, T' =
z3 + az2 + bz + c

3 d 2 f T, or of even more general type, are transformed by the
z + z + ez +
same method. And it is to be noted that the equation in the scholion, T' =

2

2 Z + m T, extends to no fewer cases because the term in which z is
z + nz + r
of dimension one is lacking in the numerator, for that term can always be
removed by changing the beginning of the abscissa, and in that way the
theorem is expressed more simply.

Proposition 12

Let it be required to transform a series defined by an equation of this form

T x (zll + azll - 1 + bzll - 2 + &c.) + rT' x (zll + CZ
Il

-
1 + dzll - 2 + &c.) = 0

into another which converges very rapidly.

Take
b-d 1 a-c

m=c------ n=m+--'
a-c r+1' r+1'

and by Proposition 10 the quantity _r_ x z + m T will be approximately
r+1 z+n

equal to the series. And so let that quantity be the first term of the trans-
formed series: and for finding the second, put

r z+m
8=--x--T+82 ;

r+1 z+n

then the equation for the terms of the series 82 is sought by means of Propo­
sition 9; and from that is determined a quantity approximately equal to the
series 82 by exactly the same method as the approximation to the series 8
was first found; and that quantity will be the second term of the transformed
series: and by proceeding along these steps, as many of the subsequent terms
as you wish may be found. Q.E.I.
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Example 1

Let the series to be transformed be

(
1111 1 )

Ji2 x 1 - 3.3 + 5.9 - 7.27 + 9.81 - 11.243 + &c. ,

which Halley used in the quadrature of the circle. The relation of the terms
is defined by the equation zT +3T' (z + 1) = 0, in which the values of z are ~,

~, ~, ~, etc. Now on comparing this with the equation in the problem, there
will be r = 3, a = 0, b = 0, C = 1, d = 0; and thence m = ~, n = ~; when

these have been written in, ~ x 4z + 3 T will be obtained for the first term
4 4z +2

of the transformed series.
Suppose

3 4z+3
8 = 4 x 4z + 2 T + 82 .

Then by writing the following values of the variables for the previous ones,

3 4z + 7 ,
8 - T = - x -- T + 82 - T2

4 4z+6

will come out; the difference of these equations will give

T = ~ x 4z + 3 T _ ~ x 4z + 7 T' To
4 4z + 2 4 4z + 6 + 2,

and hence
To = ~ x 4z - 1 T + ~ x 4z + 7 T'.

2 4 4z + 2 4 4z + 6

But by the equation for the series T' = - ~ T x _z_ ; when this has been
3 z + 1

substituted, you will obtain

1 1 2 3
T2 = -- X -- X -- x --T.

8 2z + 1 2z + 2 2z + 3

On writing the next values of the variables for the former in this value,

, 1 1 2 3,
T. =--x--x--x--.-T

2 8 2z + 3 2z + 4 2z + 5

will come out, or on substituting -~ x T x _z_ for T' it will become
3 z + 1

, 1 1 2 1 Z
T.2 =+- x -- x -- x -- x --T'

8 2z + 3 2z + 4 2z + 5 z + 1 '

from this value of T~,

2
T = - x (2z + 2) x (2z + 3) x (2z + 4) x (2z + 5)T~.

z
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And from the value of T2 found before,

T = -t x (2z + 1) x (2z + 2) x (2z + 3)T2 •

Finally, by equating these two values of the term T,

will result, which is the equation for the terms of the series 8 2 ; when this has
been compared with the equation in the proposition, it gives r = 3, a = ~,

3 z +3
b = 0, C = ~, d = 5, and hence m = 3, n = 2; and consequently 4 x z + 2 T2

will be approximately equal to the series 82 ; and so the second term of the
transformed series is obtained.

For finding the third term let

3 z+3
82 = - X -- T2 + 834 z+ 2

be taken and then by the Method of Differences there will be

3 z+4 I

82 - T2 = 4 x z + 3 T2 + 83 - T3 ,

and, when this has been subtracted from the former, there remains

3 z+3 3 z+4 I
T2 = - X -- T2 - - X -- T2 + T3 ,

4 z+4 4 z+3

from which arises

1 z-1 3 z+4 I
T3 = - X -- T2 + - X -- T2 •

4 z+2 4 z+3

But by the equation for the series 82 ,

liz 2z + 1
T2 = - 3" x z + 2 x 2z + 5 T2 ;

when this has been substituted in the value of T3 ,

1 4 5 6
T3 = -- X -- X -- X --T2

8 2z + 4 2z + 5 2z + 6

comes out: on writing the next values of the variables for the preceding ones
in this,

I 1 4 5 6 I

T3 = - 8 x 2z + 6 x 2z + 7 x 2z + 8 T2

will arise, or, on substituting for T2 its value, there will be

I 1 4 5 6 1 z 2z + 1
T3 = 8 x 2z + 6 x 2z + 7 x 2z + 8 x 3" x z + 2 x 2z + 5 T2 •
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If T2 is eliminated by means of the values of the terms T3 and T~,

(z2 + ~z) T 3 + 3T~ X (Z2 + 12S Z + 14) = 0

will result, which is the equation for the terms of the series 8 3 ; and, when
it has been compared with the equation in the theorem, it produces a =
1 b = 0 c = IS d - 14' and so m - 21 n = 14 and consequently2' , 2' -, - 4' 4'
3 4z + 21 . .4 x 4z + 14 T3 wIll be the approximation to the series 8 3 , or the thIrd term

of the transformed series.
And by a similar process, on putting

3 4z + 21
83 = 4 x 4z + 14 T3 + 84 ,

you will find the fourth term to be ~ x 4z + 30 T4 , since
4 4z + 20

1 7 8 9
T4 = -- X -- X -- X --T3 .

8 2z + 7 2z + 8 2z + 9

And in exactly the same way the transformed series is continued as far as
required. But now the progression of the terms is clear, being

1 1 2 3
T2 = -- X -- X -- x --T

8 2z + 1 2z + 2 2z + 3 '
1 4 5 6

T3 = -8 x 2z + 4 x 2z + 5 x 2z + 6 T2,

1 7 8 9
T4 = -- X -- X -- X --T3

8 2z + 7 2z + 8 2z + 9 '
J', = _~ x 10 11 x 12 T.

S 8 2z + 10 x 2z + 11 2z + 12 4,

&c.

And

8 - 3 (4Z + 3 T 4z + 12 rp 4z + 21 rp 4z + 30 T. &)- - x -- + .L 2 + .L 3 + 4 + c. .
4 4z + 2 4z + 8 4z + 14 4z + 20

The sum of ten initial terms is 3.1415.9051.0938.0800.9964.2; and when
the eleventh term has been substituted for T and 2; for z, they give

+T =.0000.0279.3565.0014.1347.8
-T2 = 172.5274.8279.5
+T3 = 1474.5938.7
- T4 = 3.8136.0
+Ts = 192.2
-T6 = 1.5



.0000.0214.2791.3363.1147.5
1244.1885.8

171.7

+ .0000.0214.2791.4607.3205.0
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.0000.0000.0139.7472.6106.4
3.3215.2

1.4

- .0000.0000.0139.7475.9323.0

Now subtract the sum of the negatives from that of the positives, and there
will result .0000.0214.2651.7131.3882.0, which, when added to the aggregate
of the initial terms, will produce 3.1415.9265.3589.7932.3846.2 for the value
of the proposed series. And these six terms of the transformed series are just
as effective as thirty-two terms of the simple series. But the use of these
theorems is more widely apparent in series which converge very slowly, where
it is not possible to attain their values by mere addition of terms.

Example 2

Let the series to be transformed be

1 1 1 1 1
1 - - + - - - + - - - + &c.

4 9 16 25 36 '

whose equation is z2T + (Z2 + 2z + I)T' = 0, where 1, 2, 3, 4, 5, etc. are the
successive values of z in order. Here there will be a = 0, b = 0, C = 2, d = 1,

1 z + 1 .
r = 1; hence m = 1, n = 0, and consequently - x -- T 1S the first term of

2 z
the transformed series.

1 z+1
In order that the second may be extracted, suppose 3 = - x -- T + 32 ;

2 z
and by the Method of Differences

1 z + 2 ,
3 - T = - x -- T + 32 - T2

2 z + 1

will come out; when this has been subtracted from the former, it leaves

T = ~ x z + 1 T _ ~ x z + 2 T' + T
2

,

2 z 2 z+1

from which
T

2
= ~ X Z - 1 T + ~ x z + 2 T'

2 z 2 z+1

is found: but the equation for the series 3 gives T' = 2 _~2T ,and,
z + z+ 1

when this has been substituted, T 2 = - 2Z
2
: 1 x (z: 1)3 will come out.

Now write the next values of the variables for the preceding ones, and T~ =
2z + 3 T'

- -- x will arise, or again on putting for T' its value,
2z + 2 (z + 2)3

I 1 2z + 3 z2
T2 = - X X 3 T.

2 (z + 1)3 (z + 2)
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By using the values of the terms T2 and T~ eliminate T, and you will have

(z4 + ~z3) X T2 + (Z4 + 123 z3 + 15z2 + 14z + 4) x T~ = 0,

which is the equation for the terms of series 52: and, when it has been com­
pared with that in the proposition, it gives a = ~, b = 0, C = Ii, d = 15,

r = 1, and consequently m = 3, n = ~; therefore z + 3 T2 is approximately
2z + 1

the value of the series 52, or the second term of the transformed series. And
by proceeding along these steps as in the above example, you will find

T
2

= _2z + 1 x T
2z (z + 1)3 '

2z + 2 8T2T3 = --- x ..,-----'':-:-::-
2z + 1 (z + 2)3 ,

T4 = _2z + 3 X 27T3 &c.
2z + 2 (z + 3)3 '

and
z+l z+3 z+5 z+7

5 =~ T + 2z + 1 T2 + 2z + 2 T3 + 2z + 3 T4 + &c.

Or for the sake of an easier calculation, put

A 8B 27C 64D
A = T, B = (z + 1)3 ' C = (z + 2)3 ' D = (z + 3)3 ' E = (z + 4)3 ' &c.,

and there will be

5 = 2
1
z x ((z + l)A - (z + 3)B + (z + 5)C - (z + 7)D + (z + 9)E - &c')'

The sum of ten terms of the series to be summed taken with their own
signs is .8179,6217,5610,9851,3. Then in order that the sum of the rest may
be obtained, substitute the eleventh term, that is, 1~1' for T and for zits
corresponding value, namely 11; and you will have

A-I B - 1.1.1 A C - 2.2.2 B D - 3.3.3 C &c
- ill' - 12.12.12' - 13.13.13' - 14.14.14' .

and
5 = 1\ x (6A - 7B + 8C - 9D + 10E - &c.).

Now the calculation is as follows.

A =.0082.6446.2809.9173.5
B = 478.2675.2372.2
C = 1.7415.2944.5
D = 171.3604.0
E = 3.2495.0
F = 991.7
G = 43.6
H= 2.6
1=2



Then
.0495.8677.6859.5041.0

13.9322.3556.0
32.4950.0

523.2
2.8

+.0495.8691.6214.4073.0

Proposition 12 83

.0000.3347.8726.6605.4
1542.2436.0

1.0908.7
33.8

- .0000.3348.0269.9983.9

The difference of these sums divided by 11 gives S = .0045.0485.7813.1280.8,
which, when added to the aggregate of the ten initial terms, produces for the
value of the series .8224.6703.3424.1132.1. And since this number is half of
that found in Example 1 of Proposition 11, it is to be concluded that both
calculations have been set up correctly. For the series

1 1 1
1 - - + - - - + &c.

4 9 16 '

in which the terms are alternately negative and positive, is half of this series

1 1 1
1 + 4 + 9" + 16 + &c.,

in which all the terms are of the same sign.

Example 3

Consider the series

1 1 1 1 1
1 - - + - - - + - - - + &c.

3 5 7 9 11

which is defined by the equation zT + (z + I)T1 = 0, in which the values of
the abscissa are ~, ~, ~, ~, etc. And by beginning the calculation according
to this proposition, it will be reduced to the following rule. Put A = T, and
then

1 1 1
B = -A x -- x ...,-----,c::-

2 2z + 1 (z + 1)2 ,
129

C = - B x -- x ..,.----,c::-
2 2z + 3 (z + 2)2 '

D = ~C x _3_ x 25
2 2z + 5 (z + 3)2 '

E = ~D x _4_ x 49
2 2z + 7 (z + 4)2 '

&c.

And there will be

S = 4
1
z x ((2z+1)A-(2z+5)B+(2Z+9)C-(2Z+13)D+(2z+17)E-&c.).
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The sum of twelve terms in the proposed series is .7646.0069.1481.8329.5, and
the thirteenth term is T = 215 with z = 225 ; when these have been written in,
we will have

A = 2
1
5' B = lL{.;127 A, C = 14~239~29 B, D = 1:':i~31 c, E = 16

4
;:/33 D, &c.

and
s = {5 x (13A - 15B + 17C - 19D + 21E - &c.) .

A = .0400.0000.0000.0000.0
B = 422.0744.9614.9
C = 6452.6422.0
D = 33.5725.4
E = 3776.5
F = 73.4
G = 2.2
H= 1

.5200.0000.0000.0000.0
10.9694.9174.0

7.9306.5
55.0

+.5200.0010.9702.8535.5

.0000.6331.1174.4223.5
637.8782.6

1688.2
2.7

- .0000.6331.1812.4697.0

Then by dividing the difference of the sums by 25, there results S =
.0207.9747.1915.6153.5, which along with the aggregate of the initial terms
produces for the value of the series to be summed .7853.9816.3397.4483.0.

Scholion

Just as one equation defines infinitely many series, so one transformation
applies to infinitely many series: and each individual example is to be con­
sidered as a theorem; thus the transformation in the last example applies to
the general series

1 1 1 1 1
- - -- + - + - &c.
m m + n m + 2n m + 3n m + 4n

It is to be noted that the law for continuing series transformed by this propo­
sition does not always present itself as in the examples which I have chosen
here: but this in no way inconveniences the task. For after about six terms
of the series to be summed have been collected together, three or four terms
of the transformed series will give what is sought with sufficient accuracy for
any purposes; for in practice there is rarely need to continue the calculation
beyond nine or ten figures. And the matter comes back to the same, whether
the terms of the series to be transformed are of the same or opposite signs, or
whether they are assignable or not. For the work will always be light, except
where the quantity r in the equation for the series is negative and at the
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same time approximately equal to one; thus if r = - 1
9
0 or r = - 19~0' the

calculation will be laborious. But the experienced analyst will easily avoid
these cases, for which there is therefore no point in presenting a remedy.

Let me also add a few things about series of this type

x + !x2 + !x3 + .!..x4 + _1_ x 5 + &c2 6 24 120 .

131517&
x - 6 x + 120x - 5040X + c.

Here the terms when extended to infinity do not have a given ratio to each
other, as is the case in the series about which we have been deliberating up to
this point, but the preceding terms are infinitely greater than the subsequent
ones. These series express the number from a given logarithm, or the sine from
a given arc, and are the most simple of its type. They can be transformed by
the principles presented above; but the matter is resolved more easily without
transformations. Thus, in the series

x + !x2 + !x3 + .!..x4 + _1_ X 5 + &c2 6 24 120 .

which expresses the number when its logarithm x is given, if there were
x = 12.3785, I would throwaway the characteristic 12 and seek the number
of the logarithm .3785 which would come out in a rapidly converging series
on account of the logarithm now being less than one; when this has been
given, the number of the logarithm 12.3785 would not be concealed. And it
comes to the same thing whether the logarithm is tabular or hyperbolic.

And likewise in seeking the sine from a given arc, if this is greater than
the quadrant, let it be subtracted from the semicircle, and an arc which is
smaller than the quadrant will be left which has the same sine as the former,
being its supplement to make up the semicircle. Now the arc which is smaller
than the quadrant will give its sine in a rapidly converging series.

Series which are defined by equations which involve three or more terms
of the series can be summed exactly or approximately from the analysis
presented above: but it is enough to have laid the foundation of calculations
of this type and to have shown the way to others who have the leisure and
inclination to make further investigations concerning this material. But lest
it may seem to be entirely neglected, we shall give a general theorem from
the principles of De Moivre, which extends both to the summation and the
transformation of this type of series.

(p.226) Proposition 13

In series which arise from division there is the same relation between the
terms as between the successive sums.

Let the fraction be 1 2 ' which, when resolved into a series, is
1- 3x + x

1 + 3x + 8x2 + 21x3 + 55x4 + &c.
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Then the successive sums will be

1
---~2 = 1 + 3x + 8x2 + 21x3 + 55x4 + 144x5 + &c.
1- 3x + x

3x -x2

=1 - 3x + x2

8x2 - 3x3

=1 - 3x + x2

21x3 - 8x4

=
1- 3x + x2

55x4 - 21x5

1 - 3x + x2

3x + 8x2 + 21x3 + 55x4 + 144x5 + &c.

8x2 + 21x3 + 55x4 + 144x5 + &c.

21x3 + 55x4 + 144x5 + &c.

55x4 + 144x5 + &c.

&c.

And the meaning of the proposition is that when a certain number of these
sums are taken they have everywhere the same relation as the same number
of terms of the series. For example, in the present case the relation between
any three successive terms will be x2T - 3xT' + T" = 0: and for that reason
the relation between three successive sums will also be x2 S - 3xS' + S" = 0,
as will be clear to anyone who tries it. Now the proposition is demonstrated
as follows.

Let r, s, t be given quantities, and let the equation for the sums be taken
as rS + sS' + tS" = 0; then on substituting the next values of the variables
for the present ones, rS' + sS" + tS III = 0 will be obtained, which, when
subtracted from the former, leaves rS - rS' + sS' - sS" + tS" - tS III = OJ
substitute in this T for S - S', T' for S' - S", and T" for S" - S''', and
rT + sT' + tT" = 0 will result. And this is the same relation as that assumed
first of all for the sums. And if there are more or fewer sums, the proposition
will be demonstrated in exactly the same manner.

Corollary. Hence we have a method for summing these series given the
relation of the terms, as is made clear by the following examples.

Example 1

Let the equation for the terms rT + sT' = 0 be given, and by this proposition
there will also be the same relation for the sums, namely rS + sS' = OJ for S'
substitute its value S-T, and rS+sS-sT = 0 will arise; hence S = _s_ T.

r+s
Consequently the sum S is given when its first term T is given. Thus if the
series is

2 4 8 16 32
1 + - + 2" + 3" + 4" + 5" + &c.,x x x x x
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whose equation is 2T - xT' = 0, there will be r = 2, s = -x; when these

have been written in, S = ---=::.... T, or S = _x_ T, will result. Now let any
2-x x-2

term be substituted for T, and _x_ T will be the sum of it and of all the
x-2

subsequent terms up to infinity. Let T be equal to the first term, namely one,
and _x_ will be obtained for the value of the whole series.

x-2

Example 2

In the same way, if the equation for three terms is rT + sT' + tT" = 0, the
relation of the sums will be rS + sS' + tS" = 0; on writing S - T for S' and
S - T - T' for S" in this, rS + sS - sT + tS - tT - tT' = 0 will come out,

and hence S = (s + t)T + tT' : and so S is given when two of its terms have
r+s+t

been given. Let the series to be summed be

1 + 3x + 8x2 + 21x3 + 55x4 + 144x5 + &c.,

in which the relation of the terms is x2T - 3xT' + T" = 0, hence r = x2,
(1-3x)T+T' .

s = -3x, t = 1; when these have been written in, S = 1 3 2 WIll
- x+x

be obtained. Now substitute the first term for T and the second for T', and
1

1 3
2 will come out for the value of the series.

- x+x
Similarly, if the equation for the terms is rT + sT' + tT" +vT'" = 0, there

will be
S = (s + t + v)T + (t + v)T' + vT"

r+s+t+v
And it continues in this way when the relation is between more terms.

(p.228) Scholion

It is to be noted that a relation of terms which is variable becomes closer to
an invariable one the further removed the terms are from the beginning, and
finally at infinite distance it becomes entirely invariable as in series which
have arisen from division. And this I call the ultimate relation of the terms,
to which their relation continually approximates, but it will never become
exact before the terms have been removed from the beginning by an infinite
interval.

Now the difference equation defining the series will give the ultimate re­
lation of the terms if all the powers of the abscissa except the highest are
rejected and the remaining equation is divided by this power. Consider the
equation x2T x (z2 + 3z) = T' X (z2 - 5z + 2); reject all the powers of the
abscissa lower than the square, and x2Tz2 = T'Z2 will remain, which, when
divided by z2, will give x2T = T'. And this is the ultimate relation of the
terms.
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Now since the ultimate relation is constant, it provides a method for sum­
ming approximately series in which the relation of the terms is variable. If
any equation rT x (Z2 +az + b) + sT' X (z2 +cz +d) = °is given, the ultimate
relation of the terms will be rT + sT' = 0, hence S = _s_ T approximately.

r+s
This equation holds exactly when the term T is at infinite distance from the
beginning, and approximately when the distance is sufficiently great. Simi­
larly if the equation is rT x (z + a) + sT' x (z + b) + tT" x (z + c) = 0,

(s + t)T + tT'
the ultimate relation will be rT + sT' + tT" = 0, and S = ..:....-_~--

r+s+t
approximately. And so by collecting together some initial terms before the
calculation is begun, the sum of the remaining terms will be obtained ap­
proximately by this method. From these principles one may also correct the
approximation continually as in the following proposition.

Proposition 14

Every series A + B + C + D + E + &c. in which the ultimate relation of the
terms is rT + sT' + tT" =°splits into the following

(s + t) x (~+ A2 + A3 + A4 + A5 + &c.)
n n2 n3 n4 n 5

where n = r + s + t and

A2 = rA + sB + tC, A3 = rA2 + sB2 + tC2, A4 = rA3 + sB3 + tC3 ,

B2 = rB + sC + tD, B 3 = rB2 + sC2 + tD2, B 4 = rB3 + sC3 + tD3 ,

C2 = rC + sD + tE, C3 = rC2 + sD2 + tE2, C4 = rC3 + sD3 + tE3 ,

D2 = rD + sE + tF, D3 = rD2 + sE2 + tF2, D4 = rD3 + sE3 + tF3 ,

E2 = rE + sF + tG, E 3 = rE2 + sF2+ tG2, E4 = rE3 + sF3 + tG3 ,

&c. &c. &c.

&c.

And so by means of this proposition series in which the ultimate relation of
the terms is defined by an equation involving three terms will be transformed
into the two series shown here; however the former of these vanishes whenever
s +t = 0. If the relation is between two terms only, rT+sT' = 0, there will be
t = 0, and for that reason the latter series will vanish, and the series which
it is proposed to transform will change into a single series; in this special
case this proposition will coincide with a theorem found by Mr Monmort. If
the relation is between more terms than in this proposition, the series to be
transformed will change into more series. But in every case the matter will
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be clear from what has now been shown. However, I do not wish to abandon
simplicity by trying to embrace a great many things in a few words.

Example l

Let us consider the series

1 + 4x + 9x2 + 16x3 + 25x4 + 36x5 + &c.,

where the coefficients are the squares of the natural numbers: the difference
equation is xT(z2 + 2z + 1) - T 1Z2 = 0, from which the ultimate relation is
xT - T 1 = 0, and so r = x, s = -1, t = 0, n = x-I; and

A = 1,
B =4x,
C = 9x2 ,

D = 16x3,
E = 25x4 ,

&c.

A2 = -3x,
B 2 = -5x2

,

C2 = -7x3
,

D2 = -9x4
,

&c.

A3 = 2x2 ,

B3 = 2x2
,

C3 = 2x2
,

&c.

A4 = 0,
B4 =0,

&c.

Therefore all terms after A3 vanish; and on substitution of these values
the transformed series is

-1 x (_1_ _ 3x + 2x
2

)
x-I (x - 1)2 (x - 1)3 .

And, combined into a single term, these three terms give (11~~3 for the

value of the series. If the sign of x is changed both in the series and its value,
the identity

I-x 2 3 4 5
(1 + x)3 = 1 - 4x + 9x - 16x + 25x - 36x + &c.

will be obtained. And thence also

1 + 6x2 + x 4
_ 2 4 6 8

(1 _ x2)3 - 1 + 9x + 25x + 49x + 81x + &c.,

which can be obtained directly from the proposition without these detours.

Example 2

Let us consider the series 1+ 8x + 27x2+ 64x3+ 125x4 + 216x5 + &c., where
the coefficients are the cubes of the natural numbers: and the equation for
the series is xT(z3 + 3z2 + 3z + 1) - T 1z3 = 0, so that the ultimate relation
of the terms is xT - T 1 = 0, and thence r = x, s = -1, t = 0, n =x-I; and
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A = 1,
B =8x,
C = 27x2

,

D = 64x3 ,

E = 125x4
,

F = 216xs,
&c.

A2 = -7x,
B 2 = -19x2 ,

C2 = -37x3 ,

D 2 = -61x4 ,

E2 = -91xs,
&c.

A3 =12x2
,

B3 = 18x3 ,

C3 = 24x4 ,

D 3 = 30xs ,
&c.

A4 = -6x3
,

B4 = -6x4 ,

C4 = -6xs,
&c.

As = 0,
Bs = 0,

&c.

Here the terms after A4 vanish; and the values substituted in the theorem
give

(
1 7x 12x2 6X)-Ix --- + ----

x-I (x - 1)2 (x - 1)3 (x - 1)4 '

1 + 4x + x 2

and these four terms collected into one give (1 _ X)4 for the value of the

series.

Example 3

Let the following series be given for summation:

1 - 6x + 27x2
- 104x3 + 366x4

- 1212xs + 3842x6
- 11784x7 + &c.;

this is defined by the equation x2T(z + 4) - 2xT'(z + 2) - T"z = 0; now
let z become infinitely large, and the ultimate relation of the terms will be
x2 T - 2xT' - Til = 0: hence let T = x 2 , S = -2x, t = -1, n = x 2 - 2x - 1;
and

A= +1,
B = -6x,
C = +27x2 ,

D = -104x3 ,

E = +366x4
,

F = -1212xs,
G = +3842x6 ,

H = -11784x7
,

&c.

A2 = -14x2
,

B2 = +44x3
,

C2 = -131x4
,

D 2 = +376xs,
E2 = -1052x6

F2 = +2888x7
,

&c.

A3 = +29x4 ,

B 3 = -70xs ,
C3 = +169x6

,

D3 = -408x7
,

&c.

A4 =0,
B 4 = 0,

&c.

Now substitute these values for A, A2 , A3 , B, B2 , B3 , and the series set forth
will transform into the following two which have finitely many terms:

(
1 14x2 29X4

)-(2x + 1) x - + ..,.......,,------:-:0-
x 2 - 2x - 1 (x2 - 2x - 1)2 (x 2 - 2x - 1)3

(
-6x 44x3 70XS

)-1 x + - ..,.......,,-------,._::_
x 2 - 2x - 1 (x2 - 2x - 1)2 (x2 - 2x - 1)3 .

1
When these have been collected into one term they give ------ for

(1 + 2x - x 2 )3

the value of the series.



Proposition 14 91

In the same way the theorem is applied to the transformation of series
which cannot be summed. In fact the demonstration is made clear by the
following. Let there be any fraction

a + bx + CX
2 + dx 3

(v + tx + SX2 + rx3 )n '

whose numerator is a quantity consisting of any collection of members, the
number of which is however fixed. Moreover let its denominator be any power
of a quantity which is also made up from any finite collection of members.
Then whatever the index n, if the fraction is resolved into a series, the ul­
timate relation of the terms will always be the same as if the denominator
had been the simple power v + tx + sx2 + rx3 • Therefore if the series is con­
tinuously multiplied by this, the process will eventually terminate if n is a
positive integer: that is, if the series can be summed by a simple equation.

Let us consider the series

1 - 6x + 27x2
- 104x3 + 366x4

- &c.,

in which the ultimate relation of the coefficients is A - 2B - C = OJ I take the
quantity x 2

- 2x -1, or, the signs having been changed, 1+2x - x 2 , in which
the coefficients are the same as in the ultimate relation, and I conclude that
the series set forth, provided it is summable, is equal to some fraction whose
denominator is a certain power of the quantity 1 + 2x - x 2 • Therefore I put

S = 1 - 6x + 27x2
- 104x3 + 366x4

- &c.

and I multiply both sides by 1 + 2x - x 2 ; and the result is

S x (1 + 2x - x 2
) = 1 - 4x + 14x2

- 44x3 + 131x4
- &c.

which, since it does not terminate, I multiply again by the same quantity,
and I have

S x (1 + 2x - X
2

)2 = 1 - 2x + 5x2 - 12x3 + 29x4
- &c.

and then multiplying a third time by the same quantity, I obtain S x (1 +
2x - x 2)3 = 1, all the terms after the first vanishing.

It has therefore been shown that this proposition presents nothing other
than a concise method of multiplication and at the same time an arrangement
of the terms in the transformed series which brings about rapid convergence
when they do not terminate. Hence I leave to the reader the investigation of
the demonstration, which is in fact almost the same whether the denomina­
tors are trinomials, quadrinomials or have a greater number of members.
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Part I

Proposition 15

To find the equation, be it algebraic or fluxional, whose root will be any given
series which is defined by an equation in which the terms of the series are
only of one dimension.

The series is given if some of its initial terms are given along with the law
for forming the rest: now when these have been given, the equation having
that series for its root will be found, as will be perceived from the following
examples.

Example 1

To find the equation whose root is the series A + Bx+Cx2 + Dx3+ Ex4 +&c. in
which the relation of the coefficients is constant, namely rA+sB+tC+vD =
0. Since the relation is invariable, I conclude that the series is equal to a
rational fraction, which I extract as follows. Suppose that y is equal to the
given series: and by taking the indices of the relation r, s, t, v in reverse
order, I multiply y and its value successively by v, tx, sx2 , rx3, and

vy =vA + vBx + vCx2 + vDx3 + vEx4 + vFx5 + &c.

txy = tAx + tBx2 + tCx3 + tDx4 + tEx5 + &c.

sx2 y = sAx2 + sBx3 + sCx4 + sDx5 + &c.

rx3y = rAx3 + rBx4 + rCx5 + &c.

come out. But by hypothesis r A + sB + tC + vD = 0, r B + sC + tD + vE = 0,
and so on to infinity. Hence all the terms in which x is of degree greater than
two vanish; and so there will remain

This is the equation determining the value of the series. For example, let
A = 2, B = -3, C = 7, r = 3, s = -7, t = 6, v = 4; and the equation will
become

or y = 4 + 6x - 7x2 + 3x3 .

Example 2

To find the equation which has for a root the series

in which the relations of the coefficients are

2A + 3B = 0, 4B + 5C = 0, 6C + 7D = 0, 8D + 9E =0, &c.
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In this example the equation sought will involve first fluxions, since the num­
bers in the relations have the same differences. Therefore I take

There will be

xiJ = 2Bx2 + 4Cx4 + 6Dx6 + 8Ex8 + &c.

Y + xiJ = A + 3Bx2 + 5Cx4 + 7Dx6 + 9Ex8 + &c.

2x2 y + x 3 iJ = 2Ax2 + 4Bx4 + 6Cx6 + 8Di8 + &c.

Now let the last equation be added to the penultimate and

. 2 3 . +2A} 2 +4B} 4 +6C} 6 +8D} 8 &
y + xy + 2x y + x y = A +3B x +5C x +7D x +9E x + c.

will come out. But by hypothesis the relations of the coefficients are 2A+3B =
0, 4B + 5C = 0, 6C + 7D = 0, etc. and so all terms after the first A vanish,
and the finite equation

y + xiJ + 2x2 y + x 3iJ = A = 1, or y x (1 + 2x2
) + xiJ x (1 + x 2

) = 1

remains, where one, or the first term of the series, has been substituted for
the coefficient A.

Example 3

Suppose the equation has to be found whose root is the series

1 1 2 3 4 5 6 175 8 &
- 4"x - 64 X - 256 x - 16384X - c.,

where the relations of the coefficients are

-1.1A-2.2B = 0, 1.3B-4.4C = 0, 3.5C-6.6D = 0, 5.7D-8.8E = 0,

&c.
or

- A - 4B = 0, 3B - 16C = 0, 15C - 36D = 0, 35D - 64E = 0, &c.

In this case the desired equation will necessarily involve second fluxions,
since the numbers which determine the relation of the coefficients are of two
dimensions, or the product of numbers having the same differences taken two
at a time. And so let

y = A + Bx2 + Cx4 + Dx6 + Ex8 + &c.

iJ = 2Bx + 4Cx3 + 6Dx5 + 8Ex7 + &c.

xii = 2Bx + 12Cx3 + 30Dx5 + 56Ex7 + &c.

iJ + xii = 4Bx + 16Cx3 + 36Dx5 + 64Ex7 + &c.

x3 ii + x 2 iJ - xy = -Ax + 3Bx3 + 15Cx5 + 35Dx7 + &c.
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Finally on subtracting this last equation from the penultimate

.. 3·· . 2 . { +A} -3B} 3 -15C} 5 -35D} 7 &
xy-x y+y-x y+xy = +4B x +16C x +36D x +64E x + C.

will remain, that is,

. .. xy 0
or y + xy + -1--2 = .

-x

For on account of the relation of the coefficients, all members on one side of
the equation vanish.

Example 4

Let the equation be sought whose root is

1 + !Ax2 + .!LBx4 + 25CX6 + 49 Dx8 + &c
4 16 36 64 .

where the relations of the coefficients are

A - 4B = 0, 9B - 16C = 0, 25C - 36D = 0, &c.

Suppose
y = A + Bx2 + Cx4 + Dx6 + Ex8 + Fx10 + &c.

There will be

if = 2Bx + 4Cx3 + 6Dx5 + 8Ex7 + lOFx9 + &c.

and
xii = 2Bx + 12Cx3 + 30Dx5 + 56Ex7 + 90Fx9 + &c.

Then you will find by calculation

xy + 3x2if + x3ii = Ax + 9Bx3 + 25Cx5 + 49Dx7 + 81Ex9 + &c.

if + xii = 4Bx + 16Cx3 + 36Dx5 + 64Ex7 + lOOFx9 + &c.

On subtracting the second of these equations from the first you will have

xy - if x (1 - 3x2) - xii x (1 - x2)

_ { +A} +9B} 3 +25C} 5 +49D} 7
- -4B x -16C x -36D x -64E x + &c.

And thence on account of the relation of the coefficients, the equation will be

Example 5

Let the equation be sought whose root is
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x + !X2 + !X3 + ..!..X4 + &c4 9 16 .,

where the denominators are the squares of the numbers 1, 2, 3, etc. Take

y = x + tx2 + lx3 + /6x4 + 215X5 + &c.

There will be

whose fluxion is

xii + if = 1 + x + x 2 + x 3 + x 4 + &c.,
... 1

that is xy + y = -- .
I-x

Similarly if the series is

x + !x2 + ..!..x3 + ..!..x4 + &c8 27 64 .

where the denominators are the cubes, you will find the equation to be

1
I-x

2 . 3" 1
if + 6ii + 7x ii + x ii = -1- .-x

(p.235)

And if the series is

131314&x+ 16X + 81X + 256X + c.,

the denominators being the squares of the squares, the equation will come
out as

And so on.

Scholion

Therefore when the relation of the coefficients is given, series are reduced
either to fractions or to fluxions, and that with exactly the same ease in
all cases; or series may be determined by a relation involving a greater or a
smaller number of terms. For since by taking the fluxion of a series the terms
are multiplied by the indices of the powers, which always have the same
differences, and again by other quantities which have the same differences
when second fluxions are taken, and so on, one may form in this way the
relations of the terms, whatever these relations may be, by following the
steps just described.

Now for the complete summation it is required that the fluxions be re­
duced to fluents; where this cannot be done, it has to be concluded that the
series which is being considered is not one of those which can be summed.
Now the fact that sums may be reduced to fluxions contributes much to the
advancement of this doctrine, since the method for going back from fluxions
to fluents, while it may be imperfect, is nevertheless better known and more
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developed than that of going back from differences to sums. But each pro­
vides assistance for the other: for if fluents can be found, they will express
the sums, or conversely, when the sums have been found, they will give the
fluents.

From the propositions which have now been presented and from others
which can easily be deduced from the same principles one may find the root
of any equation very accurately numerically provided it can be expressed in
a simple series, even if this converges very slowly. But even now a difficulty
remains, if neither does the series approximate rapidly, nor is the relation of
the terms simple and suitable for defining by means of a difference equation.
Indeed, if the root or its fluxion has degree more than one in the equation
to be resolved, or if these are multiplied by each other, and members of this
type cannot be eliminated, then in these cases the root cannot be reduced
to a simple series made up of powers of the abscissa, at least by techniques
presently known to me. But powers of the abscissa in the equation to be
resolved, no matter how large these may be, in no way obstruct the simplicity
of the series.

But since this opportunity has been presented, I will endeavour to remove
the difficulty hitherto untouched, which is however very great in the reduction
of fluxional equations. Therefore it has to be known that those fluxional
equations which involve all the conditions of the problem, and so determine
all the coefficients in its roots, can be resolved just like affected algebraic
equations, and that by the rules previously given by Newton. But nevertheless
it is usually the case that equations do not determine all the coefficients of
the terms in their roots; that is because constant quantities vanish and are
entirely lost from the equation on going from fluents to fluxions. But also they
can vanish in different ways depending on how the fluxion is taken, which
may be made clear by an example.

4

Consider the equation y2 = a2 + bx + x2 ; and with x flowing uniformly
c

and one written for its fluxion, 2yiJ = b + 4~3 will be obtained by the direct
c

method: the root of this extracted by the methods of Newton will be the
4

same as the root of the fluent y2 = bx + x2 ' and that is because the quantity
c

a2 is now lost. And in this case the first term of the series, which certainly
depends on the vanishing quantity a2 , is not determined.

2

Similarly, if the proposed equation is first divided by x, it will show '!L =
x

a2 x 3 2yiJ y2 _a2 3x2
- + b+ 2"" ' whose fluxion is - - 2"" = -2- + -2 ,or on multiplying by
x c x x x C

x 2 ,
3x4

2xyiJ - y2 = _a2 + -2- .
C
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And the root of this taken simply is the same as that of the fluent y2 =
4

a2 + x2 • In this case the second term of the series, which depends on the
c

coefficient b now lost, is not determined.
y2 a2 b 1

Finally, if the fluent equation is divided by x4
, then 4 = 4 + """"3 + "2

x x x c
will be obtained, and thence the fluxion will be

2yiJ 4y2 -4a2 3b= or 2xyiJ - 4y2 = -4a2 - 3bxjx 4 - 7 ---;s- - x 4 '

4x3

2yiJ = b+ -2 '
C

. 2 2 3x4

2xyy - Y = -a + - ,
c2

2xYiJ - 4y2 = -4a2 - 3bx
4

result from the single fluent y2 = a2 + bx + x2 : if the first of these is used,
c

the first term of the series is not determinedj with the second, the first term
is determined but not the second; finally, the first four terms of the series
are determined by the third, but the fifth remains undetermined. Therefore
various fluxional equations can result from the same fluent. But the method
of resolution will not be completed before it has the power to produce all
roots of the various fluents from which any proposed fluxion can result by
any method. For it is necessary to consider quantities which either vanish in
fact or which could vanish.

For one may not extract the root from a fluxional equation as if no quan­
tity vanishes and then add a given quantity to the fluent found as in the
quadrature of curves. In any case indeterminate terms are very often invari­
able quantities: and the addition of a given quantity to the root found is not
equivalent to the addition of the quantity to the equation to be resolved.

Thus the same fluxion 2yiJ = b + 4~3 can result from either of the fluents
c

x 4 x4

y2 = a2 + bx + 2"' or y2 = bx + 2"' ; however the roots of these assign quite
c c

different forms, namely the former has A + Bx + Cx2 + &c., while the latter
has Ax1/ 2 + BX3 / 2 + CX5 / 2 + &c.

Moreover it can happen that a fluxional equation involves all the coeffi­
cients which the fluent involves, and this not withstanding, not all the terms

x4
are determined, as in the following example. The equation y2 = a2+ bx + 2"'

c

produces directly the fluxion 2yiJ = b + 4~3 : if this is multiplied by y, then
c

when this has been resolved by the common rules, it will give the same root
as the fluent y2 = a2 + bx: and so the fifth term of the series, which depends
on the coefficient c2 , is not determined. Hence it is clear that the fluxional
equations
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~y ~
2y2iJ = by + -2- will come out; and then for y2 let its value a2 + bx + 2"

c C
2x4iJ 4x3y

be substituted, and finally 2a2iJ + 2bxiJ + -2- = by + -2- will be obtained.
c c

And this is a fluxional equation involving all the coefficients which its fluent
involves; nevertheless, the first term of the series is not determined in this.
The same will also happen everywhere unless there is present in the equation
a member which involves neither the root nor any of its fluxions.

And there are very many difficulties of no lesser significance which, as
anyone will easily appreciate, are greatly increased in fluxions of higher or­
ders: for in second fluxions, two terms in no way dependent on each other
can be indeterminate, and three in the case of third fluxions, and so on. But
it happens not rarely that all terms are determined by an equation which
also involves fluxions of higher orders. And all that has been said here about
a fluxion whose fluent is known is also true about fluxions whose fluents are
not known.

A root of any equation is a quantity which, when written for the letter
denoting the root, will cause all the terms of the resulting equation to vanish.
Now terms can vanish in only two ways, either as a result of opposite signs in
like members, or also where a constant quantity is found in a fluent; for this
leaves no trace in the fluxion. Thus if y = Axn, there will be iJ = nAxn- 1,
ii = (n2 - n)Axn- 2; if n = 0, the value of the first fluxion will vanish; if
n2 - n = 0, that is, n = 0 or n = 1, the value of the second fluxion will
vanish; and that is without other like members which can remove them. And
these are the principles by means of which the universal difficulties which
occur in the resolution of fluxional equations are to be unravelled.

Suppose that the equation to be resolved is r2iJ2 = r 2 j;2 - j;2 y2, or if j; is
put equal to one, r2iJ2 = r 2 - y2. By the parallelogram or other methods of
Newton, you will find the root

x3 x5 x7

Y = X - 6r2 + 120r4 - 5040r6 + &c.

For if the square of this is written for y2 and the square of the fluxion for
iJ2 it will cause all members of the resulting equation to cancel each other
out as a result of opposite signs. But let us see if there is another root which
cannot be found in this way. To that end, suppose Axn to be the first term
of the series, or y = Axn approximately; and there will be iJ = nAxn- 1, and
so iJ2 = n2A2x2n-2 and y2 = A2x2n ; when these have been written in, there
results n2r2A2x 2n-2 = r 2 - A2x 2n, or on multiplying the whole expression
by x 2 ,

Here it is clear that the member n2r2A2x2n vanishes when n = 0: therefore
let a be substituted for n, and the equation will become

Ox r 2 A2xO= r2x2 _ A2x2;
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therefore in this case the member r 2A2xO in which x is of the smallest power
vanishes: and for that reason Axo, or the constant quantity A, will be the
first term of the series, which converges more rapidly the smaller x is. And
by following up this calculation you will find by the common methods that

(

X2 x 4 x6
)

Y = A x 1 - 2r2 + 24r4 - 720r6 + &c. .

But the quantity A is not determined by the fluxional equation. For if the
fluxion of the equation r2il = r2 _y2 is taken, 2r2 yy = -2yy will be obtained,
or on dividing and transposing, r2 y+ y = O. Now let us put y = Axn ; there
will be y = nAxn - 1 and y = (n2 - n)Axn - 2 , and when these have been
substituted, (n 2

- n) x r 2 Axn - 2 + Axn = 0 comes out; here it is clear that
the index n - 2 cannot be compared with the index n; and consequently
no root can be extracted by that method. But nevertheless, on taking the
coefficient n2

- n = 0, one will obtain n = 0 and n = 1; and so A or Ax can
be the first term of the series, as we have already found.

The first series gives the sine and the second the cosine of a given arc
x. And the coefficient A in the second is equal to the radius r. For if you
put y for the sine or the cosine, you will always come up with the equation
r2 y2 = r2

- y2, which is resolved by no root apart from the two which have
just been produced. Now one may note from this example that the form of
the series is always determined by the equation even if the coefficients are not
determined. And where the coefficient of some term is not determined, the
index of x in it will always be found by setting some member of the resulting
equation equal to zero. But where the coefficient of the term is determined,
the index of x in it is found by comparison of two indices in the resulting
equation by means of Newton's rules.

Let y+ a2 y - xy - x2 y = 0 be the equation to be resolved, where x flows
uniformly, and one is written for its fluxion. Suppose y = Axn approximately,
and there will be y = nAxn -l, y = (n2 - n)Axn - 2 : when these have been
substituted into the equation, there results (n2 -n)Axn - 2 +(a2 -n2 )Axn = O.
Now set the coefficient n2 - n = 0 and n = 0 or n = 1 will come out: when
these values have been substituted for n in the equation, they produce

ox Ax-2 +a2 Axo = 0, and

ox Ax-1 + (a2
- I)Ax = 0;

and since in both cases the member in which x is of smallest power vanishes,
I conclude that 0 or 1 is the index of x in the first term of the series which
converges more rapidly the smaller x is: and so one may use

y = A + Bx2 + Cx4 + Dx6 + &c.

or y = Ax + Bx3 + Cx5 + Dx7 + &c.
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Now in the resulting equation (n2 - n)Axn - 2 + (a2 - n2)Axn = 0, set the
coefficient a2 - n 2 = 0; and there will be n = ±a: therefore write +a and -a
for n, and

(a2 - a)Axa- 2 + 0 x Axa = 0

(a2 + a)Ax-a - 2 + 0 x Ax-a = 0

will come out. Therefore in both cases the member in which x is of largest
power vanishes; and for that reason +a or -a will be the index of the first
term of the series which converges more rapidly the larger x is. For we may
take

y = Axa + Bxa - 2 + Cxa -
4 + Dxa

-
6 + &c.

or y = Ax-a + Bx-a - 2 + Cx- a - 4 + Dx-a - 6 + &c.

When the coefficients of these four series have been determined they give the
following values of the roots:

A 0 - a2A 2 4 - a2
2 16 - a2C 2 36 - a

2
D 2 &

+1T x +3TBx + 5.6 x + 7.8 x + c.;

Ax + 1 - a
2

Ax2 + 9 - a
2

Bx2 + 25 - a
2

C 2 49 - a
2

D 2 &
2.3 4.5 6.7 x + 8.9 x + c.;

Axa _ a(a - 1) x A _ (a - 2)(a - 3) x B _ (a - 4)(a - 5) x C
4(a - 1) x 2 8(a - 2) x 2 12(a - 3) x 2

(a - 6)(a - 7) D
16(a _ 4) x x 2 - &c.;

A a(a + 1) A (a + 2)(a + 3) B (a + 4)(a + 5) C-+ x-+ x-+ x-
x a 4(a + 1) x 2 8(a + 2) x 2 12(a + 3) x 2

(a + 6)(a + 7) D &
+ 16(a + 4) x x 2 + c.

The first two relate to the multiplication or division of a circular arc, while
the latter pair are concerned with the area of a hyperbola. Let these examples
suffice for the illustration of the rule provided here for the determination of
the index. It is deduced from Proposition 5; and by means of it and the rules
of Newton, the extraction of roots as infinite series is brought to a conclusion,
so that anyone will easily understand, who has given some consideration to
those things which authors have previously made known about this matter.
For it will easily be demonstrated that an equation does not admit as a root
any series which is not produced by this method. But here I do not speak
about series which are made up of terms in which the indeterminate x has
indeterminate indices.
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PART TWO

On the Interpolation of Series

Let there be an arbitrary straight line PQ which is given in position, above
which let any number of ordinates A, B, C, D etc. be erected, which are
parallel to each other and separated one from the other by equal intervals:
moreover, let these ordinates represent the terms of a regular series, continu­
ally increasing or decreasing and having the same sign; and passing through
the extremities of them all, there will be exactly one curve, which will in
fact be defined by the given equation for the series, that is, from the given
equation which expresses in general the relation between any two or more
successive ordinates.

A a P B b c c D d E e F f Q G g

If the algebraic equation of this curve, that is to say the equation which
defines the relation between abscissae and corresponding ordinates, can be
extracted from that given difference equation, then any ordinate will be ob­
tained when its abscissa is given by resolution of the affected equations, and
so the complete interpolation of the series will be obtained; this in fact con­
sists of assigning any term, principal or intermediate, when its position in the
series has been given. But when the algebraic equation of the curve cannot be
found, which is commonly the case, there is nothing further to be looked for
apart from expressing the value of any term sought by means of a convergent
series, or perhaps by the quadrature of curves.

Now here I am speaking about equidistant terms whose relations in fact
come out on writing equidifferent numbers successively for the abscissa z
in the difference equation defining the series. For the common interval of
the ordinates standing above the abscissa is proportional to the constant
increment of the indeterminate z.
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Proposition 16

If the common interval is the same for the principal terms and the interme­
diate terms, and if one of the intermediate terms is given, then they will all
be determined by the given equation for the principal terms.

In the figure above let A, B, C, D, etc. denote the principal terms and a,
b, c, d, etc. denote intermediate terms; and let the intervals AB, BC, CD,
etc. of the principal terms be equal to the intervals ab, be, ed, etc. of the
intermediate terms, each to each. I say that all the intermediate terms are
given if anyone of them is given along with the difference equation defining
the relation of the principal terms.

For the equation which assigns the relation of the principal terms defines
the curve passing through their extremities, and the equation which defines
the relation of the intermediate terms also defines the curve passing through
the extremities of those terms. But by the definition of the principal and
intermediate terms, the same curve passes through the extremities of both;
consequently, the same equation which defines the curve will define the rela­
tion of the terms in both series. And that equation is given by hypothesis;
and so the law is given for continuing the intermediate terms, which thus will
all be given if anyone of them is given. Q.E.D.

Corollary. Suppose that in any difference equation expressing the relation
of the principal terms A, B, C, D, etc. the successive values of the abscissa
z are PA, PB, PC, PD, etc., where P is any initial point of the abscissa:
then the relations of the intermediate terms will be obtained by writing for
z successively Pa, Pb, Pe, Pd, etc. in the same equation. For the difference
equation expresses in general the relation between any two ordinates located
at a specific distance from each other, whether they occur in the series of
principal terms or in that of the intermediate terms.

Example 1

If in the geometric progression of terms 1, x, x 2 , x 3 , x 4 , etc. the terms standing
in the middle between the principal terms are a, b, e, d, e, etc., then there
will be b = ax, e = bx, d = ex, e = dx, etc., for which the relation is in fact
the same as that for the principal terms.

Example 2

If the principal terms are 1, 1, 2, 6, 24, 120, 720, etc., whose relations are
B = A, C = 2B, D = 3C, E = 4D, etc., and the term located right in the
middle between the first two terms 1 and 1 is a, then the rest will be given
by the equations

b = ~a, e = ~b, d = ~e, e = ~d, &c.,
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these being located in the middle between any two principal terms, from
which they are therefore equidistant.

But if a denotes the term between the first and the second whose distance
from the first is a third part of the common interval, put

b = ta, c = ~b, &c.

and a, b, c, d, e, etc. will be the intermediate terms, each of which is a third
part of the common interval from the principal term before it, or two third
parts of the same interval from the principal term immediately following it.
It is established therefore that the relation of the intermediate terms is given
by interpolation of the relation of the principal terms: and it can always be
interpolated, since it is assigned by the equation for the series.

Example 3

Consider the series 1, !, ~, 1
5
6' l25

S' etc., which is produced by successive

multiplication by the numbers !' i, i, ~, etc., and let a be the term in the
middle between the first and the second, and put

b - ~a
- 3 ' d = ¥c, e - ~d

- 9 ' &c.

(p.241)

Then b, c, d, e, etc. will be the remaining intermediate terms which stand in
the middle between any two principal terms.

Scholion

If the equation for the series involves three terms, then two must be given
in order that the remaining intermediate terms may be obtained; and three
must be given if it involves four terms, and so on. Now Newton's Proposition
7 in the Treatise on the Quadrature of Curves is of this type; however, it
applies not only to curves but also to any series. And this theorem comes
into use whenever an intermediate term is sought which is located near the
beginning of the series: for in that case its value comes out in a very slowly
converging series; consequently, a corresponding intermediate term has first
to be sought which is sufficiently removed from the beginning so that its value
will come out in a series which approximates rapidly: then, once this is given,
one has to go back from it to that first proposed by means of the relations of
the terms, as in this proposition.

Proposition 11

Every series can be interpolated, whose terms are made up of factors which
can be interpolated.

Let A x a x a, B x b x (3, ex c x ,,/, D x d x 0, etc. be a series whose terms
are made up from three factors: I say that it can be interpolated, if the three
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series of factors, namely A, B, C, D, etc., a, b, c, d, etc., and a, (3, 'Y, 0, etc.,
can be interpolated.

For since the intermediate terms in the compound series are formed in the
same way from the corresponding intermediate terms in the simple series as
the principal terms are formed from the individual principal terms, these will
be found by multiplying the respective intermediate terms of the simple series
by each other. Thus if T is a term between Band C, if t is the corresponding
term between band c, and if T is the corresponding term between (3 and 'Y,
then the corresponding term in the compound series, namely that between
B x b x (3 and ex ex 'Y, will be the product of those three, namely Txt x T.

And the proposition will be demonstrated similarly if there are more or fewer
factors. Q.E.D.

Corollary. Hence if two or more series of factors in a series which has to
be interpolated can be interpolated exactly, they can be removed from the
calculation: then the remaining terms have to be interpolated by methods
which are to be presented below. For interpolation is not to be undertaken
lightly; but before the task is begun one must enquire what is the simplest
series on whose interpolation that of the proposed series depends. And this
preparation is for the most part entirely necessary, if we are to arrive at neat
and refined conclusions.

Example 1

If the series to be interpolated is

1, 3 2
40 X ,

5 3
illX ,

35 4 &
1152X , c.,

I first resolve it into three series of simple factors in the following manner,

XO Xl x2 x3 x4 &c.,, , , , ,

1, 1 1 1 1 &c.,3' 5 ' '7 ' 9'

1, 1 3 5 35 &c.,2' 8 ' 16 ' 128 '

and it is obvious that of these three series the first two can be interpolated,
but not so with the third; however, since it is simpler, it will interpolated more
easily than the proposed series. Thus, suppose that the term in the middle
between the second and third terms of the compound series is required; it is
clear that the corresponding terms in the first and second of the simple series
are X 3/

2 and t respectively: let the corresponding term in the third be called
T; then the product of these three x 3/ 2 , t, and T, or tTxy'x, will be what is
required. And so the interpolation of the compound series is reduced to the
interpolation of a simpler series.
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Example 2

If a series of this type

1, ~Ap ,
r+1

B
p+1 '

r+2
G

p+2 '
r+3 D &

'
c.

p+3

is given, one may interpolate the series of numerators and denominators sep­
arately, that is, the series

1, r, r(r + 1), r(r + l)(r + 2), &c.

1, p, p(p + 1), p(p + l)(p + 2), &c.

Then any term in the series of numerators divided by the corresponding
term in the series of denominators will give the corresponding term in the
proposed series. If the difference between rand p is a small number, there is
no need of this artifice. But when the said difference is large, it is necessary
to interpolate the numerators and denominators separately.

Scholion

Very many preparations of this type must also be applied to this. For example,
suppose that for the series

&c., e, d, c, b, a, A, B, G, D, E, &c.,

which goes off to infinity on both sides, the term in the middle between
the middle two principal terms a and A is required. Multiply together the
principal terms which are equidistant from the middle; that is, multiply A by
a, B by b, etc., and a new series will be formed going off to infinity on both
sides,

&c., Dd, Ge, Bb, Aa, Aa, Bb, Ge, Dd, &c.;

the terms of this which are equidistant from the middle are equal to each
other, and the term in the middle between Aa and Aa will be the square of
the term sought which is located in the middle between a and A in the series
previously proposed. Therefore that term which is sought can be extracted
by interpolation of either series.

It is to be noted that the desired term can be located in various series,
and from that consideration it can sometimes be found more easily. Thus, if
some term sought lies in the middle between the first and the second in both
of the following series

1,

1,

r,

1
p

r(r + 1),

1
p(p + 1) ,

r(r + l)(r + 2),

1
p(p+1)(p+2)'

&c.,

&c.,
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then by multiplying corresponding terms together a new series will be pro­
duced,

1, 'CA, r+1 B , r+2 C, r+3 D , &c.;
p p+1 p+2 p+3

the term of this series which has the middle position between the first and
second terms is equal to the square of that first proposed.

Sometimes interpolation is also carried out successfully by means of log­
arithms, especially if the differences of the terms are very large. But these
and similar matters are to be learned additionally by practical experience.
For just as in common algebra the entire art of the analyst does not consist
of the resolution of affected equations, but rather in reducing problems to
these, so also in this analysis less skill is required for the resolution of differ­
ence equations or the interpolation of series; for there is far greater difficulty
in finding series which determine unknown quantities and which are suitable
for interpolation.

Proposition 18

Suppose that the terms of two series are formed by repeated multiplication by
fractions whose numerators and denominators increase continuously by the
addition of one and that the numerators are the same in both. I say that the
term of one series whose distance from the beginning is the difference of the
factors in the other is equal to the term of the second series whose distance
from the beginning is the difference of the factors in the first series, provided
the first terms are equal to each other.

Let the two series whose first terms A and a are equal to each other and
in which the numerators are the same be

r C=r+1 B D=r+2 C E=r+3 D &c.,B= -A,
p p+1 ' p+2 ' p+3 '

r c=r+1 b d=r+2 c e = r + 3 d, &c.b = -a,
q q+ 1 ' q+2 ' q+3

I say that the term of the former whose distance from the beginning is equal
to the difference of the factors in the latter, namely q - r, is equal to the term
of the latter whose distance from the beginning is p - r., namely the difference
of the factors in the former series. And it is to be noted that, where p - r or
q - r is a negative quantity, the terms which are being discussed are located
before the first terms by these intervals.

With A = 1 let us take any term of the former series, for instance the
seventh, namely

G=lx 'C x r+1 x r+2 x r+3 x r+4 x r+5.
p p+l p+2 p+3 p+4 p+5
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And first of all if p - r = 0, or p = r, there will be p + 1 =r + 1, p + 2 = r + 2,
etc. and so all numerators and denominators cancel each other, and there
remains G = l.

Ifp-r = 1, there will bep = r+l, and thencep+l = r+2,p+2 = r+3,
etc., in which case all the numerators except the first and all the denominators
except the last cancel out, so that

r
G=lx-­

p+5 '
r

or G = 1 x --6'
r+

on account of p + 5 being equal to r + 6.
If p - r = 2, or p = r + 2, there will be p + 1 =r + 3, p + 2 = r + 4, etc.

and now all the numerators apart from the first two and all the denominators
apart from the last two will cancel out, there remaining

G = 1 x _r_ x r + 1
p+4 p+5'

r r + 1
or G = 1 x -- x -- ,

r+6 r+7

on account of p + 4 = r + 6 and p + 5 = r + 7.
And likewise, if p - r = 3, or p = r + 3, all the numerators apart from

the first three and all the denominators apart from the last three will cancel
out, and in that case there will be

G = 1 x _r_ x r + 1 x r + 2 .
r+6 r+7 r+8

And generally in the value of the term G there will be as many numerators
and as many denominators as there are units in p - r, as in the following
table

p- r = 0,

p - r = 1,

p- r = 2,

p- r = 3,

p - r = 4,

G= 1,

r
G=lx-­

r+6 '

r r + 1
G=lx--x--,

r+6 r+7

G = 1 x _r_ x r + 1 x r + 2
r+6 r+7 r+8'

G= 1 x _r_ x r+l x r+2 x r+3,
r+6 r+7 r+8 r+9

&c.

And so if one puts q = r + 6, or q - r = 6, the term of this series 1,

~A, r + 11 B, etc. whose interval from the beginning is q - r or 6 is equal to
p p+

the term of this series 1, :c a, r + 1 b, etc. whose interval from the beginning
q q + 1
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is P - r. And the proposition will be obvious in other cases from the same
reasoning. Q.E.D.

Corollary. Hence if the difference of the factors p and r is not very large,
a term of the former series, however far removed from the beginning, will
always be determined by a term in the latter series which is not far from the
beginning. This will be clear from the following examples.

Example 1

Let r = 3, p = 5, q = 10; and when these values have been substituted, the
two series come out as

1,
3 3.4 3.4.5 3.4.5.6

&c.,5' 5.6 ' 5.6.7 ' 5.6.7.8 '

1,
3 3.4 3.4.5 3.4.5.6

&c.
10 ' 10.11 ' 10.11.12 ' 10.11.12.13 '

Now q - r = 7, p - r = 2; and so the term in the former series whose
interval from the beginning is 7 will be equal to the term in the latter whose
interval from the beginning is 2, or what is the same, the eighth term of the
former series 3.4.5.6.7.8.9 is equal to the third term~ of the latter series.

5.6.7.8.9.10.11 10.11
And it is to be noted that where the difference between p and r is an integer,
then any term of the former series is always equal to some principal term in
the latter.

Example 2

Let the first series be

1, fA, ~B, ~C, ~D, &c.

and since the increment of the factors is two, divide the numerators and
denominators by two, and the series

1, +A,
2 !~lB, 1:2C' &c.

2

will result, where the increment of the factors is now one; and consequently
this series can be compared with that in the theorem, with the result that
r = 1, P = ~. Also let m be the interval between the first term of the series
and any other term, and there will be m =q-r, or m = q-l, and q =m+ 1;
when this has been substituted, the second series will become

1,
a

m+l '
2b

m+2'
3c

m+3 '
4d

m+4'
&c.,

whose term which is removed from the beginning by the interval p - r, or - ~,

will be equal to the term of the first series whose interval from the beginning
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is any quantity m. That is to say, a term of the first series, however far
removed from the beginning, namely by an arbitrarily large distance m, will
always be equal to the term of the second series which is located before the
first term by half the common interval.

Or if the series

1, ~A, ~B, ~C, ~D, &c.

is taken, whose terms are the reciprocals of the terms of the series which
we have just been discussing, there will be r = ~, p = 1; and if m is the
interval between the first term and any other term, there will be m = q - r,
or m = q - ~, and q = m + ~, and the second series will become

1,
a

2m+ l'

3b
2m+3 '

5c
2m+5 '

7d
2m+7'

&c.

The term in this which is removed from the beginning by a distance p - r,
or ~, that is the term in the middle between the first and the second, will be
equal to whatever term of the first series whose distance from the beginning
is the arbitrary quantity m. Thus, if the thousand-and-first term of the series
is required, whose interval from the beginning is in fact one thousand, there
will be m = 1000, and the term of the series

1,
a

2001 '
3b

2003 '
5c

2005 '
7d

2007 '
&c.

which is located in the middle between the first 1 and the second 20101 will
be equal to the thousand-and-first term of this series

1, ~A, ~B, ~C, ~D, &c.

The intermediate terms of this series are also found in the same way; for if
999~ is written for m, the series

1,
3b

2002 '
5c

2004 '
7d

2006 '
&c.

will result, whose term in the middle between the first and the second is equal
to the term of this series

1, ~A, ~B, ~C, ~D, &c.

which is located in the middle between the thousandth and the thousand­
and-first terms.

Example 3

Suppose that the term of this series

1, fA, ~B, ~c, ~~D, &c.
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is sought whose interval from the beginning is an arbitrary quantity m: first
divide the numerators and the denominators by their common increment 3,
and the series will become

1,
1-
tA,
3

~

tB, &c.,
3

and so there will be r = ~,p = i, q - r = q - ~ = m, and thence q = m +~:
hence the second series will become

1,
2a

3m+2 '

5b

3m+5 '
8c

3m+8 '

11d

3m + 11 '
&c.,

(p.242)

whose term which is at a distance p - r, or - i, from the beginning, that is,
the term which is located before the first term by a third part of the common
interval, is equal to the term of the first series which is removed from the
beginning by an arbitrarily large interval m.

On the Differences of Quantities

Consider a, b, c, d, e, a series of any number of quantities, and if each term
is taken away from the following term, the first differences b - a, C - b, d - c,
e - d will remain: then if each of these differences is likewise taken away from
the next one, the second differences c - 2b + a, d - 2c + b, e - 2d + c will be
left; again the differences of these form the third differences d - 3c + 3b - a,
e - 3d + 3c - b of the quantities a, b, c, d, e. And the process continues in
this way until it reaches the last difference as in the following table.

- 1st
a 2nd

I--- b-a 3rd
b c - 2b+ a 4th

f--- c-b d- 3c+3b- a
e - 4d + 6c - 4b + a Ic d - 2c+ b

I--- d-c e - 3d + 3c - b
d e - 2d + c

,....-- e-d
e
~

Let 1 - x be the binomial in which the coefficients + 1 and -1 are the
same as the coefficients in the first differences; then the coefficients of the
square 1 - 2x + x2 , namely + 1, -2, + 1, will be the coefficients in the second
differences; likewise, the coefficients of the cube 1, -3, +3, -1 will be the
coefficients in the third differences: and in general the coefficients in any
order of differences will be the coefficients in the corresponding power of
the binomial. And now that these things have been noted, one may proceed
in one step to any desired order of differences without consideration of the
intermediate ones.

Two quantities have a first difference, three have a second, four have a
third; and they cannot have further differences. But it sometimes happens
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that a certain order of differences forms an identical progression, in which case
further differences are not obtained, however large the number of quantities
may be. Thus in an arithmetic progression the first differences are equal, and
so the second differences are not given. And in the series of squares 1, 4, 9,
16, 25, etc., whose roots are equidifferent, the first differences 3, 5, 7, 9, etc.
are in arithmetic progression, the second differences are equal, and for that
reason the third differences are zero. So also in the series of cubes 1, 8, 27,
64, 125, 216, etc. the first differences are 7, 19, 37, 61, 91, etc., the second
12, 18, 24, 30, etc., the third 6, 6, 6, etc., all being equal; and so the fourth
differences are zero.

And generally let A, B, C, D, E be any number of given quantities and z a
variable; then in the expression A + Bz +Cz2 +D z 3 +Ez4 write successively
for zany equidifferent numbers; and the final differences of the resulting
quantities will be determined by the highest power z4, no account having
been taken of the lower powers. Thus in this case the fourth difference is the
last on account of the fact that the fourth power z4 is here the highest.

Very often differences form a convergent series in cases where they do
not terminate. Thus if a, b, c, d, e, etc. are almost equal to each other, and
their first differences b - a, c - b, d - c, e - d, etc. are also almost equal
to each other, and likewise also the second and subsequent differences are
approximately equal in each case, then

a, b - a, c - 2b + a, d - 3c + 3b - a, &c.

will form a convergent series. Likewise the differences of terms whose relation
is defined by the equation

T x (zO + azO- 1 + bzo- 2 + &c.) =T' x (zO + czO- 1 + dz lJ -
2 + &c.),

when taken as before, will form a convergent series. But it is not to be ex­
pected that the differer.ces of arbitrary quantities will either converge or
terminate. This only happens in those quantities which increase or decrease
exactly or approximately at the same rate as certain fixed powers of equidif­
ferent numbers.

On the Description of Curves Through Given Points

After pointing out the technique for avoiding very complicated series in the
quadrature of trinomial curves, Newton says in his letter to Oldenburg sent
in the year 1676, "But I consider these things of less importance, because
where simple series are not sufficiently manageable, I have another method
not yet made known, by which one may come arbitrarily close to what is
sought. Its basis is a convenient, ready and general solution of this problem,
To describe the geometric curve, which will pass through any number of given
points. Euclid showed how to draw the circle through three points. Also a
conic section can be drawn through five given points: and a curve of three
dimensions can be drawn through seven given points; (so that I am able to
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describe all curves of that order, which are determined by just seven points).
These come about immediately by geometry with no calculation involved.
But the above problem is of another type: and however intractable it may
seem at first sight, the matter nevertheless turns out otherwise. For it is quite
amongst the most beautiful things which I desired to solve."

Newton teaches the description of the conical parabola through four points
in Proposition 60 of the Arithmetica Universalis: or rather he teaches a
method for finding an equation for the parabola which will pass through
four given points. And by the same method one may describe the curve of
the third order through nine points, and the curve of the fourth order through
fourteen points. And so on in the remaining cases. But our purpose does not
require such a general solution; for it is enough to describe the parabolic
figure through the extremities of an arbitrary number of ordinates which are
parallel to each other and also to the axis of the curve. But the organic de­
scription of curves by the movement of angles, or any other method, is not
of use for the present purpose: the matter comes back to the same whether
the curve is actually drawn or it is conceived as having been drawn. For
curves are in no way necessary here, except in so far as they are an aid to
the mind for the correct understanding of the problem. For the description of
the parabola through given points is exactly the same problem as the assign­
ment of quantities when their differences are given; this is always achieved
by algebra alone, namely by the resolution of simple equations.

(p.243) Proposition 19

Let a series of equidistant ordinates going off to infinity on just one side be
given, and let it be required to find the parabolic curve which will pass through
the extremities of all of them.

Let A, AI, A 2 , A 3 , A4 , etc. denote equidistant ordinates standing as
perpendiculars on the abscissa. Form their first differences B, B I , B2 , B 3 ,

etc., their second C, C I , C2 , etc., third D, D I , etc., and so on. Thus, A is
the first ordinate, B is the first difference of the first two ordinates, C is the
second difference of the first three ordinates, D is the third difference of the
first four ordinates, and so on. Now the differences must be formed by taking
the first from the second everywhere, that is, by putting

B=AI-A, BI =A2 -AI , &c., C=BI-B, &c.,

and so on with the rest; those which arise from the subtraction of a larger
from a smaller quantity are to be taken as negative.



Proposition 19 113

A Al A2 A3 T A4 A5

B B I B 2 B3 B4

C C1 C2 C3

D D I D 2

E E1

F

These things having been set down, let T be any general ordinate, either prin­
cipal or intermediate, whose distance from the first ordinate A, namely AT,
is to the common interval of the equidistant ordinates as the indeterminate
quantity z is to one, and there will be

T=A+
z

Bx-+
1
z z-l

Cx-x--+
1 2
z z-l z-2

Dx-x--x--+
1 2 3
z z-l z-2 z-3

Ex-x--x--x--+
1 2 3 4
z z-l z-2 z-3 z-4

Fx - x -- x -- x -- x --+
1 2 3 4 5

&c.

This is the value of any ordinate T lying on the same side of the first
ordinate A as the remaining ordinates lie: but if it lay on the other side, then
the sign of the abscissa z would have to be changed. For I take the abscissa
to be positive if it is directed to the right among the later ordinates, and
negative if it is extended on the other side. Now the proposition is proved as
follows.

Imagine the ordinate T to be taken away along the abscissa by parallel
motion so that it takes up successively the positions of the rest. And since its
distance from the first ordinate is taken so that it is to the common interval



A =A,
Al =A+B,
A2 =A+2B+C,
A3 =A + 3B + 3C + D,
A4 =A + 4B + 6C + 4D + E,

&c.
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of the ordinates as z is to one, then z will be successively equal to 0, 1, 2, 3,
4, etc. and meanwhile T will be equal to the ordinates A, AI, A2 , A3 , etc. in
turn, each in its place. Therefore, in order to extract the coefficients A, B,
C, D, etc. which cause the parabola to pass through the extremities of the
ordinates, in the equation for the figure

z z z-l z z-l z-2
T = A + B - + C - x -- + D - x -- x -- + &c.

1 1 2 1 2 3

write the ordinates A, AI, A2 , A3 , etc. successively for T and at the same
time for z the lengths of the abscissa in order, that is, 0, 1, 2,3, etc., and the
following equations will come out

whence A =A,
B=AI - A,
C =A2 - 2AI + A,
D =A3 - 3A2 + 3AI - A,
E =A4 - 4A3 + 6A2 - 4AI + A,

&c.

In fact the values of the coefficients A, B, C, etc. are extracted in turn
from the values of the ordinates A, AI, A2 , etc. It is clear from these that
the first ordinate A is the first coefficient; likewise the difference of the first
two ordinates is the second coefficient; and the second difference of the first
three is the third coefficient; and so on to infinity. Therefore when the values
of the coefficients have been put in the solution, they make the parabola pass
through the extremities of the ordinates. Q.E.D.

The Same Thing in Another Way

Let us suppose that in general

z z z-l z z-l z-2
T = A+B- +C- x -- +D- x -- x -- +&c.

112 12 3 '

where A, B, C, D, etc. are coefficients to be determined. Write the next
values of the variables T ' , z + 1 in place of the preceding ones T, z, and

I z+l z+l z z+l z z-l
T = A + B -- + C -- x - + D -- x ~ x -- + &c.

1 12 123 '

will come out; if the value of T is subtracted from this,

I Z z z-l
T - T = B + C - + D - x -- + &c.

1 1 2

will be obtained. On substituting T", T ' , z + 1 for T' , T, z,

T" T ' - B C Z + 1 D Z + 1 Z &- - + -1- + -1- x 2" + c.



Proposition 19 115

will come out, and when the value of T' - T has been subtracted from this
it leaves

Z
Til - 2T' + T = C + D- + &c.

1
And you will find similarly

Till - 3T" + 3T' - T = D + &c.

Now let T denote the first ordinate, and the corresponding value of the ab­
scissa will be zero; when this has been substituted you will find

A=T,

B =T'-T,

C = Til - 2T' + T,

D = Till - 3T" + 3T' - T,

&c.

That is, the first coefficient A is equal to the first ordinate T, the second B
is equal to the difference between the first two ordinates T and T', the third
C is equal to the second difference of the first three ordinates T, T', Til, the
fourth D is equal to the third difference of the first four ordinates, and so on
with the rest as has just been demonstrated.

Example 1

239
1 6

3 5
8 2
-6

4
3 -2
-5

1

Let five ordinates 1, 4, 2, 3, 9 be given, through the extremities of which it
is required that the parabola should pass. Form
their first differences 3, -2, 1, 6, their second
differences -5, 3, 5, their third differences 8, 2,
and their final difference -6. Then according to
what has been written out in the solution of the
proposition, the first ordinate and the first of
each difference are to be taken respectively for
A, B, C, etc.; that is,

A = 1, B = 3, C = -5, D = 8, E = -6,

while F, G, etc. will be zero. When these values have been substituted, the
equation for the parabola will come out as

z z z-l z z-1 z-2 z z-1 z-2 z-3
T = 1+31"-51" x -2-+8 1" x -2- x -3-- 6 1" x -2- x -3- x -4-'

which, having been brought back into order, is

T = 12 + 116z - l11z2 + 34z3
- 3z4

12

And to check the working, write 0, 1, 2, 3, 4, successively for the abscissa z,
and the five proposed ordinates will result for T.
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But the ordinates can be taken in reverse order, provided the signs of the
differences are changed in alternate orders: then we have to put

A = 9, B = -6, C =5, D = -2, E = -6;

when these have been written in and the resulting equation has been brought
back into order, we will obtain finally

T = 108 - 92z + 9z2 + 14z3
- 3z4

12

if 0,1,2,3,4 are substituted for z in this, the proposed ordinates will come out
in reverse order. And here two equations are obtained for the same parabola,
since the abscissa is drawn starting from the first ordinate in one case, but
from the last in the other.

Example 2

57 115
34 58

24
6

3 7 23
-2 4 16

6 12 18
6 6

5

Now let it be required to find an equation for the parabola which passes
through the extremities of the six equidistant ordinates 5, 3, 7, 23, 57, 115.
Form their first differences, and then the
rest until we have arrived at the final ones,
as at the side. And you will find A = 5,
B = -2, C = 6, D = 6. When these have
been substituted, there arises

z z z-1 z z-1 z-2
T = 5 - 2"1 + 6"1 x -2- + 6"1 x -2- x -3- ,

which after reduction is T = 5 - 3z + z3. And if you write for z successively
0, 1, 2, 3, 4, 5, the six proposed ordinates will come out.

A straight line passes through two points, a conical parabola through
three, a cubic through four, a biquadratic through five, and so on to infinity.
Now it sometimes happens that a curve of lower order passes through more
points as in the last example. Moreover, the order of the parabola is always
denoted by the final order of differences. But if the number of ordinates is
infinite, and a progression of equal differences does not arise, I say that in
that case the curve will be of infinitely many dimensions, the value of T
expanding into an infinite series.

Scholion

In this solution we have taken the common distance of the ordinates to be
one; now if an arbitrary quantity n had been used for this, there would have
resulted

z z z - n z z - n z - 2n
T = A + B x - + C x - x -- + D x - x -- x -- + &c.

n n ~ n ~ ~

Now set
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the second ordinate A1 = A + An,

the third ordinate A2 = A + 2An + An2
,

the fourth ordinate A3 = A + 3An + 3An2 + An3
,

. ..
the fifth ordinate A4 = A + 4An + 6An2 + 4An3 + An4

,

&c.

And you will find in turn

:. 3
D=An, E - A::n4 &c'- , .,

when these values have been substituted for B, C, D, E, etc., there will arise

. z .. z z - n :. Z Z - n z - 2n
T=A+A-+A- x --+A- x -- x --+&c.

1 1 2 1 2 3

Now let the common interval n become zero, and A, A, A, etc. will become
the fluxions of the first ordinate A, provided that the fluxion of the abscissa
z is one; and .

. 1 .. 2 1': 3 1:: 4
T = A + Az + 2" Az + (; Az + 24 Az + &c.

will result. Therefore when the equidistant ordinates coincide, we come upon
the series in which the coefficients of the terms are the fluxions of the first
ordinate divided respectively by the numbers 1, 2, 6, 24, etc., which are
generated by repeated multiplication of these numbers 1, 2, 3, 4, etc. And
Mr Taylor was the first to discover this in his Methodus Incrementorum, and
afterwards Herman gave it in the Appendix to his Phoronomia.

Hence suppose that the ordinate of any curve is resolved into a series of
this form A+Bz+Cz2 +Dz3 +&c., where the exponents of the abscissa z are
positive integers; the first term A is the first ordinate, namely the one which
passes through the beginning of the abscissa; the first two A + Bz denote
the straight line which passes through two coincident points of the curve and
which consequently is tangential to the curve; the first three terms A + Bz +
C Z2 define the conical parabola which passes through three coincident points
of the curve and which for that reason is tangential to the curve and has
the same curvature at the point through which the first ordinate passes; the
first four terms A + Bz + Cz2 + Dz3 define the cubic parabola which passes
through four coincident points of the curve, that is, which is tangential to the
curve and has the same curvature and variation of curvature at the point of
contact. Finally, the whole series A + Bz + Cz2 + Dz3 + &c. is the ordinate of
the parabola of infinitely many dimensions which is tangential to the curve,
and at the point of contact has the same curvature, variation of curvature,
variation of variation, and so on to infinity, as is explained by Newton in
Proposition 10 of the second book of the Principia. Or what comes back to
the same, the whole series is the ordinate of the parabola passing through



118 Part II

infinitely many ordinates of the curve, which are equidistant and coincident
with the first ordinate.

Hence we have an idea of the analogy which there is between the method
of differences and the common method of series; the latter proceeds by means
of fluxions or ultimate ratios of differences, while the former generally uses
differences of arbitrary magnitude.

F

r:1_1
A B c

Let DEF denote any curve, whose abscissa AC meets the equidistant
ordinates AD, BE, CF at right angles. And let AB = z, AD = A; and from
the above there will be

BE = A + Az + lAz2 + lAz3 + .l..Az4 + &c2 6 24 .,

that is to say, this value of BE is the ordinate of the parabolic curve which
coincides with the other curve at the point D: therefore for the area of the
curve one may use the area of the same parabola, which by the inverse method
of fluxions produces

ABED = Az + lAz 2 + lAz3 + .l..Az4 + _1_Az5 + &c2 6 24 120 .

And in exactly the same manner, if BE is called y and AB = BC = z, the
area BCF E will be

BCFE = yz + ly·z2 + ly··z3 + .l..Y:·Z4 + _1_ Y::Z5 + &c
2 6 24 120 .

If the sign of the abscissa z is changed in this, the area BEDA will be
obtained, expressed as a negative number, that is to say, by changing the
sign of the abscissa the area lying on the other side of the ordinate will be
obtained. But that area expressed positively becomes

BEDA = yz - ly·z2 + ly··z3 - .l..y:·z4 + _1_ y::z 5 - &c
2 6 24 120 .

And this is the series of Mr Johann Bernoulli expressing the area in terms
of the last ordinate and its fluxions; and we have now given this area in terms
of fluxions of the first ordinate. But it has to be noted that the former series
does not extend to cases in which the first ordinate is tangential to the curve,
and the series of Mr Bernoulli does not extend to those in which the last
ordinate is tangential to the curve. For the parabola whose area is used for
the area of the curve whose quadrature is required can be tangential to none
of the ordinates; and so it cannot coincide with the other curve tangential to
its ordinate. For expressions of this type for the area and ordinate of curves
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presuppose the form of the series to be A + B z + C Z2 + &c. in which the
exponents of the abscissa z are positive integers.

Proposition 20

Let a series of equidistant ordinates going off to infinity on both sides be
given, and let it be required to find the parabolic curve which will pass through
the extremities of them all.

First Case

Let a denote the ordinate in the middle of them all, and let a2, a4, a6, as,
etc. be the ordinates on one side, and 2a, 4a, 6a, sa etc. those on the other,
the progression going off to infinity on both sides. Form their first differences
7B , 5B, 3B, IB, BI , B3, B5, B7, their second differences 6b, 4b, 2b, b, b2,
b4 , b6 , their third differences 5C, 3C, IC, CI , C3, C5, their fourth differences
4C, 2C, C, C2, C4, and so on with the rest, by always taking preceding from
subsequent as in the previous proposition.

sa 6a 4a 2a a a2 T a4 a6 as
7B 5B 3B IB BI B3 B5 B 7

6b 4b 2b b b2 b4 b6
5C 3C IC CI C3 C5

4 C 2 C C C2 C4

3D ID D I D 3
2d d d2

IE E I
e

Now let a, b, c, d, e, etc. be the middle ordinate and the differences in alternate
orders respectively. And let IB and B I , IC and CI, ID and Db IE and EI ,
etc. be the two middle differences in the other orders; put
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And let the interval between an arbitrary ordinate T and the middle one a
be to the common interval of the equidistant ordinates as z is to one; and
the ordinate T will be

T- Bz+bz2
- a+ 1.2 +

2Cz + cz2 z2 - 1
----x--+

1.2 3.4
3Dz + dz2 Z2 - 1 Z2 - 4
----x--x--+

1.2 3.4 5.6
4Ez + ez2 z2 - 1 z2 - 4 Z2 - 9
---- x -- x -- x --+

1.2 3.4 5.6 7.8
5Fz+fz2 z2-1 z2-4 z2-9 z2-16-----=-- X -- X -- X -- X +

1.2 3.4 5.6 7.8 9.10

&c.
Here it is to be noted that the abscissa z is negative when the desired ordinate
T lies on the opposite side of the middle ordinate.

Second Case

Now let IA and Al be the two middle ordinates, and A3, As, A7, Ag, etc.
those on one side, 3A, sA, 7A, gA, etc. those on the other. Form their first
differences sa, 6a, 4a, 2a, a, a2, a4, a6, as, their second differences 7B, sB,
3B, IB, B I , B3, Bs, B7, their third differences 6b, 4b, 2b, b, b2, b4, b6, and so
on, by taking the former from the latter everywhere.

gA 7A sA 3A IA 0 Al A3 T As A7 Ag
sa 6a 4a 2a a a2 a4 a6 as

7B sB 3B IB B I B3 Bs B7
6b 4b 2b b b2 b4 b6

sC 3C IC CI C3 Cs
4 C 2C C C2 C4

3D ID DI D3
2d d d2

IE E I
e

&c.
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Now take out the middle differences a, b, c, d, e, etc. and also the middle two
in the other orders, namely IA and AI, IB and B I , IC and CI , ID and D I ,
IE and EI etc. and put

A=IA+AI , B=IB+BI , C=IC+CI, D=ID+DI , E=IE+EI ,

Let a be the point in the middle between the two middle ordinates I A and
AI. And let the distance of an arbitrary ordinate T from the middle point,
namely aT, be to the common interval of the equidistant ordinates as z is
to two: and there will be

T = A+az +
2

3B + bz z2 - 1
2 x~+

5C + cz Z2 - 1 z2 - 9
---x--x--+

2 4.6 8.10
7D + dz z2 - 1 Z2 - 9 Z2 - 25
---x--x--x +

2 4.6 8.10 12.14
9E + ez Z2 - 1 Z2 - 9 Z2 - 25 Z2 - 49
--::--x--x--x x +

2 4.6 8.10 12.14 16.18

&c.

And also in this case z is positive when T lies on the same side of the middle
point a as in the diagram, and it is negative when it lies on the opposite side.
Now both cases are very easily demonstrated by the method of the previous
proposition.

Example 1

1
9

12 37
11 25

2 14
-12 12

24

-3 -8
-5

14

Let five ordinates -3, -8, 1, 12,37 be given, through the extremities of which
a parabola is to be drawn. Determine their
first differences -5, 9, 11, 25, their second
differences 14, 2, 14, their third differences
-12, 12, and their final difference 24. Then
since the number of ordinates is odd, pro­
ceed according to the first case. And start­
ing from the middle ordinate, continue to
the middle differences in alternate orders,
putting

a = 1, b = 2, c = 24 and then B = 9 + 11 = 20, C = -12 + 12 = O.

And when these have been substituted, there results

20z + 2z2 24z2 Z2 - 1
T = 1 + + -- x -- or T = 1 + lOz + z4.

1.2 1.2 3.4'
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And this is the ordinate of the parabola of four dimensions passing through
the extremities of the five proposed ordinates, as will be confirmed by writing
the numbers -2, -1,0, 1,2 successively for z. In this case the curve crosses
the base, since some of the ordinates are negative and some positive.

Example 2

1

6
o

10 5
o -5 -4

-5 1
o 6

6

10
5

1 -5
-6

1 5
4

Now let six ordinates 1, 5, 10, 10, 5, 1 be given through the extremities of
which it is required to draw a parabola.
Determine their differences as at the side:
and since the number of ordinates is even,
the second case is applied. Then begin­
ning from the two middle ordinates, and
proceeding to the two middle differences,
there will be

A = 10 + 10 = 20, B = -5 - 5 = -10, C = 6 + 6 = 12;

then a = 0, b = 0, c = O.

When these values have been substituted, there will be

T=20_30xz2-1+60xz2-lxz2-9;
2 2 4.6 2 4.6 8.10

when this equation has been brought back into order it becomes

T = 689 - 50z2 + Z4

64

And to test the operation, write -5, -3, -1, 1,3,5 successively for z, and they
will produce the proposed ordinates. For in the second case of the proposition
the common interval of the ordinates, or, what is equivalent, the increment
of the abscissa, is equal to two.

In this example powers of the abscissa of odd dimensions are lacking,
since the ordinates on both sides at equal distances from the beginning of the
abscissa have the same sign and are equal to each other. For in this case the
equation for the parabola remains the same, even if the sign of the abscissa
is changed. But if the proposed ordinates had been +1, -5, +10, -10, +5,
-1, or +1, +5, +10, -10, -5, -1, where the ordinates equidistant from the
middle are still equal, but have different signs, then I say that in that case
the powers of the abscissa of even dimensions would be lacking.

Scholion

After Newton several celebrated geometers have dealt with the description of
the curve of parabolic type through any number of given points. But all their
solutions are the same as those which have just been shown; indeed these dif­
fer scarcely from Newton's solutions, as will be confirmed by the fifth Lemma
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of the third Book of the Principia and the Methodus DifJerentialis which was
edited by Mr Jones. Indeed Newton describes the parabola through given
points; others have studied the assignation of terms from given differences;
but in whatever way it may be perceived, in whatever form it may be ex­
pressed, the problem is the same. And of course the discovery of the forms
which the values of the ordinate T have is extremely ingenious and worthy of
the most distinguished author: but after the forms are obtained, the investi­
gation of the problem is easy, for which nothing other than the resolution of
simple equations is required.

But it is to be noted that the form of the ordinate A + Hz + Cz2 +
D z3 + &c. made up of powers, which Newton applied for demonstrating the
foundation of his method, is ill-suited to the present purpose. For the value
of any coefficient comes out in an infinite series; but anyone who applies the
forms used here, will arrive at the previous conclusions with very little effort.

Proposition 21

Given a series of principal terms to find the intermediate terms which are
not far removed from the beginning.

Let ordinates which are respectively equal to the principal terms be
erected at right angles above a straight line which is given in position and
equidistant from each other; then let the parabolic line which passes through
the extremities of all of them be determined by means of the two previous
propositions; this will also pass through the extremities of the intermediate
terms, which will therefore be given once the equation for the parabola is
given. Q.E.I.

Example 1

Let the series to be interpolated be

1, 3
8'

5
16 '

35
128 '

63
256 '

&c.

whose terms are produced by repeated multiplication by the numbers ~, ~,

~, ~, etc. Determine the differences of the terms and the differences of the
differences as follows:

1 1 3 5 35 63 &c.2 8 16 128 256
1 1 1 5 7

-2 -8 -16 -128 -256
3 1 3 3
8 16 128 256

5 5 3
-16 -128 -256

35 7
128 256

63
-256
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Since this series goes off to infinity on only one side, the interpolation has to
be carried out by means of Proposition 19. And if the first term 1 is used for
the first ordinate, there will be

A = 1, B- _!
- 2' c- +~- 8' E - + 35

- 128' &c.

When these have been substituted,

1 z 3 z z-l 5 z z-l z-2
T = 1 - - x - + - x - x -- - - x - x -- x -- + &c.

2 1 8 1 2 16 1 2 3

comes out, that is,

1 z 3 z-l 5 z-2 7 z-3
T = 1 - - A - - - B -- - - c -- - - D -- - &c.

21426384 '

where A, B, C, D, etc. now denote the terms of this series in the Newto­
nian manner. But any principal term can be used for the first ordinate; for
example, let the second be taken, and there will be

A=~, B=-~, C=+/6' D=-1~8' E=+2~6' &c.

and so
1 1 z 1 z z-1

T = - - - x - + - x - x -- - &c.
2 8 1 16 1 2 '

that is,

lIz 3 z-1 5 z-2 7 z-3
T = - - - A - - - B -- - - C -- - - D -- - &c.

2416283104

But it has to be realised that z is the distance between the term sought and
that term which is used for the first ordinate. Thus if the desired term T
stands in the middle between the first and the second, put +~ for z in the
first expression for T and - ~ for it in the second expression; and for the same
term T you will have the following two series

1 - i A + 1
3
6 B + ~~ C + ~~ D + 1~O E + &c.

~ + ~A + i4B + :~C + :gD + 18210E + &c.

And since these series converge extremely slowly, they are to be summed by
means of the theorem in the scholion of Proposition 11. And it should be
understood that the values of the terms turn out to be very simple when the
term which is located nearest to the desired intermediate term is used for
the first ordinate. But when the term sought is very far removed from the
beginning, Proposition 18 comes into use, as will be shown in what follows.

Example 2

Let the series to be interpolated be 1, 1, 2, 6, 24, 120, 720, etc. whose terms
are generated by repeated multiplication of the numbers 1, 2, 3, 4, 5, etc.
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Since these terms increase very rapidly, their differences will form a diver­
gent progression, as a result of which the ordinate of the parabola does not
approach the true value. Therefore in this and in similar cases I interpolate
the logarithms of the terms, whose differences can in fact form a rapidly con­
vergent series, even if the terms themselves increase very rapidly as in the
present example.

Now I propose to find the term which stands in the middle between the
first two 1 and 1. And since the logarithms of the initial terms have slowly
convergent differences, I first seek the term standing' in the middle between
two terms which are sufficiently far removed from the beginning, for example,
that between the eleventh term 3628800 and the twelfth term 39916800: and
when this is given, I may go back to the term sought by means of Proposition
16. And since there are some terms located on both sides of the intermediate
term which is to be determined first, I set up the operation by means of the
second case of Proposition 20. For where the calculation is in numbers rather
than symbols, one may proceed by this method as long as a sufficiently large
number of terms located on both sides of the term sought is given, even if
the series to be interpolated does not actually go off to infinity on both sides.

Now I extract from the table the logarithms of the twelve terms, the first
of which is the sixth term 120, so that there are six before and just as many
after the term which is sought. Then since that desired term is located right
in the middle of them all, the abscissa z in the second case of Proposition 20
will be z = 0; and consequently the first, third, and the rest of the odd-order
differences, which are multiplied by z, will not enter into the calculation;
therefore I only collect together the second, fourth, and the other even-order
differences as you see:

Logarithms

2.0791812460 2ncl cliff.

2.8573324964 669467896 4th cliff.

3.7024305364 579919470 21154180 6th diff.

4.6055205234 511525224 14443928 2568588 8th

5.5597630329 457574906 10302264 1446210 541511 10th

6.5597630329 413926852 7606810 865343 259252 156590

7.6011557180 377885608 5776699 543728 133583 65082

8.6803369641 347621063 4490316 355696 72996

9.7942803164 321846834 3559629 240660

10.9404083521 299632234 2869602

12.1164996111 280287236

13.3206195938
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And now I take out the two middle logarithms and the two middle differences
in each case; and I put their sums equal to A, B, C, D, etc. respectively as
you see:

6.5597630329
7.6011557180

A = 14.1609187509,

865343
543728

D = 1409071,

413926852
377885608

B = 791812460,

259252
133583

E = 392835,

7606810
5776699

C = 13383509,

156590
65082

F = 221672.

Then in the second case of Proposition 20 I substitute 0 for z, and I have

T = ~A - 116B + 2;6C - 2;48D + 6535536E - 52~~88F + &c.

Now write in the values just found for A, B, C, D, E, F, and the calculation
will be as follows:

7.08045937545
1568380

2098

+ 7.08047508023

494882787
34401

266

- 494917454

And on subtracting the sum of the negative terms from that of the positive
terms, there will remain T = 7.07552590569. And this is the logarithm of the
number 11899423.08, which indeed stands in the middle between the terms
3628800 and 39916800.

Now just as the principal terms are formed by multiplying the first re­
peatedly by the numbers 1,2,3,4, etc., so by Proposition 16 the intermediate
terms are generated by multiplying the intermediate term between the first
and the second repeatedly by the numbers 1~, 2~, 3~, 4~, etc. For example,
the product ofthe ten factors 1~, 2~, 3~, 4~, 5~, 6~, 7~, 8~, 9~, 1O~ and the
term which stands in the middle between the first and the second is equal to
the intermediate term just found, 11899423.08, whose place is indeed in the
middle between the eleventh and twelfth terms. Therefore if that intermedi­
ate term is divided by 1O~, and the quotient by 9~, and the new quotient by
8~, and so on up to the divisor q, then the last quotient will be equal to
the term in the middle between 1 and 1. Now the intermediate terms coming
out by that division are
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Principal Intermediate
39916800

11899423.08
3628800

1133278.389
362880

119292.4620
40320

14034.40729
5040

1871.254305
720

287.8852777
120

52.34277777
24

11.63172839
6

3.323350969
2

1.329340388
1

.8862269251
1

1.7724538502

From this it is established that the term between 1 and 1 is .8862269251,
whose square is .7853 ... etc., namely the area of a circle whose diameter
is one. And twice that term, 1.7724538502, namely the term which stands
before the first principal term by half the common interval, is equal to the
square root ofthe number 3.1415926 ... etc., which denotes the circumference
of a circle whose diameter is one. For if the squares of the principal terms
form a new series 1, 1,4,36, 576, 1440, etc. the term in the middle between
the first and the second will be to one as the area of the circle is to the
circumscribed square: and the term which stands before the first by half
the common interval will be to one as the circumference of a circle is to its
diameter. But it will be shown in what follows how series of this type can be
interpolated without logarithms.

Example 3

Suppose that quadrature of the curve whose ordinate is X Ii - 1 x (e + jx'1). is
required. Write 0, 1, 2, 3, etc. successively for the index A, and the series of
equidistant ordinates

will come out, between which the proposed ordinate will be located at an
interval A from the beginning. Therefore the area sought will have the same
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position among the areas of those ordinates, which form the following pro­
gression of equidistant terms:

&c.

Now if these areas were to be interpolated by means of Proposition 19, the
same series would result for the area sought as that obtained by the common
method of resolving the ordinate into a convergent series in order that the
fluent may be found from it. But suppose the terms in the series of areas are
first divided respectively by the terms of this geometric progression, namely

(e + fx'7)o, (e + fX'7)l, (e + fX'7)2, (e + fx'7)3, &c.

That is, suppose we put

1

A - x O x 7i- 0'(e + fx'7)

e ~
A = xO x 7i + 0+'7

1 1 '(e + fx'7)

e 3 3e2 t x 'l 3et2 x 2 '1 t 3 x 3
'1

o T + 0+'7 + 0+2'7 + 0+3'7A3 = X X -'----'-'-"----'-...:....::.,~--'--'-

(e + fX'7)3

&c.

Let the calculation be set up according to Proposition 19, and the differences
will be found to be

-7]fxO+'7 +27]2 j2xO+2'7
B= C="':"":"':"-....,....,.."..:-:..:--:-:-----:---=

0(0 + 7])(e + fx'7) , 0(0 + 7])(0 + 27])(e + fX'7)2 '

-67]3 j3x0+3'7
D = 0(0 + 7])(0 + 27])(0 + 37])(e + fX'7)3' &c.

When these have been substituted for A, B, C, D, etc. and Afor z, you will
find the term at distance A from the beginning to be

A7]fxo+'7 A(A - 1)7]2 j2X0+2'7
....,.,...,-~,.-------,-+----,-,.--..:.....,-..,..-...:....:..-',-.,..--,.--.,..".

0(0 + 7])(e + fx'7) 0(0 + 7])(0 + 27])(e + fX'7)2

A(A - l)(A - 2)7]3 j3X0+3'7
-;;-;-:;---'-;--;-;:----'-:::-:-";'7""'--'-=~~---::__= + &c.
0(0 + 7])(0 + 27])(0 + 37])(e + fX'7)3
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But because the terms to be interpolated had been divided by the powers
of e + fx 1J , namely each by the power whose index was the distance of the
term from the beginning, now, inversely, multiply the term just found by the
power of the stated binomial, whose index is A, in fact its distance from the
beginning, and for the area of the curve

x lJ
). ( ATJfx1J A(A - 1)TJ2 px21J )

- x e + x 1J x 1 - + - &c.
(J ( f) (0 + TJ)(e + fX 1J ) ((J + TJ)(O + 2TJ)(e + fX 1J )2

will be obtained. Or on putting

fx 1J

y = e + fX 1J '
O+TJ

r=--,
TJ

and writing the series in the Newtonian manner,

x lJ ). A A-I A - 2 A - 3
- x (e + fx 1J ) - -Ay - --By - --Cy - --Dy - &c.
(J r r+l r+2 r+3

will come out for the area of the curve whose ordinate is, generally, x lJ - 1 x (e+
fx 1J )•. And when this series has been transformed by means of Proposition
7, it will change into Newton's series for the quadrature of binomial curves.
It terminates when the index A is a positive integer, but after the necessary
preparation of the ordinate it will always terminate when quadrature of the
curve can be effected. But its principal usefulness is that it expresses the
areas in a series which is quite simple. If the coefficients e, f have opposite
signs, Newton's series is to be preferred, and ours where the signs are the
same.

Example 4

Let it be required to assign the binomial coefficients given the middle coef­
ficient in a power whose index is an even number. If n denotes the index of
the power and the middle coefficient is multiplied repeatedly by the fractions

n

n+2 '

n-2

n+4 '

n-4

n+6 '
&c.,

the products will be the remaining coefficients located on both sides of the
middle one:
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n n-2 n-4
a6=ax--x--X--,

n+2 n+4 n+6
n n- 2

a4 = a x -- x --,
n+2 n+4

n
a2 = a x --2'

n+
a = a,

n
2a =ax --2'

n+
n n-2

4a=ax -- x --,
n+2 n+4

n n-2 n-4
6a = a x -- x -- x -- .

n+2 n+4 n+6
And if a denotes the middle coefficient, then a2, a4, a6, etc. on one side and
2a, 4a, 6a, etc. on the other will denote the remaining coefficients. Then,
beginning the calculation according to the first case of Proposition 20, you
will find

a _ r
2

A _ r2 - 4 B _ r2 - 16 C _ r
2

- 36 D _ &c.
2(n + 2) 4(n + 4) 6(n + 6) 8(n + 8)

to be the term of the series which has to be interpolated, whose distance from
the middle term a is to the common interval of the principal terms as r is
to two. For example, in the twelfth power the coefficients are 1, 12, 66, 220,
495, 792, 924, 792, etc., the middle coefficient being a = 924. And if that
coefficient is required which is at distance three from the middle, there will
be r = 6; and when this has been substituted along with 12 for n,

924- 23~4A- 43~6B- 6~~8C

comes out for the coefficient sought, the series terminating: and these terms
with the fractions removed are 924 - 1188 + 594 - 110, the sum of which
according to their own signs is 220, which is the value of the coefficient
sought.

And in the same way, if the index n is an odd number and A is either of the
middle coefficients, then the coefficient whose distance from the intermediate
point between the two middle coefficients is to the common interval as r is
to two will be

A _ r
2

- 1 A _ r2 - 9 B _ r2 - 25 C _ r
2

- 49 D _ &c.
2(n + 3) 4(n + 5) 6(n + 7) 8(n + 9)

And in a very large power these series will converge provided that the
interval between the middle coefficient and the one sought is very small com­
pared with the index of the power.
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Scholion

After the series to be interpolated has been prepared by means of Proposition
17 as required, even if it goes off to infinity on both sides, one may proceed
by means of Proposition 19 except where the terms on both sides at equal
distances from the middle are equal to each other; where this happens, the
first case of Proposition 20 may be used, if by a certain rule some principal
term can claim the place in the middle of all the terms: or if two terms
can claim the middle place by the same rule, the second case of the same
proposition may be used. And in other cases one may proceed more or less
at will.

(p.251) Proposition 22

Given a series of equidistant terms, to find any term, principal or interme­
diate, no matter how far distant from the beginning of the series.

If the term sought is far removed from the beginning, then by means of
Proposition 18 determine another series in which that desired term forms a
term near the beginning; then proceed as in the above proposition.

Example 1

Let it be proposed to find any term at an arbitrarily large interval m from
the beginning for this series

1, fA, ~B, ~c, ~D, &c.

By Proposition 18 the term of the series

1,
a 2b 3c 4d

&c.
m+l ' m+2' m+3' m+4'

which is located before the first term by half the common interval, will be
equal to the term of the former series whose interval from the beginning is
m. Now it is established by Example 2 of Proposition 21 that the term which
is at a distance half of the common interval before the first term in the series
of numerators 1, 1.1, 1.1.2, 1.1.2.3, etc., that is, in this series 1, 1, 2, 6, 24,
120, etc., is the square root of the number 3.1415926 .... etc. Consequently, I
only interpolate the denominators, namely

1,
1

m+l '
1

(m + 1)(m + 2) ,
1

(m + 1)(m + 2)(m + 3) ,
&c.

And since this series can be continued to infinity on both sides, it will in fact
be continued, and will become

&c., (m - 2)(m -1)m, (m -1)m, m, 1,
1

m+l '
1

(m + 1)(m + 2)' &c.
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77762

858
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Here the term sought is located in the middle between the two middle terms
m and 1: but because the differences of these terms are very large, let those
which are at the same distance on both sides of the middle be multiplied by

each other; that is, m by 1, (m - l)m by _1_, and so on; and the new
m+1

series

m-2 m-1 m-1 m-1 m-1 m-2
&c., --2'--lm, --1 m , m, m, m--

1
, m--·--, &c.

m+ m+ m+ m+ m+1 m+2

will result, which goes off to infinity on both sides and has equal those terms
which are the same distance from the middle. But also the term located in
the middle between the two middle principal terms m and m is the square
of the term in the middle between m and 1 in the former series. Therefore
that term between m and m in the last series may be sought by means of the
second case of Proposition 20, and this will be found to be

m 9m 75m
m+ + + +&c.

4(m + 1) 32(m + l)(m + 2) 128(m + l)(m + 2)(m + 3)

When this has been multiplied by the circumference of the circle, namely the
square of the corresponding term in the series of numerators, you will have
for the square of the term sought

(
A 9B

3.14159 ... &c.x m+( )+( )
4m+1 8m+2

25C 49D &)+ + + c.
12(m + 3) 16(m + 4)

Therefore the term of the proposed series 1, fA, !B, ~C, etc. at a dis­
tance m from the beginning is equal to the mean proportional between the
circumference of the circle and that series, which converges more rapidly the
larger m is, that is to say, the further the term sought is from the beginning.

For example, let m = 100, and the first term of the series will be the
circumference of the circle multiplied by 100, or A = 314.15927; then there
will be

A 9B 25C
B = 4 x 101 = .77762, C = 8 x 102 = .00858, D = 12 x 103 = .00017;

and the sum of these four terms is 314.94564, whose square
root 17.7467079 is the hundred-and-first term of the series
to be interpolated, or the product f x ! x ~ x ~ etc. with
one hundred factors. And in the same way one may find
any intermediate term: for if 99! is written for m, the term 314.94564
in the middle between the hundredth and hundred-and-first terms will be
obtained. Or if 99~ is substituted for m, the term located after the hundredth
term by a third part of the common interval will be obtained.
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It should be noted that the reciprocals of the terms of some series can
be interpolated: thus the reciprocals of the terms in the last series form the
series

1, ~A, iE, ~c, ~D, &c.

in which the term removed by an arbitrary interval equal to ~m will be equal
to the term of the series

1,
a

m+l '

3b

m+3'
5e

m+5 '

7d

m+7'
&c.

which is located in the middle between the first and second terms, and which
consequently will be found to be the mean proportional between the following
series

1 A 9E 25C 49D &--+ + + + + c.
m + 1 2(m + 3) 4(m + 5) 6(m + 7) 8(m +9)

and the number .6366197723676, which is equal to one divided by the semi­
circumference of the circle: this will be confirmed by following the steps of
the first part of this example.

Example 2

Suppose that for this series

1, fA, iE, ~C, ~~D, &c.

a term which is arbitrarily far removed from the beginning, namely by an
interval m, is sought: and by Proposition 18 that term will be equal to the
term of this series

1,
2a

3m+2 '
5b

3m+5 '
8e

3m+8 '

lId
3m+ 11'

&c.

which is located before the first term by a third part of the common interval.
Therefore the numerators and denominators may be interpolated separately
as in Example 2 of Proposition 21, namely by logarithms; and the term sought
will be obtained.

Scholion

Hence it is established that very remote terms of series can be determined no
less accurately than intermediate terms near the beginning. But in the series
for interpolation

~A r+l E &1" ,c.
P p+ 1

if the difference between p and r is great, likewise the work involved in finding
an arbitrary term will be great. Now the easiest case of all is where p - r
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is equal to ±~, as in Example 1, except where that difference is a whole
number, in which case the series will be exactly interpolable.

Proposition 23

To find the ratio which the middle coefficient has to the sum of all the coef­
ficients in any power of the binomial.

First Solution

If the index is an even number, let it be called n; but if it is odd, let it be
called n - 1; and as the middle coefficient is to the sum of all the coefficients
of the same power, so one will be to the mean proportional between the
semicircumference of the circle and either of the following series:

A 9B 25C 49D 81E &
n+ + + + + + c.

2(n + 2) 4(n + 4) 6(n + 6) 8(n + 8) 10(n + 10)

or

A
n+1--,....-­

2(n - 1)
9B

4(n - 3)
25C

6(n - 5)
49D

8(n - 7)
81E _ &c

10(n - 9) .

For example, if the ratio of the middle coefficient to the sum of all the co­
efficients in the hundredth or ninety-ninth power is required, there will be
n = 100; when this has been multiplied by the semicircumference of the
circle, it produces the first term A = 157.079632679; then there will be

and by carrying out the calculation as at the
side, the sum of the terms will be found to be
157.866984459, whose square root 12.5645129018
is to one as the sum of all the coefficients is to
the middle coefficient in the hundredth or ninety­
ninth power. Now this calculation has been done
using the former series: for although the difference
is very small, I prefer the one in which the terms
are all of the same sign.

B=~
204 '

9B
C = 416'

25C
D = 636' &c. 157.079632679

769998199
16658615

654820
37137

2734
246
26
3

157.866984459

Second Solution

With n remaining as before, the sum of all the coefficients will be to the
middle one as the square root of the ratio of the semicircumference of the
circle to either of the following series:

1 A 9B 25C 49D 81E &
----- + + + + + + c.
n + 1 2(n + 3) 4(n + 5) 6(n + 7) 8(n + 9) lO(n + 11)
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or

1 A
n 2(n-2)

9B

4(n - 4)
25C

6(n - 6)

49D

8(n - 8)
81E _ &c.

lO(n - 10)

A -...!:- B - ~ C _ 9B _ 25C &
- 101 ' - 206' - 420' D - 642' c.

.00630316606305
3059789351

65566914
2553229
143473
10469

Now from the calculation at the side it appears 934
that the sum of the terms is .00633444670787, 98
whose square root .0795892373872 is to one as the 12
middle coefficient is to the sum of all the coeffi- 2
cients in the ninety-ninth or hundredth power. .00633444670787

And so altogether there are four series of the same simplicity for the
solution of this problem. But in practice there is no need to revert to series:
for it suffices to take the mean proportional between the semicircumference
of the circle and n + ~; for this will always approximate more closely than the
first two terms of the series, of which even the first alone suffices for the most
part. For example, if n = 100, there will be n + ~ = 100~, which multiplied
by the semicircumference of the circle produces 157.865, whose square root
is 12.5644, less by one in the last figure.

Now the same approximation may be expressed otherwise and in a manner
much more convenient in practice as follows. Let c be to one as the square
of the diameter is to the circle; that is, let c = 1.2732395447352; and the

sum of the coefficients will be to the middle coefficient as one is to)2 c
n+1

approximately, the error being an excess of about ~2)2 c l' If n = 100,
16n n+

there will be -2c = .006334525, and its square root .07958973 is accurate
n+1

in the sixth decimal: in fact, when this has been divided by 16n2
, that is

by 160000, it will give the correction .00000050; and when this has been
subtracted from the approximation, it leaves the number sought .07958923,
which is accurate in the last figure.

Likewise if n = 900, there will be _c_ = .000706962545, whose square
2n+ 1

root .026588767 exceeds the true value by two in the last figure. But if the
correction is computed and subtracted from the approximation, the number
sought will be obtained accurate in the thirteenth decimal.

Or which comes back to the same, put a = .6366197723676, namely the
quantity which results on dividing one by the semicircumference of the circle;
and the mean proportional between the number a and either of those series
will be to one as the middle coefficient is to the sum of them all.

Thus if the index is n = 100, as in the calcu­
lation above, there will be according to the first
series
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But here is an equally easy and more accurate approximation. Let the
difference between the logarithms of the numbers n + 2 and n - 2 be divided
by 16, let the quotient be added to half the logarithm of the index n, and
then let the constant logarithm .0980599385151, namely half the logarithm of
the semicircumference of the circle, be added to this sum; the final sum will
be the logarithm of the number which is to one as the sum of the coefficients
is to the middle one. For example, if n = 900, the calculation will be

~l, 900

16) Diff. of Log. 902 & Log. 898
Constant Log.

Sum

1.4771212547

.0001206376

.0980599385

1.5753018308

And this sum exceeds the true value by two in the last figure, and it is
the logarithm of the number 37.6098698 which is to one as the sum of the
coefficients is to the middle coefficient in the power 900 or 899. And if you wish
the reciprocal of that number, take the complement of the logarithm, namely
-2.4246981692, and the number corresponding to this will be .0265887652
which gives the ratio of the middle coefficient to the sum of all the coefficients
in the powers already stated.

Demonstration

The powers of the binomial whose indices are even numbers have a unique
middle coefficient; but those whose indices are odd have two middle coeffi­
cients. And hence two cases of the problem arise. In the first, where the index
is even, divide the sums of the coefficients 1, 4, 16, 64, 256, 1024, etc. by the
corresponding middle coefficients 1, 2, 6, 20, 70, 252, etc. and the quotients

1 2 8 16 128 256 & 1 2 A 4 B 6 C 8 D &
, '3' 5' 35' 63' c. or , 1 ' 3 ' 5 ' .", c.

will be to one as the sums of the coefficients are to the middle coefficients in
the various powers.

Likewise, if the sums of the coefficients in the odd powers, namely 2, 8,
32, 128, 512, &c. are divided by the corresponding middle coefficients 1, 3,
10, 35, 126, &c. the quotients will again turn out the same, being

2, 16
5'

128
35' &c.

For there is the same relation between the sum of the coefficients and the
middle coefficient in any even power as there is between the sum of the
coefficients and the middle coefficient in the odd power immediately below.
And so the interpolation of the series 1, fA, ~B, ~c, ~D, etc. as in the first
Example of the twenty-second Proposition solves both cases of the problem.
But here we will give an investigation of these series without the method of
differences.
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Analysis of the First Solution

The series to be interpolated 1, tA, ~B, etc. is defined by the equation

T ' n + 2 T h . . bl . d . . I= -- ,were n IS a vana e quantity, an ItS succeSSIve va ues are
n+l

0, 2, 4, 6, 8, etc., namely the indices of the powers when they are even, or
the indices augmented by one when they are odd. Square both sides of the
equation to be resolved, and

T'2 = n
2+ 4n + 4 T 2

n2 + 2n + 1

will be obtained, or what is the same

Now take

T2 = An + Bn + Cn + Dn + &c.
n + 2 (n + 2)(n + 4) (n + 2)(n + 4)(n + 6)

And after the required reduction according to rules already presented, you
will find

2 C - 2B D -4C
T = An + B + n + 2 + (n + 2)(n + 4) + &c.

In this write the subsequent values of the variables for the preceding ones,
that is, T'2 for T2 and n + 2 for n, and

'2 C - 2B D - 4C
T = A(n + 2) + B + + ( 4)( 6) + &c.n+4 n+ n+

will emerge. Then by taking the difference of these values and multiplying
this by n + 2,

2C - 4B 4D - 16C &
(n + 2)(T

2
- T,2) = -2A(n + 2) * + n + 4 + (n + 4)(n + 6) + c.

will result. But if n + 2 is written for n in the expression previously taken for
T2

(
BCD )T,2 = n+2 x A + -- + + + &c.

() n + 4 (n + 4)(n + 6) (n + 4)(n + 6)(n + 8)

will be obtained. And on dividing by n + 2,

T'2 BCD
--=A+--+ + +&c.
n + 2 n + 4 (n + 4)(n + 6) (n + 4)(n + 6)(n + 8)

Now substitute in the equation to be resolved the values of
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reduced to the same form, and

2B A 4C - 9B 6D - 25C 8E - 49D & °
- + + + + c. =

n + 4 (n + 4)(n + 6) (n + 4)(n + 6)(n + 8)

will result. Finally by setting the numerators equal to zero, you will have

2B - A = 0, 4C - 9B = 0, 6D - 25C = 0, 8E - 49D = 0, &c.

And these are the relations of the coefficients in the first series. And the latter
series in the first solution arises in the same way.

Analysis of the Second Solution

The second solution is accomplished by interpolation of the series 1, ~a, ib,
~c, ~d, etc. whose terms are the reciprocals of those in the first: in fact it is

defined by the equation T' = n + 1 T, in which the successive values of n are
n+2

0, 2, 4, 6, 8, etc. as before. And on squaring

T,2 = n
2 + 2n + 1 T 2

n 2 +4n+4

results, that is,

Let us now form

T2=~+ B + C
n + 1 (n + l)(n + 3) (n + l)(n + 3)(n + 5)

D
+ +&c.

(n + l)(n + 3)(n + 5)(n + 7)

And by substituting n + 2 for n,

T ,2 A B C_----,-_---,...=--+ +
n + 3 (n + 3)(n + 5) (n + 3)(n + 5)(n + 7)

+ D +&c.
(n + 3)(n + 5)(n + 7)(n + 9)

will come forth, and so

( ) ) (
2'2 4B 6C

n + 1 (n + 3 T - T ) = 2A + n + 5 + (n + 5)(n + 7)

8D
+ +&c.

(n + 5)(n + 7)(n + 9) ,



(p.262)

Proposition 24 139

which after reduction to the required form is

2A
4B 6C - 8B 8D - 24C &+--+ + + c.

n + 3 (n + 3) (n + 5) (n + 3) (n + 5) (n + 7)

Now write these values in the equation to be resolved, and

2B - A 4C - 9B 6D - 25C
n + 3 + (n + 3)(n + 5) + (n + 3)(n + 5)(n + 7)

8E-49D & °+ + c.=
(n + 3)(n + 5)(n + 7)(n + 9)

will result. When the numerators have been equated to zero, they will give
the relation of the coefficients of the former series in the second solution.

That moreover the coefficient A is the semicircumference of the circle in
one case and its reciprocal in the other is demonstrated thus. By the first
series

T
2 = An x (1 + 2(n~ 2) + &c').

Now the larger n is, the closer the equation T2 = An approaches the truth,
since the latter terms eventually become infinitely smaller than the former.

Therefore if in the equation T 2 = An, or A = T
2

, for n are written succes-
n

sively its values 2, 4, 6, 8, 10, etc. and at the same time the squares of the
corresponding terms for T 2 , the following equations will arise, which contin­
uously approximate to the true value of A:

A=2,

A=2 x ~
9'
8 24

A = 2 x 9 x 25'

8 24 48
A=2x-x-x-

9 25 49 '
&c.

Hence the value of A is the product of all terms

8 24 48 80
2 x - x - x - x - x &c.

9 25 49 81

up to infinity; this is equal to the semicircumference of the circle according
to Wallis's Arithmetica Infinitorum.

Proposition 24
If the whole numbers 0, 1, 2, 3, 4, etc. are written successively for z in the
ordinate of the curve x r+z- 1 X (1 - x)p-r-l, I say that there is the same
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relation between the areas of the resulting ordinates as there is between the
terms of the series

a,
r
-ap ,

r+1
b

p+ 1 '
r+2
p+2 c,

r +3 d &
'

c.
p+3

provided the abscissa x is equal to one.

For let the areas and corresponding ordinates be

Areas Ordinates
A x r- 1 X (1 _ x)p-r-l

B x r x (1 _ x)p-r-l

C x rH x (1 - x)p-r-l

D x r+2 x (1 _ x)p-r-l

E x r+3 X (1 - x)p-r-l

&c. &c.

Then on comparing these areas by means of Proposition 7 of Newton's De
Quadratura Curvarum, you will find

B = r A - x r x (1 - x )p-r

p

(r + 1)B - xr+l X (1 - x)p-r
C = p+ 1 '

(r + 2)C - x r+2 X (1 - x)p-r
D= p+2 '

(r + 3)D - x r+3 X (1 - x)p-r
E= ,

p+3

&c.

Now let x be equal to one, as is assumed in the theorem; and there will
be 1 - x = 0, in which case the relation of the areas is

B= ~A,
p

C=r+1 B
p+1 '

D=r+2 C
p+2 '

E=r+3 D
p+3 '

&c.

And so there is the same relation between the areas of these curves and
between the terms of the proposed series when the abscissa x is one. Q.E.D.

Corollary. Hence in the series

r r+1
b

r+2
a, pa, p + 1 ' p + 2 c, &c.,

if z denotes the interval between the first term a and any other principal
or intermediate term T, the first term a will be to any other principal or



Proposition 24 141

intermediate term which is distanced from the beginning by an interval z as
the area of the curve whose ordinate is x r - 1 X (1 - x)p-r-l is to the area of
the curve whose ordinate is x r+z - 1 X (1 - x)p-r-l.

Example 1

Let the series
1, ~a, ib, ~c, kd, &c.

be given for interpolation. Since the common difference of both the numer­
ators and the denominators is 2, divide these by two, so that this difference
becomes one as in the theorem, and the series will become

1,
1 ~

fa, tb, &c.

which, when compared with that in the proposition, gives p = 1, r = ~; when
these have been substituted, we will have that the first term of the series, or
one, is to any other principal or intermediate term distanced by an interval
z from the beginning as the area of the ordinate X-1/ 2 x (1- x)-1/2 is to the
area of the ordinate x z - 1/ 2 x (1- X)-1/2, that is, as the area of this ordinate

1 XZ

~ is to the area of this ordinate~.
YX-~ x-~

Thus if the required term is located in the middle between the first and
X 1/ 2

the second, there will be z = ~, in which case the latter ordinate is~'
x - x 2

1
or vT=X: and so, one is to the term in the middle between the first and

I-x

the second terms as the area of the ordinate h- is to the area of the
x - x 2

1
ordinate r,--:::' that is, as the circumference of the circle 3.1415926 ... etc.

yl-x
is to 2, which by this means produces .63661977 ... etc.

If the hundred-and-first term of the same series is sought, there will be
z = 100; and so, one is to the proposed term as 3.1415 ... etc. is to the area

xlOO

of the ordinate~ . And similarly on putting z = 100~, the term in the
x - x 2

middle between the hundred-and-first and the hundred-and-second terms will
be determined by the circumference of the circle and the area of the ordinate

X 100

r,--:::: throughout, however, the parts of the areas which lie above the
yl-x
abscissa equal to one have to be taken.

The reciprocals of the terms can also be interpolated, and that is some­
times more convenient than interpolation of the terms themselves. The re­
ciprocals of the terms in the last series are 1, fa, tb, etc., and so r = 1,
p = ~; and thence, the first term is to the term distanced by an interval z
from the beginning as the area of the ordinate xOx (1- x)-3/2 is to the area
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(
f1-::: ; for quadrature can be effected exactly for the first curve.

l-x)yl-x

of the ordinate X Z x (1 - x)-3/2, that is, as 2 is to the area of the ordinate
XZ

Example 2

Let the series to be interpolated be

1, ~b, lOd &IT' c.

Divide the numerators and the denominators by their increment 3j and you
will find p = ~, r = !j hence let the first ordinate be X- 2/3 x (1 - x)-2/3,

1 X
Z

or {j ; and let the second ordinate be {j 2 3 4 • Then,
x 2 - 2x3 + x 4 X - 2x + x

the first term of the series is to any other whose distance from the beginning
is z as the area of the former is to the area of the latter.

(p.263) Proposition 25

If the whole numbers 0, 1, 2, 3, 4, etc. are written successively for z in the
ordinate of the curve x P- Z x (1 - xt+z- 1 , there will be the same relation
between the areas of the resulting ordinates as there is between the terms of
the series

~a r+l
b

r+2
c

r+3 da, p' p _ l' p _ 2' p _ 3 ' &c.,

where the numerators increase continually, while the denominators decrease.
And here I also put the abscissa x equal to one.

This proposition is demonstrated as above.

Corollary. Hence in the series

a,
r
-ap ,

r + 1 b
p-l '

r+2
--2 c,p-

r+3 d &, c.,
p-3

as the first term a is to any other term which is distanced from the beginning
by an interval z, so the area of the curve whose ordinate is x P x (1 - xt-1

is to the area of the curve whose ordinate is x p- z x (1 - x)r+z-l.

Example 1

Let the series

1,
n
-a
1 '

n-l
-2- b,

n-2
-3- c,

n-3
-4-d, &c.

be given for interpolation, whose terms are the binomial coefficients in the
power whose index is n. Since this series does not fall directly under this
proposition, I interpolate the reciprocals of the terms
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1
-a,
n

_2_
b

n-1 '
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3
--2c, &c.,
n-

(p.265)

by which means there will be r = 1, p = n; and so, one is to the term in the
latter series distanced from the beginning by an interval z as the area of the
ordinate x n x (1 - x)O is to the area of the ordinate x n - z x (1 - xy: or, one
is to the term in the first series removed from the beginning by an interval z

1
as the area of the ordinate xn - z x (1 - x)Z is to --.

n+1
Thus if the coefficient of the fifth term in the ninth power is required,

there will be n = 9, z = 4; when these have been written in, the area of
the ordinate x5 x (1 - X)4 will be to 11

0
as one is to the coefficient sought.

Now the expanded ordinate is x5 - 4x6 + 6x7 - 4x8 + x 9 , and its area is
1 4 6 4 1 1. hi' 1 • 126 h' h .
(5 - '7 + 8 - 9' + 10' or 1260' t en, as 1260 IS to 10 so one IS to ,w lC IS

the proposed coefficient.

Example 2

If the term which is located in the middle between the two coefficients 1 and
1 in the simple power of the binomial is required, the index of the binomial
will be n = 1 and z = ~; and hence one is to the term between the coefficients
1 and 1 as the area of the ordinate x 1/ 2 x (1 - X)I/2 is to ~, that is, as the
area of the circle is to the circumscribed square.

Scholion

When curves whose quadratures are required are of very many dimensions,
some of their ordinates have to be found by means of a table of logarithms;
the areas will be given by these by means of Newton's parabola. However,
if the relation of the terms in the series to be interpolated involves several
terms, the interpolation will be completed by comparison with other curves.
But passing over this material, let me add certain things concerning other
methods of interpolation.

Proposition 26

Let the series to be interpolated be

and put n = r - p, and

1,
r
-ap ,

r + 1 b
p+ 1 '

r+2
p+2 c,

r+3 d &
'

c.
p+3
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n n-l
B=-·--xA

1 2 '

n-l n-2 ( n)C=-_·_-x B+-A
2 2 3'

n-2 n-3 ( n-l n n-l )D= -_. -- x C+--B+-· --A
3 2 3 3 4 '

n-3 n-4 ( n-2 n-l n-2
E= --. -- x D+--C+--·--B

4 2 3 3 4

n n-l n-2 )+_·--·--A
3 4 5 '

n-4 n-5 ( n-3 n-2 n-3
F= --._- x E+--D+--·--C

5 2 3 3 4

n-l n-2 n-3 n n-l n-2 n-3 )+ --. --. --B+ _. --. -_. --A
345 3456 '

&c.

Then the principal or intermediate term of the series to be interpolated, whose
distance from the beginning is z - p, will be

n( BCD E)z x A + - + 2" + 3" + 4" + &c. .
z z z z

It is to be noted that by Proposition 18 the coefficient A is equal to the
term in the series of numerators 1, ra, {r+ l)b, (r+2)c, etc. which is distanced
by an interval p - r from the beginning; and that is determined by means of
Example 2 of Proposition 21.

Demonstration

The proposed series is defined by the difference equation T' = z + n T, where
z

n = r - p as in the theorem and the successive values of the indeterminate z
are p, p + 1, p + 2, etc. Now suppose that

n( BCD E)T = z x A + - + 2" + 3" + 4" + &c. ,z z z z

then write for T and z their next values T' and z + 1, respectively, and

'{ n ( B C D E &)
T = z+l) x A+ z+1 + {z+I)2 + {z+I)3 + {z+I)4 + c.

will come out. Or on developing the powers
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T ' n (A nA + B (nA + 2B) (n - 1) + 2C
=zx + + 2 2Z z

(nA + 3B)(n - 1)(n - 2) + 6(n - 2)C + 6D &)+ 3 + c..
6z

The equation to be resolved T' = z + n T may be written in the following
z

manner, T'z - Tz - Tn = 0; let the expressions for T and T' be substituted
in this, and

n (n(n - I)A - 2B (nA + 3B)(n - l)(n - 2) - 12C &) 0
z x 2z + 6z2 + c. =

will result. Now let the numerators be set equal to zero, and

n n-l
B=-·--xA
12'

n-l n-2 ( n)C =--. -- x B+-A
2 2 3'

&c.

will be obtained. And on continuing the calculation the rest of the coefficients
will come out as in the theorem. Q.E.D.

Example 1

Consider the series

1, ~d, &c.,

z-!
which is defined by the equation T' = __2 T, in which the successive values

z
of z are 1, 2, 3, 4, etc. When this has been compared with the equation

T' = :..=.!!:.T, it gives n = -~, and hence
z

3
B=-xA

8

15 ( 1)C= 16 x B- 6A

35 ( 3 1)D = - x C - -B +-A
24 6 16

E= 63 x (D - ~C + ~B- 2-A)
32 6 16 32

99 ( 7 35 7 7)F=-x E--D+-C--B+-A
40 6 48 32 384

&c.

And so

105
= A x 1024'

1659
=A x 32768'

6237
=A x 262144'
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T = ~ x (1 ~ ~ ~ 1659 6237 &c)..;z + 8z + 128z2 + 1024z3 + 32768z4 + 262144z5 + ..

Now the quantity A in examples of this type can be determined as follows.
Find a principal term sufficiently far from the beginning by means of the
relation of the terms to be interpolated, for example, the sixteenth, which
produces .144464448 ... etc. here. Write this for T and at the same time for
z its corresponding value, namely 16; and you will have

A ( 3 25 )
.144464448 = "4 x 1 + 8.16 + 128.16.16 + &c. ,

or, on collecting the terms into one sum,

A
.144464448 = "4 x 1.02422627,

from which A = .564189583548 comes out: when this has been given, T will
be given in any desired case by a very few of the terms in its expression.

Example 2

Let it be required to interpolate the series

1, 2la, lId &10' c.

1

which is defined by the equation T' = z + :3 T, the successive values of the
z

abscissa z being t, ~, i, 130, etc. Having been compared with the equation
in the theorem, this gives n = t; when this value has been substituted,

T = A~ x (1-2- * ~ 11 _ 77 &c.)
9z +2187z3 + 19683z4 59049z5 +

will be obtained.
Now to extract the coefficient A, I seek the fourteenth term of the series

to be interpolated, which comes out as 4.652136: then I write this value for
T and for z its fourteenth value ~o, and I have

3[40 ( 1 1 )4.652136 = Ay 3" x 1 - 120 + 518400 + &c. .

Or on extracting the cube root of the number ~o and collecting the terms
into one sum, I obtain 4.652136 = A x 2.351506, and so A = 1.978364. Now
that A has been given, any other term will be found with the greatest ease.
Let the term which is located before the thousand-and-first term by a third
part of the common interval be sought: for z write its corresponding value
1000 and the expression for T will come out as
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lOA X (1 - _1_) or T = 19.78144.
9000 '

For where the required term is far removed from the beginning and the cal­
culation does not have to be extended to a great number of figures, a very
few terms in the expression for T are amply sufficient.

Scholion

I h h . T' z + n T .n t e same way as t e root is extracted from the equatIOn =-- III
z

this proposition, it is also extracted from any other which is contained in the
following form:

T x (zO + azO- 1 + bzo- 2 + &c.) = T' x (zO + czO- 1 + dzO- 2 + &c.).

For the index n = a - c according to Proposition 6; and then the form of the
series to be taken for T will be

T = Azn + Bzn
-

1 + Czn
-

2 + &c.

Indeed in series of this type which are roots of difference equations, the indices
of z have one for their decrement, except in certain cases which are very
special. Therefore when the index of z in the first term has been obtained,
the form of the series to be taken for the root T is determined: then on writing
z + 1 for z and T' for T

T' = A(z + l)n + B(z + l)n-l + C(z + l)n-2 + &c.

will come out. Then by bringing this expression back to the form of T, as
has been shown above, and by multiplying both expressions by the quantities
which the equation to be resolved already contains, the coefficients taken will
be given by combining like members in the resulting equation.

(p.267) Proposition 27
2

If the equation for the series is T' =+- T, the root will be
z +r

r r + 1 r + 4 r + 9 r + 16
T = A + ; A + 2(z + 1) B + 3(z + 2) C + 4(z + 3) D + 5(z + 4) E + &c.

2

Let the equation to be resolved T' = +- T be written in this form
z +r

z2T - z2T' - rT' = 0, and let T be taken as

BCD E
T = A + - + + + + &c.

z z(z + 1) z(z + 1)(z + 2) z(z + 1)(z + 2)(z + 3)

And there will be
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T'A BCD= + -- + + -,---.,-,----:-:----:-
z + 1 (z + l)(z + 2) (z + l)(z + 2)(z + 3)

E
+ +&c.

(z + l)(z + 2)(z + 3)(z + 4)

Hence

T _ T' = B + 2C + 3D
z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

4E
+ +&c.

z(z + l)(z + 2)(z + 3)(z + 4)

And on multiplying by z2

2T 2T' Bz 2Cz 3Dzz - z =-- + + -,---.,-,----:-:----:-
z + 1 (z + l)(z + 2) (z + l)(z + 2)(z + 3)

4Ez
+ +&c.

(z + l)(z + 2)(z + 3)(z + 4)

And as a result of reduction

2T 2T' B 2C - B 3D - 4C 4E - 9D &z - z = + + + + c.
z + 1 (z + l)(z + 2) (z + l)(z + 2)(z + 3)

Write this expression for z2T - z2T' and for T' the expression previously
found, and

B A
2C - (r + l)B 3D - (r + 4)C 4E - (r + 9)D & 0

-r + + + + c. =
z + 1 (z + l)(z + 2) (z + l)(z + 2)(z + 3)

will result. And by comparing like members,

r
B= lA, C=r+1 B

2 '
D = r+4 C,

3
E= r+9 D,

4
&c.

These are the values of the coefficients: but if A, B, C, etc. denote whole
terms, the value of T which has now been assigned will come out. Q.E.D.

Example

Wallis found the ultimate term of this series

1, ~A, 24B
25 '

48C
49 '

80D &8T' c.

to be the area of a circle whose diameter is one; here the denominators are
the squares of the odd numbers and are one more than the numerators. But
let us see here what is the ultimate term of this series

1 4A 16B 36C
, 3' 15 ' 35 ' ~~D, &c.,



(p.269)
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where the numerators are the squares of the even numbers and are one more
z2

than the denominators. The equation for this series will be T' = -2--1 T,
z - 4"

the successive values of the abscissa z being 1, 2, 3, 4, etc.: therefore on
comparing this equation with that in the proposition, there will be r = - ~,

and when this has been substituted, it produces

T A
A 3B 15C 35D 63E &= - - + + + + + c.
4z 8(z + 1) 12(z + 2) 16(z + 3). 20(z + 4)

And for the determination of the coefficient A, seek the tenth term of the
series, namely 1.5300.1727.35; substitute this for T and at the same time for
z its corresponding value 10; and you will obtain

1.5300.1727.35 = A x (1- _1_ _ 1.3 _ 1.3.15 - &c.)
4.10 4.8.10.11 4.8.12.10.11.12

That is, on collecting the terms into one,

1.5300.1727.35 = A x .9740.3924.54, and hence A = 1.57079633,

in fact the semicircumference of the circle: when this has been given, any
principal or intermediate term of the series to be interpolated will be given
very easily. Moreover, it is established that its ultimate term, or the product
of all the factors

4 16 36 64 100
- x - x - x - x - x &c.
3 15 35 63 99 '

is equal to the first coefficient A, and so to the semicircumference of the circle.

Proposition 28

511an9

1188z9 + &c.

511an9

1188x9 + &c.

To find the sum of any number of logarithms, whose arguments are in arith­
metic progression.

Let x+n, x+3n, x+5n, x+7n, ... , z-n denote an arbitrary collection of
numbers in arithmetic progression, the first of which is x+n, the last z-n, and
whose common difference is 2n. Moreover, let I, z and I, x denote the tabular
logarithms of the numbers z and x; and let a = .43429.44819.03252, namely
the reciprocal of the natural logarithm of ten. And the sum the logarithms
set forth will be equal to the difference between the following two series

zl,z az an 7an3 31ans 127an7

~ - 2n - 12z + 360z3 - 1260zs + 1680z7

xl,x ax an 7an3 31ans 127an7

-2-n- - 2n - -12-x + -36-0-x-3 - -12-6-0x-s + -16-8-0-x"="7

Moreover, these series are continued to infinity as follows: put
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1
- 3.4 = A,

1
-5.8 = A+3B,

1
- 7.12 = A + lOB + 50,

1
- 9.16 = A + 21B + 350 + 7D,

- 1
20

= A + 36B + 1260 + 84D +9F,
11.

&c.,

where the numbers which multiply A, B, 0, D etc. in the various identities
are the alternate coefficients in the odd powers of the binomial. These things
having been stated, the coefficient of the third term will be - 112 = A, that
of the fourth + 3~O = B, of the fifth - l~~O = 0, and so on.

Demonstration

Let the variable z be reduced by its decrement 2n; or what is the same, let
z - 2n be substituted for z in the series

zl,z _ az _ an + 7an3 _ 31an5 + &c.
2n 2n 12z 360z3 1260z5

and its successive value

(z - 2n) l, (z - 2n) a ( )------'--'-------'- - - x z - 2n
2n 2n

an 7an3 31an5 &- + - + c
12(z - 2n) 360(z - 2n)3 1260(z - 2n)5 .

will result. Subtract this from the former value, the terms having been re­
duced first to the same form by division, and

an an2 an3 an4

l,z- - - - - - - - -&c.
Z 2z2 3z3 4z4

will be left, that is, the logarithm of the number z - n. And so in general
the decrement of two successive values of the series equates to the logarithm
of z - n; this represents in general anyone of the logarithms which had
to be summed. Therefore the series will be the sum of the logarithms set
forth provided the second series is subtracted from it. For sums just as areas
sometimes have to be corrected in order that they evaluate correctly.
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Example 1

Let it be proposed to find the sum of the logarithms of the ten numbers 101,
103,105,107,109,111,113,115,117,119; on comparison with x+n, x+3n,
x + 5n, ... , z - n these give common difference 2n = 2 and so n = 1; and
the first x + 1 = 101, the last z - 1 = 119, so that x = 100, z = 120. Now
when these have been substituted, as well as .43429.44819.03252 for a and
the logarithms of 100 and 120 for l, x and l, z respectively, the values of the
two series will be found to be 78.28491.40012.1 and 98.69290.42601.6, whose
difference gives 20.40799.02589.5 for the required sum of logarithms.

Example 2

Now let the sum of the logarithms of the numbers 11, 12, 13, ... , 1000 be
required, the first of which is 11 and the last 1000, and the common difference
is one. Therefore n = ~, x + ~ = 11, z - ~ = 1000; whence x = 22

1
, Z = 2°2°1;

when these have been written in, as well as the logarithms of 22
1 and 2°2°1 for

l, x and l, z, the numbers 2567.20555.42879 and 6.16067.30987 result for the
values of the series, whose difference leaves 2561.04488.11892 for the required
sum of logarithms.

Further, if you wish the sum of the logarithms of the natural numbers 1,
2, 3, 4, 5, etc., no matter how many, let z - n be the last of the numbers with
n = ~, and three or four terms of this series

a 7a
zl,z - az - 24z + 2880z3 - &c.

added to half of the logarithm of the circumference of the circle whose radius is
one, that is, to 0.39908.99341.79, will give the desired sum, and that with less
effort the more logarithms there are to be summed. Thus if you put z - ~ =
1000, or z = 2°2°1, the value of the series will be 2567.20555.42879 as before,
which, when added to the constant logarithm, produces 2567.60464.42221 for
the sum of the logarithms of the first thousand numbers of the series 1, 2, 3,
4, 5, etc.

Example 3

Suppose that it is required to find the five-hundredth coefficient in the thou­
sandth power of the binomial. It follows from Newton's Theorem for expand­
ing the binomial that that coefficient is equal to the product of the four
hundred and ninety-nine factors

1000
1

999
2'

998

3'
997

4'
996

5'
.. , , 502

499 '

the first of which is 1°1°0 and the last ~~~; both the numerators and the
denominators are in arithmetic progression. In order to find the sum of the
logarithms of the numerators 1000,999,998,997, ... , 502, put the common
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difference 1 = 2n, the greatest of them 1000 = z - ~, the least 502 = x + ~;

then there will be n = ~, z = 1000~, x = 501~, and when these have been
substituted, 2567.20555.42879 will result for the value of the former series
and 1136.38715.63268 for the value of the latter; then the difference of these,
1430.81839.79611, is equal to the sum of the logarithms of the numerators.
Then in order to obtain the sum of the logarithms of the denominators 1, 2,
3,4, ... ,499, put n = ~, z- ~ = 499, or z = 499~, and when these have been
written in the former series, its value 1130.98834.85966 will result, to which
the logarithm .39908.99342 is added according to the rule in the previous
example; and you will have 1131.38743.85308 for the sum of the logarithms
of the denominators. Finally, when this has been subtracted from the sum of
the logarithms of the numerators, 299.43095.94303 will remain, which is in
fact the logarithm of the desired coefficient.

(p.274) Scholion

Series of this type

1, ~Ap ,
r+l

B
p+ 1 '

r+2 C &
'

c.
p+2

are interpolated by means of Proposition 26, when the difference between
r and p is very small, and in general by this proposition if no account is
taken of that difference. And in exactly the same way one can find the sum
of logarithms of numbers which are made up in a much more complicated
fashion than by equal differences; and in that way one can determine the
terms of series whose interpolation is considered to be very difficult. The
areas of curves whose ordinates are of this type (1 - x)1000, where the index
of the binomial is very large, are also found by this problem, but only in that
case when the part of the area sought lies above the part of the abscissa equal
to one.

And indeed almost all problems concerning interpolations may be treated
by this analysis, even if three or more terms of the series to be interpolated
appear in the difference equation: for I have the resolution of these in my
power. And it is appropriate to note here that series which arise by New­
ton's parabola also arise by our method. For suppose that it is proposed to
interpolate the series

r+n
a, --a,

r

r+n+l
b

r + 1 '
r+n+2

2
c,

n+
r+n+3 d &

r +3 ' c.,

which is defined by the equation

T' ~ z+n+r T,
z+r

in which the successive values of the abscissa z are 0, 1, 2, 3, etc. Let it be
written in the following way:
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(z + r)(T' - T) - nT = O.

Let T be expressed in the form

T = A + Bz + Cz(z - 1) + Dz(z - l)(z - 2) + Ez(z - l)(z - 2)(z - 3) + &c.

And on substituting T' for T and z + 1 for z

T' = A+B(z+ l)+C(z+ l)z+D(z+ l)z(z-l)+E(z+ 1)z(z-1)(z-2)+&c.

will be obtained. Whence

T' - T = B + 2Cz + 3Dz(z - 1) + 4Ez(z - l)(z - 2) + &c.

Now when these values have been substituted into the equation which has to
be resolved and the terms have been reduced to the same form,

+rB} +2(r + l)C } z
-nA - (n -l)B

+3(r + 2)D } z(z _ 1)
- (n - 2)C

+4(r + 3)E} _
_ (n _ 3)D z(z - l)(z - 2) + &c. - 0

(p.275)

will result. Finally, on setting like terms equal to zero, the following identities
will be obtained:

n 1 n-1 1 n-2 1 n-3
B = -A, C= - x --B, D = - x --C, E= -4 x --3 D, &c.

r 2 r+1 3 r+2 r+

And so

n z n z n-1 z-l
T = A + A x - x - + A x - x - x -- x -- + &c.

r 1 r 1 r+1 r+2

That is,

n z n-1 z-l n-2 z-2 n-1 z-3
T = A+ -A- + --B-- + --C-- + --D-- +&c.,

r 1 r+1 2 r+2 3 r+3 4

where A, B, C, D, etc. no longer denote coefficients, but whole terms. And
the first coefficient A, which is not determined by the equation, is equal to
the term of the series to be interpolated which passes through the beginning
of the abscissa z. And this is that very value of the term T which would have
been produced by Proposition 19. And also the series which Proposition 20
provides will be found through resolution of the difference equation by taking
the required form of the root.

Proposition 29

Let a series of ordinates be given where the ordinates are distanced from each
other by arbitrary intervals and the series goes off to infinity on just one



154 Part II

side; and let it be required to find the parabolic line which goes through the
extremities of them all.

R A

Let A, Ai, A2 , A3 , etc. be ordinates standing at right angles on the
abscissa; and let R be any point on the abscissa; and put

that is to say, let a, b, c, d, e, etc. be the intervals between the ordinates and
the point R respectively. And let T denote in general any ordinate whose
distance from the point R is z. Then put

B 1 -Bc= ,
c-a

B _ A4 - A3 &
3 - e _ d ' c.

&c.

And the ordinate will be

c1 -c
D= ,

d-a

D _ C2 - C1

1- e-b '

&c.

D 1 -D
E= , &c.

e-a

&c.

T=A+
B x (z - a) +
C x (z - a) x (z - b) +
D x (z - a) x (z - b) x (z - c) +
Ex (z - a) x (z - b) x (z - c) x (z - d) +
F x (z - a) x (z - b) x (z - c) x (z - d) x (z - e) +

&c.
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It is to be noted that the beginning of the abscissa, namely the point R,
is to be taken arbitrarily, either between the ordinates or outside of them
all as in the diagram, as long as account is taken of + and - signs. Now
the proposition is demonstrated by substituting the ordinates A, AI, A2 , etc.
successively for T, and at the same time for z its successive lengths in order
a, b, c, etc. For by taking differences of the resulting equations and dividing
these by the intervals of the ordinates, the values of the coefficients assigned
above will come out.

Example 1

Let the intervals of the ordinates from the beginning of the abscissa be a = 2,
b = 3, c = 5, d = 6; let the ordinates themselves be

A=2,
Al = 3,
A2 = 5,
A3 = 12.

B= 1,
B I = 1,
B2 = 7,

c=o,
CI = 2,

D-!
- 2'

And by setting up the calculation according to the instructions of the theo­
rem, it will be found that B = 1, C = 0, D = !: and when these have been
substituted along with 2 for A, it will be found that

T = 2 + (z - 2) + ! x (z - 2) x (z - 3) x (z - 5),

which is
T = z3 - lOz 2 + 33z - 30

2

after it has been brought back into order. For if 2, 3, 5, 6 are written in it for
z, the proposed ordinates 2, 3, 5, 12 will come out.

Example 2

Let it be required to determine the time of the solstice given some meridian al­
titudes of the sun about the same time. Let the ordinates denote the altitudes
of the sun and let their intervals denote the times between the observations;
then let the parabola pass through the extremities of the ordinates, and its
abscissa which corresponds to the least ordinate, whether it be one of the
given ordinates or some intermediate ordinate, will determine the moment
of time at which the sun enters the Tropic. For example, in the year 1500
B. Walther of Niimberg observed the distances of the sun from its zenith as
follows:

44975
44934
44883
44990

8th}9th
12th of June.

16th
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Now let the observed distance on the eighth day be the first ordinate, and let
the beginning of the abscissa be at the same point; and there will be a = 0,
b = 1, c = 4, d =8; and the calculation will be

A = 44975,
Al = 44934,
A2 = 44883,
A3 = 44990.

B = -41,
B1 = -17,
B - +107

2 - 4'

C=+6,
C - 175

1 - +28"'
D = +3

1
2'

And on substituting these values for A, B, C, it will be found that

T = 44975 - 41z + 6z(z - 1) + 312Z(Z - l)(z - 4),

that is,
T = 44975 - 375 Z + 187 Z2 + "!"Z3

8 32 32·

Now since the abscissa sought will correspond to the least ordinate, let the
fluxion of T be set equal to zero, and

3z2 + 374z = 1500,

will be obtained, whose root 3.889355 expresses the number of days which
have elapsed between the meridian of the eighth of June and the moment of
the solstice; and so this took place at approximately 21 hours 20~ minutes
after the meridian of the eleventh, according to these observations. The time
of the solstice can also be determined by means of more observations and a
parabola of more dimensions, or by means of three observations using the
conical parabola as Halley instructed. But it is necessary that the differences
between the observed altitudes are significantly greater than the errors which
can be made in the course of observation, otherwise nothing can be concluded
with certainty.

(p.276) Scholiou

Newton uses this proposition for determining the position of a comet which
falls between some positions known by observations. Certainly if one ob­
serves a number of longitudes which are denoted by just as many ordinates
whose intervals are proportional to the times between the observations and
the parabola is described through the extremities of the ordinates, the inter­
mediate ordinates of this figure will denote the intermediate longitudes of the
comet for times which are proportional to the abscissae. And by the same
method the latitude will be given for any time if some latitudes are given.
Now if the longitude and latitude have been given, the path of the comet in
the heavens is given. And in this way very many things which are difficult to
observe can be determined with sufficient accuracy from some previous and
some subsequent observations.

This proposition is also applicable for the resolution of pure or affected
equations. For by writing for the root in the equation to be resolved numbers
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which are not much different from it, their intervals will come out, which,
having been interpolated, will produce the root. But after Halley's resolution
of equations a more compendious solution is to be hoped for in vain.

In the case when the intervals of the ordinates are infinitely reduced this
problem will give the root of a fluxional equation, even if neither the root nor
the other indeterminate flows uniformly, and this is achieved by nothing more
than substitution of fluxions of the root for differences of the ordinates, and of
fluxions of the abscissa for their intervals. For just as the case of equidistant
ordinates corresponds to uniformly increasing fluxions of the abscissa, so this
proposition corresponds to fluxions which vary according to an arbitrary law.
And the resolution of a fluxional equation in which both indeterminates flow
according to arbitrary laws is not a corollary of this proposition, but its
simplest case of all: it is appropriate to mention this here in passing, in order
that it may be understood that the Method of Differences embraces in a very
general way the universal doctrine of series, a fact which perhaps some have
not realised.

Proposition 30

To find the asymptote of the hyperbola of logarithmic type given some of its
equidistant ordinates.

Let the equidistant ordinates be A, B, C, D, E, etc. which stand on the
abscissa PLat right angles to it; and let QR be the asymptote of the curve,
which is parallel to the abscissa and at distance PQ from it. In fact, let any
abscissa AL be called z and let the corresponding ordinate Lm be y. Now
the logarithmic hyperbola H mK is defined by an equation of this form

y = a - brz
- cr2z

- dr 3z - er4z
- &c.;

Q

__~-,-~H~_~m

R

P A B C L D E F

here r, a, b, C, d, e, etc. are constant quantities; and PQ, the distance between
the abscissa and the asymptote, will be
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PQ=A+

&c.

The coefficients of the letters A, B, C, D, etc. in the various terms are
formed by repeated multiplication of the numbers

n-l
1, --1'r-

n-r
r2 - l'

n - r 3

--, &c.
r4 -1

Furthermore, in the first term n = rO, in the second n = r 1 , in the third
n = r 2 , in the fourth n = r 3 , and so on. For example, in the fourth term the
coefficients taken in reverse order and neglecting the signs are

in fact

and finally
r3 _ r2

(r+r 2 +r3 )x 3 =r3
j

r -1

and in this way the coefficients are found. However, in this proposition I
exclude the case in which r = ±1 j for then the hyperbola degenerates to a
straight line.

The series is investigated as follows. Let the sign of the abscissa z be
changed in the equation assumed, y = a - brz - cr2z - &c., and there will
result

bed
y = a - - - - - - - &c.

rZ r2z r 3z

Now let z become infinitely large, and in the value of the ordinate y all the
terms after the first will vanish so long as r is greater than onej in that way
there will be y = a, that is, the ordinate removed to infinite distance, or
the distance between the abscissa and the asymptote PQ, is equal to the
first term a: for at infinite distance the curve coincides with its asymptote.
Moreover, the quantity a is investigated as follows in the equation first taken,
y = a - brz - cr2z - dr3z - er4z - &c. Write the equidistant ordinates A, B,
C, D, E, etc. successively for y and correspondingly 0, 1,2,3,4, etc. for the
abscissa Zj and the following equations will result:
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A = a - b - c - d - e - &c.

B = a - br - er2
- dr3

- er4
- &C.

C = a - br2
- cr4

- dr 6
- er8

- &C.

D = a - br3
- cr6

- dr9
- er12

- &C.

E = a - br4
- er8 - dr 12

- er16
- &C.

&C.

There are therefore as many equations as there are unknowns a, b, c, d,
e, etc. from which a is obtained by ordinary algebra, and its value will come
out the same as has already been assigned to PQ. Q.E.D.

Corollary. Hence if some initial terms in an infinite series are given, whose
differences are approximately in geometric progression, the last one of all,
namely the one which is at infinite distance from the beginning, will be given.
For if A, B, C, D, etc. taken in reverse order denote terms whose differences
are almost in geometric proportion as rO, r 1 , r 2 , r 3 , etc. the last one of all
will be equal to PQ, the interval between the abscissa and the asymptote:
or, in the terminology of Gregory, the termination of the series will be given.

Example

Given some regular polygons inscribed in a circle, to find the last of the
polygons or the area of the circle. Let them be

4 2.00000.00000.0000 = F
8 2.82842.71247.4619 = E

16 3.06146.74589.2072 = D
32 3.12144.51522.5805 = C
64 3.13654.84905.4594 = B

128 3.14033.11569.5475 = A

3.14033.11569.5475
126.08888.0294

6072.7439
5.5652

119

3.14159.26535.8979

Let the last polygon be called A, the penultimate B, the antepenultimate C,
and so on backwards. And since their differences A - B, B - C, C - D, etc.
are approximately as the terms 1, 4, 16, 64, 256, etc., that is, as the powers
offour, there will be r = 4; when this has been substituted, the general series
becomes

A A - B 4A - 5B + C 64A - 84B + 21C - D &
+ 3 + 3.15 + 3.15.63 + c.

In this write for A, B, C, etc. their values, and the first five terms will
give the area of the circle to fifteen places of figures, as is clear from the
adjacent calculation. And the matter is carried out similarly by means of
circumscribed polygons.



(p.280)

160 Part II

Moreover, any series can be summed by this method. For if the equidistant
ordinates denote successive sums, the value of the whole series will be equal
to the distance between the asymptote and the abscissa. If the series to be
summed is of this type a + bx + cx2 + dx3 +&c., where x, x 2 , x 3 , etc. denote
parts of the terms which are in geometric progression, there will be r = x;
and the further the successive sums, which are denoted by A, B, C, D, etc.
are from the beginning the more rapidly the value of PQ will converge. But
in the case where r = ±1, the hyperbola which is defined by this type of
equation

1 ( bed )y = - x a + - + "2 + "3 + &c.zn z Z z

is to be taken in place of the hyperbolic logarithm; and the index n will be
determined from the nature of the series to be summed.

It is to be noted that infinite series can equally be summed by means
of Newton's parabola as by means of these hyperbolas. For, if the ordinates
which are equidistant in the hyperbolas are set up at certain fixed distances,
they will produce by means of the parabola the same expressions for the
values of the series.

The number of figures which are true in the polygon A is doubled by two
terms of the series, tripled by three, and so on. Thus in the example given
there are three true figures 314 in polygon A, and from this five terms of
the series have given the area of the circle to fifteen places of figures. And
these are approximations of the type which James Gregory and Huygens have
previously found: indeed the latter trebled the true figures, while the former
quadrupled them, quintupled, and in fact he extended them without limit, as
may be seen in the Appendix to the Vera Circuli et Hyperbolae Quadratura.

Proposition 31

To find the area of any curve very closely given some of its equidistant ordi­
nates.

Describe the parabolic figure through the extremities of the ordinates,
and its area, which is found by known methods, will be approximately equal
to the area of the proposed curve. Q.E.I.

Scholion

Since it would be laborious to go back always to the parabola, I have com­
puted the following table which shows the area of a curve directly given some
of its equidistant ordinates.
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Table of Areas

3

5

7

9

3

5

7

9

A+4B R
6

7A + 32B + 12C R
90

41A + 216B + 27C + 272D R
840

989A + 5888B - 928C + 10496D - 4540E R
28350

Table of Corrections

P-4A+6B R
180

P - 6A + 15B - 20C R
470

P - 8A + 28B - 56C + 70D R
930

P - lOA + 45B - 120C + 210D - 252E R
1600

In these tables A is the sum of the first and the last ordinates, B is the sum
of the second and the penultimate ordinates, C is the sum of the third and
the antepenultimate ordinates, and so on until the ordinate in the middle
of them all has been reached, which is represented by the last of the letters
A, B, C, etc. R is the base above which the area lies, or that part of the
abscissa intercepted between the first and the last ordinates. P is the sum of
the two ordinates one of which is located before the first ordinate, the other
after the last ordinate, at distances equal to the common interval of the other
ordinates. Now the number of ordinates, which here is odd, is indicated at
the sides of the tables. The expressions in the Table of Areas are the areas
contained by the base, the curve, and the extreme ordiriates at both ends. And
those in the Table of Corrections are approximately of the same magnitude
as the differences between the true areas and those produced by means of the
table: and so if the first figure of the correction is found, then let it be added
if the correction is negative, or subtracted when this is positive; one may
safely conclude that the area so corrected is true in that place of decimals in
which the first figure of the correction appears, and not beyond it. And so
the area found is corrected by means of the Table of Corrections, and at the
same time the number of true figures is discerned.
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Example

1
Let -- be the ordinate of an equilateral hyperbola, and let its area which

x+l
lies above the abscissa equal to one be sought. Write for x successively

o 1 2 3 4 5 6 7 8
8' 8' 8' 8' 8' 8' 8' 8' 8'

and the nine ordinates

888888888
8' 9' 10' 11' 12' 13' 14' 15' 16

will come out. Therefore

8 . 8 3 8 8 64 8 8 48
A = 8 + 16 = 2' B = 9 + 15 = 45' C = 10 + 14 = 35 '

D - ~ ~ - 192 E - ~ -~.
- 11 + 13 - 143 ' - 12 - 3'

and when these have been substituted in the last expression for the areas
along with one for R, the area arises as .69314721. Then in the ordinate

1
-- write - kand ~ successively for x, and the two ordinates ~ and 1

8
7 will

l+x
come out, of which the former stands before the first ordinate and the latter
after the last ordinate; and so

8 8 192
p= 7+ 17 = 119;

when this has been substituted for P and for A, B, C, D, E their values, the
correction for nine ordinates will give +.00000003, which, since it is positive,
is subtracted from the value of the area previously found, and there will
remain .69314718, which is accurate in the last figure.

I had computed these tables further, but the expressions for eleven or more
ordinates are not suitable for application because of the huge magnitude of the
numerical coefficients. But if nine ordinates do not give the area sufficiently
accurately, let the base be divided into two or more parts, and then the
area will be divided into just as many parts, and if each of these is obtained
separately by means of nine ordinates, you will obtain the whole area as
accurately as you wish. But sometimes it is also convenient to find part of an
area by means of an infinite series, especially if the the curve crosses the base
at right angles. And these things having been noted beforehand, any area
will be obtained sufficiently accurately by means of the table now presented.

But also areas of curves can be expressed, not inconveniently, by means
of differences of equidistant ordinates as follows.



Proposition 31 163

Table of Areas by Means of Differences of Ordinates

1

3

5

7

9

11

13

A

A+ ~B

A+~B+;oC

A + !B + ~~ C + 8~10 D

A + ~B + :~C + 1
9
8
2
9 D + i6E

A + 25 B + 175 C + 3445 D + 4045 E + ..1LF
6 36 1512 9072 3503

A + 6B + 103 C + 158 D + 1833 E + 4813 F + ...!1!i.-G
10 21 700 11550 3050

In this table A is the ordinate in the middle of them all, B is the second
difference of the three ordinates in the middle, C is the fourth difference of
the five ordinates in the middle, and so on up to the last of the letters A, B,
C, D, E, F, G, which is the last difference of all the ordinates. Thus if there
are five ordinates a, b, c, d, e, there will be

A = c, B = b - 2c + d, C = a - 4b + 6c - 4d + e.

And it is similar in other cases. Now when these expressions have been mul­
tiplied by the base of the curve, or the part of the abscissa contained between
the first and the last ordinates, they give the areas according to the given
number of ordinates, which is indicated at the side. It is to be noted that the
final terms in the expressions for nine, eleven and thirteen ordinates are not
the true ones but are simpler than these and are in fact sufficiently close. For
the middle ordinate A and the differences B, C, D, E, etc. form a convergent
series; and so it is not required that the coefficients of the final terms which
enter into the calculation are absolutely accurate. Now it is discerned from
the convergence of the series A, B, C, D, etc. to how many figures the area
will be expressed accurately; and so this table does not require a table of
corrections. But also the numerical coefficients are much smaller than those
in the table above, and for that reason this table is to be preferred, especially
where there is a large number of ordinates.

Again let the area of the hyperbola whose ordinate is -11 be sought;
+x

r 't 0 1 2 3 4, d h fi 'd' d' t 1 4 2 4 1lor x wn e , 4"' 4"' 4"' 4"' an t e ve eqUl Istant or ma es '5"' 3"' "7' 2
will come out; therefore there will be A = ~, in fact the middle ordinate,
B = 1~5' that is to say, the second difference of the three ordinates in the
middle ~, ~, ~, and finally C = io' that is, it is equal to the last difference
of them all. And when these values have been substituted in the expression
for five ordinates, they give
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which, when multiplied by the base, or one, and expressed in decimals, results
in .69317 for the area sought. And this area is exact at least in the fourth
decimal place, that is, where the first figure of the last term 9bo appears.

But in order that the differences may be more readily and easily found:
let a be the middle ordinate, b the sum of the two ordinates on both sides
which are nearest to the middle, then c the sum of the two which follow on
both sides, and so on; then put

A=a,

B = b-2A,

C =c-2A -4B,

D = d - 2A - 9B - 6C,

E = e - 2A - 16B - 20C - 8D,

F = f - 2A - 25B - 50C - 35D - lOE,

G = 9 - 2A - 36B - 105C - 112D - 54E - 12F,
&c.

And A, B, C, D, etc. will be respectively the middle ordinate, the second dif­
ference of the three middle ordinates, the fourth difference of the five middle
ordinates, and so on with the rest.

Proposition 32

Let a, b, c, d, e, f, etc. denote equidistant terms which are tending continu­
ously to the ratio of equality, and the following equations will approximate to
their relations.

2 a-b=O

3 a - 2b+ c = 0
4 a - 3b + 3c - d = 0
5 a - 4b + 6c - 4d + e = 0
6 a - 5b + 10c - lOd + 5e - f = 0

7 a - 6b + 15c - 20d + 15e - 6f + 9 = 0

8 a - 7b + 21c - 35d + 35e - 21f + 7g - h = 0

9 a - 8b + 28c - 56d + 70e - 56f + 28g - 8h + i = 0

10 a - 9b + 36c - 84d + 126e - 126f + 84g - 36h + 9i - k = 0

&c.

This table is to be kept for use, so that it may be consulted as often as
there is need. Now it is clear that the numerical coefficients are the coefficients
of the powers of the binomial. And the demonstration is clear: for since
the terms are supposed to tend continuously to the ratio of equality, their
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differences a - b, b- c, c - d, d - e, etc. will be small; then the differences of
the differences a - 2b + c, b - 2c + d, c - 2d + e, etc. will be less than the first
differences; and the third differences a - 3b + 3c - d, b - 3c + 3d - e, etc. will
be less than the second; and the fourth a - 4b + 6c - 4d + e, etc. will be less
than the third, and so on to infinity. Therefore when the first, second, third
differences and the rest are set equal to zero as in the proposition, they will
approximate continuously to the true relation of the terms. Q.E.D.

Corollary. Hence if any term is lacking in a series of equidistant terms, it
can be found by means of this proposition. Thus if there are five terms a, b,
c, d, e, their relation will be a - 4b + 6c - 4d + e = 0; and anyone of them
will be given very closely by this equation if the others have been given.

And it is to be noted that, other things being equal, the nearer a term is to
the middle of all the terms, the more accurately it is determined: and errors
from the true value are approximately as the reciprocals of the numerical
coefficients of the terms sought. Therefore let the term sought be located
either in the middle of all the terms or as close as possible to this.

Example

Let the logarithm of the number 53 be sought given the logarithms of some
preceding numbers. Put a for the logarithm sought, and there will be

l, 52 = b = 1.71600.33436,

l,51 = c = 1.70757.01761,

l,50 = d = 1.69897.00043,

l,49 = e = 1.69019.06800,

l,48 = f = 1.68124.12374,

l,47 = 9 = 1.67209.78579.

Then the relation between the seven terms a, b, c, d, e, f, 9 will be

a-6b+15c-20d+15e-6f+g = 0, and so a = 6b-15c+20d-15e+6f-g:

on substituting in this for b, c, d, e, f, 9 their values, 1.72427.58726 will be ob­
tained for a, or the logarithm of the number 53, the error being .00000.00030
in excess. But if six logarithms are given, of which three are located before
and three after the one which is sought, I say that in that case the logarithm
sought will be determined very accurately.

Therefore let A, B, C, D, etc. denote the sums of the given terms which
are at the same distance on both sides of the term sought, and its values will
be as in the following table:
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2

4

6

8

10

A
2

4A-B

6

15A - 6B + C
20

56A - 28B + 8C - D
70

210A - 120B + 45C - lOD + E
252

&c.

(p.283)

For example, suppose that the logarithms of the numbers 50, 51, 52, 54,
55, 56 are given, and let it be required to find the logarithm of the number
53. Put

I, 52 + I, 54 = 3.44839.71034,

I, 51 + I, 55 = 3.44793.28656,

I, 50 + I, 56 = 3.44715.80313.

Then substitute these values for A, B, C in the expression for six terms, and
the number 1.72427.58695 will come out for the logarithm of the number 53,
the error being one in the last figure. Hence if perhaps some term is missing
in logarithmic, trigonometric, astronomical or other tables of this type, it
can be deduced by means of this proposition; or if there is a suspicion that
some term is erroneous, it can be corrected by the same method. For the
expressions shown here are general and certainly do not depend upon the
nature of any particular table.

Proposition 33
Let

&c., to, <5, ,,/, /3, Ct, a, b, c, d, e, &c.

denote successive terms in a series going off to infinity on both sides, and put

A = a + Ct, B = b + /3, C = c + ,,/, D = d + <5, E = e + to, and so on;

and the term located in the middle between a and Ct will be equal to

~XA+

116 x (A - B) +
2~6 x (2A - 3B + C) +

20
5
48 x (5A - 9B + 5C - D) +

6;5536 x (14A - 28B + 20C - 7D + E) +
&c.
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The numerical coefficients of the letters A, B, C, D, etc. are the differences
of the coefficients in various powers of the binomial: and the coefficients which
multiply the whole terms, namely !, 116 , 2~6' etc., are generated by repeated

multiplication of the numbers 4~2' 4~4' 4~6' 4~8' etc. Now that these things
have been noted in advance, the series is continued at will.

And the series is investigated by putting z = 0 in the second case of
Proposition 20; for then the ordinate or the term which is located in the
middle of them all will be obtained.

Now let the terms of the series be collected into one sum as you see here:

2

4

6

8

10

A
2

9A-B
16

150A - 25B + 3C
256

1225A - 245B + 49C - 5D
2048

39690A - 8820B + 2268C - 405D + 35E
65536

&c.

The first expression is the first term of the series, the second expression is
the sum of the first and the second terms, the third expression is the sum
of the first three terms, and so on. Thus if the successive terms are given,
the intermediate terms will be given rapidly by means of this table or of

the series itself. The first expression ~ suffices when the second term of the

series is less than anything which may come into the calculation. And it is
similar with the rest; for the terms of the series are the differences between
the expressions and the true value very closely: and so one may always know
which expression is sufficient for what has been proposed.

For example, suppose that the logarithm of the number 53 is required and
that those of the numbers 46, 48, 50, 52, 54, 56, 58, 60 are given; put

l, 52 + l, 54 = A = 3.44839.71035,

l, 50 + l, 56 = B = 3.44715.80313,

l, 48 + l, 58 = C = 3.44466.92309,

l, 46 + l, 60 = D = 3.44090.90820.

And when these values have been written in the series, or in the expression
for eight terms, 1.72427.58696 will be obtained for the logarithm of the num­
ber 53. And in the same way one may find any of the other intermediate
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logarithms. Therefore in the construction of tables it is enough to obtain first
of all some terms at the required distances; for the rest can be inserted by
this method. For the terms first found are to be interpolated repeatedly, until
the process has reached the final terms which appear in the table. And it is
to be noted that it is necessary to calculate all the terms about the beginning
of the table because of the large differences; then step by step one may omit
alternate terms with decreasing differences, and then groups of three and
groups of seven, where the differences are smaller. And this is the method
which Newton taught: but special rules deduced from the nature of the table
to be constructed are to be preferred; for these for the most part will complete
the task with less work.

THE END



Notes

Stirling's Preface (pp.17-18). This requires little comment since Stir­
ling expands on many of the points he makes in the main body of the text.
Concerning James Gregory see the note on Proposition 30. It is curious that
Stirling refers to Newton's first letter to Oldenburg for his quotation (... ex
Epistola ejus priori ad Oldenburgum ... ). In fact it comes from the epis­
tola posterior, which Stirling would have seen on pp. 67-86 (see p. 79) of the
first edition or on pp.142-190 (see p.l77) of the second edition of Collins's
Commercium Epistolicum [12]; see also my note on the Description of Curves
Through Given Points (pp. 242-243). Concerning De Moivre see the notes on
Propositions 13, 23 and 28, and the Appendix.

In the final sentence of the Preface Stirling refers to Sir Alexander Cuming
and the connection is elaborated in Stirling's letter to De Moivre which is
translated in the Appendix. It has already been noted that Sir Alexander
Cuming (ca 1690-1775) was one of Stirling's sponsors at the Royal Society
(see my Introduction, footnote 7). He had a fascinating life, during which he
was a baronet, a member of the Scottish bar, a Fellow of the Royal Society,
a Cherokee chief, and an alchemist, but died in poverty (see [59]).

Stirling's Introduction (pp. 19-32). The first two sections, On the Rela­
tion of Terms and On Difference Equations Which Define Series, are quite
clear and require little comment. In the first section Stirling discusses the
MacLaurin expansion of (r + sx + tx2)-1 (on the assumption that 0 is not
a root of the quadratic) and its Laurent expansion valid for Ixl sufficiently
large. In connection with the reference to De Moivre see the end of the note
on Proposition 13. In the second section Stirling introduces his notation for
the terms of a series (sequence): if T stands for an then T ' , Til, Till, Tiv, ...

stand for an+l, an+2, an+3, an+4,' ... Strictly, T ' , Til, T'll should be T i , T ii
,

Tiii but dashes are printed in the original and are retained here. The third
section, On the Form and Reduction of Series, is much more substantial.
While many of the particular rules which are stated and illustrated in it are
not used in the sequel, the underlying ideas do pervade the rest of the work.

Integral powers of a variable z appear naturally in analysis and are the
familiar building blocks for polynomials, rational functions, power series and
Taylor and Laurent expansions. However, they are not well-suited to numer­
ical work since, for example, the difference (z + l)n - zn cannot be put in
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any simpler related form. The factorial expressions z(z -1) ... (z - n + 1) and
(z(z + 1) ... (z + n))-1 are more suited for differencing: for example,

(z + 1)z(z - 1) ... (z - n +2) - z (z - 1) ... (z - n +1) =nz(z - 1) ... (z - n +2) .

For this and other purposes, Stirling discusses the representation of integral
powers of z in terms of such factorial expressions and provides two tables
along with attendant rules to facilitate such processes. We will consider these
in turn.

It is clear that for m a positive integer there is a uniquely determined set
of coefficients S(m, 1), ... , S(m,m) such that

zm = S(m, l)z + S(m, 2)z(z -1) + ... + S(m, m)z(z - 1) ... (z - m + 1) (1)

for all real or complex z. These coefficients are known nowadays as the Stir­
ling numbers of the second kind and are important in combinatorial the­
ory: S(m, k) can be characterized as the number of partitions of a set of
m elements into k nonempty classes. Stirling presents these numbers for
m = 1,2, ... ,9 in his First Table; according to the rule which he states
just before the table, the numbers in the rows are the coefficients in the
expansions

_1_ = .!. (1 _.!.) -1 = .!. + 2- + 2- + ... (n> 1),
n -1 n n n n2 n3

1 1 ( 1) -1 ( 2) -1
(n - l)(n _ 2) = n2 1 - ;;: 1 - ;;:

137= 2" + 3" + 4" + ... (n > 2),n n n

1 1 ( 1) -1 ( 2) -1 ( 3) -1
(n - l)(n _ 2)(n _ 3) = n3 1 - ;;: 1 - ;;: 1 - ;;:

1 6 25= 3" + 4" + 5" + ... (n > 3),n n n

and so on. We can explain this as follows. Note that for any positive integer
k the Laurent expansion of ((z - l)(z - 2) ... (z - k))-1 for Izi > k is of
the form L::=k Ctmz-m and the coefficient of z-m in this expansion is the
coefficient of Z-1 in the corresponding expansion of

zm S(m,l) S(m, k)
z(z - l)(z - 2) ... (z - k) = (z - 1) ... (z - k) + ... + z - k

+ S(m, k + 1) + S(m, k + 2)(z - k - 1) + ...
+ S(m,m)(z - k -1) ... (z - m + 1). (2)

But the only term on the right-hand side which can contribute to the term
in z-1 is
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S(m,k) (1- ~)-1 = S(m,k)~~ (Izl > k).
z Z ~zr+1

r=O

Thus the required coefficient is S(m, k). This shows that the k-th row of the
table consists of the numbers S(m, k) (m = k, k+ 1, ...) and the m-th column
contains S(m, k) (k = 1,2, ... , m).

It is clear from (1) that

S(m, 1) = S(m, m) = 1 (m = 1,2, .. .). (3)

Furthermore, from the above discussion S(m + 1, k) will be the coefficient
of Z-l in the Laurent expansion of zm+l (z(z - 1) ... (z - k))-l (Izl > k) or
equivalently the coefficient of z-2 in the Laurent expansion of

zm (z(z - 1) ... (z - k))-l (Izl > k).

Using (2) we see that for k = 2, ... m this comes from

S(m,k -1) + S(m,k) = S(m,k -1) (1- k _1)-1 (1- ~)-1
(z - k + 1)(z - k) z - k Z2 Z Z

+ S(:,k) (1_~)-1

and is therefore S(m, k - 1) + kS(m, k). Thus we have

S(m + l,k) = S(m,k - 1) + kS(m,k) (k = 2, ... ,m; m = 2,3, ...).

Apparently Stirling did not notice this fact which, in conjunction with (3),
allows us to construct the table much more easily.

For a positive integer m we can expand z-m-1 uniquely in the form16

1 a(m, m) a(m + 1, m)--= +----,--_-:...._~--''---------,-

zm+l z(z + 1) ... (z + m) z(z + 1) ... (z + m + 1)
a(m + 2,m)

+ ( ) ( ) +... (Rez> 0). (4)
z z+1 '" z+m+2

The coefficients a(k, m) are given in the Second Table for k = 1,2, ... ,9.
According to the rule given by Stirling just before the table the numbers in
the rows are the coefficients on the right-hand sides of the identities

16See, for example, [78, 7.82], where it is shown that a function of the form fez) =
2:::"=0 an z - n (I z I > r) can be expanded in the half-plane Re z > r in the form
fez) = bo+ 2:::"=1 bn «z + 1) ... (z + n))-I. The required development comes from
taking fez) = z-m, for which r = 0, and dividing by z. Using properties of inverse
factorial series (see [40, Chapter Xl) we see that the expansion is unique and that
conversely we will recover the original series if we form the Laurent expansion
of each of the functions bn «z + 1) ... (z + n))-I (Izl > n) and add together the
finite number of terms of each degree. The case m = 1 is applied in Example 6 of
Proposition 2 (see its note).
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n=n,

n(l+n) =n+n2,

n(1 + n)(2 + n) = 2n + 3n2 + n 3
,

and so on.17 Again we can explain this by considering Laurent expansions.
Let k be a positive integer and let m E {I, 2, ... , k}. Then from (4)

z(z + 1) ... (z + k - 1)
zm+1 =a(m, m)(z + m + 1) ... (z + k - 1) + ...

+ a(k - 2, m)(z + k - 1) + a(k - 1, m)

a(k, m) a(k + 1, m)
+ + )( ) + ....z + k (z + k z + k + 1

Now the coefficient of Z-l on the left-hand side is the coefficient of zm in the
expansion of z(z + 1) ... (z + k - 1), while on the right-hand side only

a(k, m) = a(k, m) (1 + ~)-1
z+k z m

can contribute to the term in Z-l. The required coefficient must therefore
be a(k, m). It follows that the entries in the k-th row of the table are the
numbers a(k, m) (m = 1,2, ... ,k).

It is clear from Stirling's rule that a(k, k) = 1 and a(k,l) = (k - I)!
(k = 1,2, ...). Again there is a simple recurrence relation:

z(z + 1) ... (z + k - l)(z + k)

= (a(k, l)z + a(k, 2)z2 + ... a(k, k)zk) (z + k)

= ka(k, l)z + (a(k, 1) + ka(k, 2)) Z2 + ... + (a(k, k - 1) + ka(k, k)) zk

+ a(k, k)zk+1

so that

a(k + 1, m) = a(k, m - 1) + ka(k, m) (m = 2,3, ... , k).

What are called nowadays the Stirling numbers of the first kind are in fact the
numbers (-I)k-ma (k, m), that is to say, in each column of Stirling's Second
Table every second entry is to be multiplied by -1. In combinatorial terms
a(k, m) is the number of permutations of k symbols which can be decomposed
into exactly m disjoint cycles.

17As an easy consequence we obtain the inverse of (1), which Stirling does not give:

z(z - 1) ... (z - k + 1) = a(k, k)zk - a(k, k - l)zk-1 + a(k, k - 2)zk-2

- ... + (_l)k+ 1a (k, l)z.
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As an application Stirling obtains the following expansion, which he ap­
plies in Example 5 of Proposition 2 and Example 2 of Proposition 3 (see their
notes and the note on Proposition 8):

1 f (l-nh
z2 + nz - z(z + 1) ... (z + k + 1) .

k=O

This is done by first finding the Laurent expansion

(izi > In!),

and then expressing each 1/zk+2 by its inverse factorial series. In fact his
series is

1
( )

F(l - n, 1 ; z + 2; 1),
zz+l

which, according to Gauss's formula (p.5, (1)), converges to the required
value provided Re(z + n) > 0 and z # 0, -1, -2, ....

We consider finally the rule which Stirling gives at the end of the Intro­
duction for transforming a series of the form

01 02 03

(
+ + + ...

z z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

into one of the form
al a2 a3 a4
2"+3"+4+5+···z z z z

by means of the columns of the First Table. Let each term be developed in
a series of negative integral powers of z. Then for m = k + 1, k + 2, ... the
coefficient of z-m in the expansion of (z(z + 1) ... (z + k))-1 for Izi > k is
the coefficient of z-m+k+l in the expansion of

( 1)-1 ( k)-1
1+~ ... 1+~ (izi > k),

which is (_l)m-k-l times the coefficient of z-m+k+l in the expansion of

( 1)-1 ( k)-11-- ... 1--
z z

(izi > k),

or equivalently (_l)m-k-l times the coefficient of z-m+l in the expansion of

1
(z - l)(z - 2) . .. (z - k)

(Izl > k).

Thus from our previous discussion of the First Table we see that the required
coefficient is (_l)m-k-l SCm - 1, k) (m = k + 1, k + 2, ...). Precisely the first
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m - 1 terms of the given inverse factorial series will contribute to the term
in z-m, whose combined coefficient will therefore be

m-l

am-l = (_1)m L (-1)k+l akS(m - 1, k)
k=l

(m = 2,3, ...).

This is Stirling's final rule, which will apply whenever both series are suitably
convergent; in general, the series of reciprocal powers may only be asymptotic.

There is no mention of the Bernoulli numbers in the Methodus Differ­
entialis. However, Stirling appears to have been aware at a later date of a
relationship between these and the numbers S(m, k) (see [70, pp. 15-16]).

Stirling was certainly not the first to realise the importance of factorial
expressions and their relevance for the calculus of finite differences and opera­
tions with series; indeed he refers to earlier work of the French mathematician
Fran~ois Nicole (1683-1758) in connection with Corollary 1 of Proposition 1.
Nicole's contributions are contained in his Traite du Calcul des Differences
Finies [49] (1717 and 1723) and its supplement [50] (1724). These have been
discussed in [72] by Charles Tweedie, who has also given an interesting ac­
count of the Stirling numbers in [73].

Stirling's Introductory Remarks in Part I (pp. 33-37). In the section
On Simpler Series Stirling quotes the series

l
x xO s(e + /x'1). /x6+'1

to-1(e + /t'1).-ldt =-(e + /x'1). - ~-:"""""--'::--''----
o ()e r()e2

s(s + 1)(e + /x'1).PX6+2'1
+ r(r + 1)()e3 - .•• ,

where r = () + 1] , s = () + >..1] . Apparently he obtained this by using Propo-
1] 1]

sition 7 from Newton's De Quadratura Curvarum [47, pp. 39-66], in which
Newton discusses the areas of binomial curves (see the note on Proposition 16
and its scholion and [77, vol. VII, pp. 26-29]). The series may be developed
by splitting up the integral and integrating by parts as follows:

l x

to-1(e + /t'1).-ldt

= ~ l x

to-1(e + /t'1).dt - £l x
to-l+'1(e + /t'1).-ldt

e 0 e 0
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xO(e + jx1J ). _ L(Ary + 1) x8+1J(e + jx1J ).
eO e 0 e(O + ry)

+ L(Ary + 1) L(~ + 1) {X to-I+21J(e + jt1J).-1dt
e 0 e () + ry io

and so on - this of course assumes that the parameters are such that all
evaluations at x = 0 are zero and that the sequence of integrals tends to
zero. In Example 3 of Proposition 21 Stirling uses interpolation methods
along with a series transformation to obtain the above result (see the note on
Proposition 21). Newton's Proposition 7 also finds application in Stirling's
Propositions 24 and 25.

In the case e = 1, j = -1, () = 1, ry = 2, >. = ~ we obtain

sin-1 x = {OX 1 dt
io~

~2 ( ~ 2 x 4 x ... x 2n 2n)= xv 1 - x~ 1 + L..J x
n=1 3 x 5 x ... x (2n + 1)

which is valid for -1 < x < 1. Stirling also notes the MacLaurin series

. -1 _ ~ (1 x 3 x ... x (2n - 1))2 2nH
sm x - x + L..J (2)' xn+ 1.

n=1

00 (2n) X
2n

+
1=; n (2n + 1)22n '

which is valid for -1 ::::; x ::::; 1, and comments on the relative merits of the
two series.

Stirling's remarks in the section On Series Which Converge More Rapidly
seem rather obscure. Presumably his comments about the use of the sine or
tangent relate to the problem of finding the angle (from which the area and
the arc length follow) when its sine or tangent is given - the MacLaurin series
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for the inverse sine converges for all possible x, namely -1 .:::; x :::; 1, whereas
the inverse tangent series

(-l:::;x:::;l)

applies only over a bounded part of the range of the tangent. In the case of
the hyperbola the angle is limited by that between the asymptotes.

Finally, in the section On Successive Sums we have Stirling's definitions
which are fundamental for his subsequent discussions. For a convergent infi­
nite series E:=no an the successive sums are the terms of the sequence

00

n=no

00

In the case of a finite sum E:=no bn , however, the successive sums are the
terms of the finite sequence

n=no n=no n=no

... ,
no
L bn = bno '

n=no

We are usually concerned with the former. Just as Stirling uses T, T', T", Till,
Tiv, . .. to denote the successive terms of a series, so he uses S, S', S", Sill,
Siv, ... to represent the successive sums. I8 He also labels the successive sums
by means of an abcscissa in such a way that S, S', S", Sill, ... correspond to
z, z + 1, z + 2, Z + 3, ... in the case of an infinite series and to z, Z -1, Z - 2,
Z - 3, ... in the case of a finite sum; in both cases Z is a conveniently chosen
initial value, which is not necessarily an integer.

Stirling's diagram represents a convergent infinite series: Sa is the sum of
the series and the successive sums are Sa, Sib, Sii c, ... , which tend to zero
since the curve approaches its asymptote; the differences of the successive
sums, Sa, Si/3, Sii-y, ... , represent the terms of the series.

Proposition 1 and Its Scholion (pp. 37-40). Here Stirling shows that if

then

r
_,~ as

ar - r.~ (r _ s)!
s=o

(r = 1,2, ...)

(Z = 1,2, ...).

18Strictly S', S", S'" should be Si, Sii, Siii, but it is only in the associated diagram
that this notation is used.
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His proof is essentially an induction argument except that, instead of verifying
directly that the result holds when z = 1, Stirling observes that when z = °
(no terms) the right hand side is also zero.

In Examples 1-5 he deduces that

z 1I> = 2"z(z + 1) (ao = O,al = 1,ar =°(r ~ 2)),
r=l

z

L(2r -1) = z2 (ao = -l,al = 2,ar =°(r ~ 2)),
r=l

z 1
L r2 = 6z (z + 1)(2z + 1) (ao = -l,al = a2 = 1,ar = a (r ~ 3)),
r=l

z 1
L(2r - 1)2 = 3z(4z2 - 1) (ao = 1, al = 0, a2 = 4, a r =°(r ~ 3)),
r=l

z 1
Lr3 = 4Z2(z + 1)2 (ao = a,al = 1,a2 = 3,a3 = 1,ar =°(r ~ 4)).
r=l

The summation formula which Stirling states in the scholion results from
applying Newton's forward difference formula to the sequence of partial sums

... ,

whose first differences are just the terms of the series and whose subsequent
differences are therefore as given in Stirling's table (see Proposition 19 and
its note).

Proposition 2 (pp.40-47). Stirling's expression for the sum is of the form

00 b
ml; mz(z + l)(z + 2) ... (z + m - 1) .

Provided such a series does not diverge everywhere we know from properties
of inverse factorial series (see pp. 6-7) that there is a real number a such that
its sum defines a function f(z) on (a, 00) and moreover f(z) ---+ 0 as z ---+ 00.
Stirling's proof shows that

00 b
m

f(z) - f(z + 1) =l; z(z + 1) ... (z + m) .

Thus if we give z any value Zo E (a, 00) and define

00 b
m

an =l; (zo + n)(zo + n + 1) ... (zo + n + m)
(n = 0,1, ...),
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we have
an = f (zo + n) - f (zo + n + 1)

and consequently

N

Lan = f(zo) - f(zo + N + 1) ---+ f(zo) as N ---+ 00.

n=O

Thus
00 00 b

~l; (zo + n)(zo + n + 7) ... (zo + n + m)

00 b
m

=l; mzo (zo + 1) ... (zo + m - 1) .

This is the essence of Proposition 2 and its proof.
Corollary 1 and Example 1 deal with the simple case where only one

bm is nonzero. Corollary 2 and Examples 2-4 are concerned with situations
where other rational terms can be expressed as sums of a finite number of
terms of the type dealt with in the proposition. Such expressions are obtained
by means of the techniques developed in Stirling's Introduction. Example 5
and Example 6 are much more significant and provide striking illustrations
of Stirling's stated aims: the transformation of slowly converging series into
rapidly converging ones.

Viscount Brouncker, the first President of the Royal Society, gave the
result

00 1 00 (_l)n-l
'"' = '"' = ln2~ 2n(2n -1) ~ n

in an article in the Philosophical Transactions for 1668 [11). Stirling deals
with the series in its first form in Example 5. Its successive sums can be
bounded by integrals in the usual way:

roo dx 00 1 roo dx

IN+l 2x(2x -1) < L 2n(2n -1) < IN+! 2x(2x - 1) ,
n=N+l 2

so that
1 1 2N + 2 ~ 1 1 l2N + 1
2" n 2N + 1 < L...J 2n(2n - 1) < 2" n 2N

n=N+l

We see from these inequalities that if, for example, we add up the first million
terms of the series, the residual sum would be approximately 2.5 x 10-7 ,

producing an error in the seventh decimal place (cf. Stirling's list of partial
sums at the end of Example 5).

Now the terms of Brouncker's series are given by

1

4z(z + ~)
(z = 1/2,3/2,5/2, ...)
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and if we apply Stirling's expression for 2 1 (Introduction, p.30) with
z +nz

n = 1/2 we can express the terms as

1 1 ~ 1 x 3 x ... x (2m - 3)
4z(z + !) = 4z(z + 1) +~ 2m +1z(z + 1) ... (z + m) , (*)

which is of the form required in the proposition. In order to find the sum of
the series Stirling adds up directly the first thirteen terms and transforms
the residual sum. We have

00 1 00 1

m~4 2n(2n - 1) = ~ 4(13.5 + n)(14 + n)

<Xl ( 1
=~ 4(13.5 + n)(13.5 + n + 1)

~ 1 x 3 x ... x (2m - 3) \
+ :::2 2m +1(13.5 + n)(13.5 + n + 1) ... (13.5 + n + m),.1

1 ~ 1 x 3 x ... x (2m - 3)
= +~4 x 13.5 m=2 m2m +l x 13.5(13.5 + 1) ... (13.5 + m - 1)

by the proposition. Stirling adds directly the first nine terms of this series,
presumably because he wants nine decimal places and the remaining terms
all have zeros in their first nine decimal places. Correctly rounded to nine
decimal places In 2 is .693147181, so that Stirling's calculated value is out by
1 in the final decimal place.

We can obtain error bounds as follows. In general the expression given by
the proposition for the sum of the terms (*) is

1 2:<Xl 1 x 3 x ... (2m - 3)
-+
4z m=2 m2m +lz(z + 1) ... (z + m - 1) .

If we add up the first k terms, the residual sum is

R = 1 x 3 x ... x (2k - 1) x
k 2k+2 Z (Z + 1) ... (z + k)

(
1 2k + 1 (2k + 1)(2k + 3) )

k + 1 + 2(k + 2)(z + k + 1) + 22 (k + 3)(z + k + l)(z + k + 2) + ...

1 x 3 x ... x (2k - 1)= X
2k+2 z(z+ 1) ... (z+k)

(
1 k+! (k+!)(k+ l ) )__ + 2 + 2 2 +

k + 1 (k + 2)(z + k + 1) (k + 3)(z + k + l)(z + k + 2) ...
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1 x 3 x ... x (2k - 1)= X
2k+2 Z (z + 1) ... (z + k)

(
1 1 {k+! k+! (k+

l
)+ 2 + 2 2

k+1 z+k+1 k+2 z+k+2 k+3

(k+!)(k+
l

) (k+
2

) })+ 2 2 __2 + **
(Z + k + 2)(z + k + 3) k + 4 . . . ()

An obvious inequality and an application of Gauss's formula for F(a, b; c; 1)
now lead to an upper bound:

R 1 x 3 x ... x (2k - 1)
k < 2k+2 z (z + 1) ... (z + k)

(
1 1 { k+~ (k+~)(k+~) })

x --+ 1+ + )+ ...
k + 1 z + k + 1 z + k + 2 (z + k + 2)(z + k + 3

1 x 3 x ... x (2k - 1) ( 1 1 1 )

= 2k+2 z (z+1) ... (z+k) k+1 + z+k+1 F (1,k+ 2 ;z+k+2;1)

1x3x ... x(2k-1) ( 1 1 r(z+k+2)r(z+~))

= 2k+2 z (z+1) ... (z+k) k+1 + z+k+1 x r(z+k+1)r(z+~)

1 x 3 x ... x (2k - 1) (1 1)
= 2k+2 z (z+1) ... (z+k) k+1 + z+~ ,

so that
1 x 3 x ... x (2k-1)(z+k+~)

Rk < 1 .
2k+2 Z(Z + 1) ... (z + k)(k + l)(z + 2)

Putting k = 9, z = 13.5 we obtain from this an upper bound of 9.203 x 10-10

for the error in Stirling's calculation due to taking just the first nine terms
of the transformed series.

S· x + a . 'd db' ( )Ince --b Increases to 1 as x -+ 00 prOV1 e a < , In ** we may
x+

replace each of the ratios

to obtain
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R 1 X 3 X •.• X (2k - 1) (1 k + ~ )
k> 2k+2z(z+I) ... (z+k) X k+l + (k+2)(z+k+l) .

{
k+! (k+!)(k+~) })

X 1+ 2 + 2 2 + ...
z + k + 2 (z + k + 2)(z + k + 3)

1 X 3 X ..• X (2k - 1)= -::-;-~~--:--:"'--;---'~

2k+2z(z+ 1) ... (z+k)

(
1 k + ~ 1 . . ))

X k + 1 + (k + 2)(z + k + 1) F(I, k + 2' z + k + 2,1

1 X 3 X ••• X (2k - 1) ( 1 k + ~ )
=2k+2 z(z+I) ... (z+k) k+l +(k+2)(z+~) .

With z = 13.5 and k = 9 this gives a lower bound of 8.68 X 10-10 for the
error.

Stirling had already applied a different transformation technique in [61]
00 1

to evaluate '"' ( ) (see [28, 33, 71]). He obtained the same number
L....t 2n 2n - 1
n=1

of correct decimal places in [61] but the transformation used there is much
more complicated both in application and in analysis; it is not discussed in
the present work and was presumably abandoned by Stirling in favour of the
more straightforward method based on inverse factorial series. It is interesting
that Stirling refers to the work of the French mathematician Franc;ois Nicole
(1683-1758) in his discussion of Proposition 2. Nicole's papers dealing with
differences and inverse factorials ([49, 50]) are dated 1717, 1723 and 1724
but were each published two years later, so it is highly unlikely that Stirling
knew any of Nicole's work in this area when he wrote his paper [61], receipt
of which was noted at the meeting of the Royal Society on 18 June 1719.
Another transformation of Brouncker's series is discussed in Example 2 of
Proposition 8.

00

In Example 6 Stirling gives a similar treatment of L -;. ,whose succes­
nn=1

sive sums satisfy the inequalities

1 100

1 00 1 100

1 1--= -dx< -< -dx=--.
N + 1 N+l x2 n];+l n2 N+! x2 N + ~

The problem of determining E~=1 l/n2 exactly was at the time a celebrated
problem and was first resolved by Euler in the early 1730s [16]. In a letter
of 8 June 1736 Euler communicated to Stirling the values of E~=11/n2k
(k = 1,2,3,4), in particular E~=1 l/n2 = 1r

2 /6, and in his reply of 16 April
1738 Stirling said of Euler's results: "I acknowledge this to be quite ingenious
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and entirely new and I do not see that it has anything in common with the
accepted methods, so that I readily believe that you have drawn it from a
new source." (See [70, p.144j 74, p.179].)

Stirling employs the representation

1 00 (m - I)!

Z2 =f1 z(z + 1) ... (z + m)

from p. 29 of the Introduction. Then, transforming the series from the (N +1)­
th term onwards according to the proposition, we have

00 1 N 1 00 00 (m _ I)!

~ n2 =~ n2 + n];+l f1 n(n + 1) ... (n + m)

N 1 00 00 (m _ I)!

= ~n2 +~f1 (N+1+n)(N+1+n+1) ... (N+1+n+m)

N 1 00 (m - I)!

=~ n2 +l; m(N + l)(N + 2) ... (N + m) .

Stirling takes N = 12, adds up E~~1 1/n2 directly and takes the first thir­
teen terms of the last series to obtain 1.644934065 as an approximation to
E~=1 1/n2

. This agrees with 7r
2 /6 except in the last figure where the true

value, correctly rounded, has 7. 19 In Example 1 of Proposition 11 Stirling ap­
plies a different transformation to obtain the sum correct to sixteen decimal
places. (See also the related Example 2 of Proposition 12.)

An error analysis similar to that given for Example 5 produces the follow­
ing bounds for the error introduced by taking only the first k terms of the
transformed series:

k!(z+k+1) .

(lower bound)

(upper bound)
Z2(Z + l)(z + 2) ... (z + k)(k + 1) ,

k! (1 k +1)
z(z + 1) ... (z + k) k + 1 + z(k + 2) .

With z = 13 (= N + 1) and k = 13 these show that the error lies between
1.1 x 10-9 and 1.059 x 10-9 .

Proposition 3 (pp. 47-51). Stirling's demonstration of Proposition 3 fol­
lows the same pattern as that of Proposition 2. Here x and n are constants
and clearly we require that x :j; 1, otherwise the expression for the sum is not
defined; however, we should also restrict x to the interval [-1,1) in general,

19In fact, Stirling's calculated value, correctly rounded to nine decimal places,
should have 6 in the last place.
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since the terms must tend to zero as z -+ 00. Then, provided the series does
not diverge everywhere, an expression of the form

00 A
j(z) - xz+n L m

- m=l z(z + 1) ... (z + m - 1)

defines a function on (a, 00) for some real number a and j(z) -+ 0 as z -+ 00.

Using the previously established identity (see pp. 27-28)

1 1---------=------.,--------:-(z + 1)(z + 2) ... (z + k) z(z + 1) ... (z + k - 1)
k

z(z + 1) ... (z + k)

for k = 1,2, ... , Stirling effectively shows that

j(z) _ j(z + 1) = xz+n (Al (1 - x) + ~ Am(1- x) + (m - I) XAm_l).
z 6 z(z + 1) ... (z + m - 1)

m=2

Thus20 the sum of a suitable series

~ (x zO+k+n ~ am )t:o ~l (zo + k)(zo + k + 1) ... (zo + k + m - 1)

is given by j(zo) if we define the coefficients Am by

A1(I-x)=al and Am(1-x)+(m-l)xAm- 1 =am (m=2,3, ...);

consequently we have

al Am __ am - (m - l)xAm_1A1 =-- and
I-x I-x

In Example 1 Stirling considers the series

for which

(m = 2,3, ...).

Then

x = t, n -_!.
- 2' a - 1

1 - 2' am =0 (m = 2,3, ...).

A _ 1
1 - 2(1 - t)

and A __ (m - l)tAm_1

m - I-t (m = 2,3, ...),

from which it follows that

A _ (_I)m-l(m -1)!tm- 1

m - 2(1 _ t)m

20Cf. the note on Proposition 2.

(m = 1,2, ...)
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and the sum is

1 00 (_1)m-l(m_1)!tm- 1
tZO - 2 L ----:.-..:.......,-....:..........,....---:.--:------,...

m=1 2(1 - t)mzo(zo + 1) ... (zo + m - 1) .

With t = -1 this becomes

(_l)ZO-! ~ (m - I)! .
~ 2m+lzo(zo + 1) ... (zo + m - 1)

(**)

Stirling proposes to determine numerically the sum of Leibniz's series21

00 ( 1yL ---- = tan -1 1 = !!... .
r=O 2r + 1 4

For this he adds directly the first twelve terms and transforms the residual
sum using (*) and (**) with zo = 12.5:

00 (-lY 00 (_1)12.5+k-!

r~2 2r + 1 = ~ 2(12.5 + k)

_f: (m -I)! .
- m=1 2m +112.5(12.5 + 1) ... (12.5 + m - 1) ,

his approximation is obtained by adding the sum of the first ten terms of the
last series to the initial sum of twelve terms. All the values given by Stirling
are rounded and are correct to the number of places shown.

Again we can easily find bounds for the error E introduced by neglecting
subsequent terms in the transformed series. We have

21Stirling remarks that this had been greatly desired by Leibniz. His authority for
this assertion may have been remarks in a letter from Leibniz to Oldenburg dated
26 October 1674 at Paris [36, I, Letter XXI, pp.51-56]. Leibniz does not give a
formal statement of his series there but he describes it in general terms and ex­
presses his belief that he is the first person to have come up with a means by
which the quadrature of the circle might be obtained exactlYi he remarks: "It
therefore remains only that the Doctrine of the sums of Series or numerical Pro­
gressions be perfected." The relevant extract from Leibniz's letter was published
in the Commercium Epistolicum [12, (2e) Item XXXIII, pp. 115-116], which was
certainly available to Stirling (see his Preface). Leibniz discussed the series in a
paper of 1682 [35] (reproduced in [36, v5, 118-122]), but he had communicated
it earlier to some friends: for example, Huygens refers to Leibniz's discovery in
a letter to Leibniz dated 6 November 1674(?) [36, II, Letter III, pp. 16-17] and
Oldenburg received a statement of the series from Leibniz in a letter of 27 August
1676 [36, I, Letter XXXVII, pp.114-122i 12, (2e) Items LI-LIII, pp.129-141].
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E = f: (m -1)!
2m +l12.5(12.5 + 1) ... (12.5 + m - 1)

m=l1

1O! (11 11 X 12 )
= 12 1 + + 2 + ...2 12.5 X 13.5 X ..• x 22.5 2 X 23.5 2 X 23.5 X 24.5

1O! (1 1 )< 12 1 + - + 2" + ...2 12.5 X 13.5 X .•. X 22.5 2 2

= 1O! 2 4 23 10-11

21212.5 X 13.5 X .•• X 22.5 X < .5 X

d · x + a . 'd d ban , Since --b increases to 1 as x --+ 00 proV1 e a < ,
x+

10! (11 (11) 2 )E> 12 1 + + + ...
2 12.5 X 13.5 X 00 . X 22.5 2 X 23.5 2 X 23.5

I ( )-1= 12 10. 1 _ 11 > 2.95 X 10-11 •
2 12.5 X 13.5 X ••. x 22.5 2 x 23.5

The actual error in Stirling's calculated value is about 2.965 x 10-11 • In
Example 3 of Proposition 12 Stirling applies a different transformation of
Leibniz's series, there working to 17DP.

Finally in Example 1 Stirling suggests the application of Proposition 3 to
the series22

1 1 1 1 1 71'
1+-----+-+--00.=-

3 5 7 9 11 2V2 '
1 1 1 1 1 271'

1 + 2- 4 - :5 + "7 + 8 - ... = 3V3'

Each series has to be split into two parts, viz.

and

22These may be derived by evaluating the expansion

00 n

In(1 - z) =- L : (lzl:5 1, z 1= 1)
n=l

at z = ei1r
/\ _e i1r

/
4

, ei1r
/

3 and considering the imaginary parts.
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respectively, and each part is to be transformed in a similar way to that
applied to the first series of Example 1: in the respective cases we consider
with t = -1

00 tzo+k-t
'"' (z - 1 5 9 )
L,.; 4(zo + k) 0 - "4 ' "4 ' "4 ' ••• ,
k=O

00 tzo+k-~

L 4(zo + k)
k=O

00 tzo+k -!
L 3(zo + k)
k=O

00 k

In Example 2 Stirling applies the proposition to the series L 2k(2~ _ 1) ,
k=l

whose sum S(x) may be shown to be

{

! In(1 - x) - ..;=x tan- 1 ..;=x
S(x) = ! «1 + .jX) In(1 + .jX) + (1 - JX) In(1 - .jX))

In 2

(-I~x~O),

(O~x<I),

(x = 1).

As in the case of Brouncker's series (Example 5 of Proposition 2 - see its
note) Stirling employs his development of (Z2 + nz)-1 as an inverse factorial
series (Introduction, p. 30) to express the term in the required form:

-.,........--.,... = ---..,.-
2z(2z - 1) 4z(z - !)

X z

=4z(z + 1) F(I, ~; z + 2; 1).

However, he makes an error in his identification of this with the form in the
proposition by ignoring the fact that there is no term in z-l. Certainly n = 0,
but the coefficients should be

a = 0, b- 1
- 4' C - 3

- 8' d - 15
- 16' e - 105

- 32' ... ,

and then the corresponding quantities A, B, C, D, E are

A = 0, B = 1 C = 3 - 16Bx ,
4(I-x)' 8(I-x)

D - 15 - 48Cx E = 105 - 128Dx .
- 16(1-x) , 32(I-x)

The expression for the sum should be
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x 4(1 _ x)z(z + 1)
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3 -16Bx
+ -8(:-I---x"""')-z(:-z-+-I--:-)(-:-z-+-2::7)

15 - 48Cx )
+ 16(1- x)z(z + 1)(z + 2)(z + 3) + ....

Proposition 4 (pp. 51-52). Stirling appears to be concerned here with the
situation where there is a linear recurrence relation

p

L r/>k(m)Sm+k = 0
k=O

for the successive sums Sm = L~=m an of a series L an. Since

(1)

m+k-l

Sm+k = Sm - L an
n==m

we can rewrite (1) in the form

(k = 1,2, ...),

p-l

'l/J(m)sm + L 'l/Jk(m)am+k = O.
k=O

Then with m replaced by m + 1 we have

p-l

'l/J(m + l)(sm - am) + L 'l/Jk(m + l)am+k+l = o.
k=O

(2)

(3)

Eliminating Sm from (2) and (3), we obtain a recurrence relation for the
terms, which involves am , am+l , ... ,am+p • The illustrations in Example 1
and Example 2 are quite clear, although some of the details have been sup­
pressed in Example 2.

Proposition 5 and Its Scholion (pp. 52-54). This proposition continues
the theme of Proposition 4 and uses the same two examples. In general,
the series whose terms are defined by Stirling's relation (z - n)T = zT'
(z =m, m+ 1, ...) of Example 1 is AF(m-n, 1; m; 1), where A is a constant,
and by Gauss's formula its sum is

A r(m)r(n - 1) = A m - 1
r(n)r(m - 1) n - 1

provided n - 1> 0 (for real n) and m f; 0, -1, -2, ....
In Example 2 the relation (z + 2)T + 3zT' = 0 (z = 1,2, ...) with first

term 1 produces the series F(I, 3; 1 ; -~), whose general term is
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(-I)k!(k + 1)(k + 2)
3k

(k = 0,1,2, ...).

(k = 0,1,2, ...).

As Stirling notes, the numerators contain the triangular numbers, viz.

k+lI> = !(k + 1)(k + 2)
r=l

What Stirling says in the scholion about continuing the series of the first
example backwards does not seem to be completely correct. Presumably we
now determine T from T' with z = m -1, m - 2, ... and A as initial value of
T'. This is certainly consistent with his treatment of the geometric series in
the scholion and produces

A ( m - 1 + (m - l)(m - 2)
m - n - 1 (m - n - l)(m - n - 2)

+ (m - l)(m - 2)(m - 3) + ...)
(m - n - 1)(m - n - 2)(m - n - 3)

m - 1 ( 2 - m (2 - m)(3 - m) )=A 1+ + + ...
m - n - 1 2 - m + n (2 - m + n)(3 - m + n)

m-l
= A 1 F(2 - m, 1 ; 2 - m + n; 1)

m-n-

=A (m - 1) r(2 - m + n) r(n - 1) = -A m - 1
(m - n - 1) r(n) r(1 - m + n) n - 1

provided n - 1 >°(for real n) and 2 - m + n -I 0, -1, -2, .... Thus, unless
m or 2 - m + n is a negative integer or zero and provided n > 1, both the
forward and backward series converge and the sum of one is equal to the sum
of the other times -1.

Stirling's remarks on quadratures correspond to

1
z I-n
Cndt = _z__

o I-n
(n < 1), 1

00 I-n
cndt = __z__

Z I-n
(n> 1).

Neither integral converges in the case n = 1 corresponding to the hyperbola
of Apollonius, the name applied to the simplest case of Fermat's general
hyperbola: xmyn = a. His final remark concerning the correction of areas
and sums presumably refers to the correct choice of range of integration and
summation.

Proposition 6 (pp. 54-57). Here 8 and 8' may be either successive sums
or partial sums. What Stirling intends may be clearer if we ignore first of all
the connection with series and consider an arbitrary sequence {un} of positive
terms which is defined recursively by a relation of the form
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(n = no,no + 1, ...),

where m is a positive constant and p, q are monic polynomials of the same
degree:

()
() () 1 () () ()-lP n = n + an - +...; q n = n + en + ...

Then
Un+l = pen) = 2. (1 + (a - c)n()-l + )

Un mq(n) m n() + cn()-l + .

= ~ (1 + a ~ c + 0 (~2)).
If m > 1 we can find N ~ no such that

1 + (a - c)n()-l + <..;m if n ~ N.
n() + en()-l + .

Consequently

Un+l < _1_ < 1 if n ~ N,
Un ,;m

from which it follows that {un} is eventually strictly decreasing to O. We see
in a similar way that if m < 1 then {un} is eventually strictly increasing and
unbounded.

The situation in which m = 1 is more complicated. Clearly, for all suffi­
ciently large n,

(a - c)n()-l + ... {< 1 if a <c,
1 + () () 1

n + en - +... > 1 if a > c,

so that the sequence {Un} is eventually strictly decreasing if a < c and
eventually strictly increasing if a > c. We can see in the former case that the
limit must be 0 by considering what would be its logarithm if the limit were
positive, namely

00 ( ( ) ()-l + )a-c n ...
In uno + L In 1 + () ()-l ;n +en + ...

n=no

if a < c we can find N ~ no such that

O
(a - c)n()-l + ...

< - < 1 if n ~ N,
n() + en()-l + ...

and consequently23

23Note that in(1 - x) < -x on (0,1).
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N+m ( ( ) 0-1 ) N+m ( ) 0-1'""" In 1 + a - c n + ... < '""" a - c n + """"* -00
L...J nO + cnO-1 + ... L...J nO + cnO- 1 + .
~N ~N

as m """"* 00. We therefore have that, when m = 1, the sequence {Un} converges
to °if a < c but is unbounded if a > c.

If the Un represent the successive sums of a series then convergence of the
series is equivalent to the limit of the successive sums being 0. Thus by the
above discussion the series will converge provided m > 1 or m = 1 and a < c
and will diverge to 00 if m < 1 or m = 1 and a > c. This is the content of
the corollary to Proposition 6.

However, if the Un represent the partial sums of a series, the sum can be
finite and nonzero only if m = 1 and a =c. This is the situation illustrated
in the example, where Stirling proposes a series whose partial sums Sk satisfy

We have equivalently

(2k + 1)2Sk = 2k(2k + 2)Sk+1

and
Sk = 1 X 3

2
X ... x (2k - 1)2 (k = 2,3, ...).

2 X 42 X .•. x (2k - 2)2 x 2k

It follows from Wallis's product that the sum of the series must be 4/rr. Its
terms may be determined by replacing Sk+l by Sk + ak+l:

(k=I,2, ... ).

Stirling considers finally the two relations

Sz2 = S'(z2 - 1) and Sz = S'(z + 1).

In the first of these m = 1 and a = c =0, so that we are dealing with partial
sums Sk = L:~=2 an which satisfy the relation

(k = 2,3, ...).

Replacing Sk+l by Sk + ak+l we obtain

Sk = (k2 - l)ak+l'

then
Sk + ak+l = Sk+l = ((k + 1)2 - l)ak+2,

and on subtraction

or

(1)

(k = 2,3, ...). (2)
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Stirling takes ~ for the first term a2. Then from (1) and (2) the terms come
out as

111
a3 = 2 x 3' a4 = 3 x 4' a5 = 4 x 5 '

In the second relationship Sz = S'(z + 1) we have m = 1, a = 0, c = 1,
so that we are dealing with successive sums Sk = l:::'=:k bn whose limit is O.
From

kSk = (k + 1)SkH (k = 1,2, ...)

we obtain on putting SkH = Sk - bk

(3)

thus
Sk - bk = SkH = (k + 2)bkH ,

and we obtain on subtraction

(k = 1,2, ...). (4)

Taking b1 = ~ in (4) produces the same terms as before (bk = akH)' Accord­
ing to (1)

k-l 1 k 2 - 1 k - 1

~ n(n + 1) = k(k + 1) = -k-

while (3) gives

(k = 2,3, ...),

00 1 k+1 1

L n(n + 1) = k(k + 1) = k
n=:k

(k = 1,2, ...).

(1)rp (1 Zo - n (zo - n)(zo - n + 1) )
.LO + + + ... ,

zo(1 - m) zo(zo + 1)(1 - m)2

Proposition 7 and Its Scholion (pp. 57-60). The relation (z - n)T +
(m - 1)zT' = 0, where nand m are constants with m ;j:. 1, generates the
series

where To is the first term, which corresponds to the initial value Zo (;j:.
0, -1, -2, ...) of z. This series is

ToF (1,zo - njZo j _1_).
1-m

According to the proposition its sum is

m - 1 ( n n(n + 1) ) m - 1 ( 1 )-- To 1 + - + ( ) 2 + ... = -- ToF 1, n ; Zo ; - .
m zom Zo Zo + 1 m m m

(2)
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This is a special case of the general linear transformation formula

F(a,b;c;z) = (1- z)-aF (a,c- b;c; z ~ 1)-

In general both series will converge provided 11 - ml-1 < 1 and Iml-1 < 1;
for real m these inequalities mean that m< -1 or m> 2. Stirling's remark
in the corollary about the series being infinitely large when m is negative
does not apply when m < -1. The case m = -1 does in fact occur in
Stirling's examples, but there the other parameters n and Zo are such as to
ensure convergence of both series.24 Stirling's proof consists of setting up a
recurrence relation for the sum divided by the first term, which he solves
by fitting an inverse factorial series. The argument is valid subject to the
parameters being such as to produce suitably convergent series.

The series of Example 1 is

(To = ~ ,Zo = ! 'm = -1 , n = ~).

Now in general

(1 - z2)1/2 F (1 1. 1 . Z2) = Z-1 sin-1 z, '2' ,

so that the sum of Stirling's series is sin-1 (1/V2) = tr/4. To sum the series
Stirling adds the first twelve terms directly and then employs the proposition
to approximate to the residual sum, which is

_ 12! (. 27 • 1)
- 2 3 5 25 F 1,13, 2 ' 2x x x ... x

_ 12! ( 1. 27 • )
- 3 5 25 F 1'2'2,-1.x x ... x

(zo = 2; ,m = -1 ,n = ~)

1 3 23 12'2 X 2 X ... X 2 = .
27 X 29 X X 49 25 x 27 x x 492 2 ... 2 ...

The first 12 terms of the last series, which is absolutely convergent, are now
used to provide an approximation to the residual sum. Since the terms of the
last series alternate in sign and their moduli decrease to 0, the error involved
in neglecting the remaining terms lies strictly between the thirteenth term

12!
t13 = x

3 x 5 x ... x 25

< 2.6 x 10-12 ,

and the sum of the thirteenth and fourteenth terms

24A non-terminating series F(a,biCj -1) converges if Re(c - a - b) > -1, the
convergence being absolute when Re (c - a - b) > O.
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t 13 (1- ~n > 1.3 x 10-12 .

Working with double precision arithmetic produces 0.7853981633957013 for
the calculated value, which is less than 1r/4 by about 1.75 x 10-12 and is
consistent with these error bounds.

In Example 2 Stirling considers the conditionally convergent series

1 + ~ (-1) + ~ x ~ (_1)2 + ~ X ~ X ~ (_1)3 + ...
2 2! 3!

1
-F(1 1 '1'-1)-(1-(-1))-1/2_-- '2" - -../2'

Here he adds directly the first 10 terms and transforms the residual sum:

1 x ~ x X 19 ( ~ ~ X 23 )22'" 2 2 2 2
1O! 1 - U + 11 x 12 - ...

_ 1 x 3 x ... x 19 ( 21. . )
- 10! X 210 F 1'2',11,-1 (m = 2, n = L Zo = 11)

1 x 3 x ... x 19 (1 1)
= 10! X 211 F 1, 2' ; 11 ; 2' .

Ten terms of the last series are used to complete the approximation. The
error is therefore

1 x 3 x ... x 19 1 x 3 x ... x 19
---:--::-:--x---------;:-::-

1O! X 211 11 x 12 x ... x 20 X 220

(
21 ~ X 23 )

x 1 + 21 ~ 2 + 21 ~ 22 ~ 22 + ... .

This is less than

(1 x 3 x ... X 19)2 ( ~ ~ ) _ (1 x 3 x ... X 19)2
20! X 231 1 + 2 + 22 +... - 20! X 230

< 1.641 X 10-10 ,

and, since e2
1 + k)/(21 + k) > ~ (k > 0), it is greater than

(1 x 3 x ... X 19)2 ( ~ ~ ) _ (1 x 3 x ... X 19)2
20! X 231 1 + 22 + 24 + ... - 20! X 229 x 3

> 1.093 X 10-10 .

Stirling finds 0.7071 067810 for the value of 1/../2 and again the final digit is
incorrect. This time it is not just due to the cumulative effects of rounding
- the error bounds show that the calculation cannot give the tenth decimal
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place. Double precision arithmetic produces 0.7071 0678 1076 5897 for the cal­
culated value, which is less than 1/..;2 by about 1.0996 x 10-10 .

As Stirling notes in the scholion, a second application of the transforma­
tion brings us back to the original series (cf. (1) and (2) above):

m-1 ( 1) m-1 ( 1 )----:;;;:- ToF 1, n; Zo ; m = ----:;;;:- ToF 1, Zo - (zo - n) ; Zo j 1 _ (1 _ m)

(1 - m) - 1 m - 1 ( 1 )
----t 1 x --ToF 1,zo-njzoj-1--

-m m -m

=ToF (l,zo - njzo; _1_).
1-m

The coefficients in any non-terminating F(a, b; c j z) are eventually positive
and l/m and 1/(1 - m) have opposite signs except where 0 ~ m ~ 1;
this justifies Stirling's remark about a series whose terms have constant sign
changing into a series whose terms have alternating signs and conversely.
As noted above, in the alternating case the series may be only conditionally
convergent, which generally produces slow convergence. The example in the
scholion is Leibniz's series

1r -1 1 1 1 1 ( 1 3 )4" = tan 1 = 1 - 3+ 5 - "7 + 9 - ... = F 1, 2" ; 2" j -1 ,

which transforms to the series of Example 1

1 ( . 3 . 1) _ . -1 1 _ 1r"2 F 1, 1 , 2" '2" - sm ..;2 - 4" .

Proposition 8 (pp.60-64). The given series is

To (1 + (zo - m)(zo - n)
zo(zo - n + 1)

(zo - m)(zo - m + l)(zo - n)(zo - n + 1) )+ ) + ... ,
zo(zo + l)(zo - n + l)(zo - n + 2

(1)

where To, zo, m, n are constants such that neither Zo nor Zo - n + 1 is zero
or a negative integer. It may be written as (see p. 6)

Zo -n,

zo-n+1

According to the proposition its sum is given by



(2)

is
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(
In n(n + 1) )(zo - n)To - + + + ...

m zo(m + 1) zo(zo + 1)(m + 2)

(zo - n) 'T' ( nm n(n + l)m(m + 1) )= .LO 1 + + ) + ...m zo(m + 1) zo(zo + 1)(m + 1)(m + 2

=(Zo-n)T03F2[n, m, 1],
m Zo, m+ 1

where of course neither Zo nor m may be zero or a negative integer.
For (1) the ratio of the (k + 1)-th term to the k-th term (k = 0,1,2, ...)

(zo - m + k)(zo - n + k) = 1- m + 1 + 0 (~).
(zo + k) (zo - n + 1 + k) k k2

For (2) this ratio is

(n+k)(m+k) =1_zo-n+l+0(~).
(zo+k)(m+l+k) k k2

Thus by Gauss's test (1) converges if m > 0 and diverges if m ~ 0, while (2)
converges if Zo - n > 0 and diverges if Zo - n ~ O. In particular, as Stirling
observes in the corollary, (1) diverges when m is zero or a negative integer.25

Defining Yk (k = 0,1,2, ...) by

(3)

where Tk denotes the k-th term of (1) and Sk = L::::"=k Tn, we find as in
Stirling's proof that the Yk satisfy the recurrence relation

m 1
Yk - Yk+1 + -+k Yk+l - + k = O.Zo zo-n

The term l/(zo + k - n) (Stirling's l/(z - n)) is expanded as

1 1 n---:---=--+..,.----.,....,-----,-
Zo + k - n Zo + k (zo + k)(zo + k + 1)

n(n + 1)+ + ....
(zo + k)(zo + k + l)(zo + k + 2)

(4)

Stirling then solves the recurrence relation by assuming an inverse factorial
series representation for Yk:

a1 a2 a3
Yk = m + (m + l)(zo + k) + (m + 2)(zo + k)(zo + k + 1) + ... . (5)

250f course he probably based this observation on the fact that (2) is not defined
for such m.
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Substitution of this in (4) determines the coefficients. The series (2) then
results if we put k = 0 and substitute for Yo in (3).

Curiously, Stirling states the expansion of 1/(z - n) without comment.
Presumably its derivation is taken as an obvious application of the principles
laid down in the Introduction and is similar to his development of 1/(z2+nz)
(Introduction, p. 30): for example,

1 1 ( n)-l 1 n n2 n3
z - n = ~ 1 - ~ = ~ + Z2 + z3 + Z4 + ...

1 al a2 a3
=-+ + + + ... ,

z z(z + 1) z(z + l)(z + 2) z(z + l)(z + 2)(z + 3)

where, according to the rule given at the top of p. 30,

al = n,

a2 = n + n2 = n (n + 1),

a3 = 2n + 3n2 + n3 = n(n + 1)(n + 2),

and so on. The resulting series, which is valid for Re(z) > Re(n), is referred
to as Waring's formula in [40, 10.2]. It is noted in [72] that the series is a
special case of a result given by Nicole in 1724 [50] and that it is also contained
in an article of 1717 by De Montmort [45]. Alternatively the series may be
deduced from Stirling's result

1 1 1 - n (1 - n)(2 - n)
z2 + nz = z(z + 1) + z(z + l)(z + 2) + z(z + 1)(z + 2)(z + 3) + ...

I-n
--ToF(n,m;m+ 1;1),

m
and for Zo = 2,3, ... we have, provided no zero terms are introduced in the
denominator,

by multiplying by z and replacing z by z - 1 and n by -n + 1.
The recurrence relation (difference equation) (4) is discussed in detail in

[52], where its general solution is obtained. Stirling notes in the corollary that
in the case where n is a negative integer or zero the series is exactly summable
(because then (2) has only finitely many nonzero terms). It is pointed out
in [52, §1O] that we can also sum exactly in terms of the hypergeometric
function when Zo is a positive integer. For example, referring to (2), if Zo = 1
this is just

nm n(n + l)m(m + 1)
zo(m + 1) + zo(zo + l)(m + l)(m + 2) + .. ,

(zo - 1)!m
(n - Zo + 1)(n - Zo + 2) ... (n - 1)(m - Zo + 1)

x (F(n - Zo + 1, m - Zo + 1 ;m - Zo + 2 ; 1) - pzo ) ,



(k = 0,1,2, ...)

(z = r, r + 1, r + 2, ...),

that is,
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where PZo denotes the sum of the first Zo terms of the preceding hyperge­
ometric series. Using Gauss's formula, we may express this hypergeometric
series in terms of the Gamma function:

r(m - Zo + 2)r(zo - n)
F(n- zo+l,m- zo+l;m- zo+2;1)= r(m-n+l) ,

provided Re (zo - n) > O.
Stirling also refers in the corollary to the application of Propositions 7 and

8 to the quadrature of binomial curves. This relates· to the following series
which he has already stated on p. 33:26

1'" 0 ( + f '1».,f 0+'1
to-1(e + ft'1».,-ldt =~(e + fx'1»., _ sex x

o Be rBe2

s(s + 1)(e + fx'1»., j2 x0+2'1
+ r(r + I)Be3 - ... ,

where r = B+ 1] , s = B+ >"1] . The terms of the series satisfy the relation
1] 1]

T' _ s + k ( fX'1)
T-r+k --e-

=z-(:-s) (_f:'1)

(z-(r-s»T+
f

e
zT'=O.

x'1

Thus we may apply Proposition 7 with

e
n =r - sand m = 1 + -f .x'1

fx'1
If, however, x is such that e + fx'1 =0, then - = -1 and we have

e

26See also the note on Stirling's introductory remarks in Part I (p.174), and Propo­
sitions 24 and 25 as well as their notes.
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Now the terms of this series satisfy the relation

T' (,X - 1 - k)(k1] + B)
T (k + l)((k + 1)1] + B)

_ (z - ,X) (z - (1 - *) )
- Z(Z-(l-*)+l)

(k = 0,1,2, ...)

(z = 1,2, ...),

B
which corresponds to the relation of Proposition 8 with m = ,X and n = 1- - .

1]
In Example 1 Stirling considers

1r • -1 ~ n~=l (2r - 1)2
2' =sm 1 = 1 + L...J (2k + I)!

k=1

_ ~ (! x ~ x ... x (! + k - 1))2
- 1 + L...J 3 5 (3 ) k'

k=1 2 x 2 x ... x 2 + k - 1 x .

He adds up the first 12 terms directly and transforms the remaining part of
the series:

(lX;!X ... X23)2 ((25)2 e5x27)2 )
2 2 2 1+ 2 + 2 2 +

~ X ~ X ... X 225 x 12! 227 x 13 2; x 2; x 13 x 14 ...

( 1 3 23) 2 [ 25_ 2 X 2 X ... x T 2'
- 3 5 25 1 3F2

2 x 2 x ... x T x 12. 13,

= 25 x (1 x 3 x ... X 23)2 P. [!,
25' 3 2. 13,

25
T'
27
T

1
2'
3
2

(zo = 13, m = n = !)

_ (1 x 3 x ... X 23)2 ( (!) 2 (! X ~) 2 )
- 1+---3 + 3 5+,.··

24! 13 x 2 13 x 14 x 2 x 2

The first 12 terms of this series are now used to complete the calculation
- they are given in the second column of the table on p.63, all correctly
rounded to the number of places shown.27 The final approximation suffers
from the cumulative effect of rounding - repeating Stirling's calculation in
double precision arithmetic produces 1.570796326052944, which is less than

27However, the entry for I should have 251 in place of 250; also in the original the
entry for E is given as 24261 (the last two digits have been transposed).
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1r/2 by about 7.42 x 10-10. I have not been able to find simple, effective error
bounds for this calculation.

The rule stated at the end of Example 1 is an iterative method for calculat­
ing the terms of the given series and may be established easily by induction:

_1_ (1 x 3 x ... x (2k - 1))2 __1_ x (1 x 3 x ... x (2k - 1))2)
2k+3 (2k)! 2k+2 (2k)!

_ (1 x 3 x ... x (2k - 1))2(2k + 1)
- (2k + 3)(2k + 2) x (2k)!

(1 x 3 x ... x (2k + 1))2
(2k + 3)!

In Example 2 Stirling returns to Brouncker's series.28 We have

In the above notation we may take, as Stirling notes,

Z - 3
0-2' n = Zo + 1 - 2 =~, m = Zo - ~ = 1, (5)

or, interchanging 3/2 and 2,

zo=2, n=zo+l-!=!, m=l. (6)

If we transform the series from the k-th term (k = 0,1,2, ...) we obtain for
(5)

! + k - ~ (1 ~ ~ x ! )
(2k+l)(2k+2) + 2(! +k) + 3(!+k)(~+k) + ...

[

1
1 2'

= 2(2k + 1) 3
F

2 ! + k,

and for (6)

2 + k - ! (I! ! x ~ )
(2k+l)(2k+2) + 2(2+k) + 3(2+k)(3+k) + ...

1 [!, 1
2
, 1].

= 2(2k + 2) 3
F

2 2 + k,

These correspond to the formulae given in Example 2. Stirling does not pro­
vide a calculation here, but, ignoring the fact that he has already dealt with

28See Example 4 of Proposition 2 and the note on Proposition 2.



(k=I,2, ...).

(k = 2,3, ...).
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Brouncker's series in Example 4 of Proposition 2, he refers to Proposition 3
or Proposition 7 for a means of summing the series when it is expressed in
the form

1 1 1 1
1--+---+-- ...

2 345
For the application of Proposition 3 we have z = 1,2,3, ... with

x = -1, n = -1, a = 1, b = c = ... =o.
Transforming from the term corresponding to z = k gives the sum from the
k-th term as

( l)k-l ( 1 l' 2!
- 2k + 22 k(k + 1) + 23 k(k + l)(k + 2)

+ 24k(k + 1)(~!+ 2)(k + 3) + .. .)

(_I)k-l
= 2k F(I,I;k+l;~)

Proposition 7 yields an equivalent expression: the defining relation for the
terms is (z - I)T + zT' = 0 (z = 2,3, ...), so that n = 1 and m = 2; the sum
from the term corresponding to z = k is then given by

(-I)k (I! 2! 3! )
2(k - 1) 1 + 2k + 22 k(k + 1) + 23 k(k + l)(k + 2) + ...

(-1)k
= 2(k_l)F(1,I;k;~)

Proposition 9 and Its Scholion (pp. 65-68). The aim of the proposition
is clearly illustrated by Stirling in Example 1 and Example 2, so we restrict
attention to the examples outlined in the scholion. In the first of these we
have

and

Proceeding as in Example 1 and Example 2, we obtain from (i)

8 - T = 2(z + 1) - 1 T' + 8
2

- T
2

•
2

Subtraction of this from (i) leads to

T = 2z - 1 T _ 2z + 1 T' + T-
222'
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and then by (ii)

which simplifies to the relation stated by Stirling, viz.

Finally, from (*) and (ii)

T.' _ 1 T' _ ~ ( z - 1 ) 2 T
2 - 2(z + 1)2 - 2 z(z + 1)

= (;~ ~r T2 .

When z = 2,3,4, ... and the initial term is 1, the first series is easily found
from (ii) to be

00 1

; (n -1)2 .

Then from (*) the initial term of the second series is 1/8 and we can prove
by induction using (**) that the second series is

1 00 1 1 00 1
"22: n2 (n - 1)2 = 82: (In(n - 1))2 .

n=2 n=2 2

In the latter form the denominators of the terms inside the summation are
the squares of the triangular numbers (see the note on Proposition 5).

Putting z = 2 and T = 1 in (i), we obtain

00 1 3 1 00 1
; (n - 1)2 = "2 + "2; n2 (n - 1)2 '

which is equivalent to Stirling's relation 85 - 12 =852 , The sum of the first
series is of course 11"2/6.

In the case of the pyramidal numbers, viz.

k

2: r2 = ~k(k + 1)(2k + 1),
r=l

we can show by means of partial fractions that for ko = 1,2, ...

00 36 00 1 00 1 216 36
2: k2(k + 1)2(2k + 1)2 = 72 2: k2 + 576 2: (2k + 1)2 - k;; - k2 .

k=ko k=ko k=ko 0
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Then, since

we have

00 36 00 1 00 1 216 36
L k2(k + 1)2(2k + 1)2 = 576 L k2 - 72 L k2 - k; - k2 '

k=ko k=2ko k=ko 0

so that, as Stirling remarks, the sums may be obtained from those of the first
series.

Stirling also mentions the tetrahedral numbers,29 viz.

k

L ~r(r + 1) = ~k(k + l)(k + 2).
r=l

In this case we have the corresponding expression

Concerning the series introduced at the end of the scholion we note that
by Gauss's test they converge if and only if b+ c > 1.

Proposition 10 (pp.68-70). Case 1 is by way of being a lemma for Propo­
sition 11, although in fact a more general version is required there. We sketch
the details following Stirling's procedures. Suppose that the relation of the
terms is

T' - (z -m) ( z-n )T
- z+k z-n+k+l

or in modern terminology,

(z = Zo, Zl, Z2, ...),

(i = 0,1,2, ...), (1)aH 1 = (:::ii~~) (zo +z~ ~~ ~ ~ + 1) ai

where m, k, n are constants (k = 0 in Stirling's version). By Gauss's test we
require m + 2k > 0 for convergence; in the applications k is an arbitrary non­
negative integer, so the condition then reduces to m > O. The series defined
by (1) is

29The geometrical significance of the triangular, tetrahedral and pyramidal numbers
is nicely illustrated in [29, pp.58-59].
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(1 (zo - m)(zo - n)
ao + -,----'---,--,--.,.---...:....;...---'---,..

(zo + k)(zo - n + k + 1)

(zo - m)(zo - m + l)(zo - n)(zo - n + 1) )
+ (zo + k)(zo + k + l)(zo - n + k + l)(zo - n + k + 2) + ...

~ (zo - mMzo - n)i
=ao t:o" (zo + kMzo - n + k + l)i .

In particular, when k = 0 and z = 1,2,3, ... the series is

a F(l - m, 1 - n; 2 - n; 1),

whose sum according to Gauss's formula is

(2)

(3)

(4)
r(2 - n) r(m)

a r(l _ n + m) = a(l - n) B(l - n, m),

provided 2 - n is not a negative integer or zero and m > O.
We wish to determine constants p, q and a~2) (i = 0,1,2, ...) such that

00 . 00L ai = Zo + J + P aj + L a~2)
i=j q i=j

(j = 0,1,2, ...) (5)

and (zo + j + p)aj/q is a good approximation to I:~j ai at least for large j.
Subtracting the expressions given by (5) for j and j + 1 we obtain

Zo + j + p Zo + j + 1 + P (2)
aj = q aj - q aj+l + aj ,

so that by (1)

a(2) = (1 _Zo + j + P + Zo + j +1+ p . Zo + j - m . Zo + j - n ) aj
J q q zo+j+k zo+j-n+k+1

where

q(zo + j + k)(zo + j - n + k + 1) ,
(6)

h(j) = (q - m - 2k)(zo + j)2

+ (mn - pm - m - n - k2 + kn - k - 2pk - p + 2kq - qn + q)(zo + j)

+ pmn + mn - pk2 + pkn - pk + qk2 - qkn + qk.

To optimise the proposed approximation we want the terms a;2) to be as small
as possible; at least for large j this means that the coefficients of (zo + j)2 and
Zo + j in h(j), which are independent of j, should be zero.30 Clearly, then,

30Stiriing describes ~ method of transforming series in [61], which may also be
explained in terms of a similar optimisation procedure (see [71]).
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q =m+2k,

and it follows from the coefficient of Zo + j that

3k2 - kn + k + 2km - n
P = m +2k+ 1

Note that when k = 0 these values for p and q reduce to those obtained by
Stirling.

The identity (5) now becomes

f: ai = (m + 2k + l)(zo + j + 2k) - (k + 1)(k + n) aj + f: a(2). (7)
i=j (m + 2k)(m + 2k + 1) i=j l

From (6) and (1) we obtain

a~~l (zo+i+k)(zo+i-n+k+l) ai+l= x--
a~2) (zo + i + k + l)(zo + i - n + k + 2) ai

_ (zo + i - m)(zo + i - n)
- (zo+i+k+l)(zo+i-n+k+2)'

which is just (1) with k replaced by k + 1. From (6) and (2), after some
manipulation, we find for 0 ::; j ::; i

a(2) = ...,....--_~(k.,..-+,--I:...,:)(_m_+_k):,.:.(.,..-n_+_k...:...)..:....(m----,...-...,...n_+_k_+_l...:...).....,:ai_---:-
l (m + 2k)(m + 2k + l)(zo + i + k)(zo + i - n + k + 1)

(k + 1)(m + k)(n + k)(m - n + k + 1)(zo +j - m)i-j(zO +j - n)i-j
=aj (m + 2k)(m + 2k + l)(zo + j + k)i-j+l(ZO +j - n + k + l)i-j+l .

(9)

We will make use of these identities in our discussion of Proposition 11 below.
In Case 2 Stirling causes a little confusion by reformulating the equation

for the terms: T and T' are now on the same side and r has been replaced
by -r. In the original he asserts that r :f. 1, as one would expect from r = 1
in Case 1; however, for the reformulated equation the restriction should be
r :f. -1. He proposes the representation

(
z+m)5=p -- T+52 ,
z+n

where m, n, p are constants to be determined following procedures and cri­
teria similar to those employed in Case 1. We expand a little on Stirling's
description of how the constants are determined. Since he does not deter­
mine the terms of 52 at this stage, it is convenient for simplicity to retain his
notation. The stated relation between T2 and T leads to
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T
2

= h(z) T,
r(z + n)(z + n + 1)(z2 + cz + d)

where

h(z) = (r - (r + 1)p)z4

+ (r(l - p)(n + 1 + c) + Tn - rmp - p(n + m + 1) - ap)z3

+ (r(n - mp)(n + 1) + rc«l - p)(n + 1) + n - mp) + rd(l - p)

- p(n(m + 1) + a(n + m + 1) + b))z2

+ (rc(n - mp)(n + 1) + rd«l - p)(n + 1) + n - mp)

- p(an(m + 1) + b(n + m + l)))z

+ rd(n - mp)(n + 1) - bpn(m + 1).

In order to minimise T2 for large z we should choose the three constants m,
n, p so as to make the coefficients of the three highest powers in h(z) zero.
From the coefficient of z4 we obtain

r
p= r+l'

and substitution of this into the coefficient of z3 produces

a-c
n-m=--'

r + 1 '

using these values for p and n - m, we obtain from the coefficient of z2 after
some manipulation

1 b-d
n =-- (cr + a-I) - -- ,

r+l a-c

1 b - d
m=c------.

r+l a-c
For later application it is useful to have a statement of the transformation

in the notation used in the first part of this note: we have

(zo + i)2 + a(zo + i) + b) ai + r (zo + i)2 + c(zo + i) + d) ai+l = 0,

and

where

~ (zo+j+m) ~ (2)L.J ai =P . aj + L.J ai ,
i=j Zo + J + n i=j

1 b-d a-c
m=c- -- - -- =n- --,

r+l a-c r+l

1 b-d a-c
n = --(cr + a-I) - -- = m + --.

r+l a-c r+l

(10)
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This transformation is applied in Proposition 12.
As Stirling notes, the above procedures may be carried through in the

general case where
1 f(zo + i)

ai+l = :;: g(zo + i) ai

and f, 9 are polynomials of the form

f(z) = zO + azO- 1 + bzO- 2 + .
g(z) = zO + czO- 1 + dzO- 2 + .

The same expressions result for p, m and n. This situation arises in Examples
2 and 3 of Proposition 12.

Proposition 11 (pp. 70-75). Here we have Stirling's series of Proposition
10, Case 1, and the result follows by repeated application of the general
process described in the previous note. The stated relation of the terms cor­
responds to k =°in (1), and (7), (8) and (9) then give

~ . _ (m + l)(zo + j) - n . ~ (2)
La, - (1) aJ + L ai ,. . mm+ ..
'=J '=J

(2) ( . ) ( . )ai+l Zo + t - m Zo + t - n
a(2) - (zo+i+1)(zo+i-n+2)',

(2) _ mn(m-n+1)
a· - ai.

, m(m + l)(zo + i)(zo + i - n + 1)

Then from (7), (8) and (9) with k = 1 we obtain

~ _ (m + l)(zo + j) - n
Lai - aj
i=j m(m + 1)

(m + 3)(zo + j + 2) - 2(n + 1) (2) ~ (3)
+ a· +La.

(m + 2)(m + 3) J i=j"

(3) ( . ) ( . )ai+1 Zo + t - m Zo + t - n
a(3) = (zo + i + 2)(zo + i - n + 3) ,,

a(3) = 2(m + l)(n + l)(m - n + 2) a(2).
, (m + 2)(m + 3)(zo + i + l)(zo + i - n + 2) ,

Continuing with k = 2 leads to
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f: (m + l)(zo + j) - n (m + 3)(zo + j + 2) - 2(n + 1) (2)

.. ai = m(m + 1) aj + (m + 2)(m + 3) aj
>=J

(m + 5)(zo + j + 4) - 3(n + 2) (3) ~ (4)

+ (m + 4)(m + 5) aj +~ ai ,
>=J

(4)
aH1 (ZO + i - m)(ZO + i - n)
a~4) (ZO + i + 3)(zo + i - n + 4) ,

a~4) = 3(m + 2)(n + 2)(m - n + 3) a~3).
> (m + 4)(m + 5)(zo + i + 2)(zo + i - n + 3) >

The process continues in an obvious way. Stirling's T, T2 , T3 , T4 , •.• are our
aj, ay), a;3), a;4), ... and the successive iterates produce the partial sums
of Stirling's series with remainders.

The factorial nature of the a~s) is clear from (9) and (2) above: for 8 =

0,1,2, ... with a~1) = ai,

8! (m)s(n)s(m - n + l)s(zo - mMzo - n)i
= ao (i=0,1,2, ...)

(mhs(zO)s+i(ZO - n + l)s+i

8! (m)s(n)s(m - n + l)s(zo - mMzo - n)
= ao (i = 1,2, ...).

(mhs(zO)s+i(ZO - n + i)s+l

The terms of the new series are for 8 = 0,1,2, ... , j = 0,1,2, ...

_8!...;..(m~)s...;..(n-!..).::...:s(C-m_-----,.n_+-:-l~) s~(~(m-----.:..+_2...,..8-:,+,---I.!....)(~zo.::...:+...:......::..j_+_2--:-8:..-) -~(8_+.-:1)~(n_+_8~)) a.
(mhs+2(zO + j)s(zo + j - n + l)s J

_ 8! (m)s(n)s(m - n + l)s(zo - m)j(zo - n)j
(mhs+2(zO)s+j(Zo - n + l)s+j

x ((m + 28 + 1)(zo + j + 28) - (8 + l)(n + 8))ao. (a)

If the sum of the first 8 terms (8 > 0) of the new series is used to approximate
the sum of the given series L::j ai then the error is

((3)
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Stirling applies the proposition most effectively in four examples. The
calculations are carried to an impressive seventeen decimal places, which we
can justify by examining the error involved. In each case Stirling tabulates
on the left the terms T, T2 , T3 , • .• and on the right the corresponding terms
in his series for S. We discuss these examples using the notation developed
above and in the previous note.

Example 1. Here we have

00 1 11"2

I: (l+i)2 = 6'
.=0

for which (see (1) of previous note with k = 0)

ao = 1, ai+l = (~::rai = (
2
;:~ 1) (2 ~ ; ~ ~ ~ 1) ai,

where i = 0,1,2, ... , and Zo = 2, m = n = 1. Stirling finds directly E~=o ai·
He then applies the proposition to transform E:lO ai, taking nine terms of
the new series, viz. (from (0))

(
1)2~ (8!)4 (4(8 + 1)(8 + 6) - (8 + 1)2)

10. ~ 2 .
8=0 (28 + 2)! «8 + 11)!)

By ({3) the error is

00 (91)4 00 ., (9,)4 00 1
E = I: (10) = -'- I: z. = -'- I: ----.".

i=10 a. 18! i=10 (10 + i)! (1 + iho 18! i=10 «1 + iho)2 '

from which it follows that 18! (9!)-4E lies between the values of the following
integrals:31

roo dx
JlO (x + 1)2(x + 2)2 ... (x + 10)2 '

roo dx
J9 .5 (x + 1)2(x + 2)2 ... (x + 10)2 .

With the aid of Maple (see p. 10) I find from these bounds that

4.8 x 10-18 < E < 9.1 X 10-18 .

Repeating Stirling's calculation using quadruple precision arithmetic pro­
duces 2, 8 for the seventeenth and eighteenth digits after the decimal point,

31The range of integration in the second integral, the upper bound, follows from
the midpoint rule on noting that the second derivative of the integrand is positive
ifx>-l.
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the corresponding digits in 11"2/6 being 3,6, so that the error is about 8x 10-18 .
(Cf. Proposition 2, Example 6; also Proposition 12, Example 2.)

Example 2. The series is

~ ((~)J2 F (1 1 3 1) ra)r(~) 1(r (1))2 11"
~ i! n)i = 2'2;2; = (r(I))2 = 2 2 = 2'

for which

ai+l = (~ + i) 2 ai = (1 + i - ~) ( 1+ i - ~ ) ai
(1 + i)(~ + i) 1 + i 1 + i - ~ + 1

for i = 0,1,2, ... , and so Zo = 1, m = n = ~. Again Stirling finds E~=o ai by
direct addition and takes the first nine terms of the transformed series (0),
viz.

(1)2 t (s!)2 ((~)8)2 ((2s + ~)(2s + 11) - (s + 1)(s + ~)) .
2 10 8=0 (~)28+2 (s + 10)! (~)8+l0 '

from (fJ) the error is

NOW32

U)i = 2-2i (2i)., .
t. t

and

Thus, as in the previous example, we can deduce that

2 (~)18.Jff E

(9!)2 ((~)9)2

lies between the values of the following two integrals:

(X> dx

JlO ";x + .5 (x + 1)(x + 2) ... (x + 9)(x + .5)(x + 1.5) ... (x + 9.5)

roo dx

J9 .5 ..;x (x + 1)(x + 2) ... (x + 9)(x + .5)(x + 1.5) ... (x + 9.5) .

Evaluating these expressions with the aid of Maple produces the bounds

32We see in the note on Proposition 23 that the inequalities follow from other results
of Stirling.
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2.9 X 10-18 < E < 5.9 X 10-18 .

All the digits in Stirling's calculated value are in fact correct; however the
eighteenth digit after the decimal point in 1r/2 is 9 and if we repeat Stirling's
calculation using quadruple precision arithmetic, we find 3, 8 as the next two
digits, so there is an error of about 5 x 10-18 .

Example 3. Here we have another hypergeometric series

1~ (~)i (t)i = 1F (1 ~ .1.1) = r(t) r(~) = r(~)J7f
3 ~ i! (t)i 3 2' 4' 4' 3r(~) r(i)

1r3/ 2 v!2.1r3/ 2

= (r(i)) 2 sin ~ - (r( i)) 2 '

for which

a_1 a. _(~+i) (!+i) a.- (l+i-~) ( l+i-i )a.
0-3' '+1- (i+l)(t+ i) ,- l+i 1+i-i+ 1 '

for i = 0,1,2, ... , and Zo = 1, m = ~, n = i. This time Stirling takes nine
initial terms. He then transforms the series from its tenth term and takes the
first nine terms of the transformed series, viz.

1 (1) (~) ~ 8! (~). U). (~). ((28 + !)(28 + 10) - (8 + 1)(8 + i))
3 2 9 4 9 L.. ( 1 ) ( 9) , (7 )

.=0 2 2.+2 8 + . 4" .+9

In this case the error is

Proceeding as in the previous example, we find that

lies between the values of the following two integrals:

r~ ~

19 ~ (x + 1)(x + 2) ... (x + 9)(x + .75)(x + 1.75) ... (x + 9.75) ,

r~ ~

18 .s ..[i (x + l)(x + 2) ... (x + 9)(x + .75)(x + 1.75) ... (x + 9.75) .

According to Maple, we then have the error bounds

2.6 X 10-18 < E < 5.5 X 10-18
.
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Repeating Stirling's calculation in quadruple precision arithmetic, I find that
the sixteenth to nineteenth digits after the decimal point are 0, 9, 8, 8, so
that, correctly rounded, Stirling's final two digits should be 1, °and not 1,
1. The sixteenth to nineteenth digits of the true value are 1, 0, 3, 7, so the
error is about 5 x 10-18 .

Example 4. Continuing with hypergeometric series, we have

~ (~)i (t)i = F(l 1. §. '1) = r(~)r(~) = _1_ (r (1))2 sin ~
~ i! (~)i 2' 4' 4' rG)T(l) 4y11f 4 4

__1_ (r (1))2
- 4y'21f 4 ,

for which

(l+i)(l+i) (1+i-1) ( l+i-;! ). _ 2 4 . _ 2 4 a.
at+! - (1 + i) (~ + i) at - 1 + i 1 + i - i + 1 t

for i = 0,1,2, ... with Zo = 1, m = ~, n = i. Stirling proceeds as in Example
3, the corresponding contribution from the new series being

and the error

Proceeding as before, we find that

4 (~)18 yI1f E

9! (!)g U)~

lies between the values of the following two integrals:

roo ~

19 ~ (x + l)(x + 2) ... (x + 9)(x + .25)(x + 1.25) ... (x + 9.25) ,

roo ~

l8.s ..fi (x + l)(x + 2) ... (x + 9)(x + .25)(x + 1.25) ... (x + 9.25) .

From Maple we then obtain the error bounds

7.95 x 10-18 < E < 1.7 X 10-17 .

It is noted in [67] that Stirling's value is correct to 15DP. Quadruple precision
arithmetic produces in the sixteenth to eighteenth places after the decimal
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point the digits 8, 9, OJ in the true value these are 9, 0, 5, so there is an
error of about 1.5 x 10-17 . The value of T6 in Stirling's tabulation should be
1,7922,56.

Example 3 and Example .4 refer to Jakob Bernoulli's elastic curve.

y

Dh-------------iA

p

x
o

The 'Elastica'

(1,0) x

If an elastic lamina is constrained so that its ends are perpendicular to the
same straight line (the y-axis in the above diagram) and if coordinates are
chosen so that AD = 1, then the lower portion of the curve, OPA, has
equation

1
x t2

Y = dt
o v'f"=t4

With x = 1 in this equation we have

(0 :::; x :::; 1).

which is the series of Example 3. The length of the lower portion OPA of the
curve is
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11 J t
4 11

dt1+--dt=
o 1 - t4 0 v"f=t4

= 1 +~ (~)i = 1 +~ (~)i (t)i = F (1 1.2. '1)
L.;. 'f (4' + 1) L...J" (2.) 2' 4 ' 4' ,
i=l Z. Z i=l Z. 4 i

which is the series of Example 4.
These series representations were given by Bernoulli in 1694 [5]. In the

same paper it is asserted that AX lies strictly between 0.598 and 0.601, while
the length is bounded strictly by 1.308 and 1.316 - these are not the exact
bounds attributed by Stirling to Bernoulli. In a later dissertation33 of 1704 [6]
Bernoulli gave the limits (0.5983546, 0.6004034) and (1.3088173, 1.3152635).

Stirling notes that the sum of the quantites found in Example 3 and
Example 4 is the semiperimeter of an ellipse with axes of length 1 and y'2.
The canonical equation of such an ellipse is 4x2 +2y2 = 1, so that the upper

portion is given by y = J~(1- 4x2 ) and has length

1 + ( -4x ) 2 dx =21
1

/
2

1 + 4x
2

dx =1
1 J1 + t

2
dt

)2(1 - 4x2) 0 1 - 4x2
0 1 - t 2

11 1 + t 2

= ~dt,
o vl-t4

which is the sum of the two integrals considered above.
The two quantities are also known as the lemniscate constants (see [67]).

Bernoulli was aware of quadrature relations between the elastic curve and
his lemniscate; in particular, we have that the length of a quadrant of the
lemniscate with polar equation r 2 = cos28 is 2f;(1- t4 )-1/2dt; moreover
the product of the two quantities is 7r / 4.

Scholion to Proposition 11 (pp. 75-77). Stirling begins by observing
that Proposition 11 may be applied to evaluate fox to- 1(e + jt'1)>.-l dt in the
case where e + jx'1 = O. He has already noted that Propositions 7 and 8 may
be applied for this purpose. The details are given in the note on Proposition
8, where it is shown that the integral may be expressed as a series whose
terms satisfy the relation

33This dissertation was defended by Nikolaus Bernoulli, then a Masters candidate,
before his uncle, Jakob Bernoulli, on 8 April 1704.
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which is the relation of Proposition 11 with m = .x, n = 1 - *.
The transformation described in the scholion may be established using

the method of Proposition 10, Case 1 (see the note on Proposition 10). We
have

ai+l = ( (z~ + i)2 + m ai (i = 0,1,2, ...) h)
Zo + i) + n(zo + i) + r

and we aim to determine with the same optimality criterion constants p, q,
a~2) (i =0,1,2, ...) such that

(j =0,1,2, ...). (8)

The analogue of (6) in the note on Proposition 10 is

a(?) = (1 _Zo + j + P + Zo + j +1+ p . (zo + j)2 + m ) a.
J q q (zo + j)2 + n(zo + j) + r J

(1 - n + q)(zo + j)2 + (m - r - pn + qn)(zo + j) + pm + m - pr + qr
= a·

q((zo+j)2+ n (zo+j)+r) J'

(€)

so that we put 1 - n + q =°and m - r - pn + qn = 0, which give

m-r+qn r-m
q = n - 1 and p = = n - 1 - -- = a - 1, (()

n n

r-m
where a = n - -- . Then (8) becomes

n

~ Zo + j + n - r-;.m - 1 ~ (2)
L..J ai = aj + L..J ai. . n-1 ..
t=J t=J

Zo + j + a - 1 ~ (2)
= 1 aj + L..J ai ,n-

i=j

with, for °~ j ~ i,

a~2)= m(n-~)+~r ai
t (n - l)((zo + i)2 + n(zo + i) + r)

ma + (n - a)r

(1])

(8)
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also from (B) and (-y)

(2) 2
ai+1 (zo + i) + n(zo + i) + r . ai+1

a~2) = (zo + i + 1)2 + n(zo + i + 1) + r ai

(zo + i)2 + m= ..,.-------'.,....."..---'---:------..,.--
(zo + i + 1)2 + n(zo + i + 1) + r

(zo + i)2 + m
=-;---"""'7":~__;__'--:....__::_;__:_--:-;---------:-

(zo + i)2 + (n + 2)(zo + i) + r + n + 1 .

Now (£) is of the same form as (-y): in the denominator the coefficient of
Zo + i has been augmented by 2 and the constant term has had the original
coefficient of z + i and 1 added to it. We may now repeat the process with
~oo (2) Th . I f St' I" b 34Wi=j ai · e successive va ues 0 a are 1r mg s a, ,c,... .

In the example Stirling considers

1 IxI IxIx3x3 IxIx3x3x5x5
-+ + + + ...
2 2x2x4 2x2x2x4x4x6 2x2x4x4x6x6x8

1 ( (1)2 (1 3)2 (1 3 5)2 )=_ I+.---L-+ 2'2 + 2'2'2 + ...
2 Ix2 Ix2x2x3 Ix2x3x2x3x4

= IF (1 1· 2 '1) = r(2) r(I)
2 2'2" 2(r(~))2

Here we have

2

where i = 0,1,2, ... j consequently Zo = %' m = 0, n = 2, r = £.
Stirling adds directly the first six terms of the series and then applies

the above process to L:6 ai, so that j = 6, and takes seven terms of the
transformed series. The following tabulation shows the successive stages of
the transformation; in order to illustrate the general series whose first four

34In his own copy of the Methodus Differentialis Stirling recorded the following
alternative representations:

r-m-n
b=n-1- .

n+2 '
r-m-9

d=n+3- .
n+6 '

r-m-4
c=n+2- 4

n+
r -m-16

e=n+4- 8
n+

He also noted that n should not be zero or a negative integer.
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terms are stated by Stirling we keep j arbitrary - recall that Stirling's z is
~ + j in our notation.

Stage I: n = 2, r = i;
a=2-~= 183;

Zo + j + a-I 9 + 8j
n _ 1 aj = };8 aj; (Ll)

a(2) = ~'i ai=~' U)2 ai. (1.2)
(~+i)2+2(~+i)+i 8 (i+1)(i+2)

Stage II: n = 2 + 2 = 4, r = i + 2 + 1 = 145;

a - 4 _ 15 _ 49.
- 16 - 16'

-,zo,-+---:;...j_+_a_-_1 a(2) = 41 + 16j a(?)'
n - 1 J 3 x 16 l'

(ILl)

15 15 3 (5)2
a(3) = 16'4 a(2)=_. 2" a(2).

, 3((~+i)2+4(~+i)+145)' 16 (i+2)(i+3) ,

(II.2)

Stage III: n = 4 + 2 = 6, r = 145 + 4 + 1 = 345;

a - 6 _ 35 _ 109.
- 24 - 24'

Zo + j + a - 1 (3) _ 97 + 24j (3).
--n":'---1-- aj - 5 x 24 aj , (IILl)

35 35 5 (7) 2
a(4) = 24 . 4 a(3) = _ . 2" a(3).

, 5((~+i)2+6U+i)+345)' 24 (i+3)(i+4) ,

(III.2)
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Stage IV: n = 6 + 2 =8, r = 345 + 6 + 1 = 61;

a = 8 _ 63 _ 193 °

32 - 32'

Zo + j + a-I (4) 177 + 32j (4)a - a °

n - 1 j - 7 x 32 j'

63 63 (9)2
a~5) = 32 ° T a(4) = !.... . 2 a~4)

7 ((! + i)2 + 8 (~ + i) + 61)' 32 (i + 4)(i + 5) • °

(IV.2)

Stage V: n = 8 + 2 = 10, r = 643 + 8 + 1 = 91;

a = 10 _ 99 = 301.
40 40 '

Zo + j + a-I (5) 281 + 40j (5)
n - 1 aj = 9 x 40 aj j (V.l)

99 99 (11)2
a~6) = 40 ° T a(5) = .2. . '2 a~5)

9((~+i)2+1O(~+i)+91) t 40 (i+5)(i+6) to

(V.2)

Stage VI: n = 10 + 2 = 12, r = 91 + 10 + 1 = 1:3 j

a = 12 _ 143 - 433 °
48 - 48 '

Zo + j + a-I a(6) _ 409 + 48j (6). (VI.1)
n - 1 j - 11 x 48 aj ,

143 143 (13)2a(7) = 48 ° ""4 (6) _ 11 '2 (6)

t 11((~+i)2+12(~+i)+1:3)ai -48°(i+6)(i+7)ai .

(VI.2)

Stage VII: n = 12 + 2 = 14, r = 1:3 + 12 + 1 = 1~5;

a = 14 _ 195 _ 589 °

56 - 56'

Zo + j + a-I a(7) _ 561 + 56j (7). (VII.I)
n - 1 j - 13 x 56 aj ,

195 195 (15)2
a(8) = 56 . ""4 (7) _ 13 '2 (7)

t 13((~+i)2+14(~+i)+1~5)ai -56· (i+7)(i+8)ai
°

(VIIo2)
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The first seven terms of the transformed series are (I.l)-(VII.1), which
are evaluated with j = 6 (z = 13/2) and

1 (a)6)2
a6 = "2' 6! 7!

to complete the calculation. All Stirling's values for the terms are correctly
rounded to the number of places shown, but his final value for the sum of the
series is affected by the cumulative effects of rounding. Stirling's thirteenth
and final digit is 3, but if we extend the calculation we find that the thirteenth
and fourteenth digits are in fact 4 and 8, giving a value which is less than
2/1f by about 1 x 10-13 . The actual error is 2::6 a~8) and the terms a~8)
are determined by (VII.2)-(I.2) and the terms of the series. By an analysis
similar to that used in the examples for the proposition we can show that

E (3 x 5 x ... X 13)3 X 152 {'XJ dx
< 7! X 236 x 1f 15,5 x(x + 1)2(X + 2)2 ... (x + 7)2(X + 8)

< 1.2 X 10-13 .

Proposition 12 and Its Scholion (pp. 77-85). Here Stirling applies Case
2 of Proposition 10 in conjunction with the procedures illustrated in the
examples of Proposition 9 to develop a transformation process akin to that
of Proposition 11. He does not present general formulae but demonstrates
the procedure in three examples.

Example 1. The series35 is

00 (_1)i 00 (_I)i -1 1
2J3" ( , =6" J3 =6 tan M3 = 1f,
~ 2i + 1)3' ~ (2i + 1)( 3)2i+l yo)

whose terms satisfy

ao = 2J3,

or equivalently,

aH1 = _~ (2i + 1) = _~ ( ! + i ) ,
~ 3 ~+3 3 !+i+1

(1.1)

ao = 2J3, (! + i) ai + 3 (! + i + 1) ai+l = O.

In order to apply identity (10) in the note on Proposition 10 we multiply36
the last relation by ! + i to get

35Stirling ascribes this series to Halley who derived it and illustrated its use by
calculating 7r to 12DP in [25]. The calculation was extended by Abraham Sharp
to 72DP [57].

36To fit in with the general relation (1.4) noted below it would have been more
appropriate to multiply by 1 + i to get
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(! + i) 2 ai + 3 ( (! + i) 2 + ! + i) ai+l = O.

Then from (10) (p.205) we have

Z - 1
0-2' a = b = 0, r = 3, c = 1, d= 0,

so that

and

P -;! m-1 1_3 n- 3 1_1
- 4' - - 4 - 4' - 4 - 4 - 2'

(j=0,1,2, ...).

~ 3 (1. + j + ;! ) 00 (2)
L...J ai = 4 ~ . 1 aj +L ai
~j 2+ J +2 ~

= ~ (4 j + 5) . ~ a(2)
4 4' 4 aJ + L...J •J + i=j

Now we have to determine the a~2). Replacing j with j + 1 we obtain

~ _3(4 j + 9) ~ (2)
L...J ai - 4 4' + 8 aj+l + L...J ai

i=j+l J i=j+l

and subtraction of this from the previous identity produces

3(4 j + 5) 3(4 j + 9) (2)
aj = 4 4j + 4 aj - 4 4j + 8 aj+l + aj .

Then by (1.1) we have

a(2) = (1_~(4j+5) _~(4j+9) (2
j
+1))a.

J 4 4j + 4 4 4j + 8 2j + 3 3

12
= - 4(4j + 4)(4j + 8)(2j + 3) aj

3!
= - 8(2j + 2)(2j + 3)(2j + 4) aj,

and consequently,

(2) 3!
aj+! = - 8(2j + 4) (2j + 5) (2j + 6) aj+!'

Using (1.1) we now obtain

((~ + i) 2 + ~ (~ + i) ) ai + 3 (( ~ + i) 2 + ~ (~ + i) + ~) ai+l = O.

(1.2)

Then Zo = ~, a = ~, b = 0, r = 3, c = ~, d = ~, giving p = ~, m = ~ - ~ - ~ = ~,

n = ~ - ~ = ~ as before.
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a~~1 = (2i + 2)(2i + 3) (_~ (2i + 1))
a(2) (2i + 5)(2i + 6) 3 2i + 3
•

1 (2i + 1)(2i + 2)
= -3 (2i + 5)(2i + 6) ,

so that
(2i + 1)(2i + 2)a~2) + 3(2i + 5)(2i + 6)a~~1 = 0,

or, on dividing by 4 and expressing the result in terms of ~ + i,

( (~ + i) 2 + ~ (~ + i) ) a~2) + 3 ( U+ i) 2 + ~ (~ + i) + 5) a~~1 = 0. (1.3)

Identities (1.2), (1.3) are equivalent to Stirling's equations relating T2 , T and
T2, T~ (recall that z = ~ +i). We may now repeat the process with Z=:j a~2),
for which

Z _1 a-I
0-2' - 2' b = 0, r = 3, c =~, d = 5,

(1.5)

(1.6)

and consequently

p = ~, m = ~ - t - i = 3, n = 3 - 1 = 2.

Thus

~a. = ~ (4 j +5) . ~ (2 j +7) a(2) ~a(3).
£...J' 4 4' + 4 aJ + 4 2 . + 5 J + £...J •
i=j J J i=j

In fact, we can show by induction that, for 8 = 1,2, ... with a~l) = ai,

((
1 .)2 1(1 .)) (s) (1 . 38-2)(1 . 38-1) (s)2'+2 +2' 2'+2 a i +3 2'+2+-2- 2'+2+-2- ai+1 = 0, (1.4)

~ (s) _ 3(4 j + 98 - 4) (s) ~ (s+1)
£...J a i - -. a j + £...J ai ,
i=j 4 4J + 68 - 2 i=j

(s+1) _ (38 - 2)(38 - 1)38 (s)
a· - - a· .

• 8(2i + 38 - 1)(2i + 38)(2i + 38 + 1) •

Stirling adds up the first ten terms of the series and then transforms
Z=:1O ai, taking six terms of the transformed series, viz.

~ ~ (36+98) a(s).
£...J 4 38 + 68 10
s=1

The error is
00

E= Lar).
i=lO

Now by (1.6)
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(7) (7) E (7)
a lO - all < < a lO .

Thus the error is strictly less than

18!6 22
86(21h93l0.5 < 1.71 x 10-

and strictly greater than

18! 6 ( 1 _ 1 ) 1 548 10-22
86(23h7310.5 21 x 22 3 x 40 x 41 >. x .

Some of Stirling's terms are not correctly rounded, but repeating his calcula­
tion in quadruple precision arithmetic produces the same calculated value to
the number of places given by Stirling. The actual error is about 1.6 x 10-22 .

Stirling's remark about six terms of the transformed series being as ef­
fective as thirty-two terms of the simple series refers to 2::~1O ai; the error
involved in using this as an approximation to 2::10 ai is strictly less than

6 22
a42 = 85 x 342.5 < 4 x 10-

and strictly greater than

(7) _ 18! _ 18!6(-1)i
ai - 86(2i + 2hs ai - 86(2i + 1h9 3i+!

and because the terms alternate in sign and decrease in modulus to zero with
(7)

a lO > 0,

6 (1 1) -22a42 - a43 = -- - - -- > 2.5 x 10 .
342.5 85 3 x 87

Thus we have the same order of accuracy in both cases.

Example 2. Here the series is

00 (_l)i 00 1 00 1

~ (1 + i)2 ={; (2k - 1)2 - {; 4k2 .

Now
00

1
00

1
00

1
L k2 = L (2k _ 1)2 + L 4k2 .
k=l k=l k=l

Hence
00 1 3 00 1

L (2k - 1)2 = 4L k2'
k=l k=l

and so, as Stirling notes at the end of Example 2,37

37Concerning E~=l k- 2 see Proposition 2, Example 6 and Proposition 11, Exam­
ple 1.



222 Notes

00 (-I)i 1 00 1 (= '7r

I2

2
).?: (1 + i)2 = "2 L k2

>=0 k=1

We have (ef. (2.1) below)

ao = 1, (1 + i)2 ai + (1 + i + I)2ai+1 = 0,

from which

Zo = 1, r = 1, a = b = 0, C = 2, d = 1.

Hence

and

~a- = ~ (j+2) a- + ~a(2).
L., > 2 -+1 J L., >
i=j J i=j

Proceeding as above we deduce that

(2) 2j + 3
a- = - a-

J 2(j + I)(j + 2)3 J

and
(1 + i)3 (1 + i + ~) ai

2
) + (1 + i + !) (1 + i + 2)3ai~1 = 0,

for which

r = 1, a = ~, b= 0, C - 6 + 1 - 13
- 2 - 2' d = 12 + 3 = 15.

We can show by induction that for 8 = 1,2, .. _

(I+i)3(I+i+ 8;I)aiS
) + (I+i+ 8; I)(I+i+8)3ai~1=0, (2.1)

~ a(s) = j + 28 a(s) +~a~S+l) (2.2)
~ > 2j + 8 + 1 J ~ > ,
>=J >=J

a(s+l) = _ (2i + 8 + 2) ( 8 )3 a(s). (2.3)
> 2i + 8 + 1 i + 8 + 1 •

To facilitate the calculation of partial sums of the transformed series

~ j +28 (s)

L., 2j + 8 + 1 aj ,
s

Stirling introduces quantities B, C, D, ... whose definitions depend on the
relationships
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(s+l) . ) 3a j 1 2J + 8 + 2 8 (s)

2j + 8 + 2 = 2j + 8 + 2 ( - 2j + 8 + 1) C+ 8 + 1 a j

(
8)3 a(s)

=- j+8+1 X2j+J8+1

Stirling finds E~=o ai directly and then applies the transformation to
E~lO ai , taking nine terms of the transformed series, viz. (see (2.2))

9
" 10 + 28 (s)
L.J 21 + 8 a lO ·
s=l

The error is (see (2.3))

~ (10)_1 3 3 3~ (-I)i-1(2i+ll)
.L.J a i - 2 x 1 x 2 x ... x 9 .L.J (i + 1)3(i + 2)3 ... (i + 10)3 .
,=10 ,=10

This is negative and its modulus is strictly less than

13 x 23 X ... X 93 x 31
----=------:c-----_=_ < 2.46 X 10-18 ,
2 X 113 X 123 X ••. X 203

and strictly greater than

1
3

x2
3

x ... x9
3

(~-~) 2.08 x 10-18.
2 X 123 X 133 X .•. X 203 113 2}3 >

.0000.3347.8726.6605.4
1542.2436.4

1.0908.4
33.3

.0495.8677.6859.5041.3
13.9322.3555.7

32.4950.1
523.2

2.7

Stirling's calculated values of the multipliers A - I are all correctly
rounded to the number of places shown. However, his values for the terms
contain some errors; correctly rounded to the number of places shown, they
are

+.0495.8691.6214.4073.0 - .0000.3348.0269.9983.5

The calculated value of the sum of the series should have 2 rather than 1 in
the final place when rounded. The actual error is about -2.1 x 10-18 .

Example 9. Stirling now applies his transformation to Leibniz's series

~ (_I)i =!:.
L.J 2i + 1 4 '
i=O

whose terms satisfy the relation
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ao = 1, (! + i) ai + (! + i + 1) ai+1 = 0,

or, equivalently, for the purposes of the proposition

(1 ,)2 ((1 .)2 1') 02 + t ai + 2 + t + 2 + t ai+1 = ,

With a view to a remark which Stirling makes in the scholion we will consider
more generally

for which
r = 1, a = b = 0, c = 1, d = 0,

Consequently

P -! m-l 1_1 n-!_!-O- 2' - - 2 - 2' - 2 2 - ,

so that

~ ._ ! (Zo + j + !) . ~ (2) _ 2zo + 2j + 1 . ~ (2)
~ a. - 2 . aJ +~ ai - 4( ') aJ +~ ai .
i=j Zo + J i=j Zo + J i=j

Proceeding as before, we find that

a(2)=_ 1 a.
J 4(zo + j)(zo + j + 1)2 J

and
( ')2 (2) ( , )2 (2) 0zo + t ai + Zo + t + 2 aHI = ,

for which
r = 1, a = b = 0, c = d = 4.

We can now show by induction that for 8 = 1,2, ...

(zo + i)2 (zo + i + ~) (zo + i + 8; 1)a~a)

( , 1) ( ,8 - 1) ( , )2 (a) 0+ Zo + t + 8 - '2 Zo + t + -2- Zo + t + 8 aHI = ,

L
OO

(a) _ 2zO + 2j + 48 - 3 (a) LOO
(a+l)

a· - a· + a· ,
. .' 2(2zo + 2j + 8 - 1) J ..'
'=J '=J

(a+1) (2zo + 2i + 8)8(28 - 1)2 (a)
a· = - a· .

• 2(2zo+2i+8-1)(2zo +2i+28-1)(zo+i+8)2 •

Note also that from (3.3)

(3.1)

(3.2)

(3.3)

(a+1)aj.,,----"--- =
2zo + 2j + 8

8(28 - 1)2 a)a)
......,...-----'---..:....,-----c-:-x .
2(2zo + 2j + 28 - 1)(zo + j + 8)2 2zo + 2j + 8 - 1 '
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Stirling's quantities B, C, D, ... are defined by these relationships (with
Zo = ~) and, as in Example 2, they allow him to streamline the calculation
of the partial sums of

L j + 28 - 1 a(8).
2j + 8 J

8

Stirling obtains L~~o ai by direct addition and transforms L:12 ai, tak­
ing eight terms of the transformed series, viz. (from (3.2) with Zo = ~)

s
"" 11 + 28 (8)
L..J 24 + 8 a12 ·
8=1

The error is (from (3.3) with Zo = ~)

fa(9)=8!X12X32X ... X152f (2i+9)(-1)i ,

i=12 • 4
9

i=12 (i + l)s ((i + t)g)2

which is strictly less than

8' x 1
2

X 3
2

X ... X 15
2 x 33 < 6.3 x 10-19

49(13)s (e2
5 )g)2

and strictly greater than

8! x 1
2

x 3
2

X ... X 15
2

( 33 _ 35 ) > 4.87 X 10-19 .
49(14h (ens)2 13 x en 2

21 x (~3)2

Stirling's calculations of the multipliers A - H are all correctly rounded
to the number of places shown, but there are some errors in the terms, which
should be, correctly rounded to the number of places shown,

.5200.0000.0000.0000.0
10.9694.9174.6

7.9307.0
54.1

+ .5200.0010.9702.8535.7

.0000.6331.1174.4222.9
637.8782.6

1689.2
2.4

-.0000.6331.1812.4697.1

The calculated value of the sum of the series should have 1 rather thC\n 0
in the final place (when rounded). The actual error is about 5.1 x 10-19 .
In fact, Stirling gives correctly the first seventeen digits of 1r/ 4. However, as
the error bounds suggest, it is possible to extract the eighteenth digit from
the calculation. Quadruple precision arithmetic produces 9 and 1 for the
eighteenth and nineteenth digits of the calculated value, so the eighteenth
digit of 1r/ 4 must be 9.

In the scholion Stirling notes that the procedure of Example:] also applies
to the series
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00 (_l)i

L m + in 'i=O
whose terms satisfy the relation

(: + i) ai + (: + i + 1) ai+l = 0,
or equivalently

(: +ifai+ ((: +if +: +i)ai+l =0.

Thus we have Zo = ~ in the general case of Example 3 described above.
Unfortunately, both m and n are now playing two roles.

Stirling adds finally a few observations concerning power series with in­
finite radius of convergence, for which, he asserts, no transformations are
required. The quoted series are the MacLaurin series for eX - 1 and sin x. As
an example he notes in effect that

and that e· 3785 may be obtained from a few terms of the series. In a similar
vein, since sin(7r - 8) = sin 8, we may use 7r - 8 rather than 8 in the sine
series if ~ < 8 « 7r), for the smaller value 7r - 8 will produce a series which
converges more rapidly.

Proposition 13 (pp. 85-87). Here we are concerned with a series I: ak
whose terms satisfy a linear recurrence relation of the form

h

LCiak+i = 0
i=O

(k = ko,ko + 1, ...). (1)

If the series converges, we obtain for m = ko, ko + 1, ...

ooh h 00 h 00

0= L LCiak+i = LCi L ak+i = LCi L aj' (2)
k=m i=O i=O k=m i=O j=m+i

Thus, in Stirling's terminology, the successive sums of the series satisfy the
same linear recurrence relation as the terms. Conversely, given (2), we can
deduce (1) by taking the difference of the relations for m and m + 1.

As we see below, the MacLaurin series of a rational function which is ana­
lytic at the origin is of the above type for each x in its domain of convergence.
Such series are what Stirling means by "series which arise from division" . We
have an identity of the form
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which is valid for Ixl sufficiently small. Then if we consider the term of degree
k ~ ko = max(h, I + 1) on both sides of the identity

00

ao + al X + ... + alxl = (f30 + f31 X + ... + f3h xh ) L 'Yn xn ,
n=O

we obtain the relations

h°=L (f3h_i Xh - i ) (rk_h+i Xk - h+i )
i=O

(k = ko, ko + 1, ...).

Stirling is particularly concerned with two- and three-term relations. From

Tak +sak+l = 0 (k = ko,ko + 1, ...)

we obtain
00 00

r L ak + S L ak = 0;
k=m k=m+l

thus

and so, if r + s 1= 0,

00

'"' samL.J ak =--
r+s

k=m

The three-term relation

(m = ko,ko+ 1, ...).

(m = ko, ko + 1, ...).

rak + sak+l + tak+2 = ° (k = ko, ko + 1, ...)

produces similarly

if the series converges, in which case we have, provided38 r + s + t 1= 0,

~ ak = (s + t)am + tam+l
L.J r+s+t
k=m

(3)

38If r + s + t = 0 and r, s, t are all nonzero, the recurrence relation rak + sak+l +
tak+2 = 0 has general solution

ak = A + B (i) k (A, B arbitrary constants).

Thus, to get a nontrivial convergent series, we require A = 0 and If I< 1. In this
case, the terms satisfy the two-term relation rak - tak+l = O.
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Note that (3) is not affected if we multiply the recurrence relation by a
nonzero constant, since r, S, t will be scaled by the same factor.

The series of Example 1 is the geometric series E (~) k, so that

00 (~)k = (~)m _1 = (~)m XL x x 1- 1 x x-2
k=m x

(Ixl > 2, m = 0,1,2, ...).

3-J5
B----

- 2J5'

The terms of the series in Example 2 satisfy the linear recurrence relation

x2ak - 3xak+l + ak+2 = 0,

which has general solution (x > 0 or x < 0)

=A ((3 + J5)x) k B ((3 -J5)x)k
ak 2 + 2 '

where A, B are arbitrary constants. We also have ao = 1, al = 3x, from
which we obtain

The series is therefore

" 1 ((3 + y'5)k+l _ (3 _ y'5)k+1) x k •
L..J 2k+ly'5
k2:0

Stirling introduces Proposition 13 with a reference to the "principles of De
Moivre", by which he means recurrent series, already mentioned in his Pref­
ace. De Moivre's main discussion of such series is in [43, pp. 26-42] (1730) but
he had some of the ideas in the early 1710s and published relevant material
in 1718 [41] and 1722 [42]. In fact recurrent series are just series whose terms
satisfy a relation such as (1) above: "If some series is so formed that, if some
number of terms in it are taken arbitrarily, each subsequent term always has
given relations to the same number of preceding terms, I call such a series
recurrent.,,39 De Moivre's Theorem V [43, p.35] is particularly relevant to
Stirling's Proposition 13.

Scholion to Proposition 13 (pp.87-88). In the scholion Stirling intro­
duces an important concept which he uses to great effect in Proposition 14.
He is concerned with a series E ak whose terms satisfy a recurrence relation
of the form

h

L CiPi(k)ak+i = 0
i=O

(k = ko,ko+ 1, ...), (4)

39Si Series aliqua ita sit constituta, ut assumptis in ea ad libitum terminis quotlibet,
terminus quisque subsequens ad eundem semper antecedentium numerum habeat
rationes datas, talem seriem voco recurrentem; ... [43, p.27).
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where the Pi (k) are polynomials of the same degree m with 1 as the coefficient
of km . We have equivalently

h

2: Cik-mpi(k)ak+i = 0
i=O

(k = ko, ko + 1, ...);

also k-mpi(k) -+ 1 as k -+ 00. Thus for large k we expect the terms to be
given approximately by

h

2: Ciak+i = O.
i=O

This is what Stirling means by the ultimate relation of the terms (ultima
relatio terminorum).

In the case h = 3 we can write (4) in the form

(k = ko, ko + 1, ...), (5)

for which the ultimate relation is

(k = ko,ko + 1, ...).

Now, assuming that this ultimate relation defines a convergent series, we
can obtain the successive sums of this series by means of (3) in the note on
Proposition 13 provided r + s + t f:. 0 and we may expect that for large m
these sums

(s + t)am + tam+!
r+s+t

will approximate closely to the corresponding sums for the series defined by
(5). In Proposition 14 Stirling uses this approximation iteratively to transform
and sum suitable series.

Proposition 14 (pp. 88-91). This proposition appears to have caught the
interest of Stirling's contemporaries. In his review [1] of the Methodus DifJer­
entialis Castel describes Proposition 14 as the most powerful and complicated
result.4o And Euler in his letter to Stirling of 8 June 1736 ([74, p.179; 70,
p. 141; 33, p. 125]) includes the following in some remarks about the Methodus
DifJerentialis:

But especially pleasing to me was Prop. 14 of Part I, in which you
present a method for summing so easily series whose law of progres­
sion is not even established, using only the relation of the last terms;
certainly this method applies very widely and has the greatest use.
But the demonstration of this proposition, which you seem to have
concealed from study, caused me immense difficulty, until at last with

40"La quatorzieme proposition est tout ce qu'il y a de plus fort et de plus com­
plique."
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the greatest pleasure I obtained it from the things which had gone
before ....

Indeed, Stirling provided no proof apart from a few remarks relating to the
case where the series can be summed as a rational function. Perhaps Stirling
and Euler proceeded along the following lines.

Let S = ~~l ak, where in the notation of the preceding note the terms
ak satisfy the recurrence relation

for which the ultimate relation of the terms is

and r + 8 + t f; O. Define sequences (8k), (dil ») as follows:

(8 + t)al + ta2
8 - "---"--"----=-
1- r+8+t '

(8 + t)ak+l + tak+2
8k = al + ... + ak + -'----'---'----'--

r+8+t

del) _ _ rak + sak+l + tak+2
k - 8k+l - 8k -

r+8+t

Note that in defining (8k) we have used the procedure which Stirling gives
in the preceding scholion and which I have described in more detail in the
previous note for approximating to the sums ak+l + ak+2 + ... and that the
dill are Stirling's A2 /n, B2 /n, C2In, ....

Clearly 8k --+ S as k --+ 00 and

S = 81 + (82 - 81) + (83 - 82) + ...
_ (8 + t)al ta2 ~ del)
- + +L..-k·r+8+t r+8+t

k=l

Thus we have the first terms for the two parts of the transformed series:
(8 + t)A/n and tB/n.

Now it can be shown that the terms of ~~l dil
) satisfy the recurrence

relation4l

rpl(k) {rt(P3(k + 2) - Pl(k + 2))(p3(k + 1) - Pl(k + 1))

- 82(p3(k + 2) - P2(k + 2))(P2(k + 1) - PI (k + I))} dill

+ 8 {rt (P3(k + 1)(p3(k + 2) - Pl(k + 2))(p2(k) - PI (k))

+ Pl(k + 1)(p3(k) - PI (k))(P3(k + 2) - P2(k + 2)))

411 found this relation by lengthy but elementary manipulations, which do not seem
to justify reproducing here.
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- S2(P3(k + 2) - P2(k + 2))p2(k + 1)(p2(k) - pl(k))} dk~1

+ tp3(k + 2) {rt(p3(k) - PI (k))(P3(k + 1) - PI (k + 1))

- S2(P3(k + 1) - P2(k + 1))(P2(k) - Pl(k))} dk~2 = o. (*)

It follows easily from this that if

Pl(k) = km + akm - 1 + ... , P2(k) = km + bkm
-

1 + ... ,

P3(k) = km + ckm
-

1+ ... ,
then the ultimate relation of the terms is

(rt(c - a)2 - S2(C - b)(b - a)) (rdk1) + Sdnl + tdk~2) = 0,

that is, provided rt(c - a)2 - s2(c - b)(b - a) #- 0,

rdk1) + sdk~1 + tdk~2 = 0,

which is the same as that for the ak. We may therefore treat I: dk1
) in the

same way to get

00 () (1) (1) 00

" d(l) = s + t d1 + td2 + L d(2),
L.J k r+s+t r+s+t k
k=1 k=1

(k = 1,2, .. .);
(1) (1) (1)

d(2) _ rdk + Sdk+l + tdk+2
k - r+s+t

the d~2) are in fact Stirling's A3/n2, B3/n2, C3/n2, .... Moreover,

where

(s + t)d~l) td~l) (s + t)(ral + sa2 + ta3) t(ra2 + sa3 + ta4)
-'--_'----0_ + = + ,
r + s + t r + s + t (r + s + t)2 (r + s + t)2

which provides the second terms in the two parts of the transformed series:
(s + t)A2/n2 and tB2/n2.

Likewise, except in degenerate cases, the terms of I: dk2
) will have the

same ultimate relation of terms as before and the same procedure applied to
this series will produce the next pair of terms for the transformed series. The
transformation process continues in this way.

Stirling presents three examples to illustrate Proposition 14. In Example 1
and Example 2 only two terms are involved in the recurrence relation (t = 0)42

42Stirling attributes this case to De Montmort, but I have not been able to find an
exact equivalent in his work. De Montmort does discuss certain series of the form

M N 0 p
h + h2 + h3 + h4 + ...

in [45, pp. 669-675], where h is of the form 1+q. In the two-term case we have rT+
sT' = 0, or T + ;:T' = OJ for the latter version the n in Stirling's transformation,
which corresponds to De Montmort's h, becomes 1 + ;:.
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but in Example 3 all three coefficients r, sand t are nonzero. Let us examine
the last example in more detail. The recurrence relation for the terms is43

(k = 1,2, ...)

with ultimate relation

From (*) we find that the terms of L dil ) satisfy

x2i l )(k + 5) - 2xd(1) (k + 4) - d(l) (k + 3) - 0k k+1 k+2 -

and those of L di2 ) satisfy

X
2d(2) 2xd(2) d(2) - 0

k - k+l - k+2 - ,

which is the same as the ultimate relation. Consequently the process termi­
nates at this stage since the di3) will all be zero - Stirling finds A4 = 0 and
B4 = 0 by direct calculation. The series may now be summed in closed form
as Stirling shows.

In all three examples the process terminates. Stirling asserts, however,
that where this does not happen a rapidly converging series will be produced.
In fact this is not true in general, as the following simple example shows.
Consider the series

00 k

L ~ = - In(1 - x)
k=l

(-l~x<l).

(k = 1,2, ...).

The terms ak = xk/ k satisfy the recurrence relation

xkak - (k + l)ak+1 = 0,

for which r = x, s = -1, t = 0, Pl(k) = k, P2(k) = k + 1, P3(k) = k + 0:,

where 0: is an arbitrary constant, and the ultimate relation of the terms is
xak - ak+1 = O. Since t = 0 the second part of the transformed series drops
out. The first term in the first part is -x/(x - 1) and

(1) ( xk xk+1 ) 1 xk+1
dk = x· k - k + 1 x-I = k(k + l)(x - 1)

Consequently the second term in the first part of the transformed series is

x 2 1 x 2

=2(x - 1) . x-I 2(x - 1)2

43Stirling's own version x 2T(z + 4) - 2xT' (z + 2) - Til Z = 0 requires z = 2,3, .. 0'
contrary to his usual z = 1,2,. 0 0 0
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and

(k = 1,2, ...).= -:-:-::----:7-;-:-~~----:-:~

k(k + l)(k + 2)(x - 1)2

(2) (Xk+l Xk+2 ) 1
dk = x· k(k + 1)(x _ 1) - (k + 1)(k + 2)(x - 1) . x-I

2Xk+2

The third term of the first part of the transformed series is

2x3

--,----:-;:- =
2.3(x - 1)3 3(x - 1)3 .

We can show by induction that this pattern continues, so that the transformed
series is

00 xk (X )- -In 1---
{; k(x - l)k - x-I

= In (_1_) = -In(1 - x)
I-x

provided -1 :::; ---=:""'-1 < 1, that is x :::; ~. Thus the region of convergence of
x-

the transformed series neither includes nor is included in that of the original
series.

The series

~(_I)kXk {2~ + 2~k } (Ixl < 2)

is given in [33, p. 153] as a counterexample to the general validity of the
proposition. I believe, however, that this example would not be admissible
in Stirling's intended scheme because its terms do not satisfy a recurrence
relation of the type considered above.

Proposition 15 (pp. 92-95). This consists of five examples in which Stir­
ling demonstrates techniques for finding equations satisfied by given series.
In Example 1 he simply sums the series, but in each of Examples 2-5 he
obtains a differential equation which has the function defined by the given
power series as a solution.

The series of Example 2 is

00 (-I)nn! x2nL (~) =F(I,I;~;-x2),
n=O 2 n

for which Stirling finds the differential equation

x(1 + x2)~~ + (1 + 2x2)y = 1

or in linear form
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dy 1 + 2x2 1
dx + x(1 + x 2) Y = x(1 + x2) .

The integrating factor for this equation is xVI + x2 , which leads to the
general solution

YX~=ln(x+~)+c.

The particular solution given by the series is

In (x + viI + x2 )
y= ,

xVI + x 2

since we require c = 0 to produce a finite limit for y as x -+ 0+.
In Example 3 the series is F( - ~, ~ ; 1 ; x 2 ) with differential equation

x(1 - x 2)~y + (1 - x 2) dy + xy = 0
dx2 dx

and in Example 4 we have F( ~, ~ ; 1 ; x 2 ) for which Stirling obtains the dif­
ferential equation

(
2 ~y 2 dy

x 1 - x ) dx2 + (1 - 3x ) dx - xy = o.

For both these equations 0 is a regular singular point and if we attempt
to solve by the method of Frobenius we find that the indicial equation has
repeated root a = 0, so that just one linearly independent series solution, an
ordinary power series, emerges in both cases.

The initial series of Example 5 is

~ x
n

= _ r In(1 - t) dt
L..J n2 10 tn=l 0

The associated differential equation is

~y dy 1
Xdx2 + dx = 1 - x '

whose general solution for 0 < x < 1 is given by

(Ixl ::; 1).

12: In(1 - t)
y = - dt + Cl In x + C2.

o t
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Scholion to Proposition 15 (pp.95-100). Following some general ob­
servations concerning manipulations with series, Stirling moves on to some
specific remarks about fluxional or differential equations 0

First he notes that for given a, b, c, the algebraic equation

provides solutions for each of the following differential equations:

(1
0 ) dy 4x3

2Y-d = b+ -2 ;
X C

(101°) 2 dy 2 2 3x
4

xy- - Y = -a + - ;
dx c2

dy
(iii) 2xy- - 4y2 = -4a2 - 3bx o

dx '

(iv) (2a2 + 2bx + 2;4) ~~ = (b+ 4;3) Yo

The first of these has general solution

multiplying the second by 1/x2 we obtain

~ (y2) = _ a
2 + 3x2 ,

dx X x 2 c2

so that
x4

y2 = a2 + - + k2x;
c2

multiplication of the third by 1/x5 leads to

and thence
y2 = a2 + bx + k3 x 4

;

the fourth equation can be expressed as

1 dy b+~
Ydx = 2a2 + 2bx +~ '

c

from which it follows that for y > 0 and a2 + bx + ~ > 0
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and so

( 4) 1/2
Y = k4 a

2 + bx + ~2

The quantities k 1 , k2 , k3 are arbitrary constants and k4 is an arbitrary pos­
itive constant. Thus, as Stirling points out, in cases (i)-(iii) exactly one of
the coefficients in the original form (*) is not uniquely determined by the
differential equation, although of course (*) does result from the solution if
we give the arbitrary constant an appropriate value; moreover, while a, b, C

all appear explicitly in equation (iv), the form (*) still does not come out
uniquely upon solution.

Stirling's remark about certain coefficients in the series not being deter­
mined by the equation may be explained as follows: consider, for example,
case (iii); from the general solution we can develop the non-negative square
root for Ixl sufficiently small by means of the binomial series as

on expanding the powers and combining terms of the same degree we see that
the coefficients of xO, Xl, x 2 , x 3 are uniquely determined in terms of a and b,
but the coefficient of x4 (as also the coefficient of each higher power) depends
on the arbitrary constant k3 . Stirling also points out that the solution of (i)
(with k1 = 0) does not take the form of an ordinary power series: in fact

(
bX + x

4
) 1/2 = (bx )1/2 (1 + -==-) 1/2

c2 bc2

= b1
/

2 x 1
/

2 (1 +~ + ...)
2bc2

(assuming b > 0 with x > 0 and sufficiently small).
Stirling now considers the differential equation

r
2 (~~r= r

2
- y2,

for which he obtains two power series solutions which he identifies as a sine
and a cosine; in modern notation they are

. x
rSln ­

r

Now the equation is equivalent to

and
x

Teas -.
r
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from which it follows that

. -1 Y ±xsm - = - +c
r r

and hence that y =rsin (±~ + c) .
Thus we have the general solution44

. (X ) . X X .Y = r sm - + c = r sm - cos c + r cos - sm c,
r r r

where c is an arbitrary constant. Stirling's two solutions are of course con­
tained in this form (c = 0, c = 7r/2 respectively); however, Stirling appears
to go further and assert that there are no solutions other than the two he has
found. In a letter dated 1 April 1733 (see [74, pp. 141-150]) Nikolaus Bernoulli
told Stirling quite curtly that he had not examined the matter with sufficient
accuracy and informed him of the more general solution

y = A + Bx + Cx2 + Dx3 + Ex4 + ... ,
r 2 _ A2

where B 2 = 2 and
r

A
C = -1 x 2r2 '

B
D = - 2 x 3r2 '

C
E = - 3 x 4r2 '

D
F = - 4 x 5r2 ' .. , ,

this corresponds to the power series for (**).
Finally, Stirling deals with the equation

2 cFy dy 2
(1 - x ) dx2 - x dx + a y = 0,

which is now known as Chebyshev's equation. This has solutions of the form
2::=0 anxn which are determined by the recurrence relation

Setting ao = A, a1 = 0, we obtain Stirling's second solution, while ao = 0,
a1 = A produce his first solution. When a is a positive integer n, one of these
solutions will reduce to a polynomial, namely a multiple of the Chebyshev
polynomial Tn(x). Stirling remarks that the first two series relate to the
multiplication or division of an arc - in this connection we have, in particular,
the trigonometric identities45

44Note that the same set of solutions will be generated by the form r sine-; + c).
45See [70, Chapter 3, Section I], where some other writings of Stirling on this topic

are discussed.
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cos 2nB = (-1)nT2n (sin B)

4n2 sin2 B 4n2(4n2 - 4) sin4 B
=1- 2! + 4!

4n2(4n2 - 4)(4n2 - 16) sin6 B
- I + ...

6.

and for n odd

sin nB = (-1)(n-I)/2Tn(sinB)

_ (. B (n2 - 1) sin3 B (n2 - 1)(n2 - 9) sins B )
- n sm - + I - ....

3! 5.

His other two solutions correspond to solutions near infinity. If we put
z = X-I, the equation transforms to

Z2(z2 - 1)~~ + z(2z2 - 1) ~~ + a2y = 0,

for which the point z = 0 is a regular singular point. Solutions of the form
L~o anzn+u are determined by

(7 = ±a, a2n+l = 0 (n = 0,1, ...),

(2n + (7 - 2)(2n + (7 - 1)
a2n = a2n-2

(2n + (7 + a)(2n + (7 - a)
(n = 1,2, ...).

The case (7 = a produces Stirling's fourth solution, while (7 = -a gives the
third. The third solution is in fact

a (a all)Ax F -- --+-'-a+1'-2' 2 2' , x 2

while the fourth is

-a (a all )
Ax F "2'"2 + "2 ;a + 1 ; x 2

The connection with the area of a hyperbola may be seen as follows: for
positive a, (3 the equations
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parameterize the general hyperbola x Q y/3 = 1 for x 2: 1, 0 < y :S 1 and areas
will be determined from

~)l/Q

/
1 / ( )1//3 (u + vu

2
- 1

y(u)x(u)du=~ u-~ JU2=1 du

1 11/ (u+Ju2_1)"-P= - du
a Ju2 -1

= f3 ~ a (u +~)~-! + c.

Again Bernoulli had a few critical observations to make:

(i) he pointed out in effect that any linear combination of Stirling's first
two or last two solutions is also a solution;

(ii) Stirling had erroneously put minus signs between the terms in the fourth
solution (corrected here);

(iii) Stirling has the letter A playing two distinct roles, which is significant
except in the first solution - it is the coefficient in the first term, but in
the second term it stands for the whole of the first term.

Stirling's Introductory Remarks in Part II (p. 101). Generally, Stir­
ling deals with the situation where he has a sequence offunction values j(k)
with k = 0,1,2, ... or k = 0, ±1, ±2, ... together with a rule by means of
which j(k + 1) is determined from j(k). The aim is to determine j(z) for
z E [0,00), or JR, or some appropriate subset of JR which contains the initial
set of integral z, under the assumption that the rule extends to the determi­
nation of j(z + 1) from j(z). He also indicates that the initial values might
be given more generally at a sequence of points Xo + kh (h constant).

Proposition 16 and Its Scholion (pp. 102-103). The idea here is that,
if we have a sequence {ak} defined by a relation46

ak+l = F(ak, k),

then an interpolating function j (z) should satisfy

j(z + 1) = F(f(z),z).

Consequently, if we know j(zo) for some Zo (which is not one of the suffices
in the sequence), then we can deduce j(zo + 1), j(zo + 2), ....

461n a handwritten note Stirling has added to the statement of the proposition:
"provided the relation is only between two terms."
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In Example 1 we have ak = xk (k = 0,1, ...), so that ak+l = xak. We
therefore want fez + 1) = xf(z). The natural interpolating function is of
course fez) = x Z

, which clearly satisfies this relation.
In Example 2 the sequence is ak = k! = r(k + 1) (k = 0,1, ...). Since

ak+l = (k+ l)ak we require f(z+ 1) = (z+l)f(z), which is certainly satisfied
by fez) = r(z+I). In particular, if a = f(~) the relation f(z+l) = (z+l)f(z)
produces the sequence

a, f(~) = ~ a,

while if a = f( t) the sequence is

a, f(~) = ~a, f(t) = t x ~a,

In Example 2 of Proposition 21 Stirling calculates f(~) = r(~) = ..;:rr/2 by
means of an interpolating series.

The sequence of Example 3 is defined by

Thus

ao = 1,
2k + 1

ak+l = 2(k + 1) ak (k = 0, 1, ...).

(k = 1,2, ...)

2z + 1 z + !.
fez + 1) = 2(z + 1) fez) = z + ~ fez)

and from a = f (~) we therefore obtain the sequence

a, f(~) = ~a, f(~) = t x ~a,

Series expressions for this f (~) are developed in Example 1 of Proposition
21. The sequence {ad is given explicitly by

1 x 3 x ... x (2k - 1)
ak = --=------,-------'-...,..--'-

2 x 4 x ... x 2k

(2k)! r(2k + 1)
= 22k (k!)2 = -:-;22:-;""k-:-:(r=-(:-::-k-+-l-'-:-)=)2

Its natural interpolating function is therefore

(k = 0,1, ...).

for which

r(2z + 1)
fez) = 22z(r(z + 1))2 '

1 1 2 2
f("7,) = 2(r(~))2 = (r(~))2 = ;;:.

In the scholion Stirling refers to Newton's Proposition 7 of De Quadratura
Curvarum in [47]. In it Newton compares the areas of curves whose ordinates
are of the form
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where B, T}, .x, e, f, g, ... are constants and 0' and T are integers; he points
out in particular that all the areas will be determined if a certain number
of them, depending on the number of nonzero coefficients e, f, g, ... , are
known. This is the connection with Stirling's observation about the number
of terms which have to be given to determine the sequence (series).

Proposition 17 and Its Scholion (pp. 103-106). Stirling states some
more or less self-evident principles which he applies later to great effect.

(i) (Examples 1 f3 2.) Suppose that

ll~ n(i)
a = t-l k

k lln d(j)
j=1 k

If {nii)} is interpolated by Ii (z) (i = 1, ... , m) and {d~)} is interpolated by
gj(z) (j = 1, ... ,n), then {ak} is interpolated by

f(z) = ll~IIi(Z) .
llj=1 gj(z)

In particular, we may interpolate separately the sequence of numerators and
the sequence of denominators. (See Proposition 21, Example 3 and Proposi­
tion 22, Example 1.)

(ii) (Scholion, first part.) Given ak (k = 0, ±1, ±2, ...) form the sequence
aka-HI (k = 0, ±1, ±2, ...). Then the term midway between aOal and alaO
in the new sequence (k = 0, 1) will be the square of the term midway between
ao and al in the original sequence. (See Proposition 22, Example 1.)

(iii) (Scholion, last part.) Interpolate the logarithms of the terms of a
given sequence and then deduce the required interpolated value of the given
sequence. Stirling subsequently employs logarithms to base 10 (tabular loga­
rithms) for this purpose and advocates their use when the sequence increases
very rapidly. (See Proposition 21, Example 2.)

Proposition 18 (pp. 106-110). The two sequences are

r(r + k) r(p)
rk = r(p + k) r(r) a,

which are interpolated respectively by

f(z) = r(r + z) r(p) a
r(p + z) r(r) ,

r(r + k) r(q)
Sk = r(q + k) r(r) a,

r(r + z) r(q)
g(z) = r(q + z) r(r) a.

Now, assuming that p, q, r are such that all the required quantities are
defined, we obtain
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f(q - r) = r(q) r(p) a = g(p - r).
r(p + q - r) r(r)

This is the content of Proposition 18. Stirling's proof of his assertion consists
of verification in a few cases where p - rand q - r are positive integers.
However, he does apply the result in situations where this is not the case.

In Example 2 Stirling introduces an important sequence which he dis­
cusses in detail in Example 1 of Proposition 22 and Proposition 23, namely
the sequence (rk) defined by

In fact,

ro = 1, (k = 0,1,2, ...).

k! r(k+l)r(~) r(k+l)y'1r
r - - -

k - ~ X ~ X ... 2k;1 - r(k + ~) - r(k + ~)

or, without introducing the Gamma function,

_22k j (2k)rk - k'

The proposition is applied for given m to (rk) and the sequence (Sk) defined
by

k+l
So = 1, Sk+l = k + m + 1Sk (k =0,1,2, ...).

The "difference of the factors" in (rk) is (k + ~) - (k + 1) = - ~ and the
corresponding quantity for (Sk) is m. Thus the term determined by (rk)
which comes m units after the initial term 1 is equal to the term determined
by (Sk) which is half a unit before its initial term 1. This observation is
applied in Example 1 of Proposition 22. Stirling goes on to consider the
sequence of reciprocals in the same way and again his conclusions are relevant
to this example. Example 1 and Example 3 provide similar illustrations of the
proposition.

On the Differences of Quantities (pp. 110-111). The material here is
quite standard. Stirling points out that the n-th-order differences of a poly­
nomial of degree n are constant; he also warns that we cannot expect the
sequence of differences to converge in general.

On the Description of Curves Through Given Points (pp.111-112).
Here we are concerned with interpolating polynomials or series. Newton had
presented his interpolating formulae in Lemma V of Book III of the Principia
[48] and in his Methodus Differentialis which appears on pp.93-101 of [47].
As its title suggests, a large part of Stirling's 1719 paper [61) is devoted to
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discussing and illustrating Newton's results, which are given there with some
minor variations.47 Most of the relevant parts of the paper are reproduced in
Propositions 19, 20, 31, 32 and 33, again with some variations.

Stirling begins with a quotation from Newton's epistola posterior to Old­
enburg dated 24 October 1676 at Cambridge.48 He then refers to Proposition
60 in Newton's Arithmetica Universalis [46]; in fact the requirement of this
proposition is that the conic section should pass through four given points
and be tangential to a given line through one of them. Concerning the refer­
ence to curves of the third order49 we should note that Newton had described
these curves in [47] (see [77, Vol. VII, pp. 609-610] about missing types) and,
as with the Methodus DijJerentialis, Stirling wrote a commentary on the work
[60]. The organic description of curves, which Stirling tells us is not required
here, was another development of Newton's subsequently taken up by others,
notably Colin MacLaurin [38].

Proposition 19 and Its Scholion (pp. 112-119). Here Stirling presents
Newton's forward difference formula [27, p. 95]

f - I, "I, s(s - 1) "21, s(s - l)(s - 2)"3 I
s - 0 + s y 0 + I y 0 + , y )0 + ....

2. 3.
He gives two proofs, both of which involve identifying the values of the coef­
ficients in the formal expression

A B Cz(z - 1) DZ(z - l)(z - 2)
+ Z + 2! + 3! + .

which will generate the required ordinates when Z = 0,1,2, Stirling had
already given this formula as the first case of the proposition in his 1719
paper [61]. Newton's version was given in the first case of Lemma V in Book
III of the Principia (see [48]).

In the scholion Stirling indicates that Taylor's Theorem may be obtained
as a limiting case of the interpolation formula. For this he obtains approxi­
mations to the ordinates AI, A2 , A3 , ... by means of linear approximations
and their derivatives:

Al ~ A + An

A2 ~ Al + Aln ~ A + An + (A + .4n)n = A + 2An + .4n2

A3 ~ A2 + A2n ~ A + 2An + .4n2 + (A + 2.4n + An2 )n

= A + 3An + 3.4n2 + An3
,

47The other part of Stirling's paper has been discussed in detail in [71].
48This is Letter 188 in Volume II of [68] (pp.110-161). The original manuscript

refers to a curve of three dimensions through eight points rather than seven as
quoted by Stirling. This and other textual variations are discussed in [68]. Stir­
ling's source for the quotation was pp. 75-76 of the first edition or pp. 156-157 of
the second edition of [12]. (See the note on Stirling's Preface.)

49This is a curve defined by a third-degree equation in two variables.
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and so on.
The formula of Johann Bernoulli to which Stirling refers in connection

with his expression for the area BEDA may be obtained from Taylor's The­
orem as follows:

rb

f(x) dx = rb

f(b) + (x ~ b) j'(b) + (x ;,b)2 j"(b) + ... dx
Ja Ja 1. .

=(b _ a)f(b) _ (a ;!b)2 j'(b) _ (a ;!b)3 j"(b) _ .

=(b _ a)f(b) _ (b -,a)2 j'(b) + (b ~,a)3 j"(b) _ .
2. .

It has been argued on the basis of this formula, which Bernoulli gave in [7],
that he is the true discoverer of Taylor's Theorem, a view which is disputed
by Gibson in [17]. Gibson also queries Stirling's reference in the scholion
to Hermann as having given Taylor's Theorem in the Appendix to [26] ­
Gibson's opinion is that Hermann only produced Bernoulli's formula.

Proposition 20 and Its Scholion (pp. 119-123). The first case is what
has become known as "Stirling's interpolation formula" and is usually ex­
pressed as [27, p. 100]

S2 2 S(S2 - 12 ) 3 S2(S2 - 12 ) 4
fs = fo + s/-£6fo + 2! 6 fo + 3! /-£6 fo + 4! 6 fo + ....

This is essentially how Newton gives it in Case I of Proposition III in his
Methodus Differentialis [47]. In Stirling's version the terms involving /-£62n- 1 fo
and 62n fo are combined. In the second case we have "Bessel's interpolation
formula" [27, p. 101]:

_ 1 s(s - 1) 2 S(8 - 1)(8 -~) 3
fs - /-£f! + (8 - 2)6f! + 2! /-£6 f! + 3! 6 f! + ... ,

which is equivalent to the formula of Case II of Proposition III in Newton's
Methodus Differentialis. Again, pairs of terms are combined in Stirling's ver­
sion; we also have to note that z = 28 - 1. Thus

lIz A + az
/-£f! + (8 - 2)6f! = 2(lA + Ad + 2(lA - Ad = -2-'

and

8(8 - 1) 62 f1 8(8 - 1)(8 - ~) 63 f
2! /-£ 2 + 3! !

= .!. (~) (~) !( B B) .!. (:22) (~) :b2! 2 2 2 1 + 1 + 3! 2 2 2

1 2 1 2 3B + bz Z2 - 1
= 2! 23(z - I)B + 3! 23 (z - l)zb = 2 x 4 x 6 ' etc.
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Stirling had already given these formulae in the second and third cases of
the proposition in his 1719 paper [61] but with certain notational differences;
in particular, in the case of Bessel's formula the sums of differences are also
divided by 2 and the variable z is half that used in the second case of Propo­
sition 20. Braunmiihl [10] interprets Stirling's remarks in the scholion as an
acknowledgement that he was only giving variants of Newton's results. The
formulae were also investigated by Cotes (see De Methodo Differentiali New­
toniana in [13] and [21, Chapter 6]).

In the first formula the given ordinates are generated by putting z =
0, ±1, ±2, ... , while in the second they correspond to z = ±1, ±2, .... Stir­
ling indicates that the formulae are to be established by the method used in
Proposition 19, by which he means presumably that one assumes a series of
the required form and then identifies the coefficients by giving z the appro­
priate values required to generate the given ordinates. However, as noted by
Braunmiihl, this is not altogether trivial.

Proposition 21 (pp. 123-130). This proposition consists of four exam­
ples to illustrate the application of Propositions 19 and 20 to interpolation
problems.

Example 1. Here the given sequence is

t _ (2n)! = r(2n + 1)
n - 22n(n!)2 22n(r(n + 1»2

for which the differences may be shown to be

(n = 0,1,2, ...),

,dk _ (-I)k(2k)!(2n)!
n - 22(k+n)k! n!(k + n)! .

The series which emerges from Proposition 19 on taking for A the first term
1 (n = 0) may be expressed as

00 k (2k)!
1 + I)-I) 22k (k!)3 z(z - 1) ... (z - k + 1).

k=l

Stirling requires the term midway between the first two terms 1 and 1/2, for
which z = 1/2. The series then becomes

~ k(2k)!(2k - 2)!
1 - L.J 24k- 1 (k!)4

k=l

and its value should be
r(2) 2

=
2(r(~»)2 1r
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Now for this series the ratio of the (k + l)-th term to the k-th term is50

4k2 - 1 k 2 - !.____ - 4

4(k + 1)2 - k 2 + 2k + 1 '

which fits the general relation required in the scholion to Proposition 11, viz.

2
T' = z +m T

z2 + nz + r

(note that z is playing a different role here and corresponds to our k). Thus,
as Stirling asserts, the procedure described in the scholion may be applied to
sum the series. He provides no details but let us illustrate the procedure by
using two terms of the transformed series from k = 3 (= z): we have for the
scholion m = -t, n =2, r = 1 and so

1 + t 11
a=2---=-

2 8 '

b = 2 2 _ 1 + t + 2 + 1 _ 47
+ 2 + 2 16'

z + a - 1 3 + !.!. - 1 27____ = 8 =_,
n -1 1 8

z + b - 1 3 + 47 - 1 79___ _ 16 __

n+1 - 3 -48'

ma + (n - a)r -!.!. + 2 9__--'--_--:._ _ 32 8 __ .

z2 + nz + r 9 + 6 + 1 - 512 '

hence

1 - ~ - ~ - ~ - ... ~ 1 _ ~ _ ~ _ ~ (27 + 79 x ~) = .63664 ...
4 64 256 4 64 256 8 48 512 '

whereas
135

1 - - - - - - = .684 (to 3DP)
4 64 256

In fact 2/'rr = .636619772 ....
The second series, where ! is used as the initial ordinate, may be dealt

with similarly.

50This ratio can be expressed as

from which we see by Gauss's test that the series converges.
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Example 2. This calculation has attained a certain celebrity - in modern
terminology Stirling indentifies r( ~) as ,j1i on the basis of numerical evi­
dence. He first applies Bessel's interpolation formula (second case of Propo­
sition 20) to the twelve quantities

that is,

log1o{(~(z + 21))!} = log1o r(Hz + 23)) (z = ±1, ±3, ±5, ±7, ±9, ±11).

With z = 0 he obtains an approximation to the term midway between
IOglO(lO!) and IOglO(11!);51 thus in modern terminology he has an approxi­
mation to log1o r(I1.5) and then from tables an approximation to r(I1.5).
Next Stirling invokes Proposition 16 to observe that, since the factorials are
built up according to the rule n x (n -I)! = n!, the same rule must carryover
to the function produced by interpolating the factorials - this is equivalent
to zr(z) = r(z + 1), which is applied in reverse to deduce values for r(10.5),
r(9.5), ... ,r(1.5). Having determined r(1.5) numerically, Stirling asserts
that its square is the area of a circle whose diameter is 1; in other words, he
claims that (r(1.5))2 = 1r/4. He also appends to his list of values the "term
which stands before the first principal term by half the common interval".
This is r( ~), which should come out directly by the assumed rule:

r( l) _ r(1.5) _ c
2 - -y1r .

.5

However, it seems that he wishes to justify this separately by considering a
corresponding interpolation of the squares of the factorials. Presumably ,j1i
would have been a familiar number to Stirling and he would simply have
recognized its occurrence in his list of values - he certainly offers no proof
here for the introduction of 1r.

Stirling's stated aim in this example is to find the term which is midway
between the first two terms 1 = O! = r(l) and 1 = I! = r(2); this he has
found to be .8862269251, which agrees with ,j1i/2 except in the last place,
which should be 5 (correctly rounded). The accuracy of the final result is
remarkable, but it appears to be difficult to justify this by elementary error
analysis. In the notation of [27, p. 102], Stirling's initial interpolation to find

loglO r(I1.5) is equivalent to finding h for f(t) = In ~(t + 11) using Bessel's
2 n 10

interpolation formula with differences up to order 10 (see also [55, p. 32]). In
this case the error can be represented in the form52

(1 x 3 x ... X 11)2 f12(~)
212 x 12!

51Note that for this purpose Stirling could have used equivalently the formula which
he gives in Proposition 33.

52The sign is wrong in the version in (27): (_l)m should be (_1)m+l.



(n = 0,1,2, ...)

248 Notes

for some ~ between -5 and 6. Now, in terms of the psi (digamma) function,

00 100 00 1=L ulle-(n+ll)ue-tu du = 11! L -;------:-:-~
n=O 0 n=O (t + n + 11)12 '

so that the error is

(1 x 3 x ... X 11)2 ~ 1

212 x 12ln 10 ~ (~+ n + 11)12

for some ~ between -5 and 6. However, this sum takes on a wide range of
values over the interval [-5,6]: the maximum value is attained at ~ = -5,
where we have

10 100
1 ~ 1 roo 1 -10

2.5 x 10- < 6 x 12 dx <~ (n + 6)12 < 1
5
.
5

x 12 dx < 6.53 x 10 ;

for the minimum ~ = 6 and

15 /00 1 ~ 1 /00 1 -152.65 x 10- < 12 dx < L...J ( )12 < 12 dx < 3.684 x 10 .
17 X n + 17 16.5 Xn=O

Thus all we can deduce from the error term is that the calculated value of
log10 r(11.5) is an underestimate by an amount which does not exceed

(1 x 3 x ... X 11)2 X 6 53 X 10-10 < 6.235 X 10-7
212 x 12ln 10 .

and is at least

(1 x 3 x ... X 11)2 x 2.65 X 10-15 > 2.53 X 10-12.
212 x 12ln 10

Stirling's ordinates are all correctly rounded to 10 decimal places. Repeating
his calculation in double precision arithmetic, I find agreement except in the
last decimal place, where Stirling's 9 should be 8. The value of log10 r(11.5)
rounded to 11 decimal places is 7.07552590614, which means that Stirling
has an underestimate by about 4.5 x 10-10 .

Example 3. Stirling interpolates the sequence

An = (e + jxfJ)-n1x

t ll - 1 (e + jtfJ)n dt

with a view to obtaining a series for fox t ll - 1 (e + jtfJ )>' dt (). now replaces z).
Although he does not say so explicitly, he is presumably using Proposition 17
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to deduce the desired series by multiplying by (e + fx 11 ». the series obtained
by applying Proposition 19 to the An. We can show inductively that the
successive differences for the An are

,1k = fk rr; t()-l(t11 _ x11)k(e + ft11)n dt.
n (e + fX 11 )n+k Jo

For Proposition 19 we require

- T}(e + fX11)k(* + k)(* + k - 1) ... *
(-l)kk! rlrxk11+9

= -;:"'0(;-;;"0-+-T}-:'"':)(;-;;"0'-+-=2'-;T})~.-'-..---7(O~+--:-kT}""7) -:-(e-+-f~x-:11)C7"k .

Consequently the interpolating series is

x() 00 (-l)krlfkxk11+9
7) + {; 0(0 + T})(O + 2T}) ... (0 + kT})(e + fX 11 )k ,\(,\ - 1) ... (,\ - k + 1),

or equivalently,

x() (1 00 (-,\)(-,\ + 1) ... (-,\ + k - 1) ( T}fx11 ) k)
7} +{; (0 + T})(O + 2T}) ... (0 + kT}) e + fX 11 .

For this series the ratio of the (k + l)-th term to the k-th term is

k - ,\ T}fx11 k - ,\ fx 11
-::----;:---:-:-- X = X ---'---:--
0+ (k + 1)T} e + fX 11 k + fu e + fX 11

11

z- (~+,\) fx 11
= x,

z e + fX 11

where z = k +~. Comparing this with the relation required in Proposition
7, viz.

T' z-n
-= ,
T (1 - m)z

we see that Proposition 7 may be applied with
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n=O+TJ+>. and m=l_e+fxT/ = __e_.
TJ fXT/ fXT/

Transforming the series from its first term xli 10 (k = 0, Z = (0 + TJ)ITJ) we
then obtain

(
e + fXT/) Xli _ (0 + (>' + l)TJ)(e + fxT/)fxT/+1i

e 0 (0 + TJ)e2 0

(0 + (>' + 2)TJ)(0 + (>' + l)TJ)(e + f xT/)px2T/+1i
+-'----'---'~~---::'---:-:--=---'"~'-::-::--=-----:.-'----

(0 + 2TJ)(0 + TJ)e30

When this is multiplied by (e + fxT/). we obtain, as Stirling notes, a series
of Newton for fox tli-1(e + ftT/). dt (cf. p.33 where Stirling quotes the series
but with>. replaced by >. - 1).

Example 4. Stirling applies the interpolation formulae of Proposition 20 to

the binomial coefficients (~) (k = 0,1, ... , n). Where n is an even positive

integer he asserts that from the first case ("Stirling's interpolation formula")

with middle term (n/2) we obtain

(~ ~ k) = (~ ) x (
1 - 2(:: 2) + 2 x ~~~ ~~ + 4)

r2 (r2
- 4)(r2

- 16) )
- 2 x 4 x 6(n + 2)(n + 4)(n + 6) + . .. ,

where r = 2k (k = 0,1, ... , nI2). The series will of course terminate. Calcu­
lation of the table of differences is obviously tedious, but we can easily verify
the result by means of Gauss's formula for F(a, b; c; 1). For any r

r2 r2 (r2 - 4) r2 (r2 - 4)(r2 - 16)
1- + - + ...

2(n + 2) 2 x 4(n + 2)(n + 4) 2 x 4 x 6(n + 2)(n + 4)(n + 6)

!: (_!:) !: (!: + 1) (_!:) (_!: + 1)
=1+ 22 +22 2 2

I! (~+ 1) 2! (~ + 1) (~+ 2)

+ ~(~+1)(~+2)(-~)(-~+1)(-~+2) +
3!(~+1)(~+2)(~+3) ...

=F(!: -!:·!!+1·1)2' 2' 2 '

= r(¥ + 1) r(~ + 1)
r(~ - ~ + l)r(~ + ~ + 1)·

When r is an even integer such that -n ~ r ~ n this is
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(~)! (~)!

( ~ _ ~)1 (~ + ~)' '
2 2' 2 2'

so that multiplication by (n/2) produces

n! ( n )
(~- ~)! (~+ ~)! - ~ ± ~ .

When n is odd we can apply Bessel's interpolation formula with "middle

terms" (~~ ~) to obtain Stirling's stated expression

where r = 2k + 1 (k = 0,1, ... , ~ - ~). We see as above that for any r

r 2 - 1 (r2 - 1)(r2 - 9) (r2 - 1)(r2 - 9)(r2
- 25)

1- + +
2(n + 3) 2 x 4(n + 3)(n + 5) - 2 x 4 x 6(n + 3)(n + 5)(n + 7) ...

=F(~+l -~+1.~+1·1)
2 2' 2 2'2 2'

Then if r is an odd integer in the range -n ~ r ~ n this is

(~+ ~)! (~ - ~)!

( ~ - ~)' (~ + ~)' '2 2' 2 2'

which on multiplication by (~~ ~) produces the quantity

Proposition 22 (pp. 131-133). Proposition 22 consists of two examples
whose purpose is to illustrate a particular interpolation technique. In Exam­
ple 1 Stirling is concerned with the sequence (rk) defined by

ro = 1,
2(k + 1) k + 1

rk+l = 2k + 1 rk = k + 1 rk
2

(k = 0,1,2, ...).
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We saw in the note on Proposition 18 that

r = r(k+l)/1T =22kl (2k).
k F(k+~) k

Stirling shows here by interpolation methods that

r(m + 1)/1T

r(m +~)

{ (
(1)2 (1 3)2

= 1rm 1 + ----L- + 2" • 2"
J m + 1 2!(m + l)(m + 2)

+ (~.~.~)2 +)}
3!(m + 1)(m + 2)(m + 3) ...

=J {1rmF ( ~, ~ ;m + 1 ; 1) }.

We can see that this is correct by using Gauss's formula,

F(a b'c'l) = r(c)r(c-a-b)
, " F(c - a)r(c - b)

(Re(c - a - b) > 0).

In the case in which m is a positive integer, the sum is 22mI (2:) and we

have one of Stirling's solutions to De Moivre's middle-ratio problem,53 which
is discussed in greater detail in Proposition 23. It is difficult to justify the
arguments presented by Stirling in this example, but fortunately the proofs
given in Proposition 23 are much more satisfactory and can easily be made
precise. I will therefore simply describe what Stirling is doing in this example
without attempting to justify the steps.

Stirling applies a result from Example 2 of Proposition 18 (see the note
on Proposition 18): if the sequence (Sk) is defined for given m by

(k =0,1,2, ...),80 =1,
k+l

S - 8
HI - k + m + 1 k

then the term determined by (rk) which comes m units after the initial term
1 is equal to the term determined by (Sk) which is half a unit before its initial
term 1. Now according to Proposition 17 we may interpolate the numerators
and denominators separately in (Sk)' But Stirling has already found in Ex­
ample 2 of Proposition 21 that the term which is half a unit before the initial
term 1 in the sequence of numerators 1, 1, 1 x 2, 1 x 2 x 3, ... is /1T; it there­
fore remains to find the corresponding term for the sequence (dk) defined
by

do = 1, d - 1 d
k+l - k + m + 1 k

(k = 0, 1,2 ...).

53See the Preface and its note and the Appendix.
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Putting k = -1, -2, -3, ... in the recurrence relation for (dk) yields

d_ l = m, d_ 2 =m(m - 1), d_ 3 =m(m - l)(m - 2), ....

By this means Stirling produces a sequence which goes off to infinity on both
sides - clearly the extended terms will eventually be zero if m is a positive
integer. He then forms the sequence (dkd_k-l)~oo' some of whose terms are
given in the following table:

k -3 -2 -1 0 1 2

m(m-l)(m-2) m(m-l) m
(m+l)(m+2) m+l

m(m-l) m(m-l~(m-2)
m m+l (m+l) m+2)

The term determined by this sequence for k = - ~ should be equal to the
square of the required quantity and that term is now obtained by means of
the second case of Proposition 20, for which the two terms m (k = -1,0) are
the two middle ordinates and z = O. To illustrate the calculation consider the
table of differences below, in which the differences up to order 4 are given for
the six terms listed above.

m(m-l)(m-2)
(m+l)(m+2)

-4m(m-l)
(m+l)(m+2)

m(m-l) -2m~m-4)
m+l (m+l (m+2)

-2m 12m
m+l (m+l)(m+2)

m -2m 12m
m+l (m+l)(m+2)

0 0

m -2m 12m
m+l (m+l)(m+2)

2m -12m
m+l (m+l)(m+2)

m(m-l) -2m(m-4)
m+l (m+l)(m+2)

4m(m-l)
(m+l)(m+2)

m(m-ltm - 2 )
(m+l) m+2)

From this table we see that for the second case of Proposition 20 we have

A=2m,

and the series is

-4m
B=-­

m+1 '
c= 24m

(m + l)(m + 2)
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2m + ~ ( -4m) (~)
2 2 m+1 4x6

5 ( 24m ) ( -1 ) ( -9 )
+ 2" (m + l)(m + 2) 4 x 6 8 x 10 + ...

m 9m
= m + 4(m + 1) + 32(m + l)(m + 2) + ... ,

as Stirling gives it.

In his numerical illustration Stirling finds 22001(~~~). The case m =
99.5 which he mentions would produce

F(101.5)J1r r(101.5)J1r
=r(100) 99!

Finally in Example 1 Stirling indicates that the term determined by the
sequence of reciprocals at distance m/2 from the initial term 1 is given by

..; {1r(m
2
+ 1) ( 1 + 2(m

1
+ 3) + 2 x 4(m +93)(m + 5) + ...) },

which is

..; {1r(m
2
+ 1) F (~, ~; ~ + ~; I)}.

Again we can verify the correctness of this assertion by using Gauss's formula
quoted above. Moreover, when m is an even positive integer the value is

(m/2) 12m
; this gives another of Stirling's solutions to the middle-ratio

problem which is also discussed in greater detail in Proposition 23.
In Example 2 Stirling only indicates how to proceed. He gives an alterna­

tive treatment for both the first series of Example 1 and the series of Exam­
ple 2 in Examples 1 and 2 of Proposition 26, where the solutions obtained
are in fact asymptotic series.

Proposition 23 (pp. 134-139). In Proposition 23 Stirling gives four series
from which he asserts the middle ratio may be determined; he also gives
two expressions for approximating this quantity. The first series of his First
Solution and the first series of his Second Solution are in fact the series given
in Example 1 of Proposition 22, viz.

When n is an even positive integer their sums, according to Gauss's for­

mula, are respectively ~ (2 n I (n/2) )2 and its reciprocal. As Stirling points
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out, in an odd power of the binomial there are two middle coefficients,

Cn _n1)/2) and Cn +n1)/2)' and

consequently we have to replace n by n + 1 in Sl and S3 to get the required
quantity when n is an odd positive integer.

In the Analysis of the First Solution Stirling is concerned with Sl. For

he obtains the recurrence relation

2Yn+2 + (n + 2)(Yn - Yn+2) - Yn+2
2

= 0,
n+

which he solves by assuming that Yn can be expressed in the form

0ln 02n °3n
Yn = oon + n + 2 + (n + 2)(n + 4) + (n + 2)(n + 4)(n + 6) + ....

Substitution of this expression into the recurrence relation leads to the fol­
lowing equations for the coefficients:

(2k - 1)2
Ok = 2k Ok-1 (k = 1,2,3, ...).

These determine Yn in terms of 00 as

(
n 9n

Yn = 00 n + 2(n + 2) + 2 x 4(n + 2)(n + 4)

9 x 25n )
+ 2 x 4 x 6(n + 2)(n + 4)(n + 6) + ... .

The determination of 00 is achieved by an application of Wallis's product54

which Stirling indicates after his Analysis of the Second Solution. Assuming
the validity of (*), we can see that Yn/n --+ 00 as n goes off to infinity through
even values. But

Yn =n
22n 22 X 42 X •.. x n2 n + 1 1f

= x----+-

(
n)2 32 x 52 X '" x (n - 1)2 x (n + 1) n 2

n n/2

54See the note on Proposition 27.
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as n --t 00; thus ao = 1r/2 as required. The various steps in this development
of S1 can be justified by using properties of hypergeometric series. Stirling
deals similarly with S3 in his Analysis of the Second Solution.

Before turning to the other two series and the approximations, let me
comment on Stirling's letter of 19 June 1729 to De Moivre, in which he
communicated the two series just discussed as well as the approximations but
gave no proofs (see Appendix). De Moivre was quite astonished by Stirling's
solutions to the middle-ratio problem and in particular by the occurrence of
1r in these. On pages 172-173 of [43] he writes:

Indeed there is no one who having seen this solution of the above prob­
lem may refuse to acknowledge that it is marvellous in every aspect;
but perhaps nothing in it will be seen as more extraordinary than by
what means the quadrature of the circle could have been brought in
to it; ...

He goes on to tell us how he puzzled over the occurrence of 1r in Stirling's
solutions and eventually, after coming upon a reference to Wallis's product,
discovered for himself the relevance of this result for the middle-ratio problem.
It is asserted in [55, p. 273] that Stirling in fact learned of this application
from De Moivre. I am not aware of any historical record to substantiate
this assertion, although it is quite conceivable that, when Stirling wrote to
De Moivre, he had only found his solutions by the interpolation methods
discussed in Example 1 of Proposition 22 and that the more satisfactory
proof given in Proposition 23 was indeed inspired by De Moivre. Be that as it
may, the results communicated by Stirling enabled De Moivre to improve and
extend his own work on this and related topics (see the note on Proposition
28).

The other two series of Proposition 23 are stated without proof, although
Stirling indicates that the same method of proof applies. The second series

of the First Solution, whose sum is claimed to be ~ (2n
/ (n/2) ) 2 when n

is an even positive integer, is
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and the second series of the Second Solution for ~ ( (n/2) /2n
) 2 is

1(1 9
~=- 1- +-~~~~-~

n 2(n - 2) 2 x 4(n - 2)(n - 4)

9 x 25 )
- 2 x 4 x 6(n - 2)(n - 4)(n - 6) + ...

1 ((1)2 (1)2(~)2=_ 1+ 2 + 2 2
n l!(l-i) 2!(1-i)(1-i+1)

(~)2(!)2(~)2 )
+ n n n + ...3!(1 - 2)(1 - 2 + 1)(1 - 2 + 2)

_ 1 (1 1. n.)- -F 2'2,1- 2,1 .
n

At first sight S3 and S4 appear to be quite wrong - it is easy to see that
S3 diverges, while only the first n/2 terms of S4 are defined (there is a zero
factor in the denominator of each subsequent term). Although Stirling did
not include S2 or S4 in his letter to De Moivre, he did remark, "There are also
other series for the solution of this problem which are just as simple as those
presented so far, but a little less convergent when the index of the binomial
is a small number." It seems reasonable to infer that Stirling is referring here
to S2 and S4 and that he had carried out some calculations with them. In
fact 82 and 84 have certain asymptotic properties which are illustrated in
the following two tables:55

Partial sums of 81 and 82 with n = 100.

# SI S2 SI - S2

1 100 101 -1 .
2 100.490196 100.489899 3 x 10-4

3 100.500801 100.501731 - 9 x 10-4

4 100.501218 100.501212 6 x 10-6

25 100.501243711840822 100.501243711840829 -7.2 x 10-15

26 100.501243711840822 100.501243711840815 7 x 10-15

27 100.501243711840822 100.501243711840830 -7.5 x 10-15

50 100.501243711840822 100.42 8 x 10-2

51 100.501243711840822 108.46 -8
52 100.501243711840822 912.39 -812

55These tables have appeared in [70). Except for the first partial sums all entries
are rounded to the number of places shown.
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Partial sums of 83 and 84 with n = 100.

# 83 84 83 - 84

1 0:0099' 0.01 - 9.9 x 10-5

2 0.0099490532 0.0099489796 7 x 10-8

3 0.0099500831 0.0099501754 - 9 x 10-8

4 0.0099501232 0.0099501224 8 x 10-10

25 0.009950125621004453 0.009950125621004454 - 9.97 x 10-19

26 0.009950125621004453 0.009950125621004452 9.97 x 10-19

27 0.009950125621004453 0.009950125621004454 - 1.08 x 10-18

48 0.009950125621004453 0.00995007 5 x 10-8

49 0.009950125621004453 0.009951 -1 x 10-6

50 0.009950125621004453 0.009887 6 x 10-5

I have discussed the relationships between 83 and 84 in detail in [70, pp. 44­
49] and a corresponding discussion for 8 1 and 8 2 may be based on the same
techniques. Here I will summarise the discussion for 81 and 82 and state the
corresponding results for 83 and 84 ,

Let n be an even positive integer and let the terms of the corresponding
series 82 be vo, Vl, V2, . ... Then for k =0, 1,2, ...

(n + I)F (1 - .!!) (F (k + 1))2
V - 2 2 2
k- 7rF(k-¥+~)k!

and
(2k + 1)2

2(k + I)(n - 2k - 1) .

The ratio on the right-hand side of (**) is negative as long as n - 2k - 1 > 0,
i.e., k = O,I, ... ,¥ -1, so that VO,V1"",Vn /2 are alternately positive and
negative, while the sign of Vk is fixed for k ~ n/2 (positive if 41n, negative
otherwise). We can also deduce from (**) that

IVk+1I' . [n + 2]-;;;- < 1 If and only If k < -4- ,

from which it follows that V[(n+2}/4] has the least modulus of all the Vk.

Now let T m denotes the sum of the first m terms of 82 , If we apply
Whipple's result (see pp. 5-6) that the sum of the first m terms of F(a, b; c; 1)
is

F(I+a-c)F(I+b-c) {I- (a)m(b)m 3 F2 [I-a, I-b,m]}
F(I - c)F(1 - c + a + b) m!(c - l)m 2 - c, m + 1

provided the expressions are all defined and a + b - c > -1, we see that



Note on Proposition 23 259

( )
2{ ((1) )2 [1 1 ]}_ 2 2n 2" m 2"' 2"' m

- - 1- 1 3 F2 .
7f (n) m!(-2"-¥)m ¥+~,m+ln/2

n
Now for m < - + 1,- 2

> a while {
<a if m is odd,(_1 _!!:)22m ..> a if m is even.

Thus the 7m oscillate about ~ (2n
/ (n/2) )2 for m = 1,2, ... , ¥+ 1. It

follows in particular that for m = 1,2, ... , [en + 2)/4] the 7 m oscillate about
this quantity with decreasing deviation, so that the best approximation to
it that we can obtain from 52 is that it lies between 7m and 7m H for m =
[en + 2)/4]; this provides an interval of length56

I I
n+ 1

V[(n+2)/4) < 2n / 2- 3/ 2..jrn .

For example, in the case n = 100 the best bounds from the corresponding
52 are given by 725 and 726, which provide an interval of length less than
1.432 x 10-14 (cf. first table). We can also show, however, that the partial
sums of 51 always give better approximations than the corresponding partial

56If 41n we have by direct calculation

(-It/4(n+ 1) (n/2)2
n/4

V[(n+2)/4] = Vn/4 = ()
2n / 2 n

n/2

The required inequality follows on applying the inequalities (see [65, p.256, Qu.
13])

( 2h) 2
2h

( 1 )
h < v:ih exp - 12h + 1

with h = n/4 in the numerator and

2
2h (1) (2h)v:ih exp - 6h < h

with h = n/2 in the denominator. If n has remainder 2 on division by 4, then
V[(n+2)/4] = V(n+2)/4; a similar calculation leads to the required inequality in this
case.
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sums of S2 except where only the first terms are taken. It is convenient to
note at this point the following simple inequalities which were used in error
analysis in the note on Proposition 11:

f2 -n( n) {2y~ < 2 n/2 < V;:;; .
The upper bound comes immediately from the first partial sum of S1, while
the lower bound comes from the first partial sum of S2 on noting the oscilla­
tory nature of the Tm .

Now let the first n/2 terms of S4 (Le., its finite terms) be Uo, U1, U2, ...,
U ~ -1 and let t m be the sum of the first m of these. Again the terms alternate

in sign and the tm oscillate about %( ( n/2) /2n
) 2; also IU::1 I < 1 if

and only if k < [n/4]. Thus the best bounds we can obtain for the desired
quantity from S4 are tm and tm+l where m = [n/4]; this provides an interval
of length IU[n/411, which again tends to zero rapidly as the order n of the
binomial coefficient tends to infinity. However, each tm provides a poorer
approximation than the corresponding partial sum of S3.

Finally we consider the approximations stated by Stirling. The first of
these is that

We can easily see this from Sl: for large n

7r( n 9n )- n+ + + ...
2 2(n + 2) 8(n + 2)(n + 4)

> %(n + 2(n: 2) + -8(-n-+-~-~-n-+-4-))

7r( 1 1 9n)
2" n + 2" - n + 2 + 8(n + 2)(n + 4)

= ~ (n + ~ + n-32 )
2 2 8(n + 2)(n + 4)

The error term given by Stirling relates to the reciprocal, as is clear from
the application which he makes of it;57 from (* * *) for large n

57Note that in Stirling's discussion c = 4/7r.
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() { ( ) }

-1/2n n 1T 1 n - 32
n/2 /2 < 2 n + "2 + 8(n + 2)(n + 4)

(
2 )! ( n - 32 ) -1/2

= 1T(n+~) 1+8(n+2)(n+4)(n+~)

~(
1 )-1/2

~ 1+-
1T(2n + 1) 8n2

Thus J1T(2n
4
+ 1) is the approximation to (n/2) /2n

and this exceeds the

required quantity by about~ ~(4) for large n. For further discus-
16nY~

sion of this approximation see [70, pp.50-52].
Stirling's second approximation asserts that58

(
n ( n)) 1 n+ 2 1 1 1TIn 2 / ~ - In -- + -In n + - In - .

n/2 16 n - 2 2 2 2

From the first approximation we obtain

but

58As usual, Stirling works with common rather than natural logarithms.
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Proposition 24 (pp.139-142). Here we are concerned with the sequence

An =11

xr+n- 1(1 - x)p-r-1dx = B(r + n,p - r) (n = 0,1,2, ...)'

which is defined for p > r > O. By integrating by parts we can easily ob­
tain the relations which Stirling obtains from Newton's Proposition 7 of De
Quadratura Curvarum in [47] (see the note on Proposition 16 and its scho­
lion) :

An = 11

xr+n- 1(1_ x)p-r- 1dx

[
r+n-1 (1 )p-r] 1 111= _x -x +r+n- xr+n- 2(1_x)P- rdx

p-r 0 p-r 0

r + n -111= x r+n- 2(1 _ x)(l - x)p-r- 1dx
p- r 0

= r;: ~ 1 {11

xr+n-2(1 _ x)p-r-1dx -11

xr+n-1(1 _ x)p-r-1 dx }

r+n-1= (An- 1 - An),
p-r

from which it follows that

A_ r + n - 1 A
n - + 1 n-1p n-

thus we have the sequence

a,
r
-ap ,

r + 1 b
p+ 1 '

with a = Ao.

The corollary asserts that the function which interpolates the integrals is
a constant multiple of the function which interpolates the sequence

a,
r
-ap ,

r + 1 b
p+ 1 '

In fact the latter sequence is interpolated by

r(r + z) r(p)
r(r) r(p + z) a,

while for the integrals we have

B(
_ ) _ r(r+z)r(p-r)

r+z,p r - r(p+z) .

In Example 1 Stirling considers the sequence



(
2n) 22n _ r(2n + 1)
n / - (r(n + 1»222n
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(n=0,1,2, ...),

which can be put in the required form by setting a = 1, r = ~, p = 1 (see
Proposition 22, Example 1 (sequence of reciprocals)). Then according to the
proposition,

22z (r(z + 1»2 t x-1/2(1 - X)-1/2dx_::::-:-:-'-----,-:'-'- _ -=;-0 _
r(2z + 1) - J; Xz- 1/2(1 - X)-l/2dx .

In particular, with z = ~ we have

f1 -1/2(1 _ )-1/2d
(3) 2_ Jo x x x

2(r 2" ) - J;(1-x)-l/2dx .

Apparently, Stirling evaluates these integrals directly:

and
fl 1J
o

(1- X)-l/2dx = [-2(1- x)l/2t = 2.

Thus we have
2(r (~)2 = %

(cf. Proposition 21, Example 2).
Stirling's remarks relating to the interpolation of the reciprocals appear

to be invalid as the integrals involved do not converge - in particular,

contrary to what he seems to be asserting.
Note that in Example 2

f1 x-2/3(1_ x)-2/3dx = B (! !) _ (r U))2 = v'3 (r (!))3Jo 3' 3 - r (~) 21r 3 .

Proposition 25 (pp.142-143). Now we have the sequence

B m =11

x p
-

m(l - xr+m-ldx = B(p - m + 1, r + m),

for which we require p - m + 1 > 0 and r + m > 0; consequently Bm is
defined (by the integral) for only finitely many integers m. Where meaningful,
integration by parts yields
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_ [Xp-m+l(I _ xr+m- 1 ] 1
Bm -

p-m+I 0

+ r + m - 111 x p-(m-1)(I _ xy+(m-1)-ldx
p-m+I 0

= r + m - 1B
m

-
1

­

p-m+I

Further,

B(p _ 1 ) _ r(p - m + I} r(r + m}
m+ ,r+m - r(p+r+I} ,

so that the finite sequence B m is interpolated by

B( - 1 }_r(p-z+I}r(r+z)
p z+ ,r+z - r(p+r+I) ,

which is defined except where p - z + 1 or r + z is a non-positive integer.
In Example 1 Stirling considers the finite sequence of reciprocals of bino­

mial coefficients for given order n, for which a = 1, r = 1 and p = n; these
are interpolated by

1
,r(n - z + I}r(I + z} = (n + I)B(n - z + 1,1 + z) (*)
n.

or

(n+I}11xn-Z(I-X}Zdz if n-z+I>O,z+I>O.

Now for r = 1 and p = n we have

Bo =11

xndx = _1_,
o n+ 1

so that, according to the proposition, for m = 0,1, ... , n,

Stirling illustrates this formula by using it to calculate (~).
Example 2 deals with the special case of Example 1 in which n = 1. There

are just two coefficients, (~) = 1 and (~) = 1. The function (*) becomes

r(2 - z}r(I + z}, whose value at z = t is (r(~))2 = rr/4; consequently the

term t1/ 2 midway between (~) and (~) is 4/rr. Alternatively, in Stirling's

version this comes from
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1 Eo
--- 1 '
1/t1/2 fo x1/2(1- x)l/2dx

so that

1 (11 )-1 1 (11/2~ )-1t1/2 = 2 0 x
1
/
2

(1 - X)1/2dx = 2 -1/2 V"4 - u
2 du

where we have substituted x = U + ~.

4

Proposition 26 and Its Scholion (pp. 143-147). Here Stirling is con­
cerned with the sequence

r(r + k) r(p)
ak = r(p + k) r(r) (k = 0,1,2, ...),

n -_1
- 2

which he claims may be interpolated by a series of the form zn L::=o amz:'-m,
where n = r - p and z - p is the distance of the term from the beginning; in
other words, he asserts that

r(z + r - p) r(p) = zn ~ am
r(z) r(r) ~ zm

for suitable coefficients am . The coefficients are determined by substituting
the desired form in the recurrence relation for the terms zak+l - (z+n)ak =°
(z = p + k), expanding all factors of the form (z + l)a = za (1 + Z-1) a by
means of the binomial theorem, combining all terms of the same degree in
z and finally setting their coefficients equal to zero. The resulting series is
generally asymptotic. Using the general version of "Stirling's formula",

r(az + b) ....., ..j21;:e-aZ (az)az+b-1/2,

we see that
ak ....., r(p) zr-p = r(p) zn (z =p + k),

r(r) r(r)

from which it follows that ao (Stirling's initial coefficient A) is in fact
r(p)/r(r).

In Example 1 Stirling returns to the middle-ratio sequence (2:) /2 2k

(see the note on Proposition 22). Here r = ~ and p = 1; consequently

r(l) 1
and A= ra) = ..,Ii'

r(z - 1)
The function being interpolated is r(z)):;r .
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It is curious that, although Stirling calculates in this example a value for
A which coincides with 1/,j1i rounded to 12DP, he does not actually identify
A as 1/,j1i, which he could easily have done by comparison with the series
of Proposition 23 (or Example 1 of Proposition 22). However, he did make
this identification later in a handwritten addendum and also in one of his
notebooks.59

Example 2 deals with the sequence

r(~ + k) r(~)
r(~ + k) r(~) ,

r(!) r(!)2J3
for which A - 3 - ----.:...>!.3~_

- r(~) - 271" .

(n = r - p).

The values given in the Methodus Differentialis for the coefficients of z-3,
Z-4 and z-5 in the series are wrong and these errors affect the subsequent
calculations. While he was working on his translation of the Methodus Differ­
entialis in 1749, Holliday queried the figures given in Example 2 with Stirling,
who provided him with corrections. The corrected figures appear in Holliday's
translation and also replace the originals here. Stirling's revised calculated
value for A is correct to the number of decimal places given.

In the scholion Stirling indicates how the proposition might be extended to
the situation discussed in Proposition 6. Note that the 8, 8' of Proposition 6
correspond to the T, T' of the scholion since it is intended to interpolate the
sequence of T values by means of a series and that the m of Proposition 6
is now 1. In his rather imprecise proof of Proposition 6 Stirling assumes that
the sums can be expressed in the form

and deduces that p = m (= 1 in the present case) and n = a-c. According to
this the appropriate form to take for the terms of the scholion is, as Stirling
has it,

a-c (A BCD )z x +-+2+3+ ....z z z

As Stirling notes in his proof, the terms of the sequence considered in
Proposition 26 satisfy the relation

T' = z+n T
z

In a handwritten addendum on three pages at the back of his copy of the
Methodus Differentialis, Stirling discusses interpolation of the related se­
quence defined by

591 have reproduced the latter and given a more precise derivation of the asymptotic
series of Example 1 in [70, pp.53-56]. The tables on pp.57-58 of [70] contain
some comparative middle-ratio calculations using various series, in particular the
present one and those of Proposition 23.
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T' = z+n T ,
z-n

where n is a constant and successive values of z differ by 2. Here we have

f( ) - T (~(z + n))
z -0: T(!(z-n))'

where 0: is a constant. I have discussed this material in [70, pp.95-98].

Proposition 27 (pp. 147-149). In this proposition Stirling finds an inverse
factorial series to represent and interpolate the terms of the sequence defined
by

The series is

k2

ak+l =-k2 ak+r
(k=I,2, ...).

A (1 + f r(r + ~2)(r + 2
2) (r + (k - 1)2)) .

k=l k. z(z + 1) (z + k - 1)

Now if r < 0, so that r = -8 with 8 > 0, we may write the series as

A (1 + f (-JS)JS(1 - ~)(1 + JS) (k - 1 - JS)(k - 1 + JS))
k=l k.z(z+I) (z+k-l)

=AF(-JS, VB;z; 1),

and by Gauss's formula this is

A(T(z))2

T(z + VB) T(z - VB)
provided Re z > 0. If r >°we obtain similarly

AF( . r::: . r::: 1) A(T(z))2
-zyr, zyr; z; = T(z + iy'r) T(z - iy'r)

for the value of the series, provided Re z > 0. We see easily from these ex­
pressions that Stirling's solution does in fact generate the required sequence.
Moreover, it follows from the asymptotic properties of the Gamma function
(generalized Stirling's formula) or properties of hypergeometric series that
the value of the series tends to A as z -+ 00.

In the example Stirling refers to Wallis's product in the form6o

60See Arithmetica Infinitorum, Proposition 191, in particular p.469 in Vol. II of
(75). Stirling has already applied this result in Proposition 23.
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. rrm (2k - 1)2 - 1 7r
hm =-
m~oo (2k - 1)2 4

k=2

and proposes to find the value of

. m (2k)2
hm rr..,......:.~­
m~oo k=l (2k)2 - 1

by means of the proposition. In fact he could have deduced this directly from
Wallis's result since

m (2k)2 m (2k)2rr (2k)2 - 1 = rr (2k - 1)(2k + 1)
k=l k=l

_ 22 X 42 X ... (2m)2
- (1 x 3)(3 x 5)(5 x 7) ... ((2m - 3)(2m - 1))((2m - 1)(2m + 1))

= 2 ( 2m ) (2 x 4)(4 x 6) ... ((2m - 2) x 2m)
2m + 1 (3 x 3)(5 x 5) ... (2m - 1)2

_ 2 ( 2m ) rrm (2k - 2)2k
- 2m + 1 (2k - 1)2

k=2

(
2m ) rrm (2k - 1)2 - 1 7r 7r

= 2 2m + 1 (2k _ 1)2 -t 2 x 4" = 2" as m -t 00.
k=2

For the application of the proposition

(2k)2 k2
ak+l = (2k)2 _ 1 ak = k2 _ i ak

so that r = - i and the resulting series is

(k = 1,2, ...),

7r 1 1 7r(r(z))2
2"F(-2'2;z;1) = 2r(z+~)r(z-~)'

which holds for Re z > O. Stirling determines the initial constant A = ~

numerically from the tenth term of the sequence, viz.

22 x 42 X 62 X X 182

(1 x 3) (3 x 5) (17 x 19) .

He quotes .9740392454 for the sum of the corresponding series

(
1 1 ) 1 1.3 1.3.15

F -2> 2"; 10; 1 =1- - - - - ... >
4.10 4.8.10.11 4.8.12.10.11.12

but does not tell us how he obtained it. In fact, this sum is .9740392484
to 10 decimal places, which suggests that Stirling's penultimate figure 5 is a
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misprint for 8. It would require direct addition of at least 23 terms to obtain
this value.

Proposition 28 (pp. 149-152). Here we have the original versions of "Stir­
ling's formula". The proposition deals with the sum I:;=110glO(x+(2r-l)n),
where x + (2h - l)n = z - n, so that h = (z - x)j(2n). This is

k nk k
10glO II (x + (2r - l)n) = In r=l (x + (2r - l)n) = a In II (x + (2r - l)n).

r=l In 10 r=l

Once more Stirling offers little more than a hint of his proof, but we can
see formally what he is doing from the following. Put

S() _ZIOglOZ az L:oo (n)2r-lz - - - +a ar -
2n 2n Zr=l

and consider

S(z) _ S(z _ 2n) = z 10glO Z _ (z - 2n) 10glO(Z - 2n) _ a
2n 2n

+a%;a, {(;)"-' - C."2n)2'-'}
The appropriate procedure now is to express everything in terms of z - n.
We have

z 10glO z (z - 2n) 10glO(Z - 2n)
- -a

2n 2n

= 2: 10glO {(z - n) (1 + z=n) }
_ (z - 2n) 10glO {(Z _n) (1 __n_)} - a

2n z-n

=10glO(Z - n) + a(z - n) {In (1 + _n ) _ In (1 __n )}
2n z - n z - n

+~{ln(I+_n ) +In(I--
n )}-a2 z-n z-n

00 1 (n) 2r-2 00 1 ( n )2r
=loglO(z-n)+a"'-- -- -a"'- -- -a

L..J 2r - 1 z - n L..J 2r z - nr=l r=l

00 ( n ) 2r ( 1 1)=10glO(Z - n) - aL: -- - - --
r=l Z - n 2r 2r + 1

and
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( ~)2r-1 _ (_n)2r-1

Z Z - 2n

=(_n ) 2r-1 { (1 + _n ) -(2r-1) _ (1 __n ) -(2r-1)}

z-n z-n z-n

= -2 (_n )2r-1 00 (2r + 2s _ 3) (_n )2S-1

z - n L 2r - 2 z - n
s=l

Consequently

S(z) - S(z - 2n)

00 ( n ) 2r 1
= 10glo(z - n) - a~ z _ n 2r(2r + 1)

00 (n )2t-1oo (2t+2S-3) ( n )2S-1
- 2a '"" at - '"" -~ z-n ~ U-2 z-n

t=l s=l

Stirling wants S(z) - S(z - 2n) = IOg10(Z - n), so we equate the coefficient
of each power of z - n on the right-hand side to zero, that is we put

1 '"" ( 2t + 2s - 3)
- 2r(2r + 1) - 2~ at 2t _ 2 = 0,

where the sum is over all positive integers s, t such that (2t-1)+(2s-1) = 2r.
Thus we have for r = 1,2, ...

1 ~ (2r -1)
- 4r(2r + 1) = (:t at 2t - 2 .

These are the equations that Stirling gives for his coefficients A, B, C, ....
The above analysis does not depend on the value of z, so we may replace z
by z - 2n, z - 4n, .... Stirling's proof is completed by noting that, if the
terms are taken in reverse order, then the required sum is

(S(z) - S(z - 2n)) + (S(z - 2n) - S(z - 4n)) + ... + (S(x + 2n) - S(x))

=S(z) - S(x)

and S(z), S(x) are the two series in the proposition.
Using properties of the Bernoulli numbers we can show that the equations

(1) give
(22r - 1 - 1)B2r

ar = - (r = 1, 2, ...).
2r(2r - 1)

There is no evidence of Stirling's being aware when he wrote the Methodus
DifJerentialis that his coefficients could be expressed in terms of the Bernoulli
numbers, although he may have discovered this connection at a later date (see
below).
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In Example 2 Stirling takes up the problem of determining 10glO m!. For
this we want 2n = 1, Z - n = m and x + n = 1 (or 2 since 10glO 1 = 0),
so that z = m + ! and x = !. According to Stirling the x series becomes
-! 10glO (21T), although he does not explain why; thus he has

10glO m! = (m + !) 10glO(m + !) + ! loglO(21T)
1 a 7a

- a(m+ 2) - 24(m+!) + 2880(m+ !)3 ... ,

or equivalently

In m! =(m + !) In(m + !) + ! In(21T)

( 1 1 7 (2)
- m+ 2) - 24(m+!) + 2880(m+ !)3 .. ··

If we neglect all the terms involving reciprocal powers of m + ! and expo­
nentiate, we obtain formally

1 m+l/2

m! ~.j2; (m: 2) = Sm' (3)

Formulae (2) and (3) are therefore Stirling's own versions of the expressions
which are generally labelled "Stirling's formula" nowadays.

How did Stirling come up with the! loglo(21T) term? One possibility is
direct calculation. Evaluation of

lnm! - {(m +!) In(m +!) - (m +!) - 24(m
1
+ !) + 2880(~ + !)3 .. .}

using just a few terms of the series in conjunction with a sufficiently large
value of m would produce a good approximation to ! IOglO(21T), which would
probably have been a familiar number to Stirling - we have seen in Exam­
ple 2 of Proposition 21 how Stirling identified a certain quantity as Vir/2
apparently on the basis of a calculated value. However, we have also seen in
his proof of Proposition 23 that Stirling could make effective use of Wallis's
product, so that he may well have applied this just as in modern texts to
obtain the ,j2; in (2).

De Moivre tells us in [44, p. 1] how a few days after the publication of [43]
Stirling had written to him to advise him of some errors in a table of sums
of logarithms in this work and at the same time communicated his series61

10glO m! =(m +!) loglO(m +!) +! lOglO(21T) - a(m +!)
a 7a 31a- + - ------,----

2 x 12(m + !) 8 x 360(m + !P 32 x 1260(m + !)5
127a

+ 128 x 1680(m + !F ....
61In place of 127 in the numerator of the last term quoted De Moivre has in error

63.
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Struck by the appearance in the denominators of the numbers 12, 360, 1260,
1680, which had occurred in his own work on the middle ratio (see [43,
p. 127]), De Moivre set about applying his own methods to determine the
logarithm of a factorial and obtained the expression

In(m - I)! =(m - ~) In m + ~ In(27r) - m
1 1 1 1

+ 12m - 360m3 + 1260m5 - 1680m7 +... . (4)

Here the general term is

2r(2r - l)m2r- 1

Note that De Moivre deals with natural logarithms (hence the absence of
Stirling's quantity a); moreover De Moivre was aware that his coefficients
involved the Bernoulli numbers [44, pp. 18-21). If we neglect the reciprocal
powers of m and exponentiate we obtain formally

[2; (m)m(m - I)! ~ V;;:; -;
or, on multiplying by m,

m! ~ J27rm (:)m = tm .

Unfortunately (4) and (5) are the expressions which posterity has adopted
and labelled as "Stirling's formula" , probably because they are a little simpler
than Stirling's own versions.

De Moivre also found a simpler analogue of Stirling's Proposition 28 to
deal with In{(m-d)(m-2d) ... (m-ld)) (see [44, pp.1l-15]) and Stirling in
turn included his own version of De Moivre's result along with two systems
of equations for the coefficients in a handwritten addendum in his own copy
of the Methodus Differentialis (see [70, pp.12-14]).

The common link in these various series is the general Euler-MacLaurin
summation formula. Putting j(s) = In(x + 2sn) and h = (z - x)/(2n) in the
second (midpoint) form of the Euler-MacLaurin summation formula

~ j(s + 1) =lh
j(t)dt _ ~ (2

2r
-

1
-1)B2r (j(2r-ll(h) _ j(2r-ll (0))

~ 2 ~ 22r-1(2r)!
8=0 0 r=l

_ h(2
2k

-
1

- I)B2k j(2kl() for some 7J E [0, h]'
22k- I (2k)! 7J

we obtain
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In(x + n) + In(x + 3n) + ... + In(z - n)

= zlnz - xlnx _ z - X +~ (22r- 1 -1)B2rn2r-l {_1 1_}
2n 2n L..J 2r(2r - 1) z2r-l X 2r- 1

r=l

h(22k- 1 - I)B2kn2k
+ for some TJ E [0, h],

k(x + 2TJn)2k

which is the formula of Proposition 28 expressed in terms of natural loga­
rithms and with remainder term. IT we use the more familiar first (endpoint)
form of the formula

h-l h k-l

L f(s) =1 f(t) dt - ~(j(h) - f(O)) + L ~;rl (j(2r-l)(h) - f(2r-l)(0))
8=0 0 r=l ( ).

hB2k (2k)+ (2k)! f (TJ) for some TJ E [0, h],

with f(s) = In(x + sn) and h = (z - x)Jn, we obtain

lnx + In(x + n) + In(x + 2n) + ... + In(z - n)

= (z - ~) lnz - (x - ~) lnx _ z - x +~ B2rn2r-l {_1 1_}
n n L..J 2r(2r - 1) z2r-l x2r - 1

r=l

hB2kn2k
for some TJ E [0, h];

2k(x + TJn)2k

this corresponds to Stirling's version of De Moivre's result mentioned above.
The asymptotic series of Stirling (2) and De Moivre (4) for the logarithm of
a factorial can be developed from these applications of the Euler-MacLaurin
summation formula (see [70, pp.16-19]). Stirling does not tell us how many
terms he used in his three examples, so I have not included any error analysis
for these calculations. All his answers are correct to the number of places
given except that in Example 2 the value of 10glO(1l x 12 x 13 x ... x 1000)
should have 3 and not 2 as the final digit when correctly rounded.

In his first letter62 to Stirling dated 8 June 1736, Euler included a state­
ment of his version of the summation formula which he had found about
1732 [15]; this is a variant of the first form in which all the terms involving
values at zero are combined into a single "Euler-MacLaurin constant". In
1737 MacLaurin sent Stirling some printed pages of his proposed Treatise of
Fluxions (published 1742) [39] in which Maclaurin gave both the first and the
second forms of the summation formula. 63 When Stirling replied to Euler on

62For the Stirling-Euler correspondence see [74, 70, 33].
630f course neither Euler nor Stirling gave an error term and apparently neither was

aware at this time that the coefficients could be expressed in terms of Bernoulli
numbers.
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16 April 1738 he pointed out MacLaurin's independent discovery of the sum­
mation formulae and remarked that his theorem for summing logarithms is a
special case of Euler's summation formula. 64 In fact it is De Moivre's version
which comes readily from the formula communicated by Euler. MacLaurin
derived the results of Stirling and De Moivre from his versions of the sum­
mation formula in Articles 838, 839 and 840 of [39].

Stirling's versions are generally more accurate than the corresponding
formulae of De Moivre (see [70, pp.18-19]). In particular, Stirling's 8 m (3),
which exceeds m!, and De Moivre's tm (5), which is less than m!, have the
property that

8 m - m! 1
---;-- ---+ - as m ---+ 00;
m! - tm 2

in this sense 8 m is twice as good as tm (see [69]).

Note on the Scholion to Proposition 28 (pp.152-153). The remarks
in the scholion do not relate specifically to Proposition 28 but are directed
rather to the technique of using suitable series for purposes of interpolation
or solving difference equations.

Stirling notes in passing that the sequence

1
1 1

Un = (1 - x)ndx =--
o n+1

is of the type considered in Proposition 26:

(n =0,1,2, ...)

U n +1

Un

n+l
n+2

so that r = 1, p = 2.

Uo = a,

He then considers the sequence defined by

r+n+k
Uk+1 = k Ukr+

(k =0,1,2, ...),

where r, n are constants. For this he has the difference equation

(k + r)(Uk+1 - Uk) - nUk = 0,

which he proceeds to solve by fitting a Newton series!l5

00

ao + L amz(z - 1) ... (z - m + 1);
m=l

64 "Perhaps you have not noticed that my theorem for summing logarithms is noth­
ing more than a special case of your general theorem."

65For properties of such series see [40, Chapter Xl. Note in particular that either
a Newton series converges only at the non-negative integers or it converges in a
half-plane of the form {z E C: Rez > ,\} (,\ ~ -00).
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setting z equal to k and k + 1 to give Uk and Uk+! determines the coefficients
and then the series provides the intermediate values of the function, in this
case

r(z+n+r)r(r) a. (*)
r(z+r)r(n+r)

Stirling notes that the same series could have been obtained from Proposition
19 (Newton's forward difference formula). To obtain in this way the five terms
given by Stirling we need to consider the first five terms of the sequence,

(r + n)a (r + n + l)(r + n)a
a,

r (r+ l)r

(r + n + 2)(r + n + l)(r + n)a

(r + 2)(r + l)r

(r + n + 3)(r + n + 2)(r + n + l)(r + n)a

(r + 3)(r + 2)(r + l)r

and form their differences. The appropriate differences A, B, C, D, E required
in Proposition 19 turn out to be respectively

na
a, -,

r

n(n - l)a

(r + l)r '

n(n - l)(n - 2)a

(r+2)(r+1)r '

n(n - l)(n - 2)(n - 3)a

(r + 3)(r + 2)(r + l)r '

and substitution of these values in the formula of Proposition 19 produces
the required series:

(1
nz n(n - l)z(z - 1) n(n - l)(n - 2)z(z - l)(z - 2)

a + - + + ----'---;'---'-------:-;--;"----'-----:--7:-'----'-
r I! (r + l)r 2! (r + 2)(r + l)r 3!

+ n(n - l)(n - 2)(n - 3)z(z - l)(z - 2)(z - 3) + ...).
(r + 3)(r + 2)(r + 1)r4!

In fact the series is a F( -n, -z; r ;1), which by Gauss's formula converges
to the correct value (*) provided r is not a negative integer or zero and
Re(z + n + r) > O.

Proposition 29 (pp.153-156). This is the general divided difference in­
terpolation formula which is the second case of Lemma V in Book III of
Newton's Principia [48]. Once again we are left to verify that giving z appro­
priate values, in this case a, b, C, . .. , produces the given ordinates in turn. It is
curious that Stirling did not discuss this formula in his 1719 paper, although
Cotes dealt with it in his De Methodo DifJerentiali Newtoniana (see [13] and
[21, Chapter 6]).

In Example 2 four zenith-distance measurements of the sun's position at
noon, given as chords corresponding to radius 105 and taken at Niirnberg on
8, 9, 12, 16 June 1500, are used to calculate the time of the summer solstice
in that year. The measurements were made by Bernard Walther (1430-1504),
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L..-__~p

Chord of angle

patron, student and collaborator of Regiomontanus.66 Stirling finds the in­
terpolating polynomial for these chords as ordinates with respective z-values
determined from the dates as 0 = 8 - 8, 1 = 9 - 8, 4 = 12 - 8, 8 = 16 - 8.
At the summer solstice the zenith-distance is a minimum, so we would ex­
pect that a reasonable approximation to the corresponding z-value would be
obtained by setting the derivative of the polynomial equal to zero and ex­
tracting the appropriate root. This produces z = 3.889355 with 44882.92395
as the corresponding value of the polynomial. Referring to Walther's data
Tycho Brahe [8, Vol. II p. 38] found 44884 for this quantity (before correction
for parallax).

In the notation of the diagram the chord
of angle a is PQ = 2Rsin(a/2), so that
a = 2sin-l(~PQ/R). For PQ = 44884 and
R = 105 we obtain a = 250 56' 15", which
is the observed angle from the vertical to the
sun. Walther gave the latitude of Niirnberg
as 490 24' and the maximum declination of
the sun as 230 28', whose difference is approx­
imately this a.

Scholion to Proposition 29 (pp.156-157). Newton described the appli­
cation of the general divided-difference interpolation formula to the deter­
mination of the orbit of a comet in Lemma VI of Book III of the Principia
[48].

Halley's paper [24], which is reproduced in the 1707 edition of Newton's
Arithmetica Universalis [46], deals with approximations to the roots of poly­
nomial equations. Other important contributions to the solution of such equa­
tions are contained in his four lectures delivered in October and November
1704. These are included as an appendix in [32]. In particular, the third lec­
ture deals with the application of the conical parabola to solve equations of
degrees three and four. These items are probably what Stirling intends by
his reference to Halley's solutions of equations both here and at the end of
Example 2 of the proposition.

Proposition 30 (pp. 157-160). Here Stirling assumes a function of the
form

fez) = a - brz
- cr2z

- dr3z
- ... ,

where r is a positive constant with r > 1, and he wishes to determine

PQ = a = lim fez).
z---+-oo

66For an interesting account of Walther's astronomical work see [4]. Stirling may
have obtained the data from [9], whose pages 42-67 contain the observations of
Regiomontanus and Walther.
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This he proposes to do by solving for a the infinite system of equations

a - b - c - d - e - = f(O) (= A)

a - br - er2
- dr3

- er4
- = f (1) (= B)

a - br2
- er4 - dr6

- er8
- .• , = f(2) (= C)

a - br3
- er6 - dr9

- erI2 - .. , = f(3) (= D)

a - br4
- er8 - dr I2

- erI6 - .. , = f(4) (= E) (and so on)

which can be expressed in augmented matrix form as

1 -1 -1 -1 -1 g(l)

1 -r _r2 -r3 _r4 g(r)

1 -r2 _r4 _r6 _r8 g(r2
)

1 -r3 _r6 _r9 _r12 g(r3 )

1 -r4 _r8 _r12 _r16 g(r4 )

where g(x) = f(logr x). The columns are just the values at x = 1, r, r2
, r 3

, •..

of the constant function 1, the functions _Xk - I (k = 2,3, ...) and the function
g. I have shown in [71, pp.115-117] how this system may be solved formally to
produce Stirling's expression for PQ by formation of the divided differences
of these functions at the points in question.

Stirling's formulation and explanation are perhaps not well-suited to the
kind of application he intends. Apparently he has a sequence of ordinates
f(k) (k = 0,1,2, ...), yet he wants to determine limz -+_oo f(z). In fact, he
has an arbitrarily large finite number of ordinates going off to the left from
some initial ordinate, but he chooses his origin at the point corresponding to
the left-most ordinate. Thus if he introduces further ordinates to the left, as
would happen if the process were applied iteratively, the origin and therefore
also the series for the function would change.67 It therefore seems preferable
to fix the representation of the function

f(z) = a - brz
- cr2z

- dr 3z
- ...

so that the ordinates are f( -l), f( -1 - 1), ... , f( -h+ 1), f( -h), where 1 is
some initial non-negative integer and h is an arbitrarily large positive integer
greater than 1. Putting g(x) = f(logrx) as before, we have

(i) g(l/rrn ) = f( -m) (m = 1,1 + 1, ... , h),

67Note, however, that changing the origin alters only the coefficients b, c, d, ... : if
(= z - Zo then

a - brz - cr2z _ dr3z _ ... = a _ (brZO)r( _ (cr2zO )r2( _ (dr3zO )r3( - ....



278 Notes

(ii) g(x) = a - bx - CX2 - dx3 - ..• , so that 9 is analytic on some domain
containing the origin,

(iii) a = lim j(z) = lim g(x).
z-+-oo x-+o

I.J. Schoenberg [56] has put Stirling's process on a firm base, both the­
oretical and practical, by showing that the formula of Proposition 30 is
obtained if we find the interpolating polynomial for 9 at the points r-m

(m = l, l + 1, ... , h), which are in geometric progression, and use the value at
zero of this polynomial to estimate the value of a. For example, with three
points

g(I/rl) = C, g(I/rl+l) = B, g(I/rI+2
) = A,

and the table of divided differences is

A

B

C

B - C rl+1 (B - C)
---;-"";"7"':""'---'---,. =-~--~
I/r1+1 - I/rl 1 - r

rl+l(r(A - B) - (B - C»
(1- r)(I/rl+2 - I/rl)

r2l+3(rA - (r + I)B + C)
(1 - r)(1 - r2 )

Thus the required interpolating polynomial is

r l+2(A - B)
p(x) = A + (x _I/rI+2)_---'----_~

I-r

( _ 1/ 1+2)( _ 1/ 1+1)r
2l+3

(rA - (r + I)B + C)
+ x r x r (1 _ r) (1 _ r2) ,

so that

(0) A
A - B rA - (r + I)B + C

p = +--+ ;
r - 1 (r - I)(r2 - 1)

this coincides with the sum of the first three terms in Stirling's expression.
Now let us consider the example which Stirling presents with very little

explanation as an illustration of Proposition 30. The area of a regular polygon
of 2n+l sides inscribed in a circle of radius 1 is An = 2n sin('/r /2n), which tends
to'/r as n ~ 00. These values are generated by putting z = 0, -1, -2, ... in

sin('/r2z-1) 2sin(1r..4z/2) 00 (_I)k'/r2k+ 14kz

j(z) = 2z- 1 = 4;/2 =L (2k + 1)' 22k '
k=O
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for which r = 4 and

Stirling tabulates the areas An for n = 1,2, ... ,6 and uses the five terms
given explicitly in Proposition 30 to calculate 1r. Here

... ,

(AI is not used).
One advantage of interpreting the process in terms of interpolation is that

we have a readily available error term:

for some c E (0,1/4). Now

(m) _ 00 (_I)k1l'2kHk!xk-m

9 (x) - L (2k + 1)!(k _ m)! 22k
k=m

and it is easily seen that for given x E [0,1] the terms have alternating signs
and their moduli form a strictly decreasing sequence. Thus g(5) is negative
and strictly increasing on [0,1] (g(6)(x) > °for x E [0,1]). Consequently,

11'115'
Ig(5)(x)1 ::; Ig(5)(0)1 = 11! 21~ (x E [0,1])

and it follows that p(O) underestimates 11' by an amount less than

1 1 1 1 1 11'11 11'11
- X - X - X - X - X --=--
45 44 43 42 4 11! 210 11! 420 '

which is less than 7 x 10-15 . In fact, Stirling gives 14 decimal places, all of
which are correct.

It is striking that such an accurate figure has been obtained from a set of
approximations, none of which gives more than two decimal places. Huygens
[31] and James Gregory [22, 23] had found formulae for improving the esti­
mates of 11' obtained from inscribed and circumscribed polygons and Stirling
acknowledges that his approximations are of the type already found by them;
in fact, the partial sums of Stirling's series with r = 4 reproduce some of their
results (see [71, p.119]).

Note that the choice of r = 4, which comes out naturally in the above
discussion, was justified by Stirling on the grounds that each successive term
in the sequence of differences A - B, B - C, C - D, ... is about one quarter
of its predecessor. In fact,
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A n+1 - An 1 1--:.::....:..:__:::. = -7 - as n -7 00.
An - A n- 1 4 cos(11" j2n+1 ) cos(-n-j2n+2 ) 4

Stirling had already stated the series of Proposition 30 for the cases r = 4
and r = 2 in his paper [61] of 1719. There he gave no explanation at all of the
series, although he did provide two illustrative examples. For r = 4 he gave
a calculation of 11" similar to that just discussed but using just four points,
viz. 4-7 ,4-6,4-5,4-4 . In the case r = 2 he determined ln2 by using its
representation as lim (2" - l)jx; his calculation is equivalent to finding p(O),,,-to
where p(x) is the interpolating polynomial for g(x) = (2" - l)jx at the five
points 2-10 , 2-9, 2-8, 2-7 and 2-6. For further details of these calculations
see [71, pp.118-121].

As pointed out by Schoenberg the ideas contained in Proposition 30 were
developed further by Karl Schellbach [53]68 and in consequence Schoenberg
refers to the numerical process as the "Stirling-Schellbach algorithm"; he also
links it to algorithms of Romberg and Runge.

There is no direct evidence in Stirling's version that he understood his
Proposition 30 as a result about interpolation. It may be significant that the
preceding Proposition 29 gives the general Newton-Lagrange interpolation se­
ries, but Stirling makes no reference to this in his discussion. His rather vague
remarks concerning the summation of power series, which appear within the
example, perhaps suggest ideas of interpolation since the partial sums have
to be interpreted as particular ordinates of a suitable function for the appli­
cation of the process as Stirling has explained it.

Proposition 31 and Its Scholion (pp.160-164). The instruction of the
proposition is to take the interpolating polynomial determined by the given
ordinates and to use its definite integral over the interval cut off by the
extreme left and right ordinates to approximate to the area contained by the
graph of the function over this interval.

To facilitate this process Stirling provides three tables in the scholion. The
first of these, the Table 0/ Areas, gives the closed Newton-Cotes quadrature
formulae for 3 (Simpson's Rule), 5, 7 and 9 ordinates. Stirling had already
given these formulae for 3, 5, 7, 9 and 11 ordinates in his 1719 paper [61].69 He
remarked in the paper that he had not provided a table for an even number of
ordinates "since other things being equal the area is more accurately defined
by an odd number of them". This phenomenon is partly explained by the

68In particular, Schellbach introduced a special difference scheme from which Stir­
ling's series can be easily constructed in practice (see [56], also [71, p. 117]).

69Cotes developed these formulae at least for 3 up to 11 ordinates in 1711 after
seeing the case offour ordinates in the edition of Newton's Methodus DifJerentialis
which was published by Jones in that year [47]. Cotes's work was only published
posthumously in Harmonia Mensurarum (1722) [13]. It is therefore conceivable
that Stirling was unaware of Cotes's results when he wrote his paper. See [21] for
further information on Cotes and his contributions.
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fact that the error term for the formula involving 2n + 1 ordinates can be
expressed in terms of the (2n + 2)-th derivative of the integrand, while that
for the formula involving 2n ordinates requires the 2n-th derivative; thus,
in particular, the formulae with 2n + 1 ordinates and 2n + 2 ordinates are
both exact for polynomials of degree at most 2n + 1 (see [27, pp. 71-74; 58,
pp.154-165]).

The Table of Corrections, which does not appear in the paper or in Cotes's
work, is of some interest. Suppose that in the interval [a,,8] we have 2n + 1
equally spaced points

k")' + 2n (,8 - a) (k = 0, ±1, ±2, ... , ±n) where ")' = ~(a + ,8);

now introduce two new points, which lie outside [a, ,8], by giving k the values
±(n + 1). Let Pn and qn be respectively the interpolating polynomials for a
given function f at the original set of 2n +1 points and at the extended set of
2n+3 points. The proposed corrections are the quantities J: Pn(x) -qn(x) dx,

so that the effect of the correction is to replace J: Pn (x) dx with J: qn(x) dx.
Put

!k = f(")' + 2~ (,8 - a)) (k = 0, ±1, ±2, ... , ±(n+ 1)).

With an obvious change of variable we can show that

x in 8
2

(8
2

- 12
)(8

2
- 22

) ... (8
2

- n 2
) d8.

The expression given by Stirling for 3 ordinates is correct, but in the cases
of 5, 7 and 9 ordinates the factors

1 1 1
470' 930' 1600

are convenient approximations to the true values,70 which are respectively

2 3 296
945 ' 2800 ' 467775 .

In his third table Stirling gives the quadrature formulae in terms of central
differences. These versions can be obtained directly from "Stirling's interpo­
lation formula" (Proposition 20, First Case). Consider, for example, the case
of 5 ordinates. On putting x =")' + z(,8 - a)/4 where")' = (a + ,8)/2, we have

70Cf. Stirling's remarks concerning his third table.
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r/3 f(x)dx= (3-a r
2

f('+-4
z

((3-a))dz.
ia 4 i-2

Then, using the interpolating polynomial for g(z) = f(f + z((3 - a)/4) at the
points -2, -1, 0, 1, 2, we have in the notation of Proposition 20 (which is
different from that of Proposition 31)

1/3 f( ) d (3 - a 12
Bz + bz

2
2Cz + cz

2
(2 1) dx x ~ -- a+ + 24 z - Z

a 4 -2 2

(3 - a 12
b 2 C 2 2 )= -- a + -z + -z (z -1 dz.

2 0 2 24

A straightforward calculation followed by the appropriate notational change71

now produces the entry for 5 ordinates in the third table. As Stirling notes
the true coefficients of the final terms in the expressions for 9, 11 and 13
ordinates have been replaced by simpler approximations. The changes are as
follows:

# of Coeffn. True Stirling
ordinates of value uses

9 E 2:~~0 = .034885 ... 8
3
6 = .034883 ...

11 F 51968076572 = .026834148 ... 3~~3 = .026834142 ...

13 G 15011 - 02166 3g~0 = .02163 ...693000 - . . ..

The inclusion of a formula for 1 ordinate is a little incongruous - according to
Stirling's general description the interval of integration then has zero length.
However, we could also interpret this case as the midpoint rule with arbitrary
interval length.

Stirling illustrates the use of the three tables in calculations of

11 1
--dx = In2.

o 1 + x

Proposition 32 (pp. 164-166). Here we have n + 1 equidistant ordinates
where n of them are known. An approximation to the unknown ordinate is
obtained by setting the expression for the n-th difference equal to zero. In
the case where the unknown ordinate is the middle one of 2n + 1 equidistant

7Jln Propositions 20 and 31 A, H, C, ... ,a, b, c, ... play different roles. However in
the final step we just need to note that the differences denoted by a, b, c, ... in
Proposition 20 (First Case) are denoted by A, H, C, .. . in Proposition 31.
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ordinates we deduce Stirling's second table from the table in the proposition
as follows:

(3 ordinates - 2 about the middle)

(5 ordinates - 4 about the middle)

b_a+c_~.
- 2 - 2 '

4(b + d) - (a + c) 4A - Bc- _.
- 6 - 6 '

etc.

This technique was also given in Stirling's paper [61] (see pp.1057-1058). In
the example Stirling uses logarithms to base 10 with 1, x standing for loglO x
(d. Proposition 28).

Proposition 33 (pp.166-168). This is a formula for "interpolating to
halves" (see [27, pp.102-103] or [58, p.32]) which is obtained directly from
the second case of Proposition 20. Here z = 2tjd, where t is the signed dis­
tance to the varying ordinate from 0, the midpoint of the interval cut off
by the two middle ordinates IA and AI, and d is the length of this interval.
Hence we put z = 0 to determine the ordinate halfway between lA and AI,
producing (in the notation of Proposition 20, Case 2)72

Now

... ,

so that the A, B, C, ... of Proposition 20, Case 2 become

A = a+a,
B = (a - 2a + b) + (,8 - 2a + a)

=-(a + a) + (b + ,8),

C=0-~+~-~+~+~-~+~-~+~

=2(a + a) - 3(b +,8) + (c +'Y),

and so on, which leads to Stirling's expression. The entries in the table are
the partial sums of the series of the proposition; the column on the left gives
the number of ordinates involved in each partial sum. Again Stirling uses
logarithms to base 10 in his illustration. The material of Proposition 33 is
also given in Stirling's 1719 paper [61] (see pp.1061-1062).

72Note that the following expression has already appeared in Stirling's treatment
of Example 2 of Proposition 21.
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Stirling's Letter to De Moivre Dated 19 June 1729

In this letter Stirling communicated to De Moivre some of his results on
the middle-ratio problem. I have translated the letter below using the text
which De Moivre reproduced on pp.170-172 of [43] (see also pp.46-49 of
[74]). It would appear from the first paragraph that Stirling had already told
De Moivre about his solutions and that the letter was written in response to
a request for more detailed information which De Moivre wished to include
in his Miscellanea Analytica [43]. The main text is very similar to Stirling's
statement and discussion in Proposition 23. The numbers in the second cal­
culation below are not as accurate as those in the corresponding calculation
in Proposition 23, although the final result is the same in both places.73

Translation of the Letter

About four years ago, when I informed Mr Alex. Cuming that problems
concerning the Interpolation and Summation of series and others of this type
which are not susceptible to the commonly accepted analysis, can be solved
by Newton's Method of Differences, the most illustrious man replied that he
doubted if the problem solved by you some years before about finding the
middle coefficient in an arbitrary power of the binomial could be solved by
differences. Then, led by curiosity and confident that I would be doing a
favour to a most deserving man of Mathematics, I took it up willingly: and I
admit that difficulties arose which prevented me from arriving at the desired
conclusion rapidly, but I do not regret the labour, if I have in fact finally
achieved a solution which is so acceptable to you that you consider it worthy
of inclusion in your own writings. Indeed it is as follows.

If the index of the power is an even number, let it be called n; but if it is
odd, let it be called n - 1; and as the middle coefficient is to the sum of all
the coefficients of the same power, so one will be to the mean proportional
between the semicircumference of the circle and the following series:

73See the note on Proposition 23 concerning this letter and the series and approxi­
mations which it contains.

I. Tweddle, James Stirling's Methodus Differentialis
© Springer-Verlag London Limited 2003
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A 9B 25C 49D 81E &
n+ + + + + c.

2(n + 2) 4(n + 4) 6(n + 6) 8(n + 8) lO(n + 10)

For example, if the ratio of the middle coefficient to the sum of all the co­
efficients in the hundredth or ninety-ninth power is required, there will be
n = 100, which, when multiplied by the semicircumference of the circle,
1.5707963279, produces the first term A of the series: then there will be

157.866984459

157.079632679
769998199

16658615
654820

37137
2734

246
26
3

&c.D-~C
- 636 '

and by carrying out the calculation as at the
side, the sum of the terms will be found to be
157.866984459, whose square root 12.5645129018
is to one as the sum of all the coefficients is to the
middle coefficient in the hundredth power, or as
the sum of all the coefficients is to either of the
middle coefficients in the ninety-ninth power.

The problem is also solved by means of the reciprocal of that series, for
the sum of all the coefficients is to the middle coefficient as the square root
of the ratio of the semicircumference of the circle to the series

1 A 9B 25C 49D 81E &--+ + + + + c.
n + 1 2(n + 3) 4(n + 5) 6(n + 7) 8(n + 9) lO(n + 11)

or which comes back to the same, put a = .6366197723676, namely the quan­
tity which results on dividing one by the semicircumference of the circle; and
the mean proportional between the number a and this series will be to one
as the middle coefficient is to the sum of them all.

Thus if n = 100 as before, the calculation .00630316606304
will be as you see at the side, where the sum of 3059789351

the terms comes out as .00633444670787, whose 6~~~~~~~
square root .0795892373872 is to one as the mid- 143473
dIe coefficient is to the sum of all the coefficients 10470
in the hundredth or ninety-ninth power. 934

There are also other series for the solution of 98
this problem which are just as simple as those pre- 12
sented so far, but a little less convergent, when the 1
index of the binomial is a small number. .00633444670787

But in practice there is no need to revert to series; for it suffices to take
the mean proportional between the semicircumference of the circle and n + ~;

for this will always approximate more closely than the first two terms of the
series, of which even the first alone suffices for the most part.

Now the same approximation may be expressed otherwise and in a manner
more suited to application as follows. Put 2a = c = 1.2732395447352; and



Stirling to De Moivre, 19 June 1729 287

as the sum of the coefficients is to the middle coefficient, so one will be to
~ 1~V~ approximately, the error being an excess of about 16n2 V~ .

If n = 100, there will be _c_ = .006334525, and its square root
2n+ 1

.07958973 is accurate in the sixth decimal place; if this is divided by 16n2
,

that is by 160000, it will give the correction .00000050, and when this has been
subtracted from the approximation, it leaves the number sought .07958923,
which is exact in the last figure.

Likewise if n = 900, there will be _c_ = .000706962545, whose square
2n+ 1

root .026588767 exceeds the true value by two in the ninth decimal place, but
if the correction is computed and subtracted from the approximation, the
required number will be obtained accurate in the thirteenth decimal place.

But here is an equally easy and more accurate approximation: let the
difference between the logarithms of the numbers n + 2 and n - 2 be divided
by 16, and let the quotient be added to half the logarithm of the index n;
then let the constant logarithm .0980599385151, that is half the logarithm
of the semicircumference of the circle, be added to this sum, and the final
sum is the logarithm of the number which is to one as the sum of all the
coefficients is to the middle one. If n = 900, the calculation will be

~ log. 900.

16) Dif. of log. 902 & log. 898 (
Constant log.

Sum

1.4771212547

.0001206376

.0980599385

1.5753018308

And this sum exceeds the true value by two in the last figure; and it is
the logarithm of the number 37.6098698 which is to one as the sum of the
coefficients is to the middle coefficient in the power 900 or 899.

And if you wish the reciprocal of that number, take the complement of
the logarithm, namely -2.4246981692, and the number corresponding to this
will be found to be .0265887652.

And these are the solutions which have come out by means of Newton's
Method of Differences; I do not touch upon their demonstrations at this time,
since I intend shortly to communicate to the public a Treatise which I have
composed concerning Interpolation and Summation of series.
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