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Portrait of Isaac Newton at about the age of sixty, a drawing presented
by Newton to David Gregory. For details see the following page.



Portrait of Isaac Newton at about the age of sixty, presented by Newton to David Gregory
(1661-1708). This small oval drawing (roughly 3% in. from top to bottom and 3% in. from
left to right) is closely related to the large oval portrait in oils made by Kneller in 1702, which
is considered to be the second authentic portrait made of Newton. The kinship between this
drawing and the oil painting can be seen in the pose, the expression, and such unmistakable
details as the slight cast in the left eye and the button on the shirt. Newton is shown in both
this drawing and the painting of 1702 in his academic robe and wearing a luxurious wig,
whereas in the previous portrait by Kneller (now in the National Portrait Gallery in London),
painted in 1689, two years after the publication of the Principia, Newton is similarly attired
but is shown with his own shoulder-length hair.

This drawing was almost certainly made after the painting, since Kneller’s preliminary
drawings for his paintings are usually larger than this one and tend to concentrate on the
face rather than on the details of the attire of the subject. The fact that this drawing shows
every detail of the finished oil painting is thus evidence that it was copied from the finished
portrait. Since Gregory died in 1708, the drawing can readily be dated to between 1702 and
1708. In those days miniature portraits were commonly used in the way that we today would
use portrait photographs. The small size of the drawing indicates that it was not a copy made
in preparation for an engraved portrait but was rather made to be used by Newton as a gift.

The drawing captures Kneller’s powerful representation of Newton, showing him as a
person with a forceful personality, poised to conquer new worlds in his recently gained position
of power in London. This high level of artistic representation and the quality of the drawing
indicate that the artist responsible for it was a person of real talent and skill.

The drawing is mounted in a frame, on the back of which there is a longhand note
reading: “This original drawing of Sir Isaac Newton, belonged formerly to Professor Gregory
of Oxford; by him it was bequeathed to his youngest son (Sir Isaac’s godson) who was later
Secretary of Sion College; & by him left by Will to the Revd. Mr. Mence, who had the
Goodness to give it to Dr. Douglas; March 8th 1870.”

David Gregory first made contact with Newton in the early 1690s, and although their
relations got off to a bad start, Newton did recommend Gregory for the Savilian Professorship
of Astronomy at Oxford, a post which he occupied until his death in 1708. As will be evident to
readers of the Guide, Gregory is one of our chief sources of information concerning Newton’s
intellectual activities during the 1690s and the early years of the eighteenth century, the period
when Newton was engaged in revising and planning a reconstruction of his Principia. Gregory
recorded many conversations with Newton in which Newton discussed his proposed revisions
of the Principia and other projects and revealed some of his most intimate and fundamental
thoughts about science, religion, and philosophy. So far as is known, the note on the back of
the portrait is the only record that Newton stood godfather to Gregory’s youngest son.
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Publisher’s Note

This volume contains I. Bernard Cohen and Anne Whitman’s 1999 translation of
Newton’s Principia. In the preface and in the notes to the translation, Cohen refers
to his “Guide to Newton’s Principia” (“the Guide”). This volume contains an ex-
cerpt from the Guide (“A Brief History of the Principia”). The Guide appears in
tull in The Principia: The Authoritative Translation and Guide, also available from

University of California Press.



Preface to the 1999 Edition

ALTHOUGH NEWTON’S PRINCIPIA has been translated into many languages, the
last complete translation into English (indeed, the only such complete translation)
was produced by Andrew Motte and published in London more than two and a
half centuries ago. This translation was printed again and again in the nineteenth
century and in the 1930s was modernized and revised as a result of the efforts
of Florian Cajori. This latter version, with its partial modernization and partial
revision, has become the standard English text of the Principia.

Motte’s version is often almost as opaque to the modern reader as Newton’s
Latin original, since Motte used such older and unfamiliar expressions as “sub-
sesquialterate” ratio. Additionally, there are statements in which the terms are no
longer immediately comprehensible today, such as book 3, prop. 8, corol. 3, in
which Motte writes that “the densities of dissimilar spheres are as those weights
applied to the diameters of the spheres,” a statement unaltered in the Motte-Cajori
version. Of course, a little thought reveals that Newton was writing about the
densities of nonhomogeneous spheres and was concluding with a reference to the
weights divided by the diameters. The Motte-Cajori version, as explained in §2.3
of the Guide to the present translation, is also not satisfactory because it too is
frequently difficult to read and, what is more important, does not always present
an authentic rendition of Newton’s original. The discovery of certain extraordinary
examples in which scholars have been misled in this regard was a chief factor in
our decision to produce the present translation.

When we completed our Latin edition, somewhat awed by the prospect of
undertaking a wholly new translation, we thought of producing a new edition of
Motte’s English version, with notes that either would give the reader a modern
equivalent of difficult passages in Motte’s English prose or would contain some
aids to help the reader with certain archaic mathematical expressions. That is,
since Motte’s text had been a chief means of disseminating Newton’s science for

over two centuries, we considered treating it as an important historical document
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in its own right. Such a plan was announced in our Latin edition, and we even
prepared a special interleaved copy of the facsimile of the 1729 edition to serve as
our working text.*

After the Latin edition appeared, however, many colleagues and some review-
ers of that edition insisted that it was now our obligation to produce a completely
new translation of the Principia, rather than confine our attentions to Motte’s older
pioneering work. We were at first reluctant to accept this assignment, not only
because of the difficulty and enormous labor involved, but also because of our
awareness that we ourselves would thereby become responsible for interpretations
of Newton’s thought for a long period of time.

Goaded by our colleagues and friendly critics, Anne Whitman and I finally
agreed to produce a wholly new version of the Principia. We were fortunate in ob-
taining a grant from the National Science Foundation to support our efforts. Many
scholars offered good advice, chief among them our good friends D. T. Whiteside
and R. S. Westfall. In particular, Whiteside stressed for us that we should pay
no attention to any existing translation, not even consulting any other version on
occasions when we might be puzzled, until after our own assignment had been
fully completed. Anyone who has had to translate a technical text will appreciate
the importance of this advice, since it is all too easy to be influenced by other
translations, even to the extent of unconsciously repeating their errors. Accord-
ingly, during the first two or three rounds of translation and revision, we recorded
puzzling or doubtful passages, and passages for which we hoped to produce a
final version that would be less awkward than our preliminary efforts, reserving
for some later time a possible comparison of our version with others. It should be
noted that in the final two rounds of our revision, while checking some difficule
passages and comparing some of our renditions with others, the most useful works
for such purpose were Whiteside’s own translation of an early draft of what corre-

sponds to most of book 1 of the Principia and the French translation made in the

*An Index Verborum of the Latin edition of the Principia has been produced by Anne Whitman
and . Bernard Cohen in association with Owen Gingerich and Barbara Welther. This index includes the
complete text of the third edition (1726) and also the variant readings as given in the Latin edition of the
Principia (edited by Alexandre Koyré, 1. Bernard Cohen, and Anne Whitman), published in 1972 by the
Harvard University Press and the Cambridge University Press. Thus the Index includes the complete text
of the three authorized Latin editions (1687, 1713, 1726) as well as the MS annotations in both Newton’s
“annotated” and “interleaved” personal copies of the first and second editions. The Index is on deposit
in the Burndy Library of the Dibner Institute (Cambridge, Mass.), where it may be consulted. Microfilm
copies can be purchased.

Very useful tools for scholars and students are the planned Octavo editions of the first and third
Latin editions of Newton’s Principia; the latter will include this English translation. The high-resolution
facsimiles on CD-ROM allow readers to view the original book and search the complete Latin texts and

translation. For publication information, see the Octavo web site: www.octavo.com.
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mid-eighteenth century by the marquise du Chitelet. On some difficult points, we
also profited from the exegeses and explanations in the Le Seur and Jacquier Latin
edition and the Krylov Russian edition. While neither Anne Whitman nor I could
read Russian, we did have the good fortune to have two former students, Richard
Kotz and Dennis Brezina, able and willing to translate a number of Krylov’s notes
for us.

The translation presented here is a rendition of the third and final edition of
Newton’s Principia into present-day English with two major aims: to make New-
ton’s text understandable to today’s reader and yet to preserve Newton’s form of
mathematical expression. We have thus resisted any temptation to rewrite Newton’s
text by introducing equations where he expressed himself in words. We have, how-

i

ever, generally transmuted such expressions as “subsesquiplicate ratio” into more

simply understandable terms. These matters are explained at length in §§10.3-10.5
of the Guide.

After we had completed our translation and had checked it against Newton’s
Latin original several times, we compared our version with Motte’s and found
many of our phrases to be almost identical, except for Motte’s antique mathematical
expressions. This was especially the case in the mathematical portions of books 1
and 2 and the early part of book 3. After all, there are not many ways of saying
that a quantity A is proportional to another quantity B. Taking into account that
Motte’s phrasing represents the prose of Newton’s own day (his translation was
published in 1729) and that in various forms his rendition has been the standard
for the English-reading world for almost three centuries, we decided that we would
maintain some continuity with this tradition by making our phrasing conform to
some degree to Motte’s. This comparison of texts did show, however, that Motte
had often taken liberties with Newton’s text and had even expanded Newton’s
expressions by adding his own explanations—a result that confirmed the soundness
of the advice that we not look at Motte's translation until after we had completed
our own text.

This translation was undertaken in order to provide a readable text for stu-
dents of Newton’s thought who are unable to penetrate the barrier of Newton’s
Latin. Following the advice of scholarly friends and counselors, we have not over-
loaded the translation with extensive notes and comments of the sort intended for
specialists, rather allowing the text to speak for itself. Much of the kind of editorial
comment and explanation that would normally appear in such notes may be found
in the Guide. Similarly, information concerning certain important changes in the
text from edition to edition is given in the Guide, as well as in occasional textual
notes. The table of contents for the Guide, found on pages 3-7, will direct the

reader to specific sections of the Principia, or even to particular propositions.
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The Guide to the present translation is intended to be just that—a kind of
extended road map through the sometimes labyrinthine pathways of the Principia.
Some propositions, methods, and concepts are analyzed at length, and in some
instances critical details of Newton’s argument are presented and some indica-
tions are given of the alterations produced by Newton from one edition to the
next. Sometimes reference is made to secondary works where particular topics are
discussed, but no attempt has been made to indicate the vast range of scholarly
information relating to this or that point. That is, I have tended to cite, in the
text and in the footnote references, primarily those works that either have been of
special importance for my understanding of some particular point or some sections
of the Principia or that may be of help to the reader who wishes to gain a more
extensive knowledge of some topic. As a result, I have not had occasion in the
text to make public acknowledgment of all the works that have been important
influences on my own thinking about the Principia and about the Newtonian prob-
lems associated with that work. In this rubric I would include, among others, the
important articles by J. E. McGuire, the extremely valuable monographs on many
significant aspects of Newton’s science and philosophic background by Maurizio
Marmiani (which have not been fully appreciated by the scholarly world because
they are written in Italian), the two histories of mechanics by René Dugas and the
antecedent documentary history by Léon Jouguet, the analysis of Newton’s con-
cepts and methods by Pierre Duhem and Ernst Mach, and monographic studies by
Michel Blay, G. Bathélemy, Pierre Costabel, and A. Rupert Hall, and by Frangois
de Gandt.

I also fear that in the Guide I may not have sufficiently stressed how greatly
my understanding of the Principia has profited from the researches of D. T. White-
side and Curtis Wilson and from the earlier commentaries of David Gregory, of
Thomas Le Seur and Frangois Jacquier, and of Alexis Clairaut. The reader will
find, as I have done, that R. S. Westfall's Never at Rest not only provides an
admirable guide to the chronology of Newton’s life and the development of his
thought in general, but also analyzes the whole range of Newton’s science and
presents almost every aspect of the Principia in historical perspective.

All students of the Principia find a guiding beacon in D. T. Whiteside’s essays
and his texts and commentaries in his edition of Newton’s Mathematical Papers, esp.
vols. 6 and 8 (cited on p. 9 below). On Newton’s astronomy, the concise analysis
by Curtis Wilson {cited on p. 10 below) has been of enormous value. Many of
the texts quoted in the Guide have been translated into English. It did not seem
necessary to mention this fact again and again.

From the very start of this endeavor, Anne Whitman and I were continuously

aware of the awesome responsibility that was placed on our shoulders, having
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in mind all too well the ways in which even scholars of the highest distinction
have been misled by inaccuracies and real faults in the current twentieth-century
English version. We recognized that no translator or editor could boast of having
perfectly understood Newton’s text and of having found the proper meaning of
every proof and construction. We have ever been aware that a translation of a work
as difficult as Newton’s Principia will certainly contain some serious blunders or
errors of interpretation. We were not so vain that we were always sure that we
fully understood every level of Newton’s meaning. We took comfort in noting that
even Halley, who probably read the original Principia as carefully as anyone could,
did not always fully understand the mathematical significance of Newton’s text.
We therefore, in close paraphrase of Newton’s own preface to the first edition,
earnestly ask that everything be read with an open mind and that the defects in
a subject so difficult may be not so much reprehended as kindly corrected and

improved by the endeavors of our readers.

I.B.C.

Some Acknowledgments

Anne Whitman died in 1984, when our complete text was all but ready for pub-
lication, being our fourth (and in some cases fifth and even sixth) version. It was
her wish, as well as mine, that this translation be dedicated to the scholar whose
knowledge of almost every aspect of Newton’s mathematics, science, and life is
unmatched in our time and whose own contributions to knowledge have raised
the level of Newtonian scholarship to new heights.

We are fortunate that Julia Budenz has been able to help us with various
aspects of producing our translation and especially in the final stages of preparing
this work for publication.

It has been a continual joy to work with the University of California Press.
[ am especially grateful to Elizabeth Knoll, for her thoughtfulness with regard to
every aspect of converting our work into a printed book, and to Rose Vekony, for
the care and wisdom she has exercised in seeing this complex work through pro-
duction, completing the assignment so skillfully begun by Rebecca Frazier. I have
profited greatly from the many wise suggestions made by Nicholas Goodhue, whose
command of Latin has made notable improvements in both the Guide and the
translation. One of the fortunate aspects of having the translation published by the
University of California Press is that we have been able to use the diagrams (some
with corrections) of the older version.

I gladly acknowledge and record some truly extraordinary acts of scholarly
friendship. Three colleagues—George E. Smith, Richard S. Westfall, and Curtis
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Wilson—not only gave my Guide a careful reading, sending me detailed com-
mentaries for its improvement; these three colleagues also checked our translation
and sent me many pages of detailed criticisms and useful suggestions for its im-
provement. I am particularly indebted to George Smith of Tufts University for
having allowed me to make use of his as yet unpublished Companion to Newton's
“Principia,” a detailed analysis of the Principia proposition by proposition. Smith
used the text of our translation in his seminar on the Principia at Tufts during
the academic year 1993/94 and again during 1997/98. Our final version has prof-
ited greatly from the suggestions of the students, who were required to study the
actual text of the Principia from beginning to end. I am happy to be able to in-
clude in the Guide a general presentation he was written (in his dual capacity as a
philosopher of science and a specialist in fluid mechanics) on the contents of book
2 and also two longish notes, one on planetary perturbations, the other on the mo-
tion of the lunar apsis. I have also included a note by Prof. Michael Nauenberg of
the University of California, Santa Cruz, on his current research into the origins
of some of Newton’s methods.

I am grateful to the University Library, Cambridge, for permission to quote
extracts and translations of various Newton MSS. I gladly record here my deep
gratitude to the staff and officers of the UL for their generosity, courtesy, kindness,
and helpfulness over many years.

I am especially grateful to Robert S. Pirie for permission to reproduce the
miniature portrait which serves as frontispiece to this work. The following il-
lustrations are reproduced, with permission, from books in the Grace K. Babson
Collection of the Works of Sir Isaac Newton, Burndy Library, Dibner Institute for
the History of Science and Technology: the title pages of the first and second edi-
tions of the Principia; the half title, title page, and dedication of the third edition;
and the diagrams for book 2, prop. 10, in the Jacquier and Le Seur edition of the
Principia.

I gratefully record the continued and generous support of this project by the
National Science Foundation, which also supported the prior production of our
Latin edition with variant readings. Without such aid this translation and Guide
would never have come into being.

Finally, I would like to thank the Alfred P. Sloan Foundation for a grant that

made it possible to add an index to the second printing.

ADDENDUM

I am particularly grateful to four colleagues who helped me read the proofs.

Bruce Brackenridge checked the proofs of the Guide and shared with me many
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of his insights into the methods used by Newton in the Principia, while George
Smith worked through the proofs of each section of the Guide and also helped
me check the translation. Michael Nauenberg and William Harper helped me find
errors in the Guide. A student, Luis Campos, gave me the benefit of his skill at
proofreading.

I also gladly acknowledge the importance of correspondence with Mary Ann
Rossi which helped me to clarify certain grammatical puzzles. Edmund J. Kelly
kindly sent me the fruit of his detailed textual study of the Motte-Cajori version of
the Principia.

Readers’ attention is called to three collections of studies that are either in pro-
cess of publication or appeared too late to be used in preparing the Guide: Planetary
Astronomy from the Renaissance to the Rise of Astrophysics, Part B: The Eighteenth
and Nineteenth Centuries, ed. René Taton and Curtis Wilson (Cambridge: Cam-
bridge University Press, 1995); Isaac Newton’s Natural Philosophy, ed. Jed Buch-
wald and I. B. Cohen (Cambridge: MIT Press, forthcoming); and The Foundations
of Newtonian Scholarship: Proceedings of the 1997 Symposium at the Royal Society,
ed. R. Dalitz and M. Nauenberg (Singapore: World Scientific, forthcoming). Some
of the chapters in these collections, notably those by Michael Nauenberg, either
suggest revisions of the interpretations set forth in the Guide or offer alternative
interpretations. Other contributions of Nauenberg are cited in the notes to the
Guide.
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A Brief History of the Principia

The Origins of the Principia

Isaac Newton’s Principia was published in 1687. The full title is Philosophiae
Naturalis Principia Mathematica, or Mathematical Principles of Natural Philosophy.
A revised edition appeared in 1713, followed by a third edition in 1726, just one
year before the author’s death in 1727. The subject of this work, to use the name
assigned by Newton in the first preface, is “rational mechanics.” Later on, Leibniz
introduced the name “dynamics.” Although Newton objected to this name,' “dy-
namics” provides an appropriate designation of the subject matter of the Principia,
since “force” is a primary concept of that work. Indeed, the Principia can quite
properly be described as a study of a variety of forces and the different kinds of
motions they produce. Newton’s eventual goal, achieved in the third of the three
“books” of which the Principia is composed, was to apply the results of the prior
study to the system of the world, to the motions of the heavenly bodies. This sub-
ject is generally known today by the name used a century or so later by Laplace,

“celestial mechanics.”

I. Newton’s objections were not based on the name in terms of its Greek roots or its adequacy or
inadequacy to describe the subject matter. Rather, he took umbrage at Leibniz’s having devised a name as
if he had been the inventor of the subject, whereas Newton believed that he himself had been the primary
creator. In a private memorandum (my Introduction, p. 296, §6), Newton wrote that “Galileo began to
consider the effect of Gravity upon Projectiles. Mr. Newton in his Principia Philosophiae improved that
consideration into a large science. Mr. Leibnitz christened the child by [a] new name as if it had been
his own, calling it Dyramica.” In another such memorandum (ibid., p. 297), he declared that Leibniz
“changed the name of vis centripeta used by Newton into that of sollicitatio paracentrica, not because it
is a fitter name, but to avoid being thought to build upon Mr. Newton's foundation.” He also held that
Leibniz “has set his mark upon this whole science of forces calling it Dynamick, as if he had invented it

himself & is frequently setting his mark upon things by new names & new Notations.”



A BRIEF HISTORY OF THE PRINCIPIA

The history of how the Principia came into being has been told and retold.’
In the summer of 1684, the astronomer Edmond Halley visited Newton in order
to find out whether he could solve a problem that had baffled Christopher Wren,
Robert Hooke, and himself: to find the planetary orbit that would be produced
by an inverse-square central force. Newton knew the answer to be an ellipse.* He
had solved the problem of elliptical orbits earlier, apparently in the period 1679—
1680 during the course of an exchange of letters with Hooke. When Halley heard
Newton’s reply, he urged him to write up his results. With Halley’s prodding and
encouragement, Newton produced a short tract which exists in several versions
and will be referred to as De Mozu* (On Motion), the common beginning of all
the titles Newton gave to the several versions. Once started, Newton could not
restrain the creative force of his genius, and the end product was the Principia.
In his progress from the early versions of De Motu to the Principia, Newton’s
conception of what could be achieved by an empirically based mathematical science

had become enlarged by several orders of magnitude.

2. E.g., my Introduction, Westfall's Never at Rest, Whiteside’s introduction in Math. Papers (vol. 6),
Herivel’s Background, and more recently A. Rupert Hall, Isaac Newton: Adventurer in Thought (Oxford
and Cambridge, Mass.: Blackwell, 1992).

3. Our source for this anecdote may be found in the notes accumulated by John Conduitt, husband
of Newton’s niece and Newton's successor at the Mint, for a proposed biography of Newton. Conduitt
got the story from the mathematician Abraham de Moivre. The main lines of the story are undoubtedly
correct, but we may doubt the accuracy of the details, since this is a secondhand record of an event that
had happened about half a century earlier. What was the exact question that Halley would have asked
Newton?

The question recorded by Conduitt has puzzled critical historians, because it does not have a simple
answer. There has even been some speculation whether Halley may have asked Newton for the force
acting in the case of an elliptical orbit rather than for the orbit produced by an inverse-square force. It
is doubtful whether Conduitt knew enough mathematics to see the difference between the two. But, in
fact, there is a real difference. As Newton shows in the Principia, in prop. 11, and as he proved in the
drafts of De Motu, an elliptical orbit does imply an inverse-square force. Yet, as readers of the Principia
would have been aware, an inverse-square force does not necessarily imply an elliptic orbit, rather a conic
section (which can be an ellipse, a parabola, or a hyperbola).

Of course, Halley’s question may have implied (or have been thought by Newton to have implied)
an orbit of a planet or possibly a planetary satellite. Since such an orbit is a closed curve, and therefore
not a parabola or a hyperbola, Halley’s question to Newton would then have been, in effect, What is
the planetary orbit (or closed orbit) produced by an inverse-square force? In this case, the answer would
legitimately be the one recorded by Conduitt.

4. The several versions of De Moru may be found (with translations and commentary) in Whiteside’s
edition of Math. Papers 6:30-80; the Halls’ Unpublished Sci. Papers, pp. 237-239, 243-292; Herivel’s Back-
ground, pp. 256-303; and, earlier, in Rouse Ball’s Essay, pp. 31-56, and in Stephen P. Rigaud, Historical
Essay on the First Publication of Sir Isaac Newton'’s “Principia” (Oxford: Oxford University Press, 1838;
reprint, with an introd. by I. B. Cohen, New York and London: Johnson Reprint Corp., 1972), appendix,
no. 1, pp. 1-19. For a facsimile reprint of the MSS of De Motu, see n. 5 below.



A BRIEF HISTORY OF THE PRINCIPIA

As first conceived, the Principia consisted of two “books” and bore the simple
title De Motu Corporum (On the Motion of Bodies).” This manuscript begins, as
does the Principia, with a series of Definitions and Laws of Motion, followed by a
book 1 whose subject matter more or less corresponds to book 1 of the Principia.®
The subject matter of book 2 of this early draft is much the same as that of book
3 of the Principia. In revising this text for the Principia, Newton limited book 1
to the subject of forces and motion in free spaces, that is, in spaces devoid of any
resistance. Book 2 of the Principia contains an expanded version of the analysis
of motion in resisting mediums, plus discussions of pendulums,7 of wave motion,
and of the physics of vortices. In the Principia, the system of the world became the
subject of what is there book 3, incorporating much that had been in the older
book 2 but generally recast in a new form. As Newton explained in the final
Principia, while introducing book 3, he had originally presented this subject in a
popular manner, but then decided to recast it in a more mathematical form so
that it would not be read by anyone who had not first mastered the principles
of rational mechanics. Even so, whole paragraphs of the new book 3 were copied

word for word from the old book 2.8

Steps Leading to the Composition and Publication of the Principia

The history of the development of Newton’s ideas concerning mechanics, more
spectfically dynamics, has been explored by many scholars and is still the subject

of active research and study.’ The details of the early development of Newton’s

5. On this first draft of book 1, see my Introduction, chap. 4 and suppl. 3, where it is referred to as
Newton’s Lucasian Lectures (LL) because Newton later deposited this MS in the University Library as if
it were the text of his university lectures for 1684 and 1685. This text has been edited and translated by
D. T. Whiteside in vol. 6 of Math. Papers, and Whiteside has also prepared a facsimile edition of the whole
MS, together with the drafts of De Moru, under the general title The Preliminary Manuscripts for Isaac
Newton’s 1687 “Principia,” 1684—1685 (Cambridge and New York: Cambridge University Press, 1989).

6. This early book 1 concluded (as did De Motu) with a brief presentation of motion in resisting
fluids, which was later considerably expanded so as to become the first sections of book 2 of the Principia.

7. Pendulums are also discussed in book 1.

8. A new translation of this early version of book 3, by Anne Whitman and I. Bernard Cohen, is
scheduled for publication by the University of California Press. In order to distinguish this work from
book 3 of the Principia (with its subtitle “De Systemate Mundi”), we have called this early version Essay
on the System of the World. A list of the paragraphs that are the same in both versions may be found in a
supplement to our edition of the Principia with variant readings, cited in n. 45 below.

9. The books and articles devoted to this topic are so numerous, and continue to appear at so rapid a
rate, that it would hardly be practical to cite them all. The most accessible and authoritative presentations
are to be found in Curtis Wilson’s “Newt. Achievement” and especially in D. T. Whiteside, “Before
the Principia: The Maturing of Newton’s Thoughts on Dynamical Astronomy, 1664-84,” Journal for the
History of Astronomy 1 (1970): 5-19; “The Mathematical Principles Underlying Newton’s Principia,” ibid.,
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ideas about force and motion, however interesting in their own right, are not
directly related to the present assignment, which is to provide a reader’s guide to
the Principia. Nevertheless, some aspects of this prehistory should be of interest
to every prospective reader of the Principia. In the scholium to book 1, prop. 4,

2

Newton refers to his independent discovery (in the 1660s) of the Z tule for the
r

force in uniform circular motion (at speed v along a circle of radius r), a discovery
usually attributed to Christiaan Huygens, who formally announced it to the world
in his Horologium Oscillatorium of 1673.!° It requires only the minimum skill in

2

algebraic manipulation to combine the — rule with Kepler’s third law in order
r

to determine that in a system of bodies in uniform circular motion the force is
proportional to S oris inversely proportional to the square of the distance. Of

course, this computation does not of itself specify anything about the nature of the
force, whether it is a centripetal or a centrifugal force or whether it is a force in
the sense of the later Newtonian dynamics or merely a Cartesian “conatus,” or

endeavor. In a manuscript note Newton later claimed that at an early date, in the
!

1660s, he had actually applied the — rule to the moon’s motion, much as he does
r

later on in book 3, prop. 4, of the Principia, in order to confirm his idea of the
force of “gravity extending to the Moon.”!! In this way he could counter Hooke’s
allegation that he had learned the concept of an inverse-square force of gravity
from Hooke.

A careful reading of the documents in question shows that sometime in the
1660s, Newton made a series of computations, one of which was aimed at proving

that what was later known as the outward or centrifugal force arising from the

116-138. See also my Newr. Revolution, chaps. 4 and 5; R. S. Westfall’s Never ar Rest and his carlier Force
in Newton’s Physics (London: Macdonald; New York: American Elsevier, 1971), chaps. 7 and 8; Hertvel’s
Background. A splendid review of this topic is available in Hall, Isaac Newton: Adventurer in Thought, pp.
55-64. A list of other scholars who have made contributions to this subject would include, among others,
Bruce Brackenridge, Herman Ehrlichson, J. E. McGuire, and Michael M. Nauenberg.

2

10. The text of Newton’s early discovery of the Z ruleis published (from Newton’s “Waste Book”)
in Background, pp. 130-131. "

11. This celebrated autobiographical document was first printed in A Catalogue of the Portsmouth
Collection of Books and Papers Written by or Belonging to Sir Isaac Newton, the Scientific Portion of Which
Has Been Presented by the Earl of Portsmouth to the University of Cambridge, ed. H. R. Luard et al.
(Cambridge: Cambridge University Press, 1888), and has been reprinted many times since. A corrected
version, taken from the manuscript in the Cambridge University Library (ULC MS Add. 3968, §41,
fol. 85) may be found in my Introduction, pp. 290-292.
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earth’s rotation is less than the earth’s gravity, as it must be for the Copernican
system to be possible. He then computed a series of forces. Cartesian vortical
endeavors are not the kind of forces that, in the Principia, are exerted by the sun
on the planets to keep them in a curved path or the similar force exerted by the
earth on the moon. At this time, and for some years to come, Newton was deeply
enmeshed in the Cartesian doctrine of vortices. He had no concept of a “force of
gravity” acting on the moon in anything like the later sense of the dynamics of the
Principia. These Cartesian “endeavors” (Newton used Descartes’s own technical
term, “conatus”) are the magnitude of the planets’ endeavors to fly out of their
orbits. Newton concludes that since the cubes of the distances of the planets from
the sun are “reciprocally as the squared numbers of their revolutions in a given
time,” their “conatus to recede from the Sun will be reciprocally as the squares of
their distances from the Sun.”"

Newton also made computations to show that the endeavor or “conatus” of
receding from the earth’s surface (caused by the earth’s daily rotation) is 12%4
times greater than the orbital endeavor of the moon to recede from the earth. He
concludes that the force of receding at the earth’s surface is “4000 and more times
greater than the endeavor of the Moon to recede from the Earth.”

In other words, “Newton had discovered an interesting mathematical correla-
tion within the solar vortex,”!® but he plainly had not as yet invented the radically
new concept of a centripetal dynamical force, an attraction that draws the planets
toward the sun and the moon toward the earth."* There was no “twenty years’
delay” (from the mid-1660s to the mid-1680s) in Newton’s publication of the theory
of universal gravity, as was alleged by Florian Cajori.”®

In 1679/80, Hooke initiated an exchange of correspondence with Newton on
scientific topics. In the course of this epistolary interchange, Hooke suggested to
Newton a “hypothesis” of his own devising which would account for curved orbital

motion by a combination of two motions: an inertial or uniform linear component

12. Corresp. 1:300; see A. Rupert Hall, “Newton on the Calculation of Central Forces,” Annals of
Science 13 (1957): 62-71.

13. Hall, Isaac Newton: Adventurer in Thought, p. 62. This work gives an excellent critical summary
of Newton’s thoughts about celestial motions during the 1660s.

14. For the documents and an analysis, see Hall, “Newton on the Calculation of Central Forces,”
pp. 62-71; also Background, pp. 192-198, 68—69; and esp. Never at Rest, pp. 151-152. See, further, Newr.
Revolution, esp. pp. 238-240. A splendid review of this subject is available in D. T. Whiteside, “The
Prehistory of the Principia from 1664 to 1686,” Notes and Records of the Royal Society of London 45 (1991):
11-61, esp. 18-22.

15. Florian Cajori, “Newton’s Twenty Years’ Delay in Announcing the Law of Gravitation,” in
Sir Isaac Newton, 1727-1927: A Bicentenary Evaluation of His Work, ed. Frederic E. Brasch (Baltimore:
Williams and Wilkins, 1928), pp. 127-188.
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along the tangent to the curve and a motion of falling inward toward a center.
Newton told Hooke that he had never heard of this “hypothesis.”'® In the course of
their letters, Hooke urged Newton to explore the consequences of his hypothesis,
advancing the opinion or guess that in combination with the supposition of an
inverse-square law of solar-planetary force, it would lead to the true planetary
motions."” Hooke also wrote that the inverse-square law would lead to a rule
for orbital speed being inversely proportional to the distance of a planet frorh
the sun."® Stimulated by Hooke, Newton apparently then proved that the solar-
planetary force is as the inverse square of the distance, a first step toward the
eventual Principia.

We cannot be absolutely certain of exactly how Newton proceeded to solve
the problem of motion in elliptical orbits, but most scholars agree that he more
or less followed the path set forth in the tract De Motu which he wrote after
Halley’s visit a few years later in 1684.1 Essentially, this is the path from props. 1
and 2 of book 1 to prop. 4, through prop. 6, to props. 10 and 11. Being secretive
by nature, Newton didn’t tell Hooke of his achievement. In any event, he would
hardly have announced so major a discovery to a jealous professional rival, nor in
a private letter. What may seem astonishing, in retrospect, is not that Newton did
not reveal his discovery to Hooke, but that Newton was not at once galvanized
into expanding his discovery into the eventual Principia.

Several aspects of the Hooke-Newton exchange deserve to be noted. First,
Hooke was unable to solve the problem that arose from his guess or his intuition;
he simply did not have sufficient skill in mathematics to be able to find the orbit
produced by an inverse-square force. A few years later, Wren and Halley were
equally baffled by this problem. Newton’s solution was, as Westfall has noted, to

invert the problem, to assume the path to be an ellipse and find the force rather

16. The Newton-Hooke correspondence during 1679/80 is to be found in Corresp., vol. 2. See, in
this regard, Alexandre Koyré, “An Unpublished Letter of Robert Hooke to Isaac Newton,” Isis 43 (1952):
312-337, reprinted in Koyré’s Newtonian Studies (Cambridge, Mass.: Harvard University Press, 1965), pp.
221-260. Also J. A. Lohne, “Hooke versus Newton: An Analysis of the Documents in the Case of Free
Fall and Planetary Motion,” Centaurus 7 (1960): 6-52.

17. Later, Newton quite correctly insisted that Hooke could not prove this assertion. In any event he
himself had already been thinking of an inverse-square force.

18. Newton was to prove that this particular conclusion or guess of Hooke’s was wrong. The force on
a planet at a point P (see book 1, prop. 1, corol. 1) is inversely proportional to the perpendicular distance
from the sun to the tangent to the curve at P. We shall take note, below, that Hooke’s rule, previously
stated by Kepler, is true only at the apsides.

19. There has, however, been some consideration given to the possibility that what Newton wrote up
at this time was a prototype of the paper he later sent to John Locke.

This work is available, with a commentary by D. T. Whiteside, in Math. Papers, vol. 6, and in Herivel’s
Background and the Halls’ edition of Unpubl. Sci. Papers.
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than “investigating the path in an inverse-square force field.”?® Second, there is no
certainty that the tract De Motu actually represents the line of Newton’s thought
after corresponding with Hooke; Westfall, for one, has argued that a better can-
didate would be an essay in English which Newton sent later to John Locke, a
position he maintains in his biography of Newton.?! A third point is that Newton
was quite frank in admitting (in private memoranda) that the correspondence with
Hooke provided the occasion for his investigations of orbital motion that eventu-
ally led to the Principia.?? Fourth, as we shall see in §3.4 below, the encounter
with Hooke was associated with a radical reorientation of Newton’s philosophy of
nature that is indissolubly linked with the Principia. Fifth, despite Newton’s success
in proving that an elliptical orbit implies an inverse-square force, he was not at
that time stimulated—as he would be some four years later—to move ahead and
to create modern rational mechanics. Sixth, Newton’s solution of the problems of
planetary force depended on both his own new concept of a dynamical measure
of force (as in book 1, prop. 6) and his recognition of the importance of Kepler’s
law of areas.”® A final point to be made is that most scholarly analyses of New-
ton’s thoughts during this crucial period concentrate on conceptual formulations

and analytical solutions, whereas we know that both Hooke?* and Newton made

20. Never at Rest, p. 387. 1 have discussed this matter in my Introduction, pp. 49-52, in relation to
the question of what Halley asked Newton on the famous visit in the summer of 1684 and what Newton
would have replied.

21. Most scholars date the Locke paper after the Principia. An earlier dating was suggested by Herivel
in 1961 and reaffirmed in his Background, pp. 108-117. This assigned date was then challenged by the
Halls in 1963, and supported by Westfall in 1969, whose arguments were refuted by Whiteside in 1970.
See the summary in Westfall’s Never at Rest, pp. 387-388 n. 145.

An admirable discussion of the various attempts to date this work is given in Bruce Brackenridge, “The
Critical Role of Curvature in Newton’s Developing Dynamics,” in The Investigation of Difficult Things:
Essays on Newton and the History of the Exact Sciences, ed. P. M. Harman and Alan E. Shapiro (Cambridge:
Cambridge University Press, 1992), pp. 231-260, esp. 241-242 and n. 35. Brackenridge concludes by
agreeing with Whiteside that the date of a “prototype manuscript” on which this tract is based should be
fixed at August 1684, shortly after Halley’s visit.

22. Newton to Halley, 27 July 1686, Corresp. 2:447; my Introduction, suppl. 1. My own awareness of
the significance of the Hooke-Newton correspondence (in suggesting a fruitful way to analyze celestial
orbital motions) derives from a pioneering study by R. S. Westfall, “Hooke and the Law of Universal
Gravitation,” The British Journal for the History of Science 3 (1967): 245-261.

23. On the problems of using Kepler's law of areas and the various approximations used by
seventeenth-century astronomers in place of this law, see Curtis Wilson, “From Kepler’s Laws, So-Called,
to Universal Gravitation: Empirical Factors,” Archive for History of Exact Sciences 6 (1970): 89-170; and
my Newt. Revolution, pp. 224-229.

24. Patri Pugliese, “Robert Hooke and the Dynamics of Motion in the Curved Path,” in Roberz
Hooke: New Studies, ed. Michael Hunter and Simon Schaffer (London: Boydell Press, 1989), pp. 181-205.
See, further, Michael Nauenberg, “Hooke, Orbital Motion, and Newton’s Principia,” American Journal of
Physics 62 (1994): 331-350.
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important use of graphical methods, a point rightly stressed by Curtis Wilson.??
Newton, in fact, in an early letter to Hooke, wrote of Hooke’s “acute Letter having
put me upon considering . . . the species of this curve,” saying he might go on to
“add something about its description quam proxime,”? or by graphic methods.
The final proposition in the Principia (book 3, prop. 42) declared its subject (in the
first edition) to be: “To correct a comet’s trajectory found graphically.” In the sec-
ond and third editions, the text of the demonstration was not appreciably altered,
but the statement of the proposition now reads: “To correct a comet’s trajectory
that has been found.”

When Newton wrote up his results for Halley (in the tract De Motu) and
proved (in the equivalent of book 1, prop. 11) that an elliptical orbit implies an
inverse-square central force, he included in his text the joyous conclusion: “There-
fore the major planets revolve in ellipses having a focus in the center of the sun;
and the radii to the sun describe areas proportional to the times, exactly [“omnino”]
as Kepler supposed.”™ But after some reflection, Newton recognized that he had
been considering a rather artificial situation in which a body moves about a math-
ematical center of force. In nature, bodies move about other bodies, not about
mathematical points. When he began to consider such a two-body system, he came
to recognize that in this case each body must act on the other. If this is true for
one such pair of bodies, as for the sun-earth system, then it must be so in all such
systems. In this way he concluded that the sun (like all the planets) is a body on
which the force acts and also a body that gives rise to the force. It follows at once
that each planet must exert a perturbing force on every other planet in the solar
system. The consequence must be, as Newton recognized almost at once, that “the
displacement of the sun from the center of gravity” may have the effect that “the
centripetal force does not always tend to” an “immobile center” and that “the plan-
ets neither revolve exactly in ellipses nor revolve twice in the same orbit.” In other
words, “Each time a planet revolves it traces a fresh orbit, as happens also with
the motion of the moon, and each orbit is dependent upon the combined motions
of all the planets, not to mention their actions upon each other.”®® This led him
to the melancholy conclusion: “Unless I am much mistaken, it would exceed the
force of human wit to consider so many causes of motion at the same time, and to

define the motions by exact laws which would allow of any easy calculation.”

25. “Newt. Achievement,” pp. 242-243.

26. Newton to Hooke, 13 December 1679, Corresp. 2:308. Wilson’s suggested reconstruction occurs in
“Newt. Achievement,” p. 243.

27. Unpubl. Sci. Papers, pp. 253, 277.

28. 1Ibid., pp. 256, 281.
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We don’t know exactly how Newton reached this conclusion, but a major
factor may have been the recognition of the need to take account of the third
law, that to every action there must be an equal and opposite reaction. Yet, in the
texts of De Motu, the third law does not appear explicitly among the “laws” or
“hypotheses.” We do have good evidence, however, that Newton was aware of the
third law long before writing De Moru.”® In any event, the recognition that there
must be interplanetary perturbations was clearly an essential step on the road to
universal gravity and the Principia.®

In reviewing this pre-Principia development of Newton’s dynamics, we should
take note that by and large, Newton has been considering exclusively the motion
of a particle, of unit mass. Indeed, a careful reading of the Principia will show
that even though mass is the subject of the first definition at the beginning of
the Principia, mass is not a primary variable in Newton’s mode of developing
his dynamics in book 1. In fact, most of book 1 deals exclusively with particles.
Physical bodies with significant dimensions or shapes do not appear until sec. 12,
“The attractive forces of spherical bodies.”

Newton’s concept of mass is one of the most original concepts of the Principa.
Newton began thinking about mass some years before Halley’s visit. Yet, in a
series of definitions which he wrote out some time after De Motu and before
composing the Principia, mass does not appear as a primary entry. We do not
have documents that allow us to trace the development of Newton’s concept of
mass with any precision. We know, however, that two events must have been
important, even though we cannot tell whether they initiated Newton’s thinking
about mass or reinforced ideas that were being developed by Newton. One of
these was the report of the Richer expedition, with evidence that indicated that
weight is a variable quantity, depending on the terrestrial latitude. Hence weight is
a “local” property and cannot be used as a universal measure of a body’s quantity
of matter. Another was Newton’s study of the comet of 1680. After he recognized

that the comet turned around the sun and after he concluded that the sun’s action

29. See D. T. Whiteside’s notes in Math. Papers 5:148-149 n. 152; 6:98-99 n. 16.

30. A quite different reconstruction of Newton’s path to universal gravity has been proposed by
George Smith. He suggests: “The ‘one-body’ solutions of the tract ‘De Motu’ expressly entail that the
@ /T? value associated with each celestial central body is a measure of the centripetal tendency toward it.
The known values for the Sun, Jupiter, Saturn, and the Earth can then be used, in conjunction with the
principle that the center of gravity of the system remains unaffected (corollary 4 of the Laws of Motion),
first to conclude independently of any explicit reference to mass that the Copernican system is basically
correct (as in the ‘Copernican scholium’ of the revised version of ‘De Motu’), and then to infer that the
gravitational force acting celestially is proportional to the masses of the central and orbiting bodies. The
final step to universal gravitation then follows along the lines of Propositions 8 and 9 of Book III of the

Principia.” See, also, Wilson’s “From Kepler’s Laws” (n. 23 above).
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on the comet cannot be magnetic, he came to believe that Jupiter must also exert
an influence on the comet. Clearly, this influence must derive from the matter in
Jupiter, Jupiter acting on the comet just as it does on its satellites.

Once Newton had concluded that planets are centers of force because of their
matter or mass, he sought some kind of empirical confirmation of so bold a con-
cept. Since Jupiter is by far the most massive of all the planets, it was obvious
that evidence of a planetary force would be most manifest in relation to the ac-
tion of Jupiter on a neighboring planet. In happened that in 1684/85 the orbital
motions of Jupiter and Saturn were bringing these two planets to conjunction. If
Newton’s conclusion were correct, then the interactions of these two giant planets
should show the observable effects of an interplanetary force. Newton wrote to the
astronomer John Flamsteed at the Royal Observatory at Greenwich for informa-
tion on this point. Flamsteed reported that Saturn’s orbital speed in the vicinity of
Jupiter did not exactly follow the expected path, but he could not detect the kind
of effect or perturbation that Newton had predicted.*! As we shall see, the effect
predicted by Newton does occur, but its magnitude is so tiny that Flamsteed could
never have observed it. Newton needed other evidence to establish the validity of
his force of universal gravity.

Newton’s discovery of interplanetary forces as a special instance of universal
gravity enables us to specify two primary goals of the Principia. The first is to
show the conditions under which Kepler’s laws of planetary motion are exactly or
accurately true; the second is to explore how these laws must be modified in the
world of observed nature by perturbations, to show the effects of perturbations on
the motions of planets and their moons.*

It is well known that after the Principia was presented to the Royal Society,
Hooke claimed that he should be given credit for having suggested to Newton the
idea of universal gravity. We have seen that Hooke did suggest to Newton that
the sun exerts an inverse-square force on the planets, but Newton insisted that
he didn’t need Hooke to suggest to him that there is an inverse-square relation.
Furthermore, Newton said that this was but one of Hooke’s guesses. Newton again
and again asserted that Hooke didn’t know enough mathematics to substantiate

his guess, and he was right. As the mathematical astronomer Alexis Clairaut said

31. Corresp. 2:419-420.

32. These two goals are discussed in my “Newton’s Theory vs. Kepler’s Theory and Galileo’s Theory:
An Example of a Difference between a Philosophical and a Historical Analysis of Science,” in The
Interaction between Science and Philosophy, ed. Yehuda Elkana (Adantic Highlands, N.J.: Humanities Press,
1974), pp. 299-388.
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of Hooke’s claim, a generation later, it serves “to show what a distance there is
between a truth that is glimpsed and a truth that is demonstrated.”*

In explaining his position with respect to Hooke’s guess, Newton compared
his own work with that of Hooke and Kepler. Newton evidently believed that he
himself had “as great a right” to the inverse-square law “as to the ellipsis.” For,
just “as Kepler knew the orb to be not circular but oval, and guessed it to be
elliptical, so Mr. Hooke, without knowing what I have found out since his letters
to me,”** knew only “that the proportion was duplicata quam proxime at great
distances from the centre,” and “guessed it to be so accurately, and guessed amiss
in extending that proportion down to the very centre.” But, unlike Hooke, “Kepler
guessed right at the ellipsis,” so that “Mr. Hooke found less of the proportion than
Kepler of the ellipsis.”®® Newton believed that he himself deserved credit for the
law of elliptical orbits, as well as the law of the inverse square, on the grounds that
he had proved both in their generality.®® In the Principia (e.g., in the “Phenomena”
in book 3), Newton gave Kepler credit only for the third or harmonic law. At the
time that Newton was writing his Principia, there were alternatives to the area law
that were in use in making tables of planetary motion. Newton proposed using
the eclipses of Jupiter’s satellites (and later of those of Saturn) to show that this
law holds to a high degree. But the law of elliptical orbits was of a different sort
because there was no observational evidence that would distinguish between an
ellipse and other ovals. Thus there may have been very different reasons for not
giving Kepler credit for these two laws.

At one point during the exchange of letters with Halley on Hooke’s claims
to recognition, Newton—in a fit of pique—threatened to withdraw book 3 al-
together.”” We do not know how serious this threat was, but Halley was able
to explain matters and to calm Newton’s rage. Halley deserves much praise for
his services as midwife to Newton’s brainchild. Not only was he responsible for
goading Newton into writing up his preliminary results; he encouraged Newton
to produce the Principia. At an early stage of composition of the Principia, as |

discovered while preparing the Latin edition with variant readings, Halley even

33. “Exposition abregée du systtme du monde, et explication des principaux phénoménes as-
tronomiques tirée des Principes de M. Newton,” suppl. to the marquise du Chitelet’s translation of the
Principia (Paris: chez Desaint & Saillant [&] Lambert, 1756), 2:6.

34. Newton was referring to the problem of the gravitational action of a homogeneous sphere on an
external particle; see Whiteside’s note in Math. Papers 6:19 n. 59.

35. Newton to Halley, 20 June 1686, Corresp., vol. 2.

36. Ibid. “I do pretend [i.e., claim],” Newton wrote, “to have done as much for the proportion [of
the inverse square] as for the ellipsis, and to have as much right to the one from Mr. Hooke and all men,
as to the other from Kepler.”

37. See §3.1 below.

II
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helped Newton by making suggestive comments on an early draft of book 1, the
manuscript of which no longer exists.’®

Although publication of the Principia was sponsored by the Royal Society, there
were no funds available for the costs of printing, and so Halley had to assume those
expenses.”® Additionally, he edited the book for the printer, saw to the making of
the woodcuts of the diagrams, and read the proofs. He wrote a flattering ode to
Newton that introduces the Principia in all three editions,*” and he also wrote a

book review that was published in the Royal Society’s Philosophical Transactions.*!

Reuvisions and Later Editions

Within a decade of publication of the Principia, Newton was busy with a
number of radical revisions, including an extensive restructuring of the opening
sections.?? He planned to remove secs. 4 and 5, which are purely geometrical and
not necessary to the rest of the text, and to publish them separately.*® He also devel-
oped plans to include a mathematical supplement on his methods of the calculus,
his treatise De Quadratura. Many of the proposed revisions and restructurings of the
1690s are recorded in Newton’s manuscripts; others were reported in some detail
by David Gregory.** When Newton began to produce a second edition, however,
with the aid of Roger Cotes, the revisions were of a quite different sort. Some
of the major or most interesting alterations are given in the notes to the present
translation. The rest are to be found in the apparatus criticus of our Latin edition
of the Principia with variant readings.®

There were a number of truly major emendations that appeared in the second

edition, some of which involved a complete replacement of the original text. One

38. See my Introduction, suppl. 7.

39. A.N. L. Munby estimated the size of the first edition at some 300 or 400 copies, but this number
has recently been increased to perhaps 500. See Whiteside, “The Prehistory of the Principia” (n. 14 above),
esp. p- 34. Whiteside reckons that, granting this larger size of the edition, Halley would not have suffered
financially by paying the printing costs of the Principia and would even have made not “less than £10 in
pocket for all his time and trouble.”

40. Or. the alterations in the poem in successive editions of the Principia, see our Latin edition, cited
in n. 45 below.

41. Philosophical Transactions 16, no. 186 (Jan.-Feb.-March 1687): 291-297, reprinted in Isaac Newron's
Papers and Letters on Natural Philosophy, ed. 1. B. Cohen and Robert E. Schofield, 2d ed. (Cambridge,
Mass.: Harvard University Press, 1978), pp. 405-411.

42. See my Introduction, chap. 7, and esp. Math. Papers, vol. 6.

43. Introduction, p. 193.

44. 1Ibid., pp. 188-198.

45. Isaac Newton’s “Philosophiae Naturalis Principia Mathematica”: The Third Edition (1726} with Variant
Readings, assembled and edited by Alexandre Koyré, I. Bernard Cohen, and Anne Whitman, 2 vols.
(Cambridge: Cambridge University Press; Cambridge, Mass.: Harvard University Press, 1972).
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of these was the wholly new proof of book 2, prop. 10, a last-minute alteration in
response to a criticism made by Johann Bernoulli.** Another occurred in book 2,
sec. 7, on the motion of fluids and the resistance encountered by projectiles, where
most of the propositions and their proofs are entirely different in the second edition
from those of the first edition. That is, the whole set of props. 3440 of the first
edition were cast out and replaced.” This complete revision of sec. 7 made it more
appropriate to remove to the end of sec. 6 the General Scholium on pendulum
experiments which originally had been at the end of sec. 7. This was a more
thorough revision of the text than occurred in any other part of the Principia.

Another significant novelty of the second edition was the introduction of a
conclusion to the great work, the celebrated General Scholium that appears at the
conclusion of book 3. The original edition ended rather abruptly with a discussion
of the orbits of comets, a topic making up about a third of book 3. Newton
had at first essayed a conclusion, but later changed his mind. His intentions were
revealed in 1962 by A. Rupert Hall and Marie Boas Hall, who published the
original drafts. In these texts, Newton shows that he intended to conclude the
Principia with a discussion of the forces between the particles of matter, but then
thought better of introducing so controversial a topic. While preparing the second
edition, Newton thought once again of an essay on “the attraction of the small
particles of bodies,” but on “second thought” he chose “rather to add but one short
Paragraph about that part of Philosophy.”*® The conclusion he finally produced
is the celebrated General Scholium, with its oft-quoted slogan “Hypotheses non
fingo.” This General Scholium ends with a paragraph about a “spirit” which has
certain physical properties, but whose laws have not as yet been determined by
experiment. Again thanks to the researches of A. Rupert Hall and Marie Boas
Hall, we now know that while composing this paragraph, Newton was thinking
about the new phenomena of electricity.”

Another change that occurs in the second edition is in the beginning of book 3.
In the first edition, book 3 opened with a preliminary set of Hypotheses.”® Perhaps

46. See D. T. Whiteside’s magisterial discussion of this episode, together with all the relevant docu-
ments concerning the stages of alteration of book 2, prop. 10, in Math. Papers 8:50~53, esp. nn. 175, 180,
and esp. §6, appendix 2.1.52 in that same volume. See also §7.3 below and my Introduction, §9.4.

47. These props. 34-40 of the first edition (translated by I. Bernard Cohen and Anne Whitman)
will be published, together with a commentary by George Smith, in Newton’s Natural Philosophy, ed. Jed
Buchwald and L. Bernard Cohen (Cambridge: MIT Press, forthcoming).

48. Unpubl. Sci. Papers, pp. 320-347 (see §9.3 below); Newton to Cotes, 2 Mar. 1712/13. On the
production of the second edition, see the texts, notes, and commentaries in Correspondence of Sir Isaac
Newton and Professor Cotes, ed. J. Edleston (London: John W. Parker; Cambridge: John Deighton, 1850).

49. See §9.3 below.

50. See §8.2 below.
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in reply to the criticism in the Journal des Scavans”' Newton now renamed the
“hypotheses” and divided them into several classes. Some became Regulae Philoso-
phandi, or “Rules for Natural Philosophy,” with a new rule (no. 3). Others became
“Phenomena,” with new numerical data. Yet another was transferred to a later
place in book 3, where it became “hypothesis 1.”

Newton also made a slight modification in the scholium following lem. 2
(book 2, sec. 2), in reference to Leibniz’s method of the calculus. He had originally
written that Leibniz’s method “hardly differed from mine except in the forms
of words and notations.” In the second edition Newton altered this statement
by adding that there was another difference between the two methods, namely, in
“the generation of quantities.” This scholium and its successive alterations attracted
attention because of the controversy over priority in the invention of the calculus.
In the third edition, Newton eliminated any direct reference to Leibniz.

Critical readers of the Principia paid close attention to the alteration in the
scholium following book 3, prop. 35. In the second edition, the original short
text was replaced by a long discussion of Newton’s attempts to apply the theory
of gravity to some inequalities of the moon’s motion.’> Much of the text of this
scholium had been published separately by David Gregory.*

Many of Newton’s plans for the actual revisions of the first edition, in order to
produce a second edition, were entered in two personal copies of the Principia. One
of these was specially bound and interleaved. Once the second edition had been
published, Newton again prepared an interleaved copy and kept track of proposed
alterations or emendations in his interleaved copy and in an annotated copy. These
four special copies of the Principia have been preserved among Newton’s books,
and their contents have been noted in our Latin edition with variant readings.”*

Soon after the appearance of the second edition, Newton began planning for
yet another revision. The preface which he wrote for this planned edition of the
late 1710s is of great interest in that it tells us in Newton’s own words about some
of the features of the Principia he believed to be most significant. It is printed below
in §3.2. Newton at this time once again planned to have a treatise on the calculus
published together with the Principia. In the end he abandoned this effort. Later

on, when he was in his eighties, he finally decided to produce a new edition. He

51. See my Introduction, chap. 6, sec. 6.

52. See §8.14 below.

53. For details see Isaac Newton's Theory of the Moon’s Motion (1702), introd. I. Bernard Cohen
(Folkestone: Dawson, 1975).

54. These four special copies are described in my Introduction; Newton’s MS notes appear in our

edition with variant readings (n. 45 above).
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chose as editor Dr. Henry Pemberton, a medical doctor and authority on pharmacy
and an amateur mathematician.

The revisions in the third edition were not quite as extensive as those in the
second edition.”® A new rule 4 was added on the subject of induction, and there
were other alterations, some of which may be found in the notes to the present
translation. An important change was made in the “Leibniz Scholium” in book 2,
sec. 2. The old scholium was replaced by a wholly different one. Newton now
boldly asserted his own claims to be the primary inventor of the calculus, referring
to some correspondence to prove the point.’® Even though Leibniz had been dead
for almost a decade, Newton still pursued his rival with dogged obstinacy. Another
innovation in the third edition appeared in book 3, where Newton inserted (follow-
ing prop. 33) two propositions by John Machin, astronomy professor at Gresham
College, whose academic title would later lead to the invention of a fictitious sci-
entist in the Motte-Cajori edition.”’

By the time of the third edition, Newton seems to have abandoned his earlier
attempts to explain the action of gravity by reference to electrical phenomena and
had come rather to hope that an explanation might be found in the actions of
an “aethereal medium” of varying density.’® In his personal copy of the Principia,
in which he recorded his proposed emendations and revisions, he at first had
entered an addition to specify that the “spirit” to which he had referred in the
final paragraph of the General Scholium was “electric and elastic.”® Later on, he
apparently decided that since he no longer believed in the supreme importance
of the electrical theory, he would cancel the whole paragraph. Accordingly, he
drew a line through the text, indicating that this paragraph should be omitted.
It is one of the oddities of history that Andrew Motte should have learned of
Newton’s planned insertion of the modifier “electricus et elasticus” but not of
Newton’s proposed elimination of the paragraph. Without comment, Motte entered
“electric and elastic” into his English version of 1729. These words were in due
course preserved in the Motte-Cajori version and have been quoted in the English-

speaking world ever since.

55. See my Introduction, chap. 11.

56. See A. Rupert Hall, Philosophers ar War: The Quarrel between Newton and Leibniz (Cambridge,
London, New York: Cambridge University Press, 1980), and especially Mazh. Papers, vol. 8.

57. See §2.3 below.

58. See the later Queries of the Opricks and the discussion by Betty Jo Dobbs, Janus Faces (§3.1, n. 10
below).

59. See §9.3 below.
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K. Babson Collection, Burndy Library)




NEWTON’S

PRINCIPLES

OF PHILOSOPHY




Title page of the third edition of Newton’s Préincipia. In the original, the words PHILOSO-
PHIAE and PRINCIPIA are printed in red, as are ISAACO NEWTONO and LONDINI.
(Grace K. Babson Collection, Burndy Library)



MATHEMATICAL

PRINCIPLES

OF NATURAL

PHILOSOPHY.

WRITTEN BY
Sir ISAAC NEWTON.

Third edition, enlarged & revised.

LONDON:

WiLe & Jno. I printers to the Royal Society.

NNYS,
M DCC XXVI




ILLUSTRISSIMA

SOCIETATI REGALI

A

SERENISSIMO REGE

CAROLO 11

AD PHILOSOPHIAM PROMOVENDAM
FUNDATE,

ET
AUSPICIIS

SERENISSIMI REGIS

GEORGII

FLORENTI

TracTtaTtuM nuxc D.D.D.

IS. NEWTON.




TO THE MOST ILLUSTRIOUS

ROYAL SOCIETY,

FOUNDED

FOR THE PROMOTION OF PHILOSOPHY

BY

HIS MOST SERENE MAJESTY

CHARLES II,

AND
FLOURISHING

UNDER THE PATRONAGE OF

HIS MOST SERENE MAJESTY

GEORGE,

THIS TREATISE IS DEDICATED.

IS. NEWTON.

The Latin dedication to the third edition (opposite; Grace K. Babson Collection, Burndy Li-
brary) describes the Royal Society as “ad philosophiam promovendam,” in the sense of the

promotion of natural philosophy or science. In this expression, Newton was producing a vari-

ant of the official name, “The Royal Society of London for Promoting Natural Knowledge.”

The Latin original of this English version, however, is “Regalis Societas Londini pro scientia

naturali promovenda,” as stated in the third charter. In the first edition of the Principia, the

latter part of the dedication reads: “and flourishing under the patronage of the Most Powerful
Monarch James II”; additionally, it is said that this treatise is “most humbly” (“humillime”)

dedicated. In the second edition, the latter part of the dedication reads: “and flourishing under

the patronage of the Most August Queen Anne.”
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Ode on This Splendid Ornament
of Our Time and Our Nation,
the Mathematico-Physical Treatise
by the Eminent

Isaac Newton

Behold the pattern of the heavens, and the balances of the divine structure;

Behold Jove’s calculation and the laws

That the creator of all things, while he was setting the beginnings of the world,
would not violate;

Behold the foundations he gave to his works.

Heaven has been conquered and its innermost secrets are revealed;

The force that turns the outermost orbs around is no longer hidden.

The Sun sitting on his throne commands all things

To tend downward toward himself, and does not allow the chariots of the
heavenly bodies to move

Through the immense void in a straight path, but hastens them all along

In unmoving circles around himself as center.

Now we know what curved path the frightful comets have;

No longer do we marvel at the appearances of a bearded star.

From this treatise we learn at last why silvery Phoebe moves at an unequal pace,

Why, till now, she has refused to be bridled by the numbers of any astronomer,

Why the nodes regress, and why the upper apsides move forward.

We learn also the magnitude of the forces with which wandering Cynthia

Impels the ebbing sea, while its weary waves leave the seaweed far behind

And the sea bares the sands that sailors fear, and alternately beat high up on
the shores.

The things that so often vexed the minds of the ancient philosophers

And fruitlessly disturb the schools with noisy debate

We see right before our eyes, since mathematics drives away the cloud.
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HALLEY'S ODE TO NEWTON

Error and doubt no longer encumber us with mist;
For the keenness of a sublime intelligence has made it possible for us to enter

The dwellings of the gods above and to climb the heights of heaven.

Mortals arise, put aside earthly cares,

And from this treatise discern the power of a mind sprung from heaven,

Far removed from the life of beasts.

He who commanded us by written tablets to abstain from murder,

Thefts, adultery, and the crime of bearing false witness,

Or he who taught nomadic peoples to build walled cities, or he who enriched the
nations with the gift of Ceres,

Or he who pressed from the grape a solace for cares,

Or he who with a reed from the Nile showed how to join together

Pictured sounds and to set spoken words before the eyes,

Exalted the human lot less, inasmuch as he was concerned with only a few
comforts of a wretched life,

And thus did less than our author for the condition of mankind.

But we are now admitted to the banquets of the gods;

We may deal with the laws of heaven above; and we now have

The secret keys to unlock the obscure earth; and we know the immovable order
of the world

And the things that were concealed from the generations of the past.

O you who rejoice in feeding on the nectar of the gods in heaven,

Join me in singing the praises of NEwToN, who reveals all this,

Who opens the treasure chest of hidden truth,

NEewToN, dear to the Muses,

The one in whose pure heart Phoebus Apollo dwells and whose mind he has filled
with all his divine power;

No closer to the gods can any mortal rise.

Edm. Halley



Author’s Preface to the Reader

SINCE THE ANCIENTs (according to Pappus) considered mechanics to be of
the greatest importance in the investigation of nature and science and since the
moderns—rejecting substantial forms and occult qualities—have undertaken to
reduce the phenomena of nature to mathematical laws, it has seemed best in
this treatise to concentrate on mathematics as it relates to natural philosophy. The
ancients divided mechanics into two parts: the rational, which proceeds rigorously
through demonstrations, and the practical® Practical mechanics is the subject that
comprises all the manual arts, from which the subject of mechanics as a whole
has adopted its name. But since those who practice an art do not generally work
with a high degree of exactness, the whole subject of mechanics is distinguished
from geometry by the attribution of exactness to geometry and of anything less
than exactness to mechanics. Yet the errors do not come from the art but from
those who practice the art. Anyone who works with less exactness is a more
imperfect mechanic, and if anyone could work with the greatest exactness, he
would be the most perfect mechanic of all. For the description of straight lines

and circles, which is the foundation of geomerry, appertains to mechanics. Geometry

All notes to the translation are keyed to the text by superscript letters. When a note is introduced by
two letters, such as “aa,” it refers to that part of the text enclosed between an opening superscript “a” and
a final or closing “a.”

These notes are, for the most part, extracts from variant passages or expressions as found in the first
two editions. The glosses and explanations of the text are to be found in the Guide, the text of which

follows the order of Newton’s presentation in the Principia.

a. Newton’s comparison and contrast between the subject of rational or theoretical mechanics and
practical mechanics was a common one at the time of the Principia. Thus John Harris in his Newtonian
Lexicon Technicum (London, 1704), citing the authority of John Wallis, made a distinction between the
two as follows. One was a “Geometry of Motion,” a “Mathematical Science which shews the Effects of
Powers, or moving Forces,” and “demonstrates the Laws of Motion.” The other is “commonly taken for
those Handy-crafis, which require as well the Labour of the Hands, as the Study of the Brain.” The subject
of the Principia became generally known as “rational mechanics” following Newton’s use of that name in

his Preface.
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does not teach how to describe these straight lines and circles, but postulates such
a description. For geometry postulates that a beginner has learned to describe lines
and circles exactly before he approaches the threshold of geometry, and then it
teaches how problems are solved by these operations. To describe straight lines
and to describe circles are problems, but not problems in geomerry. Geometry
postulates the solution of these problems from mechanics and teaches the use of
the problems thus solved. And geomezry can boast that with so few principles
obtained from other fields, it can do so much. Therefore geometry is founded on
mechanical practice and is nothing other than that part of universal mechanics
which reduces the art of measuring to exact propositions and demonstrations. But
since the manual arts are applied especially to making bodies move, geomerry is
commonly used in reference to magnitude, and mechanics in reference to motion.
In this sense rational mechanics will be the science, expressed in exact propositions
and demonstrations, of the motions that result from any forces whatever and of
the forces that are required for any motions whatever. The ancients studied this
part of mechanics in terms of the five powers that relate to the manual arts [i.e.,
the five mechanical powers] and paid hardly any attention to gravity (since it
is not a manual power) except in the moving of weights by these powers. But
since we are concerned with natural philosophy rather than manual arts, and are
writing about natural rather than manual powers, we concentrate on aspects of
gravity, levity, elastic forces, resistance of fluids, and forces of this sort, whether
attractive or impulsive. And therefore our present work sets forth mathematical
principles of natural philosophy. For the basic problem [liz. whole difficulty®] of
philosophy seems to be to discover the forces of nature from the phenomena of
motions and then to demonstrate the other phenomena from these forces. It is to
these ends that the general propositions in books 1 and 2 are directed, while in
book 3 our explanation of the system of the world illustrates these propositions.
For in book 3, by means of propositions demonstrated mathematically in books 1
and 2, we derive from celestial phenomena the gravitational forces by which
bodies tend toward the sun and toward the individual planets. Then the motions
of the planets, the comets, the moon, and the sea are deduced from these forces
by propositions that are also mathematical. If only we could derive the other
phenomena of nature from mechanical principles by the same kind of reasoning!
For many things lead me to have a suspicion that all phenomena may depend on
certain forces by which the particles of bodies, by causes not yet known, either

are impelled toward one another and cohere in regular figures, or are repelled

b. Newton would seem to be expressing in Latin more or less the same concept that later appears in
English (in query 28 of the Opticks) as “the main Business of natural Philosophy.”
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from one another and recede. Since these forces are unknown, philosophers have
hitherto made trial of nature in vain. But I hope that the principles set down here
will shed some light on either this mode of philosophizing or some truer one.

In the publication of this work, Edmond Halley, a man of the greatest in-
telligence and of universal learning, was of tremendous assistance; not only did
he correct the typographical errors and see to the making of the woodcuts, but
it was he who started me off on the road to this publication. For when he had
obtained my demonstration of the shape of the celestial orbits, he never stopped
asking me to communicate it to the Royal Society, whose subsequent encourage-
ment and kind patronage made me begin to think about publishing it. But after I
began to work on the inequalities of the motions of the moon, and then also began
to explore other aspects of the laws and measures of gravity and of other forces,
the curves that must be described by bodies attracted according to any given laws,
the motions of several bodies with respect to one another, the motions of bodies in
resisting mediums, the forces and densities and motions of mediums, the orbits of
comets, and so forth, I thought that publication should be put off to another time,
so that I might investigate these other things and publish all my results together.
I have grouped them together in the corollaries of prop. 66 the inquiries (which are
imperfect) into lunar motions, so that I might not have to deal with these things
one by one in propositions and demonstrations, using a method more prolix than
the subject warrants, which would have interrupted the sequence of the remaining
propositions. There are a number of things that I found afterward which I pre-
ferred to insert in less suitable places rather than to change the numbering of the
propositions and the cross-references. I earnestly ask that everything be read with
an open mind and that the defects in a subject so difficult may be not so much
reprehended as investigated, and kindly supplemented, by new endeavors of my

readers.

Trinity College, Cambridge Is. Newton
8 May 1686
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Author’s Preface to the Second Edition

IN THIS SECOND EDITION of the Principles, many emendations have been made
here and there, and some new things have been added. In sec. 2 of book 1, the
finding of forces by which bodies could revolve in given orbits has been made
easier and has been enlarged. In sec. 7 of book 2, the theory of the resistance
of fluids is investigated more accurately and confirmed by new experiments. In
book 3 the theory of the moon and the precession of the equinoxes are deduced
more fully from their principles; and the theory of comets is confirmed by more

examples of their orbits, calculated with greater accuracy.

London Is. Newton
28 March 1713



Editor’s Preface to the Second Edition

THE LONG-AWAITED NEwW EDITION of Newton'’s Principles of Natural Philosophy
is presented to you, kind reader, with many corrections and additions. The main
topics of this celebrated work are listed in the table of contents and the index
prepared for this edition. The major additions or changes are indicated in the
author’s preface. Now something must be said about the method of this philosophy.

Those who have undertaken the study of natural science can be divided into
roughly three classes. There have been those who have endowed the individual
species of things with specific occult qualities, on which—they have then alleged—
the operations of individual bodies depend in some unknown way. The whole of
Scholastic doctrine derived from Aristotle and the Peripatetics is based on this.
Although they affirm that individual effects arise from the specific natures of
bodies, they do not tell us the causes of those natures, and therefore they tell us
nothing. And since they are wholly concerned with the names of things rather than
with the things themselves, they must be regarded as inventors of what might be
called philosophical jargon, rather than as teachers of philosophy.

Therefore, others have hoped to gain praise for greater carefulness by reject-
ing this useless hodgepodge of words. And so they have held that all matter is
homogeneous, and that the variety of forms that is discerned in bodies all arises
from certain very simple and easily comprehensible attributes of the component
particles. And indeed they are right to set up a progression from simpler things to
more compounded ones, so long as they do not give those primary attributes of the
particles any characteristics other than those given by nature itself. But when they
take the liberty of imagining that the unknown shapes and sizes of the particles
are whatever they please, and of assuming their uncertain positions and motions,
and even further of feigning certain occult fluids that permeate the pores of bodies
very freely, since they are endowed with an omnipotent subtlety and are acted on
by occult motions: when they do this, they are drifting off into dreams, ignoring

the true constitution of things, which is obviously to be sought in vain from false
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conjectures, when it can scarcely be found out even by the most certain observa-
tions. Those who take the foundation of their speculations from hypotheses, even if
they then proceed most rigorously according to mechanical laws, are merely putting
together a romance, elegant perhaps and charming, but nevertheless a romance.

There remains then the third type, namely, those whose natural philosophy is
based on experiment. Although they too hold that the causes of all things are to be
derived from the simplest possible principles, they assume nothing as a principle
that has not yet been thoroughly proved from phenomena. They do not contrive
hypotheses, nor do they admit them into natural science otherwise than as ques-
tions whose truth may be discussed. Therefore they proceed by a twofold method,
analytic and synthetic. From certain selected phenomena they deduce by analysis
the forces of nature and the simpler laws of those forces, from which they then
give the constitution of the rest of the phenomena by synthesis. This is that in-
comparably best way of philosophizing which our most celebrated author thought
should be justly embraced in preference to all others. This alone he judged worthy
of being cultivated and enriched by the expenditure of his labor. Of this therefore
he has given a most illustrious example, namely, the explication of the system of
the world most successfully deduced from the theory of gravity. That the force
of gravity is in all bodies universally, others have suspected or imagined; Newton
was the first and only one who was able to demonstrate it [universal gravity] from
phenomena and to make it a solid foundation for his brilliant theories.

I know indeed that some men, even of great reputation, unduly influenced by
certain prejudices, have found it difficult to accept this new principle [of gravity]
and have repeatedly preferred uncertainties to certainties. It is not my intention to
carp at their reputation; rather, I wish to give you in brief, kind reader, the basis
for making a fair judgment of the issue for yourself.

Therefore, to begin our discussion with what is simplest and nearest to us,
let us briefly consider what the nature of gravity is in terrestrial bodies, so that
when we come to consider celestial bodies, so very far removed from us, we may
proceed more securely. It is now agreed among all philosophers that all bodies on
or near the earth universally gravitate toward the earth. Manifold experience has
long confirmed that there are no truly light bodies. What is called relative levity
is not true levity, but only apparent, and arises from the more powerful gravity of
contiguous bodies.

Furthermore, just as all bodies universally gravitate toward the earth, so the
earth in turn gravitates equally toward the bodies; for the action of gravity is
mutual and is equal in both directions. This is shown as follows. Let the whole
body of the earth be divided into any two parts, whether equal or in any way

unequal; now, if the weights of the parts toward each other were not equal, the
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lesser weight would yield to the greater, and the parts, joined together, would
proceed to move straight on without limit in the direction toward which the greater
weight tends, entirely contrary to experience. Therefore the necessary conclusion is
that the weights of the parts are in equilibrium—that is, that the action of gravity
is mutual and equal in both directions.

The weights of bodies equally distant from the center of the earth are as the
quantities of matter in the bodies. This is gathered from the equal acceleration of
all bodies falling from rest by the force of their weights; for the forces by which
unequal bodies are equally accelerated must be proportional to the quantities of
matter to be moved. Now, that all falling bodies universally are equally accelerated
is evident from this, that in the vacuum produced by Boyle’s air pump (that is,
with the resistance of the air removed), they describe, in falling, equal spaces in
equal times, and this is proved more exactly by experiments with pendulums.

The attractive forces of bodies, at equal distances, are as the quantities of mat-
ter in the bodies. For, since bodies gravitate toward the earth, and the earth in turn
gravitates toward the bodies, with equal moments [i.e., strengths or powers], the
weight of the earth toward each body, or the force by which the body attracts the
earth, will be equal to the weight of the body toward the earth. But, as mentioned
above, this weight is as the quantity of matter in the body, and so the force by
which each body attracts the earth, or the absolute force of the body, will be as its
quantity of matter.

Therefore the attractive force of entire bodies arises and is compounded from
the attractive force of the parts, since (as has been shown), when the amount of
matter is increased or diminished, its force is proportionally increased or dimin-
ished. Therefore the action of the earth must result from the combined actions of
its parts; hence all terrestrial bodies must attract one another by absolute forces that
are proportional to the attracting matter. This is the nature of gravity on earth; let
us now see what it is in the heavens.

Every body perseveres in its state either of being at rest or of moving uniformly
straight forward, except insofar as it is compelled by impressed forces to change
that state: this is a law of nature accepted by all philosophers. It follows that bodies
that move in curves, and so continually deviate from straight lines tangent to their
orbits, are kept in a curvilinear path by some continually acting force. Therefore,
for the planets to revolve in curved orbits, there will necessarily be some force by
whose repeated actions they are unceasingly deflected from the tangents.

Now, it is reasonable to accept something that can be found by mathematics
and proved with the greatest certainty: namely, that all bodies moving in some
curved line described in a plane, which by a radius drawn to a point (either at

rest or moving in any way) describe areas about that point proportional to the
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times, are urged by forces that tend toward that same point. Therefore, since it is
agreed among astronomers that the primary planets describe areas around the sun
proportional to the times, as do the secondary planets around their own primary
planets, it follows that the force by which they are continually pulled away from
rectilinear tangents and are compelled to revolve in curvilinear orbits is directed
toward the bodies that are situated in the centers of the orbits. Therefore this force
can, appropriately, be called centripetal with respect to the revolving body, and
attractive with respect to the central body, from whatever cause it may in the end
be imagined to arise.

The following rules must also be accepted and are mathematically demon-
strated. If several bodies revolve with uniform motion in concentric circles, and if
the squares of the periodic times are as the cubes of the distances from the common
center, then the centripetal forces of the revolving bodies will be inversely as the
squares of the distances. Again, if the bodies revolve in orbits that are very nearly
circles, and if the apsides of the orbits are at rest, then the centripetal forces of the
revolving bodies will be inversely as the squares of the distances. Astronomers agree
that one or the other case holds for all the planets, [both primary and secondary].
Therefore the centripetal forces of all the planets are inversely as the squares of
the distances from the centers of the orbits. If anyone objects that the apsides of
the planets, especially the apsides of the moon, are not completely at rest but are
carried progressively forward {or in consequentia] with a slow motion, it can be
answered that even if we grant that this very slow motion arises from a slight
deviation of the centripetal force from the proportion of the inverse square, this
difference can be found by mathematical computation and is quite insensible. For
the ratio of the moon’s centripetal force itself, which should deviate most of all
from the square, will indeed exceed the square by a very little, but it will be about
sixty times closer to it than to the cube. But our answer to the objection will be
truer if we say that this progression of the apsides does not arise from a deviation
from the proportion of the [inverse] square but from another and entirely different
cause, as is admirably shown in Newton’s philosophy. As a result, the centripetal
forces by which the primary planets tend toward the sun, and the secondary planets
toward their primaries, must be exactly as the squares of the distances inversely.

From what has been said up to this point, it is clear that the planets are kept
in their orbits by some force continually acting upon them, that this force is always
directed toward the centers of the orbits, and that its efficacy is increased in ap-
proaching the center and decreased in receding from the center—actually increased
in the same proportion in which the square of the distance is decreased, and de-
creased in the same proportion in which the square of the distance is increased.

Let us now, by comparing the centripetal forces of the planets and the force of
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gravity, see whether or not they might be of the same kind. They will be of the
same kind if the same laws and the same attributes are found in both. Let us first,
therefore, consider the centripetal force of the moon, which is closest to us.
When bodies are let fall from rest, and are acted on by any forces whatever,
the rectilinear spaces described in a given time at the very beginning of the motion
are proportional to the forces themselves; this of course follows from mathematical
reasoning. Therefore the centripetal force of the moon revolving in its orbit will
be to the force of gravity on the earth’s surface as the space that the moon would
describe in a minimally small time in descending toward the earth by its centripetal
force—supposing it to be deprived of all circular motion—is to the space that a
heavy body describes in the same minimally small time in the vicinity of the earth,
in falling by the force of its own gravity. The first of these spaces is equal to the
versed sine of the arc described by the moon during the same time, inasmuch as
this versed sine measures the departure of the moon from the tangent caused by
centripetal force and thus can be calculated if the moon’s periodic time and its
distance from the center of the earth are both given. The second space is found
by experiments with pendulums, as Huygens has shown. Therefore, the result of
the calculation will be that the first space is to the second space, or the centripetal
force of the moon revolving in its orbit is to the force of gravity on the surface of
the earth, as the square of the semidiameter of the earth is to the square of the
semidiameter of the orbit. By what is shown above, the same ratio holds for
the centripetal force of the moon revolving in its orbit and the centripetal force
of the moon if it were near the earth’s surface. Therefore this centripetal
force near the earth’s surface is equal to the force of gravity. They are not, there-
fore, different forces, but one and the same; for if they were different, bodies
acted on by both forces together would fall to the earth twice as fast as from
the force of gravity alone. And therefore it is clear that this centripetal force by
which the moon is continually either drawn or impelled from the tangent and
is kept in its orbit is the very force of terrestrial gravity extending as far as the
moon. And indeed it is reasonable for this force to extend itself to enormous
distances, since one can observe no sensible diminution of it even on the highest
peaks of mountains. Therefore the moon gravitates toward the earth. Further, by
mutual action, the earth in turn gravitates equally toward the moon, a fact which
is abundantly confirmed in this philosophy, when we deal with the tide of the sea
and the precession of the equinoxes, both of which arise from the action of both
the moon and the sun upon the earth. Hence finally we learn also by what law
the force of gravity decreases at greater distances from the earth. For since gravity
is not different from the moon’s centripetal force, which is inversely proportional

to the square of the distance, gravity will also be diminished in the same ratio.
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Let us now proceed to the other planets. The revolutions of the primary planets
about the sun and of the secondary planets about Jupiter and Saturn are phenomena
of the same kind as the revolution of the moon about the earth; furthermore, it has
been demonstrated that the centripetal forces of the primary planets are directed
toward the center of the sun, and those of the secondary planets toward the centers
of Jupiter and of Saturn, just as the moon’s centripetal force is directed toward the
center of the earth; and, additionally, all these forces are inversely as the squares
of the distances from the centers, just as the force of the moon is inversely as
the square of the distance from the earth. Therefore it must be concluded that
all of these primary and secondary planets have the same nature. Hence, as the
moon gravitates toward the earth, and the earth in turn gravitates toward the
moon, so also all the secondary planets will gravitate toward their primaries, and
the primaries in turn toward the secondaries, and also all the primary planets will
gravitate toward the sun, and the sun in turn toward the primary planets.

Therefore the sun gravitates toward all the primary and secondary planets,
and all these toward the sun. For the secondary planets, while accompanying their
primaries, revolve with them around the sun. By the same argument, therefore,
both kinds of planets gravitate toward the sun, and the sun toward them. Ad-
ditionally, that the secondary planets gravitate toward the sun is also abundantly
clear from the inequalities of the moon, concerning which a most exact theory is
presented with marvelous sagacity in the third book of this work.

The motion of the comets shows very clearly that the attractive force of the
sun is propagated in every direction to enormous distances and is diffused to
every part of the surrounding space, since the comets, starting out from immense
distances, come into the vicinity of the sun and sometimes approach so very close to
it that in their perihelia they all seemingly touch its globe. Astronomers until now
have tried in vain to find the theory of these comets; now at last, in our time, our
most illustrious author has succeeded in finding the theory and has demonstrated it
with the greatest certainty from observations. It is therefore evident that the comets
move in conic sections having their foci in the center of the sun and by radii drawn
to the sun describe areas proportional to the times. From these phenomena it is
manifest and it is mathematically proved that the forces by which the comets are
kept in their orbits are directed toward the sun and are inversely as the squares of
their distances from its center. Thus the comets gravitate toward the sun; and so
the attractive force of the sun reaches not only to the bodies of the planets, which
are at fixed distances and in nearly the same plane, but also to the comets, which
are in the most diverse regions of the heavens and at the most diverse distances. It
is the nature of gravitating bodies, therefore, that they propagate their forces at all

distances to all other gravitating bodies. From this it follows that all planets and
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comets universally attract one another and are heavy toward one another—which
is also confirmed by the perturbation of Jupiter and Saturn, known to astronomers
and arising from the actions of these planets upon each other; it is also confirmed
by the very slow motion of the apsides that was mentioned above and that arises
from an entirely similar cause.

We have at last reached the point where it must be acknowledged that the
earth and the sun and all the celestial bodies that accompany the sun attract one
another. Therefore every least particle of each of them will have its own attractive
force in proportion to the quantity of matter, as was shown above for terrestrial
bodies. And at different distances their forces will also be in the squared ratio of the
distances inversely; for it is mathematically demonstrated that particles attracting
by this law must constitute globes attracting by the same law.

The preceding conclusions are based upon an axiom which is accepted by
every philosopher, namely, that effects of the same kind—that is, effects whose
known properties are the same—have the same causes, and their properties which
are not yet known are also the same. For if gravity is the cause of the fall of
a stone in Europe, who can doubt that in America the cause of the fall is the
same? If gravity is mutual between a stone and the earth in Europe, who will
deny that it is mutual in America? If in Europe the attractive force of the stone
and the earth is compounded of the attractive forces of the parts, who will deny
that in America the force is similarly compounded? If in Europe the attraction
of the earth is propagated to all kinds of bodies and to all distances, why should
we not say that in America it is propagated in the same way? All philosophy is
based on this rule, inasmuch as, if it is taken away, there is then nothing we can
affirm about things universally. The constitution of individual things can be found
by observations and experiments; and proceeding from there, it is only by this rule
that we make judgments about the nature of things universally.

Now, since all terrestrial and celestial bodies on which we can make experi-
ments or observations are heavy, it must be acknowledged without exception that
gravity belongs to all bodies universally. And just as we must not conceive of bod-
ies that are not extended, mobile, and impenetrable, so we should not conceive of
any that are not heavy. The extension, mobility, and impenetrability of bodies are
known only through experiments; it is in exactly the same way that the gravity
of bodies is known. All bodies for which we have observations are extended and
mobile and impenetrable; and from this we conclude that all bodies universally
are extended and mobile and impenetrable, even those for which we do not have
observations. Thus all bodies for which we have observations are heavy; and from
this we conclude that all bodies universally are heavy, even those for which we do

not have observations. If anyone were to say that the bodies of the fixed stars are
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not heavy, since their gravity has not yet been observed, then by the same argument
one would be able to say that they are neither extended nor mobile nor impene-
trable, since these properties of the fixed stars have not yet been observed. Need I
go on? Among the primary qualities of all bodies universally, either gravity will
have a place, or extension, mobility, and impenetrability will not. And the nature
of things either will be correctly explained by the gravity of bodies or will not be
correctly explained by the extension, mobility, and impenetrability of bodies.

I can hear some people disagreeing with this conclusion and muttering some-
thing or other about occult qualities. They are always prattling on and on to the
effect that gravity is something occult, and that occult causes are to be banished
completely from philosophy. But it is easy to answer them: occult causes are not
those causes whose existence is very clearly demonstrated by observations, but only
those whose existence is occult, imagined, and not yet proved. Therefore gravity is
not an occult cause of celestial motions, since it has been shown from phenomena
that this force really exists. Rather, occult causes are the refuge of those who assign
the governing of these motions to some sort of vortices of a certain matter utterly
fictitious and completely imperceptible to the senses.

But will gravity be called an occult cause and be cast out of natural philosophy
on the grounds that the cause of gravity itself is occult and not yet found? Let
those who so believe take care lest they believe in an absurdity that, in the end,
may overthrow the foundations of all philosophy. For causes generally proceed in
a continuous chain from compound to more simple; when you reach the simplest
cause, you will not be able to proceed any further. Therefore no mechanical expla-
nation can be given for the simplest cause; for if it could, the cause would not yet
be the simplest. Will you accordingly call these simplest causes occult, and banish
them? But at the same time the causes most immediately depending on them,
and the causes that in turn depend on these causes, will also be banished, until
philosophy is emptied and thoroughly purged of all causes.

Some say that gravity is preternatural and call it a perpetual miracle. There-
fore they hold that it should be rejected, since preternatural causes have no place
in physics. It is hardly worth spending time on demolishing this utterly absurd
objection, which of itself undermines all of philosophy. For either they will say
that gravity is not a property of all bodies—which cannot be maintained—or they
will assert that gravity is preternatural on the grounds that it does not arise from
other affections of bodies and thus not from mechanical causes. Certainly there are
primary affections of bodies, and since they are primary, they do not depend on
others. Therefore let them consider whether or not all these are equally preter-
natural, and so equally to be rejected, and let them consider what philosophy will
then be like.
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There are some who do not like all this celestial physics just because it seems
to be in conflict with the doctrines of Descartes and seems scarcely capable of being
reconciled with these doctrines. They are free to enjoy their own opinion, but they
ought to act fairly and not deny to others the same liberty that they demand for
themselves. Therefore, we should be allowed to adhere to the Newtonian philoso-
phy, which we consider truer, and to prefer causes proved by phenomena to causes
imagined and not yet proved. It is the province of true philosophy to derive the
natures of things from causes that truly exist, and to seek those laws by which
the supreme artificer willed to establish this most beautiful order of the world, not
those laws by which he could have, had it so pleased him. For it is in accord with
reason that the same effect can arise from several causes somewhat different from
one another; but the true cause will be the one from which the effect truly and
actually does arise, while the rest have no place in true philosophy. In mechanical
clocks one and the same motion of the hour hand can arise from the action of a
suspended weight or an internal spring. But if the clock under discussion is really
activated by a weight, then anyone will be laughed at if he imagines a spring
and on such a premature hypothesis undertakes to explain the motion of the hour
hand; for he ought to have examined the internal workings of the machine more
thoroughly, in order to ascertain the true principle of the motion in question. The
same judgment or something like it should be passed on those philosophers who
have held that the heavens are filled with a certain most subtle matter, which
is endlessly moved in vortices. For even if these philosophers could account for
the phenomena with the greatest exactness on the basis of their hypotheses, still
they cannot be said to have given us a true philosophy and to have found the true
causes of the celestial motions until they have demonstrated either that these causes
really do exist or at least that others do not exist. Therefore if it can be shown
that the attraction of all bodies universally has a true place in the nature of things,
and if it further can be shown how all the celestial motions are solved by that
attraction, then it would be an empty and ridiculous objection if anyone said that
those motions should be explained by vortices, even if we gave our fullest assent
to the possibility of such an explanation. But we do not give our assent; for the
phenomena can by no means be explained by vortices, as our author fully proves
with the clearest arguments. It follows that those who devote their fruitless labor
to patching up a most absurd figment of their imagination and embroidering it
further with new fabrications must be overly indulging their fantasies.

If the bodies of the planets and the comets are carried around the sun by
vortices, the bodies carried around must move with the same velocity and in the
same direction as the immediately surrounding parts of the vortices, and must have

the same density or the same force of inertia in proportion to the bulk of the matter.
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But it is certain that planets and comets, while they are in the same regions of the
heavens, move with a variety of velocities and directions. Therefore it necessarily
follows that those parts of the celestial fluid that are at the same distances from
the sun revolve in the same time in different directions with different velocities;
for there will be need of one direction and velocity to permit the planets to move
through the heavens, and another for the comets. Since this cannot be accounted
for, either it will have to be confessed that all the celestial bodies are not carried
by the matter of a vortex, or it will have to be said that their motions are to be
derived not from one and the same vortex, but from more than one, differing from
one another and going through the same space surrounding the sun.

If it is supposed that several vortices are contained in the same space and pen-
etrate one another and revolve with different motions, then—since these motions
must conform to the motions of the bodies being carried around, motions highly
regular in conic sections that are sometimes extremely eccentric and sometimes
very nearly circular—it will be right to ask how it can happen that these same
vortices keep their integrity without being in the least perturbed through so many
centuries by the interactions of their matter. Surely, if these imaginary motions are
more complex and more difficult to explain than the true motions of the planets
and comets, I think it pointless to admit them into natural philosophy; for every
cause must be simpler than its effect. Granted the freedom to invent any fiction,
let someone assert that all the planets and comets are surrounded by atmospheres,
as our earth is, a hypothesis that will certainly seem more reasonable than the
hypothesis of vortices. Let him then assert that these atmospheres, of their own
nature, move around the sun and describe conic sections, a motion that can surely
be much more easily conceived than the similar motion of vortices penetrating
one another. Finally, let him maintain that it must be believed that the planets
themselves and the comets are carried around the sun by their atmospheres, and
let him celebrate his triumph for having found the causes of the celestial motions.
Anyone who thinks that this fiction should be rejected will also reject the other
one; for the hypothesis of atmospheres and the hypothesis of vortices are as alike
as two peas in a pod.

Galileo showed that when a stone is projected and moves in a parabola, its
deflection from a rectilinear path arises from the gravity of the stone toward the
earth, that is, from an occult quality. Nevertheless it can happen that some other
philosopher, even more clever, may contrive another cause. He will accordingly
imagine that a certain subtle matter, which is not perceived by sight or by touch or
by any of the senses, is found in the regions that are most immediately contiguous
to the surface of the earth. He will argue, moreover, that this matter is carried

in different directions by various and—for the most part—contrary motions and
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that it describes parabolic curves. Finally he will beautifully show how the stone is
deflected and will earn the applause of the crowd. The stone, says he, floats in that
subtle fluid and, by following the course of that fluid, cannot but describe the same
path. But the fluid moves in parabolic curves; therefore the stone must move in a
parabola. Who will not now marvel at the most acute genius of this philosopher,
brilliantly deducing the phenomena of nature from mechanical causes [i.e., matter
and motion]—at a level comprehensible even to ordinary people! Who indeed will
not jeer at that poor Galileo, who undertook by a great mathematical effort once
more to bring back occult qualities, happily excluded from philosophy! But I am
ashamed to waste any more time on such trifles.

It all finally comes down to this: the number of comets is huge; their motions
are highly regular and observe the same laws as the motions of the planets. They
move in conic orbits; these orbits are very, very eccentric. Comets go everywhere
into all parts of the heavens and pass very freely through the regions of the planets,
often contrary to the order of the signs. These phenomena are confirmed with the
greatest certainty by astronomical observations and cannot be explained by vortices.
Further, these phenomena are even inconsistent with planetary vortices. There will
be no room at all for the motions of the comets unless that imaginary matter is
completely removed from the heavens.

For if the planets are carried around the sun by vortices, those parts of the
vortices that most immediately surround each planet will be of the same density
as the planet, as has been said above. Therefore all the matter that is contiguous
to the perimeter of the earth’s orbit will have the same density as the earth, while
all the matter that lies between the earth’s orbit and the orbit of Saturn will have
either an equal or a greater density. For, in order that the constitution of a vortex
may be able to last, the less dense parts must occupy the center, and the more
dense parts must be further away from the center. For since the periodic times
of the planets are as the % powers of the distances from the sun, the periods of
the parts of the vortex should keep the same ratio. It follows that the centrifugal
forces of these parts will be inversely as the squares of the distances. Therefore
those parts that are at a greater distance from the center strive to recede from it
by a smaller force; accordingly, if they should be less dense, it would be necessary
for them to yield to the greater force by which the parts nearer to the center
endeavor to ascend. Therefore the denser parts will ascend, the less dense will
descend, and a mutual exchange of places will occur, until the fluid matter of the
whole vortex has been arranged in such order that it can now rest in equilibrium
[i.e., its parts are completely at rest with respect to one another or no longer have
any motion of ascent or descent]. If two fluids of different density are contained

in the same vessel, certainly it will happen that the fluid whose density is greater
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will go to the lowest place under the action of its greater force of gravity, and by
similar reasoning it must be concluded that the denser parts of the vortex will go
to the highest place under the action of their greater centrifugal force. Therefore
the whole part of the vortex that lies outside the earth’s orbit (much the greatest
part) will have a density and so a force of inertia (proportional to the quantity
of matter) that will not be smaller than the density and force of inertia of the
earth. From this will arise a huge and very noticeable resistance to the comets as
they pass through, not to say a resistance that rightly seems to be able to put a
complete stop to their motion and absorb it entirely. It is however clear from the
altogether regular motion of comets that they encounter no resistance that can be
in the least perceived, and thus that they do not come upon any matter that has
any force of resistance, or accordingly that has any density or force of inertia. For
the resistance of mediums arises either from the inertia of fluid matter or from
its friction.* That which arises from friction is extremely slight and indeed can
scarcely be observed in commonly known fluids, unless they are very tenacious
like oil and honey. The resistance that is encountered in air, water, quicksilver,
and nontenacious fluids of this sort is almost wholly of the first kind and cannot
be decreased in subtlety by any further degree, if the fluid’s density or force of
inertia—to which this resistance is always proportional—remains the same. This
is most clearly demonstrated by our author in his brilliant theory of the resistance
of fluids, which in this second edition is presented in a somewhat more accurate
manner and is more fully confirmed by experiments with falling bodies.

As bodies move forward, they gradually communicate their motion to a sur-
rounding fluid, and by communicating their motion lose it, and by losing it are
retarded. Therefore the retardation is proportional to the motion so communicated,
and the motion communicated (where the velocity of the moving body is given)
is as the density of the fluid; therefore the retardation or resistance will also be
as the density of the fluid and cannot be removed by any means unless the fluid,
returning to the back of the body, restores the lost motion. But this cannot be the
case unless the force of the fluid on the rear of the body is equal to the force the
body exerts on the fluid in front, that is, unless the relative velocity with which
the fluid pushes the body from behind is equal to the velocity with which the body
pushes the fluid, that is, unless the absolute velocity of the returning fluid is twice
as great as the absolute velocity of the fluid pushed forward, which cannot happen.
Therefore there is no way in which the resistance of fluids that arises from their
density and force of inertia can be taken away. And so it must be concluded that

the celestial fluid has no force of inertia, since it has no force of resistance; it has

a. Literally, lack of lubricity or slipperiness.
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no force by which motion may be communicated, since it has no force of inertia;
it has no force by which any change may be introduced into one or more bodies,
since it has no force by which motion may be communicated; it has no efficacy at
all, since it has no faculty to introduce any change. Surely, therefore, this hypoth-
esis, plainly lacking in any foundation and not even marginally useful to explain
the nature of things, may well be called utterly absurd and wholly unworthy of
a philosopher. Those who hold that the heavens are filled with fluid matter, but
suppose this matter to have no inertia, are saying there is no vacuum but in fact
are assuming there is one. For, since there is no way to distinguish a fluid matter
of this sort from empty space, the whole argument comes down to the names of
things and not their natures. But if anyone is so devoted to matter that he will in
no way admit a space void of bodies, let us see where this will ultimately lead him.

For such people will say that this constitution of the universe as everywhere
full, which is how they imagine it, has arisen from the will of God, so that a
very subtle aether pervading and filling all things would be there to facilitate the
operations of nature; this cannot be maintained, however, since it has already been
shown from the phenomena of comets that this aether has no efficacy. Or they
will say that this constitution has arisen from the will of God for some unknown
purpose, which ought not to be said either, since a different constitution of the uni-
verse could equally well be established by the same argument. Or finally they will
say that it has not arisen from the will of God but from some necessity of nature.
And so at last they must sink to the lowest depths of degradation, where they have
the fantasy that all things are governed by fate and not by providence, that matter
has existed always and everywhere of its own necessity and is infinite and eternal.
On this supposition, matter will also be uniform everywhere, for variety of forms
is entirely inconsistent with necessity. Matter will also be without motion; for if by
necessity matter moves in some definite direction with some definite velocity, by
a like necessity it will move in a different direction with a different velocity; but
it cannot move in different directions with different velocities; therefore it must
be without motion. Surely, this world—so beautifully diversified in its forms and
motions—could not have arisen except from the perfectly free will of God, who
provides and governs all things.

From this source, then, have all the laws that are called laws of nature come,
in which many traces of the highest wisdom and counsel certainly appear, but no
traces of necessity. Accordingly we should not seek these laws by using untrust-
worthy conjectures, but learn them by observing and experimenting. He who is
confident that he can truly find the principles of physics, and the laws of things,
by relying only on the force of his mind and the internal light of his reason should

maintain either that the world has existed from necessity and follows the said laws
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from the same necessity, or that although the order of nature was constituted by
the will of God, nevertheless a creature as small and insignificant as he is has a
clear understanding of the way things should be. All sound and true philosophy
is based on phenomena, which may lead us—however unwilling and reluctant—
to principles in which the best counsel and highest dominion of an all-wise and
all-powerful being are most clearly discerned; these principles will not be rejected
because certain men may perhaps not like them. These men may call the things
that they dislike either miracles or occult qualities, but names maliciously given
are not to be blamed on the things themselves, unless these men are willing to
confess at last that philosophy should be based on atheism. Philosophy must not
be overthrown for their sake, since the order of things refuses to be changed.
Therefore honest and fair judges will approve the best method of natural
philosophy, which is based on experiments and observations. It need scarcely be
said that this way of philosophizing has been illumined and dignified by our
illustrious author’s well-known book; his tremendous genius, enodating each of
the most difficult problems and reaching out beyond the accepted limits of the
human, is justly admired and esteemed by all who are more than superficially
versed in these martters. Having unlocked the gates, therefore, he has opened our
way to the most beautiful mysteries of nature. He has finally so clearly revealed a
most elegant structure of the system of the world for our further scrutiny that even
were King Alfonso himself to come to life again, he would not find it wanting
either in simplicity or in grace of harmony. And hence it is now possible to have
a closer view of the majesty of nature, to enjoy the sweetest contemplation, and to
worship and venerate more zealously the maker and lord of all; and this is by far
the greatest fruit of philosophy. He must be blind who does not at once see, from
the best and wisest structures of things, the infinite wisdom and goodness of their
almighty creator; and he must be mad who refuses to acknowledge them.
Therefore Newton’s excellent treatise will stand as a mighty fortress against
the attacks of atheists; nowhere else will you find more effective ammunition
against that impious crowd. This was understood long ago, and was first splendidly
demonstrated in learned discourses in English and in Latin, by a man of universal
learning and at the same time an outstanding patron of the arts, Richard Bentley,
a great ornament of his time and of our academy, the worthy and upright master
of our Trinity College. I must confess that I am indebted to him on many grounds;
you as well, kind reader, will not deny him due thanks. For, as a long-time inti-
mate friend of our renowned author (he considers being celebrated by posterity for
this friendship to be of no less value than becoming famous for his own writings,
which are the delight of the learned world), he worked simultaneously for the pub-

lic recognition of his friend and for the advancement of the sciences. Therefore,
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since the available copies of the first edition were extremely rare and very expen-
sive, he tried with persistent demands to persuade Newton (who is distinguished as
much by modesty as by the highest learning) and finally—almost scolding him—
prevailed upon Newton to allow him to get out this new edition, under his auspices
and at his own expense, perfected throughout and also enriched with significant
additions. He authorized me to undertake the not unpleasant duty of seeing to it

that all this was done as correctly as possible.

Cambridge, 12 May 1713 Roger Cotes,
Fellow of Trinity College,
Plumian Professor of Astronomy

and Experimental Philosophy
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Author’s Preface to the Third Edition

IN THIS THIRD EDITION, supervised by Henry Pemberton, M.D., a man greatly
skilled in these matters, some things in the second book concerning the resistance
of mediums are explained a little more fully than previously, and new experiments
are added concerning the resistance of heavy bodies falling in air. In the third book,
the argument proving that the moon is kept in its orbit by gravity is presented a
little more fully; and new observations, made by Mr. Pound, on the proportion of
the diameters of Jupiter to each other have been added. There are also added some
observations of the comet that appeared in 1680, which were made in Germany
during the month of November by Mr. Kirk, and which recently came into our
hands; these observations make it clear how closely parabolic orbits correspond
to the motions of comets. The orbit of that comet, by Halley’s computations, is
determined a little more accurately than heretofore, and in an ellipse. And it is
shown that the comet traversed its course through nine signs of the heavens in this
elliptical orbit just as exactly as the planets move in the elliptical orbits given by
astronomy. There is also added the orbit of the comet that appeared in the year
1713, which was calculated by Mr. Bradley, professor of astronomy at Oxford.

London, Is. Newton

12 Jan. 1725/6.

fIn the third edition, the final Author’s Preface was followed by a two-page table

of contents and a list of corrigenda.]
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DEFINITIONS

i o

*Quantity of matter is a measure of matter that arises from its density and volume
jointly.?

PIf the density of air is doubled in a space that is also doubled, there is
four times as much air, and there is six times as much if the space is triplcd.b
The case is the same for snow and powders condensed by compression or
liquefaction, and also for all bodies that are condensed in various ways by any
causes whatsoever. For the present, [ am not taking into account any medium,

if there should be any, freely pervading the interstices between the parts of

1

aa. In translating def. 1, we have rendered Newton’s “Quantitas materiae est mensura ejusdem...”

»

as “Quantity of matter is a measure of matter ...” rather than the customary “... is the measure...” The
indefinite article is more in keeping with the Latin usage, with its absence of articles, and accords better
with the sense in which we have interpreted this definition. See the Guide, §4.2. It should be noted that
the indefinite article permits the possibility of the sense of either a definite or an indefinite article, whereas
a definite article precludes the possibility of the sense of an indefinite article.

bb. Ed. 3 reads literally: “Air, if the density is doubled, in a space also doubled, becomes quadruple;
in [a space] tripled, sextuple.” The printer’s manuscript for ed. 1 and the printed text of ed. 1 have: “Air
twice as dense in twice the space is quadruple.” Newton’s interleaved copy of ed. 1 has: “Air twice as
dense in twice the space is quadruple; in three times [the space], sextuple.” Newton’s annotated copy of ed.
1 has first: “Air twice as dense in twice the space becomes quadruple; in three times [the space], sextuple.”
This is then deleted and replaced with: “Air, by doubling the density, in the same container becomes
double; in a container twice as large, quadruple; in one three times as large, sextuple; and by tripling the
density, it becomes triple in the same container and sextuple in a container twice as large,” but the last
clause, “and by tripling. .. large,” is then deleted.

The manuscript errata at the end of the annotated copy have: “For this quantity, if the density is
given [or fixed], is as the volume and, if the volume is given, is as the density and therefore, if neither
is given, is as the product of both. Thus indeed Air, if the density is doubled, in a space also doubled,
becomes quadruple; in [a space] tripled, sextuple.” The first sentence, “For this. .. product of both,” and
the following two words, “Thus indeed,” are inserted over a caret preceding “Air.”

An interleaf of the interleaved copy of ed. 1 and then the printed text of ed. 2 have exactly the same
phrasing as ed. 3.

Definition 1
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bodies. Furthermore, I mean this quantity whenever I use the term “body” or
“mass” in the following pages. It can always be known from a body’s weight,
for—by making very accurate experiments with pendulums—I have found

it to be proportional to the weight, as will be shown below.

Quantity of motion is a measure of motion that arises from the velocity and the
quantity of maiter jointly.

The motion of a whole is the sum of the motions of the individual parts,
and thus if a body is twice as large as another and has equal velocity there
is twice as much motion, and if it has twice the velocity there is four times

as much motion.

Inherent force of matter is the power of resisting by which every body, *so far as
it is able,” perseveres in its state either of resting or of moving Puniformly straight
forward.®

This force is always proportional to the body and does not differ in any
way from the inertia of the mass except in the manner in which it is con-
ceived. Because of the inertia of matter, every body is only with difficulty
put out of its state either of resting or of moving. Consequently, inherent
force may also be called by the very significant name of force of inertia.
Moreover, a body exerts this force only during a change of its state, caused
by another force impressed upon it, and this exercise of force is, depending
on the viewpoint, both resistance and impetus: resistance insofar as the body,
in order to maintain its state, strives against the impressed force, and impe-
tus insofar as the same body, yielding only with difficulty to the force of a
resisting obstacle, endeavors to change the state of that obstacle. Resistance

is commonly attributed to resting bodies and impetus to moving bodies; but

aa. Newton’s Latin clause is “quantum in se est,” which here means “to the degree that it can of
and by itself.” See I. Bernard Cohen, “ ‘Quantum in se est Newton’s Concept of Inertia in Relation to
Descartes and Lucretius,” Notes and Records of the Royal Society of London 19 (1964): 131-155.

bb. Newton’s “in directum” (used together with “uniformiter” [“uniformly”]) has the sense of moving
straight on, of going continuously straight forward, and therefore in a straight line. In an earlier version,
Newton had used the phrase “in linea recta” (“in a right line” or “in a straight line”), but by the time
of the Principia he had rejected this expression in favor of “in directum.” For details, see the Guide,
§10.2. On Newton’s “vis insita” and our rendition, see the Guide, §4.7.

c. Newton’s interleaved copy of ed. 2 adds the following, which was never printed: “I do not mean
Kepler’s force of inertia, by which bodies tend toward rest, but a force of remaining in the same state

either of resting or of moving.”
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motion and rest, in the popular sense of the terms, are distinguished from
each other only by point of view, and bodies commonly regarded as being at

rest are not always truly at rest.

Impressed force is the action exerted on a body to change its state either of resting
or of moving uniformly straight forward.

This force consists solely in the action and does not remain in a body
after the action has ceased. For a body perseveres in any new state solely by
the force of inertia. Moreover, there are various sources of impressed force,

such as percussion, pressure, or centripetal force.

Centripetal force is the force by which bodies are drawn from all sides, are im-
pelled, or in any way tend, toward some point as to a center.

One force of this kind is gravity, by which bodies tend toward the center
of the earth; another is magnetic force, by which iron seeks a lodestone;
and yet another is that force, whatever it may be, by which the planets are
continually drawn back from rectilinear motions and compelled to revolve in
curved lines.

A stone whirled in a sling endeavors to leave the hand that is whirling it,
and by its endeavor it stretches the sling, doing so the more strongly the more
swiftly it revolves; and as soon as it is released, it flies away. The force opposed
to that endeavor, that is, the force by which the sling continually draws the
stone back toward the hand and keeps it in an orbit, I call centripetal, since it
is directed toward the hand as toward the center of an orbit. And the same
applies to all bodies ®that are made to move in orbits.® They all endeavor
to recede from the centers of their orbits, and unless some force opposed to
that endeavor is present, restraining them and keeping them in orbits and
hence called by me centripetal, they will go off in straight lines with uniform
motion. If a projectile were deprived of the force of gravity, it would not
be deflected toward the earth but would go off in a straight line into the
heavens and do so with uniform motion, provided that the resistance of
the air were removed. The projectile, by its gravity, is drawn back from a

rectilinear course and continually deflected toward the earth, and this is so

aa. Ed. 1 lacks this.
bb. See the Guide, §2.4.
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to a greater or lesser degree in proportion to its gravity and its velocity of
motion. The less its gravity in proportion to its quantity of matter, or the
greater the velocity with which it is projected, the less it will deviate from
a rectilinear course and the farther it will go. If a lead ball were projected
with a given velocity along a horizontal line from the top of some mountain
by the force of gunpowder and went in a curved line for a distance of two
miles before falling to the earth, then the same ball projected with twice the
velocity would go about twice as far and with ten times the velocity about
ten times as far, provided that the resistance of the air were removed. And
by increasing the velocity, the distance to which it would be projected could
be increased at will and the curvature of the line that it would describe could
be decreased, in such a way that it would finally fall at a distance of 10 or
30 or 90 degrees or even go around the whole earth or, lastly, go off into the
heavens and continue indefinitely in this motion. And in the same way that
a projectile could, by the force of gravity, be deflected into an orbit and go
around the whole earth, so too the moon, whether by the force of gravity—if
it has gravity—or by any other force by which it may be urged toward the
earth, can always be drawn back toward the earth from a rectilinear course
and deflected into its orbit; and without such a force the moon cannot be
kept in its orbit. If this force were too small, it would not deflect the moon
sufficiently from a rectilinear course; if it were too great, it would deflect the
moon excessively and draw it down from its orbit toward the earth. In fact,
it must be of just the right magnitude, and mathematicians have the task of
finding the force by which a body can be kept exactly in any given orbit with
a given velocity and, alternatively, to find the curvilinear path into which a
body leaving any given place with a given velocity is deflected by a given
force.?

The quantity of centripetal force is of three kinds: absolute, accelerative,

and motive.

The absolute quantity of centripetal force is the measure of this force that is
greater or less in proportion to the efficacy of the cause propagating it from a
center through the surrounding regions.

An example is magnetic force, which is greater in one lodestone and less

in another, in proportion to the bulk or potency of the lodestone.
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The accelerative quantity of centripetal force is the measure of this force that is
proportional to the velocity which it generates in a given time.

One example is the potency of a lodestone, which, for a given lodestone,
is greater at a smaller distance and less at a greater distance. Another example
is the force that produces gravity, which is greater in valleys and less on the
peaks of high mountains and still less (as will be made clear below) at greater
distances from the body of the earth, but which is everywhere the same at
equal distances, because it equally accelerates all falling bodies (heavy or light,

great or small), provided that the resistance of the air is removed.

The motive quantity of centripetal force is the measure of this force that is pro-
portional to the motion which it generates in a given time.

An example is weight, which is greater in a larger body and less in a
smaller body; and in one and the same body is greater near the earth and less
out in the heavens. This quantity is the centripetency, or propensity toward a
center, of the whole body, and (so to speak) its weight, and it may always be
known from the force opposite and equal to it, which can prevent the body
from falling.

These quantities of forces, for the sake of brevity, may be called motive,
accelerative, and absolute forces, and, for the sake of differentiacon, may
be referred to bodies seeking a center, to the places of the bodies, and to
the center of the forces: that is, motive force may be referred to a body as
an endeavor of the whole directed toward a center and compounded of the
endeavors of all the parts; accelerative force, to the place of the body as a
certain efficacy diffused from the center through each of the surrounding
places in order to move the bodies that are in those places; and absolute
force, to the center as having some cause without which the motive forces
are not propagated through the surrounding regions, whether this cause is
some central body (such as a lodestone in the center of a magnetic force or
the earth in the center of a force that produces gravity) or whether it is some
other cause which is not apparent. This concept is purely mathematical, for
I am not now considering the physical causes and sites of forces.

Therefore, accelerative force is to motive force as velocity to motion. For
quantity of motion arises from velocity and quantity of matter jointly, and
motive force from accelerative force and quantity of matter jointly. For the

sum of the actions of the accelerative force on the individual particles of
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a body is the motive force of the whole body. As a consequence, near the
surface of the earth, where the accelerative gravity, or the force that produces
gravity, is the same in all bodies universally, the motive gravity, or weight, is
as the body, but in an ascent to regions where the accelerative gravity becomes
less, the weight will decrease proportionately and will always be as the body
and the accelerative gravity jointly. Thus, in regions where the accelerative
gravity is half as great, a body one-half or one-third as great will have a
weight four or six times less.

Further, it is in this same sense that I call attractions and impulses ac-
celerative and motive. Moreover, I use interchangeably and indiscriminately
words signifying attraction, impulse, or any sort of propensity toward a cen-
ter, considering these forces not from a physical but only from a mathematical
point of view. Therefore, let the reader beware of thinking that by words of
this kind I am anywhere defining a species or mode of action or a physical
cause or reason, or that I am attributing forces in a true and physical sense to
centers (which are mathematical points) if I happen to say that centers attract

or that centers have forces.

Thus far it has seemed best to explain the senses in which less familiar words
are to be taken in this treatise. Although time, space, place, and motion
are very familiar to everyone, it must be noted that these quantities are
popularly conceived solely with reference to the objects of sense perception.
And this is the source of certain preconceptions; to eliminate them it is useful
to distinguish these quantities into absolute and relative, true and apparent,
mathematical and common.

1. Absolute, true, and mathematical time, in and of itself and of its
own nature, without reference to anything external, flows uniformly and by
another name is called duration. Relative, apparent, and common time is any
sensible and external measure *(precise or imprecise)’ of duration by means
of motion; such a measure—for example, an hour, a day, a month, a year—is
commonly used instead of true time.

2. Absolute space, of its own nature without reference to anything ex-

ternal, always remains homogeneous and immovable. Relative space is any

aa. Newton uses the phrase “seu accurata seu inaequabilis”—literally, “exact or nonuniform.”
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movable measure or dimension of this absolute space; such a measure or di-
mension is determined by our senses from the situation of the space with
respect to bodies and is popularly used for immovable space, as in the case
of space under the earth or in the air or in the heavens, where the dimen-
sion s determined from the situation of the space with respect to the earth.
Absolute and relative space are the same in species and in magnitude, but
they do not always remain the same numerically. For example, if the earth
moves, the space of our air, which in a relative sense and with respect to the
earth always remains the same, will now be one part of the absolute space
into which the air passes, now another part of it, and thus will be changing
continually in an absolute sense.

3. Place is the part of space that a body occupies, and it is, depending on
the space, either absolute or relative. I say the part of space, not the position of
the body or its outer surface. For the places of equal solids are always equal,
while their surfaces are for the most part unequal because of the dissimilarity
of shapes; and positions, properly speaking, do not have quantity and are not
so much places as attributes of places. The motion of a whole is the same
as the sum of the motions of the parts; that is, the change in position of a
whole from its place is the same as the sum of the changes in position of its
parts from their places, and thus the place of a whole is the same as the sum
of the places of the parts and therefore is internal and in the whole body.

4. Absolute motion is the change of position of a body from one absolute
place to another; relative motion is change of position from one relative place
to another. Thus, in a ship under sail, the relative place of a body is that
region of the ship in which the body happens to be or that part of the whole
interior of the ship which the body fills and which accordingly moves along
with the ship, and relative rest is the continuance of the body in that same
region of the ship or same part of its interior. But true rest is the continuance
of a body in the same part of that unmoving space in which the ship itself,
along with its interior and all its contents, is moving. Therefore, if the earth
is truly at rest, a body that is relatively at rest on a ship will move truly
and absolutely with the velocity with which the ship is moving on the earth.
But if the earth is also moving, the true and absolute motion of the body
will arise partly from the true motion of the earth in unmoving space and
partly from the relative motion of the ship on the earth. Further, if the body

is also moving relatively on the ship, its true motion will arise partly from
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the true motion of the earth in unmoving space and partly from the relative
motions both of the ship on the earth and of the body on the ship, and
from these relative motions the relative motion of the body on the earth will
arise. For example, if that part of the earth where the ship happens to be is
truly moving eastward with a velocity of 10,010 units, and the ship is being
borne westward by sails and wind with a velocity of 10 units, and a sailor is
walking on the ship toward the east with a velocity of 1 unit, then the sailor
will be moving truly and absolutely in unmoving space toward the east with
a velocity of 10,001 units and relatively on the earth toward the west with a
velocity of 9 units.

In astronomy, absolute time is distinguished from relative time by the
equation of common time. For natural days, which are commonly considered
equal for the purpose of measuring time, are actually unequal. Astronomers
correct this inequality in order to measure celestial motions on the basis of
a truer time. It is possible that there is no uniform motion by which time
may have an exact measure. All motions can be accelerated and retarded, but
the flow of absolute time cannot be changed. The duration or perseverance
of the existence of things is the same, whether their motions are rapid or
slow or null; accordingly, duration is rightly distinguished from its sensible
measures and is gathered from them by means of an astronomical equation.
Moreover, the need for using this equation in determining when phenomena
occur is proved by experience with a pendulum clock and also by eclipses of
the satellites of Jupiter.

Just as the order of the parts of time is unchangeable, so, too, is the
order of the parts of space. Let the parts of space move from their places,
and they will move (so to speak) from themselves. For times and spaces are,
as it were, the places of themselves and of all things. All things are placed
in time with reference to order of succession and in space with reference to
order of position. It is of the essence of spaces to be places, and for primary
places to move is absurd. They are therefore absolute places, and it is only
changes of position from these places that are absolute motions.

But since these parts of space cannot be seen and cannot be distinguished
from one another by our senses, we use sensible measures in their stead. For
we define all places on the basis of the positions and distances of things from
some body that we regard as immovable, and then we reckon all motions

with respect to these places, insofar as we conceive of bodies as being changed
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in position with respect to them. Thus, instead of absolute places and motions
we use relative ones, which is not inappropriate in ordinary human affairs,
although in philosophy abstraction from the senses is required. For it is pos-
sible that there is no body truly at rest to which places and motions may be
referred.

Moreover, absolute and relative rest and motion are distinguished from
each other by their properties, causes, and effects. It is a property of rest that
bodies truly at rest are at rest in relation to one another. And therefore, since
it is possible that some body in the regions of the fixed stars or far beyond is
absolutely at rest, and yet it cannot be known from the position of bodies in
relation to one another in our regions whether or not any of these maintains
a given position with relation to that distant body, true rest cannot be defined
on the basis of the position of bodies in relation to one another.

It is a property of motion that parts which keep given positions in relation
to wholes participate in the motions of such wholes. For all the parts of
bodies revolving in orbit endeavor to recede from the axis of motion, and
the impetus of bodies moving forward arises from the joint impetus of the
individual parts. Therefore, when bodies containing others move, whatever is
relatively at rest within them also moves. And thus true and absolute motion
cannot be determined by means of change of position from the vicinity of
bodies that are regarded as being at rest. For the exterior bodies ought to be
regarded not only as being at rest but also as being truly at rest. Otherwise
all contained bodies, besides being subject to change of position from the
vicinity of the containing bodies, will participate in the true motions of the
containing bodies and, if there is no such change of position, will not be truly
at rest but only be regarded as being at rest. For containing bodies are to
those inside them as the outer part of the whole to the inner part or as the
shell to the kernel. And when the shell moves, the kernel also, without being
changed in position from the vicinity of the shell, moves as a part of the
whole.

A property akin to the preceding one is that when a place moves, what-
ever is placed in it moves along with it, and therefore a body moving away
from a place that moves participates also in the motion of its place. There-
fore, all motions away from places that move are only parts of whole and
absolute motions, and every whole motion is compounded of the motion of

a body away from its initial place, and the motion of this place away from
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its place, and so on, until an unmoving place is reached, as in the above-
mentioned example of the sailor. Thus, whole and absolute motions can be
determined only by means of unmoving places, and therefore in what has
preceded I have referred such motions to unmoving places and relative mo-
tions to movable places. Moreover, the only places that are unmoving are
those that all keep given positions in relation to one another from infinity
to infinity and therefore always remain immovable and constitute the space
that [ call immovable.

The causes which distinguish true motions from relative motions are the
forces impressed upon bodies to generate motion. True motion is neither gen-
erated nor changed except by forces impressed upon the moving body itself,
but relative motion can be generated and changed without the impression
of forces upon this body. For the impression of forces solely on other bodies
with which a given body has a relation is enough, when the other bodies
yield, to produce a change in that relation which constitutes the relative rest
or motion of this body. Again, true motion is always changed by forces im-
pressed upon a moving body, but relative motion is not necessarily changed
by such forces. For if the same forces are impressed upon a moving body and
also upon other bodies with which it has a relation, in such a way that the
relative position is maintained, the relation that constitutes the relative mo-
tion will also be maintained. Therefore, every relative motion can be changed
while the true motion is preserved, and can be preserved while the true one
is changed, and thus true motion certainly does not consist in relations of
this sort.

The effects distinguishing absolute motion from relative motion are the
forces of receding from the axis of circular motion. For in purely relative
circular motion these forces are null, while in true and absolute circular
motion they are larger or smaller in proportion to the quantity of motion. If
a bucket is hanging from a very long cord and is continually turned around
until the cord becomes twisted tight, and if the bucket is thereupon filled
with water and is at rest along with the water and then, by some sudden
force, is made to turn around in the opposite direction and, as the cord
unwinds, perseveres for a while in this motion; then the surface of the water
will at first be level, just as it was before the vessel began to move. But after
the vessel, by the force gradually impressed upon the water, has caused the

water also to begin revolving perceptibly, the water will gradually recede
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from the middle and rise up the sides of the vessel, assuming a concave
shape (as experience has shown me), and, with an ever faster motion, will
rise further and further until, when it completes its revolutions in the same
times as the vessel, it is relatively at rest in the vessel. The rise of the water
reveals its endeavor to recede from the axis of motion, and from such an
endeavor one can find out and measure the true and absolute circular motion
of the water, which here is the direct opposite of its relative motion. In the
beginning, when the relative motion of the water in the vessel was greatest,
that motion was not giving rise to any endeavor to recede from the axis;
the water did not seek the circumference by rising up the sides of the vessel
but remained level, and therefore its true circular motion had not yet begun.
But afterward, when the relative motion of the water decreased, its rise up
the sides of the vessel revealed its endeavor to recede from the axis, and
this endeavor showed the true circular motion of the water to be continually
increasing and finally becoming greatest when the water was relatively at
rest in the vessel. Therefore, that endeavor does not depend on the change
of position of the water with respect to surrounding bodies, and thus true
circular motion cannot be determined by means of such changes of position.
The truly circular motion of each revolving body is unique, corresponding to
a unique endeavor as its proper and sufficient effect, while relative motions
are innumerable in accordance with their varied relations to external bodies
and, like relations, are completely lacking in true effects except insofar as
they participate in that true and unique motion. Thus, even in the system of
those who hold that our heavens revolve below the heavens of the fixed stars
and carry the planets around with them, the individual parts of the heavens,
and the planets that are relatively at rest in the heavens to which they belong,
are truly in motion. For they change their positions relative to one another
(which is not the case with things that are truly at rest), and as they are
carried around together with the heavens, they participate in the motions of
the heavens and, being parts of revolving wholes, endeavor to recede from
the axes of those wholes.

Relative quantities, therefore, are not the actual quantities whose names
they bear but are those sensible measures of them (whether true or erro-
neous) that are commonly used instead of the quantities being measured.
But if the meanings of words are to be defined by usage, then it is these

sensible measures which should properly be understood by the terms “time,”
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“space,” “place,” and “motion,” and the manner of expression will be out of
the ordinary and purely mathematical if the quantities being measured are
understood here. Accordingly those who there interpret these words as re-
ferring to the quantities being measured do violence to the Scriptures. And
they no less corrupt mathematics and philosophy who confuse true quantities
with their relations and common measures.

It is certainly very difficult to find out the true motions of individual
bodies and actually to differentiate them from apparent motions, because
the parts of that immovable space in which the bodies truly move make no
impression on the senses. Nevertheless, the case is not utterly hopeless. For
it is possible to draw evidence partly from apparent motions, which are the
differences between the true motions, and partly from the forces that are the
causes and effects of the true motions. For example, if two balls, at a given
distance from each other with a cord connecting them, were revolving about
a common center of gravity, the endeavor of the balls to recede from the
axis of motion could be known from the tension of the cord, and thus the
quantity of circular motion could be computed. Then, if any equal forces were
simultaneously impressed upon the alternate faces of the balls to increase or
decrease their circular motion, the increase or decrease of the motion could
be known from the increased or decreased tension of the cord, and thus,
finally, it could be discovered which faces of the balls the forces would have
to be impressed upon for a maximum increase in the motion, that is, which
were the posterior faces, or the ones that are in the rear in a circular motion.
Further, once the faces that follow and the opposite faces that precede were
known, the direction of the motion would be known. In this way both the
quantity and the direction of this circular motion could be found in any
immense vacuum, where nothing external and sensible existed with which
the balls could be compared. Now if some distant bodies were set in that
space and maintained given positions with respect to one another, as the
fixed stars do in the regions of the heavens, it could not, of course, be known
from the relative change of position of the balls among the bodies whether
the motion was to be attributed to the bodies or to the balls. But if the cord
was examined and its tension was discovered to be the very one which the
motion of the balls required, it would be valid to conclude that the motion
belonged to the balls and that the bodies were at rest, and then, finally,

from the change of position of the balls among the bodies, to determine
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the direction of this motion. But in what follows, a fuller explanation will
be given of how to determine true motions from their causes, effects, and
apparent differences, and, conversely, of how to determine from motions,
whether true or apparent, their causes and effects. For this was the purpose

for which I composed the following treatise.
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s o

Law 1 Every body perseveres in its state of being at rest or of moving *uniformly straight

forward,® except insofar as it® is compelled to change “its° state by forces impressed.

Projectiles persevere in their motions, except insofar as they are retarded
by the resistance of the air and are impelled downward by the force of gravity.
A spinning hoop,® which has parts that by their cohesion continually draw
one another back from rectilinear motions, does not cease to rotate, except
insofar as it is retarded by the air. And larger bodies—planets and comets—
preserve for a longer time both their progressive and their circular motions,

which take place in spaces having less resistance.

Law 2 A change in motion is proportional to the motive force impressed and takes place
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along the straight line in which that force is impressed.

If some force generates any motion, twice the force will generate twice
the motion, and three times the force will generate three times the motion,
whether the force is impressed all at once or successively by degrees. And if
the body was previously moving, the new motion (since motion is always in
the same direction as the generative force) is added to the original motion
if that motion was in the same direction or is subtracted from the original

motion if it was in the opposite direction or, if it was in an oblique direction,

aa. See note bb to def. 3.

bb. Ed. 1 and ed. 2 lack the pronoun “illud,” which, by expressing the subject, renders it somewhat
more emphatic than it is when conveyed only by the form of the verb (“is compelled”) and which makes
more explicit the reference to an antecedent noun (“body”).

cc. Ed. 1 and ed. 2 have “that.”

d. The Latin word is “trochus,” i.e., a top or some kind of spinner.
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is combined obliquely and compounded with it according to the directions

of both motions.

To any action there is always an opposite and equal reaction; in other words, the
actions of two bodies upon each other are always equal and always opposite in
direction.

Whatever presses or draws something else is pressed or drawn just as
much by it. If anyone presses a stone with a finger, the finger is also pressed
by the stone. If a horse draws a stone tied to a rope, the horse will (so to
speak) also be drawn back equally toward the stone, for the rope, stretched
out at both ends, will urge the horse toward the stone and the stone toward
the horse by one and the same endeavor to go slack and will impede the
forward motion of the one as much as it promotes the forward motion of
the other. If some body impinging upon another body changes the motion of
that body in any way by its own force, then, by the force of the other body
(because of the equality of their mutual pressure), it also will in turn undergo
the same change in its own motion in the opposite direction. By means of
these actions, equal changes occur in the motions, not in the velocities—
that is, of course, if the bodies are not impeded by anything else.* For the
changes in velocities that likewise occur in opposite directions are inversely
proportional to the bodies because the motions are changed equally. This law

is valid also for attractions, as will be proved in the next scholium.

A body acted on by [two] forces acting jointly describes the diagonal of a paral-
lelogram in the same time in which it would describe the sides if the forces were
acting separately.

Let a body in a given time, by force M, B

alone impressed in A, be carried with uniform
motion from A to B, and, by force N alone

impressed in the same place, be carried from A

to C; then complete the parallelogram ABDC, c >

and by both forces the body will be carried in the same time along the
diagonal from A to D. For, since force N acts along the line AC parallel to

a. By “body” Newton means quantity of matter or mass (def. 1) and by “motion” he means quantity

of motion (def. 2) or momentum.

Law 3

Corollary 1
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BD, this force, by law 2, will make no change at all in the velocity toward
the line BD which is generated by the other force. Therefore, the body will
reach the line BD in the same time whether force N is impressed or not, and
so at the end of that time will be found somewhere on the line BD. By the
same argument, at the end of the same time it will be found somewhere on
the line CD, and accordingly it is necessarily found at the intersection D of

both lines. And, by law 1, it will go with [uniform] rectilinear motion from
A toD.

And hence the composition of a direct force AD out of any oblique forces AB
and BD is evident, and conversely the resolution of any direct force AD into any
oblique forces AB and BD. And this kind of composition and resolution is indeed
abundantly confirmed from mechanics.
For example, let OM and ON be unequal spokes going out from the
center O of any wheel, and let the spokes support the weights A and P
by means of the cords MA and NP; it is
H required to find the forces of the weights
to move the wheel. Draw the straight line

KOL through the center O, so as to meet

the cords perpendicularly at K and L;
and with center O and radius OL, which
is the greater of OK and OL, describe
a circle meeting the cord MA at D; and
draw the straight line OD, and let AC
be drawn parallel to it and DC perpen-

¥

dicular to it. Since it makes no difference
whether points K, L, and D of the cords are attached or not attached to
the plane of the wheel, the weights will have the same effect whether they
are suspended from the points K and L or from D and L. And if now the
total force of the weight A is represented by line AD, it will be resolved
into forces [i.e., components] AC and CD, of which AC, drawing spoke OD
directly from the center, has no effect in moving the wheel, while the other
force DC, drawing spoke DO perpendicularly, has the same effect as if it
were drawing spoke OL (equal to OD) perpendicularly; that is, it has the
same effect as the weight P, provided that the weight P is to the weight
A as the force DC is to the force DA; that is (because triangles ADC and
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DOK are similar), as OK to OD or OL. Therefore, the weights A and P,
which are inversely as the spokes OK and OL (which are in a straight line),
will be equipollent and thus will stand in equilibrium, which is a very well
known property of the balance, the lever, and the wheel and axle. But if
either weight is greater than in this ratio, its force to move the wheel will be
so much the greater.

But if the weight p, equal to the weight P, is partly suspended by the
cord Np and partly lies on the oblique plane pG, draw pH perpendicular
to the plane of the horizon and NH perpendicular to the plane pG; then
if the force of the weight p tending downward is represented by the line
pH, it can be resolved into the forces [i.e., components] pN and HN. If
there were some plane pQ perpendicular to the cord pN and cutting the
other plane pG in a line parallel to the horizon, and the weight p were only
lying on these planes pQ and pG, the weight p would press these planes
perpendicularly with the forces pN and HN—plane pQ, that is, with force
pN and plane pG with force HN. Therefore, if the plane pQ is removed,
so that the weight stretches the cord, then—since the cord, in sustaining the
weight, now takes the place of the plane which has been removed—the cord
will be stretched by the same force pN with which the plane was formerly
pressed. Thus the tension of this oblique cord will be to the tension of the
other, and perpendicular, cord PN as pN to pH. Therefore, if the weight
p is to the weight A in a ratio that is compounded of the inverse ratio of
the least distances of their respective cords pN and AM from the center of
the wheel and the direct ratio of pH to pN, the weights will have the same
power to move the wheel and so will sustain each other, as anyone can test.

Now, the weight p, lying on those two oblique planes, has the role of
a wedge between the inner surfaces of a body that has been split open; and
hence the forces of a wedge and hammer can be determined, because the
force with which the weight p presses the plane pQ is to the force with
which weight p is impelled along the line pH toward the planes, whether by
its own gravity or by the blow of a hammer, as pN is to pH, and because
the force with which p presses plane pQ is to the force by which it presses
the other plane pG as pN to NH. Furthermore, the force of a screw can also
be determined by a similar resolution of forces, inasmuch as it is a wedge
impelled by a lever. Therefore, this corollary can be used very extensively,

and the variety of its applications clearly shows its truth, since the whole of
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mechanics—demonstrated in different ways by those who have written on
this subject—depends on what has just now been said. For from this are easily
derived the forces of machines, which are generally composed of wheels,
drums, pulleys, levers, stretched strings, and weights, ascending directly or
obliquely, and the other mechanical powers, as well as the forces of tendons

to move the bones of animals.

The quantity of motion, which is determined by adding the motions made in
one direction and subtracting the motions made in the opposite direction, is not
changed by the action of bodies on one another.

For an action and the reaction opposite to it are equal by law 3, and thus
by law 2 the changes which they produce in motions are equal and in opposite
directions. Therefore, if motions are in the same direction, whatever is added
to the motion of the first body [/iz. the fleeing body] will be subtracted from
the motion of the second body [/iz. the pursuing body] in such a way that
the sum remains the same as before. But if the bodies meet head-on, the
quantity subtracted from each of the motions will be the same, and thus the
difference of the motions made in opposite directions will remain the same.

For example, suppose a spherical body A is three times as large as a
spherical body B and has two parts of velocity, and let B follow A in the
same straight line with ten parts of velocity; then the motion of A is to the
motion of B as six to ten. Suppose that their motions are of six parts and
ten parts respectively; the sum will be sixteen parts. When the bodies collide,
therefore, if body A gains three or four or five parts of motion, body B
will lose just as many parts of motion and thus after reflection body A will
continue with nine or ten or eleven parts of motion and B with seven or
six or five parts of motion, the sum being always, as originally, sixteen parts
of motion. Suppose body A gains nine or ten or eleven or twelve parts of
motion and so moves forward with fifteen or sixteen or seventeen or eighteen
parts of motion after meeting body B; then body B, by losing as many parts
of motion as A gains, will either move forward with one part, having lost
nine parts of motion, or will be at rest, having lost its forward motion of ten
parts, or will move backward with one part of motion, having lost its motion
and (if I may say so) one part more, or will move backward with two parts of
motion because a forward motion of twelve parts has been subtracted. And

thus the sums, 1541 or 16+ 0, of the motions in the same direction and the
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differences, 17—1 and 18—2, of the motions in opposite directions will always
be sixteen parts of motion, just as before the bodies met and were reflected.
And since the motions with which the bodies will continue to move after
reflection are known, the velocity of each will be found, on the supposition
that it is to the velocity before reflection as the motion after reflection is to
the motion before reflection. For example, in the last case, where the motion
of body A was six parts before reflection and eighteen parts afterward, and
its velocity was two parts before reflection, its velocity will be found to be
six parts after reflection on the basis of the following statement: as six parts
of motion before reflection is to eighteen parts of motion afterward, so two
parts of velocity before reflection is to six parts of velocity afterward.

But if bodies that either are not spherical or are moving in different
straight lines strike against each other obliquely and it is required to find
their motions after reflection, the position of the plane by which the colliding
bodies are touched at the point of collision must be determined; then (by
corol. 2) the motion of ecach body must be resolved into two motions, one
perpendicular to this plane and the other parallel to it. Because the bodies act
upon each other along a line perpendicular to this plane, the parallel motions
[i.e., components] must be kept the same after reflection; and equal changes
in opposite directions must be attributed to the perpendicular motions in such
a way that the sum of the motions in the same direction and the difference
of the motions in opposite directions remain the same as before the bodies
came together. The circular motions of bodies about their own centers also
generally arise from reflections of this sort. But I do not consider such cases in
what follows, and it would be too tedious to demonstrate everything relating

to this subject.

The common center of gravity of two or more bodies does not change its state
whether of motion or of rest as a result of the actions of the bodies upon one
another; and therefore the common center of gravity of all bodies acting upon one
another (excluding external actions and impediments) either is at rest or moves
uniformly straight forward.

For if two points move forward with uniform motion in straight lines,
and the distance between them is divided in a given ratio, the dividing point
either is at rest or moves forward uniformly in a straight line. This is demon-

strated below in lem. 23 and its corollary for the case in which the motions
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of the points take place in the same plane, and it can be demonstrated by the
same reasoning for the case in which those motions do not take place in the
same plane. Therefore, if any number of bodies move uniformly in straight
lines, the common center of gravity of any two either is at rest or moves
forward uniformly in a straight line, because any line joining these bodies
through their centers—which move forward uniformly in straight lines—is
divided by this common center in a given ratio. Similarly, the common center
of gravity of these two bodies and any third body either is at rest or moves
forward uniformly in a straight line, because the distance between the com-
mon center of the two bodies and the center of the third body is divided in a
given ratio by the common center of the three. In the same way, the common
center of these three and of any fourth body either is at rest or moves forward
uniformly in a straight line, because that common center divides in a given
ratio the distance between the common center of the three and the center of
the fourth body, and so on without end. Therefore, in a system of bodies in
which the bodies are entirely free of actions upon one another and of all other
actions impressed upon them externally, and in which each body accordingly
moves uniformly in its individual straight line, the common center of gravity
of them all either is at rest or moves uniformly straight forward.

Further, in a system of two bodies acting on each other, since the distances
of their centers from the common center of gravity are inversely as the bodies,
the relative motions of these bodies, whether of approaching that center or of
receding from it, will be equal. Accordingly, as a result of equal changes in
opposite directions in the motions of these bodies, and consequently as a result
of the actions of the bodies on each other, that center is neither accelerated
nor retarded nor does it undergo any change in its state of motion or of rest.
In a system of several bodies, the common center of gravity of any two acting
upon each other does not in any way change its state as a result of that action,
and the common center of gravity of the rest of the bodies (with which that
action has nothing to do) is not affected by that action; the distance between
these two centers is divided by the common center of gravity of all the bodies
into parts inversely proportional to the total sums of the bodies whose centers
they are, and (since those two centers maintain their state of moving or of
being at rest) the common center of all maintains its state also—for all these
reasons it is obvious that this common center of all never changes its state

with respect to motion and rest as a result of the actions of two bodies upon
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each other. Moreover, in such a system all the actions of bodies upon one
another either occur between two bodies or are compounded of such actions
between two bodies and therefore never introduce any change in the state of
motion or of rest of the common center of all. Thus, since that center either
is at rest or moves forward uniformly in some straight line, when the bodies
do not act upon one another, that center will, notwithstanding the actions of
the bodies upon one another, continue either to be always at rest or to move
always uniformly straight forward, unless it is driven from this state by forces
impressed on the system from outside. Therefore, the law is the same for a
system of several bodies as for a single body with respect to perseverance in
a state of motion or of rest. For the progressive motion, whether of a single
body or of a system of bodies, should always be reckoned by the motion of

- the center of gravity.

When bodies are enclosed in a given space, their motions in relation to one another
are the same whether the space is at rest or whether it is moving uniformly straight
SJorward without circular motion.

For in either case the differences of the motions tending in the same
direction and the sums of those tending in opposite directions are the same
at the beginning (by hypothesis), and from these sums or differences there
arise the collisions and impulses [/iz. impetuses] with which the bodies strike
one another. Therefore, by law 2, the effects of the collisions will be equal in
both cases, and thus the motions with respect to one another in the one case
will remain equal to the motions with respect to one another in the other
case. This is proved clearly by experience: on a ship, all the motions are the
same with respect to one another whether the ship is at rest or is moving

uniformly straight forward.

If bodies are moving in any way whatsoever with respect to one another and are
urged by equal accelerative forces along parallel lines, they will all continue to
move with respect to one another in the same way as they would if they were not
acted on by those forces.

For those forces, by acting equally (in proportion to the quantities of
the bodies to be moved) and along parallel lines, will (by law 2) move all
the bodies equally (with respect to velocity), and so will never change their

positions and motions with respect to one another.
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Scholium The principles I have set forth are accepted by mathematicians and con-
firmed by experiments of many kinds. By means of the first two laws and
the first two corollaries Galileo found that the descent of heavy bodies is
in the squared ratio of the time and that the motion of projectiles occurs
in a parabola, as experiment confirms, except insofar as these motions are
somewhat retarded by the resistance of the air. *When a body falls, uniform
gravity, by acting equally in individual equal particles of time, impresses equal
forces upon that body and generates equal velocities; and in the total time it
impresses a total force and generates a total velocity proportional to the time.
And the spaces described in proportional times are as the velocities and the
times jointly, that is, in the squared ratio of the times. And when a body is
projected upward, uniform gravity impresses forces and takes away velocities
proportional to the times; and the times of ascending to the greatest heights
are as the velocities to be taken away, and these heights are as the velocities
and the times jointly, or as the squares of the velocities. And when a body
is projected along any straight line, its motion arising from the projection is
compounded with the motion arising from gravity.

For example, let body A by the motion of projection alone describe the
straight line AB in a given time, and by the motion of
falling alone describe the vertical distance AC in the
same time; then complete the parallelogram ABDC,
and by the compounded motion the body will be found
in place D at the end of the time; and the curved line
AED which the body will describe will be a parabola
which the straight line AB touches at A and whose
ordinate BD is as AB%?

What has been demonstrated concerning the times of oscillating pendu-

C

lums depends on the same first two laws and first two corollaries, and this
is supported by daily experience with clocks. From the same laws and corol-
laries and law 3, Sir Christopher Wren, Dr. John Wallis, and Mr. Christiaan
Huygens, easily the foremost geometers of the previous generation, indepen-
dently found the rules of the collisions and reflections of hard bodies, and
communicated them to the Royal Society at nearly the same time, entirely

agreeing with one another (as to these rules); and Wallis was indeed the

aa. Ed. 1 and ed. 2 lack this.
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first to publish what had been found, followed by Wren and Huygens. But
Wren additionally proved the truth of these rules before the Royal Society by
means of an experiment with pendulums, which the eminent Mariotte soon
after thought worthy to be made the subject of a whole book.

However, if this experiment is to agree precisely with the theories, ac-
count must be taken of both the resistance of the air and the elastic force
of the colliding bodies. Let the spherical bodies A and B be suspended
from centers C and D by parallel and
equal cords AC and BD. With these

centers and with those distances as

radii describe semicircles EAF and
GBH bisected by radii CA and DB.
Take away body B, and let body A
be brought to any point R of the arc
EAF and be let go from there, and let it return after one oscillation to point
V. RV is the retardation arising from the resistance of the air. Let ST be
a fourth of RV and be located in the middle so that RS and TV are equal
and RS is to ST as 3 to 2. Then ST will closely approximate the retardation
in the descent from S to A. Restore body B to its original place. Let body
A fall from point S, and its velocity at the place of reflection A, without
sensible error, will be as great as if it had fallen in a vacuum from place
T. Therefore let this velocity be represented by the chord of the arc TA.
For it is a proposition very well known to geometers that the velocity of a
pendulum in its lowest point is as the chord of the arc that it has described
in falling. After reflection let body A arrive at place s, and body B at place
k. Take away body B and find place v such that if body A is let go from this
place and after one oscillation returns to place », sz will be a fourth of rv
and be located in the middle, so that s and v are equal; and let the chord
of the arc zA represent the velocity that body A had in place A immediately
after reflection. For ¢ will be that true and correct place to which body A
must have ascended if there had been no resistance of the air. By a similar
method the place £, to which body B ascends, will have to be corrected, and
the place /, to which that body must have ascended in a vacuum, will have
to be found. In this manner it is possible to make all our experiments, just
as if we were in a vacuum. Finally body A will have to be multiplied (so

to speak) by the chord of the arc TA, which represents its velocity, in order
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to get its motion in place A immediately before reflection, and then by the
chord of the arc ¢A in order to get its motion in place A immediately after
reflection. And thus body B will have to be multiplied by the chord of the arc
B/ in order to get its motion immediately after reflection. And by a similar
method, when two bodies are let go simultaneously from different places, the
motions of both will have to be found before as well as after reflection, and
then finally the motions will have to be compared with each other in order
to determine the effects of the reflection.

On making a test in this way with ten-foot pendulums, using unequal
as well as equal bodies, and making the bodies come together from very
large distances apart, say of eight or twelve or sixteen feet, I always found—
within an error of less than three inches in the measurements—that when the
bodies met each other directly, the changes of motions made in the bodies in
opposite directions were equal, and consequently that the action and reaction
were always equal. For example, if body A collided with body B, which was
at rest, with nine parts of motion and, losing seven parts, proceeded after
reflection with two, body B rebounded with those seven parts. If the bodies
met head-on, A with twelve parts of motion and B with six, and A rebounded
with two, B rebounded with eight, fourteen parts being subtracted from each.
Subtract twelve parts from the motion of A and nothing will remain; subtract
another two parts, and a motion of two parts in the opposite direction will be
produced; and so, subtracting fourteen parts from the six parts of the motion
of body B, eight parts will be produced in the opposite direction. But if the
bodies moved in the same direction, A more quickly with fourteen parts
and B more slowly with five parts, and after reflection A moved with five
parts, then B moved with fourteen, nine parts having been transferred from
A to B. And so in all other cases. As a result of the meeting and collision
of bodies, the quantity of motion—determined by adding the motions in the
same direction and subtracting the motions in opposite directions—was never
changed. T would attribute the error of an inch or two in the measurements
to the difficulty of doing everything with sufficient accuracy. It was difhcult
both to release the pendulums simultaneously in such a way that the bodies
would impinge upon each other in the lowest place AB, and to note the places
s and % to which the bodies ascended after colliding. But also, with respect
to the pendulous bodies themselves, errors were introduced by the unequal

density of the parts and by irregularities of texture arising from other causes.
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Further, lest anyone object that the rule which this experiment was de-
signed to prove presupposes that bodies are either absolutely hard or at least
perfectly elastic and thus of a kind which do not occur "naturally,” I add that
the experiments just described work equally well with soft bodies and with
hard ones, since surely they do not in any way depend on the condition of
hardness. For if this rule is to be tested in bodies that are not perfectly hard,
it will only be necessary to decrease the reflection in a fixed proportion to
the quantity of elastic force. In the theory of Wren and Huygens, absolutely
hard bodies rebound from each other with the velocity with which they have
collided. This will be affirmed with more certainty of perfectly elastic bodies.
In imperfectly elastic bodies the velocity of rebounding must be decreased
together with the elastic force, because that force (except when the parts of
the bodies are damaged as a result of collision, or experience some sort of ex-
tension such as would be caused by a hammer blow) is fixed and determinate
(as far as I can tell) and makes the bodies rebound from each other with a
relative velocity that is in a given ratio to the relative velocity with which they
collide. I have tested this as follows with tightly wound balls of wool strongly
compressed. First, releasing the pendulums and measuring their reflection, I
found the quantity of their elastic force; then from this force I determined
what the reflections would be in other cases of their collision, and the ex-
periments which were made agreed with the computations. The balls always
rebounded from each other with a relative velocity that was to the relative
velocity of their colliding as 5 to 9, more or less. Steel balls rebounded with
nearly the same velocity and cork balls with a slightly smaller velocity, while
with glass balls the proportion was roughly 15 to 16. And in this manner
the third law of motion—insofar as it relates to impacts and reflections—is
proved by this theory, which plainly agrees with experiments.

I demonstrate the third law of motion for attractions briefly as follows.
Suppose that between any two bodies A and B that attract each other any
obstacle is interposed so as to impede their coming together. If one body A is
more attracted toward the other body B than that other body B is attracted
toward the first body A, then the obstacle will be more strongly pressed by
body A than by body B and accordingly will not remain in equilibrium. The

stronger pressure will prevail and will make the system of the two bodies and

bb. Evidently “in natural compositions” or “in natural bodies.”
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the obstacle move straight forward in the direction from A toward B and,
in empty space, go on indefinitely with a motion that is always accelerated,
which is absurd and contrary to the first law of motion. For according to
the first law, the system will have to persevere in its state of resting or of
moving uniformly straight forward, and accordingly the bodies will urge the
obstacle equally and on that account will be equally attracted to each other.
I have tested this with a lodestone and iron. If these are placed in separate
vessels that touch each other and float side by side in still water, neither one
will drive the other forward, but because of the equality of the attraction in
both directions they will sustain their mutual endeavors toward each other,
and at last, having attained equilibrium, they will be at rest.
‘In the same way gravity is mutual between the earth and its parts. Let
the earth FI be cut by any plane EG into two parts EGF and EGI; then their
weights toward each other will be equal. For if
E H the greater part EGI is cut into two parts EGKH
and HKI by another plane HK parallel to the
first plane EG, in such a way that HKI is equal
to the part EFG that has been cut off earlier,
it is manifest that the middle part EGKH will

not preponderate toward either of the outer parts
but will, so to speak, be suspended in equilibrium
between both and will be at rest. Moreover, the outer part HKI will press
upon the middle part with all its weight and will urge it toward the other
outer part EGF, and therefore the force by which EGI, the sum of the parts
HKI and EGKH, tends toward the third part EGF is equal to the weight
of the part HKI, that is, equal to the weight of the third part EGF. And
therefore the weights of the two parts EGI and EGF toward each other
are equal, as I set out to demonstrate. And if these weights were not equal,
the whole earth, floating in an acther free of resistance, would yield to the
greater weight and in receding from it would go off indefinitely.c

As bodies are equipollent in collisions and reflections if their velocities
are inversely as their inherent forces [i.e., forces of inertia], so in the motions
of machines those agents [i.e., acting bodies] whose velocities (reckoned in the

direction of their forces) are inversely as their inherent forces are equipol-

cc. Ed. 1 lacks this.
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lent and sustain one another by their contrary endeavors. Thus weights are
equipollent in moving the arms of a balance if during oscillation of the bal-
ance they are inversely as their velocities upward and downward; that is,
weights which move straight up and down are equipollent if they are in-
versely as the distances between the axis of the balance and the points from
which they are suspended; but if such weights are interfered with by oblique
planes or other obstacles that are introduced and thus ascend or descend
obliquely, they are equipollent if they are inversely as the ascents and de-
scents insofar as these are reckoned with respect to a perpendicular, and this
is so because the direction of gravity is downward. Similarly, in a pulley or
combination of pulleys, the weight will be sustained by the force of the hand
pulling the rope vertically, which is to the weight (ascending either straight
up or obliquely) as the velocity of the perpendicular ascent to the velocity
of the hand pulling the rope. In clocks and similar devices, which are con-
structed out of engaged gears, the contrary forces that promote and hinder
the motion of the gears will sustain each other if they are inversely as the
velocities of the parts of the gears upon which they are impressed. The force
of a screw to press a body is to the force of a hand turning the handle as the
circular velocity of the handle, in the part where it is urged by the hand, is to
the progressive velocity of the screw toward the pressed body. The forces by
which a wedge presses the two parts of the wood that it splits are to the force
of the hammer upon the wedge as the progress of the wedge (in the direction
of the force impressed upon it by the hammer) is to the velocity with which
the parts of the wood yield to the wedge along lines perpendicular to the
faces of the wedge. And the case is the same for all machines.

The effectiveness and usefulness of all machines or devices consist wholly
in our being able to increase the force by decreasing the velocity, and vice
versa; in this way the problem is solved in the case of any working machine
or device: “To move a given weight by a given force” or to overcome any
other given resistance by a given force. For if machines are constructed in
such a way that the velocities of the agent [or acting body] and the resistant
[or resisting body] are inversely as the forces, the agent will sustain the re-
sistance and, if there is a greater disparity of velocities, will overcome that
resistance. Of course the disparity of the velocities may be so great that it can
also overcome all the resistance which generally arises from the friction of

contiguous bodies sliding over one another, from the cohesion of continuous
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bodies that are to be separated from one another, or from the weights of
bodies to be raised; and if all this resistance is overcome, the remaining force
will produce an acceleration of motion proportional to itself, partly in the
parts of the machine, partly in the resisting body.?

But my purpose here is not to write a treatise on mechanics. By these
examples I wished only to show the wide range and the certainty of the
third law of motion. For if the action of an agent is reckoned by its force
and velocity jointly, and if, similarly, the reaction of a resistant is reckoned
jointly by the velocities of its individual parts and the forces of resistance
arising from their friction, cohesion, weight, and acceleration, the action and
reaction will always be equal to each other in all examples of using devices
or machines. And to the extent to which the action is propagated through
the machine and ultimately impressed upon each resisting body, its ultimate

direction will always be opposite to the direction of the reaction.

d. Newton writes of “instrumentorum” (literally, “equipment”) and of “instrumentis mechanicis”

(literally, “mechanical instruments”), as well as “machinae.” See §5.7 of the Guide.
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SECTION 1

The method of first and ultimate ratios, for use in demonstrating whatr follows

79

Quantities, and also ratios of quantities, which in *any finite time® constantly tend Lemma 1

to equality, and which before the end of that time approach so close to one another
that their difference is less than any given quantity, become ultimately equal.

If you deny this, "let them become ultimately unequal, and® let their
ultimate difference be D. Then they cannot approach so close to equality that
their difference is less than the given difference D, contrary to the hypothesis.

If in any figure AacE, comprehended by the straight lines Aa and AE and the
curve acE, any number of parallelograms Ab, Be, Cd, ... are inscribed upon
equal bases AB, BC, CD, ... and have sides Bb,

Ce, Dd, ... parallel to the side Aa of the figure; 3 m

and if the parallelograms aKbl, bLem, cMdn, . .. b

are completed; if then the width of these parallel- L i
ograms is diminished and their number increased M o

indefinitely, I say that the ultimate ratios which the
inscribed figure AKSLcMdAD, the circumscribed
figure AalbmendoE, and the curvilinear figure

AabcedE have to one another are ratios of equality. A BF € D E

For the difference of the inscribed and circumscribed figures is the sum
of the parallelograms K/, Lm, M#n, and Do, that is (because they all have
equal bases), the rectangle having as base K& (the base of one of them) and
as altitude Aa (the sum of the altitudes), that is, the rectangle ABl/a. But
this rectangle, because its width AB is diminished indefinitely, becomes less
than any given rectangle. Therefore (by lem. 1) the inscribed figure and the
circumscribed figure and, all the more, the intermediate curvilinear figure

become ultimately equal. Q.E.D.

The same ultimate ratios are also ratios of equality when the widths AB, BC,

CD, ... of the parallelograms are unequal and are all diminished indefinitely.

aa. Ed. 1 has “a given time.”

bb. Ed. 1 lacks this.

Lemma 2
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-~

For let AF be equal to the greatest width,

K—p and let the parallelogram FAaf be completed.

L——r—% This parallelogram will be greater than the dif-
' ference of the inscribed and the circumscribed
d figures; but if its width AF is diminished indefi-
nitely, it will become less than any given rect-
angle. Q.E.D.

A BF € D E CoroLLary 1. Hence the ultimate sum of

the vanishing parallelograms coincides with the curvilinear figure in its every
part.

CoroLLary 2. And, all the more, the rectilinear figure that is compre-
hended by the chords of the vanishing arcs ab, be, cd, ... coincides ulti-
mately with the curvilinear figure.

CoroLLary 3. And it is the same for the circumscribed rectilinear figure
that is comprehended by the tangents of those same arcs.

CoroLrary 4. And therefore these ultimate figures (with respect to their

perimeters acE) are not rectilinear, but curvilinear limits of rectilinear figures.

If in two figures AacE and PprT two series of parallelograms are inscribed (as
above) and the number of parallelograms in both series is the same; and if, when
their widths are diminished indefinitely, the ultimate ratios of the parallelograms
in one figure to the corresponding parallelograms in the other are the same; then

1 say that the two figures AacE and PprT are to each other in that same ratio.

aq

A E P T

For as the individual parallelograms in the one figure are to the cor-
responding individual parallelograms in the other, so (by composition [or

componendo]) will the sum of all the parallelograms in the one become to
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the sum of all the parallelograms in the other, and so also the one figure
to the other—the first figure, of course, being (by lem. 3) to the first sum,
and the second figure to the second sum, in a ratio of equality. Q.E.D.
CoroLrary. Hence, if two quantities of any kind are divided in any
way into the same number of parts, and these parts—when their number is
increased and their size is diminished indefinitely—maintain a given ratio
to one another, the first to the first, the second to the second, and so on
in sequence, then the wholes will be to each other in the same given ratio.
For if the parallelograms in the figures of this lemma are taken in the same
proportion to one another as those parts, the sums of the parts will always
be as the sums of the parallelograms; and therefore, when the number of
parts and parallelograms is increased and their size diminished indefinitely,
the sums of the parts will be in the ultimate ratio of a parallelogram in one
figure to a corresponding parallelogram in the other, that is (by hypothesis),

in the ultimate ratio of part to part.

All the mutually corresponding sides—curvilinear as well as rectilinear—of similar
Sfigures are proportional, and the areas of such figures are as the squares of their

sides.

If any arc ACB, given in position, is subtended by the chord AB and at some point
A, in the middle of the continuous

curvature, is touched by the straight D 4
line AD, produced in both directions, S
and if then points A and B approach

each other and come together, I say R b
that the angle BAD contained by the

chord and the tangent will be indefi-

nitely diminished and will ultimately ,

vanish.
For ®if that angle does not vanish, the angle contained by the arc ACB
and the tangent AD will be equal to a rectilinear angle, and therefore the

curvature at point A will not be continuous, contrary to the hypothesis.?

aa. Ed. 1 has “produce AB to 4 and AD to &; then, since points A and B come together and thus
no part AB of Ad still lies within the curve, it is obvious that this straight line A4 will either coincide
with the tangent Ad or be drawn between the tangent and the curve. But the latter case is contrary to

the nature of curvature; therefore, the former obtains. Q.E.D.”
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With the same suppositions, I say that the ultimate ratios of the arc, the chord,
and the tangent to one another are ratios of equality.

For while point B approaches point A, let AB and AD be understood
always to be produced to the distant points & and d; and let 4d be drawn
parallel to secant BD. And let arc Acb be always similar to arc ACB. Then as

points A and B come together, the angle
A c x| o dAb will vanish (by lem. 6), and thus the
/:, &G &B straight lines Ad and Ad (which are al-

ways finite) and the intermediate arc Acé

will coincide and therefore will be equal. Hence, the straight lines AB and
AD and the intermediate arc ACB (which are always proportional to the
lines Ab and Ad and the arc Acd respectively) will also vanish and will
have to one another an ultimate ratio of equality. Q.E.D.

CororLary 1. Hence, if BF is drawn through B parallel to the tangent
and always cutting at F any straight line AF passing through A, then BF
will ultimately have a ratio of equality to the vanishing arc ACB, because, if
parallelogram AFBD is completed, BF always has a ratio of equality to AD.

Cororrary 2. And if through B and A additional straight lines BE,
BD, AF, and AG are drawn cutting the tangent AD and its parallel BF, the
ultimate ratios of all the abscissas AD, AE, BF, and BG and of the chord
and arc AB to one another will be ratios of equality.

CoroLLary 3. And therefore all these lines can be used for one another

interchangeably in any argumentation concerning ultimate ratios.

If the given straight lines AR and BR, together with the arc ACB, s chord AB,
and the tangent AD, constitute three triangles RAB, RACB, and RAD, and if
then points A and B approach each other, I say that the triangles as they vanish
are similar in their ultimate form, and that their ultimate ratio is one of equaliry.

D 4 For while point B approaches
~ c point A, let AB, AD, and AR be

understood always to be produced

%5 to the distant points &, d, and r, and
R rbd to be drawn parallel to RD;
and let arc Acb be always similar
to arc ACB. Then as points A and
r B come together, the angle 6Ad will
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vanish, and therefore the three triangles rAb, rAcb, and rAd, which are al-
ways finite, will coincide and on that account are similar and equal. Hence
also RAB, RACB, and RAD, which will always be similar and proportional
to these, will ultimately become similar and equal to one another. Q.E.D.
CororLary. And hence those triangles can be used for one another in-

terchangeably in any argumentation concerning ultimate ratios.

If the straight line AE and the curve ABC, both given in position, intersect each
other at a given angle A, and if BD and CE are drawn as ordinates to the straight
line AE at another given angle and meet the curve in B and C, and if then points
B and C simultaneously approach point A, I say that the areas of the triangles
ABD and ACE will ultimately be to each other as the squares of the sides.

For while points B and C approach point A, let AD be understood al-
ways to be produced to the distant points 4 and ¢, so that Ad and Ae are pro-
portional to AD and AE; and erect ordi-
nates db and ec parallel to ordinates DB
and EC and meeting AB and AC, pro-
duced, at 4 and ¢. Understand the curve
Abc to be drawn similar to ABC, and
the straight line Ag to be drawn touching

both curves at A and cutting the ordinates
DB, EC, db, and ec at F, G, f, and g&.
Then, with the length Ae remaining the

same, let points B and C come together
with point A; and as the angle cAg van-
ishes, the curvilinear areas Abdd and Ace will coincide with the rectilinear
areas Afd and Age, and thus (by lem. 5) will be in the squared ratio of the
sides Ad and Ae. But areas ABD and ACE are always proportional to these
areas, and sides AD and AE to these sides. Therefore areas ABD and ACE
also are ultimately in the squared ratio of the sides AD and AE. Q.E.D.

The spaces which a body describes when urged by any *finite* force, "whether

that force is determinate and immutable or is continually increased or continually

aa. Ed. 1 has “regular.”
bb. Ed. 1 lacks this.

Lemma 9

Lemma 10
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decreased,® are at the very beginning of the motion in the squared ratio of the
times.

Let the times be represented by lines AD and AE, and the generated
velocities by ordinates DB and EC; then the spaces described by these veloc-
ities will be as the areas ABD and ACE described by these ordinates, that
is, at the very beginning of the motion these spaces will be (by lem. 9) in the
squared ratio of the times AD and AE. Q.E.D.

Cororrary 1. And hence it is easily concluded that when bodies de-
scribe similar parts of similar figures in proportional times, the errors that
are generated by any equal forces similarly applied to the bodies, and that
are measured by the distances of the bodies from those points on the similar
figures at which the same bodies would arrive in the same proportional times
without these forces, are very nearly as the squares of the times in which they
are generated.

CororLary 2. But the errors that are generated by proportional forces
similarly applied to similar parts of similar figures are as the forces and the
squares of the times jointly.

‘CoroLLAry 3. The same is to be understood of any spaces which bod-
ies describe when different forces urge them. These spaces are, at the very
beginning of the motion, as the forces and the squares of the times joifitly.

CoroLrary 4. And thus the forces are as the spaces described at the very
beginning of the motion directly and as the squares of the times inversely.

CoroLrary 5. And the squares of the times are directly as the spaces

described and inversely as the forces.

If indeterminate quantities of different kinds are compared with one another
and any one of them is said to be directly or inversely as any other, the
meaning is that the first one is increased or decreased in the same ratio as
the second or as its reciprocal. And if any one of them is said to be as two or
more others, directly or inversely, the meaning is that the first is increased
or decreased in a ratio that is compounded of the ratios in which the others,
or the reciprocals of the others, are increased or decreased. For example, if

A is said to be as B directly and C directly and D inversely, the meaning is

cc. Ed. 1 lacks corols. 3-5 and scholium.
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.. . . 1 .
that A 1s increased or decreased in the same ratio as B x C x D’ that is, that

BC : . .
A and == are to each other in a given ratio.

In all curves having a finite curvature at the point of contact, the vanishing
subtense of the angle of contact is ultimately in the squared ratio of the subtense
of the conterminous arc.

Case 1. Let AB be the arc, AD its tangent, BD the subtense of the angle
of contact perpendicular to the tangent [angle BAD], and [the line] AB the
subtense [i.e., the conterminous chord} of the arc [AB].

Erect BG and AG perpendicular to this subtense AB 4, d_ D

‘
and tangent AD and meeting in G; then let points D, \Va

B

(sd

B, and G approach points 4, b, and g, and let ] be ©C
the intersection of lines BG and AG, which ultimately
occurs when points D and B reach A. It is evident that
the distance GJ can be less than any assigned distance.
And (from the nature of the circles passing through
points A, B, G and 4, 4, g) AB? is equal to AG x BD, J
and Ab? is equal to Ag x bd, and thus the ratio of AB? g
to Ab? is compounded of the ratios of AG to Ag and

BD to 4d. But since GJ can be taken as less than any assigned length, it can
happen that the ratio of AG to Ag differs from the ratio of equality by less
than any assigned difference, and thus that the ratio of AB? to A#* differs
from the ratio of BD to 6d by less than any assigned difference. Therefore,
by lem. 1, the ultimate ratio of AB? to A4 is the same as the ultimate ratio
of BD to 6d. Q.E.D.

Case 2. Now let BD be inclined to AD at any given angle, and the
ultimate ratio of BD to 44 will always be the same as before and thus the
same as AB? to Ab*. Q.E.D.

Case 3. And even when angle D is not given, if the straight line BD
converges to a given point or is drawn according to any other specification,
still the angles D and d (constructed according to the specification common
to both) will always tend to equality and will approach each other so closely
that their difference will be less than any assigned quantity, and thus will
ultimately be equal, by lem. 1; and therefore lines BD and 4d are in the

same ratio to each other as before. Q.E.D.
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Cororrary 1. Hence, since tangents AD and Ad, arcs AB and Aé, and
their sines BC and &¢ become ultimately equal to chords AB and A2, their
squares will also be ultimately as the subtenses BD and &4d.

*CoroLrary 2. The squares of these tangents, arcs, and sines are also
ultimately as the sagittas of the arcs, which bisect the chords and converge
to a given point. For these sagittas are as the subtenses BD and &d.

Cororrary 3. And thus the sagitta is in the squared ratio of the time
in which a body describes the arc with a given velocity.?

A d » CoroLrary 4. The rectilinear triangles ADB and
c \“‘ Adb are ulumately in the cubed ratio of the sides
c A B AD and Ad, and in the sesquialteral ratio [i.e., as
the % power] of the sides DB and db, inasmuch as
these triangles are in a ratio compounded of the ratios
of AD and DB to Ad and db. So also the triangles
ABC and Abc are ultimately in the cubed ratio of the
sides BC and éc. "The ratio that I call sesquialteral

is the halved of the tripled, namely, the one that is

Qe

compounded of the simple and the halved.?
CoroLrary 5. And since DB and 44 are ultmately parallel and in the
squared ratio of AD and Ad, the ultimate curvilinear areas ADB and Adb
will be (from the nature of the parabola) two-thirds of the rectilinear triangles
ADB and Adb; and the segments AB and Aé will be thirds of these same
triangles. And hence these areas and segments will be in the cubed ratio
of both of the tangents AD and Ad and of the chords AB and A and

their arcs.

But we suppose throughout that the angle of contact is neither infinitely
greater nor infinitely less than the angles of contact that circles contain with
their tangents, that is, that the curvature at point A is neither infinitely
small nor infinitely great—in other words, that the distance AJ is of a finite
magnitude. For DB can be taken proportional to AD?, in which case no
circle can be drawn through point A between tangent AD and curve AB,

and accordingly the angle of contact will be infinitely less than those of

aa. Ed. 1 lacks corols. 2 and 3.
bb. Ed. 1 lacks this sentence.
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circles. And, similarly, if DB is made successively proportional to AD*, AD’,
AD® AD’, ..., there will be a sequence of angles of contact going on to
infinity, any succeeding one of which is infinitely less than the preceding
one. And if DB is made successively proportional to AD?, AD”’, AD"*,
ADY*, AD”, AD™, ..., there will be another infinite sequence of angles
of contact, the first of which is of the same kind as those of circles, the second
infinitely greater, and any succeeding one infinitely greater than the preceding
one. Moreover, between any two of these angles a sequence of intermediate
angles, going on to infinity in both directions, can be inserted, any succeeding
one of which will be infinitely greater or smaller than the preceding one—
as, for example, if between the terms AD? and AD’ there were inserted
the sequence AD'”*, AD'", AD”*, AD”?, AD”’, AD¥*, AD'"*, AD'"",
AD'5 . ... And again, between any two angles of this sequence a new
sequence of intermediate angles can be inserted, differing from one another
by infinite intervals. And nature knows no limit.

What has been demonstrated concerning curved lines and the [plane]
surfaces comprehended by them is easily applied to curved surfaces and their
solid contents. In any case, I have presented these lemmas before the proposi-
tions in order to avoid the tedium of working out ‘lengthy® proofs by reductio
ad absurdum in the manner of the ancient geometers. Indeed, proofs are ren-
dered more concise by the method of indivisibles. But since the hypothesis
of indivisibles is Yproblematical? and this method is therefore accounted less
geometrical, I have preferred to make the proofs of what follows depend on
the ultimate sums and ratios of vanishing quantities and the first sums and
ratios of nascent quantities, that is, on the limits of such sums and ratios, and
therefore to present proofs of those limits beforehand as briefly as I could.
For the same result is obtained by these as by the method of indivisibles,
and we shall be on safer ground using principles that have been proved.
Accordingly, whenever in what follows I consider quantities as consisting of

particles or whenever I use curved line-elements [or minute curved lines] in

cc.  For “lengthy” (Lat. “longas”) ed. 1 and ed. 2 have “complicated” (Lat. “perplexas”), which Newton
inserted with his own hand into the manuscript of ed. 1. Motte gives “perplexed,” thus obviously using
ed. 2, and Cajori has “involved,” revealing that the Latin text was not consulted at this point. But in
A History of the Conceptions of Limits and Fluxions in Great Britain from Newton to Woodhouse (Chicago
and London: Open Court Publishing Co., 1919), Cajori notes on p. 5 that “in the third edition ‘longas’

o

takes the place of ‘perplexas,”” and on p. 8 he uses Thorp’s translation (“long”).

dd. Newton uses the adjective “durior,” which is traditionally translated by “rather harsh.”
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place of straight lines, I wish it always to be understood that I have in mind
not indivisibles but evanescent divisibles, and not sums and ratios of definite
parts but the limits of such sums and ratios, and that the force of such proofs
always rests on the method of the preceding lemmas.

It may be objected that there is no such thing as an ultimate proportion
of vanishing quantities, inasmuch as before vanishing the proportion is not
ultimate, and after vanishing it does not exist at all. But by the same argument
it could equally be contended that there is no ultimate velocity of a body
reaching a certain place at which the motion ceases; for before the body
arrives at this place, the velocity is not the ultimate velocity, and when it
arrives there, there is no velocity at all. But the answer is easy: to understand
the ultimate velocity as that with which a body is moving, neither before it
arrives at its ultimate place and the motion ceases, nor after it has arrived
there, but at the very instant when it arrives, that is, the very velocity with
which the body arrives at its ultimate place and with which the motion ceases.
And similarly the ultimate ratio of vanishing quantities is to be understood
not as the ratio of quantities before they vanish or after they have vanished,
but the ratio with which they vanish. Likewise, also, the first ratio of nascent
quantities is the ratio with which they begin to exist [or come into being].
And the first and the ultimate sum is the sum with which they begin and
cease to exist (or to be increased or decreased). There exists a limit which
their velocity can attain at the end of the motion, but cannot exceed. This is
their ultimate velocity. And it is the same for the limit of all quantities and
proportions that come into being and cease existing. And since this limit is
certain and definite, the determining of it is properly a geometrical problem.
But everything that is geometrical is legitimately used in determining and
demonstrating whatever else may be geometrical.

It can also be contended that if the ultimate ratios of vanishing quantities
are given, their ultimate magnitudes will also be given; and thus every quan-
tity will consist of indivisibles, contrary to what Euclid had proved concern-
ing incommensurables in the tenth book of his Elements. But this objection
is based on a false hypothesis. Those ultimate ratios with which quantities
vanish are not actually ratios of ultimate quantities, but limits which the ra-
tios of quantities decreasing without limit are continually approaching, and
which they can approach so closely that their difference is less than any given

quantity, but which they can never exceed and can never reach before the
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quantities are decreased indefinitely. This matter will be understood more
clearly in the case of quantities that are indefinitely great. If two quantities
whose difference is given are increased indefinitely, their ultimate ratio will
be given, namely the ratio of equality, and yet the ultimate or maximal quan-
tities of which this is the ratio will not on this account be given. Therefore,
whenever, to make things easier to comprehend, I speak in what follows of
quantities as minimally small or vanishing or ultimate, take care not to un-
derstand quantities that are determinate in magnitude, but always think of

quantities that are to be decreased without limit.
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SECTION 2

To find centripetal forces

Proposition 1°  The areas which bodies *made to move in orbits® describe by radii drawn to an
Theorem 1 unmoving center of forces lie in unmoving planes and are proportional to the

times.

A

Let the time be divided into equal parts, and in the first part of the
time let a body by its inherent force describe the straight line AB. In the
second part of the time, if nothing hindered it, this body would (by law 1)
go straight on to ¢, describing line Be equal to AB, so that—when radii AS,
BS, and ¢S were drawn to the center—the equal areas ASB and BSc¢ would
be described. But when the body comes to B, let a centripetal force act with
a single but great impulse and make the body deviate from the straight line
Bc and proceed in the straight line BC. Let ¢C be drawn parallel to BS and

meet BC at C; then, when the second part of the time has been completed,

the body (by corol. 1 of the laws) will be found at C in the same plane as

a. For a gloss on this proposition see the Guide, §10.8.
bb. In the statement of prop. 1, Newton uses the phrase “in gyros acta”; see the Guide, §2.4.
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triangle ASB. Join SC; and because SB and Cc are parallel, triangle SBC
will be equal to triangle SBc¢ and thus also to triangle SAB. By a similar
argument, if the centripetal force acts successively at C, D, E, ..., making
the body in each of the individual particles of time describe the individual
straight lines CD, DE, EF, ..., all these lines will lie in the same plane;
and triangle SCD will be equal to triangle SBC, SDE to SCD, and SEF to
SDE. Therefore, in equal times equal areas are described in an unmoving
plane; and by composition [or componendo], any sums SADS and SAFS of
the areas are to each other as the times of description. Now let the number
of triangles be increased and their width decreased indefinitely, and their
ultimate perimeter ADF will (by lem. 3, corol. 4) be a curved line; and
thus the centripetal force by which the body is continually drawn back from
the tangent of this curve will act uninterruptedly, while any areas described,
SADS and SAFS, which are always proportional to the times of description,
will be proportional to those times in this case. Q.E.D.

‘CororLary 1. In nonresisting spaces, the velocity of a body attracted
to an immobile center is inversely as the perpendicular dropped from that
center to the straight line which is tangent to the orbit. For the velocities
in those places A, B, C, D, and E are respectively as the bases of the equal
triangles AB, BC, CD, DE, and EF, and these bases are inversely as the
perpendiculars dropped to them.

Cororrary 2. If chords AB and BC of two arcs successively described
by the same body in equal times in nonresisting spaces are completed into the
parallelogram ABCV, and diagonal BV (in the position that it ultimately has
when those arcs are decreased indefinitely) is produced in both directions, it
will pass through the center of forces.

dCoroLLary 3. If chords AB, BC and DE, EF of arcs described in equal
times 1n nonresisting spaces are completed into parallelograms ABCV and
DEFZ, then the forces at B and E are to each other in the ultimate ratio
of the diagonals BV and EZ when the arcs are decreased indefinitely. For
the motions BC and EF of the body are (by corol. 1 of the laws) com-
pounded of the motions Bc, BV and Ef, EZ; but in the proof of this

cc. In ed. 1, corols. 1 and 2 are earlier versions of prop. 2, corols. 1 and 2, and the corols. 1 and 2 of
ed. 2 and ed. 3 are lacking.
dd. Ed. 1 lacks corols. 3—6.
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proposition BV and EZ, equal to Cc and Ff, were generated by the im-
pulses of the centripetal force at B and E, and thus are proportional to these
impulses.

CoroLrary 4. The forces by which any bodies in nonresisting spaces
are drawn back from rectilinear motions and are deflected into curved orbits
are to one another as those sagittas of arcs described in equal times which
converge to the center of forces and bisect the chords when the arcs are
decreased indefinitely. For these sagittas are halves of the diagonals with
which we dealt in corol. 3.

CoroLrary 5. And therefore these forces are to the force of gravity as
these sagittas are to the sagittas, perpendicular to the horizon, of the parabolic
arcs that projectiles describe in the same time.

CoroLrary 6. All the same things hold, by corol. 5 of the laws, when
the planes in which the bodies are moving, together with the centers of forces
that are situated in those planes, are not at rest but move uniformly straight

forward.?

Every body that moves in some curved line described in a plane and, by a radius
drawn to a point, either unmoving or moving uniformly forward with a rectilinear
motion, describes aveas around that point proportional to the times, is urged by a
centripetal force tending toward that same point.

Case 1. For every body that moves in a curved line is deflected from
a rectilinear course by some force acting upon it (by law 1). And that force
by which the body is deflected from a rectilinear course and in equal times
is made to describe, about an immobile point S, the equal minimally small
triangles SAB, SBC, SCD, ... , acts in place B along a line parallel to ¢C (by
book 1, prop. 40, of the Elements, and law 2), that is, along the line BS; and
in place C, the force acts along a line parallel to dD, that is, along the line
SC, . ... Therefore it always acts along lines tending toward that unmoving
point S. Q.E.D.

Case 2. And, by corol. 5 of the laws, it makes no difference whether
the surface on which the body describes a curvilinear figure is at rest or
whether it moves uniformly straight forward, together with the body, the
figure described, and the point S.
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3CoroLLaRY 1. °In nonresisting spaces or mediums, if the areas are not
proportional to the times, the forces do not tend toward the point where the
radii meet but deviate forward [or in consequentia] from it, that is, in the
direction toward which the motion takes place, provided that the description
of the areas is accelerated; but if it is retarded, they deviate backward [or in
antecedentia, i.e., in a direction contrary to that in which the motion takes
place].®

CoroLrLary 2. “In resisting mediums also, if the description of areas is
accelerated, the directions of the forces deviate from the point where the radii

meet in the direction toward which the motion takes place.* ¢

A body can be urged by a centripetal force compounded of several forces.
In this case the meaning of the proposition is that the force which is com-

pounded of all the forces tends toward point S. Further, if some force acts

aa. Ined. 1, prop. 2 has no corollaries. Corols. 1 and 2 of ed. 2 and ed. 3 are basically revised versions
of corols. 1 and 2 to prop. 1 of ed. 1.

bb. Ed. 1 has (as prop. 1, corol. 1): “In nonresisting mediums, if the areas are not proportional to the
times, the forces do not tend toward the point where the radii meet.”

cc. Ed. 1 has (as prop. 1, corol. 2): “In all mediums, if the description of areas is accelerated, the forces

do not tend toward the point where the radii meet but deviate forward [or in consequentia} from it.”
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continually along a line perpendicular to the surface described, it will cause
the body to deviate from the plane of its motion, but it will neither increase
nor decrease the quantity of the surface-area described and is therefore to be

ignored in the compounding of forces.

*Every body that, by a radius drawn to the center of a second body moving in any
way whatever, describes about that center areas that are proportional to the times
is urged by a force compounded of the centripetal force tending toward that second
body and of the whole accelerative force by which that second body is urged.

Let the first body be L, and the second body T; and (by corol. 6 of the
laws) if each of the two bodies is urged along parallel lines by a new force
that is equal and opposite to the force by which body T is urged, body L
will continue to describe about body T the same areas as before; but the
force by which body T was urged will now be annulled by an equal and
opposite force, and therefore (by law 1) body T, now left to itself, either will
be at rest or will move uniformly straight forward; and body L, since the
difference of the forces [i.e., the remaining force] is urging it, will continue
to describe areas proportional to the times about body T. Therefore, the
difference of the forces tends (by theor. 2) toward the second body T as center.
Q.E.D.

Cororrary 1. Hence, if a body L, by a radius drawn to another body T,
describes areas proportional to the times, and from the total force (whether
simple or compounded of several forces according to corol. 2 of the laws) by
which body L is urged there is subtracted (according to the same corol. 2 of
the laws) the total accelerative force by which body T is urged, the whole
remaining force by which body L is urged will tend toward body T as center.

CoroLrary 2. And if the areas are very nearly proportional to the times,

the remaining force will tend toward body T very nearly.

aa. In both the statement and the demonstration of the proposition and also in the corollaries, ed. 1
lacks letters to designate the two bodies. In Newton’s annotated copy of ed. 1, the letters L and T are
added in all of these parts of the proposition. In Newton’s interleaved copy of ed. 1, letters are added in
all of these sections but are then deleted from the statement of the proposition, where the letters written
in might have first been A and B and then been changed to L and T before being crossed out. In the
first sentence of the demonstration in this interleaved copy, the first two letters added at the beginning of
the sentence were originally A and B, which were then altered to L and T. It is these letters, L and T,

that were added elsewhere and were kept in the demonstration and corollaries.
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CororLary 3. And conversely, if the remaining force tends very nearly
toward body T, the areas will be very nearly proportional to the times.

Cororrary 4. If body L, by a radius drawn to another body T, describes
areas which, compared with the times, are extremely unequal, and body
T either is at rest or moves uniformly straight forward, either there is no
centripetal force tending toward body T or the action of the centripetal force
is mixed and compounded with the very powerful actions of other forces; and
the total force compounded of all the forces, if there are several, is directed
toward another center (whether fixed or moving). The same thing holds
when the second body moves with any motion whatever, if the centripetal

force is what remains after subtraction of the total force acting upon body T.*

Since the uniform description of areas indicates the center toward which that
force is directed by which a body is most affected and by which it is drawn
away from rectilinear motion and kept in orbit, why should we not in what
follows use uniform description of areas as a criterion for a center about

which all orbital motion takes place in free spaces?

The centripetal forces of bodies that describe different circles with uniform motion
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tend roward the centers of those circles and are to one another as the squares of Theorem 4

the arcs described in the same time divided by the radii of the circles.
*These forces tend toward the centers of the circles by prop. 2 and prop. 1,

corol. 2, and are to another as the versed sines of the arcs described in

aa. Ed. | has: “Let bodies B and 5, revolving in the circumferences of circles BD and 4d, de-
scribe arcs BD and 4d in the same time. Since by their inherent force alone they would describe
tangents BC and bc¢ equal to these arcs, it is obvious that cen- b c K
tripetal forces are the ones which continually draw the bod-
ies back from the tangents to the circumferences of the cir-
cles, and thus these forces are to each other in the first ratio
of the nascent spaces CD and cd, and they tend toward the
centers of the circles, by theor. 2, because the areas described

by the radii are supposed proportional to the times. [Newton
is using “first ratio” here in the special sense developed in
sec. 1 above, where he introduces the concept of “first” and
“ultimate” ratio.] Let figure k4 be similar to DCB and, by
lem. 5, line-element CD will be to line-element %z as arc BD

to arc b2, and also, by lem. 11, the nascent line-clement £k
will be to the nascent line-element dc as &2% to bd’ and, from the equality of the ratios [or ex

aequo), the nascent line-element DC will be to the nascent line-element de as BD x bt to bd? or,
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minimally small equal times, by prop. 1, corol. 4, that is, as the squares of
those arcs divided by the diameters of the circles, by lem. 7; and therefore,
since these arcs are as the arcs described in any equal times and the diameters
are as their radii, the forces will be as the squares of any arcs described in
the same time divided by the radii of the circles. Q.E.D.?

bCoroLrary 1. “Since those arcs are as the velocities of the bodies, the
centripetal forces will be in a ratio compounded of the squared ratio of the
velocities directly and the simple ratio of the radii inversely.©

CoroLLary 2. 4And since the periodic times are in a ratio compounded
of the ratio of the radii directly and the ratio of the velocities inversely, the
centripetal forces are in a ratio compounded of the ratio of the radii directly
and the squared ratio of the periodic times inversely.d

CoroLrary 3. Hence, if the periodic times are equal and therefore the

velocities are as the radii, the centripetal forces also will be as the radii; and

conversely.
b bd? b BD
what comes to the same thing, as BD x 2 to —— and thus (because the ratios i and — are equal)
—_ —_ .ED.”
as SB to S Q

Here, as in the very similar earlier formulation of De Moru and in a later handwritten revision of
ed. 1, the sentence specifying centrifugal forces has some ambiguity because the grammatical structure can
indicate that Newton is redefining these forces whereas the context shows that he is giving one of their
properties.

bb. Different versions of corols. 1, 2, 4, 5, and 6 exemplify interesting variations in basic mathematical
terminology, as is indicated in the following notes.

cc. In ed. 1 this corollary reads: “Hence the centripetal forces are as the squares of the velocities
divided by the radii of the circles.” In manuscript revisions of ed. 1 “Hence” is deleted and the sentence
begins with an additional clause: “Whence, since the arcs described in the same time are directly as the
velocities and inversely as the periodic times.” Ed. 2 reads: “Therefore, since those arcs are as the velocities
of the bodies, the centripetal forces are as the squares of the velocities divided by the radii of the circles;
that is, to express it as the geometers do, the forces are in a ratio compounded of the squared ratio of
the velocities directly and the simple ratio of the radii inversely.” And then, in ed. 3, Newton decides to
climinate the first formulation and express his result only “as the geometers do.”

dd. In ed. 1 this corollary reads: “And inversely as the squares of the periodic times divided by the
radii so are these forces to one another. That is (to express it as the geometers do), these forces are in a
ratio compounded of the squared ratio of the velocities directly and the simple ratio of the radii inversely,
and also in a ratio compounded of the simple ratio of the radii directly and the squared ratio of the
periodic times inversely.” The inversion in the first sentence suggests that originally it was not a full
sentence but a continuation from corol. 1, as comparison with the earlier De Mozu shows to be true. Ed. 2
reads: “And since the periodic times are in a ratio compounded of the ratio of the radii directly and the
ratio of the velocities inversely, the centripetal forces are inversely as the squares of the periodic times
divided by the radii of the circles: that is, in a ratio compounded of the ratio of the radii directly and the

squared ratio of the periodic times inversely.”
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CoroLLary 4. “If both the periodic times and the velocities are as the
square roots of the radii, the centripetal forces will be equal to one another;
and conversely.

CoroLLary 5. fIf the periodic times are as the radii, and therefore the
velocities are equal, the centripetal forces will be inversely as the radii; and
conversely.!

CoroLrary 6. EIf the periodic times are as the %2 powers of the radii,
and therefore the velocities are inversely as the square roots of the radii,
the centripetal forces will be inversely as the squares of the radii; and
conversely.® 8

PCoroLLary 7.  And universally, if the periodic time is as any power R”
of the radius R, and therefore the velocity is inversely as the power R"™! of
the radius, the centripetal force will be inversely as the power R?~! of the
radius; and conversely.

CoroLrary 8. In cases in which bodies describe similar parts of any
figures that are similar and have centers similarly placed in those figures,
all the same proportions with respect to the times, velocities, and forces fol-
low from applying the foregoing demonstrations to these cases. And the
application is made by substituting the uniform description of areas for uni-
form motion, and by using the distances of bodies from the centers for
the radii.

CororLary 9. From the same demonstration it follows also that the arc
which a body, in revolving uniformly in a circle with a given centripetal
force, describes in any time is a mean proportional between the diameter
of the circle and the distance through which the body would fall under the

action of the same given force and in the same time."

ee. In ed. | this corollary reads: “If the squares of the periodic times are as the radii, the centripetal
forces are equal, and the velocities are in the halved ratio of the radii, and vice versa.”

ff. In ed. 1 this corollary reads: “If the squares of the periodic times are as the squares of the radii,
the centripetal forces are inversely as the radii, and the velocities are equal, and vice versa.” After “of the
radii,” handwritten revisions of ed. 1 add “that is, the times [are] as the radii.”

gg. In ed. 1 this corollary reads: “If the squares of the periodic times are as the cubes of the radii,
the centripetal forces are inversely as the squares of the radii, but the velocities are in the halved ratio of
the radii, and vice versa.”

hh. Ed. 1 lacks corols. 7 and 9, and in corol. 8, which is numbered 7, it lacks “in those figures” in
the first sentence and all of the second sentence.
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"The case of corol. 6 holds for the heavenly bodies (as our compatriots Wren,
Hooke, and Halley have also found out independently). Accordingly, I have
decided that in what follows I shall deal more fully with questions relating to
the centripetal forces that decrease as the squares of the distances from centers
[i.e., centripetal forces that vary inversely as the squares of the distances).
Further, with the help of the preceding proposition and its corollaries the
proportion of a centripetal force to any known force, such as that of gravity,
may also be determined. 'For if a body revolves by the force of its gravity in a
circle concentric with the earth, this gravity is its centripetal force. Moreover,
by prop. 4, corol. 9, both the time of one revolution and the arc described in
any given time are given from the descent of heavy bodies) And by propo-
sitions of this sort Huygens in his excellent treatise On the Pendulum Clock
compared the force of gravity with the centrifugal forces of revolving bodies.
This proposition can also be demonstrated in the following manner. In
any circle, suppose that a polygon of any number of sides is described. And
if a body moving with a given velocity along the sides of the polygon is
reflected from the circle at each of the angles of the polygon, the force with
which it impinges upon the circle at each reflection will be as its velocity; and
therefore the sum of the forces in a given time will be as that velocity and the
number of reflections jointly; that is (if the sides and angles of the polygon
are specified), as the length described in that given time and increased or de-
creased in the ratio of the length to the radius of the above-mentioned circle,

that is, as the square of that length divided by the radius. And, therefore,

it. In the printer’s manuscript of ed. 1 the scholium originally consisted of a single sentence, corre-
sponding to the first sentence of ed. 3 but without the parenthesis containing the three proper names.
A separate sheet in this manuscript and the printed text of ed. 1 contain the entire scholium, but in
the addition to the manuscript the names are listed as Wren, Halley, and Hooke, whereas in ed. 1 they
appear in the order retained in ed. 3. We cannot tell by whose authority Hooke’s name was moved to a
position before Halley’s, but we can infer that the alteration was made in proof (and so presumably by
Halley), since the handwritten addition to the manuscript as sent by Newton to Halley and by Halley to
the printer is unaltered. It is very probable that Halley put Hooke’s name ahead of his own because he
did not want Hooke to be offended.

jj- Ed. 1 has: “For since the former force, in the time in which a body traverses arc BC, impels the
body through space CD, which at the very beginning of the motion is equal to the square of that arc BD
divided by the diameter of the circle, and since every body, by the same force continued always in the
same direction, describes spaces that are in the squared ratio of the times, that force, in the time in which
the revolving body describes any given arc, will cause the body as it advances directly forward to describe
a space equal to the square of that arc divided by the diameter of the circle and thus is to the force of
gravity as that space is to the space which a heavy body in falling describes in the same time.”
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if the sides are diminished indefinitely, the polygon will coincide with the
circle, and the sum of the forces in a given time will be as the square of the
arc described in the given time divided by the radius. This is the centrifu-
gal force with which the body urges the circle; and the opposite force, with
which the circle continually repels the body toward the center, is equal to

this centrifugal force.

Given, in any places, the velocity with which a body describes a given curve when
acted on by forces tending toward some common center, to find that center.

Let the curve so described be touched in three points P, Q, and R by three
straight lines PT, TQV, and VR, meeting in T and V. Erect PA, QB, and
RC perpendicular to the tangents and

inversely proportional to the velocities B v
of the body at the points P, Q, and
R from which the perpendiculars are
erected—that is, so that PA is to QB o
as the velocity at Q to the velocity at
P, and QB to RC as the velocity at R
to the velocity at Q. Through the ends
A, B, and C of the perpendiculars draw AD, DBE, and EC at right angles
to those perpendiculars, and let them meet in D and E; then TD and VE,

P T

when drawn and produced, will meet in the required center S.

For the perpendiculars dropped from center S to tangents PT and QT
are (by prop. 1, corol. 1) inversely as the velocities of the body at points P
and Q, and therefore, by the construction, as the perpendiculars AP and BQ
directly, that is, as the perpendiculars dropped from point D to the tangents.
Hence it is easily gathered that points S, D, and T are in one straight line.
And, by a similar argument, the points S, E, and V are also in one straight
line; and therefore the center S is at the point where the straight lines TD
and VE meet. Q.E.D.

YIf in a nonresisting space a body revolves in any orbit about an immobile center
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Proposition 6°

and describes any just-nascent arc in a minimally small time, and if the sagitta of Theorem 5

a. For a gloss on this proposition see the Guide, §10.8.
bb. In ed. I there is a different prop. 6, with its proof and single unnumbered corollary. In ed. 2
and ed. 3 the statement of this proposition becomes corol. 1 to the new prop. 6 and the single corollary
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the arc is understood to be drawn so as to bisect the chord and, when produced,
to pass through the center of forces, the centripetal force in the middle of the arc
will be as the sagitta directly and as the time twice [i.e., as the square of the time]
inversely.

For the sagitta in a given time is as the force (by prop. 1, corol. 4), and
if the time is increased in any ratio, then—because the arc is increased in the
same ratio—the sagitta is increased in that ratio squared (by lem. 11, corols. 2
and 3) and therefore is as the force once and the time twice {i.e., as the force
and the square of the time jointly]. Take away from both sides the squared
ratio of the time, and the force will become as the sagitta directly and as the
time twice [or as the square of the time] inversely. Q.E.D.

This proposition is also easily proved by lem. 10, corol. 4.

CoroLrary 1. If a body P, revolving
about a center S, describes the curved line
APQ, while the straight line ZPR touches
the curve at any point P; and QR, paral-
lel to distance SP, is drawn to the tangent

from any other point Q of the curve, and

9 A

v QT 1is drawn perpendicular to that dis-
SP? x QT*
tance SP; then the centripetal force will be inversely as the solid Q—RQ’

provided that the magnitude of that solid is always taken as that which it
has ultimately when the points P and Q come together. For QR is equal to
the sagitta of an arc that is twice the length of arc QP, with P being in the
middle; and twice the triangle SQP (or SP x QT) is proportional to the time
in which twice that arc is described and therefore can stand for the time.
CoroLLary 2. By the same argument the centripetal force is inversely as
SY? x QP?
QR

the solid , provided that SY is a perpendicular dropped from the

becomes corol. 5. The proof in ed. 1 reads as follows: “For in the indefinitely small figure QRPT the
nascent line-element QR, if the time is given, is as the centripetal force (by law 2) and, if the force is
given, is as the square of the time (by lem. 10) and thus, if neither is given, is as the centripetal force
and the square of the time jointly, and thus the centripetal force is as the line-element QR directly and
the square of the time inversely. But the time is as the area SPQ, or its double SP x QT, that is, as SP
and QT jointly, and thus the centripetal force is as QR directly and SP? times QT? inversely, that is, as
SP? x QT?
QR

that the line PS does not extend below the line SA, so that there is no point V.)

inversely. Q.E.D.” (The figure for prop. 6 in ed. 1 is the same as in eds. 2 and 3, except
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center of forces to the tangent PR of the orbit. For the rectangles SY x QP
and SP x QT are equal.

Cororrary 3. If the orbit APQ either is a circle or touches a circle
concentrically or cuts it concentrically—that is, if it makes with the circle an
angle of contact or of section which is the least possible—and has the same
curvature and the same radius of curvature at point P, and if the circle has a
chord drawn from the body through the center of forces, then the centripetal

2
force will be inversely as the solid SY? x PV. For PV is equal to %I-;{—

CororLary 4. Under the same conditions [as corol. 3], the centripetal
force is directly as the square of the velocity and inversely as the chord. For,
by prop. 1, corol. 1, the velocity is inversely as the perpendicular SY.

CoroLLary 5. Hence, if there is given any curvilinear figure APQ and
on it there is given also point S, to which the centripetal force is continually
directed, the law of the centripetal force can be found by which any body
P, continuvally drawn away from a rectilinear course, will be kept in the
perimeter of that figure and will describe it as an orbit. That is, the solid
SP? x QT?

QR

to be found by computation. We will give examples of this in the following
b

or the solid SY? x PV, inversely proportional to this force, is

problems.

Let a body revolve in the circumference of a circle; it is required to find the law Proposition 7
of the centripetal force tending toward any given poin. Problem 2
Let VQPA be the circum-
ference of the circle, S the given
point toward which the force
tends as to its center, P the body
revolving in the circumference, Q

the place to which it will move

next, and PRZ the tangent of
the circle at the previous place.
Through point S draw chord PV;
and when the diameter VA of
the circle has been drawn, join

AP; and to SP drop perpendicular
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QT, which when produced meets the tangent PR at Z; and finally through
point Q draw LR parallel to SP and meeting both the circle at L and the
tangent PZ at R. Then because the triangles ZQR, ZTP, and VPA are
similar, RP? (that is, QR x RL) will be to QT? as AV? to PV?. And therefore

QR x RL x PV? | ) . Sp?
is equal to QT?. Multiply these equals by OR and, the

AV?
SP? x PV3
points P and Q coming together, write PV for RL. Thus ——A?ﬂ——- will
SP? x QT?
become equal to T Therefore (by prop. 6, corols. 1 and 5), the

SP? x PV?
AV?
inversely as the square of the distance or altitude SP and the cube of the

chord PV jointly. Q.E.L

centripetal force is inversely as , that is (because AV? is given),

Another solution

Draw SY perpendicular to the tangent PR produced; then, because tri-
angles SYP and VPA are similar, AV will be to PV as SP to SY, and thus

SP x PV P2 x PV3

S
will be equal to SY, and INE will be equal to SY* x PV.

And therefore (by prop. 6, corols. 3 and 5), the centripetal force is inversely

SP? x PV3 ] o .
as v that is, because AV is given, inversely as SP? x PV?. Q.E.L
CoroLrary 1. Hence, if the given point S to which the centripetal force
always tends is located in the circumference of this circle, say at V, the
centripetal force will be inversely as the fifth power of the altitude SP.
Cororrary 2. The force by which body
P revolves in the circle APTV around the

center of forces S is to the force by which the

same body P can revolve in the same circle
and in the same periodic time around any
other center of forces R as RP? x SP to the

cube of the straight line SG, which is drawn

from the first center of forces S to the tangent
of the orbit PG and is parallel to the distance of the body from the second

center of forces. For by the construction of this proposition the first force is
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to the second force as RP? x PT? to SP? x PV?3, that is, as SP x RP? to

SP? x PV?
PT3
CororrLary 3. The force by which body P revolves in any orbit around

, or (because the triangles PSG and TPV are similar) to SG>.

the center of forces S is to the force by which the same body P can revolve
in the same orbit and in the same periodic time around any other center of
forces R as the solid SP x RP>—contained under the distance of the body
from the first center of forces S and the square of its distance from the second
center of forces R—to the cube of the straight line SG, which is drawn from
the first center of forces S to the tangent of the orbit PG and is parallel to
the distance RP of the body from the second center of forces. For the forces
in this orbit at any point of it P are the same as in a circle of the same

curvature.

Let a body move in the semicircle PQA ; it is required to find the law of the
centripetal force for this effect, when the centripetal force tends toward a point S
so distant that all the lines PS and RS drawn to it can be considered parallel.

From the center C of the semicircle

draw the semidiameter CA, intersecting R 5

those parallels perpendicularly at M and z ([

N, and join CP. Because triangles CPM,

PZT, and RZQ are similar, CP? is to ALK MJ C
PM? as PR? to QT?, and from the na-

ture of a circle PR? is equal to the rect- sl s

angle QR x (RN + QN), or, the points
P and Q coming together, to the rectangle QR x 2PM. Therefore, CP? is
QT? . 2PM?
1s equal to ——,
CP?2

. Therefore (by prop. 6, corols. 1 and

to PM? as QR x 2PM to QT?, and thus

QT2 x SP? | o ZPM x SP?
——— t ———
OR 1s equal to Cp

2PM? x SP?
5), the centripetal force is inversely as ————

CP?
| . 2SPY .
determinate® ratio <) inversely as PM”°. Q.E.L

and

, that is (neglecting the

2

The same is easily gathered also from the preceding proposition.

a. CP is the radius of the semicircle, and SP may be considered constant.
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And by a not very different argument, a body will be found to move in an
ellipse, or even in a hyperbola or a parabola, under the action of a centripetal
force that is inversely as the cube of the ordinate tending toward an extremely

distant center of forces.

Let a body revolve in a spiral PQS intersecting all its radii SP, SQ, ..., ata

Problem 4 given angle; 1t is required to find the law of the centripetal force tending toward

Lemma 12

the center of the spiral.

v s T )

Let the indefinitely small angle PSQ be given, and because all the angles

are given, the species [i.e., the ratio of all the parts] of the figure SPRQT
2

T
Q R is as QT, that is

T
will be given. Therefore, the ratio OR is given, and

(because the species of the figure is given), as SP. Now change the angle PSQ

in any way, and the straight line QR subtending the angle of contact QPR
2

T
will be changed (by lem. 11) as the square of PR or QT. Therefore, %R

. : . QT? x SP? |
will remain the same as before, that is, as SP. And therefore ——— 1s

OR

as SP, and thus (by prop. 6, corols. 1 and 5) the centripetal force is inversely
as the cube of the distance SP. Q.E.L

Another solution

The perpendicular SY dropped to the tangent, and the chord PV of the
circle cutting the spiral concentrically, are to the distance SP in given ratios;
and thus SP3 is as SY? x PV, that is (by prop. 6, corols. 3 and 5), inversely

as the centripetal force.

All the parallelograms described about any conjugate diameters of a given ellipse
or hyperbola are equal to one another.

This is evident from the Conics.
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Let a body revolve in an ellipse; it is required to find the law of the centripetal
force tending toward the center of the ellipse.

B R

Let CA and CB be the semiaxes of the ellipse, GP and DK other conju-
gate diameters, PF and QT perpendiculars to those diameters, Qv an ordi-
nate to diameter GP; then, if parallelogram QuvPR is completed, the rectan-
gle Py x vG will (from the Conics®) be to Qv? as PC? to CD?, and (because
triangles QuvT and PCF are similar) Qz? is to QT? as PC? to PF?, and,

when these ratios are combined, the rectangle Py x vG is to QT? as PC? to

QT? ) CD? x PF? )
as PC° to —————. Write
Pv PC?

QR for Pr and (by lem. 12) BC x CA for CD x PF, and also (points P
and Q coming together) 2PC for vG, and, multiplying the extremes and

CD? and PC? to PF?; that is, vG is to

T? x PC? 2BC? x CA?
means together, QT x PC will become equal to ——————. Therefore
QR PC
2BC? x CA?

(by prop. 6, corol. 5), the centripetal force is as inversely, that

PC

1
is (because 2BC? x CA? is given), as PC inversely, that is, as the distance PC

directly. Q.E.L

a. Concerning this reference to “the Conics,” see the Guide, §10.10.
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Another solution

On the straight line PG take a point «# on the other side of point T,
so that Tu is equal to Tv; then take #V such that it is to #G as DC? is to
PC?. And since (from the Conics) Qv? is to Pv x vG as DC? to PC?, Qu?
will be equal to Pv x «V. Add the rectangle «P X Pv to both sides, and the
square of the chord of arc PQ will come out equal to the rectangle VP x Py;
and therefore a circle that touches the conic section at P and passes through
point Q will also pass through point V. Let points P and Q come together,
and the ratio of «V to vG, which is the same as the ratio of DC? to PC?,

will become the ratio of PV to PG or PV to 2PC; and therefore PV will
2
- Accordingly, the force under the action of which body P
2

be equal to

revolves in the ellipse will (by prop. 6, corol. 3) be as x PF? inversely,

that is (because 2DC? X PF? is given), as PC directly. Q.E.I

CoroLLary 1. Therefore, the force is as the distance of the body from
the center of the ellipse; and, conversely, if the force is as the distance, the
body will move in an ellipse having its center in the center of forces, or
perhaps it will move in a circle, into which an ellipse can be changed.

CororLary 2.  And the periodic times of the revolutions made in all el-
lipses universally around the same center will be equal. For in similar ellipses
those times are equal (by prop. 4, corols. 3 and 8), while in ellipses having a
common major axis they are to one another as the total areas of the ellipses
directly and the particles of the areas described in the same time inversely;
that is, as the minor axes directly and the velocities of bodies in their princi-
pal vertices inversely; that is, as those minor axes directly and the ordinates
to the same point of the common axis inversely; and therefore (because of

the equality of the direct and inverse ratios) in the ratio of equality.

Scholium If the center of the ellipse goes off to infinity, so that the ellipse turns into
a parabola, the body will move in this parabola, and the force, now tending
toward an infinitely distant center, will prove to be uniform. This is Galileo’s
theorem. And if (by changing the inclination of the cutting plane to the
cone) the parabolic section of the cone turns into a hyperbola, the body will
move in the perimeter of the hyperbola, with the centripetal force turned

into a centrifugal force. And just as in a circle or an ellipse, if the forces
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tend toward a figure’s center located in the abscissa, and if the ordinates are
increased or decreased in any given ratio or even if the angle of the inclination
of the ordinates to the abscissa is changed, these forces are always increased
or decreased in the ratio of the distances from the center, provided that the
periodic times remain equal; so also in all figures universally, if the ordinates
are increased or decreased in any given ratio or the angle of inclination of
the ordinates is changed in any way while the periodic time remains the
same, the forces tending toward any center located in the abscissa are, for
each individual ordinate, increased or decreased in the ratio of the distances

from the center.
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SECTION 3

The motion of bodies in eccentric conic sections

Proposition 11° Ler a body revolve in an ellipse; it is required to find the law of the centripetal

Problem 6 force tending toward a focus of the ellipse.
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Let S be a focus of the ellipse. Draw SP cutting both the diameter DK
of the ellipse in E and the ordinate Qv in x, and complete the parallelogram
QxPR. It is evident that EP is equal to the semiaxis major AC because when
line HI is drawn parallel to EC from the other focus H of the ellipse, ES
and EI are equal because CS and CH are equal; so that EP is the half-sum
of PS and PI, that is (because HI and PR are parallel and angles IPR and
HPZ are equal), the half-sum of PS and PH (which taken together equal
the whole axis 2AC). Drop QT perpendicular to SP, and if L denotes the

2

C
),LxQRwillbetoLva

principal latus rectum of the ellipse (or

as QR to Py, that is, as PE or AC to PC; and LL x Pr will be to Go x ¢P as

a. For a gloss on this proposition see the Guide, §10.9.
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L to Gv; and® Gv x vP will be to Qv? as PC? to CD?; and (by lem. 7, corol.
2) the ratio of Q¢? to Qx?, with the points Q and P coming together, is the
ratio of equality; and Qx? or Q27 is to QT? as EP? to PF, that is, as CA’ to
PF? or (by lem. 12) as CD? to CB?. And when all these ratios are combined,
L x QR will be to QT? as AC x L x PC? x CD?, or as 2CB? x PC? x CD?
to PC x Gv x CD? x CB?, or as 2PC to Gv. But with the points Q and P

coming together, 2PC and Gv are equal. Therefore, L x QR and QT?, which
2

are proportional to these, are also equal. Multiply these equals by @, and
SP? x QT?

QR
and 5) the centripetal force is inversely as L. x SP?, that is, inversely as the
square of the distance SP. Q.E.L

L x SP? will become equal to . Therefore (by prop. 6, corols. 1

Another solution

The force which tends toward the center of the ellipse, and by which
body P can revolve in that ellipse, is (by prop. 10, corol. 1) as the distance CP
of the body from the center C of the ellipse; hence, if CE is drawn parallel to
the tangent PR of the ellipse and if CE and PS meet at E, then the force by

which the same body P can revolve around any other point S of the ellipse
3

will (by prop. 7, corol. 3) be as ﬁ; that is, if point S is a focus of the ellipse,

and therefore PE is given, this force will be inversely as SP>. Q.E.IL

This solution could be extended to the parabola and the hyperbola as
concisely as in prop. 10, but because of the importance of this problem and
its use in what follows, it will not be too troublesome to confirm each of

these other cases by a separate demonstration.

Let a body move in a hyperbola; it is required to find the law of the centripetal
Jorce tending toward the focus of the figure.

Let CA and CB be the semiaxes of the hyperbola, PG and KD other
conjugate diameters, PF a perpendicular to the diameter KD, and Qv an
ordinate to the diameter GP. Draw SP cutting diameter DK in E and ordi-
nate Qv in x, and complete the parallelogram QRPx. It is evident that EP is

b. This result is given in prop. 10 with reference to “the Conics™; see the Guide, §10.10.
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K

equal to the transverse semiaxis AC, because when line HI is drawn parallel
to EC from the other focus H of the hyperbola, ES and EI are equal because
CS and CH are equal; so that EP is the half-difference of PS and PI, that
is (because IH and PR are parallel and the angles IPR and HPZ are equal),
of PS and PH, the difference of which equals the whole axis 2AC. Drop

QT perpendicular to SP. Then, if L denotes the principal latus rectum of
2

C
C),LXQRwillbetoLvaasQRtoPu,orPx

2B
the hyperbola (or

to Pu, that is (because the triangles Pxv and PEC are similar), as PE to PC,
or AC to PC. L x Pr will also be to Gv x Pr as L to Gv; and (from the
nature of conics) the rectangle Gv x vP will be to Qv? as PC? to CD?; and
(by lem. 7, corol. 2) the ratio of Qz* to Qx?, the points Q and P coming
together, comes to be the ratio of equality; and Qx? or Q2% is to AT? as EP?
to PF?, that is, as CA? to PF?, or (by lem. 12) as CD? to CB?; and if all these
ratios are combined, L. x QR will be to QT? as AC x L. x PC? x CD? or
2CB? x PC? x CD? to PC x Gv x CD? x CB?, or as 2PC to Gu. But, the points
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P and Q coming together, 2PC and Gv are equal. Therefore, L x QR and

QT?, which are proportional to these, are also equal. Multiply these equals by

Sp? SP? x QT?
——, and L x SP? will become equal to ——Q Therefore (by prop. 6,
QR QR

corols. 1 and 5), the centripetal force is inversely as L x SP?, that is, inversely

as the square of the distance SP. Q.E.L

Another solution

Find the force that tends from the center C of the hyperbola. This will

come out proportional to the distance CP. And hence (by prop. 7, corol. 3)
3

the force tending toward the focus S will be as Spr that is, because PE is
given, inversely as SP?. Q.E.L
It is shown in the same way that if this centripetal force is turned into a

centrifugal force, a body will move in the opposite branch of the hyperbola.

In a parabola the latus rectum belonging to any vertex is four times the distance
of that vertex from the focus of the figure.

This 1s evident from the Conics.

A perpendicular dropped from the focus of a parabola to its tangent is a mean
proportional between the distance of the focus from the point of contact and its
distance from the principal vertex of the figure.

For let AP be the parabola, S its focus, A the principal vertex, P the
point of contact, PO an ordinate to the principal diameter, PM a tangent
meeting the principal diameter in M,
and SN a perpendicular line from
the focus to the tangent. Join AN,
and because MS and SP, MN and
NP, and MA and AO are equal, the
straight lines AN and OP will be
parallel; and hence triangle SAN will

M A § 0

be right-angled at A and similar to the equal triangles SNM and SNP; there-
fore, PS is to SN as SN to SA. Q.E.D.

CoroLLary 1. PS? is to SN? as PS to SA.

CoroLLaRy 2. And because SA is given, SN? is as PS.
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CororLary 3. And the point where any tangent PM meets the straight
line SN, which is drawn from the focus perpendicular to that tangent, occurs

in the straight line AN, which touches the parabola in the principal vertex.

Let a body move in the perimeter of a parabola; it is required to find the law of
the centripetal force tending toward a focus of the figure.

Let the construction be the same as in lem. 14, and let P be the body in
the perimeter of the parabola; from the place Q into which the body moves
next, draw QR parallel and QT perpendicular to SP and draw Qv parallel
to the tangent and meeting both the diameter PG in v and the distance SP
in x. Now, because triangles Pxv and SPM are similar and the sides SM
and SP of the one are equal, the sides Px or QR and Pv of the other are
equal. But from the Conics the square of the ordinate Qv is equal to the
rectangle contained by the latus rectum and the segment Py of the diameter,
that is (by lem. 13), equal to the rectangle 4PS x Py, or 4PS x QR, and, the
points P and Q coming together, the ratio of Qv to Qx (by lem. 7, corol.
2) becomes the ratio of equality. Therefore, in this case Qx? is equal to the
rectangle 4PS x QR. Moreover (because triangles QxT and SPN are similar),
Qx? is to QT? as PS? to SN?, that is (by lem. 14, corol. 1), as PS to SA,
that is, as 4PS X QR to 4SA X QR, and hence (by Euclid’s Elements, book

2

5, prop. 9) QT? and 4SA X QR are equal. Multiply these equals by &,
SP? x QT?

and —-alig— will become equal to SP? x 4SA; and therefore (by prop.

6, corols. 1 and 5) the centripetal force is inversely as SP? x 4SA, that is,
because 4SA is given, inversely as the square of the distance SP. Q.E.L
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CororLary 1. From the last three propositions it follows that if any
body P departs from the place P along any straight line PR with any velocity
whatever and is at the same time acted upon by a centripetal force that is
inversely proportional to the square of the distance of places from the center,
this body will move in some one of the conics having a focus in the center
of forces; and conversely. For if the focus and the point of contact and the
position of the tangent are given, a conic can be described that will have
a given curvature at that point. But the curvature is given from the given
centripetal force and velocity of the body; and two different orbits touching
each other cannot be described with the same centripetal force and the same
velocity.

Cororrary 2. If the velocity with which the body departs from its place
P is such that the line-element PR can be described by it in some minimally
small particle of time, and if the centripetal force is able to move the same

body through space QR in that same ume, this body will move in some
2

conic whose principal latus rectum is the quantity which ultimately

results when the line-elements PR and QR are diminished indefinitely. In
these corollaries I include the circle along with the ellipse, but not for the

case where the body descends straight down to a center.

If several bodies revolve about a common center and the centripetal force is in-
versely as the square of the distance of places from the center, I say that the
principal latera recta of the orbits are as the squares of the areas which the bodies
describe in the same time by radii drawn to the center.

For (by prop. 13, corol. 2) the latus rectum L is equal to the quan-
2

tity that results ultimately when points
P and Q come together. But the minimally
small line QR is in a given time as the gen-

erating centripetal force, that is (by hypoth-
2

Is as

esis), inversely as SP2. Therefore,

QT? x SP?, that is, the latus rectum L is as
the square of the area QT x SP. Q.E.D.
CororLary. Hence the total area of the ellipse and, proportional to it,

the rectangle contained by the axes is as the square root of the latus rectum
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and as the periodic time. For the total area is as the area QT x SP, which is

described in a given time, multiplied by the periodic time.

Under the same suppositions as in prop. 14, I say that the squares of the periodic
times in ellipses are as the cubes of the major axes.

For the minor axis is a mean proportional between the major axis and the
latus rectum, and thus the rectangle contained by the axes is as the square
root of the latus rectum and as the % power of the major axis. But this
rectangle (by prop. 14, corol.) is as the square root of the latus rectum and
as the periodic time. Take away from both sides [i.e., divide through by] the
square root of the latus rectum, and the result will be that the squares of the
periodic times are as the cubes of the major axes. Q.E.D.

CoroLLary. Therefore the periodic times in ellipses are the same as in

circles whose diameters are equal to the major axes of the ellipses.

Under the same suppositions as in prop. 15, if straight lines are drawn to the bodies
in such a way as to touch the orbits in the places where the bodies are located,
and if perpendiculars are dropped from the common focus to these tangents, I say
that the velocities of the bodies are inversely as the perpendiculars and directly as
the square roots of the principal latera recta.

From focus S to tangent PR drop per-

pendicular SY, and the velocity of body P
YZ
will be inversely as the square root of I

W

For this velocity is as the minimally small
arc PQ described in a given particle of time,
that is (by lem. 7), as the tangent PR, that
is—because the proportion of PR to QT is
as SP to SY—as ———————SP :YQT, or as SY inversely and SP x QT directly; and
SP x QT is as the area described in the given time, that is (by prop. 14), as
the square root of the latus rectum. Q.E.D.

CororLary 1. The principal latera recta are as the squares of the per-
pendiculars and as the squares of the velocities.

CoroLLary 2. The velocities of bodies at their greatest and least dis-

tances from the common focus are inversely as the distances and directly as
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the square roots of the principal latera recta. For the perpendiculars are now
the distances themselves.

CoroLLary 3. And thus the velocity in a conic, at the greatest or least
distance from the focus, is to the velocity with which the body would move
in a circle, at the same distance from the center, as the square root of the
principal latus rectum is to the square root of twice that distance.

CororLary 4. The velocities of bodies revolving in ellipses are, at their
mean distances from the common focus, the same as those of bodies revolving
in circles at the same distances, that is (by prop. 4, corol. 6), inversely as the
square roots of the distances. For the perpendiculars now coincide with the
semiaxes minor, and these are as mean proportionals between the distances
and the latera recta. Compound this ratio [of the semiaxes] inversely with
the square root of the ratio of the latera recta directly, and it will become the
square root of the ratio of the distances inversely.

CoroLLary 5. In the same figure, or even in different figures whose
principal latera recta are equal, the velocity of a body is inversely as the
perpendicular dropped from the focus to the tangent.

CoroLrary 6. In a parabola the velocity is inversely as the square root
of the distance of the body from the focus of the figure; in an ellipse the
velocity varies in a ratio that is greater than this, and in a hyperbola in a
ratio that is less. For (by lem. 14, corol. 2) the perpendicular dropped from
the focus to the tangent of a parabola is as the square root of that distance.
In a hyperbola the perpendicular is smaller, and in an ellipse greater, than in
this ratio.

CoroLLary 7. In a parabola the velocity of a body at any distance from
the focus is to the velocity of a body revolving in a circle at the same distance
from the center as the square root of the ratio of 2 to 1; in an ellipse it is
smaller and in a hyperbola greater than in this ratio. For by corol. 2 of this
proposition the velocity in the vertex of a parabola is in this ratio, and—by
corol. 6 of this proposition and by prop. 4, corol. 6—the same proportion is
kept at all distances. Hence, also, in a parabola the velocity everywhere is
equal to the velocity of a body revolving in a circle at half the distance; in
an ellipse it is smaller and in a hyperbola greater.

CororLary 8. The velocity of a body revolving in any conic is to the

velocity of a body revolving in a circle at a distance of half the principal latus
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rectum of the conic as that distance is to the perpendicular dropped from the
focus to the tangent of the conic. This is evident by corol. 5.

CororLary 9. Hence, since (by prop. 4, corol. 6) the velocity of a body
revolving in this circle is to the velocity of a body revolving in any other circle
inversely in the ratio of the square roots of the distances, it follows from the
equality of the ratios [or ex aequo] that the velocity of a body revolving in a
conic will have the same ratio to the velocity of a body revolving in a circle
at the same distance that a mean proportional between that common distance
and half of the principal latus rectum of the conic has to the perpendicular

dropped from the common focus to the tangent of the conic.

Supposing that the centripetal force is inversely proportional to the square of the
distance of places from the center and that the absolute quantity of this force is
known, it is requived to find the line which a body describes when going forth

from a given place with a given velocity along a given straight line.

B

Let the centripetal force tending toward a point S be such that a body p
revolves by its action in any given orbit pg, and let its velocity in the place p
be found out. Let body P go forth from place P along line PR with a given
velocity and thereupon be deflected from that line into a conic PQ under
the compulsion of the centripetal force. Therefore the straight line PR will
touch this conic at P. Let some straight line pr likewise touch the orbit pg
at p, and if perpendiculars are understood to be dropped from S to these
tangents, the principal latus rectum of the conic will (by prop. 16, corol. 1)
be to the principal latus rectum of the orbit in a ratio compounded of the

squares of the perpendiculars and the squares of the velocities and thus is
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given. Let L be the latus rectum of the conic. The focus S of the conic is
also given. Let angle RPH be the complement of angle RPS to two right
angles [i.e., the supplement of angle RPS]; then the line PH, on which the
other focus H is located, will be given in position. Drop the perpendicular
SK to PH and understand the conjugate semiaxis BC to be erected; then
SP? — 2KP x PH + PH? = SH? = 4CH? = 4BH? — 4BC* = (SP + PH)* —
L x (SP+PH) = SP?42SP x PH+PH? — L x (SP+PH). Add to each side
2(KP x PH) — SP? =PH? 4L x (SP+PH), and L x (SP + PH) will become
= 2(SP x PH) 4 2(KP x PH), or SP+PH will be to PH as 2SP+2KP wo L.
Hence PH is given in length as well as in position. Specifically, if the velocity
of the body at P is such that the latus rectum L is less than 2SP + 2KP, PH
will lie on the same side of the tangent PR as the line PS; and thus the figure
will be an ellipse and will be given from the given foci S and H and the
given principal axis SP 4+ PH. But if the velocity of the body is so great that
the latus rectum L is equal to 2SP 4 2KP, the length PH will be infinite; and
accordingly the figure will be a parabola having its axis SH parallel to the
line PK, and hence will be given. But if the body goes forth from its place
P with a still greater velocity, the length PH will have to be taken on the
other side of the tangent; and thus, since the tangent goes between the foci,
the figure will be a hyperbola having its principal axis equal to the difference
of the lines SP and PH, and hence will be given. For if the body in these
cases revolves in a conic thus found, it has been demonstrated in props. 11,
12, and 13 that the centripetal force will be inversely as the square of the
distance of the body from the center of forces S; and thus the line PQ is
correctly determined, which a body will describe under the action of such a
force, when it goes forth from a given place P with a given velocity along a
straight line PR given in position. Q.E.F.

CoroLrary 1. Hence in every conic, given the principal vertex D, the
latus rectum L, and a focus S, the other focus H is given when DH is taken
to DS as the latus rectum is to the difference between the latus rectum and
4DS. For the proportion SP 4+ PH to PH as 2SP + 2KP to L in the case of
this corollary becomes DS 4+ DH to DH as 4DS to L and, by separation [or
dividendo], becomes DS to DH as 4DS — L to L.

CoroLrLary 2. Hence, given the velocity of a body in the principal vertex
D, the orbit will be found expeditiously, namely, by taking its latus rectum to

twice the distance DS as the square of the ratio of this given velocity to the
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velocity of a body revolving in a circle at a distance DS (by prop. 16, corol.
3), and then taking DH to DS as the latus rectum to the difference between
the latus rectum and 4DS.

CoroLrary 3. Hence also, if a body moves in any conic whatever and
is forced out of its orbit by any impulse, the orbit in which it will afterward
pursue its course can be found. For by compounding the body’s own motion
with that motion which the impulse alone would generate, there will be
found the motion with which the body will go forth from the given place of
impulse along a straight line given in position.

CoroLLary 4. And if the body is continually perturbed by some force
impressed from outside, its trajectory can be determined very nearly, by not-
ing the changes which the force introduces at certain points and estimating

from the order of the sequence the continual changes at intermediate places.?

Scholium If a body P, under the action of a centripetal force tending toward any given

point R, moves in the perimeter of any
P

given conic whatever, whose center is
C, and the law of the centripetal force
is required, let CG be drawn parallel to
the radius RP and meeting the tangent
PG of the orbit at G; then the force

(by prop. 10, corol. 1 and schol; and

P p s 1 3) W lll bC as
rop. ’/. COrol. .
RP

a. The sense of corol. 4 is thar Newton can determine “the changes which the [impressed] force
will make at certain points” and, by interpolation, estimate the changes continually made at intermediary
points.
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To find elliptical, parabolic, and hyperbolic orbits, given a focus

If from the two foci S and H of any ellipse or hyperbola two straight lines SV
and HV are inclined to any third point V, one of the lines HV being equal to the
principal axis of the figure, that is, to the axis on which the foci lie, and the other
line SV being bisected in T by TR perpendicular to i, then the perpendicular
TR will touch the conic at some point; and conversely, if TR touches the conic,
HV will be equal to the principal axis of the figure.

For let the perpendicular TR cut the straight v,
line HV (produced, if need be) in R; and join SR. °
Because TS and TV are equal, the straight lines R
SR and VR and the angles TRS and TRV will 3 H
be equal. Hence the point R will be on the conic, and the perpendicular TR

will touch that conic, and conversely. Q.E.D.

Given a focus and the principal axes, to describe elliptical and hyperbolic trajec-
tories that will pass through given points and will touch straight lines given in
position.

Let S be the common focus of the figures, AB the length of the prin-
cipal axis of any trajectory, P a point through which the trajectory ought to
pass, and TR a straight line which it ought

to touch. Describe the circle HG with P as P » b
center and AB — SP as radius if the orbit is :
an ellipse, or AB + SP if it is a hyperbola. H
Drop the perpendicular ST to the tangent GF

TR and produce ST to V so that TV is

equal to ST, and with center V and radius AB describe the circle FH. By
this method, whether two points P and p are given, or two tangents TR
and zr, or a point P and a tangent TR, two circles are to be described. Let
H be their common intersection, and with foci S and H and the given axis,
describe the trajectory. I say that the problem has been solved. For the tra-
jectory described (because PH + SP in an ellipse, or PH — SP in a hyperbola,

a. For Newton’s statement of the reason for including secs. 4 and 5 in book 1, see book 3, prop. 41

(p. 901).
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is equal to the axis) will pass through point P and (by lem. 15) will touch
the straight line TR. And by the same argument, this trajectory will pass
through the two points P and p or will touch the two straight lines TR and
tr. QEF

To describe about a given focus a parabolic trajectory that will pass through given
points and will touch straight lines given in position.

Let S be the focus, P a given point, and TR a tangent of the trajectory

to be described. With center P and radius PS describe the circle FG. Drop

the perpendicular ST from the focus to the tangent

/ and produce ST to V, so that TV is equal to ST.

In the same manner, if a second point p is given,

a second circle fg is to be described; or if a second

tangent ¢ is given, or a second point v is to be found,

then the straight line IF is to be drawn touching the

two circles FG and fg if the two points P and p are

given, or passing through the two points V and v if
the two tangents TR and ¢r are given, or touching the circle FG and passing
through the point V if the point P and tangent TR are given. To FI drop
the perpendicular SI, and bisect it in K; and with axis SK and principal
vertex K describe a parabola. I say that the problem has been solved. For,
because SK and IK are equal, and SP and FP are equal, the parabola will
pass through point P; and (by lem. 14, corol. 3) because ST and TV are equal
and the angle STR is a right angle, the parabola will touch the straight line
TR. QEF

To describe about a given focus any trajectory, given in species [i.e., of given
eccentricity], that will pass through given points and will touch straight lines
given in position.

Case 1. Given a focus S, let it be required to describe a trajectory ABC
through two points B and C. Since the trajectory is given in species, the

ratio of the principal axis to the distance

L between the foci will be given. Take KB
K to BS in this ratio and also LC to CS.
With centers B and C and radii BK and
c CL, describe two circles, and drop the
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perpendicular SG to the straight line KL, which touches those circles in K
and L, and cut SG in A and a so that GA is to AS, and Ga to 4§, as
KB is to BS; and describe a trajectory with axis Aa and vertices A and a.
I say that the problem has been solved. For let H be the other focus of the
figure described, and since GA is to AS as Ga to 4S5, then by separation
Jor dividendo] Ga — GA or Aa to aS — AS or SH will be in the same
ratio and thus in the ratio which the principal axis of the figure that was
to be described has to the distance between its foci; and therefore the figure
described is of the same species as the one that was to be described. And
since KB to BS and LC o CS are in the same ratio, this figure will pass
through the points B and C, as is manifest from the Conics.

Case 2. Given a focus S, let it be required to describe a trajectory which
somewhere touches the two straight lines TR and #7. Drop the perpendiculars

ST and St from the focus to the tangents

and produce ST and Sz to V and v, so
that TV and #v are equal to TS and ¢S.
Bisect Vv in O, and erect the indefinite

v e,

perpendicular OH, and cut the straight
line VS, indefinitely produced, in K and
k, so that VK is to KS and V% to £S as
the principal axis of the trajectory to be
described is to the distance between the foci. On the diameter K% describe a
circle cutting OH in H; and with foci S and H and a principal axis equal to
VH, describe a trajectory. I say that the problem has been solved. For bisect
K% in X, and draw HX, HS, HV, and Hv. Since VK is to KS as V% to
kS and, by composition [or componendo], as VK + V& to KS + %S and,
by separation [or dividendo], as V& — VK to &S — KS, that is, as 2VX to
2KX and 2KX to 28X and thus as VX to HX and HX to SX, the triangles
VXH and HXS will be similar, and therefore VH will be to SH as VX to
XH and thus as VK to KS. Therefore the principal axis VH of the trajectory
which has been described has the same ratio to the distance SH between its
foci as the principal axis of the trajectory to be described has to the distance
between its foci and is therefore of the same species. Besides, since VH and
vH are equal to the principal axis and since VS and ¢S are perpendicularly
bisected by the straight lines TR and zr, it is clear (from lem. 15) that these
straight lines touch the trajectory described. Q.E.F.

I21
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Case 3. Given a focus S, let it be required to describe a trajectory which
will touch the straight line TR in a given point R. Drop the perpendicular
ST to the straight line TR and pro-

duce ST to V so that TV is equal to

ST. Join VR and cut the straight line

VS, indefinitely produced, in K and %
Y so that VK is to SK and Vk to Sk
k  as the principal axis of the ellipse to

be described is to the distance between
the foci; and after describing a circle on the diameter K%, cut the straight
line VR, produced, in H, and with foci S and H and a principal axis equal
to the straight line VH, describe a trajectory. I say that the problem has
been solved. For, from what has been demonstrated in case 2, it is evi-
dent that VH is to SH as VK to SK and thus as the principal axis of
the trajectory which was to be described to the distance between its foci, and
therefore the trajectory which was described is of the same species as the
one which was to be described, while it is evident from the Conics that
the straight line TR by which the angle VRS is bisected touches the trajec-
tory at point R. Q.E.F.

Case 4. About a focus S let it be now required to describe a trajectory
APB which touches the straight line TR and passes through any point P
outside the given tangent and which is similar to the figure apb described
with principal axis @ and foci s and A. Drop the perpendicular ST to the
tangent TR and produce ST to V so that TV is equal to ST. Next make
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the angles 4sg and shq equal to the angles VSP and SVP; and with center
g and a radius that is to @b as SP to VS, describe a circle cutting the figure
apb in p. Join sp and draw SH such that it is to sA as SP is to sp and
makes the angle PSH equal to the angle psA and the angle VSH equal to
the angle psg. Finally with foci S and H and with principal axis AB equaling
the distance VH, describe a conic. I say that the problem has been solved.
For if SV is drawn such that it is to sp as s4 is to sg, and makes the angle
vsp equal to the angle Asq and the angle vsh equal to the angle psg, the
triangles svA and spg will be similar, and therefore vA will be to pg as s
is to sgq, that is (because the triangles VSP and bsq are similar), as VS is to
SP or ab o pq. Therefore vh and ab are equal. Furthermore, because the
triangles VSH and vs4 are similar, VH is to SH as v4 to s4; that is, the axis
of the conic just described is to the distance between its foci as the axis @b
to the distance s between the foci; and therefore the figure just described
is similar to the figure apb. But because the triangle PSH is similar to the
triangle psh, this figure passes through point P; and since VH is equal to
the axis of this figure and VS is bisected perpendicularly by the straight line
TR, the figure touches the straight line TR. Q.E.F.

From three given points to draw three slanted straight lines to a fourth point,
which is not given, when the differences between the lines either are given or
are nil.

Case 1. Let the given points be A, B,
and C, and let the fourth point be Z, which
it is required to find; because of the given
difference of the lines AZ and BZ, point
Z will be located in a hyperbola whose foci
are A and B and whose principal axis is
the given difference. Let the axis be MN.
Take PM to MA as MN is to AB, and let
PR be erected perpendicular to AB and let
ZR be dropped perpendicular to PR; then, B
from the nature of this hyperbola, ZR will
be to AZ as MN is to AB. By a similar process, point Z will be located in
another hyperbola, whose foci are A and C and whose principal axis is the

difference between AZ and CZ; and QS can be drawn perpendicular to AC,
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whereupon, if the normal ZS is dropped to QS from any point Z of this
hyperbola, ZS will be to AZ as the difference between AZ and CZ is to AC.
Therefore the ratios of ZR and ZS to AZ are given, and consequently the
ratio of ZR and ZS$ to each other is given; and thus if the straight lines RP
and SQ meet in T, and TZ and TA are drawn, the figure TRZS will be
given in species, and the straight line TZ, in which point Z is somewhere
located, will be given in position. The straight line TA will also be given, as
will also the angle ATZ; and because the ratios of AZ and TZ to ZS are
given, their ratio to each other will be given; and hence the triangle ATZ,
whose vertex is the point Z, will be given. Q.E.L

Case 2. If two of the three lines, say AZ and BZ, are equal, draw the
straight line TZ in such a way that it bisects the straight line AB; then find
the triangle ATZ as above.

Case 3. If all three lines are equal, point Z will be located in the center
of a circle passing through points A, B, and C. Q.E.L

The problem dealt with in this lemma is also solved by means of Apol-

lonius’s book On Tangencies, restored by Viete.

To describe about a given focus a trajectory that will pass through given points
and will touch straight lines given in position.

Let a focus S, a point P, and a tangent TR be given; the second focus
H is to be found. Drop the perpendicular ST to the tangent and produce
ST to Y so that TY is equal to ST, and YH
will be equal to the principal axis. Join SP
P and also HP, and SP will be the difference

between HP and the principal axis. In this

way, if more tangents TR or more points P

S \:“H are given, there will always be the same num-

ber of lines YH or PH, which can be drawn

from the said points Y or P to the focus H, and which either are equal to the

axes or differ from them by given lengths SP and so either are equal to one

another or have given differences; and hence, by lem. 16, that second focus

H is given. And once the foci are found, together with the length of the axis

(which length is either YH, or PH + SP if the trajectory is an ellipse, but
PH — SP if the trajectory is a hyperbola), the trajectory is found. Q.E.L
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When the trajectory is a hyperbola, I do not include the opposite branch of Scholium
the hyperbola as part of the trajectory. For a body going on with an un-
interrupted motion cannot pass from one branch of a hyperbola into the

other.

A

RUE -

7

The case in which three points are given is solved more speedily as
follows: Let the points B, C, and D be given. Join BC and also CD and
produce them to E and F so that EB is to EC as SB to SC and FC is to FD
as SC to SD. Draw EF, and drop the normals SG and BH to EF produced,
and on GS indefinitely produced take GA to AS and Ga wo 4S as HB is
to BS; then A will be the vertex and Aa the principal axis of the trajectory.
According as GA is greater than, equal to, or less than AS, this trajectory
will be an ellipse, a parabola, or a hyperbola, with point a in the first case
falling on the same side of the line GF as point A, in the second case going
off to infinity, in the third falling on the other side of the line GF. For if
the perpendiculars CI and DK are dropped to GF, IC will be to HB as EC
to EB, that is, as SC to SB; and by alternation [or alternando], IC will be
to SC as HB to SB or as GA to SA. And by a similar argument it will be
proved that KD is to SD in the same ratio. Therefore points B, C, and D
lie in a conic described about the focus S in such a way that all the straight
lines drawn from the focus S to the individual points of the conic are to the
perpendiculars dropped from the same points to the straight line GF in that
given ratio.

By a method that is not very different, the eminent geometer La Hire

presents a solution of this problem in his Conics, book 8, prop. 25.
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SECTIONS

To find orbits when neither focus is given

If four straight lines PQ, PR, PS, and PT are drawn at given angles from any
point P of a given conic to the four indefinitely produced sides AB, CD, AC, and
DB of some quadrilateral ABDC inscribed in the conic, one line being drawn to
each side, the recrangle PQ X PR of the lines drawn to two opposite sides will
be in a given ratio to the rectangle PS X PT of the lines drawn to the other two
opposite sides.

Case 1. Let us suppose first that the lines drawn to opposite sides are
parallel to either one of the other sides, say PQ and PR parallel to side
AC, and PS and PT parallel to side AB.
In addition, let two of the opposite sides,
say AC and BD, be parallel to each other.
Then the straight line which bisects those

C

parallel sides will be one of the diameters

of the conic and will bisect RQ also. Let
O be the point in which RQ is bisected,
Vo iy B and PO will be an ordinate to that di-

K ameter. Produce PO to K so that OK is
equal to PO, and OK will be the ordinate on the opposite side of the diame-

ter. Therefore, since points A, B, P, and K are on the conic and PK cuts AB
at a given angle, the rectangle PQ x QK will be to the rectangle AQ x QB
in a given ratio (by book 3, props. 17, 19, 21, and 23, of the Conics of Apol-
lonius). But QK and PR are equal, inasmuch as they are differences of the
equal lines OK and OP, and OQ and OR, and hence also the rectangles
PQ x QK and PQ x PR are equal, and therefore the rectangle PQ x PR
is to the rectangle AQ x QB, that is, to the rectangle PS x PT, in a given
ratio. Q.E.D.

Case 2. Let us suppose now that the opposite sides AC and BD of the
quadrilateral are not parallel. Draw Bd parallel to AC, meeting the straight
line ST in ¢ and the conic in d. Join Cd cutting PQ in 7; and draw DM
parallel to PQ, cutting Cd in M and AB in N. Now, because triangles BTz
and DBN are similar, Bz or PQ is to T¢ as DN to NB. So also Rr is to
AQ or PS as DM to AN. Therefore, multiplying the antecedents by the
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antecedents and the consequents by the c
consequents, the rectangle PQ x Rr is
to the rectangle PS X Tt as the rectangle
ND x DM is to the rectangle AN X NB,
and (by case 1) as the rectangle PQ x
Pr is to the rectangle PS x Pz, and by

separation [or dividendo] as the rectangle
PQ x PR is to the rectangle PS x PT.
QED.

Case 3. Let us suppose finally that the four lines PQ, PR, PS, and PT

are not parallel to the sides AC and AB, but are inclined to them in any

A

way whatever. In place of these lines draw
Pg and Pr parallel to AC, and Ps and Pt
parallel to AB; then because the angles of
the triangles PQg, PRr, PSs, and PT? are
given, the ratios of PQ to Pg, PR to Pr,
PS to Ps, and PT to Pt will be given, and
thus the compound ratios of PQ x PR to
Pg x Pr, and PS x PT to Ps x Pz. Bug,

by what has been demonstrated above, the

c

A - B

ratio of Pg X Pr to Ps x Pt is given, and therefore also the ratio of PQ x PR
to PS x PT. Q.E.D.

With the same suppositions as in lem. 17, if the rectangle PQ x PR of the lines Lemma 18
drawn to two opposite sides of the quadrilateral is in a given ratio to the rectangle
PS x PT of the lines drawn to the other two sides, the point P from which the
lines are drawn will lie on a conic circumscribed about the quadrilateral.
Suppose that a conic is described through points A, B, C, D, and some
one of the infinite number of points P, say p; I say that point P always
lies on this conic. If you deny it, join AP cutting this conic in some point
other than P, if possible, say in &. Therefore, if from these points p and
b the straight lines pgq, pr, ps, pt and bk, bn, bf, bd are drawn at given
angles to the sides of the quadrilateral, then 6% x bn will be to bf x bd
as (by lem. 17) pg x pr is to ps X pt, and as (by hypothesis) PQ x PR is
to PS x PT. Also, because the quadrilaterals 64Af and PQAS are simi-
lar, bk is to bf as PQ to PS. And therefore, if the terms of the previous
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proportion are divided by the corre-
sponding terms of this one, &n will
be to &d as PR to PT. Therefore
the angles of the quadrilateral Dnbd
are respectively equal to the angles of
quadrilateral DRPT and the quadri-
laterals are similar, and consequently
their diagonals D& and DP coincide.

And thus & falls upon the intersec-

tion of the straight lines AP and
DP and accordingly coincides with
point P. And therefore point P, wherever it is taken, falls on the assigned
conic. Q.E.D.

CoroLrary. Hence if three straight lines PQ, PR, and PS are drawn at
given angles from a common point P to three other straight lines given in
position, AB, CD, and AC, one line being drawn to each of the other lines,
and if the rectangle PQ x PR of two of the lines drawn is in a given ratio
to the square of the third line PS, then the point P, from which the straight
lines are drawn, will be located in a conic which touches lines AB and CD
at A and C, and conversely. For let line BD coincide with line AC, while
the position of the three lines AB, CD, and AC remains the same, and let
line PT also coincide with line PS; then the rectangle PS x PT will come to
be PS?, and the straight lines AB and CD, which formerly cut the curve in
points A and B, C and D, can no longer cut the curve in those points which

now coincide, but will only touch it.

The term “conic” [or “conic section”] is used in this lemma in an extended
sense, so as to include both a rectilinear section passing through the vertex
of a cone and a circular section parallel to the base. For if point p falls on a
straight line which joins points A and D or C and B, the conic section will
turn into twin straight lines, one of which is the straight line on which point
p falls and the other the straight line which joins the other two of the four
points,

If two opposite angles of the quadrilateral, taken together, are equal to

two right angles, and the four lines PQ, PR, PS, and PT are drawn to its
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sides either perpendicularly or at any
equal angles, and the rectangle PQ x
PR of two of the lines drawn is equal
to the rectangle PS x PT of the other
two, the conic will turn out to be a
circle. The same will happen if the
four lines are drawn at any angles and
the rectangle PQ x PR of two of the

lines drawn is to the rectangle PS x

PT of the other two as the rectangle
of the sines of the angles S and T, at
which the last two lines PS and PT are drawn, is to the rectangle of the
sines of the angles Q and R, at which the first two lines PQ and PR are
drawn.

In the other cases the locus of point P will be some one of the three
figures that are commonly called conic sections [or conics]. In place of the
quadrilateral ABCD, however, there can be substituted a quadrilateral whose
two opposite sides decussate each other as diagonals do. But also, one or two
of the four points A, B, C, and D can go off to infinity, and in this way the
sides of the figure which converge to these points can turn out to be parallel,
in which case the conic will pass through the other points and will go off to

infinity in the direction of the parallels.

To find a point P such that if four straight lines PQ, PR, PS, and PT are drawn
Jfrom it at given angles to four other straight lines AB, CD, AC, and BD given in
position, one line being drawn from the point P to each of the four other straight
lines, the rectangle PQ X PR of two of the lines drawn will be in a given ratio
to the rectangle PS X PT of the other two.

Let lines AB and CD, to which the two straight lines PQ and PR
containing one of the rectangles are drawn, meet the other two lines
given in position in the points A, B, C, and D. From some one of
them A draw any straight line AH, in which you wish point P to be
found. Let this line AH cut the opposite lines BD and CD—that is,
BD in H and CD in [—and because all the angles of the figure are
given, the ratios of PQ to PA and PA to PS, and consequently the ratio
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of PQ w PS, will be given. On
eliminating this ratio of PQ to PS
from the given ratio of PQ x PR
to PS x PT, the ratio of PR to PT
will be given; and when the given
ratios of PI to PR and PT to PH
are combined, the ratio of PI to
PH, and thus the point P, will be
given. Q.E.L

CoroLLary 1. Hence also a tangent can be drawn to any point D of

the locus of the infinite:number of points P. For when points P and D come
together—that is, when AH is drawn through the point D—the chord PD
becomes a tangent. In this case the ultimate ratio of the vanishing lines IP
and PH will be found as above. Therefore, draw CF parallel to AD and
meeting BD in F and being cut in E in that ultimate ratio; then DE will
be a tangent, because CF and the vanishing line IH are parallel and are
similarly cut in E and P.

CoroLLarY 2.2 Hence also, the lo-
cus of all the points P can be deter-
mined. Through any one of the points
A, B, C, D—say A—draw the tan-
gent AE of the locus, and through any
other point B draw BF parallel to the

tangent and meeting the locus in F.

The point F will be found by means
of lem. 19. Bisect BF in G, and the

indefinite line AG, when drawn, will

be the position of the diameter to which BG and FG are ordinates. Let
this line AG meet the locus in H, and AH will be the diameter or la-

a. In the index prepared by Cotes for ed. 2 and retained in ed. 3, this corollary is keyed under
“Problematis” (“of the problem”) and characterized as follows: “Geometrical synthesis of the classical
problem of four lines made famous by Pappus and attempted by Descartes through algebraic compu-
tation.” As this description makes explicit, Newton’s rejection of “an [analytical] computation” in favor
of “a geometrical synthesis” is directed at Descartes, who reduced the four-line locus to a curve defined
algebraically by an equation of the second degree. See The Mathematical Papers of Isaac Newton, ed. D. T.
Whiteside (Cambridge: Cambridge University Press, 1967-1981), 6:252-254 n. 35, 4:291 n. 17, 4:274-282,
esp. 274-276.
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tus transversum [1.e., transverse diameter] to which the latus rectum will be
as BG? to AG x GH. If AG nowhere meets the locus, the line AH be-

ing indefinitely produced, the locus will be a parabola, and its latus rectum
2

corresponding to the diameter AG will be . But if AG does meet the

locus somewhere, the locus will be a hyperbola when points A and H are
situated on the same side of G, and an ellipse when G is between points
A and H, unless angle AGB happens to be a right angle and additionally
BG? is equal to the rectangle AG x GH, in which case the locus will be
a circle.

And thus there is exhibited in this corollary not an [analytical] com-
putation but a geometrical synthesis, such as the ancients required, of the
classical problem of four lines, which was begun by Euclid and carried on

by Apollonius.

If any parallelogram ASPQ touches a conic in points A and P with rtwo of its
opposite angles A and P, and if the sides AQ and AS, indefinitely produced, of
one of these angles meet the said conic in B and C, and if from the meeting
points B and C two straight lines BD and CD are drawn to any fifth point D
of the conic, meeting the other two indefinitely produced sides PS and PQ of the
parallelogram in T and R; then PR and PT, the parts cut off from the sides, will
always be ro each other in a given ratio. And conversely, if the parts which are
cut off are to each other in a given ratio, the point D will touch a conic passing
through the four points A, B, C, and P.

Case 1. Join BP and also
CP, and from point D draw two
straight lines DG and DE, the
first of which (DG) is parallel to
AB and meets PB, PQ, and CA
at H, I, and G, while the second
(DE) is parallel to AC and meets
PC, PS,and ABat F, K, and E; G-
then (by lem. 17) the rectangle
DE xDF will be to the rectangle
DG x DH in a given ratio. But
PQ is to DE (or IQ) as PB to

s
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HB and thus as PT to DH; and by alternation [or alternando] PQ is to PT
as DE to DH. Additionally, PR is to DF as RC to DC and hence as (IG
or) PS to DG; and by alternation [or alternando] PR is to PS as DF to DG;
and when the ratios are combined, the rectangle PQ x PR comes to be to the
rectangle PS X PT as the rectangle DE X DF to the rectangle DG x DH,
and hence in a given ratio. But PQ and PS are given, and therefore the ratio
of PR wo PT is given. Q.E.D.

Case 2. But if PR and PT are supposed in a given ratio to each other,
then on working backward with a similar argument, it will follow that the
rectangle DE X DF is to the rectangle DG x DH in a given ratio and
consequently that point D (by lem. 18) lies in a conic passing through points
A,B,C,and P. Q.E.D.

Cororrary 1. Hence, if BC is drawn cutting PQ in 7, and if Pz is taken
on PT in the ratio to Pr which PT has to PR, Bz will be a tangent of the
conic at point B. For conceive of point D as coming together with point B
in such a way that, as chord BD vanishes, BT becomes a tangent; then CD
and BT will coincide with CB and Bz.

CoroLLary 2. And vice versa, if Bz is a tangent and BD and CD meet
in any point D of the conic, PR will be to PT as Pr to Pz. And conversely,
if PR is to PT as Pr to Pz, BD and CD will meet in some point D of the
conic.

CoroLLary 3. One conic does not intersect another conic in more than
four points. For, if it can be done, let two conics pass through five points A,
B, C, P, and O, and let the straight line BD cut these conics in points D and
d, and let the straight line Cd cut PQ in g. Then PR is to PT as Pg to PT;
hence PR and Pg are equal to each other, contrary to the hypothesis.

If two movable and infinite straight lines BM and CM, drawn through given
points B and C as poles, describe by their meeting-point M a third straight line
MN given in position, and if two other infinite straight lines BD and CD are
drawn, making given angles MBD and MCD with the first two lines at those
given points B and C; then I say that the point D, where these two lines BD and
CD meet, will describe a conic passing through points B and C. And conversely, if
the point D, where the straight lines BD and CD meet, describes a conic passing
through the given points B, C, and A, and the angle DBM is always equal 1o the
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M

given angle ABC, and the angle DCM is always equal to the given angle ACB;
then point M will lie in a straight line given in position.

For let point N be given in the straight line MN; and when the movable
point M falls on the stationary point N, let the movable point D fall on the
stationary point P. Draw CN, BN, CP, and BP, and from point P draw the
straight lines PT and PR meeting BD and CD in T and R and forming
an angle BPT equal to the given angle BNM, and an angle CPR equal
to the given angle CNM. Since therefore (by hypothesis) angles MBD and
NBP are equal, as are also angles MCD and NCP, take away the angles
NBD and NCD that are common, and there will remain the equal angles
NBM and PBT, NCM and PCR; and therefore triangles NBM and PBT
are similar, as are also triangles NCM and PCR. And therefore PT is to
NM as PB to NB, and PR is to NM as PC to NC. But the points B, C, N,
and P are stationary. Therefore, PT and PR have a given ratio to NM and
accordingly a given ratio to each other; and thus (by lem. 20) the point D,
the perpetual meeting-point of the movable straight lines BT and CR, lies
in a conic passing through points B, C, and P. Q.E.D.

And conversely, if the movable point D lies in a conic passing through
the given points B, C, and A; and if angle DBM is always equal to the given
angle ABC, and the angle DCM is always equal to the given angle ACB;
and if, when point D falls successively on any two stationary points p and
P of the conic, the movable point M falls successively on the two stationary

points 7» and N; then through these same points » and N draw the straight
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line N, and this will be the perpetual locus of the movable point M. For,
if it can be done, let point M move in some curved line. Then the point D
will lie in a conic passing through the five points B, C, A, p, and P when
the point M perpetually lies in a curved line. But from what has already
been demonstrated, point D will also lie in a conic passing through the same
five points B, C, A, p, and P when point M perpetually lies in a straight
line. Therefore, two conics will pass through the same five points, contrary to
lem. 20, corol. 3. Therefore, it is absurd to suppose the point M to be moving
in a curved line. Q.E.D.

To describe a trajectory through five given points.

Let five points A, B, C, P, and D be given. From one of them A to any
other two B and C (let B and C be called poles), draw the straight lines AB
and AC, and parallel to these draw TPS and PRQ through the fourth point
P. Then from the two poles B and C draw two indefinite lines BDT and
CRD through the fifth point D, BDT meeting the line TPS (just drawn) in
T, and CRD meeting PRQ in R. Finally, draw the straight line #7 parallel
to TR, and cut off from the straight lines PT and PR any straight lines Pz
and Pr proportional to PT and PR; then, if through their ends ¢ and 7 and
poles B and C the lines Bz and Cr are drawn meeting in 4, that point 4 will
be located in the required trajectory. For that point 4 (by lem. 20) lies in a
conic passing through the four points A, B, C, and P; and, the lines Rr and
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Tt vanishing, point d coincides with point D. Therefore, the conic section
passes through the five points A, B, C, P, and D. Q.E.D.

Another solution

Join any three of the given points, A, B, and C; and, rotating the angles
ABC and ACB, given in magnitude, around two of these points B and C as
poles, apply the legs BA and CA first to point D and then to point P, and
note the points M and N in which the other legs BL and CL cross in each
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case. Draw the indefinite straight line MN, and rotate these movable angles
around their poles B and C in such a way that the intersection of the legs BL
and CL or BM and CM (which now let be m) always falls on that indefinite
straight line MN; and the intersection of the legs BA and CA or BD and
CD (which now let be d) will trace out the required trajectory PADdB. For
point 4 (by lem. 21) will lie in a conic passing through points B and C: and
when point 7 approaches points L, M, and N, point d (by construction) will
approach points A, D, and P. Therefore a conic will be described passing
through the five points A, B, C, P, and D. Q.EF

CoroLrary 1. Hence a straight line can readily be drawn that will touch
the required trajectory in any given point B. Let point d approach point B,
and the straight line Bd will come to be the required tangent.

CoroLrary 2. Hence also the centers, diameters, and latera recta of the

trajectories can be found, as in lem. 19, corol. 2.

The first of the constructions of prop. 22 will become a little simpler by
joining BP, producing it if necessary, and in it taking Bp to BP as PR is to
c PT, and then drawing through
p the indefinite straight line pe

parallel to SPT and in it always
taking pe equal to Pr, and then
drawing the straight lines Be and
Cr meeting in d. For since the
ratios Pr to Pt, PR to PT, pB to
PB, and pe to Pt are equal, pe

A Q B

this method the points of the trajectory are found most readily, unless you

and Pr will always be equal. By
prefer to describe the curve mechanically, as in the second construction.

To describe a trajectory that will pass through four given points and touch a

Problem 15 straight line given in position.

Case 1. Let the tangent HB, the point of contact B, and three other
points C, D, and P be given. Join BC, and by drawing PS parallel to the
straight line BH, and PQ parallel to the straight line BC, complete the par-
allelogram BSPQ. Draw BD cutting SP in T, and CD cutting PQ in R.
Finally, by drawing any line #» parallel to TR, cut off Pr and Pz from PQ
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and PS in such a way that Pr and Pz are proportional respectively to PR
and PT; then draw Cr and B¢, and their meeting-point d (by lem. 20) will
always fall on the trajectory to be described.

Another solution

Revolve the angle CBH, given in magni- H
tude, about the pole B, and revolve about the P
pole C any rectilinear radius DC, produced 5 B

at both ends. Note the points M and N at
which the leg BC of the angle cuts that ra-
dius when the other leg BH meets the same

radius in points P and D. Then draw the in-
definite line MN, and let that radius CP or
CD and the leg BC of the angle meet perpet-
ually in the line MN; and the meeting-point
of the other leg BH with the radius will trace
out the required trajectory.

For if, in the constructions of prop. 22, point A approaches point B, lines
CA and CB will coincide, and line AB in its ultimate position will come
to be the tangent BH; and therefore the constructions set forth in prop. 22
will come to be the same as the constructions described in this proposition.
Therefore, the meeting-point of the leg BH with the radius will trace out a
conic passing through points C, D, and P and touching the straight line BH
in point B. Q.E.F.

Case 2. Let four points B, C, D, and P be given, situated outside the
tangent HI. Join them in pairs by the lines BD and CP coming together in

137



Proposition 24

BOOK I, SECTION §

G and meeting the tangent in H and I. Cut the tangent in A in such a way
that HA is to TA as the rectangle of the mean proportional between CG
and GP and the mean proportional between BH and HD is to the rectangle

of the mean proportional between
G P c II prop

DG and GB and the mean propor-
tional between PI and IC, and A will
be the point of contact. For if HX,
parallel to the straight line PI, cuts
the trajectory in any points X and Y,
then (from the Conics) point A will
have to be so placed that HA? is to
AI’ in a ratio compounded of the
ratio of the rectangle XH X HY to the product BH x HD, or of the rectangle
CG x GP to the rectangle DG x GD, and of the ratio of the rectangle
BH x HD to the rectangle PI x IC. And once the point of contact A has
been found, the trajectory will be described as in the first case. Q.E.F.

But point A can be taken either between points H and I or outside them,

and accordingly two trajectories can be described as solutions to the problem.

To describe a trajectory that will pass through three given points and touch two

Problem 16 straight lines given in position.

Let tangents HI and KL and points B, C, and D be given. Through
any two of the points, B and D, draw an indefinite straight line BD
meeting the tangents in points H
and K. Then, likewise, through any
two other points, C and D, draw the

indefinite straight line CD meeting
M the tangents in points [ and L. Cut
BD in R and CD in S in such a way
that HR will be to KR as the mean

proportional between BH and HD

Y< H\ S to the mean proportional between
BK and KD and that IS will be to LS as the mean proportional between
CI and ID is to the mean proportional between CL and LD. And cut these
lines at will either between points K and H, and between I and L, or outside

them; then draw RS cutting the tangents in A and P, and A and P will be



LEMMA 22

the points of contact. For if A and P are supposed to be the points of contact
situated anywhere on the tangents, and if through any one of the points
H, I, K, and L, say I, situated in either tangent HI, the straight line IY 1is
drawn parallel to the other tangent KL and meeting the curve in X and Y;
and if in this line, IZ is taken so as to be the mean proportional between 1X
and IY; then, from the Conics, the rectangle XI x IY or 1Z? will be to LP?
as the rectangle CI X ID to the rectangle CL x LD, that is (by construction),
as SI° to SL%, and thus IZ will be to LP as SI to SL. Therefore the points
S, P, and Z lie in one straight line. Furthermore, since the tangents meet in
G, the rectangle XI X IY or IZ? will be to IA? (from the Conics) as GP? to
GA?, and hence IZ will be to IA as GP to GA. Therefore, the points P, Z,
and A lie in one straight line, and thus the points S, P, and A are in one
straight line. And by the same argument it will be proved that the points
R, P, and A are in one straight line. Therefore the points of contact A and
P lie in the straight line RS. And once these points have been found, the
trajectory will be described as in prop. 23, case . Q.E.F.

In this proposition and in prop. 23, case 2, the constructions are the
same whether or not the straight line XY cuts the trajectory in X and Y,
and they do not depend on this cut. But once the constructions have been
demonstrated for the case in which the straight line does cut the trajectory,
the constructions for the case in which it does not cut the trajectory also can
be found; and for the sake of brevity I do not take the time to demonstrate

them further.

To change figures into other figures of the same class.

Let it be required to transmute any figure HGI. Draw at will two parallel
straight lines AO and BL cutting in A and B any third line AB, given in
position; and from any point G of the figure draw to the straight line AB
any other straight line GD parallel to OA. Then from some point O, given
in line OA, draw to the point D the straight line OD meeting BL at 4,
and from the meeting-point erect the straight line dg containing any given
angle with the straight line BL and having the same ratio to Od that DG
has to ODj; and g will be the point in the new figure Ag: corresponding to
point G. By the same method, each of the points in the first figure will yield
a corresponding point in the new figure. Therefore, suppose point G to be

running through all the points in the first figure with a continual motion;

139

Lemma 22



140

BOOK I, SECTION §

then point g—also with a contin-

ual motion—will run through all

the points in the new figure and
"""""" will describe that figure. For the
sake of distinction let us call DG
the first ordinate, dg the new or-
dinate, AD the first abscissa, ad
.. the new abscissa, O the pole, OD
A B D 1  the abscinding radius, OA the first

ordinate radius, and Oa (which completes the parallelogram OAba) the new

ordinate radius.

I say now that if point G traces a straight line given in position, point
g will also trace a straight line given in position. If point G traces a conic,
point g will also trace a conic. I here count a circle among the conic sections.
Further, if point G traces a curved line of the third analytic order, point g
will likewise trace a curved line of the third order; and so on with curves of
higher orders, the two curved lines which points G and g trace will always

be of the same analytic order. For as ad is to OA, so are Od to OD, dg to

) OA x AB .
DG, and AB to AD; and hence AD is equal to — and DG is equal

OA xdg 4
———~ . Now,

to if point G traces a straight line and consequently, in

a
any equation which gives the relation between the abscissa AD and the

ordinate DG, the indeterminate lines AD and DG rise to only one dimen-

OA x AB OA x d
sion, and if in this equation — is written for AD and ——7-—g
a a

for DG, then the result will be a new equation in which the new abscissa
ad and the new ordinate dg will rise to only one dimension and which
therefore designates a straight line. But if AD and DG or either one of
them rose to two dimensions in the first equation, then ad and dg will
also rise to two dimensions in the second equation. And so on for three or
more dimensions. The indeterminates ad and dg in the second equation,
and AD and DG in the first, will always rise to the same number of dimen-
sions, and therefore the lines which points G and g trace are of the same
analytic order.

I say further that if some straight line touches a curved line in the first

figure, this straight line-——after being transferred into the new figure in the
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same manner as the curve—will touch that curved line in the new figure;
and conversely. For if any two points of the curve approach each other and
come together in the first figure, the same points—after being transferred—
will approach each other and come together in the new figure; and thus the
straight lines by which these points are joined will simultaneously come to
be tangents of the curves in both figures.

The demonstrations of these assertions could have been composed in a
more geometrical style. But I choose to be brief.

Therefore, if one rectilinear figure is to be transmuted into another, it
is only necessary to transfer the intersections of the straight lines of which
it is made up and to draw straight lines through them in the new figure.
But if it is required to transmute a curvilinear figure, then it is necessary
to transfer the points, tangents, and other straight lines which determine
the curved line. Moreover, this lemma is useful for solving more difficult
problems by transmuting the proposed figures into simpler ones. For any
converging straight lines are transmuted into parallels by using for the first
ordinate radius any straight line that passes through the meeting-point of
the converging lines; and this is so because the meeting-point goes off this
way to infinity, and lines that nowhere meet are parallel. Moreover, after the
problem is solved in the new figure, if this figure is transmuted into the first
figure by the reverse procedure, the required solution will be obtained.

This lemma is useful also for solving solid problems. For whenever two
conics occur by whose intersection a problem can be solved, either one of them,
if it is a hyperbola or parabola, can be transmuted into an ellipse; then the
ellipse is easily changed into a circle. Likewise, in constructing plane problems,

a straight line and a conic are turned into a straight line and a circle.

To describe a trajectory that will pass through two given points and touch three
straight lines given in position.

Through the meeting-point of any two tangents with each other and
the meeting-point of a third tangent with the straight line that passes
through two given points, draw an indefinite straight line; and using it
as the first ordinate radius, transmute the figure, by lem. 22, into a new
figure. In this figure the two tangents will come to be parallel to each
other, and the third tangent will become parallel to the straight line passing
through the two given points. Let 47 and %/ be the two parallel tangents,
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£\ o \k ik the third tangent, and A/ the

straight line parallel to it, passing
through the points 2 and 4 through
which the conic ought to pass in
this new figure and completing the
¢ e parallelogram Aikl. Cut the straight
lines 4i, ik, and £/ in ¢, d, and ¢, so

that Ac is to the square root of the

. . rectangle ah X Ab, and ic is to id,

bl a 6 ¥ g ke is to kd, as the sum of the
straight lines 47 and £/ is to the sum of three lines, of which the first is

the straight line /% and the other two are the square roots of the rectangles
ah X hb and al x 1b; then ¢, d, and e will be the points of contact. For,
from the Conics, hc® is to the rectangle ah X Ab in the same ratio as 7¢? to
id?, and ke’ to kd?, and el’ to the rectangle al X Ib; and therefore hc is
to the square root of a4 X kb, and ic is to id, and ke is to kd, and el is
to the square root of @/ X /b, as the square root of that ratio and hence,
by composition [or componendo], in the given ratio of all the antecedents
hi and k! to all the consequents, which are the square root of the rectangle
ah X hb, the straight line 7%, and the square root of the rectangle a/ x /4 [i.e.,
in the given ratio of Ai + kI to \/(ah X hb) + ik + /(al x 1b)]. Therefore,
the points of contact ¢, d, and e in the new figure are obtained from that
given ratio. By the reverse procedure of lem. 22, transfer these points to
the first figure, and there (by prop. 22) the trajectory will be described.
QEF

But according as points @ and & lie between points 4 and / or lie outside
them, points ¢, d, and ¢ must be taken either between points 4, 7, &, and /,
or outside them. If either one of the points @ and 4 falls between points 4

and /, and the other outside, the problem is impossible.

To describe a trajectory that will pass through a given point and touch four straight
lines given in position.

From the common intersection of any two of the tangents to the com-
mon intersection of the other two, draw an indefinite straight line; then,

using this as the first ordinate radius, transmute the figure (by lem. 22) into
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a new figure; then the tangents, which { Ik

formerly met in the first ordinate radius,
will now come to be parallel in pairs. Let 4
those tangents be A7 and &/, ik and Al, e,
forming the parallelogram Aik/. And let \o'*x
p be the point in this new figure corre-

sponding to the given point in the first 9
figure. Through the center O of the fig-

bl '
ure draw pg, and, on Og being equal to

Op, g will be another point through which the conic must pass in this new
figure. By the reverse procedure of lem. 22 transfer this point to the first
figure, and in that figure two points will be obtained through which the tra-
jectory is to be described. And that trajectory can be described through these
same points by prop. 25.

If two straight lines AC and BD, given in position, terminate at the given points
A and B and have a given ratio to each other; and if the straight line CD, by
which the indeterminate points C and D are joined, is cut in K in a given ratio;
I say that point K will be located in a straight line given in position.

For let the straight lines AC and BD meet in E, and in BE take BG
to AE as BD is to AC, and let FD
always be equal to the given line
EG; then, by construction, EC will
be to GD, that 15, to EF, as AC to
BD, and thus in a given ratio, and
therefore the species of the triangle
EFC will be given. Cut CF in L
so that CL is to CF in the ratio of

E H GbBF 5
CK to CD; then, because that ratio

is given, the species of the triangle EFL will also be given, and accordingly
point L. will be located in the straight line EL given in position. Join LK,
and the triangles CLK and CFD will be similar; and because FD and the
ratio of LK to FD are given, LK will be given. Take EH equal to LK, and
ELKH will always be a parallelogram. Therefore, point K is located in the
side HK, given in position, of the parallelogram. Q.E.D.
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CoroLLarY.  Because the species of the figure EFLC is given, the three
straight lines EF, EL, and EC (that is, GD, HK, and EC) have given ratios

to one another.

If three straight lines, two of which are parallel and given in position, touch any

conic section, 1 say that the semidiameter of the section which is parallel to the

two giwven parallel lines is a mean proportional between their segments that are
intercepted between the points of contact and the third tangent.

E Let AF and GB be two paral-

lel lines touching the conic ADB

in A and B; and let EF be a third

straight line touching the conic in
el L I and meeting the first tangents
in F and G; and let CD be the

P
Y% K [ semidiameter of the figure paral-
lel to the tangents; then I say that
AF, CD, and BG are continually
G 2 B

proportional.

For if the conjugate diameters AB and DM meet the tangent FG in E
and H and cut each other in C, and the parallelogram IKCL is completed,
then, from the nature of conics, EC will be to CA as CA to CL, and by
separation [or dividendo] as EC — CA to CA — CL, or FA to AL; and by
composition [or componendo], EA will be to EA + AL or EL as EC to
EC+ CA or EB; and therefore, because the triangles EAF, ELI, ECH, and
EBG are similar, AF will be to LI as CH to BG. And likewise, from the
nature of conics, LT or CK is to CD as CD to CH and therefore from the
equality of the ratios in inordinate proportion [or ex aequo perturbate] AF
will be to CD as CD to BG. Q.E.D.

CoroLrary 1. Hence if two tangents FG and PQ meet the parallel
tangents AF and BG in F and G, P and Q, and cut each other in O;
then, from the equality of the ratios in inordinate proportion for ex aequo
perturbate] AF will be to BQ as AP to BG, and by separation [or dividendo]
as FP to GQ, and thus as FO to OG.

CororLary 2. Hence also, two straight lines PG and FQ drawn through
points P and G, F and Q, will meet in the straight line ACB that passes
through the center of the figure and the points of contact A and B.
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If the indefinitely produced four sides of a parallelogram touch any conic and are
intercepted at any fifth tangent, and if the intercepts of any two conterminous sides
are taken so as to be terminated at opposite corners of the parallelogram; I say
that either intercept is to the side from which it is intercepted as the part of the
other conterminous side between the point of contact and the third side is to the
other intercept.

Let the four sides ML, IK, KL, and MI of the parallelogram MLIK
touch the conic section in A, B, C, and D, and let a fifth tangent FQ cut
those sides in F, Q, H, and E; and take the intercepts ME and KQ of the
sides MI and KI or the intercepts KH and MF of the sides KL. and ML; I

E ™M A L

say that ME is to MI as BK to KQ, and KH is to KL as AM to MF. For
by lem. 24, corol. 1, ME is to EI as AM or BK to BQ, and by composition
[or componendo] ME is to MI as BK to KQ. Q.E.D. Likewise, KH is to
HL as BK or AM to AF, and by separation [or dividendo] KH is to KL as
AMw MF. Q.ED.

Cororrary 1. Hence if the parallelogram IKLM is given, described
about a given conic, the rectangle KQ x ME will be given, as will also the
rectangle KH X MF equal to it. For those rectangles are equal because the
triangles KQH and MFE are similar.

Cororrary 2. And if a sixth tangent eg is drawn meeting the tangents
KI and MI at g and e, the rectangle KQ x ME will be equal to the rectangle
Kg x Me, and KQ will be to Me as Kg to ME, and by separation [or
dividendo] as Qg to Ee.
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CororLary 3. Hence also, if Eq and eQ are drawn and bisected and
a straight line is drawn through the points of bisection, this line will pass
through the center of the conic. For since Qg is to Ee as KQ to Me, the
same straight line will (by lem. 23) pass through the middle of all the lines
Eg, €Q, and MK, and the middle of the straight line MK is the center of

the section.

To describe a trajectory that will touch five straight lines given in position.

Let the tangents ABG, BCF, GCD, FDE, and EA be given in position.
Bisect in M and N the diagonals AF and BE of the quadrilateral figure
ABFE formed by any four of those tangents, and (by lem. 25, corol. 3) the
straight line MN drawn through the points of bisection will pass through
the center of the trajectory. Again, bisect in P and Q the diagonals (as I
call them) BD and GF of the quadrilateral figure BGFD formed by any
other four tangents; then the straight line PQ drawn through the points of

-G

bisection will pass through the center of the trajectory. Therefore, the center
will be given at the meeting-point of the bisecting lines. Let that center be
O. Parallel to any tangent BC draw KL at such a distance that the center
O is located midway between the parallels, and KL so drawn will touch the
trajectory to be described. Let this line KL cut any other two tangents GCD
and FDE in L and K. Through the meeting-points C and K, F and L, of
these nonparallel tangents CL and FK with the parallels CF and KL, draw
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CK and FL meeting in R, and the straight line OR, drawn and produced,
will cut the parallel tangents CF and KL in the points of contact. This is
evident by lem. 24, corol. 2. By the same method other points of contact may
be found, and then finally the trajectory may be described by the construction
of prop. 22. QEF.

What has gone before includes problems in which either the centers or
the asymptotes of trajectories are given. For when points and tangents are

given together with the center, the same
N

number of other points and tangents are
given equally distant from the center on
its other side. Moreover, an asymptote

is to be regarded as a tangent, and its

infinitely distant end-point (if it is per-
missible to speak of it in this way) as
a point of contact. Imagine the point of

contact of any tangent to go off to infin-

ity, and the tangent will be turned into
an asymptote, and the constructions of the preceding problems will be turned
into constructions in which the asymptote is given.

After the trajectory has been described, its axes and foci may be found
by the following method. In the construction and figure of lem. 21 make the
legs BP and CP (by the meeting of which the trajectory was there described)
of the mobile angles PBN and PCN be parallel to each other, and let them—
while maintaining that position—revolve about their poles B and C in that
figure. Meanwhile, let the circle BGKC be described by the point K or %
in which the other legs CN and BN of those angles meet. Let the center of
this circle be O. From this center to the ruler MN, at which those other legs
CN and BN met while the trajectory was being described, drop the normal
OH meeting the circle in K and L. And when those other legs CK and BK
meet in K, the point that is nearer to the ruler, the first legs CP and BP
will be parallel to the major axis and perpendicular to the minor axis; and
the converse will occur if the same legs meet in the farther point L. Hence,
if the center of a trajectory is given, the axes will be given. And when these

are given, the foci are apparent.
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But the squares of the axes are to
each other as KH to LLH, and hence
it is easy to describe a trajectory,
given in species, through four given

points. For if two of the given points

constitute the poles C and B, a third
will give the mobile angles PCK and
PBK; and once these are given, the
circle BGKC can be described. Then,
because the species of the trajectory
is given, the ratio of OH to OK, and thus OH itself, will be given. With

center O and radius OH describe another circle, and the straight line that

M

touches this circle and passes through the meeting-point of the legs CK and
BK when the first legs CP and BP meet in the fourth given point will be
that ruler MN by means of which the trajectory will be described. Hence, in
turn, a quadrilateral given in species can (except in certain impossible cases)
also be inscribed in any given conic.

There are also other lemmas by means of which trajectories given in
species can be described if points and tangents are given. An example: if a
straight line, drawn through any point given in position, intersects a given
conic in two points, and the distance between the intersections is bisected,
the point of bisection will lie on another conic that is of the same species as
the first one and that has its axes parallel to the axes of the first. But I pass

quickly to what is more useful.

To place the three corners of a triangle given in species and magnitude on three
straight lines given in position and not all parallel, with one corner on each line.

*Three indefinite straight lines, AB, AC, and BC, are given in position,
and it is required to place triangle DEF in such a way that its corner D
touches line AB, corn«r E line AC, and corner F line BC.* On DE, DF, and

aa. In all three editions, and in the preliminary manuscripts (see The Mathematical Papers of Isaac
Newton, ed. D. T. Whiteside [Cambridge: Cambridge University Press, 1967-19811, 6:287), there is a minor
discrepancy between the text and the accompanying diagram. The text refers (in the opening sentence) to
“triangle DEF,” but the corresponding diagram would indicate that this should rather be “triangle def,”
and similarly “corner [/iz. vertex] D” and “corner F” should be respectively “corner 4” and “corner f.”
At the end of the paragraph, however, and in the succeeding paragraph, Newton introduces lowercase

letters a, &, ¢ for the triangle abc.



LEMMA 26

EF describe three segments DRE,
DGF, and EMF of circles, contain-
ing angles equal respectively to an-
gles BAC, ABC, and ACB. And
let these segments be described on
those sides of the lines DE, DF,
and EF that will make the letters /A
DRED go round in the same or-

der as the letters BACB, the letters

DGFD in the same order as ABCA, and the letters EMFE in the same
order as ACBA; then complete these segments into full circles. Let the first

two circles cut each other in G, and let their centers be P and Q. Joining GP
and also PQ, take Ga to AB as GP is to PQ); and with center G and radius
Ga describe a circle that cuts the first circle DGE in 4. Join @D cutting the
second circle DFG in &4, and ¢E cutting the third circle EMF in ¢. And
now the figure ABCdef may be constructed similar and equal to the figure
abcDEF. This being done, the problem is solved.

For draw Fe¢ meeting 4D in #, and join aG, 6G, QG, QD, and PD.
By construction, angle EzD is equal to angle CAB, and angle acF is equal
to angle ACB, and thus the angles of triangle anc are respectively equal to

the angles of triangle ABC. Therefore angle anc or FnD is equal to angle
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ABC, and hence equal to angle F&D; and therefore point # coincides with
point 4. Further, angle GPQ, which is half of angle GPD at the center, is
equal to angle GaD at the circumference; and angle GQP, which is half of
angle GQD at the center, is equal to the supplement of angle GéD at the
circumference, and hence equal to angle Géba; and therefore triangles GPQ
and Gab are similar, and Ga is to ab as GP to PQ, that is (by construction),
as Ga to AB. And thus a6 and AB are equal; and therefore triangles abc
and ABC, which we have just proved to be similar, are also equal. Hence,
since in addition the corners D, E, and F of the triangle DEF touch the
sides ab, ac, and bc respectively of the triangle abc, the figure ABCdef can
be completed similar and equal to the figure abcDEF; and by its completion
the problem will be solved. Q.E.F.

Cororrary. Hence a straight line can be drawn whose parts given in
length will lie between three straight lines given in position. Imagine that
triangle DEF, with point D approaching side EF and sides DE and DF
placed in a straight line, is changed into a straight line whose given part DE
is to be placed between the straight lines AB and AC given in position and
whose given part DF is to be placed between the straight lines AB and BC
given in position; then, by applying the preceding construction to this case,

the problem will be solved.

To describe a trajectory given in species and magnitude, whose given parts will lie
between three straight lines given in position.

Let it be required to describe a trajectory that is similar and equal to the
curved line DEF and that will be cut by three straight lines AB, AC, and
BC, given in position, into parts similar and equal to the given parts DE and
EF of this curved line.

Draw the straight lines DE, EF, and DF, place one of the corners D, E,
and F of this triangle DEF on each of those straight lines given in position

E




LEMMA 27

(by lem. 26); then about the triangle describe a trajectory similar and equal
to the curve DEF. Q.E.F.

To describe a quadrilateral given in species, whose corners will lie on four straight
lines, given in position, which are not all parallel and do not all converge to a
common point—each corner lying on a separate line.

Let four straight lines ABC, AD, BD, and CE

be given in position, the first of which cuts the sec-

ond in A, cuts the third in B, and cuts the fourth
in C; let it be required to describe a quadrilateral
fghi which is similar to the quadrilateral FGHI
and whose corner f, equal to the given corner F,
touches the straight line ABC, and whose other cor-
ners g, A, and 7, equal to the other given corners
G, H, and I, touch the other lines AD, BD, and
CE respectively. Join FH, and on FG, FH, and
FI describe three segments of circles, FSG, FTH,
and FVI, of which the first (FSG) contains an
angle equal to angle BAD, the sec-
ond (FTH) contains an angle equal
to angle CBD, and the third (FVI)
contains an angle equal to angle
ACE. The segments ought, more-
over, to be described on those sides
of the lines FG, FH, and FI that
will make the circular order of the
letters FSGF the same as that of
the letters BADB, and will make
the letters FTHF go round in the
same order as CBDC, and the letters
FVIF in the same order as ACEA.
Complete the segments into whole circles, and let P be the center of the
first circle FSG, and Q the center of the second circle FTH. Join PQ and
produce it in both directions; and in it take QR in the ratio to PQ that BC
has to AB. And take QR on the side of the point Q which makes the order
of the letters P, Q, and R the same as that of the letters A, B, and C; and
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then with center R and radius RF describe a fourth circle FNc cutting the
third circle FVI in ¢. Join Fc cutting the first circle in 2 and the second
in . Draw 4G, 6H, and cI, and the figure ABCfghi can be constructed
similar to the figure 26cFGHI. When this is done, the quadrilateral fgh:
will be the very one which it was required to construct.

For let the first two circles FSG and FTH intersect each other in K.
Join PK, QK, RK, 4K, 6K, and ¢K, and produce QP to L. The angles
FaK, F6K, and FcK at the circumferences are halves of the angles FPK,
FQK, and FRK at the centers, and hence are equal to the halves LPK,
LQK, and LRK of these angles. Therefore, the angles of figure PQRK are
respectively equal to the angles of figure abcK, and the figures are similar;
and hence a4 is to ¢ as PQ to QR, that is, as AB to BC. Besides, the angles
fAg, fBA, and fCi are (by construction) equal to the angles FaG, FoH,
and Fcl. Therefore, ABCfghi, a figure similar to the figure abcFGHI, can
be completed. When this is done, the quadrilateral fgh: will be constructed
similar to the quadrilateral FGHI with its corners f, g, 4, and 7 touching
the straight lines ABC, AD, BD, and CE. Q.EF.

CororLary. Hence a straight line can be drawn whose parts, intercepted
in a given order between four straight lines given in position, will have a
given proportion to one another. Increase the angles FGH and GHI until
the straight lines FG, GH, and HI lie in a single straight line; and by
constructing the problem in this case, a straight line fghi will be drawn,
whose parts fg, gh, and Ai, intercepted between four straight lines given in
position, AB and AD, AD and BD, BD and CE, will be to one another as
the lines FG, GH, and HI, and will keep the same order with respect to one
another. But the same thing is done more expeditiously as follows.

Produce AB to K and BD to L so that BK is to AB as HI to GH, and
DL to BD as GI to FG; and join KL meeting the straight line CE in i.
Produce /L to M, so that LM is to /L as GH to HI; and draw MQ parallel
to LB and meeting the straight line AD in g, and draw g7 cutting AB and
BD in f and A. I declare it done.

For let Mg cut the straight line AB in Q, and let AD cut the straight line
KL in S, and draw AP parallel to BD and meeting /L in P; then gM will be
to LA (gi to i, Mi to Lz, GI 1o HI, AK to BK) and AP to BL in the same
ratio. Cut DL in R so that DL is to RL in that same ratio; then, because
gS to gM, AS to AP, and DS to DL are proportional, from the equality of
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the ratios [or ex aequo] ASa will be to BL, and DS to RL, as g§ to L4, and
by a mixture of operations BL — RL will be to LA — BL as AS — DS to
gS — AS. That is, BR will be to B% as AD to Ag and thus as BD to gQ.
And by alternation [or alternando] BR is to BD as B4 to gQ or as f4 to fg.
But by construction the line BL was cut in D and R in the same ratio as the
line FI in G and H; and therefore BR is to BD as FH to FG. As a result,
fhisto fg as FH to FG. Therefore, since g/ is also to Ai as Mi to Li, that
is, as GI to HI, it is evident that the lines FI and f7 are similarly cut in g
and A, G and H. Q.E.F.

In the construction of this corollary, after LK is drawn cutting CE in ¢,
it is possible to produce {E to V, so that EV is to E/ as FH to HI, and then
to draw Vf parallel to BD. It comes to the same thing if with center 7 and
radius TH a circle is described cutting BD in X, and if /X is produced to Y,
so that /Y is equal to IF, and if Yf is drawn parallel to BD.

Other solutions of this problem were devised some time ago by Wren
and Wallis.

To describe a trajectory, given in species, which four straight lines given in position
will cut into parts given in order, species, and proportion.

Let it be required to describe a trajectory that is similar to the curved
line FGHI and whose parts, similar and proportional to the parts FG, GH,
and HI of the curve, are intercepted between the straight lines AB and AD,

53
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AD and BD, BD and CE given in position, the first part between the first
two lines, the second between the second two lines, and the third between
the third two lines. After drawing the straight lines FG, GH, HI, and FI,
describe (by lem. 27) a quadrilateral fgh: that is similar to the quadrilateral
FGHI and whose corners f, g, #, and 7 touch the straight lines AB, AD, BD,
and CE, given in position, each corner touching a separate line in the order

stated. Then about this quadrilateral describe a trajectory exactly similar to
the curved line FGHI.

This problem can also be constructed as follows. After joining FG, GH, HI,
and FI, produce GF to V, join FH and IG, and make angles CAK and
DAL equal to angles FGH and VFH. Let AK and AL meet the straight
line BD in K and L, and from these points draw KM and LN, of which
KM makes an angle AKM equal to angle GHI and is to AK as HI is to
GH, and LN makes an angle ALN equal to angle FHI and is to AL as HI
to FH. And draw AK, KM, AL, and LLN on those sides of the lines AD,
AK, and AL that will make the letters CAKMC, ALK A, and DALND go
round in the same order as the letters FGHIF; and draw MN meeting the
straight line CE in 7. Make angle {EP equal to the angle IGF, and let PE
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be to Ei as FG to GI; and through P draw PQf, which with the straight
line ADE contains the angle PQE equal to the angle FIG and meets the
straight line AB in f; and join fi. Now draw PE and PQ on those sides of
the lines CE and PE that will make the circular order of the letters PE/P
and PEQP the same as that of the letters FGHIF; and then, if on line f7 a
quadrilateral fghi similar to the quadrilateral FGHI is constructed (with the
same order of the letters), and a trajectory given in species is circumscribed

about the quadrilateral, the problem will be solved.

So much for the finding of orbits. It remains to determine the motions

of bodies in the orbits that have been found.
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To find motions in given orbits

If a body moves in a given parabolic trajectory, to find its position at an assigned
time.

Let S be the focus and A the principal vertex of the parabola, and
let 4AS x M be equal to the parabolic area APS to be cut off, which ei-
ther was described by the radius SP after the
body’s departure from the vertex or is to be de-
scribed by that radius before the body’s arrival
at the vertex. The quantity of that area to be
cut off can be found from the time, which is
proportional to it. Bisect AS in G, and erect

the perpendicular GH equal to 3M, and a cir-

AGS 0 cle described with center H and radius HS will

cut the parabola in the required place P. For,
when the perpendicular PO has been dropped to the axis and PH has
been drawn, then AG? + GH? (= HP? = (AO — AG)* + (PO — GH)}) =

AO? + PO? — 2GA x AO — 2GH x PO + AG’ + GH?. Hence 2GH x PO

) ) ) ) , . AOxPO?
(= AO’ 4+ PO* —2GA x AO) = AO? + ¥PO’. For AO* write A
and if all the terms are divided by 3PO and multiplied by 2AS, it will result

AO +3AS
that ¥5GH x AS | = %AO x PO + 2AS x PO = — x PO =

4A0 — 380

6
and hence ¥5GH x AS is 4AS x M. Therefore, the area APS that was cut

off is equal to the area 4AS X M that was to be cut off. Q.E.D.
CoroLrary 1. Hence GH is to AS as the time in which the body de-

X PO = area (APO ~ SPO)) = area APS. But GH was 3M,

scribed the arc AP is to the time in which it described the arc between the
vertex A and a perpendicular erected from the focus S to the axis.
CororLrary 2. And if a circle ASP continually passes through the mov-
ing body P, the velocity of point H is to the velocity which the body had
at the vertex A as 3 to 8, and thus the line GH is also in this ratio to the
straight line which the body could describe in the time of its motion from A

to P with the velocity which it had at the vertex A.
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CororLary 3. Hence also, conversely, the time can be found in which
the body described any assigned arc AP. Join AP and at its midpoint erect a
perpendicular meeting the straight line GH in H.

No oval figure exists whose area, cut off by straight lines at will, can in general be
found by means of equations finite in the number of their terms and dimenstons.
Within an oval let any point be given about which, as a pole, a straight
line revolves continually with uniform motion, and meanwhile in that straight
line let a mobile point go out from the pole and proceed always with the ve-
locity that is as the square of that straight line within the oval. By this motion
that point will describe a spiral with an infinite number of gyrations. Now, if
the portion of the area of the oval cut off by that straight line can be found
by means of a finite equation, there will also be found by the same equation
the distance of the point from the pole, a distance that is proportional to this
area, and thus all the points of the spiral can be found by means of a finite
equation; and therefore the intersection of any straight line, given in position,
with the spiral can also be found by means of a finite equation. But every
infinitely produced straight line cuts a spiral in an infinite number of points;
and the equation by which some intersection of two lines [i.e., curved lines] is
found gives all their intersections by as many roots [as there are intersections]
and therefore rises to as many dimensions as there are intersections. Since two
circles cut each other in two points, one intersection will not be found except
by an equation of two dimensions, by which the other intersection may also
be found. Since two conics can have four intersections, one of these intersec-
tions cannot generally be found except by an equation of four dimensions, by
means of which all four of the intersections may be found simultaneously. For
if those intersections are sought separately, since they all have the same law
and condition, the computation will be the same in each case, and therefore
the conclusion will always be the same, which accordingly must comprehend
all the intersections together and give them indiscriminately. Hence also the
intersections of conics and of curves of the third power, because there can be
six such intersections, are found simultaneously by equations of six dimen-
sions; and intersections of two curves of the third power, since there can be
nine of them, are found simultaneously by equations of nine dimensions. If
this did not happen necessarily, all solid problems might be reduced to plane
problems, and higher than solid to solid problems. I am speaking here of
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curves with a power that cannot be reduced. For if the equation by which
the curve is defined can be reduced to a lower power, the curve will not be
simple, but will be compounded of two or more curves whose intersections
can be found separately by different computations. In the same way, the pairs
of intersections of straight lines and conics are always found by equations of
two dimensions; the trios of intersections of straight lines and of irreducible
curves of the third power, by equations of three dimensions; the quartets of
intersections of straight lines and of irreducible curves of the fourth power,
by equations of four dimensions; and so on indefinitely. Therefore, the in-
tersections of a straight line and of a spiral, which are infinite in number
(since this curve is simple and cannot be reduced to more curves), require
equations infinite in the number of their dimensions and roots, by which all
the intersections can be given simultaneously. For they all have the same law
and computation. For if a perpendicular is dropped from the pole to the in-
tersecting straight line, and the perpendicular, together with the intersecting
straight line, revolves about the pole, the intersections of the spiral will pass
into one another, and the one that was the first or the nearest to the pole will
be the second after one revolution, and after two revolutions will be third,
and so on; nor will the equation change in the meantime except insofar as
there is a change in the magnitude of the quantities by which the position
of the intersecting line is determined. Hence, since the quantities return to
their initial magnitudes after each revolution, the equation will return to its
original form, and thus one and the same equation will give all the intersec-
tions and therefore will have an infinite number of roots by which all of the
intersections can be given. Therefore, it is not possible for the intersection
of a straight line and a spiral to be found universally by means of a finite
equation, and on that account no oval exists whose area, cut off by prescribed
straight lines, can universally be found by such an equation.

By the same argument, if the distance between the pole and the point by
which the spiral is described is taken proportional to the intercepted part of
the perimeter of the oval, it can be proved that the length of the perimeter
cannot universally be found by a finite equation. *But here I am speaking of

ovals that are not touched by conjugate figures extending out to infinity.?

aa. This concluding sentence appeared for the first time in ed. 2.
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CoroLrary. Hence the area of an ellipse that is described by a radius
drawn from a focus to a moving body cannot be found, from a time that has
been given, by means of a finite equation, and therefore cannot be determined
by describing geometrically rational curves. I call curves “geometrically ratio-
nal” when all of their points can be determined by lengths defined by equa-
tions, that is, by involved ratios of lengths, and I call the other curves (such
as spirals, quadratrices, and cycloids) “geometrically irrational.” For lengths
that are or are not as integer to integer (as in book 10 of the Elements) are
arithmetically rational or irrational. Therefore I cut off an area of an ellipse

proportional to the time by a geometrically irrational curve as follows.

If a body moves in a given elliptical trajectory, to find its position at an assigned
time.

Let A be the principal vertex of the ellipse APB, S a focus, and O the
center, and let P be the position of the body. Produce OA to G so that OG
is to OA as OA to OS. Erect the perpendicular GH, and with center O and
radius OG describe the circle GEF; then, along the rule GH as a base let

the wheel GEF move progressively forward, revolving about its own axis,

H K

while the point A on the wheel describes the cycloid ALL. When this has
been done, take GK so that it will have the same ratio to the perimeter
GEFG of the wheel as the time in which the body, in moving forward from

A, described the arc AP has to the time of one revolution in the ellipse.

a. In the index prepared by Cotes for ed. 2 and retained in ed. 3, this proposition is keyed under
“Problematis” (“of the problem”) and characterized as follows: “Solution of Kepler’s problem by the cycloid
and by approximations.”
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Erect the perpendicular KL meeting the cycloid in L; and when LP has
been drawn parallel to KG, it will meet the ellipse in the required position
P of the body.

For with center O and radius OA describe the semicircle AQB, and let
LP, produced if necessary, meet the arc AQ in Q, and join SQ and also OQ.
Let OQ meet the arc EFG in F, and drop the perpendicular SR to OQ.
Area APS is as area AQS, that is, as the difference between sector OQA
and triangle OQS, or as the difference of the rectangles 20Q x AQ and
150Q x SR, that is, because 20Q is given, as the difference between the
arc AQ and the straight line SR, and hence (because of the equality of the
given ratios of SR to the sine of the arc AQ, OS to OA, OA to OG, AQ to
GF, and so by separation [or dividendo] AQ — SR to GF — the sine of the
arc AQ) as GK, the difference between the arc GF and the sine of the arc
AQ. Q.E.D.

But the description of this curve is difficult; hence it is preferable to use a
solution that is approximately true. Find a certain angle B that is to the angle
of 57.29578° (which an arc equal to the radius subtends) as the distance SH
between the foci is to the diameter AB of the ellipse; and also find a certain
length L that is to the radius in the inverse of that ratio. Once these have

been found, the problem can thereupon be solved by the following analysis.

Q1
P

A 3 K> 0 H B

By any construction, or by making any kind of guess, find the body’s
position P very close to its true position p. Then, when the ordinate PR has
been dropped to the axis of the ellipse, the ordinate RQ of the circumscribed
circle AQB will be given from the proportion of the diameters of the ellipse,
where the ordinate RQ is the sine of the angle AOQ (AO being the radius)
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and cuts the ellipse in P. It is sufficient to find this angle AOQ approximately
by a rough numerical calculation. Also find the angle proportional to the time,
that is, the angle that is to four right angles as the time in which the body
described the arc Ap is to the time of one revolution in the ellipse. Let that
angle be N. Then take an angle D that will be to angle B as the sine of
angle AOQ is to the radius, and also take an angle E that will be to angle
N — AOQ + D as the length L is to this same length L minus the cosine of
angle AOQ when that angle is less than a right angle, but plus that cosine
when it is greater. Next take an angle F that will be to angle B as the sine
of angle AOQ+E is to the radius, and take an angle G that will be to angle
N — AOQ — E 4+ F as the length L is to this same length minus the cosine
of angle AOQ 4 E when that angle is less than a right angle, and plus that
cosine when it is greater. Thirdly, take an angle H that will be to angle B as
the sine of angle AOQ 4 E + G is to the radius, and take an angle I that will
be to angle N — AOQ — E — G +H as the length L is to this same length L
minus the cosine of angle AOQ + E 4+ G when that angle is less than a right
angle, but plus that cosine when it is greater. And so on indefinitely. Finally
take angle AOg equal to angle AOQ+E+G+1+---. And from its cosine
Or and ordinate pr, which is to its sine gr as the minor axis of the ellipse
to the major axis, the body’s corrected place p will be found. If the angle
N — AOQ + D is negative, the 4 sign of E must everywhere be changed
to —, and the — sign to +. The same is to be understood of the signs of G
and I when the angles N — AOQ —E+4+F and N-AOQ -E -G+ H
come out negative. But the infinite series AOQ +E 4+ G + 1+ --- converges
so very rapidly that it is scarcely ever necessary to proceed further than the
second term E. And the computation is based on this theorem: that the area
APS is as the difference between the arc AQ and the straight line dropped
perpendicularly from the focus S to the radius OQ.

In the case of a hyperbola the problem is solved by a similar computation.
Let O be its center, A a vertex, S a focus, and OK an asymptote. Find
the quantity of the area to be cut off, which is proportional to the time.
Let this quantity be A, and guess the position of the straight line SP that
cuts off an approximately true area APS. Join OP, and from A and P to
the asymptote OK draw Al and PK parallel to the second asymptote; then
a table of logarithms will give the area AIKP and the equal area OPA,
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which, on being subtracted from the

Q. triangle OPS, will leave the cut-off

area APS. Divide 2APS — 2A or

2A — 2APS (twice the difference of

I the area A to be cut off and the
cut-off area APS) by the line SN,

which is perpendicular to the tan-

gent TP from the focus S, so as to

§ T A 5 obtain the length of the chord PQ.
Now, draw the chord PQ between
A and P if the cut-off area APS is greater than the area A to be cut off, but
otherwise draw PQ on the opposite side of point P, and then the point Q
will be a more accurate position of the body. And by continually repeating
the computation, a more and more accurate position will be obtained.
And by these computations a general analytical solution of the problem is
achieved. But the particular computation that follows is more suitable for as-

tronomical purposes. Let AO, OB, and OD

»
be the semiaxes of the ellipse, and L its la-
P tus rectum, and D the difference between
the semiaxis minor OD and half of the la-
A s/ B
° H tus rectum Y2L; find an angle Y, whose

sine is to the radius as the rectangle of that

difference D and the half-sum of the axes

AO+4OD is to the square of the major axis
AB; and find also an angle Z, whose sine is to the radius as twice the rectan-
gle of the distance SH between the foci and the difference D is to three times
the square of the semiaxis major AO. Once these angles have been found,
the position of the body will thereupon be determined as follows: Take an
angle T proportional to the time in which arc BP was described, or equal to
the mean motion (as it is called); and an angle V (the first equation of the
mean motion) that shall be to angle Y (the greatest first equation) as the sine
of twice angle T is to the radius; and an angle X (the second equation) that
shall be to angle Z (the greatest second equation) as the cube of the sine of
angle T is to the cube of the radius. Then take the angle BHP (the equated
mean motion) equal either to the sum T 4+ X + V of angles T, X, and V if
angle T is less than a right angle, or to the difference T + X — V if angle
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T is greater than a right angle and less than two right angles; and if HP
meets the ellipse in P, SP (when drawn) will cut off the area BSP very nearly
proportional to the time.

This technique seems expeditious enough because it is sufficient to find
the first two or three figures of the extremely small angles V and X (reckoned
in seconds, if it is agreeable). This technique is also accurate enough for
the theory of the planets. For even in the orbit of Mars itself, whose greatest
equation of the center is ten degrees, the error will hardly exceed one second.
But when the angle BHP of equated mean motion has been found, the angle
BSP of true motion and the distance SP are readily found by the very well

known method.

So much for the motion of bodies in curved lines. It can happen, however,
that a moving body descends straight down or rises straight up; and I now

go on to expound what relates to motions of this sort.
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The rectilinear ascent and descent of bodies

Proposition 32°  Given a centripetal force inversely proportional to the square of the distance of

Problem 24 places from irs center, to determine the spaces which a body in falling straight

down describes in given times.

Case 1.

If the body does not fall perpendicularly, it will (by prop. 13,

corol. 1) describe some conic having a focus coinciding with the center of

A

S
B

Z

v

D

forces. Let the conic be ARPB, and its focus S. And
first, if the figure is an ellipse, on its major axis AB
describe the semicircle ADB, and let the straight line
DPC pass through the falling body and be perpen-
dicular to the axis; and when DS and PS have been
drawn, area ASD will be proportional to area ASP
and thus also to the time. Keeping the axis AB fixed,
continually diminish the width of the ellipse, and area
ASD will always remain proportional to the time. Di-
minish that width indefinitely; and, the orbit APB

now coming to coincide with the axis AB, and the

focus S with the terminus B of the axis, the body will descend in the straight

line AC, and the area ABD will become proportional to the time. Therefore

s/ 3/

the space AC will be given, which the body in
falling perpendicularly from place A describes in a
given time, provided that area ABD is taken pro-
portional to that time and the perpendicular DC
is dropped from point D to the straight line AB.
QEL

Case 2. If the figure RPB is a hyperbola,
describe the rectangular hyperbola BED on the
same principal diameter AB; and since the areas
CSP, CBfP, and SPfB are respectively to the ar-
eas CSD, CBED, and SDEB in the given ratio of
the distances CP and CD, and the area SPfB is

a. For a gloss on this proposition see the Guide, §10.11.
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proportional to the time in which body P will move through the arc PfB,
the area SDEB will also be proportional to that same time. Diminish the
latus rectum of the hyperbola RPB indefinitely, keeping the principal diam-
eter fixed, and the arc PB will coincide with the straight line CB, and the
focus S with the vertex B, and the straight line SD with the straight line
BD. Accordingly, the area BDEB will be proportional to the time in which
body C, falling straight down, describes the line CB. Q.E.L.

Case 3. And by a similar argument, let the
figure RPB be a parabola and let another parabola

BED with the same principal vertex B be described
and always remain given, while the latus rectum of

the first parabola (in whose perimeter the body P

moves) is diminished and reduced to nothing, so N
that this parabola comes to coincide with the line B
CB; then the parabolic segment BDEB will become proportional to the time
in which the body P or C will descend to the center S or B. Q.E.L

Supposing what has already been found, I say that the velocity of a falling body
at any place C is to the velocity of a body describing a circle with center B and
radius BC as the square root of the ratio of AC (the distance of the body from the
further vertex A of the circle or rectangular hyperbola) to V2AB (the principal
semidiameter of the figure).

Bisect AB, the common diameter of both figures RPB and DEB, in
O; and draw the straight line PT touching the figure RPB in P and also
cutting the common diameter AB (produced if necessary) in T, and let SY be
perpendicular to this straight line and BQ be perpendicular to this diameter,
and take the latus rectum of the figure RPB to be L. It is established by
prop. 16, corol. 9, that at any place P the velocity of a body moving about
the center S in the [curved] line RPB is to the velocity of a body describing a
circle about the same center with the radius SP as the square root of the ratio

of the rectangle 2L x SP to SY?. But from the Conics, AC x CB is to CP?

2CP* x AO
as 2A0 to L, and thus ——————— is equal to L. Therefore, the velocities

AC x CB
% . _CP?x AO x SP
are to each other as the square root of the ratio of to SY?.
AC x CB

Further, from the Conics, CO is to BO as BO to TO, and by composition [or

componendo] or by separation {or dividendo), as CB to BT. Hence, either

Proposition 33
Theorem 9
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T R
c P/l/

by separation or by composition, BO = CO becomes to BO as CT to BT,

, CP? x AO x SP |
that is, AC to AO as CP to BQ; and hence is equal to
AC x CB

BQ* x AC x SP
AO x BC

. Now let the width CP of the figure RPB be diminished

indefinitely, in such a way that point P comes to coincide with point C and
point S with point B and the line SP with the line BC and the line SY with
the line BQ; then the velocity of the body now descending straight down in

the line CB will become to the velocity of a body describing a circle with

BQ? x AC x SP
AO x BC

center B and radius BC as the square root of the ratio of

to SY?, that is (neglecting the ratios of equality SP to BC and BQ? to SY?),
as the square root of the ratio of AC to AO or 2AB. Q.E.D.

CoroLrary 1. When the points B and S come to coincide, TC becomes
to TS as AC to AO.

CoroLLary 2. A body revolving in any circle at a given distance from
the center will, when its motion is converted to an upward motion, ascend

to twice that distance from the center.
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If the figure BED is a parabola, I say that the velocity of a falling body at any Proposition 34
place C is equal to the velocity with which a body can uniformly describe a circle Theorem 10
with center B and a radius equal to one-half of BC.

For at any place P the velocity of a body describing the parabola RPB
about the center S is (by prop. 16, corol. 7) equal to the velocity of a body
uniformly describing a circle about the
same center S with a radius equal to half
of the interval SP. Let the width CP of
the parabola be diminished indefinitely, €|

so that the parabolic arc PfB will come
to coincide with the straight line CB, the
center S with the vertex B, and the in-
terval SP with the interval BC, and the ¢
proposition will be established. QED. B

Making the same suppositions, I say that the area of the figure DES described by Proposition 35
the indefinite radius SD is equal to the area that a body revolving uniformly in  Theorem 11
orbit abour the center S can describe in the same time by a radius equal to half

of the latus rectum of the figure DES.

R - kK

For suppose that body C falling in a minimally small particle of time
describes the line-element Cc while another body K, revolving uniformly in

the circular orbit OK% about the center S, describes the arc K. Erect the
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perpendiculars CD and ¢d meeting the figure DES in D and 4. Join SD,
Sd, SK, and Sk, and draw Dd meeting the axis AS in T, and drop the
perpendicular SY to Dd.

Case 1. Now, if the figure DES is a circle or a rectangular hyperbola,
bisect its transverse diameter AS in O, and SO will be half of the latus
rectum. And since TC is to TD as Cc to Dd, and TD to TS as CD to SY,
from the equality of the ratios [or ex aequo] TC will be to TS as CD x Cc
to SY x Dd. But (by prop. 33, corol. 1) TC is to TS as AC to AO, if, say,
in the coming together of points D and d the ultimate ratios of the lines are
taken. Therefore, AC is to AO or SK as CD X Cc is to SY x Dd. Further,
the velocity of a descending body at C is to the velocity of a body describing
a circle about the center S with radius SC as the square root of the ratio
of AC to AO or SK (by prop. 33). And this velocity is to the velocity of a
body describing the circle OK% as the square root of the ratio of SK to SC
(by prop. 4, corol. 6), and from the equality of the ratios [or ex aequo] the
first velocity is to the ultimate velocity, that is, the line-element Cc is to the
arc K%, as the square root of the ratio of AC to SC, that is, in the ratio of
AC to CD. Therefore, CD x Cc is equal to AC x Kk, and thus AC is to
SK as AC x K% to SY x Dd, and hence SK x K% is equal to SY x Dd,
and /2SK X K% is equal to 1/,SY X Dd, that is, the area KSk is equal to the
area SDd. Therefore, in each particle of time, particles KS4 and SDd of the
two areas are generated such that, if their magnitude is diminished and their
number increased indefinitely, they obtain the ratio of equality; and therefore
(by lem. 4, corol.), the total areas generated in the same times are always
equal. Q.E.D.

Case 2. But if the figure DES is
a parabola, then it will be found that,
as above, CD x Cc¢ is to SY x Dd
as TC to TS, that is, as 2 to 1, and
thus Y4CD x Cc will be equal to
1ASY x Dd. But the velocity of the
falling body at C is equal to the

C
¢

.....

velocity with which a circle can be
described uniformly with the radius
1SC (by prop. 34). And this velocity

is to the velocity with which a circle

-
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can be described with the radius SK, that is, the line-element Cc is to the
arc K% (by prop. 4, corol. 6), as the square root of the ratio of SK to ¥2SC,
that is, in the ratio of SK to 2CD. And therefore ASK x K% is equal to
14CD x Cc and thus equal to 28Y x Dd; that is, the area KS% is equal to
the area SDd, as above. Q.E.D.

To determine the times of descent of a body falling from a given place A.

Describe a semicircle ADS with diameter AS (the dis-
tance of the body from the center at the beginning of the
descent), and about the center S describe a semicircle OKH
equal to ADS. From any place C of the body erect the or-
dinate CD. Join SD, and construct the sector OSK equal
to the area ASD. It is evident by prop. 35 that the body

in falling will describe the space AC in the same time in

which another body, revolving uniformly in orbit about the
center S, can describe the arc OK. Q.E.F.

H ...»""“

To define the times of the ascent or descent of a body projected upward or down-

ward from a given place.

Let the body depart from the given place G along the line GS with any
velocity whatever. Take GA to ¥2AS as the square of the ratio of this velocity
to the uniform velocity in a circle with which the body could revolve about
the center S at the given interval (or distance) SG. If that ratio is as 2 to
1, point A is infinitely distant, in which case a parabola is to be described
with vertex S, axis SG, and any latus rectum, as is evident by prop. 34. But

if that ratio is smaller or greater than the ratio of 2 to 1, then in the former

Proposition 36
Problem 25

Proposition 37
Problem 26
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case a circle, and in the latter case a rectangular hyperbola, must be described
on the diameter SA, as is evident by prop. 33. Then, with center S and a
radius equaling half of the latus rectum, describe the circle HEK, and to the
place G of the descending or ascending body and to any other place C, erect
the perpendiculars GI and CD meeting the conic or the circle in I and D.
Then joining SI and SD, let the sectors HSK and HS% be made equal to
the segments SEIS and SEDS, and by prop. 35 the body G will describe the
space GC in the same time as the body K can describe the arc Kk. Q.EF.

Supposing that the centripetal force is proportional to the height or distance of

Theorem 12  places from the center, I say that the times of falling bodies, their velocities, and

Proposition 39

the spaces described are proportional respectively to the arcs, the right sines, and
the versed sines.

A Let a body fall from any place A along the
straight line AS; and with center of forces S and
c D radius AS describe the quadrant AE of a circle,
and let CD be the right sine of any arc AD; then
the body A, in the time AD, will in falling describe

the space AC and at place C will acquire the veloc-
ity CD.

This is demonstrated from prop. 10 in the same way that prop. 32 was

3 E

demonstrated from prop. 11.

Cororrary 1. Hence the time in which one body, falling from place A,
arrives at the center S is equal to the time in which another body, revolving,
describes the quadrantal arc ADE.

CoroLLary 2. Accordingly, all the times are equal in which bodies fall
from any places whatever as far as to the center. For all the periodic times

of revolving bodies are (by prop. 4, corol. 3) equal.

Suppose a centripetal force of any kind, and grant the quadratures of curvilinear

Problem 27 figures; it is required to find, for a body ascending straight up or descending straight

down, the velocity in any of its positions and the time in which the body will reach
any place; and conversely.

Let a body E fall from any place A whatever in the straight line ADEC,
and let there be always erected from the body’s place E the perpendicular
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EG, proportional to the centripetal force

B
in that place tending toward the center C; \ oy
and let BFG be the curved line which the P Q

point G continually traces out. At the very
beginning of the motion let EG coincide

with the perpendicular AB; then the ve-

Hy
z\
Lo

locity of the body in any place E will be
as the straight line whose square is equal
to the curvilinear area ABGE. Q.E.L

In EG take EM inversely proportional € n 7\
to the straight line whose square is equal to
the area ABGE, and let VLM be a curved

line which the point M continually traces

out and whose asymptote is the straight
line AB produced; then the time in which
the body in falling describes the line AE c
will be as the curvilinear area ABTVME. Q.E.L

For in the straight line AE take a minimally small line DE of a given
length, and let DLF be the location of the line EMG when the body was at

D; then, if the centripetal force is such that the straight line whose square

is equal to the area ABGE is as the velocity of the descending body, the
area itself will be as the square of the velocity, that is, if V. and V 41T are
written for the velocities at D and E, the area ABFD will be as V2, and

the area ABGE as V? + 2VI + I?, and by separation [or dividendo] the area

FGE 2VI+ 12
will be as —+, that is,
DE

D
DFGE will be as 2VI + I%, and thus

if the first ratios of nascent quantities are taken, the length DF will be as

VI xV
the quantity DE’ and thus also as half of that quantity, or I But the

time in which the body in falling describes the line-element DE is as that
line-element directly and the velocity V inversely, and the force is as the

increment I of the velocity directly and the time inversely, and thus—if the
IxV

first ratios of nascent quantities are taken—as , that is, as the length

DF. Therefore a force proportional to DF or EG makes the body descend

with the velocity that is as the straight line whose square is equal to the area

ABGE. Q.E.D.
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Moreover, since the time in which any line-element DE of a given length
is described is as the velocity inversely, and hence inversely as the straight
line whose square is equal to the area ABFD, and since DL (and hence the
nascent area DLME) is as the same straight line inversely, the time will be
as the area DLME, and the sum of all the times will be as the sum of all
the areas, that is (by lem. 4, corol.), the total time in which the line AE is
described will be as the total area ATVME. Q.E.D.

CororLary 1. Let P be the place from which a body must fall so that,
under the action of some known uniform centripetal force (such as gravity is
commonly supposed to be), it will acquire at place D a velocity equal to the
velocity that another body, falling under the action of any force whatever,
acquired at the same place D. In the perpendicular DF take DR such that it
is to DF as that uniform force is to the other force at the place D. Complete
the rectangle PDRQ and cut off the area ABFD equal to it. Then A will be
the place from which the other body fell.

For, when the rectangle DRSE has been completed, the area ABFD is
to the area DFGE as V? to 2VI and hence as 1AV to I, that is, as half of
the total velocity to the increment of the velocity of the body falling under
the action of the nonuniform force; and similarly, the area PQRD is to the

area DRSE as half of the total velocity is to the increment of the velocity of

A B T the body falling under the action of the
& = uniform force, and those increments (be-
P Q cause the nascent times are equal) are

as the generative forces, that is, as the
ordinates DF and DR, and thus as the

> \F_Ir nascent areas DFGE and DRSE. There-
E i H\&E S fore, the total areas ABFD and PQRD
will then from the equality of the ratios
[or ex aequo] be to each other as halves
€ ” 5 of the total velocities and therefore are

equal because the velocities are equal.
CoroLrary 2. Hence if any body is

projected with a given velocity either up-

ward or downward from any place D

and the law of centripetal force is given,

C the velocity of the body at any other
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place e will be found by erecting the ordinate ¢g and taking that veloc-
ity at place e to the velocity at place D as the straight line whose square is
equal to the rectangle PQRD, either increased by the curvilinear area DFge
(if place e is lower than place D) or diminished by DFge (if place e is higher),
is to the straight line whose square is equal to the rectangle PQRD alone.
CoroLrary 3. The time, also, will be determined by erecting the ordi-
nate em inversely proportional to the square root of PQRD £ DFge, and by
taking the time in which the body described the line De to the time in which
the other body fell under the action of a uniform force from P and (by so
falling) reached D as the curvilinear area DLme to the rectangle 2PD x DL.
For the time in which the body descending under the action of a uniform
force described the line PD is to the time in which the same body described
the line PE as the square root of the ratio of PD to PE, that is (the line-
element DE being just now nascent), in the ratio of PD to PD + V4DE or
2PD to 2PD + DE and by separation [or dividendo] to the time in which
the same body described the line-element DE as 2PD to DE, and thus as the
rectangle 2PD x DL to the area DLME; and the time in which each of the
two bodies described the line-element DE is to the time in which the second
body with nonuniform motion described the line De as the area DLME to
the area DLme, and from the equality of the ratios [or ex aequo] the first
time is to the ultimate time as the rectangle 2PD x DL to the area DLme.
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SECTION 8

To find the orbits in which bodies revolve when acted upon by any centripetal

forces

Proposition 40 If a body, under the action of any centripetal force, moves in any way whatever,
Theorem 13 and another body ascends straight up or descends straight down, and if their
velocities are equal in some one instance in which thetr distances from the center

are equal, their velocities will be equal at all equal distances from the center.
Let some body descend from A through D and E to the center C, and
let another body move from V in the curved line VIK%. With center C and

any radii describe the concentric circles DI and EK meeting

T the straight line AC in D and E and the curve VIK in

V' I and K. Join IC meeting KE in N, and to IK drop the
perpendicular NT, and let the interval DE or IN between

. D the circumferences of the circles be minimally small, and
let the bodies have equal velocities at D and I. Since the

T E  distances CD and CI are equal, the centripetal forces at D
and I will be equal. Represent these forces by the equal line-

elements DE and INj then, if one of these forces IN is (by

corol. 2 of the laws) resolved into two, NT and IT, the

A force NT, acting along the line NT perpendicular to the
R path ITK of the body, will in no way change the velocity of

the body in that path but will only draw the body back from
a rectilinear path and make it turn aside continually from the tangent of the
orbit and move forward in the curvilinear path I'TK.. That whole force
will be spent in producing this effect, while the whole of the other force IT,
acting along the body’s path, will accelerate the body and in a given minimally
small time will generate an acceleration proportional to itself. Accordingly,
the accelerations of the bodies at D and I that are made in equal times (if
the first ratios of the nascent lines DE, IN, IK, IT, and NT are taken) are
as the lines DE and IT, but in unequal times they are as those lines and the
times jointly. Now, the times in which DE and IK are described are as the
described paths DE and IK (because the velocities are equal), and hence
the accelerations in the path of the bodies along the lines DE and IK are
jointly as DE and IT, DE and IK, that is, as DE? and the rectangle IT x IK.
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But the rectangle IT X IK is equal to IN?, that is, equal to DE?, and therefore
the accelerations generated in the passing of the bodies from D and I to E
and K are equal. Therefore the velocities of the bodies at E and K are equal,
and by the same argument they will always be found equal at subsequent
equal distances. Q.E.D.

But also by the same argument bodies that have equal velocities and are
equally distant from the center will be equally retarded in ascending to equal
distances. Q.E.D.

Cororrary 1. Hence if a body either oscillates while hanging by a
thread or is compelled by any very smooth and perfectly slippery imped-
iment to move in a curved line, and another body ascends straight up or
descends straight down, and their velocities are equal at any identical height,
their velocities at any other equal heights will be equal. For the thread of the
pendent body or the impediment of an absolutely slippery vessel produces
the same effect as the transverse force NT. The body is neither retarded nor
accelerated by these, but only compelled to depart from a rectilinear course.

Cororrary 2. Now let the quantity P be the greatest distance from
the center to which a body, either oscillating or revolving in any trajectory
whatever, can ascend when projected upward from any point of the trajectory
with the velocity that it has at that point. Further, let the quantity A be the
distance of the body from the center at any other point of the orbit. And let
the centripetal force be always as any power A"~" of A, the index #—1 being
any number » diminished by unity. Then the velocity of the body at every
height A [i.e,, distance A] will be as 4/(P” — A”) and therefore is given.
For the velocity of a body ascending straight up and descending straight
down is (by prop. 39) in this very ratio.

Supposing a centripetal force of any kind and granting the quadratures of curvi-
linear figures, it is required to find the trajectories in which bodies will move and
also the times of their motions in the trajectories so found.

Let any force tend toward a center C; and let it be required to find the
trajectory VIK 4. Let the circle VR be given, described about the center C
with any radius CV; and about the same center let there be described any

other circles ID and KE cutting the trajectory in I and K and cutting the

a. For a gloss on this proposition see the Guide, §10.12.
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straight line CV in D and E. Then draw the straight line CNIX cutting
the circles KE and VR in N and X, and also draw the straight line CKY
meeting the circle VR in Y. Let the points I and K be very close indeed
to each other, and let the body proceed from V through I and K to £&; and
let point A be the place from which another body must fall so as to acquire
at place D a velocity equal to the velocity of the first body at I. And with
everything remaining as it was in prop. 39, the line-element IK, described in
a given minimally small time, will be as the velocity and hence as the straight
line whose square equals the area ABFD, and the triangle ICK proportional
to the time will be given; and therefore KN will be inversely as the height
IC, that is, if some quantity Q is given and the height IC is called A, as

%. Let us denote this quantity % by Z, and let us suppose the magnitude

of Q to be such that in some one case /ABFD is to Z as IK is to KN,
and in every case /ABFD will be to Z as IK to KN and ABFD to Z? as
IK? to KN?, and by separation [or dividendo] ABFD — Z? will be to Z? as

IN? to KN?, and therefore ./(ABFD — Z?) will be to Z, or 9, as IN to
Q x IN
J(ABFD — Z2)°
YX xXCisto Ax KN as CX* to A?, the rectangle XY x XC will be equal

o Q x IN x CX?
A2/(ABFD — Z)’
always equal respectively to

KN, and therefore A x KN will be equal to Hence, since

Therefore, in the perpendicular DF take D& and D¢
Q Q x CX?

d ,and
2J(ABFD — 72) ""C 2ALJ(ABFD — 23’ "
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describe the curved lines a4 and ac which the points 4 and ¢ continually trace
out, and from point V erect Ve perpendicular to the line AC so as to cut
off the curvilinear areas VDba and VDca, and also erect the ordinates Ez
and Ex. Then, since the rectangle D& x IN or DézE is equal to half of the
rectangle A X KN or is equal to the triangle ICK, and the rectangle D¢ X IN
or DcxE is equal to half of the rectangle YX x XC or is equal to the triangle
XCY—that s, since the nascent particles D&zE and ICK of the areas VDéba
and VIC are always equal, and the nascent particles DcxE and XCY of the
areas VDca and VCX are always equal—the generated area VDba will be
equal to the generated area VIC and hence will be proportional to the time,
and the generated area VDca will be equal to the generated sector VCX.
Therefore, given any time that has elapsed since the body set out from place
V, the area VDba proportional to it will be given and hence the body’s
height CD or CI will be given, and the area VDca and, equal to that area,
the sector VCX along with its angle VCI. And given the angle VCI and the
height CI, the place I will be given, in which the body will be found at the
end of that time. Q.E.L

Cororrary 1. Hence the greatest and least heights of bodies (that is,
the apsides of their trajectories) can be found expeditiously. For the apsides
are those points in which the straight line IC drawn through the center falls
perpendicularly upon the trajectory VIK, which happens when the straight
lines IK and NK are equal, and thus when the area ABFD is equal to Z?.

CoroLLary 2. The angle KIN, in which the trajectory anywhere cuts
the line IC, is also expeditiously found from the given height IC of the body,
namely, by taking its sine to the radius as KN to IK, that is, as Z to the
square root of the area ABFD.

CoroLrary 3. If with center C
and principal vertex V any conic VRS
is described, and from any point R
of it the tangent RT is drawn so as
to meet the axis CV, indefinitely pro- M
duced, at point T; and, joining CR, 1
there is drawn the straight line CP,

which is equal to the abscissa CT and

(3]
t
1]

makes an angle VCP proportional to
the sector VCR; then, if a centripetal
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force inversely proportional to the cube of the distance of places from the
center tends toward that center C, and the body leaves the place V with the
proper velocity along a line perpendicular to the straight line CV, the body
will move forward in the trajectory VPQ which point P continually traces
out; and therefore, if the conic VRS is a hyperbola, the body will descend
to the center. But if the conic is an ellipse, the body will ascend continually
and will go off to infinity.

And conversely, if the body leaves
> the place V with any velocity and, de-
pending on whether the body has be-
gun either to descend obliquely to the

<
<

center or to ascend obliquely from it,

the figure VRS is either a hyperbola or

L

an ellipse, the trajectory can be found

by increasing or diminishing the angle

«y
[~}
(2]

VCP in some given ratio. But also, if

Q Q the centripetal force is changed into a
centrifugal force, the body will ascend obliquely in the trajectory VPQ, which
is found by taking the angle VCP proportional to the elliptic sector VRC and
by taking the length CP equal to the length CT, as above. All this follows
from the foregoing (prop. 41), by means of the quadrature of a certain curve,

the finding of which, as being easy enough, I omit for the sake of brevity.

Let the law of centripetal force be given; it is required to find the motion of a
body setting out from a given place with a given velocity along a given straight
line.

With everything remaining as it was in the three preceding propositions,
let the body go forth from the place I along the line-element IK, with the
velocity which another body, falling from the place P under the action of
some uniform centripetal force, could acquire at D; and let this uniform
force be to the force with which the first body is urged at I as DR to DF.
Let the body go on toward %; and with center C and radius C% describe the
circle ke meeting the straight line PD at e, and erect the ordinates eg, ev,
and ew of the curves BFg, abv, and acw. From the given rectangle PDRQ
and the given law of the centripetal force acting on the first body, the curved

line BFg is given by the construction of prop. 39 and its corol. 1. Then, from
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C

the given angle CIK, the proportion of the nascent lines IK and KN is given,
and hence, by the construction of prop. 41, the quantity Q is given, along
with the curved lines abr and acw; and therefore, when any time Dbve is
completed, the body’s height Ce or Ck is given and the area Dcwe and the
sector XCy equal to it and the angle ICk and the place £ in which the body
will then be. Q.E.L

In these propositions we suppose that the centripetal force in receding
from the center varies according to any law which can be imagined, but that
at equal distances from the center it is everywhere the same. And so far we
have considered the motion of bodies in nonmoving orbits. It remains for us
to add a few things about the motion of bodies in orbits that revolve about

a center of forces.
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SECTIONY9

The motion of bodies in mobile orbits, and the motion of the apsides

2t is required to find the force that makes a body capable of moving in any
trajectory that is revolving about the center of forces in the same way as another

body in that same trajectory at rest.*
Let a body P revolve in the orbit VPK given in position, moving for-
ward from V toward K. From center C continually draw Cp equal to CP
and making the angle VCp which is propor-

A4

tional to the angle VCP; and the area that
the line Cp describes will be to the area VCP
that the line CP simultaneously describes as
the velocity of the describing line Cp to the
velocity of the describing line CP, that is, as
the angle VCp to the angle VCP and thus

in a given ratio and therefore proportional

to the time. Since the area that line Cp de-

scribes in the immobile plane is proportional
to the time, it is manifest that the body, under the action of a centripetal
force of just the right quantity, can revolve along with point p in the curved
line that the same point p, in the manner just explained, describes in an im-
mobile plane. Let the angle VCu be made equal to the angle PCp, and the
line Cu equal to the line CV, and the figure «Cp equal to the figure VCP;
then the body, being always at the point p, will move in the perimeter of the
revolving figure #Cp, and will describe its arc #p in the same time in which
another body P can describe the arc VP, similar and equal to #p, in the
figure VPK at rest. Determine, therefore, by prop. 6, corol. 5, the centripetal
force by which a body can revolve in the curved line that point p describes

in an immobile plane, and the problem will be solved. Q.E.F.

2a. Newton does not use the word “force” in the statement of prop. 43, but he does so in the
conclusion of the demonstration. A literal translation of prop. 43 would read: “It is required to make it
happen [or, It is to be effected] that a body may be able to move in any trajectory that is revolving about
the center of forces exactly as another body moves in that same trajectory at rest.” The force in question

must be centripetal.
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The difference between the forces under the action of which two bodies are able
to move equally—one in an orbit that is at rest and the other in an identical orbit
that is revolving—is inversely as the cube of their common height.

Let the parts #p and pk of the revolving orbit be similar and equal to
the parts VP and PK of the orbit at rest; and let it be understood that the
distance between points P and K is minimally small. From point £ drop the
perpendicular %7 to the straight line pC, and produce &7 to m so that mr is
to kr as the angle VCp to the angle VCP. Since the heights PC and pC, KC
and %C, of the bodies are always equal, it is manifest that the increments
and decrements of the lines PC and pC are always equal, and hence, if the
motions of each of these bodies, when they are at places P and p, are resolved
(by corol. 2 of the laws) into two components, of which one is directed toward
the center, or along the line PC or pC, and the second is transverse to the first
and has a direction along a line perpendicular to PC or pC, the components
of motion toward the center will be equal, and the transverse component of
motion of body p will be to the transverse component of motion of body P
as the angular motion of line pC to the angular motion of line PC, that is,
as the angle VCp to the angle VCP. Therefore, in the same time in which
body P by the two components of its motion reaches point K, body p by

its equal component of motion toward the center will move equally from p
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toward C and thus, when that time is completed, will be found somewhere
on the line mkr (which is perpendicular to the line pC through point %) and
by its transverse motion will reach a distance from the line pC that is to the
distance from the line PC (which the other body P reaches) as the transverse
motion of body p is to the transverse motion of the other body P. Therefore,
since kr is equal to the distance from the line PC which body P reaches,
and since mr is to kr as the angle VCp to the angle VCP, that is, as the
transverse motion of body p to the transverse motion of body P, it is manifest
that body p, at the completion of the time, will be found at the place m.

This will be the case when bodies p and P move equally along lines pC
and PC and thus are urged along those lines by equal forces. But now, take
the angle pCn to the angle pCk as the angle VCp is to the angle VCP, and
let »C be equal to £C, and then body p—at the completion of the time—
will actually be found at the place #; and thus body p is urged by a greater
force than that by which body P is urged, provided that the angle nCp is
greater than the angle £Cp, that is, if the orbit upk either moves forward
[or in consequentia] or moves backward [or in antecedentia] with a speed
greater than twice that with which the line CP is carried forward [or in
consequentia] and it is urged by a smaller force if the orbit moves backward
[or in antecedentia] more slowly. And the difference between the forces is as
the intervening distance mn through which the body p ought to be carried
by the action of that difference in the given space of time.

Understand that a circle is described, with center C and radius Czn or
Ck, cutting in s and ¢ the lines mr and mn produced; then the rectangle
mn X mt will be equal to the rectangle mk x ms, and thus mn will be equal
to -’Z]ﬁ% But since the triangles pC% and pCn are, in a given time, given
in magnitude, k7 and mr and their difference m& and sum ms are inversely
as the height pC, and thus the rectangle mk X ms is inversely as the square
of the height pC. Also, mr is directly as Yamz, that is, as the height pC.
These are the first ratios of the nascent lines; and hence _—mk’:; ad (that is,
the nascent line-element mn and, proportional to it, the difference between
the forces) becomes inversely as the cube of the height pC. Q.E.D.

Cororrary 1. Hence the difference of the forces in the places P and

p or K and % is to the force by which a body would be able to revolve
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with circular motion from R to K in the same time in which body P in
an immobile orbit describes the arc PK as the nascent line-element m# is to
2
. . mk X ms rk
the versed sine of the nascent arc RK, that is, as to
mt 2kC

mk x ms to rk?, that is, if the given quantities F and G are taken in the

or as

ratio to each other that the angle VCP has to the angle VCp, as G* — F?
to F2. And therefore, if with center C and any radius CP or Cp a circular
sector is described equal to the total area VPC which the body P revolving
in an immobile orbit has described in any time by a radius drawn to the
center, the difference between the forces by which body P in an immobile
orbit and body p in a mobile orbit revolve will be to the centripetal force by
which some body, by a radius drawn to the center, would have been able to
describe that sector uniformly in the same time in which the area VPC was
described, as G* — F? to F2. For that sector and the area pCk are to each
other as the times in which they are described.

CoroLrary 2. If the orbit VPK is an ellipse having a focus C and an
upper apsis V, and the mobile ellipse #pk is supposed similar and equal to
it, so that pC is always equal to PC and the angle VCp is to the angle VCP
in the given ratio of G to F; and if A is written for the height PC or pC,
and 2R is put for the latus rectum of the ellipse; then the force by which
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F? R(G'-F)

a body can revolve in the mobile ellipse will be as Iy + — and
conversely. For let the force by which a body revolves in the unmoving ellipse
2 2

be represented by the quantity ek and then the force at V will be v
But the force by which a body could revolve in a circle at the distance CV
with the velocity that a body revolving in an ellipse has at V is to the force
by which a body revolving in an ellipse is urged at the apsis V as half of the

latus rectum of the ellipse to the semidiameter CV of the circle, and thus
2

has the value W; and the force that is to this as G> — F? to F? has the

R(G* - F?) i . . .
value __C.\F——; and this force (by corol. 1 of this prop.) is the difference
between the forces at V by which body P revolves in the unmoving ellipse
VPK and body p revolves in the mobile ellipse #pk. Hence, since (by this

proposition) that difference at any other height A is to itself at the height
CV as L to ~L—, the same difference at every height A will have the value
A3 CV3

2 2 2 2
E(EAT_E—). Therefore, add the excess w to the force % by which
a body can revolve in the immobile ellipse VPK, and the result will be the

F2  R(G'-F? , )
total force e + — by which a body may be able to revolve in the
same times in the mobile ellipse #pk.

CoroLLary 3. In the same way it will be gathered that if the immobile
orbit VPK is an ellipse having its center at the center C of forces, and a
mobile ellipse upk is supposed similar, equal, and concentric with it; and if
2R is the principal latus rectum of this ellipse, and 2T the principal diameter
or major axis, and the angle VCp is always to the angle VCP as G to F; then

the forces by which bodies can revolve in equal times in the immobile ellipse
F?A FPA  R(G'-F?

and the mobile ellipse will be as T and = + ( re ) respectively.

CoroLrary 4. And universally, if the greatest height CV of a body is

called T; and the radius of the curvature which the orbit VPK has at V (that

is, the radius of a circle of equal curvature) is called R; and the centripetal

force by which a body can revolve in any immobile trajectory VPK at place
2

F
V is called Ev and at other places P is indefinitely styled X, while the
height CP is called A; and if G is taken to F in the given ratio of the angle
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VCp to the angle VCP; then the centripetal force by which the same body
can complete the same motions in the same times in the same trajectory #pk
VR(G? - F?)

A3 '
CororLary 5. Therefore, given the motion of a body in any immobile

which is moving circularly will be as the sum of the forces X+

orbit, its angular motion about the center of forces can be increased or di-
minished in a given ratio, and hence new immobile orbits can be found in
which bodies may revolve by new centripetal forces.

CororrLary 6. Therefore, if on the straight line CV, given in position,
there is erected the perpendicular VP of indeterminate length, and CP is

joined, and Cp is drawn equal to it making the
¥ v

angle VCp that is to the angle VCP in a given
ratio; then the force by which a body can re-
volve in the curve Vpk which the point p con-
tinually traces out will be inversely as the cube

of the height Cp. For body P, by its own force v

of inertia, and with no other force urging it, can 4 C
move forward uniformly in the straight line VP.

Add the force toward the center C, inversely proportional to the cube of the
height CP or Cp, and (by what has just been demonstrated) the rectilinear
motion will be bent into the curved line Vpk. But this curve Vp% is the same
as the curve VPQ found in prop. 41, corol. 3, and (as we said there) bodies

attracted by forces of this kind ascend obliquely in this curve.

It is required to find the motions of the apsides of orbits that differ very little from
circles.

This problem is solved arithmetically by taking the orbit that is described
in an immobile plane by a body revolving in a mobile ellipse (as in prop. 44,
corol. 2 or 3) and making it approach the form of the orbit whose apsides are
required, and by secking the apsides of the orbit which that body describes
in an immobile plane. Orbits will acquire the same shape if the centripetal
forces with which those orbits are described, when compared with each other,
are made proportional at equal heights. Let point V be the upper apsis, and
write T for the greatest height CV, A for any other height CP or Cp, and
X for the difference CV — CP of the heights; then the force by which a body

moves in an ellipse revolving about its own focus C (as in corol. 2)—and

Proposition 45
Problem 31
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F? RG’—RF? F’A + RG? — RF?
which in corol. 2 was as — + ————— that is, as + —
A? A3 A3

RG? — RF? + TF? — F’X
A3 '
Any other centripetal force is similarly to be reduced to a fraction whose

will, when T — X is substituted for A, be as

denominator is A’; and the numerators are to be made analogous [i.e., made
proportional in the same degree] by bringing together homologous terms [i.e.,
corresponding terms, or terms of the same degree]. All of this will be clarified
by the following examples.

Exampre 1. Let us suppose the centripetal force to be uniform and thus
3

as —, or (writing T — X for A in the numerator) as
Al
T —3T?X +3TX? — X3.
A3 ’

and by bringing together the corresponding [or homologous] terms of the
numerators (namely, given ones with given ones, and ones not given with
ones not given), RG> — RF? + TF? to T® will come to be as —F’X to
—3T?X +3TX?> - X3 or as —F? to —3T? +3TX — X% Now, since the orbit
is supposed to differ very little from a circle, let the orbit come to coincide
with a circle; and because R and T become equal and X is diminished
indefinitely, the ultimate ratios will be RG? to T? as —F? to —3T?, or G’ to
T? as F? to 3T?, and by alternation [or alternando] G? to F? as T? to 3T?,
that is, as 1 to 3; and therefore G is to F, that is, the angle VCp is to the
angle VCP, as | to /3. Therefore, since a body in an immobile ellipse, in
descending from the upper apsis to the lower apsis, completes the angle VCP
(so to speak) of 180 degrees, another body in the mobile ellipse (and hence

in the immobile orbit with which we are dealing) will, in descending from
the upper apsis to the lower apsis, complete the angle VCp of % degrees;

this is so because of the similarity of this orbit, which the body describes
under the action of a uniform centripetal force, to the orbit which a body
completing its revolutions in a revolving ellipse describes in a plane at rest.
By the above collation of terms, these orbits are made similar, not universally
but at the time when they very nearly approach a circular form. Therefore

a body revolving with uniform centripetal force in a very nearly circular

180
orbit will always complete an angle of —- degrees between the upper apsis

/3
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and the lower apsis, or 103°55'23" at the center, arriving at the lower apsis
from the upper apsis when it has completed this angle once, and returning
from the lower to the upper apsis when it has completed the same angle
again, and so on without end.

ExampLE 2. Let us suppose the centripetal force to be as the height A

raised to any power, as A" (that is, F), where » — 3 and 7 signify any
indices of powers whatsoever—integral or fractional, rational or irrational,

positive or negative. On reducing the numerator A” = (T — X)” to an

indeterminate series by our method of converging series, the result is T” —
2

nXT ! + %XZT"_2 ---. And by collating the terms of this with the

terms of the other numerator RG?> — RF? + TF? — F?X, the result is that
n’ —n
2
taking the ultimate ratios that result when the orbits approach circular form,
RG? will be to T” as —F? to —2T"™", or G* to T"! as F? to »nT""!, and

by alternation [or alternando] G is to F? as T"™! to nT""!, that is, as 1 to

RG*—RF?’+TF?isto T" as —=F? to —nT" "'+ XT"2.... And after

n; and therefore G is to F, that is, the angle VCp is to the angle VCP as 1
to +/n. Therefore, since the angle VCP, completed in the descent of a body
from the upper apsis to the lower apsis in an ellipse, is 180 degrees, the angle
VCp, completed in the descent of a body from the upper apsis to the lower
apsis in the very nearly circular orbit which any body describes under the

action of a centripetal force proportional to A”73, will be equal to an angle

180

of :7— degrees; and when this angle is repeated, the body will return from
n
the lower apsis to the upper apsis, and so on without end.
For example, if the centripetal force is as the distance of the body from
4
the center, that is, as A or el will be equal to 4 and /» will be equal

to 2; and therefore the angle between the upper apsis and the lower apsis
(e]

will be equal to or 90°. Therefore, at the completion of a quarter of a

revolution the body will arrive at the lower apsis, and at the completion of
another quarter the body will arrive at the upper apsis, and so on by turns
without end. This is also manifest from prop. 10. For a body urged by this
centripetal force will revolve in an immobile ellipse whose center is in the

center of forces. But if the centripetal force is inversely as the distance, that
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2

is, directly as e n will be equal to 2, and thus the angle between the

E!
upper and the lower apsis will be 7 degrees, or 127°16'45”, and therefore
a body revolving under the action of such a force will—by the continual
repetition of this angle—go alternately from the upper apsis to the lower
and from the lower to the upper forever. Further, if the centripetal force

is inversely as the fourth root of the eleventh power of the height, that is,
17

inversely as A" and thus directly as or as —=, 7 will be equal to

1
7 will be equal to 360°; and therefore a body, setting out from
n

the upper apsis and continually descending from then on, will arrive at the

Y, and

lower apsis when it has completed an entire revolution, and then, completing
another entire revolution by continually ascending, will return to the upper
apsis; and so on by turns forever.

ExampLe 3. Let m and » be any indices of powers of the height, and

let 4 and ¢ be any given numbers, and let us suppose that the centripetal

R , bA™ 4 cA” ) (T —X)” + (T - X) )
orce is as ———5——, that is, as P or (again by our
method of converging series) as
-1 O L T et T
6T + cT? = mbXT” ~ ' —ncXT" ™' + oXT™ ™ 4 cXTP 4.
A3 ’

then, if the terms of the numerators are collated, the result will be RG* —
mt—m
RF?4+TF? to bT™4cT" as —F? to —=mbT™ ! —nc T 1 bXT™ 24

712'—71

¢XT"%.... And after taking the ultimate ratios that result when

the orbits approach circular form, G* will be to 6T™™! + ¢T*! as F* to
mbT™ ' + nc¢T"!, and by alternation [or alternando] G? will be to F? as
BT™ 14+ ¢T" ! to mbT" ! + ncT”"!. This proportion, if the greatest height

CV or T is expressed arithmetically by unity, becomes G* to F? as & + ¢ to

b
mb 4- nc and thus as 1 to :n_b—? Hence G is to F, that is, the angle VCp
c

b
is to the angle VCP, as 1 to \/% And therefore, since the angle VCP
c

between the upper apsis and the lower apsis in the immobile ellipse is 180
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degrees, the angle VCp between the same apsides, in the orbit described by
a body under the action of a centripetal force proportional to the quantity

bA” 4+ cA”

b
, will be equal to an angle of 180\/ _ote degrees. And by the

A3 mb + nc
) ) . bA™ — cA”
same argument, if the centripetal force is as ——————, the angle between
Al
b—
the apsides will be found to be 180\/ _b____c_ degrees. And the problem
mb — nc

will be resolved in just the same way in more difficult cases. The quantity
to which the centripetal force is proportional must always be resolved into
converging series having the denominator A’. Then the ratio of the given
part of the numerator (resulting from that operation) to its other part, which
is not given, is to be made the same as the ratio of the given part of this
numerator RG? — RF? + TF? — F?X to its other part, which is not given;
and when the superfluous quantities are taken away and unity is written for
T, the proportion of G to F will be obtained.

Cororrary 1. Hence, if the centripetal force is as some power of the
height, that power can be found from the motion of the apsides, and con-
versely. That is, if the total angular motion with which the body returns to
the same apsis is to the angular motion of one revolution, or 360 degrees, as

some number m to another number 7, and the height is called A, the force
2

2
will be as the power of the height A" whose index is ;’;—2 — 3. This is
manifest by the instances in ex. 2. Hence it is clear that the force, in receding
from the center, cannot decrease in a ratio greater than that of the cube of
the height; if a body revolving under the action of such a force and setting
out from an apsis begins to descend, it will never reach the lower apsis or
minimum height but will descend all the way to the center, describing that
curved line which we treated in prop. 41, corol. 3. But if the body, on setting
out from an apsis, begins to ascend even the least bit, it will ascend indefi-
nitely and will never reach the upper apsis. For it will describe the curved
line treated in the above-mentioned corol. 3 and in prop. 44, corol. 6. So also,
when the force, in receding from the center, decreases in a ratio greater than
that of the cube of the height, a body setting out from an apsis (depending
on whether it begins to descend or to ascend) either will descend all the way
to the center or will ascend indefinitely. But if the force, in receding from

the center, either decreases in a ratio less than that of the cube of the height
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or increases in any ratio of the height whatever, the body will never descend
all the way to the center, but will at some time reach a lower apsis; and
conversely, if a body descending and ascending alternately from apsis to apsis
never gets to the center, either the force in receding from the center will be
increased or it will decrease in a ratio less than that of the cube of the height;
and the more swiftly the body returns from apsis to apsis, the farther the
ratio of the forces will recede from that of the cube.

For example, if by alternate descent and ascent a body returns from

upper apsis to upper apsis in 8 or 4 or 2 or 1% revolutions, that is, if m is to
2

n as 8 or 4 or 2 or 1V5 to 1, and therefore —n—z — 3 has the value Y45 — 3 or
m

. 164 — 16— 14—
Vie—3 or V4—3 or % — 3, the force will be as A”* 3 or A3 or A* 3 or
49— . . -1 -1 —1 —4
A”73 that is, inversely as A*™"® or A3 or A3™"* or A>~"°, If the body

returns in each revolution to the same unmoving apsis, m will be to 7 as 1
z__3 ) — 1
to 1, and thus A~* ~ will be equal to A~ or -A—Z; and therefore the decrease

in force will be as the square of the height, as has been demonstrated in
the preceding propositions. If the body returns to the same apsis in three-

quarters or two-thirds or one-third or one-quarter of a smgle revolution, m

will be to 7 as ¥ or %5 or 3 or Y4 to 1, and so A~ 2 will be equal to
A3 or AY73 or A%3 or A% and therefore the force will be either
inversely as A" or A”*, or directly as AS or A'. Finally, if the body in
proceeding from upper apsis to upper apsis completes an entire revolution
and an additional three degrees (and therefore, during each revolution of

the body, that apsis moves three degrees forward [or in consequentla]),

will be to 7 as 363° to 360° or as 121 to 120, and thus A~ % will be equal

29,523 29,523
to A" ™% and thcrefore the centripetal force will be inversely as A™ or

inversely as A’ 22 approximately. Therefore the centripetal force decreases in
a ratio a little greater than that of the square, but 59% times closer to that
of the square than to that of the cube.

CoroLLary 2. Hence also if a body, under the action of a centripetal
force that is inversely as the square of the height, revolves in an ellipse
having a focus in the center of forces, and any other extraneous force is
added to or taken away from this centripetal force, the motion of the apsides
that will arise from that extraneous force can be found out (by instances in

ex. 3), and conversely. For example, if the force under the action of which
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. . 1 .

the body revolves in the ellipse is as re and the extraneous force which has
A — cA!

been taken away is as cA, and hence the remaining force is as 0 then

(as in ex. 3) & will be equal to 1, m will be equal to 1, and » will be equal

to 4, and therefore the angle of the revolution between apsides will be equal
—c

T2 degrees. Let us suppose the extraneous force to
—4c

be 357.45 times less than the other force under the action of which the body
100

35,745’

) 35,645
will come to be 180\/35’345,

that is, 180°45'44”. Therefore a body, setting out from the upper apsis, will

1
to an angle of 180\/

revolves in the ellipse, that is, let us suppose ¢ to be A or T being

l1—-¢

equal to 1, and then 180\/1 or 180.7623,

— ac

reach the lower apsis by an angular motion of 180°45'44” and will return to
the upper apsis if this angular motion is doubled; and thus in each revolution
the upper apsis will move forward through 1°31'28”. *The [advance of the]

apsis of the moon is about twice as swift.*

So much concerning the motion of bodies in orbits whose planes pass
through the center of forces. It remains for us to determine additionally
those motions which occur in planes that do not pass through the center of
forces. For writers who deal with the motion of heavy bodies are wont to
consider the oblique ascents and descents of weights in any given planes as
well as perpendicular ascents and descents, and there is equal justification for
considering here the motion of bodies that tend to centers under the action
of any forces whatever and are supported by eccentric planes. We suppose,
however, that these planes are highly polished and absolutely slippery, so as
not to retard the bodies. Further, in these demonstrations, in place of the
planes on which bodies rest and which they touch by resting on them, we
even make use of planes parallel to them, in which the centers of the bodies
move and by so moving describe orbits. And by the same principle we then

determine the motions of bodies performed in curved surfaces.

aa. Ed. 1 and ed. 2 lack this, but it appears both in the interleaved copy and in the annotated copy
of ed. 2. The interleaved copy also has: “Query: Can this motion arise from twice the external force?” See
further the Guide to the present translation, §6.10.
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SECTION 10

The motion of bodies on given surfaces and the oscillating motion of *simple

pendulums®

Suppose a centripetal force of any kind, and let there be given both the center
of force and any plane in which a body revolves, and grant the quadratures of
curvilinear figures; it is required to find the motion of a body setting out from a
given place with a given velocity along a given straight line in that plane.

Let S be the center of force, SC the least distance of this center from the
given plane, P a body setting out from place P along the straight line PZ, Q
the same body revolving in its trajectory, and PQR the required trajectory

described in the given plane. Join CQ and also QS, and if SV is taken in

Z

S

QS and is proportional to the centripetal force by which the body is drawn
toward the center S, and VT is drawn parallel to CQ and meeting SC in T,
then the force SV will be resolved (by corol. 2 of the laws) into the forces ST
and TV, of which ST, by drawing the body along a line perpendicular to the

plane, does not at all change the body’s motion in this plane. But the other

aa. We use the term “simple pendulum” in its classical and technical sense. For example, according
to Brougham and Routh, “A simple pendulum consists of a material particle suspended from a fixed point
by an inflexible inextensible string without weight” (Henry Lord Brougham and E. J. Routh, Analysical
View of Sir Isaac Newton's “Principia” [1855; reprint, with an introd. by I. Bernard Cohen, New York and
Londeon: Johnson Reprint Corp., 1972), pp. 240-241). See, further, §7.5 of the Guide.
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force TV, by acting along the position of the plane, draws the body directly
toward [i.e., along a line directed toward] the given point C in the plane
and thus causes the body to move 1n this plane just as if the force ST were
removed and as if the body revolved in free space about the center C under
the action of the force TV alone. But, given the centripetal force TV under
the action of which the body Q revolves in free space about the given center
C, there are also given (by prop. 42) not only the trajectory PQR described
by the body, but also the place Q in which the body will be at any given
time, and finally the velocity of the body in that place Q; and conversely.
Q.EL

Suppose that a centripetal force is proportional to the distance of a body from a
center; then all bodies revolving in any planes whatever will describe ellipses and
will make their revolutions in equal times; and bodies that move in straight lines,
by oscillating to and fro, will complete in equal times their respective periods of
going and returning.

For, under the same conditions as in prop. 46, the force SV, by which the
body Q revolving in any plane PQR is drawn toward the center S, is as the
distance SQ); and thus—because SV and SQ, TV and CQ are proportional—
the force TV, by which the body is drawn toward the given point C in the
plane of the orbit, is as the distance CQ. Therefore, the forces by which bodies
that are in the plane PQR are drawn toward point C are, in proportion to the
distances, equal to the forces by which bodies are drawn from all directions
toward the center S; and thus in the same times the bodies will move in the
same figures in any plane PQR about the point C as they would move in
free spaces about the center S; and hence (by prop. 10, corol. 2, and prop. 38,
corol. 2) in times which are always equal, they will either describe ellipses
[i.e., complete a whole revolution in such ellipses] in that plane about the
center C or will complete periods of oscillating to and fro in straight lines

drawn through the center C in that plane. Q.E.D.

The ascents and descents of bodies in curved surfaces are very closely related
to the motions just discussed. Imagine that curved lines are described in a
plane, that they then revolve around any given axes passing through the cen-

ter of force and describe curved surfaces by this revolution, and then that
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bodies move in such a way that their centers are always found in these sur-
faces. If those bodies, in ascending and descending obliquely, oscillate to and
fro, their motions will be made in planes passing through the axis and hence
in curved lines by whose revolution those curved surfaces were generated. In
these cases, therefore, it is sufficient to consider the motion in those curved

lines.

Proposition 48 If a wheel stands upon the outer surface of a globe at right angles to that surface
Theorem 16 and, rolling as wheels do, moves forward in a great circle [in the globe’s surface],
the length of the curvilinear path traced out by any given point in the perimeter

[or rim] of the wheel from the time when that point touched the globe (a curve

which may be called a cyclod or epicycloid) will be to twice the versed sine of

half the arc [of the rim of the wheel] which during the time of rolling has been

in contact with the globe’s surface as the sum of the diameters of the globe and

wheel is to the semidiameter of the globe.

Proposition 49 If a wheel stands upon the inner surface of a hollow globe at right angles to
Theorem 17 that surface and, rolling as wheels do, moves forward in a great circle [in the
globe’s surface], the length of the curvilinear path traced out by any given point
in the perimeter [or rim] of the wheel from the time when that point touched the
globe will be to twice the versed sine of half the arc [of the rim of the wheel]
which during the time of rolling has been in contact with the globe’s surface as
the difference of the diameters of the globe and wheel is to the semidiameter of
the globe.
Let ABL be the globe, C its center, BPV the wheel standing upon it,
E the center of the wheel, B the point of contact, and P the given point in
the perimeter of the wheel. Imagine that this wheel proceeds in the great
circle ABL from A through B toward L and, while rolling, rotates in such
a way that the arcs AB and PB are always equal to each other and that
the given point P in the perimeter of the wheel is meanwhile describing the
curvilinear path AP. Now, let AP be the whole curvilinear path described
since the wheel was in contact with the globe at A, and the length AP of
this path will be to twice the versed sine of the arc ¥2PB as 2CE to CB. For
let the straight line CE (produced if need be) meet the wheel in V, and join
CP, BP, EP, VP, and drop the normal VF to CP produced. Let PH and
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VH, meeting in H, touch the circle in P and V, and let PH cut VF in G,
and drop the normals GI and HK to VP. With the same center C and with
any radius whatever describe the circle nom cutting the straight line CP in »,
the wheel’s perimeter BP in o, and the curvilinear path AP in m; and with
center V and radius Vo describe a circle cutting VP produced in q.

Since the wheel, in rolling, always revolves about the point of contact B,
it is manifest that the straight line BP is perpendicular to the curved line AP
described by the wheel’s point P, and therefore that the straight line VP will
touch this curve in point P. Let the radius of the circle nom be gradually
increased or decreased, and so at last become equal to the distance CP; then,
because the evanescent figure Pnomg and the figure PFGVT are similar, the
ultimate ratio of the evanescent line-elements Pm, Pn, Po, and Pg, that is,
the ratio of the instantaneous changes of the curve AP, the straight line CP,

the circular arc BP, and the straight line VP, will be the same as that of the
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lines PV, PF, PG, and PI respectively. But since VF is perpendicular to CF,
and VH is perpendicular to CV, and the angles HVG and VCF are therefore
equal, and the angle VHG is equal to the angle CEP (because the angles of
the quadrilateral HVEP are right angles at V and P), the triangles VHG
and CEP will be similar; and hence it will come about that EP is to CE as
HG to HV or HP and as KI to KP, and by composition [or componendo]
or by separation [or dividendo] CB is to CE as PI to PK, and—by doubling
of the consequents—CB is to 2CE as PI to PV and as Pg to Pm. Therefore
the decrement of the line VP, that is, the increment of the line BV — VP,
is to the increment of the curved line AP in the given ratio of CB to 2CE,
and therefore (by lem. 4, corol.) the lengths BV — VP and AP, generated by
those increments, are in the same ratio. But since BV is the radius, VP is
the cosine of the angle BVP or 2BEP, and therefore BV — VP is the versed
sine of the same angle; and therefore in this wheel, whose radius is 4BV,
BV — VP will be twice the versed sine of the arc /2BP. And thus AP is to
twice the versed sine of the arc ¥2BP as 2CE to CB. Q.E.D.

For the sake of distinction, we shall call the curved line AP in prop. 48
a cycloid outside the globe, and the curved line AP in prop. 49 a cycloid inside
the globe.

CororLary 1. Hence, if an entire cycloid ASL is described and is bi-
sected in S, the length of the part PS will be to the length VP (which is
twice the sine of the angle VBP, where EB is the radius) as 2CE to CB, and
thus in a given ratio.

CororLary 2. And the length of the semiperimeter AS of the cycloid
will be equal to a straight line that is to the diameter BV of the wheel as
2CE tw CB.

To make a pendulum bob oscillate in a given cycloid.

Within a globe QVS described with center C, let the cycloid QRS be
given, bisected in R and with its end-points Q and S meeting the surface of
the globe on the two sides. Draw CR bisecting the arc QS in O, and produce
CR to A, so that CA is to CO as CO to CR. Describe an outer globe DAF
with center C and radius CA; and inside this globe let two half-cycloids
AQ and AS be described by means of a wheel whose diameter is AO, and
let these two half-cycloids touch the inner globe at Q and S and meet the
outer globe in A. Let a body T hang from the point A by a thread APT
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equal to the length AR, and let this body T oscillate between the two half-
cycloids AQ and AS in such a way that each time the pendulum departs
from the perpendicular AR, the upper part AP of the thread comes into
contact with that half-cycloid APS toward which the motion is directed, and
is bent around it as an obstacle, while the other part PT of the thread, to
which the half-cycloid is not yet exposed, stretches out in a straight line; then
the weight T will oscillate in the given cycloid QRS. Q.EF.

For let the thread PT meet the cycloid QRS in T and the circle QOS in
V, and draw CV; and from the end-points P and T of the straight part PT
of the thread, erect BP and TW perpendicular to PT, meeting the straight
line CV in B and W. It is evident, from the construction and the generation
of the similar figures AS and SR, that the perpendiculars PB and TW cut
off from CV the lengths VB and VW equal respectively to OA and OR, the
diameters of the wheels. Therefore, TP is to VP (which is twice the sine of
the angle VBP, where 4BV is the radius) as BW to BV, or AO 4+ OR to
AO, that is (since CA is proportional to CO, CO to CR, and by separation
[or dividendo] AO to OR), as CA 4+ CO to CA, or, if BV is bisected in E,
as 2CE to CB. Accordingly (by prop. 49, corol. 1), the length of the straight
part PT of the thread is always equal to the arc PS of the cycloid, and the
whole thread APT is always equal to the half-arc APS of the cycloid, that
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is (by prop. 49, corol. 2), to the length AR. And therefore, conversely, if the
thread always remains equal to the length AR, point T will move in the
given cycloid QRS. Q.E.D.

CoroLLary. The thread AR is equal to the half-cycloid AS and thus has
the same ratio to the semidiameter AC of the outer globe that the half-cycloid

SR, similar to it, has to the semidiameter CO of the inner globe.

If a centripetal force tending from all directions to the center C of a globe is in
each individual place as the distance of that place from the center; and if, under
the action of this force alone, the body T oscillates (in the way just described)
in the perimeter of the cycloid QRS; then I say that the times of the oscillations,
however unequal the oscillations may be, will themselves be equal.
For let the perpendicular CX fall to the indefinitely produced tangent
TW of the cycloid and join CT. Now the centripetal force by which the
body T is impelled toward C is as
A the distance CT, and CT may be
resolved (by corol. 2 of the laws)
into the components CX and TX,
of which CX (by impelling the
body directly from P) stretches the
thread PT and is wholly nullified
by the resistance of the thread and
produces no other effect, while the
other component TX (by urging
the body transversely or toward X)
directly accelerates the motion of
the body in the cycloid; hence it
is manifest that the body’s accel-

eration, which is proportional to
c : . .

this accelerative force, is at each
individual moment as the length TX, that is (because CV and WV—and
TX and TW, proportional to them—are given), as the length TW, that is
(by prop. 49, corol. 1), as the length of the arc of the cycloid TR. Therefore,
if the two pendulums APT and Apz are drawn back unequally from the
perpendicular [or vertical] AR and are let go simultaneously, their accelera-

tions will always be as the respective arcs to be described TR and ¢R. But
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the parts of these arcs described at the beginning of the motion are as the
accelerations, that is, as the whole arcs to be described at the beginning,
and therefore the parts that remain to be described and the subsequent
accelerations proportional to these parts are also as the whole arcs, and so on.
Therefore the accelerations—and hence the velocities generated, the parts of
the arcs described with these velocities, and the parts to be so described—are
always as the whole arcs; and therefore the parts to be described, preserving
a given ratio to one another, will vanish simultaneously, that is, the two
oscillating bodies will arrive at the same time at the perpendicular [or
vertical] AR. And since, conversely, the ascents of the pendulums, made
from the lowest place R through the same cycloidal arcs with a reverse
motion, are retarded in individual places by the same forces by which their
descents were accelerated, it is evident that the velocities of the ascents and
descents made through the same arcs are equal and hence occur in equal
times; and therefore, since the two parts RS and RQ of the cycloid, each
lying on a different side of the perpendicular [or vertical], are similar and
equal, the two pendulums will always make their whole oscillations as well
as their half-oscillations in the same times. Q.E.D.

Cororrary. The force by which body T is accelerated or retarded in
any place T of the cycloid is to the total weight of body T in the highest
place S or Q as the arc TR of the cycloid to its arc SR or QR.

To determine both the velocities of pendulums in individual places and the times
tn which complete oscillations, as well as the separate parts of oscillations, are
completed.

With any center G and with a radius GH equal to the arc RS of the
cycloid, describe the semicircle HKM bisected by the semidiameter GK. And
if a centripetal force proportional to the distances of places from the center
tends toward that center G, and if in the perimeter HIK that force is equal
to the centripetal force in the perimeter of the globe QOS tending toward
its center, and if, at the same time that the pendulum T is let go from its
highest place S, some other body L falls from H to G; then, since the forces
by which the bodies are urged are equal at the beginning of the motion, and
are always proportional to the spaces TR and LG which are to be described,
and are therefore equal in the places T and L if TR and LG are equal, it
is evident that the two bodies describe the equal spaces ST and HL at the
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beginning of the motion and thus will proceed thereafter to be equally urged
and to describe equal spaces. Therefore (by prop. 38), the time in which
the body describes the arc ST is to the time of one oscillation as the arc
HI (the time in which the body H will reach L) to the semiperiphery HKM
(the time in which the body H will reach M). And the velocity of the pendulum
bob at the place T is to its velocity at the lowest place R (that is, the velocity
of body H in the place L to its velocity in the place G, or the instantaneous
increment of the line HL to the instantaneous increment of the line HG,
where the arcs HI and HK increase with a uniform flow) as the ordinate
LI to the radius GK, or as 4/(SR? — TR?) to SR. Hence, since in unequal
oscillations arcs proportional to the total arcs of the oscillations are described
in equal times, both the velocities and the arcs described in all oscillations
universally can be found from the given times. As was first to be found.
Now let simple pendulums oscillate in different cycloids described within
different globes, whose absolute forces are also different; and if the absolute
force of any globe QOS is called V, the accelerative force by which the pen-
dulum is urged in the circumference of this globe, when it begins to move
directly toward its center, will be jointly as the distance of the pendulum bob
from that center and the absolute force of the globe, that is, as CO x V.
Therefore the line-element HY (which is as this accelerative force CO x V)
will be described in a given time; and if the normal YZ is erected so as to
meet the circumference in Z, the nascent arc HZ will denote that given time.
But this nascent arc HZ is as the square root of the rectangle GH x HY, and
thus as ./(GH x CO x V). Hence the time of a complete oscillation in the
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cycloid QRS (since it is directly as the semiperiphery HKM, which denotes
that complete oscillation, and inversely as the arc HZ, which similarly denotes
the given time) will turn out to be as GH directly and /(GH x CO x V)

SR
i ly, that is, b GH and SR 1, —_—, b
inversely, that is ecausZR an are equal, as \/CO v (by
prop. 50, corol.) as .,/ ————. Therefore the oscillations in all globes and
ACxV

cycloids, made with any absolute forces whatever, are as the square root of
the length of the thread directly and as the square root of the distance be-
tween the point of suspension and the center of the globe inversely and also
as the square root of the absolute force of the globe inversely. Q.E.IL
CoroLrary 1. Hence also the times of bodies oscillating, falling, and
revolving can be compared one with another. For if the diameter of the
wheel by which a cycloid is described within a globe is made equal to the
semidiameter of the globe, the cycloid will turn out to be a straight line
passing through the center of the globe, and the oscillation will now be a
descent and subsequently an ascent in this straight line. Hence the time of
the descent from any place to the center is given, as well as the time (equal
to that time of descent) in which a body, by revolving uniformly about the
center of the globe at any distance, describes a quadrantal arc. For this time

(by the second case [that is, according to the second paragraph above)) is to

AR
the time of a half-oscillation in any cycloid QRS as 1 to \/E

CororLary 2. Hence also there follows what Wren and Huygens dis-
covered about the common cycloid. For if the diameter of the globe is in-
creased indefinitely, its spherical surface will be changed into a plane, and the
centripetal force will act uniformly along lines perpendicular to this plane,
and our cycloid will turn into a common cycloid. But in that case the length
of the arc of the cycloid between that plane and the describing point will
come out equal to four times the versed sine of half of the arc of the wheel
between that same plane and the describing point, as Wren discovered; and
a pendulum between two cycloids of this sort will oscillate in a similar and
equal cycloid in equal times, as Huygens demonstrated. But also the descent
of heavy bodies during the time of one oscillation will be the descent which
Huygens indicated.

Moreover, the propositions that we have demonstrated fit the true con-

stitution of the earth, insofar as wheels, moving in the earth’s great circles,
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describe cycloids outside this globe by the motion of nails fastened in their
perimeters; and pendulums suspended lower down in mines and caverns of
the earth must oscillate in cycloids within globes in order that all their oscilla-
tions may be isochronous. For gravity (as will be shown in book 3) decreases
in going upward from the surface of the earth as the square of the distance
from the earth’s center, and in going downward from the surface is as the

distance from that center.

Granting the quadratures of curvilinear figures, it is required to find the forces by
whose action bodies moving in given curved lines will make oscillations thar are
always isochronous.

A Let a body T oscillate in any
curved line STRQ whose axis 1s AR
passing through the center of forces C.
Draw TX touching that curve in any
place T of the body, and on this tan-
gent TX take TY equal to the arc TR.
[This may be done] since the length
of that arc can be known from the
quadratures of figures by commonly
used methods. From point Y draw the
straight line YZ perpendicular to the
tangent. Draw CT meeting the perpen-
dicular in Z, and the centripetal force
will be proportional to the straight line
TZ. QEL

For if the force by which the body
is drawn from T toward C is represented by the straight line TZ taken

c

proportional to it, this will be resolved into the forces TY and YZ, of which
YZ, by drawing the body along the length of the thread PT, does not change
its motion at all, while the other force TY directly accelerates or directly re-
tards its motion in the curve STRQ. Accordingly, since this force is as the
projection TR to be described, the body’s accelerations or retardations in
describing proportional parts of two oscillations (a greater and a lesser oscil-
lation) will always be as those parts, and will therefore cause those parts to

be described simultaneously. And bodies that in the same time describe parts
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always proportional to the wholes will describe the wholes simultaneously.
Q.E.D.

Cororrary 1. Hence, if body T, hanging by a rectilinear thread AT
from the center A, describes the circular arc STRQ and meanwhile is urged

downward along parallel lines by some force that

is to the uniform force of gravity as the arc TR A

to its sine TN, the times of any single oscillations s Q
will be equal. For, because TZ and AR are paral-

lel, the triangles ATN and ZTY will be similar; T R

and therefore TZ will be to AT as TY to TN;

that is, if the uniform force of gravity is repre-

sented by the given length AT, the force TZ, by

the action of which the oscillations will turn out z

to be isochronous, will be to the force of gravity AT as the arc TR (equal to
TY) to the sine TN of that arc.

CoroLrary 2. And therefore in {pendulum] clocks, if the forces im-
pressed by the mechanism upon the pendulum to maintain the motion can
be compounded with the force of gravity in such a way that the total force
downward is always as the line that arises from dividing the rectangle of

the arc TR and the radius AR by the sine TN, all the oscillations will be

1sochronous.

Granting the quadratures of curvilinear figures, to find the times in which bodies
under the action of any centripetal force will descend and ascend in any curved
lines described in a plane passing through the center of forces.

Let a body descend from any place S through any curved line STzR
given in a plane passing through the center of forces C. Join CS and divide
it into innumerable equal parts, and let Dd be some one of those parts. With
center C and radii CD and Cd, describe the circles DT and dz, meeting the
curved line STzR in T and z. Then, since both the law of centripetal force
and the height CS from which the body has fallen are given, the velocity
of the body at any other height CT will be given (by prop. 39). Moreover,
the time in which the body describes the line-element Tz is as the length
of this line-element (that is, as the secant of the angle +TC) directly and as
the velocity inversely. Let the ordinate DN be proportional to this time and

perpendicular to the straight line CS through point D; then, because Dd is
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given, the rectangle Dd x DN, that is,
the area DNnd, will be proportional
to that same time. Therefore if PN#7 is
the curved line that point N continu-
ally traces out, *and its asymptote is the
straight line SQ standing perpendicu-
larly upon the straight line CS,* the area
SQPND will be proportional to the time
in which the body, by descending, has
described the line ST; and accordingly,
when that area has been found, the time
will be given. Q.E.L

Proposition 55 If a body moves in any curved surface whose axis passes through a center of

Theorem 19 forces, and a perpendicular is dropped from the body to the axis, and a straight

line parallel and equal to the perpendicular is drawn from any given point of the

axis; 1 say that the parallel will describe an area proportional to the time.

Let BKL be the curved surface, T the body revolving in it, STR the

trajectory which the body de-
scribes in it, S the beginning of
the trajectory, OMK the axis of
the curved surface, TN the per-
pendicular straight line dropped
from the body to the axis; and let
OP be the straight line parallel
and equal to TN and drawn
from a point O that is given in
the axis, AP the path described
by point P in the plane AOP
of the revolving line OP, A
the beginning of the projection
(corresponding to point S); and

let TC be a straight line drawn

aa. A clarification by Pemberton after he had called Newton’s attention to the incorrect diagrams in

eds. 1 and 2 (cf. The Mathematical Papers of Isaac Newton, ed. D. T. Whiteside [Cambridge: Cambridge
University Press, 1967-1981], 6:409, nn. 308--309).
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from the body to the center, TG the part of TC that is proportional to
the centripetal force by which the body is urged toward the center C, TM
a straight line perpendicular to the curved surface, TI the part of TM
proportional to the force of pressure by which the body urges the surface
and is in turn urged by the surface toward M; and let PTF be a straight line
parallel to the axis and passing through the body, and GF and IH straight
lines dropped perpendicularly from the points G and I to the parallel
PHTF. I say now that the area AOP, described by the radius OP from the
beginning of the motion, is proportional to the time. For the force TG (by
corol. 2 of the laws) is resolved into the forces TF and FG, and the force
TT into the forces TH and HI. But the forces TF and TH, by acting along
the line PF perpendicular to the plane AOP, change the body’s motion only
insofar as it is perpendicular to this plane. And therefore the body’s motion,
insofar as it takes place in the position of the plane—that is, the motion of
point P, by which the projection AP of the trajectory is described in this
plane—is the same as if the forces TF and TH were taken away and the
body were acted on by the forces FG and HI alone; that is, it is the same
as if the body were to describe the curve AP in the plane AOP under the
action of a centripetal force tending toward the center O and equal to the
sum of the forces FG and HI. But by the action of such a force the area
AOP is (by prop. 1) described proportional to the time.* Q.E.D.
CoroLLARy. By the same argument, if a body, acted on by forces tending
toward two or more centers in any one given straight line CO, described any
curved line ST in free space, the area AOP would always be proportional to

the time.

Granting the quadratures of curvilinear figures, and given both the law of cen-
tripetal force tending toward a given center and a curved surface whose axis passes
through that center, it is required to find the trajectory that a body will describe
in that same surface when it has set out from a given place with a given velocity,
in a given direction in that surface.

Assuming the same constructions as in prop. 55, let body T go forth

from the given place S, along a straight line given in position, in the required

a. In this proposition, Newton’s “vestigium,” literally, “a trace,” has been translated as “projection,”
following D. T. Whiteside.
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trajectory STR, and let the pro-
jection of this trajectory in the
plane BLO be AP. And since the
velocity of the body is given at
the height SC, its velocity at any
other height TC will be given.
With this velocity, let the body in
a given minimally small time de-
scribe the particle Tt of its trajec-
tory, and let Pp be its projection
described in the plane AOP. Join
Op, and let the projection (in the
plane AOP) of the little circle de-

c scribed with center T and radius

Tz in the curved surface be the ellipse pQ. Then, because the little circle
Tt is given in magnitude, and its distance TN or PO from the axis CO is
given, the ellipse pQ will be given in species and in magnitude, as well as
in its position with respect to the straight line PO. And since the area POp
is proportional to the time and therefore given because the time is given, the
angle POp will be given. And hence the common intersection p of the ellipse
and the straight line Op will be given, along with the angle OPp in which
the projection APp of the trajectory cuts the line OP. And accordingly (by
consulting prop. 41 with its corol. 2) the way of determining the curve APp
is readily apparent. Then, erecting perpendiculars to the plane AOP one by
one, from the points P of the projection, so as to meet the curved surface in

T, the points T of the trajectory will be given one by one. Q.E.L
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The motion of bodies drawn to one another by centripetal forces

Up to this point, I have been setting forth the motions of bodies attracted
toward an immovable center, such as, however, hardly exists in the natural
world. For attractions are always directed toward bodies, and—by the third
law—the actions of attracting and attracted bodies are always mutual and
equal; so that if there are two bodies, neither the attracting nor the attracted
body can be at rest, but both (by corol. 4 of the laws) revolve about a common
center of gravity as if by a mutual attraction; and if there are more than two
bodies that either are all attracted by and attract a single body or all attract
one another, these bodies must move with respect to one another in such a
way that the common center of gravity either is at rest or moves uniformly
straight forward. For this reason I now go on to set forth the motion of
bodies that attract one another, considering centripetal forces as attractions,
although perhaps—if we speak in the language of physics—they might more
truly be called impulses. For here we are concerned with mathematics; and
therefore, putting aside any debates concerning physics, we are using familiar

language so as to be more easily understood by mathematical readers.

Two bodies that attract each other describe similar figures about their common
center of gravity and also about each other.

For the distances of these bodies from their common center of gravity
are inversely proportional to the masses of the bodies and therefore in a
given ratio to each other and, by composition [or componendo], in a given
ratio to the total distance between the bodies. These distances, moreover,
rotate about their common end-point with an equal angular motion because,
since they always lie in the same straight line, they do not change their
inclination toward each other. And straight lines that are in a given ratio
to each other and that rotate about their end-points with an equal angular
motion describe entirely similar figures about the end-points in planes that,
along with these end-points, either are at rest or move with any motion that
is not angular. Accordingly, the figures described by the rotation of these

distances are similar. Q.E.D.
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Proposition 58 If two bodies attract each other with any forces whatever and at the same time
Theorem 21 revolve about their common center of gravity, I say that by the action of the same
Jorces there can be described around either body if unmoved a figure similar and

equal to the figures that the bodies so moving describe around each other.

Let bodies S and P revolve about their common center of gravity C,
going from S to T and from P to Q. From a given point s let sp and sg be
drawn always equal and parallel to SP and TQ; then the curve pgv, which
the point p describes by revolving around the motionless point s, will be
similar and equal to the curves that bodies S and P describe around each
other; and accordingly (by prop. 57) this curve pge will be similar to the
curves ST and PQV, which the same bodies describe around their common
center of gravity C; and this is so because the proportions of the lines SC,
CP, and SP or sp to one another are given.

Case 1. The common center of gravity C (by corol. 4 of the laws) either
is at rest or moves uniformly straight forward. Let us suppose first that it is
at rest, and at s and p let two bodies be placed, a motionless one at s and a
moving one at p, similar and equal to bodies S and P. Then let the straight
lines PR and pr touch the curves PQ and pg in P and p, and let CQ and
sg be produced to R and r. Then, because the figures CPRQ and sprg are
similar, RQ will be to rg as CP to sp and thus in a given ratio. Accordingly,
if the force with which body P is attracted toward body S, and therefore
toward the intermediate center C, were in that same given ratio to the force
with which body p is attracted toward center s, then in equal times these
forces would always attract the bodies from the tangents PR and pr to the
arcs PQ and pg through the distances RQ and rg proportional to them; and
therefore the latter force would cause body p to revolve in orbit in the curve
pqv, which would be similar to the curve PQV, in which the former force
causes body P to revolve in orbit, and the revolutions would be completed

in the same times. But those forces are not to each other in the ratio CP to
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sp but are equal to each other (because bodies S and s, P and p are similar
and equal, and distances SP and sp are equal); therefore, the bodies will in
equal times be equally drawn away from the tangents; and therefore, for
the second body p to be attracted through the greater distance rg, a greater
time is required, which is as the square root of the distances, because (by
lem. 10) the spaces described at the very beginning of the motion are as the
squares of the times. Therefore, let the velocity of body p be supposed to be
to the velocity of body P as the square root of the ratio of the distance sp
to the distance CP, so that the arcs pg and PQ, which are in a simple ratio,
are described in times which are as the square roots of the distances. Then
bodies P and p, being always attracted by equal forces, will describe around
the centers C and s at rest the similar figures PQV and pqv, of which pgv
is similar and equal to the figure that body P describes around the moving
body S. Q.E.D.

Case 2. Let us suppose now that the common center of gravity, along
with the space in which the bodies are moving with respect to each other, is
moving uniformly straight forward; then (by corol. 6 of the laws) all motions
in this space will occur as in case 1. Hence the bodies will describe around
each other figures which are the same as before and which therefore will be
similar and equal to the figure pgv. Q.E.D.

Cororrary 1. Hence (by prop. 10) two bodies, attracting each other with
forces proportional to their distance, describe concentric ellipses, both around
their common center of gravity and also around each other; and, conversely,
if such figures are described, the forces are proportional to the distance.

Cororrary 2. And (by props. 11, 12, and 13) two bodies, under the
action of forces inversely proportional to the square of the distance, describe—
around their common center of gravity and also around each other—conics
having their focus in that center about which the figures are described. And,
conversely, if such figures are described, the centripetal forces are inversely
proportional to the square of the distance.

CoroLLaRY 3. Any two bodies revolving in orbit around a common
center of gravity describe areas proportional to the times, by radii drawn to

that center and also to each other.

The periodic time of two bodies S and P revolving about their common center of Proposition 59

gravity C is to the periodic time of one of the two bodies P, revolving in orbit  Theorem 22
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about the other body S which is without motion, and describing a figure similar
and equal to the figures that the bodies describe around each other, as the square
root of the ratio of the mass of the second body S to the sum of the masses of the
bodies S + P.

For, from the proof of prop. 58, the times in which any similar arcs PQ
and pg are described are as the square roots of the distances CP and SP or
sp, that is, as the square root of the ratio of body S to the sum of the bodies
S + P [or, as /S to 4/(S + P)]. And by composition [or componendo] the
sums of the times in which all the similar arcs PQ and pg are described, that
is, the whole times in which the whole similar figures are described, are in
that same ratio. Q.E.D.

If two bodies S and P, attracting each other with forces inversely proportional to
the square of the distance, revolve about a common center of gravity, I say that
the principal axis of the ellipse which one of the bodies P describes by this motion
about the other body S will be to the principal axis of the ellipse which the same
body P would be able to describe in the same periodic time about the other body
S at rest as the sum of the masses of the two bodies S + P is to the first of two
mean proportionals between this sum and the mass of the other body S.*

For if the ellipses so described were equal to each other, the periodic
times would (by prop. 59) be as the square root of the mass of body S is
to the square root of the sum of the masses of the bodies S 4+ P. Let the
periodic time in the second ellipse be decreased in this same ratio, and then
the periodic times will become equal; but the principal axis of the second
ellipse (by prop. 15) will be decreased as the % power of the former ratio,
that is, in the ratio of which the ratio S to S + P is the cube; and therefore
the principal axis of the second ellipse will be to the principal axis of the first
ellipse as the first of two mean proportionals between S+ P and S to S+ P.
And inversely, the principal axis of the ellipse described about the body in
motion will be to the principal axis of the ellipse described about the body
not in motion as S + P to the first of two mean proportionals between S + P
and S. Q.E.D.

If two bodies, attracting each other with any kind of forces and not otherwise acted

on or impeded, move in any way whatever, their motions will be the same as if

a. That is, as (S + P) to the cube root of 8§ x (S + P)%.
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they were not attracting each other but were each being attracted with the same
Jorces by a third body set in their common center of gravity. And the law of the
attracting forces will be the same with respect to the distance of the bodies from
that common center and with respect to the total distance between the bodies.

For the forces with which the bodies attract each other, in tending to-
ward the bodies, tend toward a common center of gravity between them
and therefore are the same as if they were emanating from a body between
them. Q.E.D.

And since there is given the ratio of the distance of either of the two
bodies from that common center to the distance between the bodies, there
will also be given the ratio of any power of one such distance to the same
power of the other distance, as well as the ratio that any quantity derived
in any manner from one such distance together with given quantities has
to another quantity derived in the same manner from the other distance
together with the same number of given quantities having that given ratio of
distances to the former ones. Accordingly, if the force with which one body
is attracted by the other is directly or inversely as the distance of the bodies
from each other or as any power of this distance or finally as any quantity
derived in any manner from this distance and given quantities, the same
force with which the same body is attracted to the common center of gravity
will be likewise directly or inversely as the distance of the attracted body
from that common center or as the same power of this distance or finally
as a quantity derived in the same manner from this distance and analogous
given quantities. That is, the law of the attracting force will be the same with

respect to either of the distances. Q.E.D.

To determine the motions of two bodies that attract each other with forces inversely
proportional to the square of the distance and are let go from given places.

These bodies will (by prop. 61) move just as if they were being attracted

by a third body set in their common center of gravity; and by hypothesis, that

center will be at rest at the very beginning of the motion and therefore (by
corol. 4 of the laws) will always be at rest. Accordingly, the motions of the
bodies are (by prop. 36) to be determined just as if they were being urged by
forces tending toward that center, and the motions of the bodies attracting
each other will then be known. Q.E.IL
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To determine the motions of two bodies that attract each other with forces inversely
proportional to the square of the distance and that set out from given places with
given velocities along given straight lines.

From the given motions of the bodies at the beginning the uniform
motion of the common center of gravity is given, as well as the motion of the
space that moves along with this center uniformly straight forward, and also
the initial motions of the bodies with respect to this space. Now (by corol. 5
of the laws and prop. 61), the subsequent motions take place in this space just
as if the space itself, along with that common center of gravity, were at rest,
and as if the bodies were not attracting each other but were being attracted
by a third body situated in that center. Therefore the motion of either body
in this moving space, setting out from a given place with a given velocity
along a given straight line and pulled by a centripetal force tending toward
that center, is to be determined (by props. 17 and 37), and at the same time
the motion of the other body about the same center will be known. This
motion is to be compounded with that uniform progressive motion (found
above) of the system of the space and bodies revolving in it, and the absolute

motion of the bodies in an unmoving space will be known. Q.E.L

If the forces with which bodies attract one another increase in the simple ratio of
the distances from the centers, it is required to find the motions of more than two
bodies in relation to one another.

Suppose first that two bodies T and L have a common center of gravity

D. These bodies will (by prop. 58, corol. 1) describe ellipses that have their
centers at D and that have magnitudes which become known by prop. 10.

Now let a third body S attract the first two bodies T and L with ac-

celerative forces ST and SL, and let it be attracted by those bodies in turn.

QOO USRS | The force ST (by corol. 2 of the

{ (ib laws) is resolved into forces SD

and DT, and the force SL into

forces SD and DL. Moreover, the

forces DT and DL, which are as

L their sum TL and therefore as

the accelerative forces with which
bodies T and L attract each other, when added respectively to those forces

of bodies T and L, compose forces proportional to the distances DT and
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DL, as before, but greater than those former forces, and therefore (by prop.
10, corol. 1, and prop. 4, corols. 1 and 8) they cause those bodies to describe
ellipses as before, but with a swifter motion. The remaining accelerative
forces, each of which is SD, by attracting those bodies T and L equally
and along lines TI and LK (which are parallel to DS) with motive actions
SD x T and SD x L (which are as the bodies), do not at all change the
situations of those bodies in relation to one another, but make them equally
approach line IK, which is to be conceived as drawn through the middle of
body S, perpendicular to the line DS. That approach to line IK, however,
will be impeded by causing the system of bodies T and L on one side and
body S on the other to revolve in orbit with just the right velocities about
a common center of gravity C. Body S describes an ellipse about that same
point C with such a motion, because the sum of the motive forces SD x T
and SD x L, which are proportional to the distance CS, tends toward the
center C; and because CS and CD are proportional, point D will describe
a similar ellipse directly opposite. But bodies T and L, being attracted
respectively by motive forces SD x T and SD x L equally and along the
parallel lines TI and LK (as has been said), will (by corols. 5 and 6 of the
laws) proceed to describe their own ellipses about the moving center D, as
before. Q.E.L

Now let a fourth body V be added, and by a similar argument it will be
concluded that this point and point C describe ellipses about B, the common
center of gravity of all the bodies, while the motions of the former bodies T,
L, and S about centers D and C remain the same as before, but accelerated.
And by the same method it will be possible to add more bodies. Q.E.L

These things are so, even if bodies T and L attract each other with accel-
erative forces that are greater or less than those by which they attract the rest
of the bodies in proportion to the distance. Let the mutual accelerative at-
tractions of all the bodies to one another be as the distances multiplied by the
attracting bodies; then, from what has gone before, it will be easily deduced
that all the bodies describe different ellipses in equal periodic times about B,

the common center of gravity of them all, in a motionless plane. Q.E.IL

More than two bodies whose forces decrease as the squares of the distances from
their centers are able to move with respect to one another in ellipses and, by radii

drawn to the foci, are able to describe areas proportional to the times very nearly.
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In prop. 64 the case was demonstrated in which the several motions
occur exactly in ellipses. The more the law of force departs from the law
there supposed, the more the bodies will perturb their mutual motions; nor
can it happen that bodies will move exactly in ellipses while attracting one
another according to the law here supposed, except by maintaining a fixed
proportion of distances one from another. In the following cases, however,
the orbits will not be very different from ellipses.

Case 1. Suppose that several lesser bodies revolve about some very much
greater one at various distances from it, and that absolute forces proportional
to these bodies [i.e., their masses] tend toward each and every one of them.
Then, since the common center of gravity of them all (by corol. 4 of the laws)
either is at rest or moves uniformly straight forward, let us imagine that the
lesser bodies are so small that the greater body never is sensibly distant from
this center. In this case, the greater body will—without any sensible error—
either be at rest or move uniformly straight forward, while the lesser ones
will revolve about this greater one in ellipses and by radii drawn to it will
describe areas proportional to the times, except insofar as there are errors
introduced either by a departure of the greater body from that common
center of gravity or by the mutual actions of the lesser bodies on one another.
The lesser bodies, however, can be diminished until that departure and the
mutual actions are less than any assigned values, and therefore until the orbits
square with ellipses and the areas correspond to the times without any error
that is not less than any assigned value. Q.E.O.

Cast 2. Let us now imagine a system of lesser bodies revolving in the
way just described around a much greater one, or any other system of two
bodies revolving around each other, to be moving uniformly straight forward
and at the same time to be urged sideways by the force of another very much
greater body, situated at a great distance. Then, since the equal accelerative
forces by which the bodies are urged along parallel lines do not change the
situations of the bodies in relation to one another, but cause the whole system
to be transferred simultaneously, while the motions of the parts with respect
to one another are maintained; it is manifest that no change whatsoever of
the motion of the bodies attracted among themselves will result from their
attractions toward the greater body, unless such a change comes either from
the inequality of the accelerative attractions or from the inclination to one

another of the lines along which the attractions take place. Suppose, therefore,
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that all the accelerative attractions toward the greater body are with respect
to one another inversely as the squares of the distances; then by increasing
the distance of the greater body until the differences (with respect to their
length) among the straight lines drawn from this body to the other bodies
and their inclinations with respect to one another are less than any assigned
values, the motions of the parts of the system with respect to one another
will persevere without any errors that are not less than any assigned values.
And since, because of the slight distance of those parts from one another, the
whole system is attracted as if it were one body, that system will be moved
by this attraction as if it were one body; that is, by its center of gravity
it will describe about the greater body some conic (namely, a hyperbola or
parabola if the attraction is weak, an ellipse if the attraction is stronger)
and by a radius drawn to the greater body will describe areas proportional
to the times without any errors except the ones that may be produced by
the distances between the parts, and these are admittedly slight and may be
diminished at will. Q.E.O.

By a similar argument one can go on to more complex cases indefinitely.

Cororrary 1. In case 2, the closer the greater body approaches to the
system of two or more bodies, the more the motions of the parts of the system
with respect to one another will be perturbed, because the inclinations to one
another of the lines drawn from this great body to those parts are now
greater, and the inequality of the proportion is likewise greater.

CoroLLarY 2.  But these perturbations will be greatest if the accelerative
attractions of the parts of the system toward the greater body are not to
one another inversely as the squares of the distances from that greater body,
especially if the inequality of this proportion is greater than the inequality of
the proportion of the distances from the greater body. For if the accelerative
force, acting equally and along parallel lines, in no way perturbs the motions
of the parts of the system with respect to one another, it will necessarily cause
a perturbation to arise when there is an inequality in its action, and such
perturbation will be greater or less according as this inequality is greater or
less. The excess of the greater impulses acting on some bodies, but not acting
on others, will necessarily change the situation of the bodies with respect to
one another. And this perturbation, added to the perturbation that arises from
the inclination and inequality of the lines, will make the total perturbation

greater.
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CororLary 3. Hence, if the parts of this system—without any significant
perturbation—move in ellipses or circles, it is manifest that these parts either
are not urged at all (except to a very slight degree indeed) by accelerative
forces tending toward other bodies, or are all urged equally and very nearly

along parallel lines.

Let three bodies—uwhose forces decrease as the squares of the distances—attract
one another, and let the accelerative attractions of any two toward the third be
to each other inversely as the squares of the distances, and let the two lesser
ones revolve about the greatest. Then I say that if that greatest body is moved
by these attractions, the inner body [of the two revolving bodies] will describe
about the innermost and greatest body, by radii drawn to it, areas more nearly
proportional to the times and a figure more closely approaching the shape of an
ellipse (having its focus in the meeting point of the radii) than would be the case if
that greatest body were not attracted by the smaller ones and were at rest, or if it
were much less or much more attracted and were acted on either much less or much
more.

This is sufficiently clear from the demonstration of the second corollary
of prop. 65, but it is proved as follows by a more lucid and more generally
convincing argument.

Case 1. Let the lesser bodies P and S revolve in the same plane about
a greatest body T, and let P describe the inner orbit PAB, and S the outer
orbit ESE. Let SK be the mean distance between bodies P and S, and let the
accelerative attraction of body P toward S at that mean distance be repre-
sented by that same line SK. Let SL be taken to SK as SK? to SP?, and SL
will be the accelerative attraction of body P toward S at any distance SP. Join
PT, and parallel to it draw LM meeting ST in M; then the attraction SL
will be resolved (by corol. 2 of the laws) into attractions SM and LM. And

a. In ed. 1, Newton used a different system of letters. In imitation of the usual form of Copernican
diagram, the central body was labeled S (for “Sol,” the sun) and the encircling body was P (for “Planeta,”
or planet). The next or outer body continued the sequence from P to Q. In ed. Z, as in ed. 3, the central
body is T (suggesting “Terra” for the earth), the encircling body is still P (but now secondary planet or
planetary satellite), while the outermost or perturbing body is S (suggesting “Sol”). In this way, in ed. 2
and ed. 3, Newton quite properly alerts the reader to the fact that he is basically analyzing mathematically
a form of the three-body problem, exemplified by the moon moving in orbit around the earth while being
perturbed by the gravitational force of the distant sun. The corollaries will not only serve for the discussion
of the moon’s motion in book 3 but also be used in determining the mass of the moon in book 3, prop. 37,

corol. 3.
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thus body P will be urged by a threefold accelerative force. One such force
tends toward T and arises from the mutual attraction of bodies T and P.
By this force alone (whether T is motionless or is moved by this attraction),
body P must, by a radius PT, describe around body T areas proportional to
the times and must also describe an ellipse whose focus is in the center of
body T. This is clear from prop. 11 and prop. 58, corols. 2 and 3.

The second force is that of the attraction LM, which (since it tends from
P to T) will, when added to the first of these forces, coincide with it and
will thus cause areas to be described that are still proportional to the times,
by prop. 58, corol. 3. But since this force is not inversely proportional to
the square of the distance PT, it will, together with the first force, com-
pose a force differing from this proportion—and the more so, the greater
the proportion of this force is to that first force, other things being equal.
Accordingly, since (by prop. 11 and by prop. 58, corol. 2) the force by which
an ellipse is described about the focus T must tend toward that focus and be
inversely proportional to the square of the distance PT, that composite force,
by differing from this proportion, will cause the orbit PAB to deviate from
the shape of an ellipse having its focus in T, and the more so the greater the
difference from this proportion; and the difference from this proportion will
be greater according as the proportion of the second force LM to the first
force is greater, other things being equal.

But now the third force SM, by attracting body P along a line parallel to
ST, will, together with the former forces, compose a force which is no longer
directed from P to T and which deviates from this direction the more, the
greater the proportion of this third force is to the former forces, other things
being equal; and this compound force therefore will make body P describe,
by a radius TP, areas no longer proportional to the times and will make the
divergence from this proportionality be the greater, the greater the proportion

of this third force is to the other forces. This third force will increase the
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deviation of the orbit PAB from the aforesaid elliptical shape for two reasons:
not only is this force not directed from P to T, but also it is not inversely
proportional to the square of the distance PT. Once these things have been
understood, it is manifest that the areas will be most nearly proportional to
the times when this third force is least, the other forces remaining the same
as they were; and that the orbit PAB approaches closest to the aforesaid
elliptical shape when both the second force and the third (but especially the
third force) are least, the first force remaining the same as it was.

Let the accelerative attraction of body T toward S be represented by line
SN; and if the accelerative attractions SM and SN were equal, they would, by
attracting bodies T and P equally and along parallel lines, not at all change
the situation of those two bodies with respect to each other. In this case, their
motions with respect to each other would (by corol. 6 of the laws) be the
same as it would be without these attractions. And for the same reason, if
the attraction SN were smaller than the attraction SM, it would take away
the part SN of the attraction SM, and only the part MN would remain, by
which the proportionality of the times and areas and the elliptical shape of the
orbit would be perturbed. And similarly, if the attraction SN were greater
than the attraction SM, the perturbation of the proportionality and of the
orbit would arise from the difference MN alone. Thus SM, the third attrac-
tion above, 1s always reduced by the attraction SN to the attraction MN, the
first and second attractions remaining completely unchanged; and therefore
the areas and times approach closest to proportionality, and the orbit PAB
approaches closest to the aforesaid elliptical shape, when the attraction MN
is either null or the least possible—that is, when the accelerative attractions
of bodies P and T toward body S approach as nearly as possible to equality,
in other words, when the attraction SN is neither null nor less than the least
of all the attractions SM, but is a kind of mean between the maximum and
minimum of all those attractions SM, that is, not much greater and not much
smaller than the attraction SK. Q.E.D.

Cask 2. Now let the lesser bodies P and S revolve about the greatest
body T in different planes; then the force LM, acting along a line PT situated
in the plane of orbit PAB, will have the same effect as before, and will not
draw body P away from the plane of its orbit. But the second force NM,
acting along a line that is parallel to ST (and therefore, when body S is
outside the line of the nodes, is inclined to the plane of orbit PAB), besides
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the perturbation of its motion in longitude, already set forth above, will
introduce a perturbation of the motion in latitude, by attracting body P out
of the plane of its orbit. And this perturbation, in any given situation of
bodies P and T with respect to each other, will be as the generating force
MN, and therefore becomes least when MN is least, that is (as I have already
explained), when the attraction SN is not much greater and not much smaller
than the attraction SK. Q.E.D.

Cororrary 1. Hence it is easily gathered that if several lesser bodies
P, S, R, ... revolve about a greatest body T, the motion of the innermost
body P will be least perturbed by the attractions of the outer bodies when
the greatest body T is attracted and acted on as much by the other bodies
(according to the ratio of the accelerative forces) as the other bodies are by
one another.

CoroLLary 2. In a system of three bodies T, P, and S, if the accelerative
attractions of any two toward the third are to each other inversely as the
squares of the distances, body P will describe, by a radius PT, an area about
body T more swiftly near their conjunction A and their opposition B than
near the quadratures C and D. For every force by which body P is urged
and body T is not, and which does not act along line PT, accelerates or
retards the description of areas, according as its direction is forward and
direct [or in consequentia] or retrograde [or in antecedentia]. Such is the force
NM. In the passage of body P from C to A, this force is directed forward
[or in consequentia] and accelerates the motion; afterward, as far as D, it is
retrograde [or in antecedentia] and retards the motion; then forward up to
B, and finally retrograde in passing from B to C.

CororLary 3. And by the same argument it is evident that body P, other
things being the same, moves more swiftly in conjunction and opposition than

in the quadratures.
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Cororrary 4. The orbit of body P, other things being the same, is more
curved in the quadratures than in conjunction and opposition. For swifter
bodies are deflected less from a straight path. And besides, in conjunction and
opposition the force KL, or NM, is opposite to the force with which body
T attracts body P and therefore diminishes that force, while body P will be
deflected less from a straight path when it is less urged toward body T.

CoroLLary 5. Accordingly, body P, other things being the same, will
recede further from body T in the quadratures than in conjunction and
opposition. These things are so if the motion of [i.e., change in] eccentricity
is neglected. For if the orbit of body P is eccentric, its eccentricity {(as will
shortly be shown in corol. 9 of this proposition) will come out greatest when
the apsides are in the syzygies; and thus it can happen that body P, arriving
at the upper apsis, may be further away from body T in the syzygies than
in the quadratures.

Corotrary 6. Since the centripetal force of the central body T, which
keeps body P in its orbit, is increased in the quadratures by the addition of
the force LM and is diminished in the syzygies by the subtraction of the force
KL and, because of the magnitude of the force KL [which is greater than
LM], is more diminished than increased; and since that centripetal force (by
prop. 4, corol. 2) is in a ratio compounded of the simple ratio of the radius
TP directly and the squared ratio of the periodic time inversely [i.e., the
force is directly as the radius and inversely as the square of the periodic
time], it 1s evident that this compound ratio is diminished by the action of
the force KL, and therefore that the periodic time (assuming the radius TP
of the orbit to remain unchanged) is increased as the square root of the ratio
in which that centripetal force is diminished. It is therefore further evident
that, assuming this radius to be increased or diminished, the periodic time
is increased more or diminished less than as the ¥ power of this radius, by
prop. 4, corol. 6. If the force of the central body were gradually to weaken,
body P, attracted always less and less, would continually recede further and
further from the center T; and on the contrary, if the force were increased,
body P would approach nearer and nearer. Therefore, if the action of the
distant body S, whereby the force is diminished, is alternately increased and
diminished, radius TP will at the same time also be alternately increased and
diminished, and the periodic time will be increased and diminished in a ratio

compounded of the 3 power of the ratio of the radius and the square root
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of the ratio in which the centripetal force of the central body T is diminished
or increased by the increase or decrease of the action of the distant body S.

CoroLLary 7. From what has gone before, it follows also that with
respect to angular motion the axis of the ellipse described by body P, or
the line of the apsides, advances and regresses alternately, but nevertheless
advances more than it regresses and is carried forward [or in consequentia]

by the excess of its direct forward motion. For the force whereby body P is

urged toward body T in the quadratures, when the force MN vanishes, is
compounded of the force LM and the centripetal force with which body T
attracts body P. If the distance PT is increased, the first force LM is increased
in about the same ratio as this distance, and the latter force is decreased as
the square of that ratio, and so the sum of these forces is decreased in a less
than squared ratio of the distance PT, and therefore (by prop. 45, corol. 1)
causes the auge, or upper apsis, to regress. But in conjunction and opposition
the force whereby body P is urged toward body T is the difference between
the force by which body T attracts body P and the force KL; and that
difference, because the force KL is increased very nearly in the ratio of the
distance PT, decreases in a ratio of the distance PT that is greater than the
square of the distance PT, and so (by prop. 45, corol. 1) causes the upper
apsis to advance. In places between the syzygies and quadratures the motion
of the upper apsis depends on both of these causes jointly, so that according
to the excess of the one or the other it advances or regresses. Accordingly,
since the force KL in the syzygies is roughly twice as large as the force LM
in the quadratures, the excess will have the same sense as the force KL and
will carry the upper apsis forward [or in consequentia]. The truth of this
corollary and its predecessor will be easily understood by supposing that a
system of two bodies T and P is surrounded on all sides by more bodies S, S,

S, ... that are in an orbit ESE. For by the actions of these bodies, the action
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of T will be diminished on all sides and will decrease in a ratio greater than
the square of the distance.

Cororrary 8. Since, however, the advance or retrogression of the ap-
sides depends on the decrease of the centripetal force, a decrease occurring
in a ratio of the distance TP that is either greater or less than the square of
the ratio of the distance TP, in the passage of the body from the lower to
the upper apsis, and also depends on a similar increase in its return to the
lower apsis, and therefore is greatest when the proportion of the force in the
upper apsis to the force in the lower apsis differs most from the ratio of
the inverse squares of the distances, it is manifest that KL or NM — LM,
the force that subtracts, will cause the apsides to advance more swiftly in their
syzygies and that LM, the force that adds, will cause them to recede more
slowly in their quadratures. And because of the length of time in which the
swiftness of the advance or slowness of the retrogression is continued, this
inequality becomes by far the greatest.

CoroLrary 9. If a body, by the action of a force inversely proportional
to the square of its distance from a center, were to revolve about this center
in an ellipse, and if then, in its descent from the upper apsis or auge to the
lower apsis, that force—because of the continual addition of a new force—
were increased in a ratio that is greater than the square of the diminished
distance, it is manifest that that body, being always impelled toward the center
by the continual addition of that new force, would incline toward this center
more than if it were urged only by a force increasing as the square of the
diminished distance, and therefore would describe an orbit inside the elliptical
orbit and in its lower apsis would approach nearer to the center than before.
Therefore by the addition of this new force, the eccentricity of the orbit will
be increased. Now if, during the receding of the body from the lower to
the upper apsis, the force were to decrease by the same degrees by which
it had previously increased, the body would return to its former distance;
and so, if the force decreases in a greater ratio, the body, now attracted less,
will ascend to a greater distance, and thus the eccentricity of its orbit will be
increased still more. And therefore, if the ratio of the increase and decrease
of the centripetal force is increased in each revolution, the eccentricity will
always be increased; and contrariwise, the eccentricity will be diminished if

that ratio decreases.



PROPOSITION 66

Now, in the system of bodies T, P, and S, when the apsides of the orbit
PAB are in the quadratures, this ratio of the increase and decrease is least,
and it becomes greatest when the apsides are in the syzygies. If the apsides are
in the quadratures, the ratio near the apsides is smaller and near the syzygies
is greater than the squared ratio of the distances, and from that greater ratio
arises the forward or direct motion of the upper apsis, as has already been
stated. But if one considers the ratio of the total increase or decrease in the
forward motion between the apsides, this ratio is smaller than the squared
ratio of the distances. The force in the lower apsis is to the force in the upper
apsis in a ratio that is less than the squared ratio of the distance of the upper
apsis from the focus of the ellipse to the distance of the lower apsis from that
same focus; and conversely, when the apsides are in the syzygies, the force in
the lower apsis is to the force in the upper apsis in a ratio greater than that
of the squares of the distances.

For the forces LM in the quadratures, added to the forces of body T,
compose forces in a smaller ratio, and the forces KL in the syzygies, sub-
tracted from the forces of body T, leave forces in a greater ratio. Therefore,
the ratio of the total decrease and increase during the passage between ap-
sides is least in the quadratures and greatest in the syzygies; and therefore,
during the passage of the apsides from quadratures to syzygies, this ratio is
continually increased and it increases the eccentricity of the ellipse; and in
the passage from syzygies to quadratures, this ratio is continually diminished
and it diminishes the eccentricity.

Cororrary 10.  To give an account of the errors in latitude, let us imag-
ine that the plane of the orbit EST remains motionless; then from the cause
of errors just expounded, it is manifest that of the forces NM and ML (which
are the entire cause of these errors) the force ML, always acting in the plane
of the orbit PAB, never perturbs the motions in latitude. It is likewise man-

ifest that when the nodes are in the syzygies, the force NM, also acting in
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the same plane of the orbit, does not perturb these motions; but when the
nodes are in the quadratures, this force perturbs those motions to the great-
est extent, and—by continually attracting body P away from the plane of its
orbit—diminishes the inclination of the plane during the passage of the body
from quadratures to syzygies and increases that inclination in turn during the
passage from syzygies to quadratures. Hence it happens that when the body
is in the syzygies the inclination turns out to be least of all, and it returns
approximately to its former magnitude when the body comes to the next
node. But if the nodes are situated in the octants after the quadratures, that
is, between C and A, or D and B, it will be understood from what has just
been explained that in the passage of body P from either node to a position
90 degrees from there, the inclination of the plane is continually diminished;
then, in its passage through the next 45 degrees to the next quadrature, the
inclination is increased; and afterward, in its next passage through another
45 degrees to the next node, it is diminished. Therefore, the inclination is
diminished more than it is increased, and hence it is always less in each
successive node than in the immediately preceding one. And by a similar
reasoning, it follows that the inclination is increased more than it is dimin-
ished when the nodes are in the other octants between A and B, or B and
C. Thus, when the nodes are in the syzygies, the inclination is greatest of all.
In the passage of the nodes from syzygies to quadratures, the inclination is
diminished in each appulse of the body to the nodes, and it becomes least of
all when the nodes are in the quadratures and the body is in the syzygies;
then it increases by the same degrees by which it had previously decreased,
and at the appulse of the nodes to the nearest syzygies it returns to its original
magnitude.

CoroLLary 11.  When the nodes are in the quadratures, the body P is
continually attracted away from the plane of its orbit in the direction toward
S, during its passage from the node C through the conjunction A to the

node D, and in the opposite direction in its passage from node D through
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opposition B to node C; hence it is manifest that the body, in its motion
from node C, continually recedes from the first plane CD of its orbit until it
has reached the next node; and therefore at this node, being at the greatest
distance from that first plane CD, it passes through EST, the plane of the
orbit, not in the other node D of that plane but in a point that is closer to
body S and which accordingly is a new place of the node, behind its former
place. By a similar argument the nodes will continue to recede in the passage
of the body from this node to the next node. Hence the nodes, when situated
in the quadratures, continually recede; in the syzygies, when the motion in
latitude is not at all perturbed, the nodes are at rest; in the intermediate places,
since they share in both conditions, they recede more slowly; and therefore,
since the nodes always ecither have a retrograde motion or are stationary, they
are carried backward [or in antecedentia] in each revolution.

Cororrary 12, All the errors described in these corollaries are slightly
greater in the conjunction of bodies P and S than in their opposition; and
this occurs because then the generating forces NM and ML are greater.

Cororrary 13, And since the proportions in these corollaries do not
depend on the magnitude of the body S, all the preceding statements are
valid when the magnitude of body S is assumed to be so great that the
system of two bodies T and P will revolve about it. And from this increase
of body S, and consequently the increase of its centripetal force (from which
the errors of body P arise), all those errors will—at equal distances—come
out greater in this case than in the other, in which body S revolves around
the system of bodies P and T.

CoroLLary 14.° When body S is extremely far away, the forces NM
and ML are very nearly as the force SK and the ratio of PT to ST jointly
(that is, if both the distance PT and the absolute force of body S are given, as
ST? inversely), and those forces NM and ML are the causes of all the errors
and effects that have been dealt with in the preceding corollaries; hence it is
manifest that all these effects—if the system of bodies T and P stays the same
and only the distance ST and the absolute force of body S are changed—are
very nearly in a ratio compounded of the direct ratio of the absolute force of
body S and the inverse ratio of the cube of the distance ST. Accordingly, if
the system of bodies T and P revolves about the distant body S, those forces
NM and ML and their effects will (by prop. 4, corols. 2 and 6) be inversely

b. For a gloss on this corollary see the Guide, §10.16.
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as the square of the periodic time. And hence also, if the magnitude of body
S is proportional to its absolute force, those forces NM and ML and their
effects will be directly as the cube of the apparent diameter of the distant
body S when looked at from body T, and conversely. For these ratios are the
same as the above-mentioned compounded ratio.

Cororrary 15. If the magnitudes of the orbits ESE and PAB are
changed, while their forms and their proportions and inclinations to each
other remain the same, and if the forces of bodies S and T either remain the
same or are changed in any given ratio, then these forces (that is, the force
of body T, by whose action body P is compelled to deflect from a straight
path into an orbit PAB; and the force of body S, by whose action that same
body P is compelled to deviate from that orbit) will always act in the same
way and in the same proportion; thus it will necessarily be the case that
all the effects will be similar and proportional and that the times for these
effects will be proportional as well—that is, all the linear errors will be as
the diameters of the orbits, the angular errors will be the same as before,
and the times of similar linear errors or of equal angular errors will be as
the periodic times of the orbits.

CoroLrary 16. And hence, if the forms of the orbits and their incli-
nation to each other are given, and the magnitudes, forces, and distances of
the bodies are changed in any way, then from the given errors and given
times of errors in one case there can be found the errors and times of errors
in any other case very nearly. This may be done more briefly, however, by
the following method. The forces NM and ML, other things remaining the
same, are as the radius TP, and their periodic effects are (by lem. 10, corol. 2)
jointly as the forces and the square of the periodic time of body P. These are
the linear errors of body P, and hence the angular errors as seen from the
center T (that is, the motions of the upper apsis and of the nodes, as well
as all the apparent errors in longitude and latitude) are in any revolution of

body P very nearly as the square of the time of revolution. Let these ratios
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be compounded with the ratios of corol. 14; then in any system of bodies T,
P, and S, in which P revolves around T which is near to it and T revolves
around a distant S, the angular errors of body P, as seen from the center
T, will—in each revolution of that body P—be as the square of the peri-
odic time of body P directly and the square of the periodic time of body T
inversely. And thus the mean motion of the upper apsis will be in a given
ratio to the mean motion of the nodes, and each of the two motions will be
as the periodic time of body P directly and the square of the periodic time of
body T inversely. By increasing or decreasing the eccentricity and inclination
of the orbit PAB, the motions of the upper apsis and of the nodes are not
changed sensibly, except when the eccentricity and inclination are too great.

CoroLrLary 17.  Since, however, the line LM is sometimes greater and
sometimes less than the radius PT, let the mean force LM be represented by
that radius PT; then this force will be to the mean force SK or SN (which
can be represented by ST) as the length PT to the length ST. But the mean
force SN or ST by which body T is kept in its orbit around S is to the force
by which body P is kept in its orbit around T in a ratio compounded of the
ratio of the radius ST to the radius PT and the square of the ratio of the
periodic time of body P around T to the periodic time of body T around S.
And from the equality of the ratios [or ex aequo] the mean force LN is to
the force by which a body P is kept in its orbit around T (or by which the
same body P could revolve in the same periodic time around any immobile
point T at a distance PT) in the same squared ratio of the periodic times.
Therefore, if the periodic times are given, along with the distance PT, the
mean force LM is also given; and if the force LM is given, the force MN is
also given very nearly by the proportion of lines PT and MN.

CoroLrary 18.  Let us imagine many fluid bodies to move around body
T at equal distances from it according to the same laws by which body P
revolves around the same body T; then let a ring—fluid, round, and concen-
tric to body T-—be produced by making these individual fluid bodies come
into contact with one another; these individual parts of the ring, carrying
out all their motions according to the law of body P, will approach closer
to body T and will move more swiftly in the conjunction and opposition
of themselves and body S than in the quadratures. The nodes of this ring,
or its intersections with the plane of the orbit of body S or T, will be at
rest in the syzygies, but outside the syzygies they will move backward [or

in antecedentia], and do so most swiftly in the quadratures and more slowly
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in other places. The inclination of the ring will also vary, and its axis will
oscillate in each revolution; and when a revolution has been completed, it
will return to its original position except insofar as it is carried around by
the precession of the nodes.

CoroLrary 19. Now imagine the globe T, which consists of nonfluid
matter, to be so enlarged as to extend out to this ring, and to have a channel
to contain water dug out around its whole circumference; and imagine this
new globe to revolve uniformly about its axis with the same periodic motion.
This water, being alternately accelerated and retarded (as in the previous
corollary), will be swifter in the syzygies and slower in the quadratures than
the surface of the globe itself, and thus will ebb and flow in the channel just
as the sea does. If the attraction of body S is taken away, the water—now
revolving about the quiescent center of the globe—will acquire no motion
of ebb and flow. This is likewise the case for a globe advancing uniformly
straight forward and meanwhile revolving about its own center (by corol. 5
of the laws), and also for a globe uniformly attracted away from a rectilinear
path (by corol. 6 of the laws). But let body S now draw near, and by its
nonuniform attraction of the water, the water will soon be disturbed. For its
attraction of the nearer water will be greater and that of the more distant
water will be smaller. Moreover, the force LM will attract the water down-
ward in the quadratures and will make it descend as far as the syzygies, and
the force KL will attract this same water upward in the syzygies and will
prevent its further descent and will make it ascend as far as the quadratures,
except insofar as the motion of ebb and flow is directed by the channel of
water and is somewhat retarded by friction.

Cororrary 20. If the ring now becomes hard and the globe is dimin-
ished, the motion of ebb and flow will cease; but the oscillatory motion of the
inclination and the precession of the nodes will remain. Let the globe have
the same axis as the ring and complete its revolutions in the same times, and

let its surface touch the inside of the ring and adhere to it; then, with the
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globe participating in the motion of the ring, the structure of the two will
oscillate and the nodes will regress. For the globe, as will be shown presently,
is susceptible to all impressions equally. The greatest angle of inclination of
the ring alone, with the globe removed, occurs when the nodes are in the
syzygies. From there in the forward motion of the nodes to the quadratures
it endeavors to diminish its inclination and by that endeavor impresses a
motion upon the whole globe. The globe keeps this impressed motion until
the ring removes this motion by an opposite endeavor and impresses a new
motion in the opposite direction; and in this way the greatest motion of the
decreasing inclination occurs when the nodes are in the quadratures, and
the least angle of inclination occurs in the octants after the quadratures; and
the greatest motion of reclination occurs in the syzygies, and the greatest
angle in the next octants. And this is likewise the case for a globe which has
no such ring and which in the regions of the equator is either a little higher
than near the poles or consists of matter a little denser. For that excess of
matter in the regions of the equator takes the place of a ring. And although,
by increasing the centripetal force of this globe in any way whatever, all its
parts are supposed to tend downward, as the gravitating parts of the earth
do, nevertheless the phenomena of this corollary and of corol. 19 will scarcely
be changed on that account, except that the places of the greatest and least
height of the water will be different. For the water is now sustained and
remains in its orbit not by its own centrifugal force but by the channel in
which it 1s flowing. And besides, the force LM attracts the water downward
to the greatest degree in the quadratures, and the force KL or NM — LM
attracts the same water upward to the greatest degree in the syzygies. And
these forces conjoined cease to attract the water downward and begin to at-
tract the water upward in the octants before the syzygies, and they cease to
attract the water upward and begin to attract the water downward in the oc-
tants after the syzygies. As a result, the greatest height of the water can occur
very nearly in the octants after the syzygies, and the least height can occur
very nearly in the octants after the quadratures, except insofar as the motion
of ascent or descent impressed on the water by these forces either perseveres
a little longer because of the inherent force of the water or is stopped a little
more swiftly because of the impediments of the channel.

Cororrary 21.  In the same way that the excess matter of a globe near
its equator makes the nodes regress (and thus the retrogression is increased

by increase of equatorial matter and is diminished by its diminution and is
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removed by its removal), it follows that if more than the excess matter is
removed, that is, if the globe near the equator is made either more depressed
or more rare than near the poles, there will arise a motion of the nodes
torward [or in consequentia].

CoroLLary 22. And thus, in turn, from the motion of the nodes the
constitution of a globe can be found. That is to say, if a globe constantly
preserves the same poles and there occurs a motion backward [or in an-
tecedentia), there is an excess of matter near the equator; if there occurs a
motion forward [or in consequentia], there is a deficiency. Suppose that a
uniform and perfectly spherical globe is at first at rest in free space; then is
propelled by any impetus whatever delivered obliquely upon its surface, from
which it takes on a motion that is partly circular [i.e., rotational] and partly
straight forward. Because the globe is indifferent to all axes passing through
its center and does not have a greater tendency to turn around any one axis
or an axis at any particular inclination, it is clear that the globe, by its own
force alone, will never change its axis and the inclination of the axis. Now
let the globe be impelled obliquely by any new impulse whatever, delivered
to that same part of the surface as before; then, since the effect of an impulse
is in no way changed by its being delivered sooner or later, it is manifest that
the same motion will be produced by these two impulses being successively
impressed as if they had been impressed simultaneously, that is, the resultant
motion will be the same as if the globe had been impelled by a simple force
compounded of these two (by corol. 2 of the laws), and hence will be a simple
motion about an axis of a given inclination. This is likewise the case for a
second impulse impressed in any other place on the equator of the first mo-
tion; and also for a first impulse impressed in any place on the equator of the
motion which the second impulse would generate without the first, and hence
for both impulses impressed in any places whatever. These two impulses will
generate the same circular motion as if they had been impressed together
and all at once in the place of intersection of the equators of the motions
which each of them would generate separately. Therefore a homogeneous
and perfect globe does not retain several distinct motions but compounds all
the motions impressed on it and reduces them to one; and insofar as it can
in and of itself, it always rotates with a simple and uniform motion about a
single axis of a given and always invariable inclination. A centripetal force

cannot change either this inclination of the axis or the velocity of rotation.
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If a globe is thought of as divided into two hemispheres by any plane
passing through the center of the globe and the center toward which a force is
directed, that force will always urge both hemispheres equally and therefore
will not cause the globe—as regards its motion of rotation—to incline in any
direction. Let some new matter, heaped up in the shape of a mountain, be
added to the globe anywhere between the pole and the equator; then this
matter, by its continual endeavor to recede from the center of its motion,
will disturb the motion of the globe and will make its poles wander over
its surface and continually describe circles about themselves and the point
opposite to them. And this tremendous wandering of the poles will not be
corrected, save by placing the mountain either in one of the two poles, in
which case (by corol. 21) the nodes of the equator will advance, or on the
equator, in which case (by corol. 20) the nodes will regress, or finally by
placing on the other side of the axis some additional matter by which the
mountain is balanced in its motion, and in this way the nodes will either
advance or regress, according as the mountain and this new matter are closer

to a pole or to the equator.

With the same laws of attraction being supposed, 1 say that with respect to the
common center of gravity O of the inner bodies P and T, the outer body S—by
radii drawn to that center—describes areas more nearly proportional to the times,
and an orbit more closely approaching the shape of an ellipse having its focus in
that same center, than it can describe about the innermost and greatest body T by
radii drawn to that body.

For the attractions of body S toward
T and P compose its absolute attraction,
which is directed more toward the common ¢

center of gravity O of bodies T and P than

toward the greatest body T, and which is
more nearly inversely proportional to the
square of the distance SO than to the square of the distance ST, as will

easily be seen by anyone carefully considering the matter.

With the same laws of attraction being supposed, I say that with respect to the
common center of gravity O of the inner bodies P and T, the outer body S—by
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radii drawn to that center—describes areas more nearly proportional to the times,
and an orbit more closely approaching the shape of an ellipse having its focus in
the same center, if the innermost and greatest body is acted on by these artractions
Just as the others are, than would be the case if it is either not attracted and
1s at rest or 1s much more or much less attracted or much more or much less
moved.

This is demonstrated in almost the same way as prop. 66, but the proof
is more prolix and I therefore omit it. The following considerations should
suffice.

From the demonstration of the last
proposition it is apparent that the center
toward which body S is urged by both

forces combined is very near to the com-

mon center of gravity of the other bodies P
and T. If this center were to coincide with
the common center of those two bodies, and the common center of gravity of
all three bodies were to be at rest, body S on the one hand and the common
center of the other two bodies on the other would describe exact ellipses
about the common center of them all which is at rest. This is clear from the
second corollary of prop. 58 compared with what is demonstrated in props.
64 and 65. Such an exact elliptical motion is perturbed somewhat by the
distance of the center of the two bodies from the center toward which the
third body S is attracted. Let a motion be given, in addition, to the common
center of the three, and the perturbation will be increased. Accordingly, the
perturbation is least when the common center of the three is at rest, that is,
when the innermost and greatest body T is attracted by the very same law
as the others; and it always becomes greater when the common center of the
three bodies, by a diminution of the motion of body T, begins to be moved
and thereupon acted on more and more.

CoroLLary.  And hence, if several lesser bodies revolve about a greatest
one, it can be found that the orbits described will approach closer to elliptical
orbits, and the descriptions of areas will become more uniform, if all the
bodies attract and act on one another by accelerative forces that are directly
as their absolute forces and inversely as the squares of the distances, and if
the focus of each orbit is located in the common center of gravity of all the

inner bodies (that is to say, with the focus of the first and innermost orbit
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in the center of gravity of the greatest and innermost body; the focus of the
second orbit in the common center of gravity of the two innermost bodies;
the focus of the third in the common center of gravity of the three inner
bodies; and so on), than if the innermost body is at rest and is set at the

common focus of all the orbits.

If, in a system of several bodies A, B, C, D, ..., some body A attracts all the
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others, B, C, D, ..., by accelerative forces that are inversely as the squares of Theorem 29

the distances from the attracting body; and if another body B also attracts the rest
of the bodies A, C, D, ..., by forces that are inversely as the squares of the
distances from the attracting body; then the absolute forces of the attracting bodies
A and B will be to each other in the same ratio as the bodies [i.e., the masses] A
and B themselves to which those forces belong.

For, at equal distances, the accelerative attractions of all the bodies B,
C, D, ... toward A are equal to one another by hypothesis; and similarly,
at equal distances, the accelerative attractions of all the bodies toward B
are equal to one another. Moreover, at equal distances, the absolute attractive
force of body A is to the absolute attractive force of body B as the accelerative
attraction of all the bodies toward A is to the accelerative attraction of all the
bodies toward B at equal distances; and the accelerative attraction of body
B toward A is also in the same proportion to the accelerative attraction of
body A toward B. But the accelerative attraction of body B toward A is to
the accelerative attraction of body A toward B as the mass of body A is to
the mass of body B, because the motive forces—which (by defs. 2, 7, and
8) are as the accelerative forces and the attracted bodies jointly—are in this
case (by the third law of motion) equal to each other. Therefore the absolute
attractive force of body A is to the absolute attractive force of body B as the
mass of body A is to the mass of body B. Q.E.D.

CororLary 1. Hence if each of the individual bodies of the system A, B,
C, D, ..., considered separately, attracts all the others by accelerative forces
that are inversely as the squares of the distances from the attracting body, the
absolute forces of all those bodies will be to one another in the ratios of the
bodies [i.e., the masses] themselves.

CoroLrary 2. By the same argument, if each of the individual bodies of

the system A, B, C, D, ..., considered separately, attracts all the others by
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accelerative forces that are either inversely or directly as any powers whatever
of the distances from the attracting body, or that are defined in terms of the
distances from each one of the attracting bodies according to any law common
to all these bodies; then it is evident that the absolute forces of those bodies
are as the bodies [i.e., the masses).

CororLary 3. If, in a system of bodies whose forces decrease in the
squared ratio of the distances [i.e., vary inversely as the squares of the dis-
tances], the lesser bodies revolve about the greatest one in ellipses as exact as
they can be, having their common focus in the center of that greatest body,
and—by radii drawn to the greatest body——describe areas as nearly as pos-
sible proportional to the times, then the absolute forces of those bodies will
be to one another, either exactly or very nearly, as the bodies, and conversely.
This is clear from the corollary of prop. 68 compared with corol. 1 of this

proposition.

By these propositions we are directed to the analogy between centripetal
forces and the central bodies toward which those forces tend. For it is rea-
sonable that forces directed toward bodies depend on the nature and the
quantity of matter of such bodies, as happens in the case of magnetic bodies.
And whenever cases of this sort occur, the attractions of the bodies must be
reckoned by assigning proper forces to their individual particles and then
taking the sums of these forces.

I use the word “attraction” here in a general sense for any endeavor
whatever of bodies to approach one another, whether that endeavor occurs as
a result of the action of the bodies either drawn toward one another or acting
on one another by means of spirits emitted or whether it arises from the
action of aether or of air or of any medium whatsoever—whether corporeal
or incorporeal—in any way impelling toward one another the bodies floating
therein. I use the word “impulse” in the same general sense, considering
in this treatise not the species of forces and their physical qualities but
their quantities and mathematical proportions, as I have explained in the
definitions.

Mathematics requires an investigation of those quantities of forces and
their proportions that follow from any conditions that may be supposed.

Then, coming down to physics, these proportions must be compared with
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the phenomena, so that it may be found out which conditions [or laws]
of forces apply to each kind of attracting bodies. And then, finally, it will
be possible to argue more securely concerning the physical species, physical
causes, and physical proportions of these forces. Let us see, therefore, what
the forces are by which spherical bodies, consisting of particles that attract
in the way already set forth, must act upon one another, and what sorts of

motions result from such forces.
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SECTION 12

The attractive forces of spherical bodies

If toward each of the separate points of a spherical surface there tend equal cen-

tripetal forces decreasing as the squares of the distances from the point, I say that

a corpuscle placed inside the surface will not be attracted by these forces in any
direction.

Let HIKL be the spherical surface, and P the corpuscle placed inside.

Through P draw to this surface the two lines HK and IL intercepting min-

imally small arcs HI and KL; and because tri-

KL angles HPI and LPK are similar (by lem. 7,

corol. 3), those arcs will be proportional to the

distances HP and LP; and any particles of the

H spherical surface at HI and KL, terminated ev-

erywhere by straight lines passing through point

P, will be in that proportion squared. Therefore

the forces exerted on body P by these particles of

surface are equal to one another. For they are as the particles directly and the

squares of the distances inversely. And these two ratios, when compounded,

give the ratio of equality. The attractions, therefore, being made equally in

opposite directions, annul each other. And by a similar argument, all the

attractions throughout the whole spherical surface are annulled by opposite

attractions. Accordingly, body P is not impelled by these attractions in any
direction. Q.E.D.

With the same conditions being supposed as in prop. 70, I say that a corpuscle
placed outside the spherical surface is attracted o the center of the sphere by a
force inversely proportional to the square of its distance from that same center.
Let AHKB and ahkb be two equal spherical surfaces, described about
centers S and s with diameters AB and @b, and let P and p be corpuscles
located outside those spheres in those diameters produced. From the cor-
puscles draw lines PHK, PIL, pA%, and pil, so as to cut off from the great
circles AHB and ahé the equal arcs HK and %%, and IL and ¢/. And onto
these lines drop perpendiculars SD and sd, SE and se, IR and ir, of which
SD and sd cut PL and p/ at F and f. Also drop perpendiculars IQ and
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ig onto the diameters. Let angles DPE and dpe vanish; then, because DS
and ds, ES and es are equal, lines PE, PF and pe, pf and the line-elements
DF and df may be considered to be equal, inasmuch as their ultimate ratio,
when angles DPE and dpe vanish simultaneously, is the ratio of equality.

On the basis of these things, therefore, PI will be to PF as RI to DF, and
pf to pi as df or DF to ri, and from the equality of the ratios [or ex aequoj
PI x pf will be to PF X pi as RI to ri, that is (by lem. 7, corol. 3), as the arc
IH to the arc i4. Again, PI will be to PS as IQ to SE, and ps will be to pi as
se or SE to ig; and from the equality of the ratios [or ex aequo] PI x ps will
be to PS X pi as IQ to ig. And by compounding these ratios, PI* X pf X ps
will be to pi® x PF x PS as [H X IQ to 14 X ig; that is, as the circular surface
that the arc TH will describe by the revolution of the semicircle AKB about
the diameter AB to the circular surface that the arc /4 will describe by the
revolution of the semicircle akbd about the diameter ab. And the forces by
which these surfaces attract the corpuscles P and p (along lines tending to
these same surfaces) are (by hypothesis) as these surfaces themselves directly
and the squares of the distances of these surfaces from the bodies inversely,
that is, as pf X ps to PF x PS.

Now (once the resolution of the forces has been made according to
corol. 2 of the laws), these forces are to their oblique parts, which tend
along the lines PS and ps toward the centers, as PI to PQ and pi to pg;
that is (because the triangles PIQ and PSF, pig and psf are similar), the
forces are to their oblique parts as PS to PF and ps to pf. Hence, from the

equality of the ratios [or ex aequo] the attraction of this corpuscle P toward

PF x pf x ps

——— to
PS

, that is, as ps* to PS?. And by a similar argument, the forces

S becomes to the attraction of the corpuscle p toward s as

pf x PF x PS

ps
by which the surface described by the revolution of the arcs KL and &/ at-

tract the corpuscles will be as ps? to PS*. And the same ratio will hold for
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the forces of all the spherical surfaces into which each of the two spherical
surfaces can be divided by taking sd always equal to SD and se equal to
SE. And by composition [or componendo] the forces of the total spherical

surfaces exercised upon the corpuscles will be in the same ratio. Q.E.D.

If toward each of the separate points of any sphere there tend equal centripetal

Theorem 32 forces, decreasing in the squared ratio of the distances from those points, and there

are given both the density of the sphere and the ratio of the diameter of the sphere
to the distance of the corpuscle from the center of the sphere, I say that the force
by which the corpuscle is attracted will be proportional to the semidiameter of the
sphere.

For imagine that two corpuscles are attracted separately by two spheres,
one corpuscle by one sphere, and the other corpuscle by the other sphere, and
that their distances from the centers of the spheres are respectively propor-
tional to the diameters of the spheres, and that the two spheres are resolved
into particles that are similar and similarly placed with respect to the cor-
puscles. Then the attractions of the first corpuscle, made toward each of the
separate particles of the first sphere, will be to the attractions of the second
toward as many analogous particles of the second sphere in a ratio com-
pounded of the direct ratio of the particles and the inverse squared ratio
of the distances [i.e., the attractions will be to one another as the particles
directly and the squares of the distances inversely]. But the particles are as
the spheres, that is, they are in the cubed ratio of the diameters, and the dis-
tances are as the diameters; and thus the first of these ratios directly combined
with the second ratio taken twice inversely becomes the ratio of diameter to
diameter. Q.E.D.

CoroLLary 1. Hence, if corpuscles revolve in circles about spheres con-
sisting of equally attractive matter, and their distances from the centers of the
spheres are proportional to the diameters of the spheres, the periodic times
will be equal.

CoroLLary 2. And conversely, if the periodic times are equal, the dis-
tances will be proportional to the diameters. These two corollaries are evident
from prop. 4, corol. 3.

CororLary 3. If toward each of the separate points of any two similar
and equally dense solids there tend equal centripetal forces decreasing in

the squared ratio of the distances from those points, the forces by which
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corpuscles will be attracted by those two solids, if they are similarly situated

with regard to them, will be to each other as the diameters of the solids.

If toward each of the separate points of any given sphere there tend equal cen-
tripetal forces decreasing in the squared ratio of the distances from those points, 1
say that a corpuscle placed inside the sphere is attracted by a force proportional to
the distance of the corpuscle from the center of the sphere.

Let a corpuscle P be placed inside the sphere ABCD, described about
center S; and about the same center S with radius SP, suppose that an inner
sphere PEQF is described. It is manifest (by
prop. 70) that the concentric spherical surfaces
of which the difference AEBF of the spheres is

composed do not act at all upon body P, their

C

attractions having been annulled by opposite at-
tractions. There remains only the attraction of
the inner sphere PEQF. And (by prop. 72) this
is as the distance PS. Q.E.D.

The surfaces of which the solids are composed are here not purely mathe-
matical, but orbs [or spherical shells] so extremely thin that their thickness is
as null: namely, evanescent orbs of which the sphere ultimately consists when
the number of those orbs is increased and their thickness diminished indefi-
nitely. Similarly, when lines, surfaces, and solids are said to be composed of
points, such points are to be understood as equal particles of a magnitude so

small that it can be ignored.

With the same things being supposed as in prop. 73, I say that a corpuscle placed
outside a sphere is attracted by a force inversely proportional to the square of the
distance of the corpuscle from the center of the sphere.

For let the sphere be divided into innumerable concentric spherical sur-
faces; then the attractions of the corpuscle that arise from each of the surfaces
will be inversely proportional to the square of the distance of the corpuscle
from the center (by prop. 71). And by composition [or componendo] the sum
of the attractions (that is, the attraction of the corpuscle toward the total

sphere) will come out in the same ratio. Q.E.D.
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CoroLLary 1. Hence at equal distances from the centers of homoge-
neous spheres the attractions are as the spheres themselves. For (by prop. 72)
if the distances are proportional to the diameters of the spheres, the forces
will be as the diameters. Let the greater distance be diminished in that ratio;
and, the distances having now become equal, the attraction will be increased
in that ratio squared, and thus will be to the other attraction in that ratio
cubed, that is, in the ratio of the spheres.

CoroLLARY 2. At any distances the attractions are as the spheres divided
by the squares of the distances.

Cororrary 3. If a corpuscle placed outside a homogeneous sphere is
attracted by a force inversely proportional to the square of the distance of the
corpuscle from the center of the sphere, and the sphere consists of attracting
particles, the force of each particle will decrease in the squared ratio of the

distance from the particle.

If toward each of the points of a given sphere there tend equal centripetal forces
decreasing in the squared ratio of the distances from the points, I say that this sphere
will attract any other homogeneous sphere with a force inversely proportional to
the square of the distance between the centers.?

For the attraction of any particle is inversely as the square of its distance
from the center of the attracting sphere (by prop. 74), and therefore is the
same as if the total attracting force emanated from one single corpuscle situ-
ated in the center of this sphere. Moreover, this attraction is as great as the
attraction of the same corpuscle would be if, in turn, it were attracted by
each of the individual particles of the attracted sphere with the same force
by which it attracts them. And that attraction of the corpuscle (by prop. 74)
would be inversely proportional to the square of its distance from the center
of the sphere; and therefore the sphere’s attraction, which is equal to the
attraction of the corpuscle, is in the same ratio. Q.E.D.

CoroLrLary 1. The attractions of spheres toward other homogeneous
spheres are as the attracting spheres [i.e.,, as the masses of the attracting
spheres] divided by the squares of the distances of their own centers from

the centers of those that they attract.

a. Newton writes of a “sphaera quaevis alia similaris,” literally, “any other like [or similar] sphere,”
P q Y; y

but the context (see prop. 74, corols. 1 and 3) is that of a homogeneous sphere.



PROPOSITION 76

CoroLrLary 2. The same is true when the attracted sphere also attracts.
For its individual points will attract the individual points of the other with
the same force by which they are in turn attracted by them; and thus, since
in every attraction the attracting point is as much urged (by law 3) as the
attracted point, the force of the mutual attraction will be duplicated, the
proportions remaining the same.

Cororrary 3. Everything that has been demonstrated above concerning
the motion of bodies about the focus of conics is valid when an attracting
sphere is placed in the focus and the bodies move outside the sphere.

CororLary 4. And whatever concerns the motion of bodies around the

center of conics applies when the motions are performed inside the sphere.

If spheres are in any way nonhomogeneous (as to the density of their matter and
their attractive force) going from the center to the circumference, but are uniform
throughout in every spherical shell at any given distance from the center, and the
attractive force of each point decreases in the squared ratio of the distance of the
artracted body, I say that the total force by which one sphere of this sort attracts
another is inversely proportional to the square of the distance between their centers.

*Let there be any number of concentric homogeneous spheres [i.e., hollow
spheres, or spherical shells or surfaces] AB, CD, EF, ...; and suppose that
the addition of one or more inner ones to the outer one or ones forms a

sphere composed of matter more dense, or the taking away leaves it less

A

B

dense, toward the center than at the circumference. Then these spheres will
together (by prop. 75) attract any number of other concentric homogeneous

spheres GH, IK, LM, ..., each sphere of one set attracting every one of

aa. The text of this proof has been translated somewhat freely, and in part expanded, for greater
ease in comprehension.
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the other set with forces inversely proportional to the square of the distance
SP. And by adding up these forces (or by the reverse process when spheres
are taken away) the sum of all those forces (or the excess of any one—
or of some—of them above the others); that is, the force with which the
whole sphere AB, composed of any concentric spheres (or the difference
between some concentric spheres and others which have been taken away),
attracts the whole sphere GH, composed of any concentric spheres (or the
differences between some such concentric spheres and others)—will be in
the same inverse ratio of the square of the distance SP. Let the number of
concentric spheres be increased indefinitely, in such a way that the density
of the matter, together with the force of attraction, may—on going from
the circumference to the center—increase or decrease according to any law
whatever; and by the addition of non-attracting matter, let the deficiencies
in density be supplied wherever needed so that the spheres may acquire any
desired form; then the force with which one of these spheres attracts the
other will still be, by the former argument, in the same inverse ratio of the
square of the distance* Q.E.D.

CoroLLary 1. Hence, if many spheres of this sor, similar to one another
in all respects, attract one another, the accelerative attraction of any one to
any other of them, at any equal distances between the centers, will be as the
attracting spheres.

CoroLLary 2. And at any unequal distances, as the attracting sphere
divided by the square of the distances between the centers.

CororLary 3. And the motive attractions, or the weights of spheres
toward other spheres, will—at equal distances from the centers—be as the
attracting and the attracted spheres jointly, that is, as the products produced
by multiplying the spheres by each other.

CoroLLarY 4. And at unequal distances, as those products directly and
the squares of the distances between the centers inversely.

Cororrary 5. These results are valid when the attraction arises from
each sphere’s force of attraction being mutually exerted upon the other sphere.
For the attraction is duplicated by both forces acting, the proportion remain-
ing the same.

CoroLrary 6. If some spheres of this sort revolve about others at rest,

one sphere revolving about each sphere at rest, and the distances between
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the centers of the revolving spheres and those at rest are proportional to the
diameters of those at rest, the periodic times will be equal.

CororLary 7. And conversely, if the periodic times are equal, the dis-
tances will be proportional to those diameters.

CoroLLary 8. Everything that has been demonstrated above about the
motion of bodies around the foci of conics holds when the attracting sphere,
of any form and condition that has already been described, is placed in the
focus.

CoroLLary 9. As also when the bodies revolving in orbit are also at-

tracting spheres of any condition that has already been described.

If toward each of the individual points of spheres there tend centripetal forces
proportional to the distances of the points from attracted bodies, I say that the
composite force by which two spheres will attract each other is as the distance
between the centers of the spheres.

Case 1. Let AEBF be a sphere, S its center, P an attracted exterior
corpuscle, PASB that axis of the sphere which passes through the center of
the corpuscle, EF and ef two planes by
which the sphere is cut and which are e——E
perpendicular to this axis and equally

distant on both sides from the center of

it
wd

the sphere, G and g the intersections K4
of the planes and the axis, and H any

int in the plane EF. Th ipetal
pOlI'lt 1n the p anec € centrlpeta f\_,)

force of point H upon the corpuscle P,

exerted along the line PH, is as the distance PH; and (by corol. 2 of the laws)
along the line PG, or toward the center S, as the length PG. Therefore the
force of all the points in the plane EF (that is, of the total plane) by which the
corpuscle P is attracted toward the center S is as the distance PG multiplied
by the number of such points, that is, as the solid contained by that plane
EF itself and the distance PG [i.e., as the product of the plane EF and the
distance PG]. And similarly the force of the plane ef, by which the corpuscle
P is attracted toward the center S, is as that plane multiplied by its distance
Pg, or as the plane EF equal thereto multiplied by that distance Pg; and the
sum of the forces of both planes is as the plane EF multiplied by the sum of
the distances PG + Pg; that is, as that plane multiplied by twice the distance
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PS between the center S and the corpuscle P; that is, as twice the plane EF
multiplied by the distance PS, or as the sum of the equal planes EF + ef
multiplied by that same distance. And by a similar argument, the forces of all
the planes in the whole sphere, equally distant on both sides from the center
of the sphere, are as the sum of those planes multiplied by the distance PS,
that is, as the whole sphere and the distance PS jointly. Q.E.D.

Case 2. Now let the corpuscle P attract the sphere AEBF. Then by
the same argument it can be proved that the force by which that sphere is
attracted will be as the distance PS. Q.E.D.

Case 3. Now let a second sphere be composed of innumerable corpus-
cles P; then, since the force by which any one corpuscle is attracted is as
the distance of the corpuscle from the center of the first sphere and as that
same sphere jointly, and thus is the same as if all the force came from one
single corpuscle in the center of the sphere, the total force by which all the
corpuscles in the second sphere are attracted (that is, by which that whole
sphere is attracted) will be the same as if that sphere were attracted by a
force coming from one single corpuscle in the center of the first sphere, and
therefore is proportional to the distance between the centers of the spheres.
Q.E.D.

Case 4. Let the spheres attract each other mutually; then the force, now
duplicated, will keep the former proportion. Q.E.D.

Case 5. Now let a corpuscle p be placed inside the sphere AEBF. Then,
since the force of the plane ef upon the corpuscle is as the solid contained by
[or the product of ] that plane and the distance
pg; and the opposite force of the plane EF is
as the solid contained by [or the product of]

that plane and the distance pG; the force com-
pounded of the two will be as the difference of
the solids [or the products], that is, as the sum
of the equal planes multiplied by half of the dif-
ference of the distances, that is, as that sum multiplied by pS, the distance
of the corpuscle from the center of the sphere. And by a similar argument,
the attraction of all the planes EF and ¢f in the whole sphere (that is, the
attraction of the whole sphere) is jointly as the sum of all the planes (or the

whole sphere) and as pS, the distance of the corpuscle from the center of
the sphere. Q.E.D.
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Case 6. And if from innumerable corpuscles p a new sphere is com-
posed, placed inside the former sphere AEBF, then it can be proved as above
that the attraction, whether the simple attraction of one sphere toward the
other, or a mutual attraction of both toward each other, will be as the distance

PS between the centers. Q.E.D.

If spheres, on going from the center to the circumference, are in any way nonho-
mogeneous and nonuniform, but in every concentric spherical shell at any given
distance from the center are homogeneous throughout; and the attracting force of
each point is as the distance of the body attracted; then I say that the total force
by which two spheres of this sort attract each other is proportional to the distance
between the centers of the spheres.

This is demonstrated from prop. 77 in the same way that prop. 76 was
demonstrated from prop. 75.

CoroLLary. Whatever was demonstrated above in props. 10 and 64 on
the motion of bodies about the centers of conics is valid when all the at-
tractions take place by the force of spherical bodies of the condition already

described, and when the attracted bodies are spheres of the same condition.

I have now given explanations of the two major cases of attractions, namely,
when the centripetal forces decrease in the squared ratio of the distances or
increase in the simple ratio of the distances, causing bodies in both cases to
revolve in conics, and composing centripetal forces of spherical bodies that
decrease or increase in proportion to the distance from the center according
to the same law-—which is worthy of note. It would be tedious to go one by
one through the other cases which lead to less elegant conclusions. I prefer
to comprehend and determine all the cases simultaneously under a general

method as follows.

If any circle AEB is described with center S; and then two circles EF and ef are

described with center P, cutting the first circle in E and e, and cutting the line
PS in F and f; and if the perpendiculars ED and ed are dropped to PS; then I
say that if the distance between the arcs EF and ef is supposed to be diminished

a. For a gloss on this lemma see the Guide, §10.13.
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indefinitely, the ultimate ratio of the evanescent line Dd to the evanescent line
Ff is the same as that of line PE to line PS.

E ¢

For if line Pe cuts arc EF in g, and the straight line Ee, which coincides
with the evanescent arc Ee, when produced meets the straight line PS in
T, and the normal SG is dropped from S to PE; then because the triangles
DTE, dTe, and DES are similar, Dd will be to Ee as DT to TE, or DE
to ES; and because the triangles Eeq and ESG (by sec. 1, lem. 8 and lem.
7, corol. 3) are similar, Ee will be to eg or Ff as ES to SG; and from the
equality of the ratios [or ex aequo] Dd will be to Ff as DE to SG—that is
(because the triangles PDE and PGS are similar), as PE to PS. Q.E.D.

If the surface EF fe, just now vanishing because its width has been indefinitely di-
minished, describes by its revolution about the axis PS a concavo-convex spherical
solid, roward each of whose individual equal particles there tend equal centripetal
Sforces; then I say that the force by which that solid attracts an exterior corpus-
cle located in P is in a ratio compounded of the ratio of the solid [or product]
DE? x Ff and the ratio of the force by which a given particle at the place Ff
would attract the same corpuscle.

For if we first consider the force of the spherical surface FE, which
is generated by the revolution of the arc FE and is cut anywhere by the
line de in r, the annular part of this surface generated by the revolution
of the arc 7E will be as the line-element Dd, the radius PE of the sphere
remaining the same (as Archimedes demonstrated in his book on the Sphere
and Cylinder). And the force of that surface, exerted along lines PE or Pr,
placed everywhere in the surface of a cone, will be as this annular part of the
surface—that is, as the line-element Dd or, what comes to the same thing, as

the rectangle of the given radius PE of the sphere and that line-element Dd;
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but along the line PS tending toward
the center S, this force will be smaller
in the ratio of PD to PE, and hence
this force will be as PD x Dd. Now
suppose the line DF to be divided into

innumerable equal particles, and let
each of them be called Dd; then the
surface FE will be divided into the
same number of equal rings, whose total forces will be as the sum of all
the products PD x Dd, that is, as ¥2PF? — \4PD?, and thus as DE’. Now
multiply the surface FE by the altitude Ff, and the force of the solid EFfe
exerted upon the corpuscle P will become as DE? x Ff, if there is given the

force that some given particle Ff exerts on the corpuscle P at the distance
PF. But if that force is not given, the force of the solid EFfe will become as
the solid DE? x Ff and that non-given force jointly. Q.E.D.

If equal centripetal forces tend toward each of the individual equal particles of Proposition 80
some sphere ABE, described about a center S; and if from each of the individual Theorem 40
points D to the axis AB of the sphere, in which some corpuscle P is located, there

are erected the perpendiculars DE, meeting the sphere in the points E; and if, on

these perpendiculars, the lengths DN are taken, which are jointly as the quantity

DE? x PS

PE

exerts at the distance PE upon the corpuscle P; then I say that the total force

and as the force that a particle of the sphere, located on the axis,

with which the corpuscle P is attracted toward the sphere is as the area ANB
comprehended by the axis AB of the sphere and the curved line ANB, which the

point N traces out.
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For, keeping the same constructions as in lem. 29 and prop. 79, suppose
the axis AB of the sphere to be divided into innumerable equal particles Dd,
and the whole sphere to be divided into as many spherical concavo-convex
laminae EFfe; and erect the perpendicular dn. By prop. 79, the force with
which the lamina EFfe attracts the corpuscle P is jointly as DE? x Ff and
the force of one particle exerted at the distance PE or PF. But D4 is to

) PS x Dd
Ff (by lem. 29) as PE to PS, and hence Ff is equal to

PE ’
) ) DE? x PS )
DE‘ x Ff is equal to Dd 3 ; and therefore the force of the lamina

an

DE’ x PS

PE
distance PF; that is (by hypothesis) as DN x Dd, or as the evanescent area

EFfe is jointly as Dd and the force of a particle exerted at the

DNnd. Therefore the forces upon body P exerted by all the laminae are
as all the areas DN#nd, that is, the total force of the sphere is as the total
area ANB. Q.E.D.

Cororrary 1. Hence, if the centripetal force tending toward each of

the individual particles always remains the same at all distances, and DN is

DE? x PS
taken proportional to —5F the total force by which the corpuscle P is

attracted by the sphere will be as the area ANB.

CororLary 2. If the centripetal force of the particles is inversely as
the distance of the attracted corpuscle, and DN is taken proportional to
DE? x PS

PE?
sphere will be as the area ANB.

, the force by which the corpuscle P is attracted by the whole

CoroLrary 3. If the centripetal force of the particles is inversely as the

cube of the distance of the attracted corpuscle, and DN is taken proportional

DE? x PS
to —pEr the force by which the corpuscle is attracted by the whole

sphere will be as the area ANB.
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CoroLrary 4. And universally, if the centripetal force tending toward
each of the individual particles of a sphere is supposed to be inversely as the
DE? x PS

PE xV
a corpuscle is attracted by the whole sphere will be as the area ANB.

quantity V, and DN is taken proportional to , the force by which

Under the same conditions as before, it is required to measure the area ANB.
From point P draw the straight line PH touching the sphere in H; and,

having dropped the normal HI to the axis PAB, bisect PI in L; then (by book

2, prop. 12, of Euclid’s Elementsy PE? will be equal to PS*+SE?+2(PS x SD).

E

=]

Moreover, SE? or SH? (because the triangles SPH and SHI are similar) is
equal to the rectangle PS x SI. Therefore PE? is equal to the rectangle of PS
and PS + SI + 2SD, that is, of PS and 2LS 4 2SD, that is, of PS and 2LD.
Further, DE? is equal to SE? —SD?, or SE? — L8’ +2(SL x LD) — LD?, that
is, 2(SL x LD) — LD? — AL x LB. For LS? —SE? or LS? — SA? (by book 2,
prop. 6, of the Elements) is equal to the rectangle AL X LB. Write, therefore,

DE? x PS

PExV'’
which (according to corol. 4 of the preceding prop. 80) is as the length of
2(SL x LD x PS)

PE xV

2(SL x LD) — LD? — AL x LB for DE? and the quantity

the ordinate DN, will resolve itself into the three parts

LD?xPS AL xLB xPS . . . i
— : where, if for V we write the inverse ratio
PE xV PE x V

of the centripetal force, and for PE the mean proportional between PS and

2L D, those three parts will become ordinates of as many curved lines, whose
areas can be found by ordinary methods. Q.E.F.
ExampLe 1. If the centripetal force tending toward each of the indi-

vidual particles of the sphere is inversely as the distance, write the dis-
tance PE in place of V, and then 2PS x LD in place of PE?, and DN
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AL x LB

will become as SL — ALD — ETE Suppose DN equal to its double
AL x LB . . .
2SL — LD — D and the given part 2SL of that ordinate multi-

. plied by the length AB will describe a rectangular
l area 2SL x AB, and the indefinite part LD multi-
plied perpendicularly by the same length AB in a
continual motion (according to the rule that, while
g  moving, either by increasing or decreasing, it is al-
ways equal to the length LD) will describe an area
L™ B 1 p2_LA2
2

tracted from the first area 2SL. x AB, leaves the area SL x AB. Now the
AL x LB

LD

AB in a local [iLe., continual] motion, will describe a hyperbolic area, which

, that is, the area SL x AB, which, sub-

third part , likewise multiplied perpendicularly by the same length

subtracted from the area SL x AB will leave the required area ANB. Hence,
there arises the following construction of the problem.

At points L, A, and B erect perpendiculars LI, Ag, and Bb, of which
Aa is equal to LB, and Bb to LA. With asymptotes L/ and LB, through
points 2 and & describe the hyperbola ab. Then the chord 4a, when drawn,
will enclose the area aba equal to the required area ANB.

ExampLe 2. If the centripetal force tending toward each of the indi-
vidual particles of the sphere is inversely as the cube of the distance, or

(which comes to the same thing) as that cube divided by any given plane,
3

write for V, and then 2PS x LD for PE?, and DN will become

AS?
SL x AS° AS* AL x LB x AS?

§ —m —— — — — , that is (because PS, AS, and SI
PS x LD 2PS 2PS x LD?
LS x SI

LD

are continually proportional [or PS is to AS as AS to SIJ), as

AL x LB x SI
N I DR X220 IF the three parts of this quantity are multiplied

2LD?
LS x SI
by the length AB, the first, 1D will generate a hyperbolic area; the

AL x LB x SI
2LD? ’

, that is, 2AB x SI.

second, 2SI, will generate the area ¥2AB x SI; the third,

AL xLB xSl AL x LB xSI
2LA 2LB

will generate the area
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From the first subtract the sum of the second and third, and the required
area ANB will remain.

Hence there arises the following construction 7l <
of the problem. At the points L, A, S, and B erect
the perpendiculars L/, Ag, Ss, and Bb, of which
Ss is equal to SI; and through the point s, with
asymptotes L/ and LB, describe the hyperbola

asb meeting the perpendiculars Az and Bbinza L 5 | § B

and &; then the rectangle 2AS x SI subtracted

from the hyperbolic area AaséB will leave the required area ANB.
Exampire 3. If the centripetal force tending toward each of the individ-

ual particles of the sphere decreases as the fourth power of the distance from
4

for V, and then 4/(2PS x LD) for PE, and DN

those particles, write

2AS3
SI* x SL. 1 SI? 1 SI? x AL x LB

X — X -
J@2SDH /LD 2,/@2S) /LD 2/(2S1)
. Those three parts, multiplied by the length AB, produce three ar-

will become as

1
JLDS

2S1? x SL
J@sn

by (/LB — /LA); and

eas, namely

multiplied by ( multiplied

1 1 ) SI?
JLA _ JLB) J@SD)
SI’ x AL x LB ltiolied b 1 1
— " mult _— ).

3./2SD) HHPIEE DY \ /LAY~ /LB
2SI? x SL SI> + 2813
And these, after the due reduction, become ——i—, SI2, and —~+——

LI 3LI

And when the latter two quantities are subtracted from the first one, the
3

result comes out to be ETh Accordingly, the total force by which the cor-

H E
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3
puscle P is attracted to the center of the sphere is as IR that is, inversely as

PS* x PI. Q.E.L
The attraction of a corpuscle located inside a sphere can be determined
by the same method, but more expeditiously by means of the following

proposition.

If—in a sphere described about center S with radius SA—SI, SA, and SP are
taken continually proportional [ie, Sl to SA as SA to SP], I say that the
attraction of a corpuscle inside the sphere at any place 1 is to its attraction outside
the sphere at place P in a ratio compounded of the square root of the ratio of
the distances 1S and PS from the center, and the square root of the ratio of the
centripetal forces, tending at those places P and 1 toward the center.

If, for example, the centripetal forces of the particles of the sphere are
inversely as the distances of the corpuscle attracted by them, the force by
which the corpuscle situated at I is attracted by the total sphere will be to

the force by which it is attracted at P in a ratio compounded of the square

root of the ratio of the distance SI to the distance SP and the square root
of the ratio of the centripetal force at place I arising from some particle in
the center to the centripetal force at place P arising from the same particle
in the center, which is the square root of the ratio of the distances SI and
SP to each other inversely. Compounding these two square roots of ratios
gives the ratio of equality, and therefore the attractions produced at I and P
by the whole sphere are equal. By a similar computation, if the forces of the
particles of the sphere are inversely in the squared ratio of the distances, it

will be seen that the attraction at I is to the attraction at P as the distance
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SP is to the semidiameter SA of the sphere. If those forces are inversely in
the cubed ratio of the distances, the attractions at I and P will be to each
other as SP? to SAZ%; if as the inverse fourth power, as SP*> to SA®. Hence,
since—in this last case [of the inverse fourth power, as in the final ex. 3 of
prop. 81]—the attraction at P was found to be inversely as PS® x PI, the
attraction at I will be inversely as SA® x PI, that is (because SA® is given),
inversely as PI. And the progression goes on in the same way indefinitely.
Moreover, the theorem is demonstrated as follows.

With the same construction and with the corpuscle being in any place

' DE? x PS . .
P, the ordinate DN was found to be as ——————. Therefore, if IE is
PE x V

drawn, that ordinate for any other place I of the corpuscle will—muzatis

mutandis [i.e., by substituting I for P in the considerations and arguments

DE? x IS

that h iously b lied to P]— t _
a ave pI'CVIOUS y cen app 1€ (o] ] COome out as IE < V

. Suppose

the centripetal forces emanating from any point E of the sphere to be to
each other at the distances IE and PE as PE” to IE” (where let the number
n designate the index of the powers of PE and IE); then those ordinates

DE? x PS DE? x IS
PE x PE” " IE x IE”
PS X IE x IE” to IS X PE x PE”. Because SI, SE, and SP are continually
proportional, the triangles SPE and SEI are similar, and hence IE becomes
to PE as IS to SE or SA; for the ratio of IE to PE, write the ratio of IS to
SA, and the ratio of the ordinates will come out PS x IE” to SA x PE”. But
PS to SA is the square root of the ratio of the distances PS and SI, and IE”
to PE” (because IE is to PE as IS to SA) is the square root of the ratio of the

will become as , whose ratio to each other is as

forces at the distances PS and IS. Therefore the ordinates, and consequently
the areas that the ordinates describe and the attractions proportional to them,

are in a ratio compounded of the foregoing square-root ratios. Q.E.D.

To find the force by which a corpuscle located in the center of a sphere is attracted
toward any segment of it whatever.

Let P be the corpuscle in the center of the sphere, and RBSD a segment
of the sphere contained by the plane RDS and the spherical surface RBS.
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Let DB be cut at F by the spherical surface EFG described about the cen-
ter P, and divide that segment into the parts BREFGS and FEDG. But

let that surface be taken to be not purely math-

R ematical, but physical, having a minimally small
1.: thickness. Call that thickness O, and this surface
(by what Archimedes has demonstrated), will be
as PF X DF x O. Let us suppose, additionally, the
attractive forces of the particles of the sphere to

F

B be inversely as that power of the distances whose

index is n; then the force by which the surface

L, EFG attracts the body P will be (by prop. 79)

DE? x O . 2DFx0O DF*xO0

= as ————, that is, as — .
PF~ PF»—! PF~

5 Let the perpendicular FN drawn in [the thick-

ness] O be proportional to this quantity; then the

LT
©

curvilinear area BDI, as described by the ordinate FN, drawn in a continual
motion, applied to the length DB, will be as the whole force by which the
whole segment RBSD attracts the corpuscle P. Q.E.L

To find the force with which a corpuscle is attracted by a segment of a sphere

when it is located on the axis of the segment beyond the center of the sphere.

» Let corpuscle P, located on the
axis ADB of the segment EBK, be
attracted by that segment. About cen-
ter P and with radius PE describe the

l@ AC F B spherical surface EFK, which divides

the segment into two parts EBKFE
and EFKDE. Find the force of the
first part by prop. 81 and the force of

K the second part by prop. 83, and the

sum of these two forces will be the force of the whole segment EBKDE.
Q.EL

Now that the attractions of spherical bodies have been explained, it would

be possible to go on to the laws of the attractions of certain other bodies
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similarly consisting of attracting particles, but to treat these in particular
cases is not essential to my design. It will be enough to subjoin certain more
general propositions concerning the forces of bodies of this sort and the mo-
tions that arise from such forces, because these propositions are of some use
in philosophical questions [i.e., questions of natural philosophy, or physical

science).
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SECTION 13

The attractive forces of nonspherical bodies

If the attraction of an attracted body is far stronger when it is contiguous to the
attracting body than when the bodies arve separated from each other by even a very
small distance, then the forces of the particles of the attracting body decrease, as
the attracted body recedes, in a more than squared ratio of the distances from the
particles.

For if the forces decrease in the squared ratio of the distances from the
particles, the attraction toward a spherical body will not be sensibly increased
by contact, because (by prop. 74) it is inversely as the square of the distance
of the attracted body from the center of the sphere; and still less will it be in-
creased by contact, if the attraction decreases in a smaller ratio as the attracted
body recedes. Therefore, this proposition is evident in the case of attracting
spheres. It i1s the same for concave spherical orbs® attracting external bodies.
And it is much more established in the case of orbs attracting bodies placed
inside of them, since the attractions spreading out through the concavities of
the orbs are annulled by opposite attractions (by prop. 70), and therefore the
attracting forces are null, even in contact. But if any parts remote from the
place of contact are taken away from these spheres and spherical orbs, and
new parts are added anywhere away from the place of contact, the shapes
of these attracting bodies can be changed at will; and yet the parts added
or subtracted will not notably increase the excess of attraction that arises
from contact, since they are remote from the place of contact. Therefore the

proposition is established concerning bodies of all shapes. Q.E.D.

If the forces of the particles composing an attracting body decrease, as an attracted
body recedes, in the cubed or more than cubed ratio of the distances from the
particles, the attraction will be far stronger in contact than when the attracting
body and attracted body are separated from each other by even a very small

distance.

a. Here, as elsewhere in the Principia, Newton uses the word “orb” for what we would more precisely

call a spherical shell.
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For by the solution of prop. 81 given in exx. 2 and 3, it is established that
the attraction is increased indefinitely in the approach of an attracted corpus-
cle to an attracting sphere of this sort. By the combination of those examples
and prop. 82, the same result is easily inferred concerning the attractions of
bodies toward concavo-convex orbs whether the attracted bodies are placed
outside those orbs or in the cavities inside the orbs. But the proposition will
also be established concerning all bodies universally by adding some attractive
matter to these spheres and orbs, or taking some away from them, anywhere
away from the place of contact, so that the attracting bodies take on any
desired shape. Q.E.D.

If two bodies, similar to each other and consisting of equally attracting matter,
separately attract corpuscles proportional to those bodies and similarly placed with
respect to them, then the accelerative attractions of the corpuscles toward the whole
bodies will be as the accelerative attractions of those corpuscles toward particles
of those bodies proportional to the wholes and similarly situated in those whole
bodies.

For if the bodies are divided into particles that are proportional to the
whole bodies and similarly placed in those whole bodies, then the attraction
toward an individual particle of the first body will be to the attraction toward
the corresponding individual particle of the second body as the attractions
toward any given particles of the first body are to the attractions toward
the corresponding particles of the second body, and by compounding, the
attraction toward the whole first body will be to the attraction toward the
whole second body in that same ratio. Q.E.D.

Cororrary 1. Therefore, if the attracting forces of the particles, on in-
creasing the distances of the attracted corpuscles, decrease in the ratio of any
power of those distances, the accelerative attractions toward the whole bodies
will be as the bodies directly and those powers of the distances inversely.
For example, if the forces of the particles decrease in the squared ratio of
the distances from the attracted corpuscles, and the bodies are as A* and B?,
and thus both the cube roots of the bodies and the distances of the attracted

corpuscles from the bodies are as A and B, the accelerative attractions toward
Al B?
the bodies will be as e and R that is, as those cube roots A and B of the

bodies. If the forces of the particles decrease in the cubed ratio of the distances
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from the attracted corpuscles, the accelerative attractions toward the whole
3 3

bodies will be as re and B’ that is, will be equal. If the forces decrease in

the fourth power of the distance, the attractions toward the bodies will be as

Al B}
i and B

Cororrary 2. Hence, on the other hand, from the forces with which

that is, inversely as the cube roots A and B. And so on.

similar bodies attract corpuscles similarly placed with respect to such bodies,
there can be gathered the ratio of the decrease of the forces of the attracting
particles, as the attracted corpuscle recedes, so long as that decrease is directly

or inversely in some ratio of the distances.

If the attracting forces of equal particles of any body are as the distances of places

Theorem 45 from the particles, the force of the whole body will tend toward its center of

gravity, and will be the same as the force of a globe consisting of entirely similar
and equal matter and having its center in that center of gravity.

Let the particles A and B of the body RSTV attract some corpuscle Z
by forces which, if the particles are equal to each other, are as the distances
AZ and BZ: but if the particles are
supposed unequal, are as these particles
and their distances AZ and BZ jointly,
or (so to speak) as these particles multi-
plied respectively by their distances AZ
and BZ. And let the forces be rep-
resented by those solids [or products]
A X AZ and B x BZ. Join AB, and let
it be cut in G so that AG is to BG as the particle B to the particle A; then

G will be the common center of gravity of the particles A and B. The force
A x AZ (by corol. 2 of the laws) is resolved into the forces A X GZ and
A x AG, and the force B x BZ into the forces B x GZ and B x BG. But
the forces A X AG and B x BG are equal (because A is to B as BG to AG);
and therefore, since they tend in opposite directions, they nullify each other.
There remain the forces A X GZ and B X GZ. These tend from Z toward
the center G and compose the force (A + B) X GZ—that is, the same force
as if the attracting particles A and B were situated in their common center

of gravity G and there composed a globe.
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By the same argument, if a third particle C is added, and its force is
compounded with the force (A 4+ B) X GZ tending toward the center G, the
force thence arising will tend toward the common center of gravity of the
globe (at G) and the particle C (that is, toward the common center of gravity
of the three particles A, B, and C), and will be the same as if the globe
and the particle C were situated in their common center, there composing a
greater globe. And so on indefinitely. Therefore the whole force of all the
particles of any body RSTV is the same as if that body, while maintaining
the same center of gravity, were to assume the shape of a globe. Q.E.D.

CororLary. Hence the motion of the attracted body Z will be the same
as if the attracting body RSTV were spherical; and therefore, if that at-
tracting body either is at rest or progresses uniformly straight forward, the
attracted body will move in an ellipse having its center in the center of gravity

of the attracting body.

If there are several bodies consisting of equal particles whose forces are as the
distances of places from each individual particle, the force—compounded of the
Jorces of all these particles—by which any corpuscle is attracted will tend toward
the common center of gravity of the attracting bodies and will be the same as if
those attracting bodies, while maintaining their common center of gravity, were
united together and were formed into a globe.

This is demonstrated in the same way as the preceding proposition.

CororLrary. Therefore the motion of an attracted body will be the same
as if the attracting bodies, while maintaining their common center of gravity,
came together and were formed into a globe. And hence, if the common
center of gravity of the attracting body either is at rest or progresses uniformly
in a straight line, the attracted body will move in an ellipse having its center

in the common center of gravity of the attracting bodies.

If equal centripetal forces, increasing or decreasing in any ratio of the distances,
tend toward each of the individual points of any circle, it is required to find the
force by which a corpuscle is attracted when placed anywhere on the straight line
that stands perpendicularly upon the plane of the circle at its center.

Suppose a circle to be described with center A and any radius AD in a
plane to which the straight line AP is perpendicular; then it is required to

find the force by which any corpuscle P is attracted toward the circle. From
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™» any point E of the circle, draw the straight
line PE to the attracted corpuscle P. In the

g straight line PA take PF equal to PE, and
¢ erect the normal FK so that it will be as the

force by which the point E attracts the cor-
puscle P. And let IKL be the curved line
P A - that the point K traces out. Let that line

‘ I meet the plane of the circle in L. In PA take

LRK PH equal to PD, and erect the perpendicu-
lar HI meeting the aforesaid curve at I, and
the attraction of the corpuscle P toward the circle will be as the area AHIL
multiplied by the altitude AP. Q.E.IL
For on AE take the minimally small line Ee. Join Pe, and in PE and
PA take PC and Pf equal to Pe. And since the force by which any point
E of the ring described with center A and radius AE in the aforesaid plane
attracts body [i.e., corpuscle] P toward itself has been supposed to be as FK,
and hence the force by which that point attracts body P toward A is as
AP x FK
PE

A is as the ring and

; and the force by which the whole ring attracts body P toward
AP x FK
PE
the radius AE and the width Ee, and this rectangle (because PE is to AE
as Ee to CE) is equal to the rectangle PE x CE or PE X Ff; it follows that
the force by which that ring attracts body P toward A will be as PE x Ff
and % jointly, that is, as the solid {or product] Ff x FK x AP, or
as the area FK£ f multiplied by AP. And therefore the sum of the forces
by which all the rings in the circle that is described with center A and
radius AD attract body P toward A is as the whole area AHIKL multiplied

by AP. Q.E.D.

Cororrary 1. Hence, if the forces of the points decrease in the squared

jointly; and that ring is as the rectangle of

1
ratio of the distances, that is, if FK is as PR (and thus the area AHIKL is

1 1

as — — —— |, the attraction of the corpuscle P toward the circle will be as
PA PH ‘

i AH
1 — —, that is, as —

PH PH’
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CoroLrary 2. And universally, if the forces of the points at the distances

1
D are inversely as any power D” of the distances (that is, if FK is as D’ and

1
hence the area AHIKL is as PAT PH”“)’ the attraction of the cor-
le P d the circle will b PA
t - .
puscle P toward the circle will be as 52— — 5

CororLary 3. And if the diameter of the circle is increased indefinitely
and the number 7 is greater than unity, the attraction of the corpuscle P

toward the whole indefinitely extended plane will be inversely as PA"72,

because the other term, ———, will vanish.

PH

To find the attraction of a corpuscle placed in the axis of a round solid, to each of Proposition 91
whose individual points there tend equal centripetal forces decreasing in any ratio Problem 45
of the distances.

Let corpuscle P, placed in the axis AB of the solid DECG, be attracted
toward that same solid. Let this solid be cut by any circle RFS perpendic-
ular to this axis, and in its semidiameter
FS, in a plane PALKB passing through . N\\E
the axis, take (according to prop. 90) the
length FK proportional to the force by

[
F

which the corpuscle P is attracted toward  p

that circle. Let point K touch the curved

line LKI meeting the planes of the out-
ermost circles AL and Bl at LL and I, and

the attraction of the corpuscle P toward the solid will be as the area LABIL
Q.EL

CoroLLary 1.  Hence, if the solid is

—E
a cylinder described by parallelogram .
ADEB revolving about the axis AB,
and the centripetal forces tending to- B
ward each of its individual points are Bk
inversely as the squares of the distances ¢

from the points, the attraction of the
corpuscle P toward this cylinder will be
as AB — PE + PD. For the ordinate FK (by prop. 90, corol. 1) will be as
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PF PF
1 - R The unit part of this [or the quantity 1 in 1 — ?ﬁ] multiplied by

PF
the length AB describes the area 1 X AB, and the other part PR multiplied

by the length PB describes the area 1 x (PE — AD), which can easily be

shown from the quadrature of the curve LKI; and similarly the same part
PF
PR multiplied by the length PA describes the area 1 x (PD — AD), and

multiplied by the difference AB of PB and PA describes the difference of
the areas 1 x (PE — PD). From the first product 1 X AB take away the
last product 1 x (PE — PD), and there will remain the area LABI equal
to 1 X (AB — PE + PD). Therefore the force proportional to this area is as
AB — PE 4+ PD.

CororLary 2. Hence also the force becomes known by which a spheroid
AGBC attracts any body P, situated outside the spheroid in its axis AB.
Let NKRM be a conic whose ordinate ER, perpendicular to PE, is always

B My

P’

equal to the length of the line PD, which is drawn to the point D in which
the ordinate cuts the spheroid. From the vertices A and B of the spheroid,
erect AK and BM perpendicular to the axis AB of the spheroid and equal
respectively to AP and BP, and therefore meeting the conic in K and M; and
join KM cutting off the segment KMRK from the conic. Let the center of the
spheroid be S, and its greatest semidiameter SC. Then the force by which the
spheroid attracts the body P will be to the force by which a sphere described

L di AB b bod ASXCSZ—PSXKMRKt
t
with diameter attracts the same body as PSI +CS' — AS? o
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AS?
3ps?
of the segments of the spheroid.

. And by the same mode of computation it is possible to find the forces

CoroLrary 3. But if the corpuscle is located inside the spheroid and
in its axis, the attraction will be as its distance from the center. This is seen
more easily by the following argument,
whether the particle is in the axis or in
any other given diameter. Let AGOF be
the attracting spheroid, S its center, and P
the attracted body. Through that body P
draw both the semidiameter SPA and any
two straight lines DE and FG meeting the

spheroid in D and F on one side and in E
and G on the other; and let PCM and HLN be the surfaces of two inner
spheroids, similar to and concentric with the outer spheroid; and let the first
of these pass through the body P and cut the straight lines DE and FG in
B and C, and let the latter cut the same straight lines in H, I and K, L.
Let all the spheroids have a common axis, and the parts of the straight lines
intercepted on the two sides, DP and BE, FP and CG, DH and IE, FK
and LG will be equal to one another, because the straight lines DE, PB, and
HI are bisected in the same point, as are also the straight lines FG, PC, and
KL. Now suppose that DPF and EPG designate opposite cones described
with the infinitely small vertical angles DPF and EPG, and that the lines
DH and EI also are infinitely small; then the particles of the cones—that
is, the particles DHKF and GLIE—cut off by the surfaces of the spheroids
will (because of the equality of the lines DH and EI) be to each other as the
squares of their distances from the corpuscle P, and therefore will attract the
corpuscle equally. And by a like reasoning, if the spaces DPF and EGCB
are divided into particles by the surfaces of innumerable similar concentric
spheroids, having a common axis, then all of these particles will attract the
body P in opposite directions equally on both sides. Therefore the forces
of the cone DPF and of the conical segment [or truncated cone] EGCB
are equal, and—being opposite—annul each other. And it is the same with
regard to the forces of all the matter outside the innermost spheroid PCBM.
Therefore the body P is attracted only by the innermost spheroid PCBM,
and accordingly (by prop. 72, corol. 3) its attraction is to the force by which
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the body A is attracted by the whole spheroid AGOD as the distance PS to
the distance AS. Q.E.D.

Given an attracting body, it is required to find the ratio by which the centripetal
forces tending toward each of its individual points decrease [i.e., decrease as a
Sfunction of distance].

From the given body a sphere or cylinder or other regular figure is to
be formed, whose law of attraction—corresponding to any ratio of decrease
[in relation to distance]—can be found by props. 80, 81, and 91. Then, by
making experiments, the force of attraction at different distances is to be
found; and the law of attraction toward the whole that is thus revealed will
give the ratio of the decrease of the forces of the individual parts, which was

required to be found.

If a solid, plane on one side but infinitely extended on the other sides, consists of
equal and equally attracting particles, whose forces—in receding from the solid—
decrease in the ratio of any power of the distances that is more than the square;
and if a corpuscle set on either side of the plane is attracted by the force of the
whole solid; then I say that that force of attraction of the solid in receding from
its plane surface will decrease in the ratio of the distance of the corpuscle from
the plane raised to a power whose index is less by 3 units than that of the power
of the distances in the law of attractive force [lit. will decrease in the ratio of the
power whose base is the distance of the corpuscle from the plane and whose index
is less by 3 than the index of the power of the distances].

Case 1. Let LG/ be the plane by which the solid is terminated.
Let the solid lie on the side of this plane toward I, and let it be resolved into

innumerable planes mHM, #IN,

y 0oKO, ... parallel to GL. And
M first let the attracted body C be
R placed outside the solid. Draw

CGHI perpendicular to those in-

c G I numerable planes, and let the
forces of attraction of the points

of the solid decrease in the ra-

tio of a power of the distances

whose index is the number 7 not
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smaller than 3. Therefore (by prop. 90, corol. 3) the force by which any
plane mHM attracts the point C is inversely as CH” . In the plane mHM
take the length HM inversely proportional to CH"” ™%, and that force will be
as HM. Similarly, on each of the individual planes /GL, #IN, 0oKO, ...,
take the lengths GL, IN, KO, ... inversely proportional to CG"%, CI""?,
CK”™2,...; then the forces of these same planes will be as the lengths
taken, and thus the sum of the forces will be as the sum of the lengths;
that is, the force of the whole solid will be as the area GLOK produced
infinitely in the direction OK. But that area (by the well-known methods
of quadratures) is inversely as CG” >, and therefore the force of the whole
solid is inversely as CG" . Q.E.D.

Case 2. Now let the corpuscle C be placed on the side of the plane /GL
inside the solid, and take the distance CK equal to the distance CG. Then the
part LG/oKO of this solid, terminated by the

parallel planes /GL and ¢KO, will not attract L N O
the corpuscle C (situated in the middle) in
any direction, the opposite actions of opposite
points annulling each other because of their G € 1 K

equality. Accordingly, corpuscle C is attracted
only by the force of the solid situated beyond
the plane OK. But this force (by case 1) is 7 0
inversely as CK”7*, that is (because CG and CK are equal), inversely as
CG"™. Q.E.D.

CororLary 1. Hence, if the solid LGIN is terminated on both sides by

two infinitely extended and parallel planes LG and IN, its force of attraction
becomes known by subtracting from the force of attraction of the whole
infinitely extended solid LGKO the force of attraction of the further part
NIKO produced infinitely in the direction KO.

Cororrary 2. If the more distant part of this infinitely extended solid is
ignored, since its attraction compared with the attraction of the nearer part is
of almost no moment, then the attraction of that nearer part, with an increase
of the distance, will decrease very nearly in the ratio of the power CG"”3.

Cororrary 3. And hence, if any body that is finite and plane on one
side attracts a corpuscle directly opposite the middle of that plane, and the
distance between the corpuscle and the plane is exceedingly small compared

with the dimensions of the attracting body, and the attracting body consists of
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homogeneous particles whose forces of attraction decrease in the ratio of any
power of the distances that is more than the fourth; the force of attraction of
the whole body will decrease very nearly in the ratio of a power of that ex-
ceedingly small distance, whose index is less by 3 than the index of the stated
power. This assertion is not valid for a body consisting of particles whose
forces of attraction decrease in the ratio of the third power of the distances,
because in this case the attraction of the more distant part of the infinitely
extended body in corol. 2 is always infinitely greater than the attraction of

the nearer part.

Scholium If a body is attracted perpendicularly toward a given plane, and the motion of
the body is required to be found from the given law of attraction, the problem
will be solved by seeking (by prop. 39) the motion of the body descending
directly to this plane and by compounding this motion (according to corol. 2
of the laws) with a uniform motion performed along lines parallel to the
same plane. And conversely, if it is required to find the law of an attraction
made toward the plane along perpendicular lines, under the condition that
the attracted body moves in any given curved line whatever, the problem will
be solved by the operations used in the third problem [i.e., prop. 8].

The procedure can be shortened by resolving the ordinates into converg-

ing series. For example, if B is the ordinate to the base A at any given angle,

"ﬂ . - .
and is as any power A" of that base, and the force is required by which a
body that is either attracted toward the base or repelled away from the base
(according to the position of the ordinate) can move in a curved line that the

upper end of the ordinate traces out; I suppose the base to be increased by a

minimally small part O, and I resolve the ordinate (A +O)% into the infinite
series
2 m—2n

m-—mn _,
—F—O0OA " ...,
22

n

m m m—n
A"+ —-0A " +
n

and I suppose the force to be proportional to the term of this series in which

m* — mn , i
O is of two dimensions, that is, to the term o O°A * ., Therefore the
n
P mn moi . . m* —mn_m-n
required force is as > A " , or, which is the same, as —ZB mo,
n n

For example, if the ordinate traces out a parabola, where m =2 and 7 =1,



SCHOLIUM

the force will become as the given quantity 2B, and thus will be given.
Therefore with a given [i.e., constant] force the body will move in a parabola,
as Galileo demonstrated. But if the ordinate traces out a hyperbola, where
m =0 —1and n = 1, the force will become as 2A™ or 2B?; and therefore
with a force that is as the cube of the ordinate, the body will move in a
hyperbola. But putting aside propositions of this sort, I go on to certain

others on motion which I have not as yet considered.
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SECTION 14

The motion of minimally small bodies that are acted on by centripetal forces

tending toward each of the individual parts of some great body

If two homogeneous mediums are separated from each other by a space terminated
on the two sides by parallel planes, and a body passing through this space is
attracted or impelled perpendicularly toward either medium and is not acted on or
impeded by any other force, and the attraction at equal distances Jfrom each plane
(taken on the same side of that plane) is the same everywhere; then | say that the
sine of the angle of incidence onto either plane will be to the sine of the angle of
emergence from the other plane in a given ratio.

Case 1. Let Aa and Bb be the two parallel planes. Let the body be
incident upon the first plane Aa along line GH, and in all its passage
through the intermediate space let
it be attracted or impelled toward

a the medium of incidence, and by

this action let it describe the curved
line HI and emerge along the line
IK. To the plane of emergence Bb
erect the perpendicular IM meeting
4 the line of incidence GH produced

) in M and the plane of incidence Aa
Q. K in R; and let the line of emergence
KI produced meet HM in L. With

center L and radius LI describe a circle cutting HM in P and Q, as well

as MI produced in N. Then first, if the attraction or impulse is supposed
uniform, the curve HI (from what Galileo demonstrated) will be a parabola,
of which this is a property: that the rectangle of its given latus rectum and
the line IM is equal to HM squared; but also the line HM will be bisected in
L. Hence, if the perpendicular LO is dropped to MI, MO and OR will be
equal; and when the equals ON and OI have been added to these quantities,
the totals MN and IR will become equal. Accordingly, since IR is given,
MN is also given; and the rectangle NM x MI is to the rectangle of the
latus rectum and IM (that is, to HM?) in a given ratio. But the rectangle
NM x MI is equal to the rectangle PM x MQ, that is, to the difference of
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the squares ML’ and PL? or LI%; and HM? has a given ratio to its fourth
part ML’: therefore the ratio of ML? — LI* to ML? is given, and by conver-
sion [or convertendo] the ratio LI? to ML? is given, and also the square root
of that ratio, LI to ML. But in every triangle LMI, the sines of the angles
are proportional to the opposite sides. Therefore the ratio of the sine of the
angle of incidence LMR to the sine of the angle of emergence LIR is given.
Q.E.D.

Case 2. Now let the body pass successively through several spaces ter-
minated by parallel planes, AabB, BbcC, ..., and be acted on by a force
that is uniform in each of the individual

spaces considered separately but is differ- \

ent in each of the different spaces. Then g 2
by what has just been demonstrated, the c \ ¢
sine of the angle of incidence upon the first D \\ d

plane Ag will be to the sine of the angle

of emergence from the second plane Bé in a given ratio; and this sine, which
is the sine of the angle of incidence upon the second plane Bb, will be to
the sine of the angle of emergence from the third plane Cc in a given ratio;
and this sine will be in a given ratio to the sine of the angle of emergence
from the fourth plane Dd; and so on indefinitely. And from the equality
of the ratios [or ex aequo] the sine of the angle of incidence upon the first
plane will be in a given ratio to the sine of the angle of emergence from the
last plane. Now let the distances between the planes be diminished and their
number increased indefinitely, so that the action of attraction or of impulse,
according to any assigned law whatever, becomes continuous; then the ratio
of the sine of the angle of incidence upon the first plane to the sine of the

angle of emergence from the last plane, being always given, will still be given
now. Q.E.D.

With the same suppositions as in prop. 94, I say that the velocity of the body before
incidence is to its velocity after emergence as the sine of the angle of emergence
to the sine of the angle of incidence.

Let AH be taken equal to Id, and erect the perpendiculars AG and dK
meeting the lines of incidence and emergence GH and IK in G and K. In
GH take TH equal to IK, and drop Tv perpendicular to the plane Aa. And

(by corol. 2 of the laws) resolve the motion of the body into two motions, one
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perpendicular, the other parallel, to the
planes Aa, Bb, Cc,.... The [compo-
nent of the] force of attraction or of

impulse acting along perpendicular lines

a
b does not at all change the motion in the
C

N direction of the parallels; and therefore
j\t the body, by this latter motion, will in
equal times pass through equal distances

along parallels between the line AG and the point H, and between the point

I and the line dK, that is, it will describe the lines GH and IK in equal times.
Accordingly, the velocity before incidence is to the velocity after emergence
as GH to IK or TH; that is, as AH or Id to vH, that is (with respect to the
radius TH or IK), as the sine of the angle of emergence to the sine of the

angle of incidence. Q.E.D.

With the same suppositions, and supposing also that the motion before incidence
is faster than afterward, I say that as a result of *changing the inclination® of the
line of incidence, the body will at last be reflected, and the angle of reflection will
become equal to the angle of incidence.
For suppose the body to describe parabolic arcs between the parallel
planes Aa, Bb, Cc, ..., as before; and let those arcs be HP, PQ, QR,....
And let the obliquity of the line
G\ / of incidence GH to the first
H 2 plane Aa be such that the sine

P 2

of the angle of incidence is to

LT-Y- 24
P
Q
CANTR

the radius of the circle whose
sine it is in the ratio which that same sine of the angle of incidence has to
the sine of the angle of emergence from the plane Dd into the space DdeE;
then, because the sine of the angle of emergence will now have become
equal to the radius, the angle of emergence will be a right angle, and hence
the line of emergence will coincide with the plane Dd. Let the body arrive

at this plane at the point R; and since the line of emergence coincides with

aa. The sense of Newton’s “changing the inclination” is that of increasing the angle of incidence.
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that same plane, it is obvious that the body cannot go any further toward
the plane Ee. But neither can it go on in the line of emergence Rd, because
it is continually attracted or impelled toward the medium of incidence.
Therefore, this body will be turned back between the planes Cc and Dd,
describing an arc of the parabola QRg, whose principal vertex (according to
what Galileo demonstrated) is at R, and will cut the plane Cc in the same
angle at' g as formerly at Q; and then, proceeding in the parabolic arcs gp,
ph, ..., similar and equal to the former arcs QP and PH, this body will
cut the remaining planes in the same angles at p, 4, ..., as formerly at P,
H, ..., and will finally emerge at 2 with the same obliquity with which
it was incident upon the plane at H. Now suppose the distances between
the planes Aa, Bb, Cc, Dd, Ee, ... to be diminished and their number
increased indefinitely, so that the action of attraction or impulse, according
to any assigned law whatever, is made to be continuous; then the angle of
emergence, being always equal to the angle of incidence, will still remain

equal to it now. Q.E.D.

These attractions are very similar to the reflections and refractions of light
made according to a given ratio of the secants, as Snel discovered, and conse-
quently according to a given ratio of the sines, as Descartes set forth. For the
fact that light is propagated successively [i.e., in time and not instantaneously]
and comes from the sun to the earth in about seven or eight minutes is now
established by means of the phenomena of the satellites of Jupiter, confirmed
by the observations of various astronomers. Moreover, the rays of light that
are in the air (as Grimaldi recently discovered, on admitting light into a
dark room through a small hole—something I myself have also tried) in
their passing near the edges of bodies, whether opaque or transparent (such
as are the circular-rectangular edges of coins minted from gold, silver, and
bronze, and the sharp edges of knives, stones, or broken glass), are inflected
around the bodies, as if attracted toward them; and those of the rays that
in such passing approach closer to the bodies are inflected the more, as if
more attracted, as I myself have also diligently observed. And those that
pass at greater distances are less inflected, and at still greater distances are

inflected somewhat in the opposite direction and form three bands of colors.
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In the figure, s designates the sharp edge

p of a knife or of any wedge AsB, and
; Ly §owos fnunf, emtme, and dlsid are
9. ’ rays, inflected in the arcs owo, nun, mem,
B VA ¢ and Isl toward the knife, more so or less
:: so according to their distance from the

knife. Moreover, since such an inflection
of the rays takes place in the air outside the knife, the rays which are incident
upon the knife must also be inflected in the air before they reach it. And the
case is the same for those rays incident upon glass. Therefore refraction takes
place not at the point of incidence, but gradually by a continual inflection of
the rays, made partly in the air before the rays touch the glass, and partly (f
I am not mistaken) within the glass after they have entered it, as has been
delineated in the rays ckzc, biyb, and ahxa
incident upon the glass at r, ¢, and p, and
inflected between % and z, 7 and y, A4 and

x. Therefore because of the analogy that ex-

ists between the propagation of rays of light
and the motion of bodies, I have decided to
subjoin the following propositions for opti-
é d < cal uses, meanwhile not arguing at all about
the nature of the rays (that is, whether they
are bodies or not), but only determining the trajectories of bodies, which are

very similar to the trajectories of rays.

Supposing that the sine of the angle of incidence upon some surface is to the sine
of the angle of emergence in a given ratio, and that the inflection of the paths of
bodies in close proximity to that surface takes place in a very short space, which
can be considered to be a point; it is requived to determine the surface that may

make all the corpuscles emanating successively from a given place converge to

another given place.

Let A be the place from
which the corpuscles diverge, B
the place to which they should

converge, CDE the curved line

that—by revolving about the axis
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AB—describes the required surface, D and E any two points of that curve,
and EF and EG perpendiculars dropped to the paths AD and DB of the
body. Let point D approach point E; then the ultimate ratio of the line DF
(by which AD is increased) to the line DG (by which DB is decreased) will
be the same as that of the sine of the angle of incidence to the sine of the
angle of emergence. Therefore the ratio of the increase of the line AD to
the decrease of the line DB is given; and as a result, if a point C is taken
anywhere on the axis AB, this being a point through which the curve CDE
should pass, and the increase CM of AC is taken in that given ratio to the
decrease CN of BC, and if two circles are described with centers A and B
and radii AM and BN and cut each other at D, that point D will touch the
required curve CDE, and by touching it anywhere whatever will determine
that curve. Q.E.L

Cororrary 1. But by making point A or B in one case go off indefi-
nitely, in another case move to the other side of point C, all the curves which
Descartes exhibited with respect to refractions in his treatises on optics and
geometry will be traced out. Since Descartes concealed the methods of finding
these, I have decided to reveal them by this proposition.

Cororrary 2. If a body, incident upon any surface CD along the
straight line AD drawn according to any law, emerges along any other
straight line DK; and if from point
C the curved lines CP and CQ, al-
ways perpendicular to AD and DK,

are understood to be drawn; then the

increments of the lines PD and QD,

and hence the lines themselves PD A ¢

and QD generated by those increments, will be as the sines of the angles of

incidence and emergence to each other, and conversely.

The same conditions being supposed as in prop. 97, and supposing that there
is described about the axis AB any attracting surface CD, regular or irregular,
through which the bodies coming out from a given place A must pass; it is required
to find a second attracting surface EF that will make the bodies converge to a
given place B.

Join AB and let it cut the first surface in C and the second in E, point D

being taken in any way whatever. And supposing that the sine of the angle
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of incidence upon the first surface is to the sine of the angle of emergence
from that first surface, and that the sine of the angle of emergence from
the second surface is to the sine of the angle of incidence upon the second
surface, as some given quantity M is to another given quantity N; produce
AB to G so that BG is to CE as M — N to N, and produce AD to H so
that AH is equal to AG, and also produce DF to K so that DK is to DH
as N to M. Join KB, and with center D and radius DH describe a circle
meeting KB produced in L, and draw BF parallel to DL; then the point F
will touch the line EF, which—on being revolved about the axis AB—will
describe the required surface. Q.E.F.

Now suppose the lines CP and CQ to be everywhere perpendicular to
AD and DF respectively, and the lines ER and ES to be similarly perpen-
dicular to FB and FD, with the result that QS is always equal to CE; then
(by prop. 97, corol. 2) PD will be to QD as M to N, and therefore as DL
to DK or FB to FK; and by separation [or dividendo] as DL — FB or
PH — PD — FB to FD or FQ — QD, and by composition [or componendo]
as PH — FB to FQ, that is (because PH and CG, QS and CE are equal), as
CE + BG — FR to CE — FS. But (because BG is proportional to CE and
M — N is proportional to N) CE 4 BG is also to CE as M to N, and thus
by separation [or dividendo] FR is to FS as M to N; and therefore (by prop.
97, corol. 2) the surface EF compels a body incident upon it along the line
DF to go on in the line FR to the place B. Q.E.D.

It would be possible to use the same method for three surfaces or more. But
for optical uses spherical shapes are most suitable. If the objective lenses of
telescopes are made of two lenses that are spherically shaped and water is
enclosed between them, it can happen that errors of the refractions that take

place in the extreme surfaces of the lenses are accurately enough corrected
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by the refractions of the water. Such objective lenses are to be preferred to
elliptical and hyperbolical lenses, not only because they can be formed more
easily and more accurately but also because they more accurately refract the
pencils of rays situated outside the axis of the glass. Nevertheless, the differing
refrangibility of different rays [i.e., of rays of different colors] prevents optics
from being perfected by spherical or any other shapes. Unless the errors
arising from this source can be corrected, all labor spent in correcting the

other errors will be of no avail.
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PROPOSITION 2

SECTION'1

The motion of bodies that are resisted in proportion to their velocity

If a body is resisted in proportion to its velocity, the motion lost as a result of the
resistance is as the space described in moving.

For since the motion lost in each of the equal particles of time is as
the velocity, that is, as a particle of the path described, then, by composition
[or componendo], the motion lost in the whole time will be as the whole
path. Q.E.D.

Cororrary. Therefore, if a body, devoid of all gravity, moves in free
spaces by its inherent force alone and if there are given both the whole
motion at the beginning and also the remaining motion after some space
has been described, the whole space that the body can describe in an infinite
time will be given. For that space will be to the space already described as

the whole motion at the beginning is to the lost part of that motion.

Quantities proportional to their differences are continually proportional.
Let Abeto A—Bas Bto B—C and Ctwo C—D,...; then, by conversion
[or convertendo], A willbeto Bas Bto Cand Cto D, .... Q.E.D.

If a body is resisted in proportion to its velocity and moves through a homogeneous
medium by its inherent force alone and if the times are taken as equal, the velocities
at the beginnings of the individual times are in a geometric progression, and the
spaces described in the individual times are as the velocities.

Case 1. Divide the time into equal particles; and if, at the very begin-
nings of the particles, a force of resistance which is as the velocity acts with
a single impulse, the decrease of the velocity in the individual particles of
time will be as that velocity. The velocities are therefore proportional to their
differences and thus (by book 2, lem. 1) are continually proportional. Accord-
ingly, if any equal times are compounded of an equal number of particles,
the velocities at the very beginnings of the times will be as the terms in a
continual progression in which some have been skipped, omitting an equal
number of intermediate terms in each interval. The ratios of these terms
are indeed compounded of equally repeated equal ratios of the intermediate

terms, and therefore these compound ratios are also equal to one another.
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Therefore, since the velocities are proportional to these terms, they are in a
geometric progression. Now let those equal particles of times be diminished,
and their number increased indefinitely, so that the impulse of the resistance
becomes continual; then the velocities at the beginnings of equal times, which
are always continually proportional, will also be continually proportional in
this case. Q.E.D.

Case 2. And by separation [or dividendo] the differences of the veloc-
ities (that is, the parts of them which are lost in the individual times) are
as the wholes, while the spaces described in the individual times are as the
lost parts of the velocities (by book 2, prop. 1) and are therefore also as the
wholes. Q.E.D.

CororLary. Hence, if a hyperbola BG is described with respect to the
rectangular asymptotes AC and CH and if AB and DG are perpendicular
to asymptote AC and if both the velocity of the body and the resistance of

the medium are represented, at the very beginning

H  of the motion, by any given line AC, but after some
G time has elapsed, by the indefinite line DC, then the
B time can be represented by area ABGD, and the space
described in that time can be represented by line AD.
A D v

For if the area is increased uniformly by the motion of
point D, in the same manner as the time, the straight line DC will decrease
in a geometric ratio in the same way as the velocity, and the parts of the

straight line AC described in equal times will decrease in the same ratio.

To determine the motion of a body which, while moving straight up or down in a
homogeneous medium, is resisted in proportion to the velocity, and which is acted
on by uniform gravity.

When the body is moving up,
represent the gravity by any given
rectangle BACH, and the resistance
of the medium at the beginning of
K the ascent by the rectangle BADE
taken on the other side of the
Gl"’/ F |7 straight line AB. With respect to

the rectangular asymptotes AC and
D « A I ‘ ¢ CH, describe a hyperbola through

o]
u\
el
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point B, cutting perpendiculars DE and de in G and g; then the body, by
ascending in the time DGgd, will describe the space EGge; and in the time
DGBA will describe the space of the total ascent EGB; and in the time
ABKI will describe the space of descent BFK; and in the time IK4: will
describe the space of descent KFf%; and the body’s velocities (proportional
to the resistance of the medium) in these periods of time will be ABED,
ABed, null, ABFI, and ABfi respectively; and the greatest velocity that the
body can attain in descending will be BACH.

For resolve the rectangle BACH into innumerable rectangles A%, K/,
Lm, Mn, ..., which are as the increases of the velocities, occurring in
the same number of equal times; then nil, A%, Al, Am, An, ... will be
as the total velocities, and thus (by hypothesis) as the resistances of the
medium at the beginning of each of the equal umes. Make AC to AK,
or ABHC to ABZK, as the force of gravity to the resistance at the be-
ginning of the second time, and subtract the resistances from the force

of gravity; then the remainders ABHC,

K4HC, L/IHC, MmHC, ... will be as
the absolute forces by which the body is

. . t
urged at the beginning of each of the ’
times, and thus (by the second law of B 7/7'/‘ N
motion) as the increments of the veloc- R 7|m P
ities, that is, as the rectangles Ak, K/,

A KLF c

Lm, Mn, ..., and therefore (by book
2, lem. 1) in a geometric progression. Therefore, if the straight lines Kk, L/,
Mm, Nn, ..., produced, meet the hyperbola in ¢, 7, s, ¢, ..., areas ABgK,
KgrL, LrsM, MstN, ... will be equal, and thus proportional both to the
times and to the forces of gravity, which are always equal. But area ABgK
(by book 1, lem. 7, corol. 3, and lem. 8) is to area Bkg as Kg to Y2kq or
AC to Y2AK, that is, as the force of gravity to the resistance in the middle
of the first time. And by a similar argument, areas gKLr, rLMs, sMNy, . ..
are to areas gklr, rlms, smnt, ... as the force of gravity to the resistance in
the middle of the second time, of the third, of the fourth, . . . . Accordingly,
since the equal areas BAKg, gKL#», rLMs, sMNy¢, ... are proportional to
the forces of gravity, areas Bkg, qkir, rims, smnt, ... will be proportional
to the resistance in the middle of each of the times, that is (by hypothesis),

to the velocities, and thus to the spaces described. Take the sums of the pro-
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portional quantities; then areas Bkg, Bir, Bms, Bnt, ... will be proportional
to the total spaces described, and areas ABgK, ABrL, ABsM, AB:N, ...
will be proportional to the times. Therefore the body, while descending in
any time ABrL, describes the space Blr, and in the time LrzN describes
the space 7/nz. Q.E.D. And the proof is similar for an ascending motion.
Q.E.D.

Cororrary 1. Therefore the greatest velocity that a body can acquire
in falling is to the velocity acquired in any given time as the given force of
gravity by which the body is continually urged to *the force of the resistance
by which it is impeded at the end of that time.?

CoroLLary 2. If the time is increased in an arithmetic progression, the
sum of that greatest velocity and of the velocity in the ascent, and also their
difference in the descent, decreases in a geometric progression.

CororLary 3. The differences of the spaces which are described in equal
differences of the times decrease in the same geometric progression.

CoroLLary 4. The space described by a body is the difference of two
spaces, of which one is as the time reckoned from the beginning of the
descent, and the other is as the velocity; and these spaces are equal to each

other at the very beginning of the descent.

Supposing that the force of gravity in some homogencous medium is uniform and
tends perpendicularly toward the plane of the horizon, it is required to determine
the motion of a projectile in that medium, while it is resisted in proportion to the
velocity.

From any place D let a projectile go forth along any straight line DP, and
represent its velocity at the beginning of the motion by the length DP. Drop
the perpendicular PC from point P to the horizontal line DC, and cut DC
in A so that DA is to AC as the resistance of the medium arising from the
upward motion at the beginning is to the force of gravity; or (which comes
to the same thing) so that the rectangle of DA and DP is to the rectangle
of AC and CP as the whole resistance at the beginning of the motion is to
the force of gravity. Describe any hyperbola GTBS with asymptotes DC and
CP which cuts the perpendiculars DG and AB in G and B; and complete
the parallelogram DGKC, whose side GK cuts AB in Q. Take the line N

aa. Ed. 2 has “the excess of this force over the force by which it is resisted at the end of that time.”
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in the same ratio to QB as DC z
to CP, and at any point R of the

straight line DC erect the perpen-

dicular RT which meets the hyper-

bola in T and the straight lines

EH, GK, and DP in I, ¢, and V,

and then on RT take Vr equal to

tGT

——, or (which comes to the same

. GTIE
thing) take Rz equal to N

Then in the time DRTG the pro-
jectile will arrive at point 7, describ-
ing the curved line DraF which
point r traces out, reaching its great-

est height 4 in the perpendicular

j=s1

AB, and afterward always approach-

ing the asymptote PC. And its ve-

locity at any point 7 is as the tangent
rL. of the curve. Q.E.L
For N is to QB as DC to CP or DR to RV, and thus RV is equal
DR x QB —¢:GT\ .
N ) is equal

DR x QB .
to —~ and R { that is, RV — V7, or

DR x AB — RDGT .
to N . Now represent the time by area RDGT, and (by

corol. 2 of the laws) divide the motion of the body into two parts, one upward

and the other lateral. Since the resistance is as the motion, it also will be
divided into two parts proportional to and opposite to the parts of the motion;
and thus the distance described by the lateral motion will be (by book 2,
prop. 2) as line DR, and the distance described by the upward motion will
be (by book 2, prop. 3) as the area DR X AB—RDGT, that is, as line Rr. But
at the very beginning of the motion the area RDGT is equal to the rectangle
DR x AB — DR x AQ
N
DR as AB—AQ or QB to N, that is, as CP to DC, and hence as the upward

motion to the lateral motion at the beginning. Since, therefore, Rr is always

DR x AQ, and thus that line Rr (or ) is then to

as the distance upward, and DR is always as the distance sideward, and Rr
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is to DR at the beginning as the distance upward to the distance sideward,
Rr must always be to DR as the distance upward to the distance sideward,
and therefore the body must move in the line DraF, which the point 7 traces
out. Q.E.D.

DR x AB RDGT

N N

) . . DR x AB o
if RT is produced to X so that RX is equal to N that i1s, if the

Cororrary 1. Rr is therefore equal to ; and thus,

parallelogram ACPY is completed, and DY is joined cutting CP in Z, and
RDGT

b

RT is produced untl it meets DY in X, then Xr will be equal to

and therefore will be proportional to the time.

Cororrary 2. Hence, if innumerable lines CR are taken (or, which
comes to the same thing, innumerable lines ZX) in a geometric progression,
then as many lines Xr will be in an arithmetic progression. And hence it is
easy to draw curve DraF with the help of a table of logarithms.

Cororrary 3. If a parabola is constructed with vertex D and diameter
DG (produced downward) and a latus rectum that is to 2DP as the whole

resistance at the very beginning of
P the motion is to the force of gravity,
then the velocity with which a body
must go forth from place D along
the straight line DP in order to de-
scribe curve D7aF in a uniform re-
sisting medium will be the very one

with which it must go forth from

g  the same place D along the same

straight line DP in order to describe

p Yo i et : «
the parabola in a nonresisting space.

For the latus rectum of this parabola, at the very beginning of the mo-

DV? tGT DRXxT:

tion, is ; and Vr is or . But the straight line that, if
Vr N 2N

it were drawn, would touch the hyperbola GTS in G is parallel to DK,

CK x DR B x DC
and thus T is —DXC—, and N has been taken as %— Therefore

DR? x CK x CP
Vr is , that is (because DR is to DC as DV is to DP),
2DC? x QB
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DV? x CK x CP DV? 2DP? x QB
; and the latus rectum comes out

—_— 't
2DP? x QB Vr CK x CP
. . ) 2DP? x DA )
is (because QB is to CK as DA is to AC), —————, and thus is to 2DP
AC x CP
as DP x DA to CP x AC—that is, as the resistance to the gravity. Q.E.D.

CoroLLary 4. Hence, if a body

hat

z
is projected from any place D with

a given velocity along any straight
line DP given in position, and the
resistance of the medium at the very
beginning of the motion is given,
the curve DraF which the body will
describe can be found. For from the

given velocity the latus rectum of Y, P

the parabola is given, as is well
known. And if 2DP is taken to that
latus rectum as the force of gravity
to the force of resistance, DP is T
given. Then, if DC is cut in A so v
that CP x AC is to DP x DA in that .

same ratio of gravity to resistance, E

point A will be given. And hence

A

curve DraF is given.

D ]
Cororrary 5. And conversely,

if curve DraF is given, both the velocity of the body and the resistance of
the medium in each of the places » will be given. For since the ratio of
CP x AC to DP x DA is given, both the resistance of the medium at the
beginning of the motion and the latus rectum of the parabola are also given;
and hence the velocity at the beginning of the motion is also given. Then
from the length of the tangent rL, both the velocity (which is proportional
to it) and the resistance (which is proportional to the velocity) are given in
any place .

CororLary 6. The length 2DP is to the latus rectum of the parabola
as the gravity to the resistance at D; and when the velocity is increased the
resistance is increased in the same ratio, but the latus rectum of the parabola

is increased in the square of that ratio; hence it is evident that the length



286

BOOK 2, SECTION I

2DP is increased in the simple ratio and thus is always proportional to the
velocity and is not increased or decreased when the angle CDP is changed
unless the velocity is also changed.

CororLary 7. Hence the method is apparent for determining the
curve DraF from phenomena approximately and for obtaining thereby the
resistance and the velocity with which the body is projected. Project two

similar and equal bodies with
» the same velocity from place
D along the different angles
CDP and CDp, and let the

places F and f where they fall

o>

upon the horizontal plane DC
be known. Then, taking any
length for DP or Dp, suppose
that the resistance at D is to
the gravity in any ratio, and
represent that ratio by any
length SM. Then, by computa-
D A B C tion, find the lengths DF and

ﬁ[\{ Df from that assumed length
: XM Ff
S MM \L DP, and from the ratio ——

) DF

(found by computation) take
away the same ratio (found by experiment), and represent the difference by
the perpendicular MN. Do the same thing a second and a third time, always
taking a new ratio SM of resistance to gravity, and obtain a new difference
MN. But draw the positive differences on one side of the straight line SM
and the negative differences on the other, and through points N, N, N draw
the regular curve NNN cutting the straight line SMMM in X, and then SX
will be the true ratio of the resistance to the gravity, which it was required
to find. From this ratio the length DF is to be obtained by calculation; then
the length that is to the assumed length DP as the length DF (found out by
experiment) to the length DF (just found by computation) will be the true
length DP. When this is found, there will be known both the curved line
DraF that the body describes and the body’s velocity and resistance in every

place.
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However, the hypothesis that the resistance encountered by bodies is in the Scholium
ratio of the velocity belongs more to mathematics than to nature.? In medi-
ums wholly lacking in rigidity, the resistances encountered by bodies are as
the squares of the velocities. For by the action of a swifter body, a motion
that is greater in proportion to that greater velocity is communicated to a
given quantity of the medium in a smaller time; and thus in an equal time,
because a greater quantity of the medium is disturbed, a greater motion is
communicated in proportion to the square of the velocity, and (by the second
and third laws of motion) the resistance is as the motion communicated. Let

us see, therefore, what kinds of motions arise from this law of resistance.

a. Ed. 1 and ed. 2 have an additional sentence: “This ratio obtains very nearly when bodies are
moving very slowly in mediums having some rigidity.” In Newton’s annotated copy of ed. 2, “very

nearly” i1s changed to “more closely.”
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SECTION 2

The motion of bodies that are resisted as the squares of the velocities

If the resistance of a body is proportional to the square of the velocity and if the
body moves through a homogeneous medium by its inherent force alone and if the
times are taken in a geometric progression going from the smaller to the greater
terms, 1 say that the velocities at the beginning of each of the times are inversely
in that same geometric progression and that the spaces described in each of the
times are equal.

For since the resistance of the medium is proportional to the square
of the velocity, and the decrement of the velocity is proportional to the re-
H] sistance, if the time is divided into innu-
merable equal particles, the squares of the
velocities at each of the beginnings of the
times will be proportional to the differences
of those same velocities. Let the particles of

time be AK, KL, LM, ..., taken in the

straight line CD, and erect perpendiculars
¢ AKL™M T D AB, Kk, LI, Mm, ..., meeting the hyper-
bola B&/mG (described with center C and rectangular asymptotes CD and
CH) in B, %, /, m, ...; then AB will be to K% as CK to CA, and by sep-
aration [or dividendo] AB — K% to K% as AK to CA, and by alternation
[or alternando] AB — K% to AK as K% to CA, and thus as AB x K% to
AB x CA. Hence, since AK and AB x CA are given, AB — K% will be as
AB x Kk; and ultimately, when AB and K% come together, as AB?. And by
a similar argument Kk — L/, LI — Mm, ... will be as K%, L%, . ... The

squares of lines AB, Kk, LI/, Mm, therefore, are as their differences; and on

that account, since the squares of the velocities were also as their differences,
the progression of both will be similar. It follows from what has been proved
that the areas described by these lines are also in a progression entirely simi-
lar to that of the spaces described by the velocities. Therefore, if the velocity
at the beginning of the first time AK is represented by line AB, and the
velocity at the beginning of the second time KL by line K%, and the length
described in the first time is represented by area AKZB, then all the sub-

sequent velocities will be represented by the subsequent lines LI, Mm, ...,
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and the lengths described will be represented by areas K/, Lm, . ... And by
composition [or componendo], if the whole time is represented by the sum
of its parts AM, the whole length described will be represented by the sum
of its parts AMmB. Now imagine time AM to be divided into parfs AK,
KL, LM, ... in such a way that CA, CK, CL, CM, ... are in a geometric
progression; then those parts will be in the same progression, and the veloci-
ties AB, Kk, L/, Mm, ... will be in the same progression inverted, and the
spaces described Ak, K/, Lm, ... will be equal. Q.E.D.

CororLary 1. Therefore it is evident that if the time is represented by
any part AD of the asymptote, and the velocity at the beginning of the time
by ordinate AB, then the velocity at the end of the time will be represented
by ordinate DG, and the whole space described will be represented by the
adjacent hyperbolic area ABGD; and furthermore, the space that a body in
a nonresisting medium could describe in the same time AD, with the first
velocity AB, will be represented by the rectangle AB x AD.

CororLary 2.  Hence the space described in a resisting medium is given
by taking that space to be in the same proportion to the space which could
be described simultaneously with a uniform velocity AB in a nonresisting
medium as the hyperbolic area ABGD is to the rectangle AB x AD.

Cororrary 3. The resistance of the medium is also given by setting it
to be, at the very beginning of the motion, equal to the uniform centripetal
force that in a nonresisting medium could generate the velocity AB in a
falling body in the time AC. For if BT is drawn, touching the hyperbola in
B and meeting the asymptote in T, the straight line AT will be equal o AC
and will represent the time in which the first resistance uniformly continued
could annul the whole velocity AB.

CoroLrary 4.  And hence the proportion of this resistance to the force
of gravity or to any other given centripetal force is also given.

CoroLLary 5. And conversely, if the proportion of the resistance to any
given centripetal force is given, the time AC is given in which a centripetal
force equal to the resistance could generate any velocity AB; and hence point
B is given, through which the hyperbola with asymptotes CH and CD must
be described, as 1s also the space ABGD which the body, beginning its mo-
tion with that velocity AB, can describe in any time AD in a homogeneous

resisting medium.
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Equal homogeneous spherical bodies that are resisted in proportion to the square
of the velocity, and are carried forward by their inherent forces alone, will, in
times that are inversely as the initial velocities, always describe equal spaces, and
lose parts of their velocities proportional to the wholes.

Describe any hyperbola B6Ee, with rectangular asymptotes CD and CH,
which cuts perpendiculars AB, @b, DE, and de in B, 4, E, and ¢; and repre-
sent the initial velocities by perpendiculars
AB and DE and the times by lines Aa and
Dd. Therefore Aa is to Dd as (by hypothe-
sis) DE 1s to AB, and as (from the nature of
the hyperbola) CA is to CD, and by com-
position [or componendo] as Ca is to Cd.
Hence areas ABda and DEed, that is, the

spaces described, are equal to each other,

and the first velocities AB and DE are pro-
portional to the ultimate velocities 24 and de, and therefore, by separation
[or dividendo], also to the lost parts of those velocities AB —ab and DE —de.
Q.E.D.

Spherical bodies that are resisted in proportion to the squares of the velocities will,
in times that are as the first motions divectly and the first resistances inversely, lose
parts of the motions proportional to the wholes and will describe spaces propor-
tional to those times and the first velocities jointly.

For the lost parts of the motions are as the resistances and the times
jointly. Therefore, for those parts to be proportional to the wholes, the re-
sistance and time jointly must be as the motion. Accordingly, the time will
be as the motion directly and the resistance inversely. Therefore, if the par-
ticles of times are taken in this ratio, the bodies will always lose particles of
their motions proportional to the wholes and thus will retain velocities always
proportional to their first velocities. And because the ratio of the velocities is
given, they will always describe spaces that are as the first velocities and the
times jointly. Q.E.D.

CoroLLary 1. Therefore, if equally swift bodies are resisted in pro-
portion to the squares of their diameters, then homogeneous globes moving

with any velocities will, in describing spaces proportional to their diame-
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ters, lose parts of their motions proportional to the wholes. For the motion
of each globe will be as its velocity and mass jointly, that is, as its veloc-
ity and the cube of its diameter; the resistance (by hypothesis) will be as
the square of the diameter and the square of the velocity jointly; and the
time (by this proposition) is in the former ratio directly and the latter ra-
tio inversely, that is, as the diameter directly and the velocity inversely; and
thus the space, being proportional to the time and the velocity, is as the

diameter.

CoroLrLary 2. If equally swift bodies are resisted in proportion to the ¥
powers of the diameters, then homogeneous globes moving with any velocities
will, in describing spaces that are as the % powers of the diameters, lose parts

of motions proportional to the wholes.

CoroLLary 3. And universally, if equally swift bodies are resisted in
the ratio of any power of the diameters, the spaces in which homogeneous
globes moving with any velocities will lose parts of their motions pro-
portional to the wholes will be as the cubes of the diameters divided by
that power. Let the diameters be D and E; and if the resistances, when
the velocities are supposed equal, are as D” and E”, then the spaces in
which the globes, moving with any velocities, will lose parts of their mo-
tions proportional to the wholes will be as D" and E*7". And therefore
homogeneous globes, in describing spaces proportional to D*” and E*7",
will retain velocities in the same ratio to each other that they had at the
beginning. |

CororLary 4. But if the globes are not homogeneous, the space de-
scribed by the denser globe must be augmented in proportion to the den-
sity. For the motion, with an equal velocity, is greater in proportion to
the density, and the time (by this proposition) is increased in proportion to
the motion directly, and the space described is increased in proportion to the
time.

CoroLLary 5. And if the globes move in different mediums, the
space in the medium that, other things being equal, resists more will
have to be decreased in proportion to the greater resistance. For the
time (by this proposition) will be decreased in proportion to the increase
of the resistance, and the space will be decreased in proportion to the

time.
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The moment of a generated quantity is equal to the moments of each of the
generating roots multiplied continually by the exponents of the powers of those
roots and by their coefficients.

I call “generated” every quantity that is, without addition or subtraction,
generated from any roots or terms: in arithmetic by multiplication, division,
or extraction of roots; in geometry by the finding either of products and
roots or of extreme and mean proportionals. Quantities of this sort are prod-
ucts, quotients, roots, rectangles, squares, cubes, square roots, cube roots, and
the like.® T here consider these quantities as indeterminate and variable, and

increasing or decreasing as if by a continual motion or flux; and it is their

a. Newton’s use of “terminus” and “latus” for “root” is of particular interest in lem. 2 and its cases,
corollaries, and scholium. “Radix” appears only twice and is unchanged from edition to edition, but
root”) of ed. 1 with the “latus” (“side,” “root”) of ed.

2 and ed. 3. In the statement of the lemma, for example, ed. 1 has “momentis Terminorum singulorum

» o«

Newton tends to replace the “terminus” (“term,

generantium” (“the moments of the individual generating terms,” i.e., “the moments of each of the
generating roots”) and “eorundem laterum indices dignitatum” (“the exponents of the powers of the same
sides,” i.e., “the exponents of the powers of those roots”). Thus “terminus” and “latus” are obviously
synonyms. In ed. 2 and ed. 3, however, “laterum” (“sides,” “roots”) is substituted for “Terminorum”
(“terms,” “roots”). In the first sentence of the explanation, where ed. 1 has “ex Terminis quibuscunque”
(“from any terms,” i.e., “from any roots”), ed. 2 and ed. 3 have “ex lateribus vel terminis quibuscunque”
(“from any sides or terms,” i.e., “from any roots or terms”). As the explanation proceeds, ed. 1 has, like ed.
2 and ed. 3, “extractionem radicum” (“extraction of roots”), “contentorum & laterum” (“of products and
roots”), “Radices” (“roots”), and “latera quadrata, latera cubica” (“square roots, cube roots”), but ed. 1 has
“Termini” and “Terminum” where ed. 2 and ed. 3 have “Lateris” and “latus” in the last sentence of the
first paragraph: “And the coefficient of each generating root is the quantity that results from dividing the
generated quantity by this root.” In corol. 1, on the other hand, all the editions have “terminus” (with
the ordinary sense of “term,” not with the sense of “root”), while all have “latus” (with the sense of “root”)
in cases | and 2 and corols. 2 and 3. “Terminus” also occurs, in the phrase “in terminis surdis” (“in surd
terms”), in the scholium of ed. 1 and ed. 2, which is, as will be seen below, very different from that of
ed. 3, where, however, “quantitatibus surdis” (“surd quantities”) is at least comparable, especially since
“surdis” (“surd”) appears nowhere else in all the editions of the Principia.

b. In the Latin text of this lemma, Newton referred to roots in two senses. The first occurs in the
opening sentence, where he writes of “extraction of roots,” using the Latin term “radix,” or “root.” The
second occurs in the next sentence, where he writes of “products, quotients, roots, rectangles, squares,
cubes, square roots, cube roots, and the like.” Here both senses of “roots” appear in a single sentence, the
first as “radices” (or “roots”), the second as “latera quadrata, latera cubica” (/iz. “square sides” and “cubic
sides”). In the geometric language of algebra, in which a “rectangle” of A and B indicates the product of
two unequal quantities A and B as the area of a rectangle whose sides are A and B, the square root and
cube root have similar geometric expression. Thus the square root of A is the side of a square whose area
is A, while the cube root of A is the “side” (actually the edge) of a cube whose volume is A.

In his Lexicon Technicum (London, 1704), John Harris explained these two different mathematical
senses of the word “root.” An “Unknown Quantity in an Algebraick Equation,” he wrote, “is often called
the Root.” This is the sense of the word as it appears in the first sentence of the lemma. But, as Harris

explained, a root is also “whatever Quantity being multiplied by it self produces a Square” and when
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instantaneous increments or decrements that I mean by the word “moments,”
in such a way that increments are considered as added or positive moments,
and decrements as subtracted or negative moments. But take care: do not un-
derstand them to be finite particles! “Finite particles are not moments, but the
very quantities generated from the moments.© They must be understood to be
the just-now nascent beginnings of finite magnitudes. For in this lemma the
magnitude of moments is not regarded, but only their first proportion when
nascent. It comes to the same thing if in place of moments there are used
either the velocities of increments and decrements (which it is also possible
to call motions, mutations, and fluxions of quantities) or any finite quanti-
ties proportional to these velocities. And the coefficient of each generating
root is the quantity that results from dividing the generated quantity by this
root.

Therefore, the meaning of this lemma is that if the moments of any
quantities A, B, C, ... increasing or decreasing by a continual motion, or
the velocities of mutation which are proportional to these moments are called
a, b, ¢, ..., then the moment or mutation of the generated rectangle AB
would be 4B + #A, and the moment of the generated solid ABC would
be aBC + bAC + cAB, and the moments of the generated powers A?, A3,
A AV A A AT AT, A7 and AT would be 22A, 32A%, 4aA’,
VhaA™ " 3haAY? Via A~ Y3a A3, —aA™2, —2aA 3, and —YhaA 2 re-

n—m
mo,

spectively. And generally, the moment of any power A= would be Zea
m

Likewise, the moment of the generated quantity A’B would be 2aAB + 5A?,
and the moment of the generated quantity A’B*C? would be 32A’B'C? +

once again “multiplied by that first Quantity produces a Cube, &c.” These, he said, are called “Square,
Cube. .. Root.”

Even without any knowledge of the geometric sense of algebra, one might easily guess that Newton
is referring to square and cube roots in the phrase “products, quotients, . . . squares, cubes, square sides,
cube sides, and the like.” Yet Andrew Motte, in his English translation (London, 1729), rendered these
terms literally as “products, quotients, roots, rectangles, squares, cubes, square and cubic sides, and the
like,” which was carried over into the Motte-Cajori version. The marquise du Chitelet knew better and
in her French translation (Paris, 1756) wrote, just as we would today, of “les produits, les quotiens, les
racines, les rectangles, les quarrés, les cubes, les racines quarrées, & les racines cubes.”

cc. Ed. 1 has: “Moments, as soon as they are of finite magnitude, cease to be moments. For being
finite is somewhat incompatible with their continual increment or decrement.” When one reads the

3, 4,

“somewhat” (“aliquatenus”:

»

to a certain extent,” “in some respects”) in the second of these sentences, one
can understand why Newton decided to revise this portion of his explanation.
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3
46A°B*°C? + 2cA’B*C, and the moment of the generated quantity B

A’B™? would be 32A’B™2 — 26A°B~3, and so on. The lemma is proved as
follows.

Case 1. Any rectangle AB increased by continual motion, when the
halves of the moments, Y22 and Y25, were lacking from the sides A and B,
was A — V2a multiplied by B— 144, or AB— V2aB— 146A + V4ab, and as soon
as the sides A and B have been increased by the other halves of the moments,
it comes out A + Y2a multiplied by B + 24, or AB + V24B + V26A + Viab.
Subtract the former rectangle from this rectangle, and there will remain the
excess aB + bA. Therefore by the total increments @ and & of the sides there
is generated the increment aB + bA of the rectangle. Q.E.D.

Case 2. Suppose that AB is always equal to G; then the moment of the
solid ABC or GC (by case 1) will be gC + ¢G, that is (if AB and «B + 6A
are written for G and g), aBC + #AC 4 ¢cAB. And the same is true of the
solid contained under any number of sides [or the product of any number of
terms]. Q.E.D.

Case 3. Suppose that the sides A, B, and C are always equal to one
another; then the moment aB + 6A of A?, that is, of the rectangle AB, will
be 2aA, while the moment aBC + AAC + cAB of A?, that is, of the solid
ABC, will be 32A’. And by the same argument, the moment of any power
A" is naA""'. Q.E.D.

Case 4. Hence, since % multiplied by A is 1, the moment of % multi-
plied by A together with % multiplied by & will be the moment of 1, that is,
nil. Accordingly, the moment of —i— orof A7 is —%. And in general, since
% multiplied by A” is 1, the moment of % multiplied by A” together
with % multiplied by 7aA”™" will be nil. And therefore the moment of

1
Chs A™" will be —Xr:%. Q.E.D.
Case 5. And since A”2 multiplied by A"? is A, the moment of A"
multiplied by 2A"” will be a, by case 3; and thus the moment of A" will be
a

TAv O 5aA~"?. And in general, if A7 is supposed equal to B, A” will be
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equal to B”, and hence maA™"! will be equal to n6B"~', and maA™" will
be equal to 7B~ or nbA ™", and thus Zaa= equal to &, that is, equal to
the moment of A%. Q.E.D. ’

Cask 6. Therefore the moment of any generated quantity A”B” is the
moment of A” multiplied by B”, together with the moment of B” multiplied
by A™, that is, maA™ 'B" +»6B" "' A™; and this is so whether the exponents
m and n of the powers are whole numbers or fractions, whether positive or
negative. And it is the same for a solid contained by more than two terms
raised to powers. Q.E.D.

CororLary 1. Hence in continually proportional quantities, if one term
is given, the moments of the remaining terms will be as those terms multi-
plied by the number of intervals between them and the given term. Let A,
B, C, D, E, and F be continually proportional; then, if the term C is given,
the moments of the remaining terms will be to one another as —2A, —B, D,
2E, and 3F.

CoroLLary 2. And if in four proportionals the two means are given,
the moments of the extremes will be as those same extremes. The same is to
be understood of the sides of any given rectangle.

CoroLrary 3. And if the sum or difference of two squares is given, the

moments of the sides will be inversely as the sides.

In a certain letter written to our fellow Englishman Mr. J. Collins on 10
December 1672, when I had described a method of tangents that I suspected
to be the same as Sluse’s method, which at that time had not yet been made

public, I added: “This is one particular, or rather a corollary, of a general

dd. In ed. | this scholium reads: “In correspondence which I carried on ten years ago with the very
able geometer G. W. Leibniz, I indicated that I was in possession of a method of determining maxima
and minima, drawing tangents, and performing similar operations, and that the methed worked for surd
as well as rational terms. I concealed this method under an anagram comprising this sentence: ‘Given an
equation involving any number of fluent quantities, to find the fluxions, and vice versa.” The distinguished
gentleman wrote back that he too had come upon a method of this kind, and he communicated his method,
which hardly differed from mine except in the forms of words and notations. The foundation of both
methods is contained in this lemma.” In ed. 2 the scholium is exactly the same except that “and the
concept of the generation of quantities” is added at the end of the penultimate sentence.

For the principal texts with interpretative comments on the Newton-Leibniz controversy over priority
in the invention of the calculus, see The Mathematical Papers of Isaac Newton, ed. D. T. Whiteside (Cam-
bridge: Cambridge University Press, 1967-1981), vol. 8, esp. pp. 469-697; also A. Rupert Hall, Philosophers
at War: The Quarrel between Newton and Leibniz (Cambridge: Cambridge University Press, 1980).
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method, which extends, without any troublesome calculation, not only to
the drawing of tangents to all curve lines, whether geometric or mechanical
or having respect in any way to straight lines or other curves, but also to
resolving other more abstruse kinds of problems concerning curvatures, areas,
lengths, centers of gravity of curves,..., and is not restricted (as Hudde’s
method of maxima and minima is) only to those equations which are free
from surd quantities. I have interwoven this method with that other by which
I find the roots of equations by reducing them to infinite series.” So much
for the letter. And these last words refer to the treatise that I had written on
this topic in 1671. The foundation of this general method is contained in the

preceding lemma.4

If a body, acted on by gravity uniformly, goes straight up or down in a uniform
medium, and the total space described ts divided into equal parts, and the absolute
forces at the beginnings of each of the parts are found (adding the resistance of
the medium to the force of gravity when the body is ascending, or subtracting it
when the body is descending), I say that those absolute forces are in a geometric
progression.

Represent the force of gravity by the given line AC; the resistance,
by the indefinite line AK; the absolute force in the descent of the body,
by the difference KC; the velocity of
the body, by the line AP, which is
the mean proportional between AK
and AC, and thus is as the square

root of the resistance; the increment

of the resistance occurring in a given

particle of time, by the line-element

C QP LKIA( k& 7 . :
KL; and the simultaneous increment

of the velocity, by the line-element PQ; then with center C and rectangular
asymptotes CA and CH, describe any hyperbola BNS, meeting the erected
perpendiculars AB, KN, and LO in B, N, and O. Since AK is as AP?, the
moment KL of AK will be as the moment 2AP x PQ of AP?, that is, as
AP multiplied by KC, since the increment PQ of the velocity (by the second
law of motion) is proportional to the generating force KC. Compound the
ratio of KL with the ratio of KN, and the rectangle KL x KN will become
as AP x KC x KN—that is, because the rectangle KC x KN is given, as
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AP. But the ultimate ratio of the hyperbolic area KNOL to the rectangle
KL x KN, when points K and L come together, is the ratio of equality.
Therefore that evanescent hyperbolic area is as AP. Hence the total hyper-
bolic area ABOL is composed of the particles KNOL, which are always
proportional to the velocity AP, and therefore this area is proportional to
the space described with this velocity. Now divide that area into equal parts
ABMI, IMNK, KNOL, ..., and the absolute forces AC, IC, KC, LC,...
will be in a geometric progression. Q.E.D.

And by a similar argument, if—in the ascent of the body—equal areas
ABmi, imnk, knol, ... are taken on the opposite side of point A, it will
be manifest that the absolute forces AC, :C, £C, /C, ... are continually
proportional. And thus, if all the spaces in the ascent and descent are taken
equal, all the absolute forces /C, £C, iC, AC, IC, KC, LC, ... will be
continually proportional. Q.E.D.

CororLary 1.  Hence, if the space described is represented by the hy-
perbolic area ABNK, the force of gravity, the velocity of the body, and the
resistance of the medium can be represented by lines AC, AP, and AK re-
spectively, and vice versa.

CoroLLary 2. And line AC represents the greatest velocity that the body
can ever acquire by descending infinitely.

Cororrary 3. Therefore, if for a given velocity the resistance of the
medium is known, the greatest velocity will be found by taking its ratio to
the given velocity as the square root of the ratio of the force of gravity to

that known resistance of the medium.?

Given what has already been proved, I say that if the tangents of the angles of a
sector of a circle and of a hyperbola are taken proportional to the velocities, the

radius being of the proper magnitude, the whole time *of ascending to the highest

a. Ed. 1 has two additional corollaries as follows: “Corol. 4. But also the particle of time wherein the
minimally small particle of space NKLO is described in descent is as the rectangle KN x PQ. For since
the space NKLO is as the velocity multiplied by the particle of time, the particle of time will be as that
space divided by the velocity, that is, as the minimally small rectangle KN x KL divided by AP. For KL,
above, was as AP x PQ. Therefore the particle of time is as KN x PQ, or what comes to the same, as

PQ
—. QED”
CK Q
“Corollary 5. By the same argument the particle of time wherein the particle of space nklo is described

. . rq .,
in ascent is as —-.

aa. Ed. 1 and ed. 2 have “of the future ascent.”

297

Proposition 9
Theorem 7



298 BOOK 2, SECTION 2

place® will be as the sector of the circle, and the whole time of descending from
the highest place® will be as the sector of the hyperbola.

Draw AD perpendicular and equal to the straight line AC, which rep-
resents the force of gravity. With center D and semidiameter AD describe
the quadrant A¢E of a circle and the rectangular hyperbola AVZ having
axis AX, principal vertex A, and asymptote DC. Draw Dp and DP, and
the sector AzD of the circle will be as ‘the whole time of ascending to the
highest place,° and the sector ATD of the hyperbola will be as 4the whole
time of descending from the highest place,® provided that the tangents Ap
and AP of the sectors are as the velocities.

Case 1. Draw Duvg cutting off the moments or the minimally small
particles zDv and ¢Dp, described simultaneously, of the sector ADz and of

the triangle ADp. Since those particles, because of the common angle D, are

R 9 p
E
. , . qDp x tD* ,
as the squares of the sides, particle zDv will be as T, that is, because
D
1D is given, as 9—L. But pD? is AD? + Ap?, that is, AD? + AD x Ak, or

D2’
AD X Ck; and gDp is Y2AD x pq. Therefore particle tDv of the sector is as
rq

C_I(’ that is, directly as the minimally small decrement pg of the velocity and

bb. Ed. 1 and ed. 2 have “of the past descent.”
cc. Ed. 1 and ed. 2 have “the time of the whole future ascent.”
dd. Ed. 1 and ed. 2 have “the time of the whole past descent.”
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inversely as the force Ck that decreases the velocity, and thus as the particle
of time corresponding to the decrement of the velocity. And by composition
[or componendo] the sum of all the particles Dy in the sector ADz will be
as the sum of the particles of time corresponding to each of the lost particles
pq of the decreasing velocity Ap, until that velocity, decreased to nil, has
vanished; that is, the whole sector ADz is as “the whole time of ascending to
the highest place Q.E.D.

Case 2. Draw DQV cutting off the minimally small particles TDV and
PDQ of the sector DAV and of the triangle DAQ; and these particles will
be to each other as DT? to DP?, that is (if TX and AP are parallel), as DX’
to DA? or TX? to AP?, and by separation [or dividendo] as DX? — TX?
to DA? — AP%. But from the nature of the hyperbola, DX* — TX? is AD?,
and by hypothesis AP? is AD x AK. Therefore the particles are to each

other as AD? to AD?> — AD x AK, that is, as AD to AD — AK or AC

PD AC
to CK; and thus the particle TDV of the sector is —%—;—, and hence,

because AC and AD are given, as oK that is, directly as the increment of

the velocity and inversely as the force generating the increment, and thus as
the particle of time corresponding to the increment. And by composition [or
componendo] the sum of the particles of time in which all the particles PQ
of the velocity AP are generated will be as the sum of the particles of the
sector ATD, that is, the whole time will be as the whole sector. Q.E.D.
Cororrary 1. Hence, if AB is equal to a fourth of AC, the space that
a body describes by falling in any time will be in the same ratio to the space
that the body can describe by progressing uniformly in that same time with
its greatest velocity AC as the ratio of area ABNK (which represents the
space described in falling) to area ATD (which represents the time). For,
since AC is to AP as AP to AK, it follows (by book 2, lem. 2, corol. 1) that
LK will be to PQ as 2AK to AP, that is, as 2AP to AC, and hence LK will
be to 12PQ as AP to 4AC or AB; KN is also to AC or AD as AB to CK;
and thus, from the equality of the ratios [or ex aequo], LKNO will be to
DPQ as AP to CK. But DPQ was to DTV as CK to AC. Therefore, once
again by the equality of the ratios [or ex aequo], LKNO is to DTV as AP to
AQC, that is, as the velocity of the falling body to the greatest velocity that the

ee. Ed. 1 and ed. 2 have “the time of the whole future ascent.”
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body can acquire in falling. Since, therefore, the moments LKNO and DTV
of areas ABNK and ATD are as the velocities, all the parts of those areas
generated simultaneously will be as the spaces described simultaneously, and
thus the whole areas ABNK and ATD generated from the beginning will
be as the whole spaces described from the beginning of the descent. Q.E.D.

CoroLrary 2. The same result follows for the space described in ascent:
namely, the whole space is to the space described in the same time with a
uniform velocity AC as area ABn#k is to sector ADz.

CoroLLary 3. The velocity of a body falling in time ATD is to the
velocity that it would acquire in the same time in a nonresisting space as the
triangle APD to the hyperbolic sector ATD. For the velocity in a nonresisting
medium would be as time ATD, and in a resisting medium is as AP, that
is, as triangle APD. And the velocities at the beginning of the descent are
equal to each other, as are those areas ATD and APD.

CoroLLary 4. By the same argument, the velocity in the ascent is to the
velocity with which the body in the same time in a nonresisting space could
lose its whole ascending motion as the triangle ApD is to the sector AzD of
the circle, or as the straight line Ap is to the arc Az.

CoroLLary 5. Therefore the time in which a body, by falling in a resist-
ing medium, acquires the velocity AP is to the time in which it could acquire
its greatest velocity AC, by falling in a nonresisting space, as sector ADT to
triangle ADC; and the time in which it could lose the velocity Ap by as-
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cending in a resisting medium is to the time in which it could lose the same
velocity by ascending in a nonresisting space as arc A is to its tangent Ap.

CoroLLary 6. Hence, from the given time, the space described by ascent
or descent is given. For the greatest velocity of a body descending infinitely
is given (by book 2, prop. 8, corols. 2 and 3), and hence the time is given in
which a body could acquire that velocity by falling in a nonresisting space.
And if sector ADT or AD¢ is taken to be to triangle ADC in the ratio of
the given time to the time just found, there will be given both the velocity
AP or Ap and the area ABNK or ABnk, which is to the sector ADT or
ADz as the required space is to the space that can be described uniformly in
the given time with that greatest velocity which has already been found.

CoroLrary 7.  And working backward, the time ADz or ADT will be
given from the given space ABnk or ABNK of ascent or descent.

Let a uniform force of gravity tend straight toward the plane of the horizon, and
let the resistance be as the density of the medium and the square of the velocity
Jointly; it is required to find, in each individual place, the density of the medium
that makes the body move in any given curved line and also the velocity of the
body and resistance of the medium.

*Let PQ be the plane of the horizon, perpendicular to the plane of the
figure; PFHQ a curved line meeting this plane in points P and Q; G, H, I,

aa. Ed. 1 has: “Let AK be the plane of the horizon, perpendicular to the plane of the figure; ACK
a curved line; C a body moving along the line; and FCf a straight line touching it in C. And suppose
that body C now goes forward from A to K along the line ACK and now goes back along the same line
and that in going forward it is impeded by the medium and in going back is equally assisted, so that in

the same places the velocity of the body as it goes forward and back is always the same.

T

A O di B D K

“And in equal times let the body as it goes forward describe the minimally small arc CG, and let
the body as it goes back describe arc Cg, and let CH and C# be equal rectilinear lengths which bodies
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and K four places of the body as it goes in the curve from F to Q; and
GB, HC, ID, and KE four parallel ordinates dropped from these points

to the horizon and standing upon
T the horizontal line PQ at points
T < B, C, D, and E; and let BC, CD,
and DE be distances between the
ordinates equal to one another. From
points G and H draw the straight
lines GL and HN touching the

curve in G and H, and meeting

P A B CDE Q

in L and N the ordinates CH and DI produced upward; and complete
the parallelogram HCDM. Then the times in which the body describes
arcs GH and HI will be as the square roots of the distances LH and
NI which the body could describe in those times by falling from the
tangents; and the velocities will be directly as GH and HI (the lengths

described) and inversely as the times. Represent the times by T and ¢,

moving away from place C would describe in these times without the actions of the medium and of
gravity, and from points C, G, and g to the horizontal plane AK drop perpendiculars CB, GD, and gd,
letting GD and gd meet the tangent in F and f. Through the resistance of the medium it comes about
that the body as it goes forward describes, instead of length CH, only length CF, and through the force of
gravity the body is transferred from F to G, and thus line-element HF and line-element FG are generated
simultaneously, the first by the force of resistance and the second by the force of gravity. Accordingly (by
book 1, lem. 10), line-element FG is as the force of gravity and the square of the time jointly and thus
(since the gravity is given) as the square of the time, and line-element HF is as the resistance and the

square of the time, that is, as the resistance and line-element FG. And hence the resistance comes to be
) HF L . .
as HF directly and FG inversely, or as G This is so in the case of nascent line-elements. For in the

case of line-elements of finite magnitude these ratios are not accurate.

“And by a similar argument fg is as the square of the time and thus, since the times are equal, is
equal to FG, and the impulse by which the body going back is urged is as }—i But the impulse upon
the body as it goes back and the resistance to it as it goes forward are equal at the very beginning of the
motion, and thus also i and %, proportional to them, are equal, and therefore, because fg and FG
are equal, 4f and HF are also equal, and thus CF, CH (or C#4), and Cf are in arithmetic progn:lsls:ion,

and hence HF is half the difference between Cf and CF, and the resistance, which above was as —, is
Cf —CF FG
as ———.
FG
“But the resistance is as the density of the medium and the square of the velocity. And the velocity is
CF
as the described length CF directly and the time /FG inversely, that is, as ——
CF? cf —cr VFG

the velocity is as TG Therefore the resistance, proportional to ~FG ' is as the density of the medium

, and thus the square of
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GH HI

and the velocities by —— and —; and the decrement of the velocity
T ’  GH HI

occurring in time ¢ will be represented by - - This decrement arises

from the resistance retarding the body and from the gravity accelerating
the body. In a body falling and describing in its fall the space NI, gravity

generates a velocity by which twice that space could have been described in
2NI
the same tme, as Galileo proved, that is, the velocity — but in a body

describing arc HI, gravity increases the arc by only the length HI — HN or

MI x NI . 2MI x NI
—————, and thus generates only the velocity < H
X

to the above decrement, and the result is the decrement of the velocity

. ) GH HI = 2MI x NI
arising from the resistance alone, namely - - + Y H And

NI

accordingly, since gravity generates the velocity —— in the same time in a
t

. . : : GH HI 2MI x NI
falling body, the resistance will be to the gravity as E VT

. Add this velocity

H t x HI

2NI t x GH 2MI x NI

to —, oras —— — HI 4+ ——— to 2NI.
t HI

CF* Cf —CF CF?
and e jointly, and hence the density of the medium is as fF—G directly and TG inversely, that
ww L=CF op
is, a8 = QEL

“Corollary 1. And hence it is gathered that if C% on Cf is taken as equal to CF and the perpendicular
ki is dropped to the horizontal plane AK, cutting the curve ACK in /, the density of the medium will

FG — k!
m. For fC will be to kC as /fg or \/FG to /kl, and by separation [or

dividendo] f% will be to £C, that is, Cf — CF to CF, as \/FG + /k! to ./k!/, that is, if both terms are
multiplied by \/FG+./kl, as FG— k! to kI +/(FG x k), or to FG+kl. For the first ratio of the nascent

FG - ki Cf —-CF
quantities &/ +/(FG x /) and FG + £/ is that of equality. And so let Fe-H be written for —ZF’

Cf-CF FG+hl  pg_ g

————— will turn out to be as ——M———.
CF? CF x (FG 4+ &)
“Corollary 2. Hence, since 2ZHF and Cf — CF are equal and FG and £/ (because of the ratio of

equality) compose 2FG, 2HF will be to CF as FG — %/ to 2FG, and hence HF will be to FG, that is,

the resistance will be to the gravity, as the rectangle CF x (FG — &/) to 4FG%.”

come to be as

and the density of the medium, which was as

The demonstration in ed. 1 is incorrect, and the error was brought to Newton’s attention only after
the corresponding pages in ed. 2 had been printed off. For details see the Guide to the present translation,
§7.3; also The Mathematical Papers of Isaac Newton, ed. D. T. Whiteside (Cambridge: Cambridge University
Press, 1967-1981), 8:312-424; The Correspondence of Isaac Newton, vol. 5, ed. A. Rupert Hall and Laura
Tilling (Cambridge: published for the Royal Society by Cambridge University Press, 1975); A. Rupert
Hall, “Correcting the Principia,” Osiris 13 (1958): 291-326; 1. Bernard Cohen, Introduction to Newton’s
“Principia” (Cambridge, Mass.: Harvard University Press; Cambridge: Cambridge University Press, 1971),
pp. 236-238.
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Now for the abscissas CB, CD, and CE write —o, o, and 20. For the
ordinate CH write P, and for MI write any series Qo + Ro? 4+ So® + - - .
And all the terms of the series after the first, namely Ro? + So® + - - -, will
be NI, and the ordinates DI, EK, and BG will be P— Qo —Ro*—S¢*—- - -,
P—2Qo0—4Ro*—8S0®*—---, and P+Qo—Ro*+So*—- - - respectively. And
by squaring the differences of the ordinates BG — CH and CH — DI and

by adding to the resulting squares the

T\ squares of BC and CD, there will re-

FW\HL ™ sult the squares of the arcs GH and

1 R HI: o + Q%* — 2QRo* + -+ and

o’ + Q%*0® +2QRo’ + - - - . The roots

QRo?
of these, 0,/(1+Q?) — ————— and
v V(1 +QY)
P A B (D EQ QRo?
0/(1+Q?%) 4+ —————, are the arcs
v V1 + Q)

GH and HI. Furthermore, if from ordinate CH half the sum of ordinates
BG and DI is subtracted, and from ordinate DI half the sum of ordinates CH
and EK is subtracted, the remainders will be the sagittas Ro? and Ro? +3S0’
of arcs GI and HK. And these are proportional to the line-elements LH and
NI, and thus as the squares of the infinitely small times T and #; and hence

t \/R+3So R + 34So

. . . . z
the ratio T is or ; and if the values just found of —,

R R
) . txGH 2MI x NI
GH, HI, MI, and NI are substituted in — HI 4+ —————| the

HI
3802
2; J(1+0Q%. And since 2NI is 2Ro?, the resistance will now

e to ¢ gar 1t

And the velocity is that with which a body going forth from any place

result will be

V(14 Q%) to 2Ro?, that is, as 35./(1 + Q%) to 4R%.

H along tangent HN can then move in a vacuum in a parabola having a

HN?  14Q?
or .

NI R
And the resistance is as the density of the medium and the square of the

diameter HC and a latus rectum

velocity jointly, and therefore the density of the medium is as the resistance

3s/(1+ Q%)

directly and the square of the velocity inversely, that is, as Y

2

directly and inversely, that is, as Q.EL

S
RJ/(1+ Q)
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Cororrary 1. If the tangent HN is produced in both directions until it
HT

meets any ordinate AF in T, AC will be equal to /(1 + Q%) and thus can

be written for /(1 + Q?) above. And so the resistance will be to the gravity

as 38 x HT to 4R? x AC, the velocity will be as
S x AC |

R x HT’
"Cororrary 2. And hence, if the curved line PFHQ is defined by the

relation between the base or abscissa AC and the ordinate CH, as is custom-

T
———, and the density of
AC/R
the medium will be as

ary, and the value of the ordinate is resolved into a converging series, then
the problem will be solved readily by means of the first terms of the series,
as in the following examples.”

Exampre 1. Let line PFHQ be a semicircle described on the diameter
PQ, and let it be required to find the density of the medium that would
make a projectile move in this semicircle.

Bisect diameter PQ in A; call AQ, n; AC, a; CH, ¢; and CD, 0. Then

DI or AQ? — AD? will be = #* — a®> — 240 — 0%, or ¢* —2a0 — 0%, and when

) ao o
the root has been extracted by our method, DI will become = ¢ — — — 7"
e e

ato’  ad® a0’ L, s i
—— — — — —— — ..., Here write n* for ¢* 4+ a*, and DI will come out
262 288 20

ao n*o*® an’o’
—e— — R

e 263 263

I divide series of this sort into successive terms in the following manner.
What I call the first term is the term in which the infinitely small quantity o
does not exist; the second, the term in which that quantity is of one dimen-
sion; the third, the term in which it is of two dimensions; the fourth, the term
in which it is of three dimensions; and so on indefinitely. And the first term,
which here is e, will always denote the length of the ordinate CH, standing

at the beginning of the indefinite quantity o. The second term, which here

1s Q, will denote the difference between CH and DN, that is, the line-
e

element MN, which is cut off by completing the parallelogram HCDM and

thus always determines the position of the tangent HNj as, for example, in

. . ao . .
this case by taking MN to HM as — is to o, or a4 to e. The third term,
e

bb. In ed. 1 this is, with some variants, corol. 3.
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2,2
which here is R will designate the
e

M line-element IN, which lies between

T
(7]

the tangent and the curve and thus
determines the angle of contact IHN
or the curvature that the curved line
has in H. If that line-element IN is
P A B (D E Q (fyfinite magnitude, it will be desig-

nated by the third term along with the terms following without limit. But if

that line-element is diminished infinitely, the subsequent terms will come out
infinitely smaller than the third and thus can be ignored. The fourth term
determines the variation of the curvature, the fifth the variation of the varia-
tion, and so on. Hence, by the way, one can see clearly the not inconsiderable
usefulness of these series in the solution of problems that depend on tangents
and the curvature of curves.

‘Now compare the series ¢ — — — —— — —— — ... with the series

P — Qo — Ro*> — So® — -+, and in the same manner for P, Q, R, and S
a n an? a n

write e, —, —, and —, and for /(1 + Q?) write \/<1 +—) or —; then the
e 263 26° el e

. R . a . .. a
density of the medium will come out® as —, that is (because # is given), as —,
ne e

or T’ that is, as the tangent’s length HT terminated at the semidiameter

cc. Ed. 1 has: “Besides, CF is the square root of CF* and IF?, that is, of BD? and the square of the
second term. And FG + %/ is equal to twice the third term, and FG — %/ is equal to twice the fourth. For

the value of DG is converted into the value of i/, and the value of FG into the value of %/, by writing B:
for BD for -+o. Accordingly, since FG is -2 — 2%kt will be = ~ 22 4 ¥
or , or —o for +o. Accordingly, since is 3o PYCREREE k! wi =-7 7%

2,2
And the sum of these is —g; the difference, —Q. The fifth and following terms I ignore here as
e €
infinitely less than such as come under consideration in this problem. And so if the series is universally
designated by the terms F Qo — Ro® — So*..., CF will be equal to /(o> + Q%?), FG + ki will be
equal to 2Ro%, and FG — k! will be equal to 2So*. For CF, FG + &/, and FG — k/, write these values

FG — k! .
—————————, will now be as ——-—o-,
CF x (FG + &) R/(1+ Q%

Therefore by reducing each problem to a converging series and here writing for Q, R, and S the terms of

of theirs, and the density of the medium, which was as

the series corresponding to these and then supposing the resistance of the medium in any place G to be
to the gravity as S,/(1+ Q?) to 2R?, and the velocity to be the same as that with which a body, departing

from place C along straight line CF, could subsequently move in a parabola having diameter CB and
2

latus rectum , the problem will be solved.

r'a n n? an’
“Thus, in now solving the problem, if \/(l + —) or — is written for ./(1+Q?), — for R, and —
el e 263 263

for S, the density of the medium will come out.”
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AF, which stands perpendicularly upon PQj; and the resistance will be to the
gravity as 3a to 2n, that is, as 3AC to the diameter PQ of the circle, while
the velocity will be as o/CH. Therefore, if the body goes forth from place
F with the proper velocity along a line parallel to PQ, and the density of
the medium in each place H is as the length of the tangent HT, and the
resistance, also in some place H, is to the force of gravity as 3AC to PQ,
then that body will describe the quadrant FHQ of a circle.  Q.E.L

But if the same body were to go forth from place P along a line per-
pendicular to PQ and were to begin to move in an arc of the semicircle
PFQ, AC or a would have to be taken on the opposite side of center A,
and therefore its sign would have to be changed, and —a would have to be
written for +a. Thus the density of the medium would come out as —%. But
nature does not admit of a negative density, that is, a density that accelerates
the motions of bodies; and therefore it cannot naturally happen that a body
by ascending from P should describe the quadrant PF of a circle. For this
effect the body would have to be accelerated by an impelling medium, not
impeded by a resisting medium.

Exampre 2. Let the line PFQ be a parabola having its axis AF perpen-
dicular to the horizon PQ, and let it be required to find the density of the
medium that would make a projectile move in that parabola.

From the nature of the parabola, the rectangle PD x DQ is equal to the
rectangle of the ordinate DI and some given straight line. Let that straight
line be called &; PC, a; PQ, ¢; CH, ¢; and CD, o.

F
Then the rectangle (a+0)X(c—a—o), or ac—a’— HI
2a0+co—o0?, is equal to the rectangle & x DI, and
) ac —a* ¢—2a o’
thus DI is equal to + o——. Now
b b b
the second term 2 o of this series should be P A CcD Q

2
. . o . . .
written for Qo, the third term 7 likewise for Ro?. But since there are

not more terms, the coefficient S of the fourth will have to vanish, and

therefore the quantity , to which the density of the medium is

S
RJ/(1+ Q)
proportional, will be nil. Therefore, if the density of the medium is null, a

projectile will move in a parabola, as Galileo once proved. Q.E.L
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Exampie 3. Let line AGK be a hyperbola having an asymptote NX
perpendicular to the horizontal plane AK; and let it be required to find the
density of the medium that would make a projectile move in this hyperbola.

Let MX be the other asymptote, meeting in V the ordinate DG pro-
duced; and from the nature of the hyperbola, the rectangle XV x VG will
be given. Moreover, the ratio of DN to VX is given, and therefore the
rectangle DN X VG is given also. Let this rectangle be #°. And after com-
pleting the parallelogram DNXZ, call BN 4; BD, 0; NX, ¢; and suppose the

given ratio of VZ to ZX or DN to be Z Then DN will be equal to 2 — o,

n
2

b
Y\ VG will be equal to , VZ will
a—o

z [

be equal to z(a —0), and GD or
n

NX — VZ — VG will be equal to

m m 2

c——a+—o-—
n n a—o
bZ

. Resolve the

term into the converging se-

a—o

bZ bZ bZ bZ ;

ries — + —o+ —o + —o’...,
<5 Z 2 2 2t
“{T  and GD will become equal to ¢ —
N

A BD K mo ¥ om ¥ B
—g — — 4+ —0— —0 — —0o’ —
n a n a? a
2 m 2
—403 . ... The second term —o — —o of this series is to be used for Qo,
a n a
b2
the third (with the sign changed) ——3—02 for Ro?, and the fourth (with the
a
b? . i m b b b*
sign also changed) —o* for So®, and their coefficients — — —, —, and —
at n & & at
are to be written in the above rule for Q, R, and S. When this is done,
bZ
. . 2
the density of the medium comes out as or

1% 1+ m*  2mb? + b*
a3 n? na? at

1
, that is (if in VZ, VY is taken equal to VG),

m? 2mb* bt
a? + —2—a2 - + e
n n a
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1 : 2mbt b
as —. For ¢ and —=a? — + — are the squares of XZ and ZY. And
XY 2 2

n n a

the resistance is found to have the same ratio to gravity that 3XY has to 2YG;

and the velocity is that with which the body would go in a parabola having
2

vertex G, diameter DG, and latus rectum . Therefore suppose that the

densities of the medium in each of the individual places G are inversely as
the distances XY and that the resistance in some place G is to gravity as
3XY to 2YG; then a body sent forth from place A with the proper velocity
will describe that hyperbola AGK. Q.E.L

ExamrLe 4. Suppose generally that line AGK is a hyperbola described
with center X and asymptotes MX and NX with the condition that when
the rectangle XZDN is described, whose side ZD cuts the hyperbola in
G and its asymptote in V, VG would be inversely as some power DN”
(whose index is the number 7) of ZX or DN; and let it be required to
find the density of the medium in which a projectile would progress in this

curve.

For BN, BD, and NX write A, O, and C respectively, and let VZ be
bZ
to XZ or DN as d to ¢, and let VG be equal to DN

=5 then DN will

b* d
be equal to A — O, VG = m, VZ = ;(A - O), and GD or
. d d b
NX — VZ — VG will be equal to C — —A + —-O — —————. Resolve
e e (A —- Oy
bZ bZ bZ 2
the term m into the infinite series o + :n+10 + ’ZQA::: b0 +
543t 42 d b*
wb203 ..., and GD will become equal to C — —A — — +
6A7T3 e A7
d nb’ +n'+n , o 4w’ +30"+2n
; - At O- SATH? - W"—'—b 03 .. .. The second term
L Eo n* +n
of this series ;O ~ A O is to be used for Qo, the third term S H0?
3 2
+3n° +2
for Ro?, the fourth term "—6:;3——”5203 for So®. And hence the density

S
RJ/(1 4+ Q2

of the medium, in any place G, becomes

309



310

Scholium

BOOK 2, SECTION 2
n+2
3 N+fA22@HA+#H’
e? eA” Aln

and thus if in VZ, VY is taken equal to » X VG, the density is inversely

d’ 2dnb’ %t
as XY. For A? and =A% — =22 27 are the squares of XZ and
e? eA” A?n
ZY. Moreover, the resistance in the same place G becomes to the gravity
XY . , , 2n’ + 2n _
as 3§ x N is to 4R*, that 1s, as XY to TVG. And the velocity in
n
the same place is the very velocity with which a projected body would go
1 2
in a parabola having vertex G, diameter GD, and latus rectum +Q or
2XY? OEI
(R +n)x VG T

dIn the same way in which the density of the medium turned out to be
S x AC

s AT in corol. 1, if the resistance is supposed to be as any power
V* of the velocity V, the density of
T . .
I~ L the medium will turn out to be as
F w M n—1
N S AC )
1 — X | — . And therefore if
R= HT
a curve can be found under the con-
dition that there would be given the
, S HT\"™' &
P A B CDE Q cratioof = to “C , or R

to (1 + Q?"!, a body will move in this curve in a uniform medium with a
resistance that is as the power V” of the velocity. But let us return to simpler
curves.

Since motion does not take place in a parabola except in a nonre-
sisting medium, but does take place in the hyperbola here described if
there is a continual resistance, it is obvious that the line which a projec-
tile describes in a uniformly resisting medium approaches closer to these
hyperbolas than to a parabola. At any rate, that line is of a hyperbolic

kind, but about its vertex it is more distant from the asymptotes, and in

dd. Ed. 1 lacks this.
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those parts that are further from the ﬂ

vertex it approaches the asymptotes

more closely, than the hyperbolas rA F{
which I have described here. But
the difference between them is not
so great that one cannot be conve-
niently used in place of the other in
practice. And the hyperbolas which
I have been describing will perhaps

prove to be more useful than a hy- G
perbola that is more exact and at T
the same time more compounded. &= 3D K

And they will be brought into use
as follows.

Complete the parallelogram XYGT, and the straight line GT will touch
the hyperbola in G, and thus the density of the medium in G is inversely as

TZ
the tangent GT, and the velocity in the same place is as \/—V—, while the
2n 4+ 2n

resistance is to the force of gravity as GT to P x GV.
n

Accordingly, if a body projected from place A along the straight line
AH describes the hyperbola AGK and if AH produced meets the asymptote
NX in H and if AI drawn parallel to NX meets the other asymptote MX

in [, then the density of the medium in A will be inversely as AH, and the
2

velocity of the body will be as \/W, and the resistance in the same place

) ) 20t + 2n )
will be to the gravity as AH to —————+ 5 x Al. Hence the following rules.
n

Rute 1. If both the density of the medium at A and the velocity with
which the body is projected remain the same, and angle NAH is changed,
lengths AH, Al, and HX will remain the same. And thus, if those lengths
are found in some one case, the hyperbola can then be determined readily
from any given angle NAH.

RuLe 2. If both angle NAH and the density of the medium at A remain
the same, and the velocity with which the body is projected is changed, the
length AH will remain the same, and AI will be changed in the ratio of the

inverse square of the velocity.

3II
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Rure 3. If angle NAH, the velocity of the body at A, and the acceler-
ative gravity remain the same, and the proportion of the resistance at A to
the motive gravity is increased in any ratio, the proportion of AH to Al will

be increased in the same ratio, and the latus rectum of the above parabola as
2

well as the length (proportional to it) will remain the same; and there-

fore AH will be decreased in the same ratio, and AI will be decreased as
the square of that ratio. But the proportion of the resistance to the weight is
increased when the specific gravity (the volume remaining constant) becomes
smaller, or the density of the medium becomes greater, or the resistance (as
a result of the decreased volume) is decreased in a smaller ratio than the
weight.

Rure 4. The density of the medium near the vertex of the hyperbola is
greater than at place A; hence, in order to have the mean density, the ratio of
the least of the tangents GT to tangent AH must be found, and the density
at A must be increased in a slightly greater ratio than that of half the sum
of these tangents to the least of the tangents GT.

RuLe 5. If lengths AH and Al are given, and it is required to describe
the figure AGK, produce HN to X so that HX is to Al as n+ 1 to 1, and
with center X and asymptotes MX and NX, describe a hyperbola through
point A in such a way that Al is to any VG as XV” to XI”.
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RuLe 6. The greater the number 7, the more exact are these “hyper-
bolas” in the ascent of the body from A, and the less exact in its descent to
K, and conversely. A conic hyperbola holds a mean ratio between them and
is simpler than the others. Therefore, if the hyperbola is of this kind, and if
it is required to find point K, where the projected body will fall upon any
straight line AN passing through point A, let AN produced meet asymptotes
MX and NX in M and N, and take NK equal to AM.

RuLe 7. And hence a ready method of determining this kind of hy-

perbola from the phenomena is clear. Project two similar and equal bodies

with the same velocity in different an-
gles HAK and AA%, and let them fall \N\x
upon the plane of the horizon in K ™

M M

(V%

and %, and note the proportion of AK
to Ak (let this be & to ¢). Then, hav-
ing erected a perpendicular Al of any
length, assume length AH or A/ in any way and from this determine graph-
ically lengths AK and A% by rule 6. If the ratio of AK to A% is the same
as the ratio of d to ¢, length AH was correctly assumed. But if not, then on
the indefinite straight line SM take a length SM equal to the assumed AH,

AK 4
and erect perpendicular MN equal to the difference of the ratios, — — —,

Ak e
multiplied by any given straight line. From several assumed lengths AH find
several points N by a similar method “and through them all draw a regular
curved line NNXN cutting the straight line SMMM in X. Finally, assume
AH equal to abscissa SX, and from this find length AK again; then the
lengths that are to the assumed length Al and this last length AH as that
length AK (found by experiment) is to the length AK (last found) will be
those true lengths Al and AH which it was required to find. And these being
given, the resistance of the medium in place A will also be given, inasmuch
as it is to the force of gravity as AH to 2Al. The density of the medium,
moreover, must be increased (by rule 4), and the resistance just found, if it is

increased in the same ratio, will become more exact.

ee. Ed. 1 has: “and then finally, if a regular curved line NN x N is drawn through them all, this
will cut off SX equal to the required length AH. For mechanical purposes it suffices to keep the same
lengths AH, Al in all angles HAK. But if the figure must be determined more exactly in order to find

the resistance of the medium, these lengths must always be corrected (by rule 4).”
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[In ed. 1, as well as in ed. 2, the same letter H is used for both the upper and the lower intersection
of the two curves on the right side of the diagram, but in ed. 3 only the upper intersection is lettered.
For the sake of clarity, we have introduced an [H] to designate the lower intersection and we have
decreased the inclination of the tangent A#% so that 4 is quite distinct from [H]. For further details, see the
Guide, §7.4.]

Rure 8. If the lengths AH and HX have been found, and the position
of the straight line AH is now desired along which a projectile sent forth
with that given velocity falls upon any point K, erect at points A and K
the straight lines AC and KF perpendicular to the horizon, of which AC
tends downward and is equal to Al or 2 HX. With asymptotes AK and
KF describe a hyperbola whose conjugate passes through point C, and with
center A and radius AH describe a circle cutting that hyperbola in point
H; then a projectile sent forth along the straight line AH will fall upon
point K. Q.E.L

For point H, because length AH is given, is located somewhere in the
circle described. Draw CH meeting AK and KF, the former in E, the latter
in F; then, because CH and MX are parallel and AC and AT are equal, AE
will be equal to AM, and therefore also equal to KN. But CE is to AE as
FH to KN, and therefore CE and FH are equal. Point H therefore falls
upon the hyperbola described with asymptotes AK and KF whose conjugate
passes through point C, and thus H is found in the common intersection of
this hyperbola and the circle described. Q.E.D.
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It is to be noted, moreover, that this operation is the same whether the
straight line AKN is parallel to the horizon or is inclined to the horizon at
any angle, and that from the two intersections H and H two angles NAH
and NAH arise, and that in a mechanical operation it is sufficient to describe
a circle once, then to apply the indeterminate rule CH to point C in such a
way that its part FH, placed between the circle and the straight line FK, is
equal to its part CE situated between point C and the straight line AK.

What has been said about hyperbolas is easily applied to parabolas. For
if XAGK designates a parabola that the straight line XV touches in ver-
tex X and if ordinates IA and VG are as any
powers X1” and XV” of abscissas XI and XV,
draw XT, GT, and AH, of which XT is parallel
to VG, and GT and AH touch the parabola in
G and A; then a body projected with the proper

velocity from any place A along the straight line

AH (produced) will describe this parabola, pro-
vided that the density of the medium in each in-

dividual place G is inversely as tangent GT. The
velocity in G, however, will be that with which a projectile would go, in a

nonresisting space, in a conic parabola having vertex G, diameter VG pro-

2GT?
duced downward, and latus reccum ———— . And the resistance in
(nt —n) x VG
) ) 20t —2n )
G will be to the force of gravity as GT to —ZVG. Hence, if NAK
n—

designates a horizontal line and if, while both the density of the medium
in A and the velocity with which the body is projected remain the same,
the angle NAH is changed in any way, then lengths AH, AI, and HX will
remain the same; and hence vertex X of the parabola and the position of the
straight line XI are given, and, by taking VG to IA as XV” to XI”, all the
points G of the parabola, through which the projectile will pass, are given.
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SECTION 3

The motion of bodies that are resisted partly in the ratio of the velocity and partly

in the squared ratio of the velocity

If a body 1s resisted partly in the ratio of the velocity and partly in the squared
ratio of the velocity and moves in a homogeneous medium by its inherent force
alone, and if the times are taken in an arithmetic progression, then quantities
inversely proportional to the velocities and increased by a certain given quantity
will be in a geometric progression.

With center C and rectangular asymptotes CADd and CH, describe
a hyperbola BEe, and let AB, DE, and de be parallel to asymptote CH.
Let points A and G be given in asymptote
CD. Then if the time is represented by the
hyperbolic area ABED increasing uniformly, I
say that the velocity can be represented by the
length DF, whose reciprocal GD together with

«

the given quantity CG composes the length

CD increasing in a geometric progression.
For let the area-element DEed be a minimally small given increment of
time; then Dd will be inversely as DE and thus directly as CD. And the

1 Dd
decrement of Do’ which (by book 2, lem. 2) is D will be as GD? or
CG+GD 1 CG
;, that is, as — + . Therefore, when the time ABED in-
GD? GD  GD?

1
creases uniformly by the addition of the given particles EDde, GD decreases

in the same ratio as the velocity. For the decrement of the velocity is as the
resistance, that is (by hypothesis), as the sum of two quantities, of which

one is as the velocity and the other is as the square of the velocity; and the
1

decrement of — is as the sum of the quantities — and ——, of which the
GD GD

GD?’

is as Accordingly, because the

GD? GD?

former is —— itself and the latter
GD
decrements are analogous, D is as the velocity. And if the quantity GD,

which is inversely proportional to oD’ is increased by the given quantity
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CG, then as the time ABED increases uniformly, the sum CD will increase
in a geometric progression. Q.E.D.
CoroLrary 1. Therefore if, given the points A and G, the time is rep-

resented by the hyperbolic area ABED, the velocity can be represented by

1
——, the reciprocal of GD.
GD

CoroLrary 2. And by taking GA to GD as the reciprocal of the velocity
at the beginning to the reciprocal of the velocity at the end of any time
ABED, point G will be found. And when G has been found, then if any

other time is given, the velocity can be found.

With the same suppositions, I say that if the spaces described are taken in an
arithmetic progression, the velocities increased by a certain given quantity will be
in a geometric progression.

Let point R be given in the asymp- g
tote CD, and after erecting perpendic-
ular RS meeting the hyperbola in S,
represent the described space by the
hyperbolic area RSED; then the veloc-
ity will be as the length GD, which
with the given quantity CG composes

¢ 6 A Dd R

the length CD decreasing in a geometric progression while space RSED is
increased in an arithmetic progression.

For, because the increment EDde of the space is given, the line-element
Dd, which is the decrement of GD, will be inversely as ED and thus directly
as CD, that is, as the sum of GD and the given length CG. But the decrement
of the velocity, in the time inversely proportional to it in which the given
particle DdeE of space is described, is as the resistance and the time jointly,
that is, directly as the sum of two quantities (of which one is as the velocity
and the other is as the square of the velocity) and inversely as the velocity;
and thus is directly as the sum of two quantities, of which one is given and
the other is as the velocity. Therefore the decrement of the velocity as well
as of line GD is as a given quantity and a decreasing quantity jointly; and
because the decrements are analogous, the decreasing quantities will always

be analogous, namely, the velocity and the line GD. Q.E.D.
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CororLary 1. If the velocity is represented by the length GD, the space
described will be as the hyperbolic area DESR.

CoroLLary 2. And if point R is taken at will, point G will be found
by taking GR to GD as the velocity at the beginning is to the velocity after
any space RSED has been described. And when point G has been found, the
space is given from the given velocity, and conversely.

Cororrary 3. Hence, since (by prop. 11) the velocity is given from the
given time, and by this prop. 12 the space is given from the given velocity,

the space will be given from the given time, and conversely.

Supposing that a body attracted downward by uniform gravity ascends straight up
or descends straight down and is vesisted partly in the ratio of the velocity and
partly in the squared ratio of the velocity, I say that if straight lines parallel to the
diameters of a circle and a hyperbola are drawn through the ends of the conjugate
diameters and if the velocities ave as certain segments of the parallels, drawn from
a given point, then the times will be as the sectors of aveas cut off by straight lines
drawn from the center to the ends of the segments, and conversely.

Case 1. Let us suppose first that the body is ascending. With center
D and any semidiameter DB describe the quadrant BETF of a circle, and
through the end B of semidiameter DB draw the
indefinite line BAP parallel to semidiameter DF. Let
point A be given in that line, and take segment AP
proportional to the velocity. Since one part of the

resistance is as the velocity and the other part is as

the square of the velocity, let the whole resistance be
b F a5 AP?42BA x AP. Draw DA and DP cutting the
circle in E and T, and represent the gravity by DA? in such a way that the

gravity is to the resistance as DA’ to AP? + 2BA X AP; and the time of
the whole ascent will be as sector EDT of the circle.

For draw DVQ cutting off both the moment PQ of velocity AP and the
moment DTV (corresponding to a given moment of time) of sector DET;
then that decrement PQ of the velocity will be as the sum of the forces of the
gravity DA? and the resistance AP?+2BA x AP, that is (by book 2, prop. 12
of the Elements), as DP?. Accordingly, the area DPQ, which is proportional to
PQ, is as DP2, and the area DTV, which is to the area DPQ as DT? to DP?,
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is as the given quantity DT?. The area EDT therefore decreases uniformly
as the remaining time, by the subtraction of the given particles DTV, and
therefore is proportional to the time of the whole ascent. Q.E.D.

Casg 2. If the velocity in the ascent of the body is represented by the
length AP as in case 1, and the resistance is supposed to be as AP’ +
2BA x AP, and if the force of gravity /E
is less than what could be represented A QP
by DAZ, take BD of such a length that
AB? —BD? is proportional to the grav-

ity, and let DF be perpendicular and 7t
equal to DB, and through the vertex F
describe the hyperbola FTVE, whose P “F G

conjugate semidiameters are DB and DF and which cuts DA in E and cuts
DP and DQ in T and V; then the time of the whole ascent will be as the
sector TDE of the hyperbola.

For the decrement PQ of the velocity occurring in a given particle of time
is as the sum of the resistance AP? +2BA x AP and the gravity AB? — BD?,
that is, as BP?—BD?. But area DTV is to area DPQ as DT? to DP? and thus,
if a perpendicular GT is dropped to DF, is as GT? or GD* — DF? to BD?,
and as GD? to BP?, and by separation [or dividendo] as DF? to BP? — BD?.
Therefore, since area DPQ is as PQ, that is, as BP? — BD?, area DTV

will be as DF?, which is given. Area EDT therefore decreases uniformly in

each equal particle of time, by the subtraction of the same number of given
particles DTV, and therefore is proportional to the time. Q.E.D.

Case 3. Let AP be the velocity in the descent
of the body, and AP? + 2BA x AP the resistance,
and BD? — AB? the force of gravity, angle DBA
being a right angle. And if with center D and prin-
cipal vertex B the rectangular hyperbola BETV is
described, cutting the produced lines DA, DP, and
DQ in E, T, and V, then sector DET of this hy-

perbola will be as the whole time of descent.

VD
For the increment PQ of the velocity, and the area DPQ proportional to

it, is as the excess of the gravity over the resistance, that is, as BD? — AB? —
2BA x AP — AP? or BD? — BP?. And area DTV is to area DPQ as DT? to
DP? and thus as GT? or GD? — BD? to BP?, and as GD? to BD?, and by
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separation [or dividendo] as BD? to BD? — BP2. Therefore, since area DPQ
is as BD? — BP?, area DTV will be as BD?, which is given. Therefore area
EDT increases uniformly in each equal particle of time, by the addition of
the same number of given particles DTV, and therefore is proportional to
the time of descent. Q.E.D.

CoroLLary. If with center D and semidiameter DA, the arc Az similar
to arc ET and similarly subtending angle ADT is drawn through vertex
A, then the velocity AP will be to the velocity that the body in time EDT
in a nonresisting space could lose by ascending, or acquire by descending, as
the area of triangle DAP to the area of sector DA¢ and thus is given from the
given time. For in a nonresisting medium the velocity is proportional to the
time and thus proportional to this sector; in a resisting medium the velocity is
as the triangle; and in either medium, when the velocity is minimally small,

it approaches the ratio of equality just as the sector and the triangle do.

The case could also be proved in the ascent of the body, where the force
of gravity is less than what can be represented by DA’ or AB? + BD? and
greater than what can be represented by AB?—BD?, and must be represented
by ABZ. But I hasten to other topics.

With the same suppositions, I say that the space described in the ascent or descent
is as the difference between the area which represents the time and a certain
other area that increases or decreases in an arithmetic progression, if the forces
compounded of the resistance and the gravity are taken in a geometric progression.

Take AC (in the three figures) proportional to the gravity, and AK pro-
portional to the resistance. And take them on the same side of point A if
the body is descending, otherwise on opposite sides. Erect A, which is to
DB as DB? to 4BA x AC; and when the hyperbola #N has been described
with respect to the rectangular asymptotes CK and CH, and KN has been
erected perpendicular to CK, area ASNK will be increased or decreased in
an arithmetic progression while the forces CK are taken in a geometric pro-
gression. I say therefore that the distance of the body from its greatest height
is as the excess of area A6NK over area DET.

a. Ed. 1 and ed. 2 lack the scholium.
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For since AK is as the resistance, that is, as AP?+2BA x AP, assume

AP? 4+ 2BA x AP
Z b

and (by book 2, lem. 2) the moment KL of AK will be equal to

2 PQ+2BA X P 2BP x P
AP x Q‘; X PQ or ; Q, and the moment KLLON of

2BP x PQ x LO BP x PQ x BD*

Z * 2ZXCKxAB
Case 1. Now, if the body is ascending and the gravity is as AB’ + BD?,

any given quantity Z, and suppose AK equal to

area ASNK will be equal to

BET being a circle (in the first igure), then line AC, which is proportional to
. . AB? + BD?

the gravity, will be — and DP? or AP? +2BA x AP + AB?+BD’
will be AK x Z + AC x Z or CK x Z; and thus area DTV will be to area
DPQ as DT? or DB? or CK x Z.

Case 2. But if the body is ascending and the gravity is as AB* — BD?,

. . ) AB? — BD? .

then line AC (in the second figure) will be — and DT? will be to
DP? as DF? or DB? to BP? — BD? or AP? +2BA x AP + AB? — BD?, that
is, to AK X Z 4+ AC x Z or CK x Z. And thus area DTV will be to area
DPQ as DB? to CK x Z.
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Case 3. And by the same argument, if the body is descending and
therefore the gravity is as BD? — AB?, and line AC (in the third figure)
) BD? — AB? .
is equal to — then area DTV will be to area DPQ as DB? to
CK x Z, as above.

Since, therefore, those areas are always in this ratio, if for area DTV,

which represents the moment of time always equal to it, any determinate

rectangle is written, say BD X m, then area DPQ, that is, ¥ABD x PQ, will
be to BD x m as CK x Z to BD?. And hence PQ x BD? becomes equal to

2BD x m x CK x Z, and the moment KLON (found above) of area AA’NK

BP x BD x m
becomes ——————— . Take away the moment DTV or BD X m of area

AB
AP x BD x m

DET, and there will remain — Therefore the difference of

the moments, that is, the moment of the difference of the areas, is equal to

AP xBD xm BDxm . . .
———— , and therefore (because ———— is given) is as the velocity
AB AB

AP, that is, as the moment of the space that the body describes in ascending
or descending. And thus that space and the difference of the areas, increas-
ing or decreasing by proportional moments and beginning simultaneously or
vanishing simultaneously, are proportional. Q.E.D.

Cororrary. If the length that results from dividing area DET by the
line BD is called M, and another length V is taken in the ratio to length M
that line DA has to line DE, then the space that a body describes in its whole
ascent or descent in a resisting medium will be to the space that the body

can describe in the same time in a nonresisting medium, by falling from a

_ BD x V? i
state of rest, as the difference of the above areas to AR and thus is

given from the given time. For the space in a nonresisting medium is in the

squared ratio of the time, or as V7, and, because BD and AB are given, as

BD x V? DA? x BD x M?
——————. *This area is equal to area , and the moment of
AB DE? x AB

aa. Ed. 1 has: “But the time is as DET or ¥2BD x ET, and the moments of these areas are as
BD xV

multiplied by the moment of V and BD multiplied by the moment of ET, that is, as

2AB
BDxV DA’x2 BD x V x DA? x
ZAXB X D;E(Z i and V2BD x 2m, or as ——m——’z and BD x m. And therefore the

BD XV XxDAXm

moment of area V? is to the moment of the difference of areas DET and AKN® as
AB x DE
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H
V]
0
N
Lk a P
¢ B
B
r
D
) , . DA’ xBD x 2M x m
M is m; and therefore the moment of this area is . But

DE? x AB
this moment is to the moment of the difference of the above areas DET and
APxIH)xrn) DA? x BD x M
——— ) as

AbNK (that s, to is to VABD x AP,

AB DE?
2

X DET is to DAP; and thus, when areas DET and DAP are

BD x V?
minimally small, in the ratio of equality. Therefore area —AE and the

or as
EZ

difference of areas DET and A&NK, when all these areas are minimally

AP x BD x V x DA
to x ” or as to AP and thus, when V and AP are minimally small, in the ratio of
AB DE D x V?

equality. Therefore the minimally small area

x
AR is equal to the minimally small difference of areas
DET and AKN&. Hence, since the spaces described simultaneously in both mediums at the beginning of
BD x V?

4AB

and the difference of areas DET and AKNGQ, it follows that, because of their analogous increments, in
2

BD x
any equal times they must be to one another as the area AR and the difference of areas DET

and AKNé. QED.” In ed. 2 the passage is the same as in ed. 1 except that AKN& is ASNK and

. . . DA? x BD x M?
the first two sentences read: “The moment of this area or of its equivalent, T DE < AR is to
x

DA? x BD x 2M AP x BD
the moment of the difference of areas DET and A4NK as x x xm to X x m’
DEZ x AB AB

the descent or at the end of the ascent approach equality and thus are then to one another as area
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small, have equal moments and thus are equal. Hence, since the velocities,
and therefore also the spaces described simultaneously in both mediums at

the beginning of the descent or the end of the ascent, approach equality and

BD x V? )
thus are then to one another as area ————— and the difference of areas

AB

DET and A&NK; and furthermore since the space in a nonresisting medium

) BD x V? . . L
is always as AR and the space in a resisting medium is always as the
difference of areas DET and A&NK; it follows that the spaces described

in both mediums in any equal times must be to one another as the area

BD x V? )
————— and the difference of areas DET and AANK. Q.E.D.?

Scholium® The resistance encountered by spherical bodies in fluids arises partly from the
tenacity, partly from the friction, and partly from the density of the medium.
And we have said that the part of the resistance that arises from the density
of the fluid is in the squared ratio of the velocity; the other part, which
arises from the tenacity of the fluid, is uniform, or as the moment of the
time; and thus it would now be possible to proceed to the motion of bodies
that are resisted partly by a uniform force or in the ratio of the moments of
the time and partly in the squared ratio of the velocity. But it is sufficient
to have opened the way to the examination of this subject in the preceding
props. 8 and 9 and their corollaries. In these propositions and corollaries,
in place of the uniform resistance of the ascending body, which arises from
its gravity, there can be substituted the uniform resistance that arises from
the tenacity of the medium, when the body is moved by its inherent force
alone; and when the body is ascending straight up, it is possible to add this
uniform resistance to the force of gravity, and to subtract it when the body
is descending straight down. It would also be possible to proceed to the

motion of bodies that are resisted partly uniformly, partly in the ratio of the

2 D. AZ
that is, as P_é__i])%]z_)_ﬂ to 2BD x AP, or as DE: x DET to DAP, and thus, when the areas DET and
BD x V?
DAP are minimally small, in the ratio of equality.” In both eds. 1 and 2 the fraction ————, which
BD x V2 AB

just before thi , i
occurs jus ore this passage, is — -

b. Ed. 1 and ed. 2 lack the scholium.
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velocity, and partly in the squared ratio of the velocity. And I have opened
the way in the preceding props. 13 and 14, in which the uniform resistance
that arises from the tenacity of the medium can also be substituted for the
force of gravity, or can be compounded with it as before. But I hasten to

other topics.
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SECTION 4

The revolving motion of bodies in resisting mediums

Let PQR be a spiral that cuts all the radii SP, SQ, SR, ... in equal angles.
Draw the straight line PT touching the spiral in any point P and cutting the
radius SQ in 'T; erect PO and QO perpendicular to the spiral and meeting in O,
and join SO. I say that if points P and Q approach each other and coincide, angle

PSO will come out a right angle, and the ultimate ratio of rectangle TQ x 2PS
to PQ? will be the ratio of equality.

For, from the right angles OPQ
and OQR subtract the equal angles
SPQ and SQR, and the equal angles
OPS and OQS will remain. There-
fore a circle that passes through points
O, S, and P will also pass through
point Q. Let points P and Q come

together, and this circle will touch the
spiral in the place PQ where they coincide, and thus will cut the straight line
OP perpendicularly. OP will therefore become a diameter of this circle, and
OSP, an angle in a semicircle, will become a right angle. Q.E.D.

Drop perpendiculars QD and SE to OP, and the ultimate ratios of the
lines will be as follows: TQ will be to PD as TS (or PS) to PE, or 2PO to
2PS; likewise, PD will be to PQ as PQ to 2PO; and from the equality of
the ratios in inordinate proportion [or ex aequo perturbate] TQ will be to
PQ as PQ to 2PS. Hence PQ? becomes equal to TQ x 2PS. Q.E.D.

If the density of a medium in every place is inversely as the distance of places

Theorem 12 from a motionless center and if the centripetal force is in the squared ratio of the

density, I say that a body can revolve in a spiral that intersects in a given angle
all the radii drawn from that center.

Let the same things be supposed as in lemma 3, and produce SQ to V, so
that SV is equal to SP. In any time, in a resisting medium, let a body describe
the minimally small arc PQ, and in twice the time, the minimally small

arc PR; then the decrements of these arcs arising from the resistance, that is,
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the differences between these arcs and
the arcs that would be described in the
same times in a nonresisting medium,
will be to each other as the squares of
the times in which they are generated.
The decrement of arc PQ is therefore

a fourth of the decrement of arc PR.

Hence also, if area QSr is taken equal
to area PSQ, the decrement of arc PQ will be equal to half of the line-element
R7; and thus the force of resistance and the centripetal force are to each other
as the line-elements “2Rr and TQ that they simultaneously generate. Since
the centripetal force by which the body is urged in P is inversely as SP?; and
since (by book 1, lem. 10) the line-element TQ, which is generated by that
force, is in a ratio compounded of the ratio of this force and the squared
ratio of the time in which arc PQ is described (for I ignore the resistance in
this case, as being infinitely smaller than the centripetal force); then it follows
that TQ x SP?, that is (by lem. 3), 4PQ? x SP, will be in the squared ratio

of the time, and thus the time is as PQ x /SP; and the body’s velocity with
PQ 1

PQ x /SP ' /SP’

is, as the square root of SP inversely. And by a similar argument, the velocity

which arc PQ is described in that time will be as that

with which arc QR is described is as the square root of SQ inversely. But
these arcs PQ and QR are as the velocities of description to each other, that
is, as 4/SQ to 4/SP, or as SQ to 4/(SP x SQ); and because angles SPQ and
SQr are equal and areas PSQ and QSr are equal, arc PQ is to arc Qr as SQ
to SP. Take the differences of the proportional consequents, and arc PQ will
become to arc Rr as SQ to SP — \/(SP x SQ), or ¥2VQ. For, points P and
Q coming together, the ultimate ratio of SP — ,/(SP x SQ) to ¥4VQ is the
ratio of equality. *Since the decrement of arc PQ arising from the resistance,

or its double R, is as the resistance and the square of the time jointly, the

R
resistance will be as I’QZ—;SP'Q But PQ was to Rr as SQ to 4AVQ, and

aa. Ed. | has: “In a nonresisting medium, equal areas PSQ, QSr would (by book 1, theor. 1) have
to be described in equal times. From the resistance arises the difference RSr of the areas, and therefore
the resistance is as decrement R7 of line-element Qr compared with the square of the time in which it is

generated. For line-element R7 (by book 1, lem. 10) is as the square of the time. Therefore the resistance
Rr

PQZ x SP’

is as
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R~ LvVQ 1508
hence —————— becomes as —————— or as

PQ? x SP PQ x SP x SQ OP x SP?
P and Q coming together, SP and SQ coincide, and angle PVQ becomes a

. For, points

right angle; and because triangles PVQ and PSO are similar, PQ becomes to
(0N

1AVQ as OP to 120S. Therefore OF < SP? is as the resistance, that is, in the

ratio of the density of the medium at P and the squared ratio of the velocity

1
jointly. Take away the squared ratio of the velocity, namely the ratio P’ and

(O
the result will be that the density of the medium at P is as —————. Let
OP x SP

the spiral be given, and because the ratio of OS to OP is given, the density
1
of the medium at P will be as P Therefore in a medium whose density

is inversely as the distance SP from the center, a body can revolve in this
spiral.  Q.E.D.

CororLrary 1. The velocity in any place P is always the velocity with
which a body in a nonresisting medium, under the action of the same cen-
tripetal force, can revolve in a circle at the same distance SP from the center.

Cororrary 2. The density of the medium, if the distance SP is given,
: . : : L oS
is as ——; but if that distance is not given, it is as —————. And hence a
OoP OP x SP
spiral can be made to conform to any density of the medium.
Cororrary 3. The force of resistance in any place P is to the centripetal
force in the same place as 208 to OP. For those forces are to each other

AY P 1APQ?
VQ x PQ and = Q , that is, as ¥2VQ and PQ, or
SQ SP

1208 and OP. Given the spiral, therefore, the proportion of the resistance to

as Y4 Rr and TQ or as

the centripetal force is given; and conversely, from that given proportion the
spiral is given.

Cororrary 4. The body, therefore, cannot revolve in this spiral except
when the force of resistance is less than half of the centripetal force. Let the
resistance become equal to half of the centripetal force; then the spiral will
coincide with the straight line PS, and the body will descend to the center
in this straight line with a velocity that is (as we proved in book 1, prop. 34)

to the velocity with which the body descends in a nonresisting medium in
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the case of a parabola in the ratio of I to 4/2. "And the times of descent will
b

here be inversely as the velocities, and thus are given.

CoroLLary 5. And since at equal
distances from the center the velocity
is the same in the spiral PQR as in the
straight line SP, and since the length
of the spiral is in a given ratio to the
length of the straight line PS, namely
the ratio of OP to OS, the time of

descent in the spiral will be to the time

of descent in the straight line SP in that same given ratio, and accordingly is
given.

CoroLLary 6. If, with center S and any two given radii, two circles
are described, and if—these circles remaining the same—the angle that the
spiral contains with radius PS is changed in any way, then the number of
revolutions that the body can complete between the circumferences of the

circles, by revolving in the spiral from one circumference to the other, is as

PS
—, or as the tangent of the angle that the spiral contains with radius PS.

(ON}
op

And the time of those revolutions is as oS’ that is, as the secant of that

angle, or inversely as the density of the medium.

CoroLLary 7. 'If a body, in a medium whose density is inversely as the
distance of places from the center, has made a revolution about that center in
any curve AEB and has cut the first radius AS in the same angle in B as it did
previously in A, with a velocity that was to its prior velocity in A inversely
as the square roots of distances from the center—that is, as AS to a mean
proportional between AS and BS—then that body will make innumerable
entirely similar revolutions BFC, CGD, ..., and by the intersections will
divide the radius AS into the continually proportional parts AS, BS, CS,
DS, .... And the umes of revolution will be as the perimeters of the orbits
AEB, BFC, CGD, ..., directly, and the velocities in the beginnings A, B,
C, inversely—that is, as AS”?, BS*?, CS”?. And the whole time in which the

body will reach the center will be to the time of the first revolution as the

bb. Ed. 1 has: “Hence the times of descent will here be twice as great as those times and so are

given.”
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sum of all the continually proportional quantities AS*?, BS¥2, CS"?, going
on indefinitely, is to the first term AS”’—that is, as that first term AS”? is
to the difference of the first two terms AS”? — BS%, or very nearly as Z4AS
to AB. In this way the whole time is readily found.

CoroLrary 8. From what has been presented, it is also possible to deter-
mine approximately the motions of bodies in mediums whose density either
is uniform or accords with any other assigned law. With center S and radii
SA, SB, SC, ... which are continually proportional, describe any number of
circles. And suppose that the time of the revolutions between the perimeters
of any two of these circles in the medium treated in corol. 7 is to the time
of revolutions between those perimeters in the proposed medium very nearly
as the mean density of the proposed medium between those circles is to the
mean density of the medium in corol. 7 between those same circles; and sup-
pose additionally that the secant of the angle by which the spiral in corol. 7,
in the medium treated in that corollary, cuts the radius AS is in the same
ratio to the secant of the angle by which the new spiral cuts that same radius
in the proposed medium; and also that the numbers of all the revolutions
between those same two circles are very nearly as the tangents of those same
angles. If this is done throughout between every pair of circles, the motion
will be continued through all the circles. And thus we can imagine without
difficulty in what ways and in what times bodies would have to revolve in

any regular medium.
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CoroLLARY 9. And even if the motions are eccentric, being performed in
spirals approaching an oval shape, nevertheless by conceiving that the single
revolutions of those spirals are the same distance apart from one another and
approach the center by the same degrees as the spiral described above, we
shall also understand how the motions of bodies are performed in spirals of

this sort.

If the density of the medium in every place is inversely as the distance of places
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from a motionless center and if the centripetal force is inversely as any power of Theorem 13

that distance, I say that a body can revolve in a spival that intersects in a given
angle all the radii drawn from that center.

This is proved by the same method as prop. 15. For if the centripetal
force in P is inversely as any power SP”*! (whose index is # + 1) of the
distance SP, then it will be gathered,
as above, that the time in which
the body describes any arc PQ will
be as PQ x PS"” and the resis-

R
tance in P will be as ———r———,
PQ? x SP*
(1—1Yan) x VQ
or as , and thus
PQ x SP” x SQ
(1 — Yn) x OS .
~————————— that is, because
OP x Spr+!
(1—Yim)yxOS .| |

is given, inversely as SP"*!. And therefore, since the velocity

OP
is inversely as SP"?”, the density in P will be inversely as SP.

Cororrary 1. The resistance is to the centripetal force as (1 — Van) x OS
to OP.

CoroLrary 2. If the centripetal force is inversely as SP?, 1 — Yo will
be = 0, and thus the resistance and density of the medium will be null, as in
book 1, prop. 9.

Cororrary 3. If the centripetal force is inversely as some power of the
radius SP whose index is greater than the number 3, positive resistance will

be changed to negative.

But this proposition and the previous ones, which relate to unequally dense

mediums, are to be understood of the motion of bodies so small that no

Scholium
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consideration need be taken of a greater density of the medium on one side
of the body than on the other. I also suppose the resistance, other things being
equal, to be proportional to the density. Hence, in mediums whose force of
resisting is not as the density, the density ought to be increased or decreased
to such an extent that either the excess of the resistance may be taken away

or its defect supplied.

To find both the centripetal force and the resistance of the medium by means of

Problem 4 which a body can revolve in a given spiral, if the law of the velocity is given.

Proposition 18

Let the spiral be PQR. The time
will be given from the velocity with
which the body traverses the mini-
mally small arc PQ, and the force will
be given from the height TQ, which
is as the centripetal force and the
square of the time. Then the retarda-
tion of the body will be given from
the difference RSr of the areas PSQ
and QSR traversed in equal particles
of time, and the resistance and density
of the medium will be found from the

retardation.

Given the law of the centripetal force, it is required to find in every place the

Problem 5 density of the medium with which a body will describe a given spiral.

The velocity in every place is to be found from the centripetal force;
then the density of the medium is to be sought from the retardation of the

velocity, as in prop. 17.

I have presented the method of dealing with these problems in book 2,
prop. 10 and lem. 2, and I do not wish to detain the reader any longer in
complex inquiries of this sort. Some things must now be added on the forces
of bodies in their forward motion, and on the density and resistance of the
mediums in which the motions hitherto explained and motions related to

these are performed.
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SECTIONS

The density and compression of fluids, and hydrostatics

A fluid is any body whose parts yield to any force applied to it and yielding are

moved easily with respect to one another.

All the parts of a homogeneous and motionless fluid that s enclosed tn any motion-
less vessel and is compressed on all sides (apart from considerations of condensation,
gravity, and all centripetal forces) are equally pressed on all sides and remain in
their places without any motion arising from that pressure.

Case 1. Let a fluid be enclosed in the spherical vessel ABC and be
uniformly compressed on all sides; I say that no part of this fluid will move
as a result of that pressure. For if some one part
D moves, all the parts of this sort, standing on all
sides at the same distance from the center, must
move simultaneously with a similar motion; and
this is so because the pressure on them all is sim-
ilar and equal, and every motion is supposed ex-
cluded except that which arises from the pressure.
But they cannot all approach closer to the center
unless the fluid is condensed at the center, contrary to the hypothesis. They
cannot recede farther from it unless the fluid is condensed at the circum-
ference, also contrary to the hypothesis. They cannot move in any direction
and keep their distance from the center, since by a like reasoning they will
move in the opposite direction, and the same part cannot move in opposite
directions at the same time. Therefore no part of the fluid will move from
its place. Q.E.D.

Case 2. I say additionally that all the spherical parts of this fluid are
equally pressed on all sides. For let EF be a spherical part of the fluid; if this
part is not pressed equally on all sides, let the lesser pressure be increased until
this part is pressed equally on all sides; then its parts, by case 1, will remain
in their places. But before the increase of the pressure they will remain in
their places, also by case 1, and by the addition of new pressure they will

be moved out of their places, by the definition of a fluid. These two results
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are contradictory. Therefore it was false to say that the sphere EF was not
pressed equally on all sides. Q.E.D.

Case 3. I say furthermore that there is equal pressure on different
spherical parts. For contiguous spherical parts press one another equally in
the point of contact, by the third law of motion. But by case 2, they are
also pressed on all sides by the same force. Therefore any two noncontigu-
ous spherical parts will be pressed by the same force, since an intermediate
spherical part can touch both. Q.E.D.

Case 4. I say also that all the parts of the fluid are equally pressed on
every side. For any two parts can be touched by spherical parts in any points,
and there they press those spherical parts equally, by case 3, and in turn are
equally pressed by them, by the third law of motion. Q.E.D.

Case 5. Since, therefore, any part GHI of the fluid is enclosed in the
remaining fluid as if in a vessel and is pressed equally on all sides, while its
parts press one another equally and are at rest with respect to one another,
it is manifest that all the parts of any fluid GHI which is pressed equally
on all sides press one another equally and are at rest with respect to one
another. Q.E.D.

Cast 6. Therefore, if that fluid is enclosed in a vessel that is not rigid
and is not pressed equally on all sides, it will yield to a greater pressure, by
the definition of a fluid.

Case 7. And thus in a rigid vessel a fluid will not sustain a pressure
that is greater on one side than on another, but will yield to it, and will do
so in an instant of time, since the rigid side of the vessel does not follow
the yielding liquid. And by yielding, it will press the opposite side, and thus
the pressure will tend on all sides to equality. And since, as soon as the fluid
endeavors to recede from the part that is pressed more, it is hindered by the
resistance of the vessel on the opposite side, the pressure will be reduced on
all sides to equality in an instant of time without local motion; and thereupon
the parts of the fluid, by case 5, will press one another equally and will be at
rest with respect to one another. Q.E.D.

Cororrary. Hence the motions of the parts of the fluid with respect to
one another cannot be changed by pressure applied to the fluid anywhere
on the external surface, except insofar as either the shape of the surface is

changed somewhere or all the parts of the fluid, by pressing one another
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more intensely or more remissly [i.e., by pressing one another more strongly

or less strongly], low among themselves with more or less difficulty.

If every part of a fluid that is spherical and homogeneous at equal distances from
the center and rests upon a concentric spherical bottom gravitates toward the center
of the whole, then the bottom will sustain the weight of a cylinder whose base
is equal to the surface of the bottom and whose height is the same as that of the
fluid resting upon it.

Let DHM be the surface of the bottom, and AEI the upper surface of the
fluid. Divide the fluid into equally thick concentric spherical shells* by innu-
merable spherical surfaces BFK, CGL; and
suppose the force of gravity to act only upon
the upper surface of each spherical shell, and
the actions upon equal parts of all the sur-

faces to be equal. The highest surface AE is

pressed, therefore, by the simple force of its
own gravity, by which also all the parts of the
highest spherical shell, and the second surface
BFK (by prop. 19), are equally pressed in ac-
cordance with their measure. The second sur-
face BFK is pressed additionally by the force of its own gravity, which, added
to the previous force, makes the pressure double. The third surface CGL is
acted on by this pressure, in accordance with its measure, and additionally by
the force of its gravity, that is, by a triple pressure. And similarly the fourth
surface is urged by a quadruple pressure, the fifth by a quintuple, and so on.
The pressure by which any one surface is urged is therefore not as the solid
quantity of the fluid lying upon it, but as the number of spherical shells up
to the top of the fluid, and is equal to the gravity of the lowest spherical
shell multiplied by the number of shells; that is, it is equal to the gravity
of a solid whose ultimate ratio to the cylinder specified above will become
that of equality—provided that the number of shells is increased and their
thickness decreased indefinitely, in such a way that the action of gravity is
made continuous from the lowest surface to the highest. The lowest surface

therefore sustains the weight of the cylinder specified above. Q.E.D. And

a. Here, as elsewhere in the Principia, Newton uses the noun “orbis” (orb) for a spherical shell.
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by a similar argument this proposition is evident when the gravity decreases
in any assigned ratio of the distance from the center, and also when the fluid
is rarer upward and denser downward. Q.E.D.

CoroLrary 1. Therefore the bottom is not pressed by the whole weight
of the incumbent fluid, but sustains only that part of the weight which is
described in this proposition, the rest of the weight being sustained by the
vaulted shape of the fluid.

CoroLLary 2. At equal distances from the center, moreover, the quan-
tity of pressure is always the same, whether the pressed surface is parallel to
the horizon or perpendicular or oblique, or whether the fluid—continued up-
ward from the pressed surface—rises perpendicularly along a straight line or
snakes obliquely through twisted cavities and channels, regular or extremely
irregular, wide or very narrow. That the pressure is not at all changed by
these circumstances is gathered by applying the proof of this theorem to the
various cases of fluids.

CoroLLary 3. By the same proof it is also gathered (by prop. 19) that
the parts of a heavy fluid acquire no motion with respect to one another as
a result of the pressure of the incumbent weight, provided that the motion
arising from condensation is excluded.

Cororrary 4. And therefore, if another body, in which there is no con-
densation, of the same specific gravity is submerged in this fluid, it will
acquire no motion as a result of the pressure of the incumbent weight; it will
not descend, it will not ascend, and it will not be compelled to change its
shape. If it is spherical, it will remain spherical despite the pressure; if it is
square, it will remain square; and it will do so whether it is soft or very fluid,
whether it floats freely in the fluid or lies on the bottom. For any internal
part of a fluid is in the same situation as a submerged body, and the case
is the same for all submerged bodies of the same size, shape, and specific
gravity. If a submerged body, while keeping its weight, were to liquefy and
assume the form of a fluid, then, if it were formerly ascending or descending
or assuming a new shape as a result of pressure, it would also now ascend or
descend or be compelled to assume a new shape, and would do so because
its gravity and the other causes of motions remain fixed. But (by prop. 19,
case 5) this body would now be at rest and would maintain its shape. Hence,

this would also be the case under the earlier conditions.
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CoroLLarY 5. Accordingly, a body that is of a greater specific gravity
than a fluid contiguous to it will sink, and a body that is of a lesser specific
gravity will ascend, and will acquire as much motion and change of shape
as that excess or deficiency of gravity can bring about. For that excess or
deficiency acts like an impulse by which the body, otherwise in equilibrium
with the parts of the fluid, is urged; and it can be compared with the excess
or deficiency of weight in either of the scales of a balance.

CoroLrary 6. The gravity of bodies in fluids is therefore twofold: the
one, true and absolute; the other, apparent, common, and relative. Absolute
gravity is the whole force with which a body tends downward; relative or
common gravity is the excess of gravity with which the body tends down-
ward more than the surrounding fluid. By absolute gravity the parts of all
fluids and bodies gravitate in their places, and thus the sum of the individual
weights is the weight of the whole. For every whole is heavy, as can be tested
in vessels full of liquids, and the weight of the whole is equal to the sum
of the weights of all the parts, and thus is composed of them. By relative
gravity bodies do not gravitate in their places; that is, compared with one
another, one is not heavier than another, but each one opposes the endeavors
of the others to descend, and they remain in their places just as if they had
no gravity. Whatever is in the air and does not gravitate more than the air
is not commonly considered to be heavy. Things that do gravitate more are
commonly considered to be heavy, inasmuch as they are not sustained by the
weight of the air. Weight as commonly conceived is nothing other than the
excess of the true weight over the weight of the air. Bodies are commonly
called light which are less heavy than the surrounding air and, by yielding to
that air, which gravitates more, move upward. They are, however, only com-
paratively light and not truly so, since they descend in a vacuum. Similarly,
bodies in water that descend or ascend because of their greater or smaller
gravity are comparatively and apparently heavy or light, and their compara-
tive and apparent heaviness or lightness is the excess or deficiency by which
their true gravity either exceeds the gravity of the water or is exceeded by
it. And bodies that neither descend by gravitating more nor ascend by yield-
ing to water which gravitates more—even though they increase the weight
of the whole by their own true weights—nevertheless, comparatively and as
commonly understood, do not gravitate in water. For the demonstration of

all these cases is similar.
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CoroLrary 7. What has been demonstrated concerning gravity is valid
for any other centripetal forces.

CoroLrary 8. Accordingly, if the medium in which some body moves
is urged either by its own gravity or by any other centripetal force, and the
body is urged more strongly by the same force, then the difference between
the forces is that motive force which we have considered to be the centripetal
force in the preceding propositions. But if the body is urged more lightly by
that force, the difference between the forces should be considered a centrifu-
gal force.

CoroLLary 9. Since fluids, moreover, do not change the external shapes
of enclosed bodies that they press upon, it is evident in addition (by prop. 19,
corol.) that fluids will not change the situation of the internal parts with
respect to one another; and accordingly, if animals are immersed, and if all
sensation arises from the motion of the parts, fluids will neither harm these
immersed bodies nor excite any sensation, except insofar as these bodies can
be condensed by compression. And the case is the same for any system of
bodies that is surrounded by a compressing fluid. All the parts of the system
will be moved with the same motions as if they were in a vacuum and re-
tained only their relative gravity, except insofar as the fluid either resists their

motions somewhat or is needed to make them cohere by compression.

Let the density of a certain flurd be proportional to the compression, and let its parts
be drawn downward by a centripetal force inversely proportional to their distances
from the center; I say that if the distances are taken continually proportional, the
densities of the fluid at these distances will also be continually proportional.

Let ATV designate the spherical bottom on which
the fluid lies, S the center, and SA, SB, SC, SD, SE,

G0 . . .

- SF, ... the continually proportional distances. Erect per-
=M pendiculars AH, BI, CK, DL, EM, FN, ..., which
2 e are as the densities of the medium in places A, B, C,
B—1I

H D, E, F; then the specific gravities in those places will

AH BI CK D
be as —, —, —, ..., or—which is the same—as
] AS BS CS
0 AH Bl CK S first that th iti
—_— =, —— .. r at these gravities
T AB’ BC’ CD Hppose e 8

continue uniformly, the first from A to B, the second



PROPOSITION 21

from B to C, the third from C to D, ..., the decrements thus occurring
by degrees at points B, C, D, .... Then these specific gravities multiplied
by the heights AB, BC, CD, ... will give the pressures AH, BI, CK, ..., by
which the bottom ATV (according to prop. 20) is pressed. The particle A
therefore sustains all the pressures AH, BI, CK, DL, going on indefinitely;
and the particle B, all the pressures except the first, AH; and the particle
C, all except the first two, AH and BI; and so on. And thus the density
AH of the first particle A is to the density BI of the second particle B as
the sum of all the AH + BI + CK + DL indefinitely, to the sum of all the
Bl + CK + DL.... And the density BI of the second particle B is to the
density CK of the third particle C as the sum of all the B+ CK + DL....
to the sum of all the CK + DL.... Those sums are therefore proportional
to their differences AH, BI, CK, ..., and thus are continually proportional
(by book 2, lem. 1); and accordingly the differences AH, BI, CK, ..., pro-
portional to those sums, are also continually proportional. Therefore, since
the densities in places A, B, C, ... are as AH, BI, CK, ..., these also will
be continually proportional. Proceed now by jumps, and from the equality
of the ratios [or ex aequo], at the continually proportional distances SA, SC,
SE, the densities AH, CK, EM will be continually proportional. And by the
same argument, at any continually proportional distances SA, SD, SG, the
densities AH, DL, GO will be continually proportional. Now let points A,
B, C, D, E, ... come together so that the progression of the specific gravities
is made continual from the bottom A to the top of the fluid; and at any
continually proportional distances SA, SD, SG, the densities AH, DL, GO,
being always continually proportional, will still remain continually propor-
tional now. Q.E.D.

CoroLLary. Hence, if the density of a
fluid is given in two places, say A and E,
its density in any other place Q can be deter-
mined. With center S and rectangular asymp-

totes SQ and SX describe a hyperbola cutting g

T

e o
perpendiculars AH, EM, and QT in a, e, ﬂ’”\
and g, and also perpendiculars HX, MY, and 0
TZ, dropped to asymptote SX, in A, m, and ' P

t. Make the area YmrZ be to the given area

YmAX as the given area EeqQ is to the given
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area EeaA; and the line Z¢ produced will cut off the line QT proportional to
the density. For if lines SA, SE, and SQ are continually proportional, areas
EeqQ and EeaA will be equal, and hence the areas proportional to these,
YmtZ an XAhmY, will also be equal, and lines SX, SY, and SZ—that is, AH,
EM, and QT—will be continually proportional, as they ought to be. And
if lines SA, SE, and SQ obtain any other order in the series of continually
proportional quantities, lines AH, EM, and QT, because the hyperbolic areas
are proportional, will obtain the same order in another series of continually

proportional quantities.

Let the density of a certain fluid be proportional to the compression, and let its
parts be drawn downward by a gravity inversely proportional to the squares of
their distances from the center; I say that if the distances are taken in a harmonic
progression, the densities of the fluid at these distances will be in a geometric
progression.

Let S designate the center, and SA, SB, SC, SD, and SE the distances in a
geometric progression. Erect perpendiculars AH, BI, CK, ..., which are as
the densities of the fluid in places A, B, C, D, E, .. .; then the specific gravi-

ties to bC unlfOIIllly Contlnued, the ﬁI‘St f!Om A to B, the SCCOIld fxom B to C,

the third from C to D, .... Then these, multiplied by the heights AB, BC,

-

b o o
<
[
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CD, DE, . ..—or, which is the same, by the distances SA, SB, SC, ..., pro-
. , .. ... AH BI CK .
portional to those heights—will yield SA'SE SC which represent
the pressures. Therefore, since the densities are as the sums of these pressures,
the differences (AH — BI, BI - CK, . ..) of the densities will be as the differ-
AH BI CK
ences (_SK’ SB’ SC
and Sx describe any hyperbola that cuts the perpendiculars AH, BI, CK, ...

. ) of the sums. With center § and asymptotes SA

in a, b, ¢, ... and also cuts in A, 7, and % the perpendiculars Hr, Iu, and

Kw, dropped to asymptote Sx; then the differences ru, uw, ... between the
.. . AH BI

densities will be as —, —,
SA  SB

) AH xth Bl x ui
or tp, ug, ..., will be as ,
SA

... And the rectangles tu X th, uw X ui, ...,

,..., thatis, as Aa, B, ....

SB
For, from the nature of the hyperbola, SA is to AH or St as th to Aa,
AH x th BI x w1
and thus ————— is equal to Aa. And by a similar argument, =2
SA SB
equal to Bb, .... Moreover, Aa, Bb, Cc, ... are continually proportional,

and therefore proportional to their differences Az — Bb, B4 — Cc, ...; and
thus the rectangles zp, uq, ... are proportional to these differences, and also
the sums of the rectangles zp 4+ uq or tp 4+ ug + wr are proportional to the
sums of the differences Az — Cc or Aa — Dd. Let there be as many terms of
this sort as you wish; then the sum of all the differences, say Aea —Ff, will be
proportional to the sum of all the rectangles, say z¢An. Increase the number
of terms and decrease the distances of points A, B, C, ..., indefinitely; then
these rectangles will come out equal to the hyperbolic area zzAn, and thus
the difference Az — Ff is proportional to this area. Now take any distances,
say SA, SD, SF, in a harmonic progression, and the differences Aa — Dd
and Dd —Ff will be equal; and therefore the areas zA/x and x/nz which are
proportional to these differences will be equal to each other, and the densi-
ties Sz, Sx, and Sz (that is, AH, DL, and FN) will be continually propor-
tional. Q.E.D.

CoroLrary. Hence, if any two densities of a fluid are given, say AH
and BI, the area zAiu corresponding to their difference 7« will be given; and

accordingly the density FN at any height SF will be found by taking the
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area thnz to be to that given area thiu as the difference Aa — Ff is to the
difference Aa — Bb.

Similarly, it can be proved that if the gravity of the particles of a fluid is
decreased as the cubes of the distances from the center, and if the reciprocals
SA* SA} SA°
SA?’ SB?’ SC?
are taken in an arithmetic progression, then the densities AH, BI, CK, ...

of the squares of the distances SA, SB, SC, ... (namely,

will be in a geometric progression. And if the gravity is decreased as the
fourth power of the distances, and if the reciprocals of the cubes of the
SA* SA* SA*

SA3' SB} SC3
the densities AH, BI, CK, ... will be in a geometric progression. And so on

distances (say, . ) are taken in an arithmetic progression,

indefinitely. Again, if the gravity of the particles of a fluid is the same at all
distances, and if the distances are in an arithmetic progression, the densities
will be in a geometric progression, as the distinguished gentleman Edmond
Halley has found. If the gravity is as the distance, and if the squares of the
distances are in an arithmetic progression, the densities will be in a geometric
progression. And so on indefinitely.

These things are so when the density of a fluid condensed by compres-
ston is as the force of the compression or, which is the same, when the
space occupied by the fluid is inversely as this force. Other laws of conden-
sation can be imagined, as, for example, that the cube of the compressing
force is as the fourth power of the density, or that the force ratio cubed is
the same as the density ratio to the fourth power. In this case, if the grav-
ity is inversely as the square of the distance from the center, the density
will be inversely as the cube of the distance. Imagine that the cube of the
compressing force is as the fifth power of the density; then, if the grav-
ity is inversely as the square of the distance, the density will be inversely
as the % power of the distance. Imagine that the compressing force is as
the square of the density, and that the gravity is inversely as the square
of the distance; then the density will be inversely as the distance. It would
be tedious to cover all cases. But it is established by experiments that the
density of air is either exactly or at least very nearly as the compressing
force; and therefore the density of the air in the earth’s atmosphere is as the
weight of the whole incumbent air, that is, as the height of the mercury in a

barometer.
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*If the density of a fluid composed of particles that are repelled from one another
is as the compression, the centrifugal forces [or forces of repulsion] of the particles
are inversely proportional to the distances between their centers. And conversely,
particles that are repelled from one another by forces that are inversely proportional
to the distances between their centers constitute an elastic fluid whose density is
proportional to the compression.*

Suppose a fluid to be enclosed in the cubic space ACE, and then by
compression to be reduced into the smaller cubic space ace; then the distances

between particles maintaining similar

positions with respect to one another in A I;
the two spaces will be as the edges AB 2 Fi
and ab of the cubes; and the densities )

of the mediums will be inversely as the &

containing spaces AB* and a4’. On the D ; [

plane side ABCD of the larger cube take the square DP equal to the plane
side of the smaller cube db; then (by hypothesis) the pressure by which the
square DP urges the enclosed fluid will be to the pressure by which the
square db urges the enclosed fluid as the densities of the medium to each
other, that is, as @4® to AB®. But the pressure by which the square DB urges
the enclosed fluid is to the pressure by which the square DP urges that same
fluid as the square DB to the square DP, that is, as AB’ to ab?. Therefore,
from the equality of the ratios [or ex aequo] the pressure by which the square
DB urges the fluid is to the pressure by which the square db urges the fluid
as ab to AB. Divide the fluid into two parts by planes FGH and fgh drawn
through the middles of the cubes; then these parts will press each other with
the same forces with which they are pressed by planes AC and ac, that is,
in the proportion of 24 to AB; and thus the centrifugal forces [or forces
of repulsion] by which these pressures are sustained are in the same ratio.
Because in both cubes the number of particles is the same and their situation
similar, the forces that all the particles along planes FGH and fgh exert
upon all the others are as the forces that each individual particle exerts upon
every other particle. Therefore the forces that each particle exerts upon every
other particle along the plane FGH in the larger cube are to the forces that

individual particles exert on the particle next to them along the plane fg# in

aa. In ed. 1 the order of the two sentences is reversed.
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the smaller cube as ab to AB, that is, inversely as the distances between the
particles are to one another. Q.E.D.

And conversely, if the forces of the individual particles are inversely as
the distances, that is, inversely as the edges AB and @& of the cubes, the sums
of the forces will be in the same ratio, and the pressures of the sides DB
and db will be as the sums of the forces; and the pressure of the square DP
will be to the pressure of the side DB as a4” to AB?. And from the equality
of the ratios [or ex aequo] the pressure of the square DP will be to the
pressure of the side db as ab® to AB?; that is, the one force of compression

will be to the other force of compression as the one density to the other

density. Q.E.D.

By a similar argument, if the centrifugal forces [or forces of repulsion] of the
particles are inversely as the squares of the distances between the centers, the
cubes of the compressing forces will be as the fourth powers of the densities.
If the centrifugal forces are inversely as the third or fourth powers of the
distances, the cubes of the compressing forces will be as the fifth or sixth
powers of the densities. And universally, if D is the distance, and E the
density of the compressed fluid, and if the centrifugal forces are inversely
as any power of the distance D”, whose index is the number 7, then the
compressing forces will be as the cube roots of the powers E"*2, whose index
is the number 7 + 2; and conversely. In all of this, it is supposed that the
centrifugal forces of particles are terminated in the particles which are next
to them or do not extend far beyond them. We have an example of this in
magnetic bodies. Their attractive virtue [or power] is almost terminated in
bodies of their own kind which are next to them. The virtue of a magnet
is lessened by an interposed plate of iron and is almost terminated in the
plate. For bodies farther away are drawn not so much by the magnet as
by the plate. In the same way, if particles repel other particles of their own
kind that are next to them but do not exert any virtue upon more remote
particles,” particles of this sort are the ones of which the fluids treated in this
proposition will be composed. But if the virtue of each particle is propagated

indefinitely, a greater force will be necessary for the equal condensation of a

b. Ed. 1 has in addition: “except perhaps through the increase of the intermediate particles by that

virtue.”
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greater quantity of the fluid.© Whether elastic fluids consist of particles that
repel one another is, however, a question for physics. We have mathematically
demonstrated a property of fluids consisting of particles of this sort so as
to provide natural philosophers with the means with which to treat that

question.

c. Ed. | has in addition: “For example, if each particle by its own force, which is inversely as the
distance of places from its center, repels all other particles indefinitely, the forces by which the fluid can be
equally compressed and condensed in similar vessels will be as the squares of the diameters of the vessels,
and thus the force by which the fluid is compressed in the same vessel will be inversely as the cube root

of the fifth power of the density.”
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SECTION 6

Concerning the motion of *simple pendulums® and the resistance to them

In simple pendulums whose centers of oscillation are equally distant from the
center of suspension, the quantities of matter are in a ratio compounded of the
ratio of the weights and the squared vatio of the times of oscillation in a vacuum.

For the velocity that a given force can generate in a given time in a given
quantity of matter is as the force and the time directly and the matter in-
versely. The greater the force, or the greater the time, or the less the matter,
the greater the velocity that will be generated. This is manifest from the sec-
ond law of motion. Now if the pendulums are of the same length, the motive
forces in places equally distant from the perpendicular are as the weights; and
thus if two oscillating bodies describe equal arcs and if the arcs are divided
into equal parts, then, since the times in which the bodies describe single
corresponding parts of the arcs are as the times of the whole oscillations, the
velocities in corresponding parts of the oscillations will be to one another
as the motive forces and the whole times of the oscillations directly and the
quantities of matter inversely; and thus the quantities of matter will be as the
forces and the times of the oscillations directly and the velocities inversely.
But the velocities are inversely as the times, and thus the times are directly,
and the velocities are inversely, as the squares of the times, and therefore the
quantities of matter are as the motive forces and the squares of the times,
that is, as the weights and the squares of the times. Q.E.D.

CororrLary 1. And thus if the times are equal, the quantities of matter
in the bodies will be as their weights.

Cororrary 2. If the weights are equal, the quantities of matter will be
as the squares of the times.

Cororrary 3. If the quantities of matter are equal, the weights will be
inversely as the squares of the times.

Cororrary 4. Hence, since the squares of the times, other things being
equal, are as the lengths of the pendulums, the weights will be as the lengths

of the pendulums if both the times and the quantities of matter are equal.

aa. Newton uses the term “corpora funependula,” literally “bodies hanging by a thread [or string],”

which we have translated as “simple pendulums”; see the Guide, §7.5.
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CororLary 5. And universally, the quantity of matter in a bob of a
simple pendulum is as the weight and the square of the time directly and
the length of the pendulum inversely.

CoroLLARY 6. But in a nonresisting medium also, the quantity of matter
in the bob of a simple pendulum is as the relative weight and the square of
the time directly and the length of the pendulum inversely. For the relative
weight is the motive force of a body in any heavy medium, as I have explained
above, and thus fulfills the same function in such a nonresisting medium as
absolute weight does in a vacuum.

Cororrary 7. And hence a method is apparent both for comparing
bodies with one another with respect to the quantity of matter in each, and
for comparing the weights of one and the same body in different places in
order to find out the variation in its gravity. And by making experiments
of the greatest possible accuracy, I have always found that the quantity of

matter in individual bodies is proportional to the weight.

The bobs of simple pendulums that are resisted in any medium in the ratio of Proposition 25
the moments of time, and those that move in a nonresisting medium of the same Theorem 20
specific gravity, perform oscillations in a cycloid in the same time and describe

proportional parts of arcs in the same time.

Let AB be the arc of a cycloid, which body D describes by oscillating
in a nonresisting medium in any time. Bisect the arc AB in C so that C
15 its lowest point; then the accelerative force by which the body is urged
in any place D or d or E will be as the length of arc CD or Cd or CE.
Represent that force by the appropriate arc [CD or Cd or CE], and since
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the resistance is as the moment of time, and thus is given, represent it by a
given part CO of the arc of the cycloid, taking arc Od in the ratio to arc
CD that arc OB has to arc CB; then the force by which the body at d is
urged in the resisting medium (since it is the excess of the force Cd over the
resistance CO) will be represented by arc Od, and thus will be to the force
by which body D is urged in a nonresisting medium in place D as arc Od to
arc CD, and therefore also in place B as arc OB to arc CB. Accordingly, if
two bodies D and & leave place B and are urged by these forces, then, since
the forces at the beginning are as arcs CB and OB, the first velocities and the
arcs first described will be in the same ratio. Let those arcs be DO and Bd;
then the remaining arcs CD and Od will be in the same ratio. Accordingly
the forces, being proportional to CD and Od, will remain in the same ratio
as at the beginning, and therefore the bodies will proceed simultaneously to
describe arcs in the same ratio. Therefore the forces and the velocities and
the remaining arcs CD and Od will always be as the whole arcs CB and
OB, and therefore those remaining arcs will be described simultaneously.
Therefore the two bodies D and 4 will arrive simultaneously at places C
and O, the one in the nonresisting medium at place C, and the one in the
resisting medium at place O. And since the velocities in C and O are as arcs
CB and OB, the arcs that the bodies describe in the same time by going on
further will be in the same ratio. Let those arcs be CE and Oe. The force by
which body D in the nonresisting medium is retarded in E is as CE, and the
force by which body 4 in the resisting medium is retarded in ¢ is as the sum
of the force Ce and the resistance CO, that is, as Oe; and thus the forces by
which the bodies are retarded are as arcs CB and OB, which are proportional

to arcs CE and Oe; and accordingly the velocities, which are retarded in that
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given ratio, remain in that same given ratio. The velocities, therefore, and
the arcs described with those velocities are always to one another in the given
ratio of arcs CB and OB; and therefore, if the whole arcs AB and 4B are
taken in the same ratio, bodies D and & will describe these arcs together and
will simultaneously lose all motion in places A and a. The whole oscillations
are therefore isochronal, and any parts of the arcs, BD and B4 or BE and
Be, that are described in the same time are proportional to the whole arcs
BA and Ba. Q.E.D.

CororLrary. Therefore the swiftest motion in the resisting medium does
not occur at the lowest point C, but is found in that point O by which 4B, the
whole arc described, is bisected. And the body, proceeding from that point
to a, is retarded at the same rate by which it was previously accelerated in

its descent from B to O.

If simple pendulums are resisted in the ratio of the velocities, their oscillations in
a cycloid are isochronal.

For if two oscillating bodies equally distant from the centers of suspension
describe unequal arcs and if the velocities in corresponding parts of the arcs
are to one another as the whole arcs, then the resistances, being proportional
to the velocities, will also be to one another as the same arcs. Accordingly, if
these resistances are taken away from (or added to) the motive forces arising
from gravity, which are as the same arcs, the differences (or sums) will be
to one another in the same ratio of the arcs; and since the increments or
decrements of the velocities are as these differences or sums, the velocities
will always be as the whole arcs. Therefore, if in some one case the velocities
are as the whole arcs, they will always remain in that ratio. But in the
beginning of the motion, when the bodies begin to descend and to describe
those arcs, the forces—since they are proportional to the arcs—will generate
velocities proportional to the arcs. Therefore the velocities will always be as
the whole arcs to be described, and therefore those arcs will be described in
the same time. Q.E.D.

If simple pendulums are resisted as the squares of the velocities, the differences
between the times of the oscillations in a resisting medium and the times of the
oscillations in a nonresisting medium of the same specific gravity will be very

nearly proportional to the arcs described during the oscillations.
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For let the unequal arcs A and B be described by equal pendulums in
a resisting medium; then the resistance to the body in arc A will be to the
resistance to the body in the corresponding part of arc B very nearly in the
squared ratio of the velocities, that is, as A? to B%. If the resistance in arc
B were to the resistance in arc A as AB to A?, the times in arcs A and B
would be equal, by the previous proposition. And thus the resistance A? in
arc A, or AB in arc B, produces an excess of time in arc A over the time
in a nonresisting medium; and the resistance B’ produces an excess of time
in arc B over the time in a nonresisting medium. And those excesses are
very nearly as the forces AB and B? that produce them, that is, as arcs A
and B. Q.E.D.

CoroLLary 1. Hence from the times of the oscillations made in a resist-
ing medium in unequal arcs, the times of the oscillations in a nonresisting
medium of the same specific gravity can be found. For the difference be-
tween these times will be to the excess of the time in the smaller arc over
the time in the nonresisting medium as the difference between the arcs is to
the smaller arc.

CoroLLary 2. Shorter oscillations are more isochronal, and the shortest
are performed in very nearly the same times as in a nonresisting medium.
In fact, the times of those that are made in greater arcs are a little greater,
because the resistance in the descent of the body (by which the time is pro-
longed) is greater in proportion to the length described in the descent than
the resistance in the subsequent ascent (by which the time is shortened). But
also the time of short as well as long oscillations seems to be somewhat pro-
longed by the motion of the medium. For retarded bodies are resisted a little
less in proportion to the velocity, and accelerated bodies a little more, than
those that progress uniformly; and this is so because the medium, going in
the same direction as the bodies with the motion that it has received from
them, is in the first case more agitated, in the second less, and accordingly
concurs to a greater or to a less degree with the moving bodies. The medium
therefore resists the pendulums more in the descent, and less in the ascent,
than in proportion to the velocity, and the time is prolonged as a result of

both causes.

Proposition 28 If a simple pendulum oscillating in a cycloid is resisted in the ratio of the moments

Theorem 23  of time, its resistance will be to the force of gravity as the excess of the arc described
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in the whole descent over the arc described in the subsequent ascent is to twice
the length of the pendulum.

Let BC designate the arc described in the descent, Ca the arc described
in the ascent, and A« the difference between the arcs; then, with the same
constructions and proofs as in prop. 25, the force by which the oscillating
body is urged in any place D will be to the force of resistance as arc CD to
arc CO, which is half of that difference Aa. And thus the force by which the

oscillating body is urged in the beginning (or highest point) of the cycloid—
that is, the force of gravity—will be to the resistance as the arc of the cycloid
between that highest point and the lowest point C is to arc CO, that is (if
the arcs are doubled), as the arc of the whole cycloid, or twice the length of

the pendulum, is to arc Aa. Q.E.D.

Supposing that a body oscillating in a cycloid is resisted as the square of the
velocity, it is required to find the resistance in each of the individual places.

Let Ba be the arc described in an entire oscillation, and let C be the
lowest point of the cycloid, and let CZ be half of the arc of the whole cycloid
and be equal to the length of the pendulum; and let it be required to find the
resistance to the body in any place D. Cut the indefinite straight line OQ in
points O, S, P, and Q, with the conditions that—if perpendiculars OK, ST,
PI, and QE are erected; and if, with center O and asymptotes OK and OQ,
hyperbola TIGE is described so as to cut perpendiculars ST, PI, and QE
in T, I, and E; and if, through point I, KF is drawn parallel to asymptote
0OQ and meeting asymptote OK in K and perpendiculars ST and QE in L
and F—the hyperbolic area PIEQ is to the hyperbolic area PITS as the arc
BC described during the body’s descent is to the arc Ca described during the
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ascent, and area IEF is to area ILT as OQ to OS. Then let perpendicular
MN cut off the hyperbolic area PINM, which is to the hyperbolic area PIEQ
as arc CZ 1s to the arc BC described in the descent. And if perpendicular
RG cuts off the hyperbolic area PIGR, which is to area PIEQ as any arc

CD is to the arc BC described in the whole descent, then the resistance in

place D will be to the force of gravity as the area %IEF — IGH to the
area PINM.

For, since the forces which arise from gravity and by which the body is
urged in places Z, B, D, and « are as arcs CZ, CB, CD, and Ca, and those arcs
are as areas PINM, PIEQ, PIGR, and PITS, let the arcs and the forces be
represented by these areas respectively. In addition, let Dd be the minimally
small space described by the body while descending, and represent it by the
minimally small area RGgr comprehended between the parallels RG and rg;

and produce rg to A, so that GHAg and RGgr are decrements of areas IGH
and PIGR made in the same time. And the increment GHAg — gé—IEF,
or Rr x HG — (l;—éIEF, of area g—R—IEF — IGH will be to the decrement
RGgr, or Rr x RG, of area PIGR as HG — —I-O-E—g is to RG, and thus as
ORxHG— S—ZIEF is to OR X GR or OP x PI, that is (because OR x HG,
or OR x HR — OR x GR, ORHK — OPIK, PIHR, and PIGR + IGH
are equal), as PIGR + IGH — %IEF is to OPIK. Therefore, if area
%IEF — IGH is called Y, and if the decrement RGgr of area PIGR is

given, then the increment of area Y will be as PIGR — Y.
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But if V designates the force arising from gravity, by which the body is
urged in D and which is proportional to the arc CD to be described, and if
R represents the resistance, then V — R will be the whole force by which the
body is urged in D. The increment of the velocity is therefore jointly as V—R
and that particle of time in which the increment is made. But furthermore the
velocity itself is directly as the increment of the space described in the same
time and inversely as that same particle of time. Hence, since the resistance,
by hypothesis, is as the square of the velocity, the increment of the resistance
(by lem. 2) will be as the velocity and the increment of the velocity jointly,
that is, as the moment of the space and V —R jointly; and thus, if the moment
of the space is given, as V —R; that is, as PIGR — Z, if for the force V there
is written PIGR (which represents it), and if the resistance R is represented
by some other area Z.

Therefore, as area PIGR decreases uniformly by the subtraction of the
given moments, area Y increases in the ratio of PIGR — Y, and area Z
increases in the ratio of PIGR — Z. And therefore, if areas Y and Z begin
simultaneously and are equal at the beginning, they will continue to be equal
by the addition of equal moments and, thereafter decreasing by moments that
are likewise equal, will vanish simultaneously. And conversely, if they begin
simultaneously and vanish simultaneously, they will have equal moments and
will always be equal; and this is so because, if the resistance Z is increased,
the velocity will be decreased along with that arc Ca which is described in
the body’s ascent, and as the point in which there is a cessation of all motion
and resistance approaches closer to point C, the resistance will vanish more
quickly than area Y. And the contrary will happen when the resistance is
decreased.

Now area Z begins and ends where the resistance is nil, that is, in the
beginning of the motion where arc CD is equal to arc CB and the straight
line RG falls upon the straight line QE, and in the end of the motion where
arc CD is equal to arc Ca and RG falls upon the straight line ST. And area

Y or aélEF — IGH begins and ends where the resistance is nil, and thus

OR
where O—QIEF and IGH are equal; that 1s (by construction), where the

straight line RG falls successively upon the straight lines QE and ST. And

accordingly those areas begin simultaneously and vanish simultaneously and
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therefore are always equal. Therefore area O—IEF — IGH is equal to area

Z (which represents the resistance) and therefore is to area PINM (which
represents the gravity) as the resistance is to the gravity. Q.E.D.

CoroLrary 1. The resistance in the lowest place C is, therefore, to the
OP
force of gravity as area @IEF is to area PINM.

CoroLrary 2. And this resistance becomes greatest when area PTHR is
to area IEF as OR is to OQ. For in that case its moment (namely, PIGR —Y)
comes out nil.

CororLary 3. Hence also the velocity in each of the individual places
can be known, inasmuch as it is as the square root of the resistance, and at the
very beginning of the motion is equal to the velocity of the body oscillating
without any resistance in the same cycloid.

But because the computation by which the resistance and velocity are to
be found by this proposition is difficult, it seemed appropriate to add the

following proposition.*

If the straight line aB is equal to a cycloidal arc that is described by an oscillating
body, and if at each of its individual points D perpendiculars DK are erected
that are to the length of the pendulum as the resistance encountered by the body
in corresponding points of the arc is to the force of gravity, then I say that the
difference between the arc described in the whole descent and the arc described in
the whole subsequent ascent multiplied by half the sum of those same arcs will be

equal 1o the area BKa occupied by all the perpendiculars DK.

a. Ed. 1 and ed. 2 have in addition: “which is both more general and more than exact enough for
use in natural philosophy.”
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Represent the cycloidal arc described in an entire oscillation by the
straight line aB equal to it, and represent the arc that would be described

in a vacuum by the length AB. Bisect AB in C, and point C will represent

AMN 4

the lowest point of the cycloid, and CD will be as the force arising from
gravity (by which the body at D is urged along the tangent of the cycloid)
and will have the ratio to the length of the pendulum that the force at D
has to the force of gravity. Therefore represent that force by the length CD,
and the force of gravity by the length of the pendulum; then, if DK is taken
in DE in the ratio to the length of the pendulum that the resistance has to
the gravity, DK will represent the resistance. With center C and radius CA
or CB construct semicircle BEeA. And let the body describe space Dd in
a minimally small time; then, when perpendiculars DE and de have been
erected, meeting the circumference in E and ¢, they will be as the velocities
that the body in a vacuum would acquire in places D and 4 by descending
from point B. This is evident by book 1, prop. 52. Therefore represent these
velocities by perpendiculars DE and de, and let DF be the velocity that
the body acquires in D by falling from B in the resisting medium. And if
with center C and radius CF circle Ff M is described, meeting the straight
lines de and AB in f and M, then M will be the place to which the body
would then ascend if there were no further resistance, and df will be the
velocity that it would acquire in d. Hence also, if Fg designates the moment
of velocity that body D, in describing the minimally small space Dd, loses
as a result of the resistance of the medium, and if CN is taken equal to
Cg, then N will be the place to which the body would then ascend if there
were no further resistance, and MN will be the decrement of the ascent
arising from the loss of that velocity. Drop perpendicular Fm to df, and
the decrement Fg (generated by the resistance DK) of the velocity DF will
be to the increment fm (generated by the force CD) of that same velocity
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as the generating force DK is to the generating force CD. Furthermore,
because triangles Fmf, Fhg, and FDC are similar, fm is to Fm or Dd
as CD is to DF and from the equality of the ratios [or ex aequo] Fg is
to Dd as DK is to DF. *Likewise F% is to Fg as DF to CF, and from
the equality of the ratios in inordinate proportion [or ex aequo perturbate]
FA2 or MN is to Dd as DK to CF or CM; and thus the sum of all the
MN x CM will be equal to the sum of all the Dd x DK. Suppose that a
rectangular ordinate is always erected at the moving point M, equal to the
indeterminate CM, which in its continual motion is multiplied by the whole
length Ag; then the quadrilateral described as a result of that motion—or
the rectangle equal to it, Az x “2aB—will become equal to the sum of all
the MN x CM, and thus equal to the sum of all the Dd x DK, that is,
equal to area BKVTa. Q.E.D.?

CoroLLary. Hence from the law of the resistance and the difference
Aa of arcs Ca and CB, the proportion of the resistance to the gravity can be
determined very nearly.

For if the resistance DK is uniform, the figure BKTa will be equal
to the rectangle of Ba and DK; and hence the rectangle of ¥2Ba and Aa
will be equal to the rectangle of Bz and DK, and DK will be equal to
2Aa. Therefore, since DK represents the resistance, and the length of the
pendulum represents the gravity, the resistance will be to the gravity as 2 A«

is to the length of the pendulum, exactly as was proved in prop. 28.

aa. Ed. 1 has: “Likewise Fg is to FA as CF to DF, and from the equality of the ratios in inordinate
proportion [or ex aequo perturbate] FA4 or MN is to Dd as DK to CFE. Take DR to %4B as DK to CF,
and MN will be to Dd as DR to 4B, and thus the sum of all the MN x Y4B, that is, Ae X Y2aB,
will be equal to the sum of all the Dd x DR, that is, to area BR7Sa, which all the rectangles Dd x DR
or DR7d compose. Bisect Ag and aB in P and O, and Y4B or OB will be equal to CP, and thus DR
is to DK as CP to CF or CM, and by separation {or dividendo] KR will be to DR as PM to CP. And
thus, since point M, when the body is in the midpoint O of the oscillation, falls approximately on point
P and in the earlier part of the oscillation is between A and P and in the later part is between P and q,
in both cases deviating equally from point P in opposite directions, it follows that point K, at about the
midpoint of the oscillation, that is, over against point O, say in point V, will fall on point R and in the
earlier part of the oscillation will lie between R and E and in the later part between R and D, in both
cases deviating equally from point R in opposite directions. Accordingly, the area which line KR describes
will in the earlier part of the oscillation lie outside area BRSa and in the later part within it and will do
so within ranges nearly equal to each other on each of the two sides and therefore, when added to area
BRSa in the first case and subtracted from it in the second, will result in area BKTa very nearly equal
to area BRSa. Therefore the rectangle Az x Y2aB, or AaO, will, since it is equal to area BRSa, also be
very nearly equal to area BKTa. Q.E.D.”
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If the resistance is as the velocity, the figure BKTa will be very nearly
an ellipse. For if a body in a nonresisting medium were to describe the
length BA in a whole oscillation, the velocity in any place D would be as the
ordinate DE of a circle described with diameter AB. Accordingly, since Ba
in the resisting medium, and BA in a nonresisting medium, are described
in roughly equal times, and the velocities in the individual points of Ba are
thus very nearly to the velocities in the corresponding points of the length
BA as Ba is to BA, the velocity in point D in the resisting medium will be as
the ordinate of a circle or ellipse described upon diameter Ba; and thus the
figure BKVTa will be very nearly an ellipse. Since the resistance is supposed
proportional to the velocity, let OV represent the resistance in the midpoint
O; then ellipse BRVSaq, described with center O and semiaxes OB and OV,
will be very nearly equal to the figure BKVTa and the rectangle equal to
it, Aa x BO. Aa x BO is therefore to OV x BO as the area of this ellipse
is to OV x BO; that is, Az is to OV as the area of the semicircle is to the
square of the radius, or as 11 to 7, roughly; and therefore 711Aa is to the
length of the pendulum as the resistance of the oscillating body in O is to its
gravity.

But if the resistance DK is as the square of the velocity, the figure
BKVTa will be almost a parabola having vertex V and axis OV, and thus
will be very nearly equal to the rectangle contained by %3Ba and OV. The
rectangle contained by ¥2Ba and Aa is therefore equal to the rectangle con-
tained by %Ba and OV, and thus OV is equal to ¥ Aa; and therefore the
resistance on the oscillating body in O is to its gravity as ¥ Aa is to the
length of the pendulum.

And T judge that these conclusions are more than accurate enough for
practical purposes. For, since the ellipse or parabola BRVSa and the figure
BKVTa have the same midpoint V, if it is greater than that figure on either
side BRV or VSa, it will be smaller than it on the other side, and thus will

be very nearly equal to it.

If the resistance encountered by an oscillating body in each of the proportional
parts of the arcs described is increased or decreased in a given ratio, the difference
between the arc described in the descent and the arc described in the subsequent

ascent will be increased or decreased in the same ratio.
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For that difference arises from the retardation of the pendulum by the
resistance of the medium, and thus is as the whole retardation and the re-
tarding resistance, which is proportional to it. In the previous proposition the
rectangle contained under the straight line “24B and the difference Aa of arcs
CB and Ca was equal to area BKTa. And that area, if the length B remains
the same, is increased or decreased in the ratio of the ordinates DK, that is,
in the ratio of the resistance, and thus is as the length 2B and the resistance
jointly. And accordingly the rectangle contained by Ae and Y24B is as aB
and the resistance jointly, and therefore Aa is as the resistance. Q.E.D.

CoroLLary 1. Hence, if the resistance is as the velocity, the difference
of the arcs in the same medium will be as the whole arc described; and
conversely.

CororLary 2. If the resistance is in the squared ratio of the velocity,
that difference will be in the squared ratio of the whole arc; and conversely.

Cororrary 3. And universally, if the resistance is in the cubed or any
other ratio of the velocity, the difference will be in the same ratio of the
whole arc; and conversely.

CoroLLAry 4. And if the resistance is partly in the simple ratio of the
velocity and partly in the squared ratio of the velocity, the difference will be
partly in the simple ratio of the whole arc and partly in the squared ratio
of it; and conversely. The law and ratio of the resistance in relation to the
velocity will be the same as the law and ratio of that difference of the arcs
in relation to the length of the arc itself.

CoroLrLary 5. And thus if a pendulum successively describes unequal
arcs and there can be found the ratio of the increment and decrement of
this difference [i.e., the difference of the arcs] in relaton to the length of
the arc described, then there will also be had the ratio of the increment and

decrement of the resistance in relation to a greater or smaller velocity.
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From these propositions it is possible to find the resistance of any mediums by General
means of pendulums oscillating in those mediums. In fact, I have investigated ~Scholium®
the resistance of air by the following experiments. I suspended a wooden ball
by a fine thread from a sufficiently firm hook in such a way that the distance
between the hook and the center of oscillation of the ball was 10Y; feet; the
ball weighed 5772 ounces avoirdupois and had a diameter of 674 London
inches. I marked a point on the thread 10 feet and 1 inch distant from
the center of suspension; and at a right angle at that point I placed a ruler
divided into inches, by means of which I might note the lengths of the arcs
described by the pendulum. Then I counted the oscillations during which the
ball would lose an eighth of its motion. When the pendulum was drawn back
from the perpendicular to a distance of 2 inches and was let go from there,
so as to describe an arc of 2 inches in its whole descent and to describe an
arc of about 4 inches in the first whole oscillation (composed of the descent
and subsequent ascent), it then lost an eighth of its motion in 164 oscillations,
so as to describe an arc of 1% inches in its final ascent. When it described
an arc of 4 inches in its first descent, it lost an eighth of its motion in 121
oscillations, so as to describe an arc of 3V, inches in its final ascent. When it
described an arc of 8, 16, 32, or 64 inches in its first descent, it lost an eighth
of its motion in 69, 352, 18V, and 9% oscillations respectively. Therefore the
difference between the arcs described in the first descent and the final ascent,
in the first, second, third, fourth, fifth, and sixth cases, was %, 13, 1, 2, 4, and
8 inches respectively. Divide these differences by the number of oscillations in
each case, and in one mean oscillation—in which an arc of 334, 7%, 15, 30,
60, and 120 inches was described—the difference between the arcs described
in the descent and subsequent ascent will be Vess, V242, Y69, Y51, ¥47, and %9
parts of an inch respectively. In the greater oscillations, moreover, these are
very nearly in the squared ratio of the arcs described, while in the smaller
oscillations they are a little greater than in that ratio; and therefore (by book
2, prop. 31, corol. 2) the resistance of the ball when it moves more swiftly
is very nearly in the squared ratio of the velocity; when more slowly, a little

greater than in that ratio.

a. In ed. 1 the general scholium appears at the end of book 2, sec. 7, with some variations, primarily
in the numerical values.
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Now let V designate the greatest velocity in any oscillation, and let A,
B, and C be given quantities, and let us imagine the difference between the
arcs to be AV +BV”24CV? In a cycloid the greatest velocities are as halves
of the arcs described in oscillating, but in a circle they are as the chords of
halves of these arcs, and thus with equal arcs are greater in a cycloid than
in a circle in the ratio of halves of the arcs to their chords, while the times
in a circle are greater than in a cycloid in the inverse ratio of the velocity.
Hence it is evident that the differences between the arcs (differences which
are as the resistance and the square of the time jointly) would be very nearly
the same in both curves. For those differences in the cycloid would have to
be increased along with the resistance in roughly the squared ratio of the
arc to the chord (because the velocity is increased in the simple ratio of the
arc t the chord) and would have to be decreased along with the square
of the ime in that same squared ratio. Therefore, in order to reduce all
of this to the cycloid, take the same differences between the arcs that were
observed in the circle, while supposing the greatest velocities to correspond
to the arcs, whether halved or entire, that is, to the numbers 2, 1, 2, 4,
8, and 16. In the second, fourth, and sixth cases, therefore, let us write the

numbers 1, 4, and 16 for V; and the difference between the arcs will come
1

Y 2
out —— = A+B+C in the second case; —— = 4A +8B+16C in the fourth
121 351,

8
case; and = 16A + 64B + 256C in the sixth case. And by the proper
3

analytic reduction of these equations taken together, A becomes = 0.0000916,
B = 0.0010847, and C = 0.0029558. The difference between the arcs is
therefore as 0.0000916V +0.0010847V ¥2 +0.0029558V?; and therefore—since
(by prop. 30, corol., applied to this case) the resistance of the ball in the middle
of the arc described by oscillating, where the velocity is V, is to its weight as
1AV 4+ 70BVY? + %4CV? is to the length of the pendulum—if the numbers
found are written for A, B, and C, the resistance of the ball will become to
its weight as 0.0000583V 4+ 0.0007593V*? + 0.0022169V? is to the length of
the pendulum between the center of suspension and the ruler, that is, to 121
inches. Hence, since V in the second case has the value 1, in the fourth 4,
and in the sixth 16, the resistance will be to the weight of the ball in the
second case as 0.0030345 to 121, in the fourth as 0.041748 to 121, and in the
sixth as 0.61705 to 121.
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The arc which in the sixth case was described by the point marked on the

thread was 120 — o or 119%% inches. And therefore, since the radius was
3

121 inches, and the length of the pendulum between the point of suspension
and the center of the ball was 126 inches, the arc that the center of the ball
described was 12434; inches. Since, because of the resistance of the air, the
greatest velocity of an oscillating body does not occur at the lowest point
of the arc described but is located near the midpoint of the whole arc, that
velocity will be roughly the same as if the ball in its whole descent in a
nonresisting medium described half that arc (62%6: inches) and did so in
a cycloid, to which we have above reduced the motion of the pendulum;
and therefore that velocity will be equal to the velocity which the ball could
acquire by falling perpendicularly and describing in its fall a space equal to
the versed sine of that arc. But that versed sine in the cycloid is to that arc
(62%62) as that same arc is to twice the length of the pendulum (252) and
thus is equal to 15.278 inches. Therefore the velocity is the very velocity that
the body could acquire by falling and describing in its fall a space of 15.278
inches. With such a velocity, then, the ball encounters a resistance that is to its
weight as 0.61705 to 121, or (if only that part of the resistance is considered
which is in the squared ratio of the velocity) as 0.56752 to 121.

By a hydrostatic experiment, I found that the weight of this wooden ball
was to the weight of a globe of water of the same size as 55 to 97; and
therefore, since 121 is to 213.4 in the same ratio as 55 to 97, the resistance
of a globe of water moving forward with the above velocity will be to its
weight as 0.56752 to 213.4, that is, as 1 to 376'50. The weight of the globe of
water, in the time during which the globe describes a length of 30.556 inches
with a uniformly continued velocity, could generate all that velocity in the
globe if it were falling; hence it is manifest that in the same time the force

of resistance uniformly continued could take away a velocity smaller in the

1
ratio of 1 to 376Y50, that is, ——— of the whole velocity. And therefore in
3760

the same time in which the globe, with that velocity uniformly continued,
could describe the length of its own semidiameter, or 3%is inches, it would
lose 14,342 of its motion.

I also counted the oscillations in which the pendulum lost a fourth of its

motion. In the following table the top numbers denote the length of the arc
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described in the first descent, expressed in inches and parts of an inch; the
middle numbers signify the length of the arc described in the final ascent;
and at the bottom stand the numbers of oscillations. I have described this
experiment because it is more accurate than when only an eighth of the

motion was lost. Let anyone who wishes test the computation.

First descent 2 4 8 16 32 64
Final ascent 1Y, 3 6 12 24 48
Number of oscillations 374 272 1624 8314 41% 22%

Later, using the same thread, I suspended a lead ball with a diameter of
2 inches and a weight of 26% ounces avoirdupois, in such a way that the
distance between the center of the ball and the point of suspension was 10%%
feet, and I counted the oscillations in which a given part of the motion was
lost. The first of the following tables shows the number of oscillations in
which an eighth of the whole motion was lost; the second shows the number

of oscillations in which a fourth of it was lost.

First descent 1 2 4 8 16 32 64
Final ascent 4 /4 3 7 14 28 56
Number of oscillations 226 228 193 140 90V, 53 30
First descent 1 2 4 8 16 32 64
Final ascent EZ 1Y 3 6 12 24 48
Number of oscillations 510 518 420 318 204 121 70

Select the third, fifth, and seventh observations from the first table and
represent the greatest velocities in these particular observations by the num-

bers 1, 4, and 16 respectively, and generally by the quantity V as above; then
1

%
it will be the case that in the third observation é = A+B+C, in the fifth

2
30 = 4A+8B+16C, in the seventh % = 16A+64B+256C. The reduction
2

of these equations gives A = 0.001414, B = 0.000297, C = 0.000879. Hence
the resistance of the ball moving with velocity V comes out to have the ratio
to its own weight (26Y4 ounces) that 0.0009V + 0.000208V ¥ + 0.000659V?
has to the pendulum’s length (121 inches). And if we consider only that part
of the resistance which is in the squared ratio of the velocity, it will be to the
weight of the ball as 0.000659V? is to 121 inches. But in the first experiment
this part of the resistance was to the weight of the wooden ball (57722 ounces)
as 0.002217V? to 121; and hence the resistance of the wooden ball becomes to
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the resistance of the lead ball (their velocities being equal) as 5772 x 0.002217
to 26Y4 x 0.000659, that is, as 7% to 1. The diameters of the two balls were
67% and 2 inches, and the squares of these are to each other as 47V and 4, or
113/6 and 1, very nearly. Therefore the resistances of equally swift balls were
in a smaller ratio than the squared ratio of the diameters. But we have not
yet considered the resistance of the thread, which certainly was very great
and ought to be subtracted from the resistance of the pendulum that has
been found. I could not determine this resistance of the thread accurately,
but nevertheless I found it to be greater than a third of the whole resistance
of the smaller pendulum; and I learned from this that the resistances of the
balls, taking away the resistance of the thread, are very nearly in the squared
ratio of the diameters. For the ratio of 75 — V3 to 1 — ¥4, or 1052 1o 1, 1s
very close to the squared ratio of the diameters 11'% to 1.

Since the resistance of the thread is of less significance in larger balls,
I also tried the experiment in a ball whose diameter was 18% inches. The
length of the pendulum between the point of suspension and the center of
oscillation was 122 inches; between the point of suspension and a knot in
the thread, 1092 inches. The arc described by the knot in the first descent of
the pendulum was 32 inches. The arc described by that same knot in the final
ascent after five oscillations was 28 inches. The sum of the arcs, or the whole
arc described in a2 mean oscillation, was 60 inches. The difference between
the arcs was 4 inches. A tenth of it, or the difference between the descent
and the ascent in a mean oscillation, was %5 inch. The ratio of the radius
109%: to the radius 122V is the same as the ratio of the whole arc of 60
inches described by the knot in a mean oscillation to the whole arc of 674
inches described by the center of the ball in a mean oscillation, and is equal
to the ratio of the difference % to the new difference 0.4475. If the length
of the pendulum were to be increased in the ratio of 126 to 122%4 while
the length of the arc described remained the same, the time of oscillation
would be increased and the velocity of the pendulum would be decreased as
the square root of that ratio, while the difference 0.4475 between the arcs
described in a descent and subsequent ascent would remain the same. Then,
if the arc described were to be increased in the ratio of 12434 to 67V4, that
difference 0.4475 would be increased as the square of that ratio, and thus
would come out 1.5295. These things would be so on the hypothesis that the

resistance of the pendulum was in the squared ratio of the velocity. Therefore,
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if the pendulum were to describe a whole arc of 124%: inches, and its length
between the point of suspension and the center of oscillation were 126 inches,
the difference between the arcs described in a descent and subsequent ascent
would be 1.5295 inches. And this difference multiplied by the weight of the
ball of the pendulum, which was 208 ounces, yields the product 318.136.
Again, when the above-mentioned pendulum (made with a wooden ball)
described a whole arc of 124%4; inches by its center of oscillation (which was

126 inches distant from the point of suspension), the difference between the

8
arcs described in the descent and ascent was % x i which multiplied
3

by the weight of the ball (which was 577/ ounces) yields the product 49.396.
And I multiplied these differences by the weights of the balls in order to find
their resistances. For the differences arise from the resistances and are as the
resistances directly and the weights inversely. The resistances are therefore as
the numbers 318.136 and 49.396. But the part of the resistance of the smaller
ball that is in the squared ratio of the velocity was to the whole resistance
as 0.56752 to 0.61675, that is, as 45.453 to 49.396; and the similar part of the
resistance of the larger ball is almost equal to its whole resistance; and thus
those parts are very nearly as 318.136 and 45.453, that is, as 7 and 1. But the
diameters of the balls are 18% and 674, and the squares of these diameters,
351%¢ and 477%4a, are as 7.438 and 1, that is, very nearly as the resistances 7
and | of the balls. The difference between the ratios is no greater than what
could have arisen from the resistance of the thread. Therefore, those parts of
the resistances that are (the balls being equal) as the squares of the velocities
are also (the velocities being equal) as the squares of the diameters of the
balls.

The largest ball that I used in these experiments, however, was not per-
fectly spherical, and therefore for the sake of brevity I have ignored certain
minutiae in the above computation, being not at all worried about a com-
putation being exact when the experiment itself was not sufficiently exact.
Therefore, since the demonstration of a vacuum depends on such experi-
ments, I wish that they could be tried with more, larger, and more exactly
spherical balls. If the balls are taken in geometric proportion, say with di-
ameters of 4, 8, 16, and 32 inches, it will be discovered from the progres-

sion of the experiments what ought to happen in the case of still larger

balls.
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To compare the resistances of different fluids with one another, I made
the following experiments. I got a wooden box four feet long, one foot wide,
and one foot deep. I took off its lid and filled it with fresh water, and I
immersed pendulums in the water and made them oscillate. A lead ball
weighing 166% ounces, with a diameter of 3% inches, moved as in the
following table, that is, with the length of the pendulum from the point of
suspension to a certain point marked on the thread being 126 inches, and to

the center of oscillation being 134% inches.

Arc described by the point marked

on the thread in the first descent 64”7 327 16" 8 47 2" 1 1" 174
Arc described in the final ascent 48" 247 127 6" 37 1" W T e
Difference between the arcs,

proportional to the motion lost 167 8 4 2" 17 K (7% 7 Ye”
Number of oscillations in water B 15 3 7 1Y 12% 134
Number of oscillations in air 85Y, 287 535

In the experiment recorded in the fourth column, equal motions were
lost in 535 oscillations in air, and 1% in water. The oscillations were indeed
a little quicker in air than in water. But if the oscillations in water were ac-
celerated in such a ratio that the motions of the pendulums in both mediums
would become equally swift, the number 15 oscillations in water during
which the same motion would be lost as before would remain the same be-
cause the resistance is increased and the square of the time simultaneously
decreased in that same ratio squared. With equal velocities of the pendulums,
therefore, equal motions were lost, in air in 535 oscillations and in water in
1'% oscillations; and thus the resistance of the pendulum in water is to its
resistance in air as 535 to 1%4. This is the proportion of the whole resistances
in the case of the fourth column.

Now let AV + CV? designate the difference between the arcs described
(in a descent and subsequent ascent) by the ball moving in air with the
greatest velocity V; and since the greatest velocity in the case of the fourth
column is to the greatest velocity in the case of the first column as 1 to 8,

and since that difference between the arcs in the case of the fourth column

16
is to the difference in the case of the first column as 2 to ——, or as 851
535 85

to 4,280, let us write 1 and 8 for the velocities in these cases and 85V and
4,280 for the differences between the arcs; then A + C will become = 851
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and 8A + 64C = 4, 280 or A + 8C = 535; and hence, by reduction of the
equations, 7C will become = 449%4 and C = 64314 and A = 21%%; and thus
the resistance, since it is as /11AV + %4CV?, will be as 131V + 48%¢V>.
Therefore, in the case of the fourth column, where the velocity was 1, the
whole resistance is to its part proportional to the square of the velocity as
13%11 + 48%s or 61147 to 48%56; and on that account the resistance of the
pendulum in water is to that part of the resistance in air which is proportional
to the square of the velocity (and which alone comes into consideration in
swifter motions) as 61%17 to 48%¢ and 535 to 15 jointly, that is, as 571 to 1.
If the whole thread of the pendulum oscillating in water had been immersed,
its resistance would have been still greater, to such an extent that the part
of the resistance of the pendulum oscillating in water which is proportional
to the square of the velocity (and which alone comes into consideration in
swifter bodies) is to the resistance of that same whole pendulum oscillating
in air, with the same velocity, as about 850 to 1, that is, very nearly as the
density of water to the density of air.

In this computation also, that part of the resistance of the pendulum in
water which would be as the square of the velocity ought to be taken into
consideration, but (which may perhaps seem strange) the resistance in water
was increased in more than the squared ratio of the velocity. In searching
for the reason, I hit upon this: that the box was too narrow in proportion to
the size of the ball of the pendulum, and because of its narrowness overly
impeded the motion of the water as it yielded to the oscillation of the ball.
For if a ball of a pendulum whose diameter was one inch was immersed,
the resistance was increased in very nearly the squared ratio of the velocity.
I tested this by constructing a pendulum out of two balls, so that the lower
and smaller of them oscillated in the water, and the higher and larger one
was fastened to the thread just above the water and, by oscillating in the air,
aided the pendulum’s motion and made it last longer. And the experiments

made with this pendulum came out as in the following table.

Arc described in the first descent 16" 8” 4" 2" 1" % 4
Arc described in the final ascent 12" 6" 3”7 A" 74 2 36"
Difference between the arcs,

proportional to the motion lost 2 17 %4 174 A" Yie"
Number of oscillations 34 6 12 21 34 53 6215
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In comparing the resistances of the mediums with one another I also
caused iron pendulums to oscillate in quicksilver. The length of the iron
wire was about three feet, and the diameter of the ball of the pendulum was
about V5 inch. And to the wire just above the mercury there was fastened
another lead ball large enough to continue the motion of the pendulum for
a longer time. Then I filled a small vessel (which held about three pounds
of quicksilver) with quicksilver and common water successively, so that as
the pendulum oscillated first in one and then in the other of the two fluids I
might find the proportion of the resistances; and the resistance of the quick-
silver came out to the resistance of the water as about 13 or 14 to 1, that is,
as the density of quicksilver to the density of water. When I used ®a slightly
larger pendulum ball, say one whose diameter would be about ¥4 or %; inch,®
the resistance of the quicksilver came out in the ratio to the resistance of the
water that the number 12 or 10 has to 1, roughly. But the former experiment
is more trustworthy because in the latter the vessel was too narrow in propor-
tion to the size of the immersed ball. With the ball enlarged, the vessel also
would have to be enlarged. Indeed, I had determined to repeat experiments
of this sort in larger vessels and in molten metals and certain other liquids,
hot as well as cold; but there is not time to try them all, and from what has
already been described it is clear enough that the resistance of bodies moving
swiftly is very nearly proportional to the density of the fluids in which they
move. I do not say exactly proportional. For the more viscous fluids, of an
equal density, doubtless resist more than the more liquid fluids—as, for ex-
ample, cold oil more than hot, hot 0il more than rainwater, water more than
spirit of wine. But in the liquids that are sufficiently fluid to the senses—as
in air, in water (whether fresh or salt), in spirits of wine, of turpentine, and
of salts, in oil freed of its dregs by distillation and then heated, and in oil of
vitriol and in mercury, and in liquefied metals, and any others there may be
which are so fluid that when agitated in vessels they conserve for some time

a motion impressed upon them and when poured out are quite freely broken

bb. Here Newton makes a puzzling statement, namely, that the diameter of this ball, “about Y4 or %5
inch,” was larger than the one mentioned earlier, which was “about ¥4 inch.” The source of this puzzling
“about Y5 or % inch” may be seen by comparing the various editions, as is done in our Latin edition. In
the printer’s manuscript and in ed. 1, the larger ball is said to have a diameter of “about ¥ or % inch,”
which in ed. 2 was wrongly printed as “about Y3 or % inch.” In Newton’s annotated copy of the Principia,

it was noted that this should be corrected to “about Y2 or % inch,” but this was not done in ed. 3.
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up into falling drops—in all these I have no doubt that the above rule holds
exactly enough, especially if the experiments are made with pendulums that
are larger and move more swiftly.

Finally, since “some people are of the opinion® that there exists a certain
aethereal medium, by far the subtlest of all, which quite freely permeates
all the pores and passages of all bodies, and that a resistance ought to arise
from such a medium flowing through the pores of bodies, I devised the
following experiment so that I might test whether the resistance that we
experience in moving bodies is wholly on their external surface or whether
the internal parts also encounter a perceptible resistance on their own surfaces.
I suspended a round firwood box by a cord eleven feet long from a sufficiently
strong steel hook, by means of a steel ring. The upper arc of the ring rested
on the very sharp concave edge of the hook so that it might move very
freely. And the cord was attached to the lower arc of the ring. I drew this
pendulum away from the perpendicular to a distance of about six feet, and
did so along the plane perpendicular to the edge of the hook, so that the ring,
as the pendulum oscillated, would not slide to and fro on the edge of the
hook. For the point of suspension, in which the ring touches the hook, ought
to remain motionless. I marked the exact place to which I had drawn back
the pendulum and then, letting the pendulum fall, marked another three
places: those to which it returned at the end of the first, second, and third
oscillations. I repeated this quite often, so that I might find those places as
exactly as possible. Then I filled the box with lead and some of the other
heavier metals that were at hand. But first | weighed the empty box along
with the part of the cord that was wound around the box and half of the
remaining part that was stretched between the hook and the suspended box.
For a stretched cord always urges with half of its weight a pendulum drawn
aside from the perpendicular. To this weight I added the weight of the air
that the box contained. And the whole weight was about 4 of the box
full of metals. Then, since the box full of metals increased the length of the

pendulum as a result of stretching the cord by its weight, I shortened the

cc. This reads literally: “the opinion of some is.” Ed. 1 and ed. 2 have: “the most widely accepted
opinion ot the philosophers of this age is.” The index prepared by Cotes for ed. 2 and retained for
ed. 3 keys this opinion under “Materia” (“Matter”) and specifies the “philosophers” (and hence the later
“some”) by thus describing the paragraph: “The subtle matter of the Cartesians is subjected to a certain

examination.”
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cord so that the length of the pendulum now oscillating would be the same
as before. Then, drawing the pendulum back to the first marked place and
letting it fall, I counted about 77 oscillations until the box returned to the
second marked place, and as many thereafter until the box returned to the
third marked place, and again as many until the box on its return reached
the fourth place. Hence I conclude that the whole resistance of the full box
did not have a greater proportion to the resistance of the empty box than
78 to 77. For if the resistances of both were equal, the full box, because its
inherent force was 78 times greater than the inherent force of the empty box,
ought to conserve its oscillatory motion that much longer, and thus always
return to those marked places at the completion of 78 oscillations. But it
returned to them at the completion of 77 oscillations.

Let A therefore designate the resistance of the box on its external surface,
and B the resistance of the empty box on its internal parts; then, if the
resistances of equally swift bodies on their internal parts are as the matter,
or the number of particles that are resisted, 78B will be the resistance of the
full box on its internal parts; and thus the whole resistance A + B of the
empty box will be to the whole resistance A + 78B of the full box as 77 to
78, and by separation [or dividendo] A + B will be to 77B as 77 to 1, and
hence A+ B will be to B as 77 X 77 to 1, and by separation [or dividendo] A
will be to B as 5,928 to 1. The resistance encountered by the empty box on
its internal parts is therefore more than 5,000 times smaller than the similar
resistance on the external surface. This argument depends on the hypothesis
that the greater resistance encountered by the full box does not arise from
some other hidden cause but only from the action of some subtle fluid upon
the enclosed metal.

I have reported this experiment from memory. For the paper on which
I had once described it is lost. Hence I have been forced to omit certain
fractions of numbers which have escaped my memory.

There is no time to try everything again. The first time, since I had used
a weak hook, the full box was retarded more quickly. In seeking the cause,
I found that the hook was so weak as to give way to the weight of the box
and to be bent in this direction and that as it yielded to the oscillations of
the pendulum. I got a strong hook, therefore, so that the point of suspension
would remain motionless, and then everything came out as we have described

it above.

369



370

Proposition 32
Theorem 26

BOOK 2, SECTION 7

SECTION 72

The motion of fluids and the resistance encountered by projectiles

Let two similar systems of bodies consist of an equal number of particles, and let
each of the particles in one system be similar and proportional to the corresponding
particle in the other system, and let the particles be similarly situated with respect
10 one another in the two systems and have a given ratio of density to one another.
And let them begin to move similarly with respect to one another in proportional
times (the particles that are in the one system with respect to the particles in that
system, and the particles in the other with respect to those in the other). Then,
if the particles that are in the same system do not touch one another except in
instants of reflection and do not attract or repel one another except by accelerative
Sforces that are inversely as the diameters of corresponding particles and directly as
the squares of the velocities, 1 say that the particles of the systems will continue to
move similarly with respect to one another in proportional times.

I say that bodies which are similar and similarly situated move similarly
with respect to one another in proportional times when their situations in re-
lation to one another are always similar at the end of the times—for instance,
if the particles of one system are compared with the corresponding particles
of another. Hence the times in which similar and proportional parts of similar
figures are described by corresponding particles will be proportional. There-
fore, if there are two systems of this sort, the corresponding particles, because
of the similarity of their motions at the beginning, will continue to move sim-
ilarly until they meet one another. For if they are acted upon by no forces,
they will, by the first law of motion, move forward uniformly in straight
lines. If they act upon one another by some forces and if those forces are as
the diameters of the corresponding particles inversely and the squares of the
velocities directly, then, since the situations of the particles are similar and
the forces proportional, the whole forces by which the corresponding particles
are acted upon, compounded of the separate acting forces (by corol. 2 of the

laws), will have similar directions, just as if they tended to centers similarly

a. In ed. |, sec. 7 is very different. Props. 32-34 (32-35 in ed. 1) underwent partial alteration,
including the suppression of the original prop. 34. The remainder of sec. 7 was completely rewritten
for ed. 2 and essentially retained, with only minor changes, in ed. 3. For details, see the Guide to the

present translation, §7.6.
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placed among the particles, and those whole forces will be to one another as
the separate component forces, that is, as the diameters of the corresponding
particles inversely and the squares of the velocities directly, and therefore they
will cause corresponding particles to continue describing similar figures. This
will be so (by book 1, prop. 4, corols. 1 and 8) provided that the centers are
at rest. But if they move, since their situations with respect to the particles
of the systems remain similar (because the transferences are similar), similar
changes will be introduced in the figures which the particles describe. The
motions of corresponding similar particles will therefore be similar until they
first meet, and therefore the collisions will be similar and the reflections sim-
ilar, and then (by what has already been shown) the motions of the particles
with respect to one another will be similar until they encounter one another
again, and so on indefinitely. Q.E.D.

Cororrary 1. Hence, if any two bodies that are similar and similarly
situated (in relation to the corresponding particles of the systems) begin to
move similarly with respect to the particles in proportional times, and if
their volumes and densities are to each other as the volumes and densities
of the corresponding particles, the bodies will continue to move similarly
in proportional times. For the case is the same for the larger parts of both
systems as for the particles.

Cororrary 2. And if all the similar and similarly situated parts of the
systems are at rest with respect to one another, and if two of them, which are
larger than the others and correspond to each other in the two systems, begin
to move in any way with a similar motion along lines similarly situated, they
will cause similar motions in the remaining parts of the systems and will
continue to move similarly with respect to them in proportional times and

thus will continue to describe spaces proportional to their own diameters.

If the same suppositions are made, I say that the larger parts of the systems are
resisted in a ratio compounded of the squared ratio of their velocities and the
squared ratio of the diameters and the simple ratio of the density of the parts of
the systems.

For the resistance arises partly from the centripetal or centrifugal forces
with which the particles of the systems act upon one another and partly from
the collisions and reflections of the particles and the larger parts. Resistances

of the first kind, moreover, are to one another as the whole motive forces from
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which they arise, that is, as the whole accelerative forces and the quantities
of matter in corresponding parts, that is (by hypothesis), as the squares of the
velocities directly and the distances of the corresponding particles inversely
and the quantities of matter in the corresponding parts directly. Thus, since
the distances of the particles of the one system are to the corresponding
distances of the particles of the other as the diameter of a particle or part in
the first system to the diameter of the corresponding particle or part in the
other, and since the quantities of matter are as the densities of the parts and
the cubes of the diameters, the resistances are to one another as the squares
of the velocities, the squares of the diameters, and the densities of the parts
of the systems. Q.E.D.

Resistances of the second kind are as the numbers and forces of cor-
responding reflections jointly. The number of reflections in any one case,
moreover, is to the number in any other as the velocities of the correspond-
ing parts directly and the spaces between their reflections inversely. And the
forces of the reflections are as the velocities and volumes and densities of the
corresponding parts jointly, that is, as the velocities, the cubes of the diame-
ters, and the densities of the parts. And if all these ratios are compounded,
the resistances of the corresponding parts are to one another as the squares
of the velocities, the squares of the diameters, and the densities of the parts,
jointly. Q.E.D.

Cororrary 1. Therefore, if the systems are two elastic fluids such as
air and if their parts are at rest with respect to one another, and if two
bodies which are similar and are proportional (with regard to volume and
density) to the parts of the fluids and are similarly situated with respect
to those parts are projected in any way along lines similarly situated, and
if the accelerative forces with which the particles of the fluids act upon one
another are as the diameters of the projected bodies inversely and the squares
of the velocities directly, then the bodies will cause similar motions in the
fluids in proportional times and will describe spaces that are similar and are
proportional to their diameters.

Cororrary 2. Accordingly, in the same fluid a swift projectile encoun-
ters a resistance that is very nearly in the squared ratio of the velocity. For if
the forces with which distant particles act upon one another were increased
in the squared ratio of the velocity, the resistance would be exactly in the

squared ratio of the velocity; and thus, in a medium whose parts act upon
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one another with no forces because they are far apart, the resistance is exactly
in the squared ratio of the velocity. Let A, B, and C, therefore, be three medi-
ums consisting of parts that are similar and equal and regularly distributed at
equal distances. Let the parts of mediums A and B recede from one another
with forces that are to one another as T and V, and let the parts of medium
C be entirely without forces of this sort. Then, let four equal bodies D, E,
F, and G move in these mediums, the first two bodies D and E in the first
two mediums A and B respectively, and the other two bodies F and G in the
third medium C; and let the velocity of body D be to the velocity of body
E, and let the velocity of body F be to the velocity of body G, as the square
root of the ratio of the forces T to the forces V [i.e,, as /T to 4/V]; then the
resistance of body D will be to the resistance of body E, and the resistance of
body F to the resistance of body G, in the squared ratio of the velocities; and
therefore the resistance of body D will be to the resistance of body F as the
resistance of body E to the resistance of body G. Let bodies D and F have
equal velocities, and also bodies E and G; then, if the velocities of bodies D
and F are increased in any ratio and the forces of the particles of medium B
are decreased in the same ratio squared, medium B will approach the form
and condition of medium C as closely as is desired, and on that account the
resistances of the equal and equally swift bodies E and G in these mediums
will continually approach equality, in such a way that their difference finally
comes out less than any given difference. Accordingly, since the resistances of
bodies D and F are to each other as the resistances of bodies E and G, these
also will similarly approach the ratio of equality. Therefore, the resistances
of bodies D and F, when they move very swiftly, are very nearly equal, and
therefore, since the resistance of body F is in the squared ratio of the velocity,
the resistance of body D will be very nearly in the same ratio.

CoroLrary 3. The resistance of a body moving very swiftly in any elastic
fluid is about the same as if the parts of the fluid lacked their centrifugal
forces and did not recede from one another, provided that the elastic force
of the fluid arises from the centrifugal forces of the particles and that the
velocity is so great that the forces do not have enough time to act.

CoroLLary 4. Accordingly, since the resistances of similar and equally
swift bodies, in a medium whose parts (being far apart) do not recede from

one another, are as the squares of the diameters, the resistances of equally
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swift and very quickly moving bodies in an elastic fluid are also very nearly
as the squares of the diameters.

CoroLrary 5. And since similar, equal, and equally swift bodies, in
mediums which have the same density and whose particles do not recede
from one another, impinge upon an equal quantity of matter in equal times
(whether the particles are more and smaller or fewer and larger) and impress
upon it an equal quantity of motion and in turn (by the third law of motion)
undergo an equal reaction from it (that is, are equally resisted), it is manifest
also that in elastic fluids of the same density, when the bodies move very
swiftly, the resistances they encounter are very nearly equal, whether those
fluids consist of coarser particles or are made of the most subtle particles of
all. The resistance to projectiles moving very quickly is not much diminished
as a result of the subtlety of the medium.

CororLary 6. These statements all hold for fluids whose elastic force
originates in the centrifugal forces [i.e., forces of repulsion] of the particles.
But if that force arises from some other source, such as the expansion of the
particles in the manner of wool or the branches of trees, or from any other
cause which makes the particles move less freely with respect to one another,
then the resistance will be greater than in the preceding corollaries because

the medium is less fluid.

In a rare medium consisting of particles that are equal and arranged freely at
equal distances from one another, let a sphere and a cylinder—described with
equal diameters—move with equal velocity along the direction of the axis of the
cylinder; then the resistance of the sphere will be half the resistance of the cylinder.

For since the action of a medium on a body is (by corol. 5 of the
laws) the same whether the body moves in a medium at rest or the par-

ticles of the medium impinge with the

¢ K N same velocity on the body at rest, let
E 14 L__* us consider the body to be at rest and

see with what force it will be urged

1 ¢ AN by the moving medium. Let ABKI,

therefore, designate a spherical body

described with center C and semidi-

Q o ameter CA, and let the particles of the
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medium strike the spherical body with a given velocity along straight lines
parallel to AC; and let FB be such a straight line. On FB take LB equal
to the semidiameter CB, and draw BD touching the sphere in B. To KC
and BD drop the perpendiculars BE and LD; then the force with which a
particle of the medium, obliquely incident along the straight line FB, strikes
the sphere at B will be to the force with which the same particle would
strike the cylinder ONGQ (described with axis ACI about the sphere) per-
pendicularly at 5 as LD to LB or BE to BC. Again, the efficacy of this force
to move the sphere along the direction FB (or AC) of its incidence is to its
efficacy to move the sphere along the direction of its determination—that
is, along the direction of the straight line BC in which it urges the sphere
directly [a direction through the center of the sphere]—as BE to BC. And,
compounding the ratios, if a particle strikes the sphere obliquely along the
straight line FB, its efficacy to move the sphere along the direction of its
incidence is to the efficacy of the same particle to move the cylinder in the
same direction, when striking the cylinder perpendicularly along the same
straight line, as BE? to BC?. Therefore, if in 4E, which is perpendicular to

the circular base NAO of the cylinder and equal to the radius AC, 5H is
2

taken equal to B’ then #H will be to &E as the effect of a particle upon
the sphere to the effect of the particle upon the cylinder. And therefore
the solid that is composed of all the straight lines #H will be to the solid
that is composed of all the straight lines E as the effect of all the parti-
cles upon the sphere to the effect of all the particles upon the cylinder. But
the first solid is a paraboloid described with vertex C, axis CA, and latus
rectum CA, and the second solid is a cylinder circumscribed around the
paraboloid; and it is known that a paraboloid is half of the circumscribed
cylinder. Therefore the whole force of the medium upon the sphere is half
of its whole force upon the cylinder. And therefore, if the particles of the
medium were at rest and the cylinder and the sphere were moving with

equal velocity, the resistance of the sphere would be half the resistance of the
cylinder. Q.E.D.

By the same method other figures can be compared with one another with
respect to resistance, and those that are more suitable for continuing their

motions in resisting mediums can be found. For example, let it be required
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to construct a frustum CBGF of a cone with the
circular base CEBH (which is described with
center O and radius OC) and with the height
OD, which is resisted less than any other frus-
tum constructed with the same base and height
and moving forward along the direction of the
axis toward D; bisect the height OD in Q, and
produce OQ to S so that QS is equal to QC,

and S will be the vertex of the cone whose frustum is required.

Note in passing that since the angle CSB is always acute, it follows
that if the solid ADBE is generated by a revolution of the elliptical or
oval figure ADBE about the axis

AB, and if the generating figure

is touched by the three straight

) lines FG, GH, and HI in points
R F, B, and [, in such a way that

GH is perpendicular to the axis
in the point of contact B, and FG
and HI meet the said line GH at
the angles FGB and BHI of 135 degrees, then the solid that is generated by
the revolution of the figure ADFGHIE about the same axis AB is less re-
sisted than the former solid, provided that each of the two moves forward
along the direction of its axis AB, and the end B of each one is in front.
Indeed, I think that this proposition will be of some use for the construction
of ships.

But suppose the figure DNFG to be a curve of such a sort that if the
perpendicular NM is dropped from any point N of that curve to the axis AB,
and if from the given point G the straight line GR is drawn, which is parallel
to a straight line touching the figure in N and cuts the axis (produced) in
R, then MN would be to GR as GR? to 4BR x GB?. Then, in this case,
the solid that is described by a revolution of this figure about the axis AB
will, in moving in the aforesaid rare medium from A toward B, be resisted
less than any other solid of revolution described with the same length and
width.
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If a rare medium consists of minimally small equal particles that are at rest and Proposition 35°
arranged freely at equal distances from one another, it is required to find the Problem 7
resistance encountered by a sphere moving forward uniformly in this medium.

Case 1. Let a cylinder described with the same diameter and height as
before move forward with the same velocity along the length of its own axis
in the same medium. And let us suppose that the particles of the medium
upon which the sphere or cylinder impinges rebound with the greatest possi-
ble force of reflection. Then the resistance of the sphere (by prop. 34) is half
the resistance of the cylinder, and the sphere is to the cylinder as 2 to 3, and
the cylinder in impinging perpendicularly upon the particles and reflecting
them as greatly as possible communicates twice its own velocity to them.
Therefore, the cylinder, in the time in which it describes half the length of
its axis by moving uniformly forward, will communicate to the particles a
motion which is to the whole motion of the cylinder as the density of the
medium is to the density of the cylinder; and the sphere, in the time in which
it describes the whole length of its diameter by moving uniformly forward,
will communicate the same motion to the particles, and in the time in which
it describes %3 of its diameter it will communicate to the particles a motion
which is to the whole motion of the sphere as the density of the medium to
the density of the sphere. And therefore the sphere encounters a resistance
that is to the force by which its whole motion could be either destroyed or
generated, in the time in which it describes %3 of its diameter by moving
uniformly forward, as the density of the medium is to the density of the
sphere.

Case 2. Let us suppose that the particles of the medium impinging
upon the sphere or cylinder are not reflected; then the cylinder, in impinging
perpendicularly upon the particles, will communicate its whole velocity to
them and thus encounters half the resistance which it met in the former
case, and the resistance encountered by the sphere will also be half of what
it was before.

Case 3. Let us suppose that the particles of the medium rebound from

the sphere with a force of reflection that is neither the greatest nor nil but

a. A translation of the versions of book 2, props. 35-40, that appear in the first edition has been made
by I. Bernard Cohen and Anne Whitman and will be published, together with a commentary by George
Smith, in Newton’s Natural Philosophy, ed. Jed Buchwald and I. Bernard Cohen (Cambridge: MIT Press,

forthcoming).
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some intermediate force; then the resistance encountered by the sphere will
also be intermediate between the resistance in case 1 and the resistance in
case 2. Q.E.L

CororLary 1. Hence, if the sphere and the particles are infinitely hard
without any elastic force and therefore also without any force of reflection,
the resistance encountered by the sphere will be to the force by which its
whole motion could be either destroyed or generated, in the time in which
the sphere describes %3 of its diameter, as the density of the medium is to the
density of the sphere.

CororLary 2. The resistance encountered by the sphere, other things
being equal, is in the squared ratio of the velocity.

Cororrary 3. The resistance encountered by the sphere, other things
being equal, is in the squared ratio of the diameter.

CoroLrLary 4. The resistance encountered by the sphere, other things
being equal, is as the density of the medium.

Cororrary 5. The resistance encountered by the sphere is in a ratio that
is compounded of the squared ratio of the velocity and the squared ratio of
the diameter, and the simple ratio of the density of the medium.

CoroLrLary 6. And the motion of the sphere with the resistance it en-
counters can be represented as follows. Let AB be the time in which the

sphere can lose its whole motion when the resis-

° tance is continued uniformly. Erect AD and BC
¢ < perpendicular to AB. And let BC be the whole
g motion, and through point C with asymptotes
B [ AD and AB describe the hyperbola CF. Pro-
A P E

duce AB to any point E. Erect the perpendicu-
lar EF meeting the hyperbola in F. Complete the parallelogram CBEG, and
draw AF meeting BC in H. Then, if the sphere, in any time BE, when its
first motion BC is continued uniformly, in a nonresisting medium, describes
the space CBEG represented by the area of the parallelogram, it will in a
resisting medium describe the space CBEF represented by the area of the
hyperbola, and its motion at the end of that time will be represented by the
ordinate EF of the hyperbola, with loss of part FG of its motion. And the
resistance at the end of the same time will be represented by the length BH,
with loss of part CH of the resistance. All of this is evident by book 2, prop.

5, corols. 1 and 3.
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CoroLLary 7. Hence, if in time T, when the resistance R is continued
uniformly, the sphere loses its whole motion M, then in time # in a resisting

medium, when the resistance R decreases in the squared ratio of the velocity,

the sphere will lose part of its motion M without loss of part To;

+¢
and the sphere will describe a space that is to the space described by the
T+¢

uniform motion M, in the same time z, as the logarithm of the number

t
multiplied by the number 2.302585092994 is to the number T because the

hyperbolic area BCFE is in this proportion to the rectangle BCGE.

In this proportion I have set forth the resistance and retardation encountered
by spherical projectiles in noncontinuous mediums, and I have shown that
this resistance is to the force by which the whole motion of a sphere could
be either destroyed or generated in the time in which the sphere describes
% of its diameter, with a velocity continued uniformly, as the density of
the medium is to the density of the sphere, provided that the sphere and
the particles of the medium are highly elastic and possess the greatest force
of reflecting, and I have shown that this force is half as great when the
sphere and the particles of the medium are infinitely hard and devoid of all
force of reflecting. Moreover, in continuous mediums such as water, hot oil,
and quicksilver, in which the sphere does not impinge directly upon all the
particles of the fluid which generate resistance but presses only the nearest
particles, and these press others and these still others, the resistance is half
as great as in the second case. In extremely fluid mediums of this sort the
sphere encounters a resistance that is to the force by which its whole motion
could be either destroyed or generated, in the time in which it describes %3
of its diameter with the motion continued uniformly, as the density of the
medium is to the density of the sphere. We will try to show this in what

follows.

To determine the motion of water flowing out of a cylindrical vessel through a
hole in the bottom.

Let ACDB be the cylindrical vessel, AB its upper opening, CD its bottom
parallel to the horizon, EF a circular hole in the middle of the bottom, G the

center of the hole, and GH the cylinder’s axis perpendicular to the horizon.
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P! ‘. And imagine that a cylinder of ice APQB is
: : of the same width as the interior of the vessel,
has the same axis, and descends continually with

K.wdoieil. 2 uniform motion. Imagine also that its parts

liquefy as soon as they touch the surface AB,
that when they have turned into water they flow
down into the vessel as a result of their gravity,
and that in falling these parts form a cataract or
column of water ABNFEM and pass through

c E G F D the hole EF and fill it exactly. And let the uni-

form velocity of the descending ice, as well as that of the contiguous water
in the circle AB, be the velocity which the water can acquire in falling and
describing by its fall the space IH, and let IH and HG lie in a straight
line, and through point I draw the straight line KL parallel to the hori-
zon and meeting the sides of the ice in K and L. Then the velocity of the
water flowing out through the hole EF will be that which the water can
acquire in falling from I and describing by its fall the space IG. And thus,
by Galileo’s theorems, IG will be to IH as the square of the ratio of the
velocity of the water flowing out through the hole to the velocity of the
water in the circle AB, that is, as the square of the ratio of the circle AB
to the circle EF, for these circles are inversely as the velocities of the water
passing through them in the same time and with an equal quantity, filling
them both exactly. Here it is the velocity of the water toward the horizon that
is of concern. And the motion parallel to the horizon by which the parts of
the falling water approach one another is not considered here, since it does
not arise from gravity or change the motion perpendicular to the horizon
that does arise from gravity. Indeed, we are supposing that the parts of the
water cohere somewhat and that by their cohesion they approach one another
with motions parallel to the horizon as they fall, so that they form only one
single cataract and are not divided into several cataracts, but here we are not
considering the motion parallel to the horizon arising from that cohesion.
Case 1. Now suppose that the interior of the vessel around the falling
water ABNFEM is filled with ice, so that the water passes through the ice as
if through a funnel. Then, if the water does not quite touch the ice, or (what
comes to the same thing) if it touches it and, because of the great smoothness

of the ice, slides through it with the greatest possible freedom and without
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any resistance, the water will flow down through the hole EF with the same
velocity as before, and the whole weight of the column of water ABNFEM
will be used in generating its downflow as before, and the bottom of the
vessel will sustain the weight of the ice surrounding the column.

Now let the ice liquefy in the vessel; then the flow of the water will
remain the same as before with respect to velocity. It will not be less, since
the melted ice will endeavor to descend; and not greater, since the melted
ice cannot descend without impeding an equal descent of the original water.
The same force ought to generate the same velocity in the flowing water
[i.e., since the force is the same, the velocity that it generates will also be the
same].

But the hole in the bottom of the vessel, because of the oblique motions of
the particles of the flowing water, ought to be a little larger than before. For
now the particles of water do not all pass through the hole perpendicularly
but, flowing together from all the sides of the vessel and converging into the
hole, pass through with oblique motions and, turning their course downward,
unite into a stream of water gushing out which is narrower a little below
the hole than in the hole itself, its diameter being to the diameter of the hole
as 5 to 6, or 5V2 to 6Y2 very nearly, provided that I measured the diameters
correctly. At any rate, I obtained a very thin flat plate perforated in the
middle, the diameter of the circular hole being % inch. And so that the
stream of water gushing out might not be accelerated in falling and made
narrower by the acceleration, I fastened this plate not to the bottom but to
the side of the vessel in such a way that the strearn went out along a line
parallel to the horizon. Then, when the vessel was full of water, I opened
the hole so that the water might flow out, and the diameter of the stream,
measured as accurately as possible at a distance of about Y4 inch from the
hole, came out 2V4 inch. The diameter of this circular hole, therefore, was
to the diameter of the stream very nearly as 25 to 21. Therefore the water in
passing through the hole converges from all directions, and after flowing out
of the vessel the stream is made narrower by converging and is accelerated
by narrowing until it has reached a distance of %2 inch from the hole and at
that distance becomes narrower and swifter than it is in the hole itself in the
ratio of 25 x 25 to 21 X 21 or very nearly 17 to 12, that is, roughly as the
square root of the ratio of 2 to 1. And experiments prove that the quantity

of water that flows out in a given time through a circular hole in the bottom
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of a vessel is the quantity that ought to flow out in the same time, with the
velocity mentioned above, not through that hole but through a circular hole
whose diameter is to the diameter of that hole as 21 to 25. And thus the
flowing water has the downward velocity in the hole itself that a heavy body
can acquire very nearly in falling and describing by its fall a space equal to
half the height of the water standing in the vessel. But after the water has
gone out of the vessel, it is accelerated by converging until it has reached
a distance from the hole almost equal to the diameter of the hole and has
acquired a velocity that is greater approximately as the square root of the
ratio of 2 to 1, which is, as a matter of fact, very nearly the velocity that a
heavy body can acquire in falling and describing by its fall a space equal to
the whole height of the water standing in the vessel.

In what follows, therefore, let the diameter of the stream be designated by
that smaller hole which we have called EF. And suppose that another higher

K . L plane VW is drawn parallel to the plane of

A

B the hole EF at a distance about equal to the

diameter of the hole and pierced by a larger
N hole ST, and through this let a stream fall that
exactly fills the lower hole EF and thus has a

N o diameter which is to the diameter of this lower

hole as about 25 to 21. For thus the stream will

‘ ETF P pass perpendicularly through the lower hole,

and the quantity of the water flowing out, depending on the size of this
hole, will be very nearly that which the solution of the problem demands.
Now, the space which is enclosed by the two planes and the falling stream
can be considered to be the bottom of the vessel. But so that the solution of
the problem may be simpler and more mathematical, it is preferable to use
only the lower plane for the bottom of the vessel and to imagine that the
water which flowed down through the ice as if through a funnel and came
out of the vessel through the hole EF in the lower plane keeps its motion
continually and that the ice keeps its state of rest. In what follows, therefore,
let ST be the diameter of a circular hole described with center Z, through
which a cataract flows out of the vessel when all the water in the vessel is
fluid. And let EF be the diameter of the hole which the cataract fills exactly
when falling through it, whether the water comes out of the vessel through

the upper hole ST or falls through the middle of the ice in the vessel as
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if through a funnel. And let the diameter of the upper hole ST be to the
diameter of the lower hole EF as about 25 to 21, and let the perpendicular
distance between the planes of the holes be equal to the diameter of the
smaller hole EF. Then the downward velocity of the water coming out of
the vessel through the hole ST will in the hole itself be that which a body
can acquire in falling from half of the height IZ; and the velocity of both
falling cataracts will, in the hole EF, be that which a body will acquire in
falling from the whole height IG.

Case 2. If the hole EF is not in the middle of the bottom of the vessel,
but the bottom is perforated elsewhere, the water will flow out with the same
velocity as before, provided that the size of the hole is the same. For a heavy
body does descend to the same depth in a greater time along an oblique
line than along a perpendicular line, but in descending it acquires the same
velocity in either case, as Galileo proved.

Case 3. The velocity of the water flowing out through a hole in the
side of the vessel is the same. For if the hole is small, so that the distance
between the surfaces AB and KL vanishes, so far as the senses can tell, and
the stream of water gushing out horizontally forms a parabolic figure, it will
be found from the latus rectum of this parabola that the velocity of the water
flowing out is that which a body could have acquired by falling from the
height HG or IG of the water standing in the vessel. Indeed, by making an
experiment I found that when the height of the standing water above the
hole was 20 inches and the height of the hole above a plane parallel to the
horizon was also 20 inches, the stream of water gushing forth would fall
upon the plane at a distance of about 37 inches, taken from a perpendicular
that was dropped to the plane from the hole. For in the absence of resistance
the stream would have had to fall upon the plane at a distance of 40 inches,
the latus rectum of the parabolic stream being 80 inches.

Case 4. Further, if the water flowing out has an upward motion, it
comes out with the same velocity. For a small stream of water gushing out
ascends with a perpendicular motion to the height GH or GI of the water
standing in the vessel, except insofar as its ascent is somewhat impeded by
the resistance of the air; and accordingly it flows out with the velocity that
it could have acquired in falling from that height. Any one particle of the
standing water (by book 2, prop. 19) is pressed equally from all sides and,

yielding to the pressure, goes with equal force in every direction, whether it
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descends through a hole in the bottom of the vessel or flows out horizontally
through a hole in its side or comes out into a channel and ascends from
there through a small hole in the upper part of the channel. And that the
velocity with which the water flows out is that which we have designated
in this proposition is not only found by reason but is also manifest from the
well-known experiments already described.

Case 5. The velocity of the water flowing out is the same whether the
hole is circular or square or triangular or of any other shape equal in area to
the circular one. For the velocity of the water flowing out does not depend
on the shape of the hole but on the height of the water in relation to the
plane KL.

Case 6. If the lower part of the vessel ABDC is immersed in standing
water, and the height of the standing water above the bottom of the vessel is

L GR, the velocity with which the water in the

B vessel will flow out through the hole EF into
the standing water will be that which the water
can acquire in falling and describing by its fall
the space IR. For the weight of all the water in

the vessel that is lower than the surface of the

p standing water will be sustained in equilibrium
by the weight of the standing water and thus
will not at all accelerate the motion of the descending water in the vessel.
This case can also be shown by experiments, by measuring the times in which
the water flows out.

Cororrary 1. Hence, if the height CA of the water is produced to K,
so that AK is to CK in the squared ratio of the area of a hole made in any
part of the bottom to the area of the circle AB, the velocity of the water
flowing out will be equal to the velocity that the water can acquire in falling
and describing by its fall the space KC.

Cororrary 2. And the force by which the whole motion of the water
gushing out can be generated is equal to the weight of a cylindrical column
of water whose base is the hole EF and whose height is 2GI or 2CK. For
the gushing water, in the time in which it equals this column, can acquire
in falling (by its weight) from the height GI the very velocity with which it

gushes out.
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Cororrary 3. The weight of all the water in the vessel ABDC is to
the part of the weight that is used in making the water flow down as the
sum of the circles AB and EF to twice the circle EF. For let IO be a mean
proportional between IH and IG; then the water coming out through the
hole EF, in the time in which a drop could describe a space equal to the
height IG in falling from I, will be equal to a cylinder whose base is the circle
EF and whose height is 2IG, that is, to a cylinder whose base is the circle AB
and whose height is 21O, for the circle EF is to the circle AB as the square
root of the ratio of the height IH to the height IG, that is, in the simple ratio
of the mean proportional IO to the height IG, and in the time in which a
drop can describe a space equal to the height IH in falling from I, the water
coming out will be equal to a cylinder whose base is the circle AB and whose
height is 2IH, and in the time in which a drop describes a space equal to
the difference HG between the heights in falling from I through H to G,
the water coming out—that is, all the water in the solid ABNFEM—will
be equal to the difference between the cylinders, that is, equal to a cylinder
whose base is AB and whose height is 2ZHO. And therefore all the water in
the vessel ABDC is to all the water falling in the solid ABNFEM as HG to
2HO, that is, as HO 4+ OG to 2HO, or IH + 1O to 2IH. But the weight of
all the water in the solid ABNFEM is used in making the water flow down,
and accordingly the weight of all the water in the vessel is to the part of the
weight that is used in making the water flow down as IH 4 1O to 2IH and
thus as the sum of the circles EF and AB to twice the circle EF.

CoroLrLary 4. And hence the weight of all the water in the vessel ABDC
is to the part of the weight sustained by the bottom of the vessel as the sum
of the circles AB and EF is to the difference between these circles.

CoroLrary 5. And the part of the weight sustained by the bottom of
the vessel is to the part of the weight used in making the water flow down
as the difference between the circles AB and EF is to twice the smaller circle
EF, or as the area of the bottom to twice the hole.

CoroLLary 6. And the part of the weight which alone presses upon
the bottom is to the weight of all the water resting perpendicularly on the
bottom as the circle AB is to the sum of the circles AB and EF, or as the
circle AB is to the amount by which twice the circle AB exceeds the bottom.
For the part of the weight which alone presses upon the bottom is to the

weight of all the water in the vessel as the difference between the circles AB
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and EF is to the sum of these circles, by corol. 4; and the weight of all the
water in the vessel is to the weight of all the water resting perpendicularly
on the bottom as the circle AB is to the difference between the circles AB
and EF. Therefore, from the equality of the ratios in inordinate proportion
[or ex aequo perturbate], the part of the weight which alone presses upon
the bottom is to the weight of all the water resting perpendicularly on the
bottom as the circle AB is to the sum of the circles AB and EF, or to the
amount by which twice the circle AB exceeds the bottom.

CororLary 7. If in the middle of the hole EF there is placed a little
circle PQ described with center G and parallel to the horizon, the weight
) S . * of the water which that little circle sustains

Ai, H ,iB is greater than the weight of %5 of a cylin-

) der of water whose base is that little circle
and whose height is GH. For let ABNFEM
N be a cataract or column of falling water, with
. axis GH as above, and suppose that there has

been a freezing of all the water in the vessel

(around the cataract as well as above the little
€T E PGR F  ®  (ircle) whose fluidity is not required for the
very ready and very swift descent of the water. And let PHQ be the frozen
column of water above the little circle, having vertex H and height GH.
And imagine that this cataract falls with its whole weight and does not rest
or press on PHQ but slides past freely and without friction, except perhaps
at the very vertex of the ice, where at the very beginning of falling the
cataract begins to be concave. And just as the frozen water (AMEC and
BNFD) which is around the cataract is convex on the inner surface (AME
and BNF) toward the falling cataract, so also this column PHQ will be con-
vex toward the cataract, and therefore will be greater than a cone whose
base is the little circle PQ and whose height is GH, that is, greater than 5
of a cylinder described with the same base and height. And the little circle
sustains the weight of this column, that is, a weight that is greater than the
weight of the cone or of 3 of the cylinder.

CoroLLary 8. The weight of the water sustained by the little circle PQ,
when it is extremely small, appears to be less than the weight of %5 of a
cylinder of water whose base is that little circle and whose height 1s HG.

Keeping the same suppositions, imagine that half a spheroid is described,
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whose base is the little circle and whose semiaxis or height is HG. Then
this figure will be equal to % of that cylinder and will comprehend the
column of frozen water PHQ whose weight that little circle sustains. In
order that the motion of the water may be straight down, the outer surface
of this column must meet the base PQ in a somewhat acute angle, because
the water in falling is continually accelerated and the acceleration makes the
column become narrower; and since that angle is less than a right angle, the
lower parts of this column will lie within the half-spheroid. But higher up,
the column will be acute or pointed, for otherwise the horizontal motion
of the water at the vertex of the spheroid would be infinitely swifter than
its motion toward the horizon. And the smaller the little circle PQ, the
more acute the vertex of the column; and if the little circle is diminished
indefinitely, the angle PHQ will be diminished indefinitely, and therefore
the column will lie within the half-spheroid. That column is therefore less
than the half-spheroid, or less than %3 of a cylinder whose base is that little
circle and whose height is GH. Moreover, the little circle sustains the water’s
force equal to the weight of this column, since the weight of the surrounding
water is used in making it flow down.

CororLary 9. The weight of the water sustained by the little circle PQ,
when it is extremely small, is very nearly equal to the weight of a cylinder
of water whose base is that little circle and whose height is 2GH. For this
weight is an arithmetical mean between the weights of the cone and the
said half-spheroid. If, however, the little circle is not extremely small but is
increased until it equals the hole EF, it will sustain the weight of all the
water resting perpendicularly on it, that is, the weight of a cylinder of water
whose base is that little circle and whose height is GH.

CororLary 10.  And (as far as I can tell) the weight that the little circle
sustains always has the proportion to the weight of a cylinder of water whose
base is that little circle and whose height is 2GH that EF? has to EF? —
15 PQ?, or that the circle EF has to the excess of this circle over half of the
little circle PQ, very nearly.

The resistance of a cylinder moving uniformly forward in the direction of its length
is not changed by an increase or decrease in length and thus is the same as the
resistance of a circle described with the same diameter and moving forward with

the same velocity along a straight line perpendicular to its plane.
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For the sides of a cylinder offer no opposition to its motion, and a cylinder

is turned into a circle if its length is decreased indefinitely.

If a cylinder moves uniformly forward in a compressed, infinite, and nonelastic

Theorem 29 fluid in the direction of its own length, its resistance arising from the magnitude

of its transverse section is to the force by which its whole motion can be either
destroyed or generated, while it is describing four times its length, very nearly as
the density of the medium is to the density of the cylinder.

For if the bottom CD of the vessel ABDC touches the surface of stagnant
water, and if water flows out of this vessel into the stagnant water through

the cylindrical channel EFTS perpendicular to

ii'-:'« - the horizon, and if the little circle PQ is placed
parallel to the horizon anywhere in the middle

: of the channel, and if CA is produced to K so

c (E D that CK is to AK in the squared ratio of the

circle AB to the amount by which the opening
P @ of the channel EF exceeds the little circle PQ,
then it is obvious (by prop. 36, case 5, case 6,

and corol. 1) that the velocity of the water pass-

ing through the annular space between the little
circle and the sides of the vessel will be that which the water can acquire in
falling and describing by its fall a space equal to the height KC or IG.

And (by prop. 36, corol. 10) if the width of the vessel is infinite, so that
the line-element HI vanishes and the heights IG and HG are equal, then the
force of the water flowing down into the little circle will be to the weight
of a cylinder whose base is that little circle, and whose height is 151G, very
nearly as EF? to EF? — 1APQ®. For the force of the water flowing down
through the whole channel with uniform motion will be the same upon the
little circle PQ in whatever part of the channel it is placed.

Now let the openings EF and ST of the channel be closed, and let the
little circle ascend in the fluid compressed on all sides, and by its ascent let it
make the upper water descend through the annular space between the little
circle and the sides of the channel; then the velocity of the ascending little
circle will be to the velocity of the descending water as the difference between
the circles EF and PQ is to the circle PQ, and the velocity of the ascending

little circle will be to the sum of the velocities (that is, to the relative velocity
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of the descending water, with which it flows past the ascending little circle)
as the difference between the circles EF and PQ is to the circle EF, or as
EF? — PQ? to EF2. Let that relative velocity be equal to the velocity with
which (as shown above) the water passes through the same annular space
while the little circle remains unmoved, that is, to the velocity that the water
can acquire in falling and describing by its fall a space equal to the height
IG; then the force of the water upon the ascending little circle will be the
same as before (by corol. 5 of the laws), that is, the resistance of the ascending
little circle will be to the weight of a cylinder of water whose base is that
little circle, and whose height is 141G, very nearly as EF? to EF? — 14PQ%.
And the velocity of the little circle will be to the velocity that the water
acquires in falling, and describing by its fall a space equal to the height IG,
as EF? — PQ? to EF2.

Let the breadth of the channel be increased indefinitely; then those ratios
between EF? — PQ? and EF? and between EF? and EF? — V4PQ? will
ultimately approach ratios of equality. And therefore the velocity of the little
circle will now be that which the water can acquire in falling and describing
by its fall a space equal to the height IG, and its resistance will come out
equal to the weight of a cylinder whose base is that little circle and whose
height is half of the height IG from which the cylinder must fall in order
to acquire the velocity of the ascending little circle, and with this velocity
the cylinder will, in the time of falling, describe four times its own length.
And the resistance of the cylinder, moving forward with this velocity in the
direction of its length, is the same as the resistance of the little circle (by
lem. 4) and thus is very nearly equal to the force by which its motion can be
generated while it is describing four times its length.

If the length of the cylinder is increased or decreased, its motion, and
also the time in which it describes four times its length, will be increased or
decreased in the same ratio; and thus that force by which the increased or de-
creased motion, in a time equally increased or decreased, could be generated
or destroyed will not be changed and accordingly is under these circumstances
still equal to the resistance of the cylinder; for this also remains unchanged,
by lem. 4.

If the density of the cylinder is increased or decreased, its motion, and also
the force by which the motion can be generated or destroyed in the same time,

will be increased or decreased in the same ratio. The resistance, therefore, of
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any cylinder to the force by which its whole motion could be either generated
or destroyed, while it is describing four times its length, will be very nearly
as the density of the medium to the density of the cylinder. Q.E.D.

A fluid must be compressed in order to be continuous, and it must be
continuous and nonelastic in order that every pressure arising from its com-
pression may be propagated instantaneously and, by acting equally upon all
parts of a moving body, not change the resistance. The pressure arising from
the body’s motion is of course used in generating the motion of the parts of
the fluid and creates resistance. But the pressure arising from the compres-
sion of the fluid, however strong it may be, if it is propagated instantaneously,
generates no motion in the parts of a continuous fluid, introduces no change
of motion at all, and thus neither increases nor decreases the resistance. Cer-
tainly the action of a fluid that arises from its compression cannot be stronger
upon the back of a moving body than upon the front and thus cannot de-
crease the resistance described in this proposition; and the action will not be
stronger upon the front than upon the back provided that its propagation is
infinitely swifter than the motion of the body pressed. And the action will
be infinitely swifter and will be propagated instantaneously provided that the
fluid is continuous and nonelastic.

CoroLrary 1. The resistances to cylinders that move uniformly forward
in the direction of their lengths in infinite and continuous mediums are in a
ratio compounded of the squared ratio of the velocities and the squared ratio
of the diameters and the ratio of the density of the mediums.

CoroLrary 2. If the breadth of the channel is not increased indefi-
nitely, but the cylinder moves forward in the direction of its own length

in an enclosed medium at rest, and meanwhile

its axis coincides with the axis of the channel,

then the resistance to the cylinder will be to

the force by which its whole motion could be

c D either generated or destroyed, in the time in
..... E F ] which it describes four times its length, in a
P Q ratio compounded of the simple ratio of EF? to

o EF? — ¥4PQ? and the squared ratio of EF? w

EF? — PQ? and the ratio of the density of the

medium to the density of the cylinder.
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CoroLLaRY 3. With the same suppositions, let the length L be to four
times the length of the cylinder in a ratio compounded of the simple ratio
of EF? — V4PQ? to EF? and the squared ratio of EF? — PQ? to EF?; then
the resistance of the cylinder will be to the force by which its whole motion
could be either destroyed or generated, while it is describing the length L,
as the density of the medium to the density of the cylinder.

In this proposition we have investigated the resistance arising solely from the
magnitude of the transverse section of a cylinder, without considering the
part of the resistance that can arise from the obliquity of the motions. In
prop. 36, case 1, the flow of the water through the hole EF was impeded
by the obliquity of the motions with which the parts of the water in the
vessel converged from all sides into the hole. Similarly, in this proposition,
the obliquity of the motions with which the parts of the water pressed by
the front end of the cylinder yield to the pressure and diverge on all sides
has these effects: it retards the passage of those motions through the places
around that front end toward the back of the cylinder, it makes the fluid
move to a greater distance, and it increases the resistance in nearly the ratio
with which it decreases the flow of the water from the vessel, that is, in the
squared ratio of 25 to 21, roughly.

In case 1 of prop. 36 we made the parts of the water pass through the
hole EF perpendicularly and in the greatest abundance by supposing that
all the water in the vessel that had been frozen around the cataract, and
whose motion was oblique and useless, remained without motion. Similarly,
in this proposition, in order that the obliquity of the motions may be an-

nulled, and the parts of the water, by

yielding with the most direct and rapid H &

motion, may provide the easiest passage s ¢ A

to the cylinder, and in order that only ~F .. | - R
D

the resistance may remain that arises

from the magnitude of the transverse section and that cannot be decreased
except by decreasing the diameter of the cylinder, it must be understood
that the parts of the fluid whose motions are oblique and useless and cre-
ate resistance are at rest with respect to one another at both ends of the
cylinder and cohere and are joined to the cylinder. Let ABDC be a rect-
angle, and let AE and BE be two parabolic arcs described with axis AB
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and with a latus rectum that is to the space HG, which is to be described
by the falling cylinder while it is acquiring its velocity, as HG to 14AB.
Additionally, let CF and DF be two other parabolic arcs, described with
axis CD and a latus rectum that is four times the former latus rectum; and
by the revolution of the figure about its axis EF, let a solid be generated
whose middle ABDC is the cylinder with which we are dealing, and whose
extremities ABE and CDF contain the parts of the fluid which are at rest
with respect to one another and solidified into two rigid bodies that adhere
to the cylinder at the ends as head and tail. Then the resistance to the solid
EACFDB moving forward in the direction of its axis FE from F toward E
will be very nearly that which we have described in this proposition. That
1s, the density of the fluid is to the density of the cylinder very nearly in
the ratio of this resistance to the force by which the whole motion of the
cylinder could be either destroyed or generated, while the length 4AC is be-
ing described with that motion continued uniformly. And with this force the

resistance cannot be less than in the ratio of 2 to 3, by prop. 36, corol. 7.

If a cylinder, a sphere, and a spheroid, whose widths are equal, are placed succes-
sively in the middle of a cylindrical channel in such a way that their axes coincide
with the axis of the channel, these bodies will equally impede the flow of water
through the channel.

For the spaces through which the water passes between the channel and
the cylinder, sphere, and spheroid are equal; and water passes equaliy through
equal spaces.

This is so on the hypothesis that all the water is frozen which is above
the cylinder, sphere, or spheroid, and whose fluidity is not required for the

very swift passage of the water, as I have explained in prop. 36, corol. 7.

With the same suppositions, these bodies are equally urged by the water flowing
through the channel.
This is evident by lem. 5 and the third law of motion. Of course, the

water and the bodies act equally upon one another.

If the water is at rest in the channel, and these bodies go through the channel with

equal velocity in opposite directions, the resistances will be equal to one another.
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This is clear from lem. 6; for the relative motions remain the same with

respect to one another.

It is the same for all convex round bodies whose axes coincide with the axis
of the channel. Some difference can arise from a greater or lesser friction;
but in these lemmas we are supposing that the bodies are very smooth, that
the tenacity and friction of the medium are nil, and that the parts of the
fluid which by their oblique and superfluous motions can perturb, impede,
and retard the flow of the water through the channel are at rest with respect
to one another as if icebound and adhere to the front and back of the bodies,
as I have explained in the scholium to prop. 37. For what follows deals with
the least possible resistance of round bodies described with the greatest given
transverse sections.

Bodies moving straight ahead in fluids make the fluid ascend in front of
them and subside in back of them, especially if they are blunt in shape; and
hence they encounter a slightly greater resistance than if they had pointed
heads and tails. And bodies moving in elastic fluids, if they are blunt in
front and in back, condense the fluid a little more at the front and make
it a little less dense at the back; and hence they encounter a slightly greater
resistance than if they had pointed heads and tails. But in these lemmas and
propositions we are not dealing with elastic fluids but with nonelastic fluids,
not with bodies floating on the surface of the fluid but with bodies deeply
immersed. And once the resistance of bodies in nonelastic fluids is known,
this resistance will have to be increased somewhat for elastic fluids such as

air as well as for the surfaces of stagnant fluids such as seas and swamps.

The resistance to a sphere moving uniformly forward in an infinite and nonelastic
compressed fluid is to the force by which its whole motion could either be destroyed
or generated, in the time in which it describes %5 of its diameter, very nearly as
the density of the fluid to the density of the sphere.

For a sphere is to the circumscribed cylinder as 2 to 3, and therefore the
force that could take away all the motion of a cylinder, while the cylinder
is describing a length of four diameters, will take away all the motion of
the sphere while the sphere describes %5 of this length, that is, % of its own
diameter. And the resistance of the cylinder is to this force very nearly as

the density of the fluid to the density of the cylinder or sphere, by prop. 37,
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and the resistance of the sphere is equal to the resistance of the cylinder, by
lems. 5, 6, and 7. Q.E.D.

CororLary 1. The resistances of spheres in infinite compressed medi-
ums are in a ratio compounded of the squared ratio of the velocity and the
squared ratio of the diameter and the ratio of the density of the mediums.

CororLary 2. The greatest velocity with which a sphere, by the force
of its own relative weight, can descend in a resisting fluid is that which the
same sphere with the same weight can acquire in falling without resistance
and describing by its fall a space that is to %3 of its diameter as the density
of the sphere to the density of the fluid. For the sphere in the time of its fall,
with the velocity acquired in falling, will describe a space that will be to %3
of its diameter as the density of the sphere to the density of the fluid; and
the force of its weight generating this motion will be to the force that could
generate the same motion, in the time in which the sphere describes %5 of its
diameter with the same velocity, as the density of the fluid to the density of
the sphere; and thus, by this proposition, the force of its weight will be equal
to the force of resistance and therefore cannot accelerate the sphere.

CoroLLary 3. Given both the density of the sphere and its velocity at
the beginning of the motion, and also the density of the compressed fluid at
rest in which the sphere moves, then by prop. 35, corol. 7, the velocity of the
sphere, its resistance, and the space described by it are given for any time.

CoroLrary 4. A sphere moving in a compressed fluid at rest, having
the same density as itself, will, by the same corol. 7, lose half of its motion

before it has described the length of two of its diameters.

The resistance to a sphere moving uniformly forward through a fluid enclosed and
compressed in a cylindrical channel is to the force by which its whole motion could
be either generated or destroyed, while it describes %5 of its diameter, in a ratio
compounded of three ratios, very nearly: the ratio of the opening of the channel
to the excess of this opening over half of a great circle of the sphere, the squared
ratio of the opening of the channel to the excess of this opening over a great circle
of the sphere, and the ratio of the density of the fluid to the density of the sphere.

This is evident by prop. 37, corol. 2, and the proof proceeds as in prop. 38.

In the last two propositions (as in lem. 5) I assume that all the water which

is in front of the sphere, and whose fluidity increases the resistance to the
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sphere, is frozen. If all that water liquefies, the resistance will be somewhat
increased. But in these propositions the increase will be small and can be
ignored because the convex surface of the sphere has almost the same effect

as ice.

To find from phenomena the resistance of a sphere moving forward in a compressed,
very fluid medium.

Let A be the weight of the sphere in a vacuum, B its weight in a resisting
medium, D the diameter of the sphere, F a space that is to 43D as the density
of the sphere to the density of the medium (that is, as A to A—B), G the time
in which the sphere in falling by its weight B without resistance describes the
space F, and H the velocity that the sphere acquires by this fall. Then H will
be the greatest velocity with which the sphere can descend by its weight B in
the resisting medium, by prop. 38, corol. 2, and the resistance that the sphere
encounters while descending with this velocity will be equal to its weight B;
and the resistance that it encounters with any other velocity will be to the
weight B as the square of the ratio of this velocity to the greatest velocity H,
by prop. 38, corol. 1.

This is the resistance that arises from the inertia of matter of the fluid.
And that which arises from the elasticity, tenacity, and friction of its parts
can be investigated as follows.

Drop the sphere so that it descends in the fluid by its own weight B;

and let P be the time of falling, in seconds if the time G is in seconds. Find

2P
the absolute number N that corresponds to the logarithm 0.43429448196,

and let L be the logarithm of the number , then the velocity ac-

1 2PF
1H, and the space described will be < -

N+
1.3862943611F + 4.605170186LF.

If the fluid is sufficiently deep, the term 4.605170186LF can be ignored,
2PF
and < 1.3862943611F will be the space described, very nearly. These

quired in falling will be

things are evident by book 2, prop. 9 and its corollaries, on the hypothesis
that the sphere encounters no other resistance than that which arises from
the inertia of matter. But if it encounters another resistance in addition, the
descent will be slower, and the quantity of this resistance can be found from

the retardation.
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Velocities of Spaces described Spaces described Spaces described
body falling by falling by greatest by falling

Times P n fluid in flud motion n vacuum
0.001G 999992%50 0.000001F 0.002F 0.000001F
0.01G 999967 0.0001F 0.02F 0.0001F
0.1G 9966799 0.0099834F 0.2F 0.01F
0.2G 19737532 0.0397361F 0.4F 0.04F
0.3G 29131261 0.0886815F 0.6F 0.09F
0.4G 37994896 0.1559070F 0.8F 0.16F
0.5G 46211716 0.2402290F 1.0F 0.25F
0.6G 53704957 0.3402706F 1.2F 0.36F
0.7G 60436778 0.4545405F 1.4F 0.49F
0.8G 66403677 0.5815071F 1.6F 0.64F
0.9G 71629787 0.7196609F 1.8F 0.81F
1G 76159416 0.8675617F 2F IF

2G 96402758 2.6500055F 4F 4F

3G 99505475 4.6186570F 6F 9F

4G 99932930 6.6143765F 8F 16F

5G 99990920 8.6137964F 10F 25F

6G 99998771 10.6137179F 12F 36F

7G 99999834 12.6137073F 14F 49F

8G 99999980 14.6137059F 16F 64F

9G 99999997 16.6137057F 18F 81F

10G 99999999%5 18.6137056F 20F 100F

So that the velocity and descent of a body falling in a fluid may be
found more easily, I have put together the accompanying table, in which the
first column denotes the times of descent, the second shows the velocities
acquired in falling (the greatest velocity being 100,000,000), the third shows
the spaces described in falling in those times (2F being the space that the body
describes in the time G with the greatest velocity), and the fourth shows the

spaces described in the same times with the greatest velocity. The numbers
in the fourth column are s and by subtracting the number 1.3862944 —

4.6051702L, the numbers in the third column are found, and these numbers
must be multiplied by the space F in order to get the spaces described in
falling. There has been added to these a fifth column, which contains the
spaces described in the same times by a body falling in a vacuum by the

force of its relative weight B.

In order to investigate the resistances of fluids by experiments, I got a square

wooden vessel, with an internal length and width of 9 inches (of a London
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foot), and a depth of 9V feet, and I filled it with rainwater; and making
balls of wax with lead inside, I noted the times of descent of the balls, the
space of the descent being 112 inches. A solid cubic London foot contains
76 Roman pounds [troy] of rainwater, and a solid inch of this foot contains
1946 ounce of this pound or 253'4 grains; and a sphere of water described
with a diameter of 1 inch contains 132.645 grains in air, or 132.8 grains in a
vacuum; and any other ball is as the excess of its weight in a vacuum over
its weight in water.

ExperiMENT 1. A ball which weighed 156Y4 grains in air and 77 grains
in water described the whole space of 112 inches [when dropped in water] in
a time of 4 seconds. And when the experiment was repeated, the ball again
fell in the same time of 4 seconds.

The weight of the ball in a vacuum 1s 156%4s grains, and the excess of
this weight over the weight of the ball in water is 791%5 grains. And hence
the diameter of the ball comes out 0.84224 inch. That excess is to the weight
of the ball in a vacuum as the density of water to the density of the ball,
and as % of the diameter of the ball (that is, 2.24597 inches) to the space 2F,
which accordingly will be 4.4256 inches. In a time of 1 second the ball will
fall in a vacuum by its whole weight of 1561%4s grains through 1934 inches;
and by a weight of 77 grains falling in water without resistance, it will in the
same time describe 95.219 inches; and in the time G, which is to 1 second as
the square root of the ratio of the space F or 2.2128 inches to 95.219 inches, it
will describe 2.2128 inches and will attain the greatest velocity H with which
it can descend in water. Therefore the time G is 0.15244 seconds. And in
this time G, with that greatest velocity H, the ball will describe a space 2F
of 4.4256 inches; and thus in the time of 4 seconds it will describe a space
of 116.1245 inches. Subtract the space 1.3862944F or 3.0676 inches and there
will remain a space of 113.0569 inches which the ball will describe in falling
in water in a very wide vessel in the time of 4 seconds. This space, because
of the narrowness of the wooden vessel, must be decreased in a ratio which
is compounded of the square root of the ratio of the opening of the vessel
to the excess of this opening over a great semicircle of the ball, and of the
simple ratio of that same opening to its excess over a great circle of the ball,
that is, in the ratio of 1 to 0.9914. When this has been done, the result will

be a space of 112.08 inches which the ball should, according to the theory,
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have very nearly described in falling in water in this wooden vessel in the
time of 4 seconds. And it described 112 inches in the experiment.

ExperiMENT 2. Three equal balls, each of which weighed 765 grains
in air and 5%46 grains in water, were dropped successively in water, and in a
time of 15 seconds each one fell through 112 inches.

By computation the weight of a ball in a vacuum is 76% grains; the
excess of this weight over the weight in water is 71'%4s grains; the diameter
of the ball is 0.81296 inch; 33 of this diameter is 2.16789 inches; the space
2F is 2.3217 inches; the space that a ball describes in falling by a weight
of 5Vi6 grains in the time of 1 second without resistance is 12.808 inches;
and the time G is 0.301056 second. The ball, therefore, with the greatest
velocity with which it can descend in water by the force of the weight of
5Vi6 grains, will describe in a time of 0.301056 second a space of 2.3217
inches, and in the time of 15 seconds a space of 115.678 inches. Subtract the
space 1.3862944F or 1.609 inches, and there will remain a space of 114.069
inches which accordingly the ball ought to describe in falling in the same
time in a very wide vessel. Because of the narrowness of our vessel a space of
roughly 0.895 inch must be taken away. And thus there will remain a space
of 113.174 inches which the ball, according to the theory, should have very
nearly described in falling in this vessel in the time of 15 seconds. And it
described 112 inches in the experiment. The difference is imperceptible.

ExperiMenT 3. Three equal balls, each of which weighed 121 grains in
air and 1 grain in water, were dropped successively in water, and in times of
46 seconds, 47 seconds, and 50 seconds, fell 112 inches.

According to the theory, these balls should have fallen in a time of
roughly 40 seconds. I am uncertain whether their falling more slowly is to
be attributed to the smaller proportion of the resistance that arises from the
force of inertia in slow motions to the resistance that arises from other causes,
or rather to some little bubbles adhering to the ball, or to the rarefaction of
the wax from the heat either of the weather or of the hand dropping the
ball, or even to imperceptible errors in weighing the balls in water. And thus
the weight of the ball in water ought to be more than 1 grain, so that the
experiment may be made certain and trustworthy.

ExperiMenT 4. I began the experiments thus far described in order to
investigate the resistances of fluids before formulating the theory set forth in

the immediately preceding propositions. Afterward, in order to examine that
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theory, I obtained a wooden vessel with an internal width of 8%} inches and
a depth of 15%5 feet. Then I made four balls out of wax with lead inside,
each one weighing 139% grains in air and 7% grains in water. And I let
them fall in water in order to measure the times of falling, using a pendulum
oscillating in half-seconds. When the balls were being weighed, and afterward
when they were falling, they were cold and had remained cold for some time,
because heat rarefies the wax and by the rarefaction diminishes the weight of
the ball in water, and the rarefied wax is not immediately brought back to its
original density by chilling. Before they fell, they were entirely immersed in
water, so that their descent might not be accelerated at the beginning by the
weight of some part projecting out of the water. And when totally immersed
and at rest, they were let fall as carefully as possible, so as not to receive
some impulse from the hand letting them fall. And they fell successively in
the times of 47'4, 484, 50, and 51 oscillations, describing a space of 15 feet
2 inches. But the weather was now a little colder than when the balls were
weighed, and so I repeated the experiment on another day, and the balls
fell in the times of 49, 49%4, 50, and 53 oscillations, and on a third day in
the times of 49%4, 50, 51, and 53 oscillations. The experiment was made
quite often, and the balls for the most part fell in the times of 49%; and 50
oscillations. When they fell more slowly, I suspect that they were retarded by
hitting against the sides of the vessel.

Now by computation according to the theory, the weight of a ball in a
vacuum is 139%5 grains; the excess of this weight over the weight of the ball
in water is 13214 grains; the diameter of the ball is 0.99868 inch; % of the
diameter is 2.66315 inches; the space 2F is 2.8066 inches; the space that a
ball describes in falling with a weight of 7% grains in the time of 1 second
without resistance is 9.88164 inches; and the time G is 0.376843 second. The
ball, therefore, with the greatest velocity with which it can descend in water
by a force of weight of 74 grains, describes in the time of 0.376843 second
a space of 2.8066 inches; in the time of 1 second a space of 7.44766 inches;
and in the time of 25 seconds, or 50 oscillations, a space of 186.1915 inches.
Subtract the space 1.386294F, or 1.9454 inches, and there will remain the
space of 184.2461 inches which the ball will describe in the same time in a
very wide vessel. Because of the narrowness of our vessel, decrease this space
in a ratio that is compounded of the square root of the ratio of the opening

of the vessel to the excess of this opening over a great semicircle of the ball,
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and the simple ratio of that same opening to its excess over a great circle
of the ball, and the result will be the space of 181.86 inches which the ball,
according to the theory, should very nearly have described in this vessel in
the time of 50 oscillations. And in the experiment it described a space of
182 inches in the time of 492 or 50 oscillations.

ExperiMENT 5. Four balls weighing 154% grains in air and 21'4 grains
in water were dropped often and fell in the times of 28V, 29, 29V, and 30
oscillations, and sometimes 31, 32, and 33, describing a space of 15 feet 2
inches.

By the theory they ought to have fallen in the time of very nearly 29
oscillations.

ExperiMENT 6. Five balls weighing 212%4 grains in air and 79% in
water were dropped often and fell in the times of 15, 1544, 16, 17, and 18
oscillations, describing a space of 15 feet 2 inches.

By the theory they ought to have fallen in the time of very nearly 15
oscillations.

ExperiMeENT 7. Four balls weighing 293%4 grains in air and 3574 grains
in water were dropped often and fell in the times of 294, 30, 304, 31, 32,
and 33 oscillations, describing a space of 15 feet 1% inches.

By the theory they ought to have fallen in the time of very nearly 28
oscillations.

In investigating the reason why some of the balls which were of the
same weight and size fell more quickly and others more slowly, I hit upon
this: that when the balls were first dropped and were beginning to fall,
the side which happened to be heavier descended first and generated an
oscillatory motion, so that they oscillated around their centers. For by its
oscillations a ball communicates a greater motion to the water than if it
were descending without oscillations, and in the process loses part of its own
motion with which it should descend; and it is retarded more or retarded less
in proportion to the greatness or smallness of the oscillation. Further, the ball
always recedes from that side which is descending in the oscillation and, by
receding, approaches the sides of the vessel and sometimes strikes against the
sides. In the case of heavier balls, this oscillation is stronger, and with larger
balls, it agitates the water more. Therefore, in order to reduce the oscillation
of the balls, I constructed new balls of wax and lead, fixing the lead into one

side of the ball near its surface; and I dropped the ball in such a way that the
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heavier side, as far as possible, was lowest at the beginning of the descent.
Thus the oscillations became much smaller than before, and the balls fell in
less unequal times, as in the following experiments.

ExperiMENT 8.  Four balls, weighing 139 grains in air and 6% in water,
were dropped often and fell in the times of not more than 52 oscillations,
and not fewer than 50, and for the most part in the time of roughly 51
oscillations, describing a space of 182 inches.

By the theory they ought to have fallen in the time of roughly 52 oscil-
lations.

ExperiMENT 9. Four balls, weighing 273V4 grains in air and 140% in
water, were dropped often and fell in the times of not fewer than 12 oscilla-
tions and not more than 13, describing a space of 182 inches.

And by the theory these balls ought to have fallen in the time of very
nearly 11% oscillations.

ExperimenT 10. Four balls, weighing 384 grains in air and 119% in
water, were dropped often and fell in the times of 17%, 18, 18V4, and 19
oscillations, describing a space of 181" inches. And when they fell in the
time of 19 oscillations, I sometimes heard them strike the sides of the vessel
before they reached the bottom.

And by the theory they ought to have fallen in the time of very nearly
15% oscillations.

ExperiMENT 11.  Three equal balls, weighing 48 grains in air and 3%4;
in water, were dropped often and fell in the times of 43\, 44, 441, 45, and
46 oscillations, and for the most part 44 and 45, describing a space of very
nearly 182Y% inches.

By the theory they ought to have fallen in the time of roughly 46%
oscillations.

ExperiMENT 12.  Three equal balls, weighing 141 grains in air and 434
in water, were dropped several times and fell in the times of 61, 62, 63, 64,
and 65 oscillations, describing a space of 182 inches.

And by the theory they ought to have fallen in the time of very nearly
642 oscillations.

From these experiments it is obvious that when the balls fell slowly
(as in the second, fourth, fifth, eighth, eleventh, and twelfth experiments),
the times of falling are shown correctly by the theory, but that when the
balls fell more quickly (as in the sixth, ninth, and tenth experiments), the
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resistance was a little greater than in the squared ratio of the velocity. For
the balls oscillate somewhat while falling, and this oscillation—in balls that
are lighter and fall more slowly—<ceases swiftly because the motion is weak,
while in heavier and larger balls, because the motion is strong, the oscillation
lasts longer and can be checked by the surrounding water only after more
oscillations. Additionally, the swifter the balls, the less they are pressed by the
fluid in back of them; and if the velocity is continually increased, they will
at length leave an empty space behind, unless the compression of the fluid
is simultaneously increased. The compression of the fluid, moreover, ought
(by props. 32 and 33) to be increased in the squared ratio of the velocity
in order for the resistance also to be in a squared ratio. Since this does not
happen, the swifter balls are pressed a little less from behind, and because of
this diminished pressure their resistance becomes a little greater than in the
squared ratio of the velocity.

The theory therefore agrees with the phenomena of bodies falling in
water; it remains for us to examine the phenomena of bodies falling in air.

ExperimenT 13.  *From the top of St. Paul’s Cathedral in London® in
June 1710, glass balls were dropped simultaneously in pairs, one full of quick-
silver, the other full of air; and in falling they described a space of 220 London
feet. A wooden platform was suspended at one end by iron pivots, and at the
other was supported by a wooden peg. The two balls were placed upon this
platform and were let fall simultaneously by pulling out the peg by means
of an iron wire extending to the ground, so that the platform, resting on the
iron pivots alone, might swing downward upon the pivots and at the same
moment a seconds pendulum, pulled by that iron wire, might be released
and begin to oscillate. The diameters and weights of the balls and the times
of falling are shown in the following table.

However, the observed times need to be corrected. For balls filled with
mercury will (by Galileo’s theory) describe 257 London feet in 4 seconds,
and 220 feet in only 3 seconds 42 thirds. The wooden platform, when the

aa. In expt. 13, Newton writes of weights being dropped “a culmine ecclesiae Sancti Pauli, in urbe
Londini.” Newton is not referring to St. Paul’s Church in Covent Garden, as is obvious from the fact
that the distance through which the weights are let fall is 220 London feet. The only house of worship
that tall (about twenty stories) was St. Paul’s Cathedral. That these experiments were conducted in St
Paul’s Cathedral is evident from the fact that in the cathedral there is a balcony, just below the cupola, at
a height corresponding to Newton’s 220 London feet. See, below, the note to expt. 14.
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Balls full of mercury Balls full of air

Weights Diameters Times of falling  Weights Diameters Times of falling
grains inches seconds grains inches seconds

908 0.8 4 510 5.1 8V

983 0.8 4-— 642 5.2 8

866 0.8 4 599 5.1 8

747 0.75 4+ 515 5.0 84

808 0.75 4 483 5.0 8

784 0.75 4+ 641 5.2 8

peg was withdrawn, swung downward more slowly than it should have [i.e.,
more slowly than in free fall] and as a result impeded the descent of the balls
at the start. For the balls were lying upon the platform near its center, and
were in fact a little closer to the pivots than to the peg. And hence the times
of falling were prolonged by roughly 18 thirds and so need to be corrected
by taking away those thirds, especially in the larger balls, which because of
the magnitude of their diameters remained a little longer upon the platform
as it swung downward. When this has been done, the times in which the
six larger balls fell will come out 8 sec. 12 thirds, 7 sec. 42 thirds, 7 sec. 42
thirds, 7 sec. 57 thirds, 8 sec. 12 thirds, and 7 sec. 42 thirds.

Therefore the fifth of those balls filled with air, with a diameter of 5
inches and a weight of 483 grains, fell in the time of 8 sec. 12 thirds, describ-
ing the space of 220 feet. The weight of water equal to this ball is 16,600

16,60
860
thus the weight of the ball in a vacuum is 502%0 grains, and this weight is

grains; and the weight of air equal to it is grains, or 19%0 grains, and

to the weight of air equal to the ball as 502340 to 19%0, as is the ratio of 2F
to % of the diameter of the ball (that is, 2F to 13Y5 inches). And hence 2F
comes out 28 feet 11 inches. The ball in falling in a vacuum, with its whole
weight of 502%10 grains, in the time of one second describes 193%4 inches as
above, and with a weight of 483 grains describes 185.905 inches, and with
the same weight of 483 grains also in a vacuum describes the space F, or 14
feet 5Y2 inches, in the time of 57 thirds 58 fourths, and attains the greatest
velocity with which it could descend in air. With this velocity the ball, in the
time of 8 sec. 12 thirds, will describe a space of 245 feet 5% inches. Take
away 1.3863F, or 20 feet Y2 inch, and there will remain 225 feet 5 inches. It
is this space, therefore, that the ball should, by the theory, have described in
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falling in the time of 8 sec. 12 thirds. And it described a space of 220 feet in
the experiment. The difference is negligible.
Applying similar computations also to the remaining balls filled with air,

I constructed the following table.

Times of falling Spaces to be
Weights of from a height described by
the balls Diameters of 220 feet the theory Excesses
grains inches seconds thirds Seer inches Jeer nches
510 5.1 8 12 226 Il . 6 11
642 5.2 7 42 230 9 10 9
599 5.1 7 42 227 10 7 10
515 5 7 57 224 5 4 5
483 5 8 12 225 5 5 5
641 5.2 7 42 230 7 10 7

ExperiMENT 14.  In July 1719, Dr. Desaguliers made experiments of this
sort again, making hogs’ bladders into a round shape by means of a concave
wooden sphere, which the moist bladders, inflated with air, were forced to
fill; after they were dried and taken out, they were dropped ®from the lantern
at the top of the cupola of the same cathedral, that is, from a height of 272
feet,” and at the same moment a lead ball was also dropped, whose weight
was roughly two pounds troy. And meanwhile some people standing in the
highest part of St. Paul’s where the balls were released noted the whole times
of falling, and others standing on the ground noted the difference between
the times of fall of the lead ball and of the bladder. And the times were
measured by half-second pendulums. And one of those who were standing
on the ground had a clock with an oscillating spring, vibrating four times
per second; someone else had another machine ingeniously constructed with
a pendulum also vibrating four times per second. And one of those who
were standing in the gallery of the cupola had a similar device. And these

instruments were so constructed that their motions might begin or be stopped
at will. The lead ball fell in a time of roughly 4% seconds. And by adding

bb. Newton here writes of weights dropped “ab altiore loco in templi ejusdem turri rotunda fornicata,
nempe ab altitudine pedum 272,” that is, “from a higher place in the round arched tower {i.e., from the
lantern at the top of the cupola] of the same cathedral.” This position corresponds to the height given by
Newton, 272 feet.



SCHOLIUM

this time to the aforesaid difference between the times, the whole time in
which the bladder fell was determined. The times in which the five bladders
continued to fall after the lead ball had completed its fall were 14% sec.,
12% sec., 1454 sec., 17% sec., and 1674 sec. the first time, and 14%; sec.,
14V4 sec., 14 sec., 19 sec., and 16%4 sec. the second time. Add 4V4 sec., the time
in which the lead ball fell, and the whole times in which the five bladders
fell were 19 sec., 17 sec., 1874 sec., 22 sec., and 21%4 sec. the first time, and
18% sec., 18V4 sec., 184 sec., 23V sec., and 21 sec. the second time. And the
times noted from the cupola were 19% sec., 17V sec., 18% sec., 224 sec.,
and 21% sec. the first time, and 19 sec., 18%4% sec., 1834 sec., 24 sec., and 21%
sec. the second time. But the bladders did not always fall straight down, but
sometimes flew about and oscillated to and fro while falling. And the times
of falling were prolonged and increased by these motions, sometimes by one-
half of one second, sometimes by a whole second. The second and fourth
bladders, moreover, fell straighter down the first time, as did the first and
third the second time. The fifth bladder was wrinkled and was somewhat
retarded by its wrinkles. I calculated the diameters of the bladders from their
circumferences, measured by a very thin thread wound round them twice.
And I compared the theory with the experiments in the following table,
assuming the density of air to be to the density of rainwater as 1 to 860, and

calculating the spaces that the balls should, by the theory, have described in

falling.
Times of falling Spaces to be described Difference
Weights of from a height in those same times, between theory
bladders Diameters of 272 feet according to the theory and experiments
grains inches seconds Jeet inches Seet inches
128 5.28 19 271 11 -0 1
156 5.19 17 272 0Ys + 0 oY
137Y4 5.3 185 272 7 + 0 7
97Vs 5.26 22 277 4 +5 4
94 5 213 282 0 +10 0

Therefore almost all the resistance encountered by balls moving tn air as
well as in water is correctly shown by our theory, and is proportional to the

density of the fluids—the velocities and sizes of the balls being equal.
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In the scholium at the end of sec. 6, we showed by experiments with
pendulums that the resistances encountered by equal and equally swift balls
moving in air, water, and quicksilver are as the densities of the fluids. We
have shown the same thing here more accurately by experiments with bodies
falling in air and water. For pendulums in each oscillation arouse in the fluid
a motion always opposite to the motion of the pendulum when it returns; and
the resistance arising from this motion, and also the resistance to the cord
by which the pendulum was suspended, made the whole resistance to the
pendulum greater than the resistance found by the experiments with falling
bodies. For by the experiments with pendulums set forth in that scholium, a

ball of the same density as water ought, in describing the length of its own
1

3,342

this seventh section and confirmed by experiments with falling bodies, that

sernidiameter in air, to lose of its motion. But by the theory set forth in

of its

same ball ought, in describing that same length, to lose only 3 ; T

motion, supposing that the density of water is to the density of air as 860
to 1. The resistances therefore were found to be greater by the experiments
with pendulums (for the reasons already described) than by the experiments
with falling balls, and in a ratio of roughly 4 to 3. But since the resistances
to pendulums oscillating in air, water, and quicksilver are increased similarly
by similar causes, the proportion of the resistances in these mediums will be
shown correctly enough by the experithents with pendulums as well as by
the experiments with falling bodies. And hence it can be concluded that the
resistances encountered by bodies moving in any fluids that are very fluid,
other things being equal, are as the densities of the fluids.

On the basis of what has been established, it is now possible to predict
very nearly what part of the motion of any ball projected in any fluid will
be lost in a given time. Let D be the diameter of the ball, and V its velocity
at the beginning of the motion, and T the time in which the ball will—with
velocity V in a vacuum—describe a space that is to the space %D as the
density of the ball to the density of the fluid; then the ball projected in that

fluid will, in any other time ¢, lose the part
TV
T+¢

a vacuum in the same time with the uniform velocity V as the logarithm of

A%
of its velocity (thc part
t

remaining) and will describe a space that is to the space described in
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! multiplied by the number 2.302585093 is to the number

the number

t/T, by prop. 35, corol. 7. In slow motions the resistance can be a little
less, because the shape of a ball is a little more suitable for motion than the
shape of a cylinder described with the same diameter. In swift motions the
resistance can be a little greater, because the elasticity and the compression
of the fluid are not increased in the squared ratio of the velocity. But here I
am not considering petty details of this sort.

And even if air, water, quicksilver, and similar fluids, by some infinite di-
vision of their parts, could be subtilized and become infinitely fluid mediums,
they would not resist projected balls any the less. For the resistance which is
the subject of the preceding propositions arises from the inertia of matter; and
the inertia of matter is essential to bodies and is always proportional to the
quantity of matter. By the division of the parts of a fluid, the resistance that
arises from the tenacity and friction of the parts can indeed be diminished,
but the quantity of matter is not diminished by the division of its parts; and
since the quantity of matter remains the same, its force of inertia—to which
the resistance discussed here is always proportional—remains the same. For
this resistance to be diminished, the quantity of matter in the spaces through
which bodies move must be diminished. And therefore the celestial spaces,
through which the globes of the planets and comets move continually in all
directions very freely and without any sensible diminution of motion, are
devoid of any corporeal fluid, except perhaps the very rarest vapors and rays
of light transmitted through those spaces.

Projectiles, of course, arouse motion in fluids by going through them,
and this motion arises from the excess of the pressure of the fluid on the
front of the projectile over the pressure on the back, and cannot be less in
infinitely fluid mediums than in air, water, and quicksilver in proportion
to the density of matter in each. And this excess of pressure, in proportion
to its quantity, not only arouses motion in the fluid but also acts upon the
projectile to retard its motion; and therefore the resistance in every fluid is
as the motion excited in the fluid by the projectile, and it cannot be less in
the most subtle aether, in proportion to the density of the aether, than in air,

water, and quicksilver, in proportion to the densities of these fluids.
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SECTION 8

Motion propagated through fluids

Pressure is not propagated through a fluid along straight lines, unless the particles
of the fluid lie in a straight line.

If the particles a, &, ¢, d, and ¢ lie in a straight line, a pressure can indeed
be propagated directly from 2 to e; but the particle ¢ will urge the obliquely
placed particles f and g obliquely, and those particles
f and g will not sustain the pressure brought upon
them unless they are supported by the further particles
A and k; but to the extent that they are supported,
they press the supporting particles, and these will not
sustain the pressure unless they are supported by the
further particles / and m and press them, and so on indefinitely. Therefore,
as soon as a pressure is propagated to particles which do not lie in a straight
line, it will begin to spread out and will be obliquely propagated indefinitely;
and after the pressure begins to be propagated obliquely, if it should impinge
upon further particles which do not lie in a straight line, it will spread out
again, and will do so as often as it impinges upon particles not lying exactly
in a straight line. Q.E.D.

CoroLLary. If some part of a pressure propagated through a fluid from
a given point is intercepted by an obstacle, the remaining part (which is not
intercepted) will spread out into the spaces behind the obstacle. This can
be proved as follows. From point A let a pressure be propagated in any
direction and, if possible, along straight lines; and by the obstacle NBCK,
perforated in BC, let all the pressure be intercepted except the cone-shaped
part APQ, which passes through the circular hole BC. By transverse planes
de, fg, and Ai, divide the cone APQ into frusta; then, while the cone ABC,
by propagating the pressure, is urging the further conic frustum degf on
the surface de, and this frustum is urging the next frustum fgih on the
surface fg, and that frustum is urging a third frustum, and so on indefinitely,
obviously (by the third law of motion) the first frustum defg will be as much
urged and pressed on the surface fg by the reaction of the second frustum
fghi as it urges and presses the second frustum. Therefore the frustum degf

between the cone Ade and the frustum fhig is compressed on both sides,
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and therefore (by book 2, prop. 19, case 6) it cannot keep its figure unless it
is compressed by the same force on all sides. With the same force, therefore,
with which it is pressed on the surfaces de and fg, it will endeavor to yield
at the sides df and eg; and there (since it is not rigid, but altogether fluid)
it will run out and expand, unless a surrounding fluid is present to restrain
that endeavor. Accordingly, by the endeavor to run out, it will press the
surrounding fluid at the sides df and eg, as well as the frustum fgh:, with
the same force; and therefore the pressure will be no less propagated from
the sides df and eg into the spaces NO on one side and KL on the other,
than it is propagated from the surface fg toward PQ. Q.E.D.

All motion propagated through a fluid diverges from a straight path into the
motionless spaces.

Case 1. Let a motion be propagated from point A through a hole BC,
and let it proceed, if possible, in the conic space BCQP along straight lines
diverging from point A. And let us suppose first that this motion is that
of waves on the surface of stagnant water. And let de, fg, hi, ki, ... be
the highest parts of the individual waves, separated from one another by the
same number of intermediate troughs. Therefore, since the water is higher

in the crests of the waves than in the motionless parts LK and NO of the
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fluid, it will flow down from e, g, 7,/,..., and d, f, 4, %, ..., the ends of
the crests, toward KL on one side and NO on the other; and since it is lower
in the troughs of the waves than in the motionless parts KL and NO of the
fluid, it will low down from those motionless parts into the troughs of the
waves. In one case the crests of the waves, and in the other their troughs, are
expanded and propagated toward KL on one side and NO on the other. And
since the motion of the waves from A toward PQ takes place by the continual
flowing down of the crests into the nearest troughs, and thus is not quicker
than in proportion to the quickness of the descent, and since the descent of
the water toward KL on one side and NO on the other ought to occur with
the same velocity, the expansion of the waves will be propagated toward KL
on one side and NO on the other with the same velocity with which the
waves themselves progress directly from A toward PQ. And accordingly the
whole space toward KL on one side and NO on the other will be occupied
by the expanded waves rfgr, shis, tkit, ymnv, . ... Q.E.D. Anyone can
test this in stagpant water.

Case 2. Now let us suppose that de, fg, ki, kl, and mn designate pulses
successively propagated from point A through an elastic medium. Think of
the pulses as propagated by successive condensations and rarefactions of the

medium, in such a way that the densest part of each pulse occupies a spher-
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ical surface described about the center A, and that the spaces which come
between successive pulses are equal. And let de, fg, Ai, kI, ... designate
the densest parts of the pulses, parts which are propagated through the hole
BC. And since the medium is denser there than in the spaces toward KL
on one side and NO on the other, it will expand toward those spaces KL
and NO situated on both sides as well as toward the rarer intervals between
the pulses; and thus, always becoming rarer next to the intervals and denser
next to the pulses, the medium will participate in their motion. And since
the progressive motion of the pulses arises from the continual slackening of
the denser parts toward the rarer intervals in front of them, and since the
pulses ought to slacken with nearly the same speed into the medium’s parts
KL on one side and NO on the other, which are at rest, those pulses will
expand on all sides into the motionless spaces KL and NO with nearly the
same speed with which they are propagated straight forward from the center
A, and thus will occupy the whole space KLON. Q.E.D. We find this by
experience in the case of sounds, which are heard when there is a mountain
in the way or which expand into all parts of a room when let in through a
window and are heard in all corners, being not so much reflected from the
opposite walls as propagated directly from the window, as far as the senses
can tell.

Case 3. Finally, let us suppose that a motion of any kind is propagated
from A through the hole BC. That propagation does not occur except insofar
as the parts of the medium that are nearer to the center A urge and move
the further parts; and the parts that are urged are fluid and thus recede in
every direction into regions where they are less pressed, and so will recede
toward all the parts of the medium that are at rest, the parts KL and NO
on the sides as well as the parts PQ in front. And therefore all the motion,
as soon as it has passed through the hole BC, will begin to spread out and
to be propagated directly from there into all parts as if from an origin and
center. Q.E.D.

Every vibrating body in an elastic medium will propagate the motion of the
pulses straight ahead in every direction, but in a nonelastic medium will produce
a circular motion.

Cask 1. For the parts of a vibrating body, by going forward and return-

ing alternately, will in their going urge and propel the parts of the medium
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that are nearest to them and by that urging will compress and condense
them; then in their return they will allow the compressed parts to recede
[i.e., to move apart from one another] and expand. Thus the parts of the
medium that are nearest to the vibrating body will go and return alternately,
like the parts of the vibrating body; and just as the parts of this body acted
upon the parts of the medium, so the latter, acted upon by similar vibrations,
will act upon the parts nearest to them, and these, similarly acted upon, will
act upon further parts, and so on indefinitely. And just as the first parts of
the medium condense in going and rarefy in returning, so the remaining
parts will condense whenever they go and will expand [i.e., rarefy] whenever
they return. And therefore they will not all go and return at the same time
(for thus, by keeping determined distances from one another, they would not
rarefy and condense alternately), but by approaching one another when they
condense and moving apart-when they rarefy, some of them will go while
others return, and these conditions will alternate indefinitely. And the parts
that are going and that condense in going (because of their forward motion
with which they strike obstacles) are pulses; and therefore successive pulses
will be propagated straight ahead from every vibrating body, and they will
be so propagated at roughly equal distances from one another, because of
the equal intervals of time in which the body produces each pulse by each
of its vibrations. And even if the parts of the vibrating body go and return
in some fixed and determined direction, nevertheless the pulses propagated
from there through the medium will (by prop. 42) expand sideways and will
be propagated in all directions from the vibrating body as if from a common
center, in surfaces almost spherical and concentric. We have an example of
this in waves, which, if they are produced by a wagging finger, not only will
go to and fro according to the finger’s motion but will immediately surround
the finger like concentric circles and will be propagated in all directions. For
the gravity of the waves takes the place of the elastic force.

Case 2. But if the medium is not elastic, then, since its parts, pressed by
the oscillating parts of the vibrating body, cannot be condensed, the motion
will be propagated instantly to the parts where the medium yields most easily,
that is, to the parts that the vibrating body would otherwise leave empty
behind it. The case is the same as the case of a body projected in any medium.
A medium, in yielding to projectiles, does not recede indefinitely, but goes

with a circular motion to the spaces that the body leaves behind it. Therefore,
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whenever a vibrating body goes toward any place [or in any direction], the
medium, in yielding, will go with a circular motion to the spaces that the
body leaves; and whenever the body returns to its former place, the medium
will be forced out and will return to its former place. And even though the
vibrating body is not rigid but completely pliant, if it nevertheless remains
of a fixed size, then, since it cannot urge the medium by its vibrations in
any one place without simultaneously yielding to it in another, that body will
make the medium, by receding from the parts where it is pressed, go always
with a circular motion to the parts that yield to it. Q.E.D.

CoroLLary. Therefore it is a delusion to believe that the agitation of the
parts of flame conduces to the propagation of a pressure along straight lines
through a surrounding medium. A pressure of this sort must be derived not
only from the agitation of the parts of the flame but from the dilation of the

whole.

If water ascends and descends alternately in the vertical arms KL and MN of Proposition 44
a tube, and if a pendulum is constructed whose length between the point of Theorem 35
suspension and the center of oscillation is equal to half of the length of the water
in the tube, then [ say that the water will ascend and descend in the same times
in which the pendulum oscillates.
I measure the length of the water along the axes of the tube and the
arms and make it equal to the sum of these axes, and I do not here consider
the resistance of the water that arises from the friction of the tube. Let AB
and CD therefore designate the mean height of the water in the two arms,
and when the water in the arm KL ascends to the height EF, the water
in the arm MN will have descended to the height GH. Moreover, let P
be a pendulum bob, VP the cord, V the point of suspension, RPQS the

V. K ™M
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cycloid described by the pendulum, P its lowest point, and PQ an arc equal
to the height AE. The force by which the motion of the water is alternately
accelerated and retarded is the amount by which the weight of the water
in one of the two arms exceeds the weight in the other. And thus, when
the water in the arm KL ascends to EF, and in the other arm descends to
GH, that force is twice the weight of the water EABF and therefore is to
the weight of all the water as AE or PQ to VP or PR. Furthermore, the
force by which the weight P in any place Q is accelerated and retarded in
the cycloid is (by book 1, prop. 51, corol.) to its whole weight as its distance
PQ from the lowest place P to the length PR of the cycloid. Therefore the
motive forces of the water and the pendulum, describing the equal spaces
AE and PQ), are as the weights that are to be moved; and thus, if the water
and the pendulum are at rest in the beginning, those forces will move them
equally in equal times and will cause them to go and return synchronously
with an alternating motion. Q.E.D.

CoroLLary 1. Therefore all the alternations of the ascending and de-
scending water are isochronous, whether the motion is of greater intension
or greater remission.®

CoroLrary 2. If the length of all the water in the tube is 6% Paris
feet, the water will descend in the time of one second and will ascend in
another second and will continue to alternate in this way indefinitely. For a
pendulum 3%s feet long oscillates in the time of one second.

CoroLrary 3. When the length of the water is increased or decreased,
moreover, the time of alternation is increased or decreased as the square root

of the length.

The velocity of waves is as the square roots of the lengths.

This follows from the construction of the following proposition.

To find the velocity of waves.

Set up a pendulum whose length between the point of suspension and
the center of oscillation is equal to the length of the waves; and in the same
time in which the pendulum performs each of its oscillations, the waves as

they move forward will traverse nearly their own lengths.

a. Newton evidently is referring to amplitude.
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By length of a wave I mean the transverse distance either between bot-
toms of troughs or between tops of crests. Let ABCDEF designate the surface
of stagnant water ascending and descending in successive waves; and let A,
C, E, ... be the crests of the waves, and B, D, F, ... the troughs in between.
Since the motion of the waves is caused by the successive ascent and descent
of the water, in such a way that its parts, A, C, E, ..., which now are
highest, soon become lowest, and since the motive force by which the highest
parts descend and the lowest ascend is the weight of the elevated water, the
alternate ascent and descent will be analogous to the alternating motion of
the water in the tube and will observe the same laws with respect to times;
and therefore (by prop. 44), if the distances between the highest places A,
C, and E of the waves and the lowest, B, D, and F, are equal to twice the
length of a pendulum, the highest parts A, C, and E will in the time of one
oscillation come to be the lowest, and in the time of a second oscillation will
ascend once again. Therefore there will be a time of two oscillations between
successive waves; that is, a wave will describe its own length in the time in
which the pendulum oscillates twice; but in the same time a pendulum whose
length is four times as great, and thus equals the length of the waves, will
oscillate once. Q.E.L

Cororrary 1. Therefore waves with a length of 3Yis Paris feet will
move forward through their own length in the time of one second and thus
in the time of one minute will traverse 183%5 feet, and in the space of an
hour very nearly 11,000 feet.

CoroLLary 2. And the velocity of waves of greater or smaller length
will be increased or decreased as the square root of the length.

What has been said is premised on the hypothesis that the parts of the
water go straight up or straight down; but this ascent and descent takes place
more truly in a circle, and thus I admit that in this proposition the time has

been determined only approximately.

If pulses are propagated through a fluid, the individual particles of the fluid, going Proposition 47
and returning with a very short alternating motion, are always accelerated and ‘Theorem 37

retarded in accordance with the law of an oscillating pendulum.
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Let AB, BC, CD, ... designate the
equal distances between successive pulses;
ABC the line of motion of the pulses,
propagated from A toward B; E, F, and
G three physical points in the medium
at rest, situated at equal intervals along
the straight line AC; Ee, Ff, and Gg
very short equal spaces through which
those points go and return in each vibra-
tton with an alternating motion; &, ¢, y
any intermediate positions of those same
points; and EF and FG physical line-
elements or linear parts of the medium,
put between those points and successively
transferred into the places ¢, ¢y and
ef, fg. Draw the straight line PS equal
to the straight line Ee. Bisect PS in O,
and with center O and radius OP de-
scribe the circle SIP:.

Let the whole circumference of this
circle with its parts represent the whole
time of one vibration with its propor-
tional parts, in such a way that when
any time PH or PHS# is completed, if
the perpendicular HL or A/ is dropped
to PS, and if E¢ is taken equal to PL
or P/, then the physical point E is found
in &. By this law any point E, in going

from E through & to e and returning

from there through & to E, will perform each vibration with the same de-

grees of acceleration and retardation as the oscillating pendulum. It is to be

proved that each of the physical points of the medium must move in such a

way. Let us imagine, therefore, that there is such a motion in the medium,

arising from any cause, and see what follows.

In the circumference PHSA take the equal arcs HI and IK or 4/ and

ik, having the ratio to the whole circumference that the equal straight lines
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EF and FG have to the whole interval BC between pulses. Drop the per-
pendiculars IM and KN and also im and kn. Then the points E, F, and G
are successively agitated with similar motions and carry out their complete
vibrations (consisting of a going and returning) while a pulse is transferred
from B to C; accordingly, if PH or PHS# is the time from the beginning
of the motion of point E, PI or PHS: will be the time from the beginning
of the motion of point F, and PK or PHSZ will be the time from the be-
ginning of the motion of point G; and therefore Eg, Fo, and Gy will be
equal respectively to PL, PM, and PN in the going of the points, or to P/,
Pm, and Pz in the returning of the points. Hence €y or EG + Gy — E¢
will be equal to EG — LN in the going of the points, and will be equal to
EG + Iz in their returning. But £7 is the width or expansion of the part of
the medium EG in the place £y; and therefore the expansion of that part in
the going is to its mean expansion as EG — LN to EG, and in the returning
is as EG +/n or EG + LN to EG. Therefore, since LN is to KH as IM to
the radius OP, and KH is to EG as the circumference PHSAP to BC, that
is (if V is put for the radius of a circle having a circumference equal to the
interval between the pulses BC), as OP to V, and since, from the equality of
the ratios [or ex aequo], LN is to EG as IM to V, the expansion of the part
EG or of the physical point F in the place £y will be to the mean expansion
which that part has in its own first place EG as V — IM to V in the going,

and as V + im to V in the returning. Hence the elastic force of point F in

1
the place &7y is to its mean elastic force in the place EG as to — in
] 1 V—-IM V

to — in the returning. And by the same argument
1

1 V —HL

o —; and the difference between the forces is to the mean

v HL — KN

V-V xHL -V xKN +HL x KN ‘

the going, and as

+1im
the elastic forces of the physical points E and G in the going are as
1
— t
V — KN
elastic force of the medium as
L that is, as t= KN 1 HL — KN to V, provided that (b
7 ° s — 0 —, - ’ -
v at is, as v ) v or as to provided that (be
cause of the narrow limits of the vibrations) we suppose HL and KN to

and

(o]

be indefinitely smaller than the quantity V. Therefore, since the quantity V
is given, the difference between the forces is as HL. — KN, that is, as OM
(because HL — KN is proportional to HK and OM to OI or OP; and HK
and OP are given)—that is, if Ff is bisected in ), as {2¢. And by the same

417



418

Proposition 48
Theorem 38

BOOK 2, SECTION 8

argument the difference between the elastic forces of the physical points &
and 7, in the returning of the physical line-element €y, is as {d¢. But that
difference (that is, the amount by which the elastic force of point & exceeds
the elastic force of point ) is the force by which the intervening physical
line-element £y of the medium is accelerated in the going and retarded in
the returning; and therefore the accelerative force of the physical line-element
gy is as its distance from the midpoint £} of the vibration. Accordingly, the
time (by book 1, prop. 38) is correctly represented by the arc PI, and the
linear part &y of the medium moves by the law previously mentioned, that
is, by the law of an oscillating pendulum; and the same is true of all the
linear parts of which the whole medium is composed. Q.E.D.

CoroLLary. Hence it is evident that the number of pulses propagated
is the same as the number of vibrations of the vibrating body and does not
increase as the pulses move forward. For as soon as the physical line-element
&7 has returned to its first place, it will be at rest and will not move afterward
unless it receives a new motion either by the impact of the vibrating body or
by the impact of pulses that are propagated from the vibrating body. It will
be at rest, therefore, as soon as the pulses cease to be propagated from the

vibrating body.

The velocities of pulses propagated in an elastic fluid are as the square root of the
elastic force directly and the square root of the density inversely, provided that the
elastic force of the fluid is proportional to its condensation.

Case 1. If the mediums are homogeneous and the distances between
pulses in these mediums are equal to one another, but the motion in one
medium is more intense, then the contractions and expansions of correspond-
ing parts will be as the motions. In fact, this proportion is not exact. Even so,
unless the contractions and expansions are extremely intense, the error will
not be perceptible, and thus the proportion can be considered physically ex-
act. But the motive elastic forces are as the contractions and expansions; and
the velocities—generated in the same time—of equal parts are as the forces.
And thus equal and corresponding parts of corresponding pulses will go and
return together through spaces proportional to the contractions and expan-
sions, with velocities that are as the spaces; and therefore the pulses, which

advance through their own length in the time of one going and returning
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and which always succeed into the places of the immediately preceding pulses,
will progress in both mediums with an equal velocity, because of the equality
of the distances.

Case 2. But if the distances between pulses, or their lengths, are greater
in one medium than in the other, let us suppose that the corresponding
parts by going and returning in each alternation describe spaces propor-
tional to the lengths of the pulses; then their contractions and expansions
will be equal. And thus if the mediums are homogeneous, those motive
elastic forces by which they are agitated with an alternating motion will
also be equal. But the matter to be moved by these forces is as the length
of the pulses; and the space through which they must move by going and
returning in each alternation is in the same ratio. And the time of going
and returning is jointly proportional to the square root of the matter and
the square root of the space and thus is as the space. But the pulses ad-
vance through their own lengths in the times of one going and returning,
that is, traverse spaces proportional to the times, and therefore have equal
velocities.

Case 3. In mediums of the same density and elastic force, therefore,
all pulses have equal velocities. But if either the density or the elastic force
of the medium is intended [i.e., increased], then, since the motive force is
increased in the ratio of the elastic force, and the matter to be moved is
increased in the ratio of the density, the time in which the same motions as
before can be performed will be increased as the square root of the density
and will be decreased as the square root of the elastic force. And therefore
the velocity of the pulses will be jointly proportional to the square root of
the density of the medium inversely and the square root of the elastic force
directly. Q.E.D.

This proposition will be clearer from the construction of the following

proposition.

Given the density and elastic force of a medium, it is required to find the velocity
of the pulses.

Let us imagine the medium to be compressed, as our air is, by an in-
cumbent weight and let A be the height of a homogeneous medium whose
weight is equal to the incumbent weight and whose density is the same as

the density of the compressed medium in which the pulses are propagated.
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And suppose that a pendulum is set up,
whose length between the point of sus-
pension and the center of oscillation is
A; then, in the same time in which that
pendulum performs an entire oscillation
composed of a going and a returning, a
pulse will advance through a space equal
to the circumference of a circle described
with radius A.

For with the same constructions as
in prop. 47, if any physical line EF,
describing the space PS in each single
vibration, is urged in the extremities P
and S of each going and returning by an
elastic force that is equal to its weight,
it will perform each single vibration
in the time in which it could oscillate
in a cycloid whose whole perimeter is
equal to the length PS; and this is so
because equal forces will simultaneously
impel equal corpuscles through equal
spaces. Therefore, since the times of the
oscillations are as the square root of the
length of the pendulums, and since the
length of the pendulum is equal to half
the arc of the whole cycloid, the time of
one vibration would be to the time of
oscillation of a pendulum whose length

is A as the square root of the length

1APS or PO to the length A. But the elastic force by which the physical

line-element EG is urged in its extremities P and S was (in the proof of

prop. 47) to its whole elastic force as HL. — KN to V, that is (since point K

now falls upon P), as HK to V; and that whole force, that is, the incumbent

weight by which the line-element EG is compressed, is to the weight of the

line-element as the height A of the incumbent weight to the length EG of

the line-element; and thus from the equality of the ratios [or ex aequo] the
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force by which the line-element EG is urged in its places P and S is to the
weight of that line-element as HK x A to V x EG, or as PO x A to V?
(for HK was to EG as PO to V). Therefore, since the times in which equal
bodies are impelled through equal spaces are inversely as the square root of
the forces, the time of one vibration under the action of that elastic force will
be to the time of the vibration, under the action of the force of weight, as the
square root of V2 to PO X A, and thus will be to the time of oscillation of a

2

dulum hawi 1 h A T
pendulum having a lengt as \/PO <A

PO
and \/ e jointly, that is, as V

to A. But in the time of one vibration, composed of a going and returning,
a pulse advances through its own length BC. Therefore the time in which
the pulse traverses the space BC is to the time of one oscillation (composed
of a going and returning) as V to A, that is, as BC to the circumference of
a circle whose radius is A. But the time in which the pulse will traverse the
space BC is in the same ratio to the time in which it will traverse a length
equal to this circumference; and thus in the time of such an oscillation the
pulse will traverse a length equal to this circumference. Q.E.D.

CoroLLary 1. The velocity of the pulses is that which heavy bodies
acquire in falling with a uniformly accelerated motion and describing by
their fall half of the height A. For in the time of this fall, with the velocity
acquired in falling, the pulse will traverse a space equal to the whole height
Aj; and thus in the time of one oscillation (composed of a going and returning)
it will traverse a space equal to the circumference of a circle described with
radius A; for the time of fall is to the time of oscillation as the radius of the
circle to its circumference.

CoroLLary 2. Hence, since that height A is as the elastic force of the
fluid directly and its density inversely, the velocity of the pulses will be as the
square root of the density inversely and the square root of the elastic force

directly.

To find the distances between pulses.
In a given time, find the number of vibrations of the body by whose
vibration the pulses are excited. Divide by that number the space that a pulse

could traverse in the same time, and the part found will be the length of one

pulse. Q.E.L
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Scholium The preceding propositions apply to the motion of light and of sounds. For
since light is propagated along straight lines, it cannot consist in action alone
(by props. 41 and 42). And because sounds arise from vibrating bodies, they
are nothing other than propagated pulses of air (by prop. 43). This is con-
firmed from the vibrations that they excite in bodies exposed to them, pro-
vided that they are loud and deep, such as the sounds of drums. For swifter
and shorter vibrations are excited with more difficulty. But it is also well
known that any sounds impinging upon strings in unison with the sonorous
bodies excite vibrations in them. It is confirmed also from the velocity of
sounds. For since the specific weights of rainwater and quicksilver are to
each other as roughly 1 to 13%4, and since, when the mercury in a barometer
reaches a height of 30 English inches, the specific weight of the air and that
of rainwater are to each other as roughly 1 to 870, the specific weights of
air and quicksilver will be as 1 to 11,890. Accordingly, since the height of
the quicksilver is 30 inches, the height of uniform air whose weight could
compress our air lying beneath it will be 356,700 inches, or 29,725 English
feet. And this height is the very one that we called A in the construction
of prop. 49. The circumference of a circle described with a radius of 29,725
feet is 186,768 feet. And since a pendulum 39% inches long completes an
oscillation composed of a going and returning in the time of 2 seconds, as is
known, a pendulum 29,725 feet or 356,700 inches long must complete an en-
tirely similar oscillation in the time of 190% seconds. In that time, therefore,
sound will advance 186,768 feet, and thus in the time of one second, 979 feet.

*But in this computation no account is taken of the thickness of the solid

particles of air, a thickness through which sound is of course propagated

aa. Ed. 1 has: “Mersenne writes in prop. 35 of his Ballistics that he found by making experiments
that sound travels 1,150 French toises (that is, 6,900 French feet) in 5 seconds. Hence, since a French foot
is to an English foot as 1,068 to 1,000, sound will have to travel 1,474 English feet in the time of 1 second.
Mersenne also writes that the eminent geometer Roberval observed during the siege of Thionville that
the noise of cannons was heard 13 or 14 seconds after the fire was seen, although he was scarcely half a
league away from the cannons. A French league contains 2,500 toises, and thus, according to Roberval’s
observation, in the time of 13 or 14 seconds sound traveled 7,500 Paris feet, and in the time of 1 second
560 Paris feet, or about 600 English feet. These observations are very different from one another, and our
computation falls in the middle. In the cloister of our college, which is 208 feet long, a sound excited at
either end makes a fourfold echo in four returnings. And by making experiments I found that at each
returning of the sound a pendulum of about 6 or 7 inches completed an oscillation, starting at the first
returning of the sound and completing its oscillation at the second one. I was not able to determine the
length of the pendulum exactly enough, but I judged that with a length of 4 inches the oscillations were
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instantaneously. Since the weight of air is to the weight of water as 1 to 870,
and since salts are nearly twice as dense as water, if the particles of air are
supposed to be of roughly the same density as the particles of either water or
salts, and if the rarity of air arises from the distances between the particles,
the diameter of a particle of air will be to the distance between the centers of
the particles roughly as 1 to 9 or 10, and to the distance between the particles
as 1 to 8 or 9. Accordingly, to the 979 feet which sound will travel in the

979
9

feet may be added, because of the density of the particles of air; and thus

time of 1 second according to the above calculation,

feet or roughly 109

sound will travel roughly 1,088 feet in the time of 1 second.

Additionally, the vapors lying hidden in the air, since they are of another
elasticity and another tone, participate scarcely or not at all in the motion of
the true air by which sounds are propagated. And when these vapors are at

rest, that motion will be propagated more swiftly through the true air alone

too fast and that with a length of 9 inches they were too slow. Hence in going and returning the sound
traveled 416 feet in a smaller time than that in which a pendulum of 9 inches oscillates and in a greater
time than a pendulum of 4 inches, that is, in a smaller time than 28% thirds and a greater than 19%. And
therefore in the time of 1 second the sound travels more than 866 English feet and fewer than 1,272 and
thus is faster than according to Roberval’s observation and slower than according to Mersenne’s. Further,
by more accurate observations made afterward, I determined that the length of the pendulum ought to
be greater than 52 inches and less than 8 inches and thus that sound in the time of 1 second traveled
more than 920 English feet and fewer than 1,085. Therefore the motion of sounds, being between these
limits according to the geometrical calculation given above, squares with the phenomena insofar as it has
been possible to test it up to now. Accordingly, since this motion depends on the density of the whole air,
it follows that sounds consist not in the motion of aether or of some more subtle air but in the agitation
of the whole air.

“Certain experiments concerning sound propagated in vessels empty of air seem to contradict this, but
vessels can scarcely be emptied of all air; and when they are sufficiently emptied, sounds are noticeably
diminished. For example, if only a hundredth of the whole air remains in the vessel, a sound will have to
be a hundred times weaker and thus should not be less audible than if someone, hearing the same sound
excited in free air, immediately withdrew to ten times the distance from the sonorous body. Two equally
sonorous bodies therefore must be compared, of which one is in an emptied vessel and the other is in
free air and whose distances from the hearer are as the square roots of the densities of the air, and if the
sound of the former body does not exceed the sound of the latter, the objection will cease.

“Once the velocity of sounds has been found, the intervals between the pulses can also be found.
Mersenne writes (Harmonics, book 1, prop. 4) that (by making certain experiments which he describes in
the same place) he found that a stretched musical string vibrates 104 times in the space of 1 second when
it makes a unison with an open four-foot organ pipe or a stopped two-foot pipe, which organists call C fa
ut. Accordingly, there are 104 pulses in a space of 968 feet, the distance which sound travels in the time
of 1 second, and thus one pulse occupies a space of roughly 9% feet, that is, roughly twice the length of
the pipe. Hence it is likely that the lengths of the pulses in the sounds of all open pipes are equal to twice
the lengths of the pipes.”

423



424

BOOK 2, SECTION §

as the square root of the ratio of the total atmosphere of air and vapor to the
matter of the particles of air alone. For example, if the atmosphere consists
of 10 parts of true air and 1 part of vapors, the motion of sounds will be
swifter as the square root of the ratio of 11 to 10, or in roughly the ratio of
21 to 20, than if it were propagated through 11 parts of true air; and thus
the motion of sounds that was found above will have to be increased in this
ratio. Thus in the time of 1 second, sound will travel 1,142 feet.

These things ought to be so in the springtime and autumn, when the air
is rarefied by the temperate heat and its elastic force is somewhat intended
[i.e., increased]. But in winter, when the air is condensed by the cold, and
its elastic force is remitted [i.e., decreased], the motion of sounds should be
slower as the square root of the density; and alternately, in summer it should
be swifter.

It is established by experiments, moreover, that in the time of 1 second
sounds advance through more or less 1,142 London feet, or 1,070 Paris feet.

Once the velocity of sounds has been found, the intervals between the
pulses can also be found. Sauveur found by making experiments that an open
pipe, whose length is more or less 5 Paris feet, produces a sound with the
same pitch as the sound of a string that vibrates a hundred times in 1 second.
Accordingly, there are more or less 100 pulses in the space of 1,070 Paris feet,
the distance which sound travels in the time of 1 second, and thus 1 pulse
occupies a space of about 1074¢ Paris feet, that is, roughly twice the length
of the pipe. Hence it is likely that the lengths of the pulses in the sounds of
all open pipes are equal to twice the lengths of the pipes.®

Furthermore, it is evident from book 2, prop. 47, corol.,, why sounds
immediately cease when the motion of the sonorous body ceases, and why
they are not heard for a longer time when we are very far distant from the
sonorous bodies than when we are very close. Why sounds are very much
increased in megaphones is also manifest from the principles set forth. For
every reciprocal motion is increased at each reflection by the generating cause.
And the motion is lost more slowly and is reflected more strongly in tubes
that impede the expansion of sounds, and therefore is more increased by the
new motion impressed at each reflection. And these are the major phenomena

of sounds.
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The circular motion of fluids

The resistance that arises from the friction [lit. lack of lubricity or slipperiness] of Hypothesis
the parts of a fluid is, other things being equal, proportional to the velocity with
which the parts of the fluid are separated from one another.

If an infinitely long solid cylinder revolves with a uniform motion in a uniform Proposition 51
and infinite fluid about an axis given in position, and if the fluid is made to Theorem 39
revolve by only the impulse of the cylinder, and if each part of the fluid perseveres
uniformly in its motion, then I say that the periodic times of the parts of the fluid
are as their distances from the axis of the cylinder.

Let AFL be the cylinder made to revolve uniformly about the axis S,
and divide the fluid into innumerable concentric solid cylindrical orbs* of
the same thickness by the concentric cir-
cles BGM, CHN, DIO, EKP, . ... Then,
since the fluid is homogeneous, the impres-
sions that contiguous orbs make upon one
another will (by hypothesis) be as their rel-

ative displacements and the contiguous sur-

faces on which the impressions are made.
If the impression upon some orb is greater

or less on its concave side than on its con-

vex side, the stronger impression will pre-
vail and will either accelerate or retard the motion of the orb, according as it
is directed the same way as its motion or the opposite way. Consequently, so
that each orb may persevere uniformly in its motion, the impressions on each

of the two sides should be equal and be made in opposite directions. Hence,

a. In props. 51 and 52, Newton is using the word “orb” in two closely related senses. One is that of
a series of nested hollow spheres or orbs, much as in the older Aristotelian universe, where the orbits of
the planets were considered to be embedded in a set of nesting or concentric hollow spherical shells or
orbs. In prop. 52, Newton writes of a set of “innumerable concentric orbs of the same thickness.” In prop.
51, a similar concept is introduced for a cylinder, which Newton says is to be divided into “innumerable
concentric solid cylindrical orbs of the same thickness.” Today it would not be usual to call such cylindrical
shells “orbs” as Newton did; nevertheless, we have kept Newton's “orbs” in prop. 51 so as to keep it in

harmony with the language of prop. 52.
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since the impressions are as the contiguous surfaces and their relative veloci-
ties, the relative velocities will be inversely as the surfaces, that is, inversely as
the distances of the surfaces from the axis. And the differences between the
angular motions about the axis are as these relative velocities divided by the
distances, or as the relative velocities directly and the distances inversely—
that is, if the ratios are compounded, as the squares of the distances inversely.
Therefore, if the perpendiculars Aa, B, Cc, Dd, Ee, ..., inversely propor-
tional to the squares of SA, SB, SC, SD, SE, ..., are erected to each of
the parts of the infinite straight line SABCDEQ and if a hyperbolic curve
is understood to be drawn through the ends of the perpendiculars, then the
sums of the differences, that is, the whole angular motions, will be as the
corresponding sums of the lines Aa, B, Cc, Dd, Ee; that is, if, in order to
make the medium uniformly fluid, the number of orbs is increased and their
width decreased indefinitely, as the hyperbolic areas AaQ, B6Q, CcQ, D4Q,
EeQ, ..., corresponding to these sums. And the times, which are inversely
proportional to the angular motions, will also be inversely proportional to
these areas. The periodic time of any particle D, therefore, is inversely as
the area DdQ, that is (by the known quadratures of curves), directly as the
distance SD. Q.E.D.

Cororrary 1. Hence the angular motions of the particles of the fluid
are inversely as the distances of the particles from the axis of the cylinder,
and the absolute velocities are equal.

Cororrary 2. If the fluid is contained in a cylindrical vessel of an infi-
nite length and contains another inner cylinder, and if both cylinders revolve
about a common axis, and the times of the revolutions are as the semidiame-
ters of the cylinders, and each part of the fluid perseveres in its motion, then
the periodic times of the individual parts will be as their distances from the
axis of the cylinders.

CororLary 3. If any common angular motion is added to, or taken
away from, the cylinder and the fluid moving in this way, then, since the
mutual friction of the parts of the fluid is not changed by this new motion,
the motions of the parts with respect to one another will not be changed. For
the relative velocities of the parts depend upon the friction. Any part will
persevere in that motion which is not more accelerated than retarded by the

friction on opposite sides in opposite directions.
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CoroLLary 4. Hence, if all the angular motion of the outer cylinder is
taken away from the whole system of the cylinders and fluid, the result will
be the motion of the fluid in the cylinder at rest.

Cororrary 5. Therefore, if, while the fluid and outer cylinder are at
rest, the inner cylinder revolves uniformly, a circular motion will be commu-
nicated to the fluid and will be propagated little by little through the whole
fluid, and it will not cease to be increased until the individual parts of the
fluid acquire the motion defined in corol. 4.

CoroLrary 6.  And since the fluid endeavors to propagate its own mo-
tion even further, its force will make the outer cylinder also revolve, unless
that cylinder is forcibly held in place, and the motion of that cylinder will
be accelerated until the periodic times of both cylinders become equal. But
if the outer cylinder is forcibly held in place, it will endeavor to retard the
motion of the fluid, and unless the inner cylinder conserves that motion by
some force impressed from outside, the outer cylinder will cause the motion
to cease little by little.

All of this can be tested in deep stagnant water.

If a solid sphere revolves with a uniform motion in a uniform and infinite fluid Proposition 52
about an axis given in position, and if the fluid is made to revolve by only the Theorem 40
impulse of this sphere, and if each part of the fluid perseveres uniformly in its
motion, then I say that the periodic times of the parts of the fluid will be as the
squares of the distances from the center of the sphere.

Case 1. Let AFL be a sphere made to
revolve uniformly about the axis S, and di-

vide the fluid into innumerable concentric

orbs® of the same thickness by means of
the concentric circles BGM, CHN, DIO,
EKP, . . . . And imagine the orbs to be

solid; then, since the fluid is homogeneous,

l(‘: K

the impressions that the contiguous orbs

make upon one another will (by the hy-

pothesis) be as their relative velocities and

a. On the use of “orbs” in prop. 52, and in the antecedent prop. 51, see the note to prop. 51.
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the contiguous surfaces on which the impressions are made. If the impression
upon some orb is greater or less on the concave side than on the convex side,
the stronger impression will prevail and will either accelerate or retard the
velocity of the orb, according as it is directed the same way as the motion of
the orb or the opposite way. Consequently, so that each orb may persevere
uniformly in its motion, the impressions on each of the two sides will have to
be equal and to be made in opposite directions. Hence, since the impressions
are as the contiguous surfaces and their relative velocities, the relative veloc-
ities will be inversely as the surfaces, that is, inversely as the squares of the
distances of the surfaces from the center. But the differences in the angular
motions about the axis are as these relative velocities divided by the distances,
or as the relative velocities directly and the distances inversely—that s, if the
ratios are compounded, as the cubes of the distances inversely. Therefore, if
to each of the parts of the infinite straight line SABCDEQ there are erected
the perpendiculars Aa, Bb, Cc, Dd, Ee, ..., inversely proportional to the
cubes of SA, SB, SC, SD, SE, ..., then the sums of the differences, that is,
the whole angular motions, will be as the corresponding sums of the lines
Aa, Bb, Cc, Dd, Ee—that is (if, to make the medium uniformly fluid, the
number of orbs is increased and their width decreased indefinitely), as the
hyperbolic areas A2Q, B6Q, CcQ, DdQ, EeQ, ..., corresponding to these
sums. And the periodic times, inversely proportional to the angular motions,
will also be inversely proportional to these areas. Therefore the periodic time
of any orb DIO is inversely as the area DdQ, that is (by the known methods
of quadratures of curves), directly as the square of the distance SD. And this
is what I wanted to prove in the first place.

Case 2. From the center of the sphere draw as many infinite straight
lines as possible which with the axis contain given angles exceeding one
another by equal differences, and imagine the orbs to be cut into innumerable
rings by the revolution of these straight lines about the axis; then each ring
will have four rings contiguous to it, one inside, another outside, and two at
the sides. Each ring cannot be urged equally and in opposite directions by
the friction of the inner ring and of the outer ring, except in a motion made
according to the law of case 1. This is evident from the proof of case 1. And
therefore any series of rings proceeding straight from the sphere indefinitely
will be moved in accordance with the law of case 1, except insofar as it

is impeded by the friction of the rings at the sides. But in motion made
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according to this law the friction of the rings at the sides is nil, and thus it
will not impede the motion from being made according to this law. If rings
equally distant from the center revolved either more quickly or more slowly
near the poles than near the ecliptic, the slower rings would be accelerated
and the swifter would be retarded by mutual friction, and thus the periodic
times would always tend toward equality, in accordance with the law of
case 1. This friction, therefore, does not prevent the motion from being made
according to the law of case 1, and therefore that law will hold good; that
is, the periodic time of each of the rings will be as the square of its distance
from the center of the sphere. This is what I wanted to prove in the second
place.

Case 3. Now let each ring be divided by transverse sections into in-
numerable particles constituting an absolutely and uniformly fluid substance;
then, since these sections have no relation to the law of circular motion but
contribute only to the constitution of the fluid, the circular motion will con-
tinue as before. As a result of this sectioning, all the minimally small rings
either will not change the unevenness and the force of their mutual friction
or will change them equally. Furthermore, since the proportion of the causes
remains the same, the proportion of the effects—that is, the proportion of
the motions and periodic times—will also remain the same. Q.E.D.

But since the circular motion, along with the centrifugal force arising
from it, is greater at the ecliptic than at the poles, there must be some cause
by which each of the particles is kept in its circle; otherwise the matter at
the ecliptic would always recede from the center and move on the outside of
the vortex to the poles, and return from there along the axis to the ecliptic
with a continual circulation.

CororLary 1. Hence the angular motions of the parts of the fluid about
the axis of the sphere are inversely as the squares of the distances from the
center of the sphere, and the absolute velocities are inversely as those same
squares divided by the distances from the axis.

CoroLrary 2. If a sphere, in a homogeneous and infinite fluid at rest,
revolves with a uniform motion about an axis given in position, it will com-
municate a motion to the fluid like that of a vortex, and this motion will be
propagated little by little without limit, and this motion will not cease to be
accelerated in each part of the fluid until the periodic time of each of the

parts is as the squares of the distances from the center of the sphere.
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CoroLLary 3. Since the inner parts of a vortex, because of their greater
velocity, rub and push the outer parts and continually communicate motion
to them by this action, and since those outer parts simultaneously transfer
the same quantity of motion to others still further out and by this action
conserve the quantity of their motion completely unaltered, it is evident that
the motion is continually transferred from the center to the circumference
of the vortex and is absorbed in that limitless circumference. The matter
between any two spherical surfaces concentric with the vortex will never be
accelerated, because all of the motion it receives from the inner matter is
continually transferred to the outer matter.

CororLary 4. Accordingly, for a vortex to conserve the same state of
motion constantly, some active principle is required from which the sphere
may always receive the same quantity of motion that it impresses on the
matter of the vortex. Without such a principle, it is necessary for the sphere
and the inner parts of the vortex, always propagating their motion to outer
parts and not receiving any new motion, to slow down little by little and
cease to be carried around.

Cororrary 5. If a second sphere were to be immersed in this vortex
at a certain distance from the center, and meanwhile by some force were to
revolve constantly about an axis given in inclination, then the fluid would
be drawn into a vortex by the motion of this sphere; and first this new and
tiny vortex would revolve along with the sphere about the center of the first
vortex, and meanwhile its motion would spread more widely and little by
little would be propagated without limit, in the same way as the first vortex.
And for the same reason that the sphere of the new vortex was drawn into the
motion of the first vortex, the sphere of the first vortex would also be drawn
into the motion of this new vortex, in such a way that the two spheres would
revolve about some intermediate point and because of that circular motion
would recede from each other unless constrained by some force. Afterward,
if the continually impressed forces by which the spheres persevere in their
motions were to cease, and everything were left to the laws of mechanics, the
motion of the spheres would weaken little by little (for the reason assigned
in corols. 3 and 4), and the vortices would at last be completely at rest.

CoroLLary 6. If several spheres in given places revolved continually
with certain velocities around axes given in position, the same number of

vortices, going on without limit, would be made. For all of the spheres, for
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the same reason that any one of them propagates its motion without limit,
will also propagate their motions without limit, in such a way that each part
of the infinite fluid is agitated by that motion which results from the actions
of all the spheres. Hence the vortices will not be limited by fixed bounds but
will little by little run into one another, and the spheres will be continually
moved from their places by the actions of the vortices upon one another, as
was explained in corol. 5; nor will they keep any fixed position with respect to
one another, unless constrained by some force. And when those forces, which
conserve the motions by being continually impressed upon the spheres, cease,
the matter—for the reason assigned in corols. 3 and 4—will little by little
come to rest and will no longer be made to move in vortices.

CoroLrary 7. If a homogeneous fluid is enclosed in a spherical vessel
and is made to revolve in a vortex by the uniform rotation of a sphere placed
in the center, and if the sphere and the vessel revolve in the same direction
about the same axis, and if their periodic times are as the squares of the
semidiameters, then the parts of the fluid will not persevere in their motions
without acceleration and retardation until their periodic times are as the
squares of the distances from the center of the vortex. No other constitution
of a vortex can be stable.

CoroLrary 8. If the vessel, the enclosed fluid, and the sphere conserve
this motion and additionally revolve with a common angular motion about
any given axis, then, since the friction of the parts of the fluid upon one
another is not changed by this new motion, the motions of the parts with
respect to one another will not be changed. For the relative velocities of
the parts with respect to one another depend upon friction. Any part will
persevere in that motion by which the friction on one side does not retard it
more than the friction on the other accelerates it.

CoroLLary 9. Hence, if the vessel is at rest, and if the motion of the
sphere is given, the motion of the fluid will be given. For imagine that a plane
passes through the axis of the sphere and revolves with an opposite motion,
and suppose that the sum of the time of the revolution of the plane and the
revolution of the sphere is to the time of the revolution of the sphere as the
square of the semidiameter of the vessel to the square of the semidiameter
of the sphere; then the periodic times of the parts of the fluid with respect
to the plane will be as the squares of their distances from the center of the

sphere.
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CoroLrLary 10.  Accordingly, if the vessel moves with any velocity either
about the same axis as the sphere or about some different axis, the motion
of the fluid will be given. For if the angular motion of the vessel is taken
away from the whole system, all the motions with respect to one another will
remain the same as before, by corol. 8. And these motions will be given by
corol. 9.

CoroLLary 11, If the vessel and the fluid are at rest, and if the sphere
revolves with a uniform motion, then the motion will be propagated little
by little through the whole fluid to the vessel, and the vessel will be driven
around unless forcibly constrained, and the fluid and vessel will not cease to
be accelerated until their periodic times are equal to the periodic times of the
sphere. But if the vessel is constrained by some force or revolves with any
continual and uniform motion, the medium will little by little come to the
state of the motion defined in corols. 8, 9, and 10, nor will it ever persevere
in any other state. But then if, when those forces cease by which the vessel
and the sphere were revolving with fixed motions, the whole system is left to
the laws of mechanics, the vessel and the sphere will act upon each other by
means of the intervening fluid and will not cease to propagate their motions
to each other through the fluid until their periodic times are equal and the

whole system revolves together like one solid body.

In the preceding propositions, I have been supposing the fluid to consist of
matter which is uniform in density and fluidity. The fluid is such that a given
sphere, set anywhere in it, would with a given motion in a given interval of
time be able to propagate similar and equal motions, at distances always
equal from itself. Indeed, matter endeavors by its circular motion to recede
from the axis of a vortex and therefore presses all the further matter. From
this pressure the friction of the parts becomes stronger and their separation
from one another more difficult, and consequently the fluidity of the matter is
decreased. Again, if there is any place where the parts of the fluid are thicker
or larger, the fluidity will be less there, because the surfaces separating the
parts from one another are fewer. In cases of this sort, I suppose the deficiency
in fluidity to be supplied either by the slipperiness of the parts or by their
pliancy or by some other condition. If this does not happen, the matter will
cohere more and will be more sluggish where it is less fluid, and thus will

receive motion more slowly and will propagate it further than according
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to the ratio assigned above. If the shape of the vessel is not spherical, the
particles will move in paths which are not circular but correspond to the
shape of the vessel, and the periodic times will be very nearly as the squares
of the mean distances from the center. In the parts between the center and
the circumference where the spaces are wider, the motions will be slower,
and where the spaces are narrower the motions will be swifter, and yet the
swifter particles will not seek the circumference. For they will describe less-
curved arcs, and the endeavor to recede from the center will not be less
decreased by the decrement of this curvature than it will be increased by the
increment of the velocity. In going from the narrower spaces into the wider,
they will recede a little further from the center, but they will be retarded
by this receding, and afterward in approaching the narrower spaces from the
wider ones they will be accelerated, and thus each of the particles will forever
alternately be retarded and accelerated. All of this will be so in a rigid vessel.
For the constitution of vortices in an infinite fluid can be found by corol. 6
of this proposition.

Moreover, in this proposition I have tried to investigate the properties of
vortices in order to test whether the celestial phenomena could be explained
in any way by vortices. For it is a phenomenon that the periodic times of
the secondary planets that revolve about Jupiter are as the %2 powers of the
distances from the center of Jupiter; and the same rule applies to the planets
that revolve about the sun. Moreover, these rules apply to both the primary
and the secondary planets very exactly, as far as astronomical observations
have shown up to now. And thus if those planets are carried along by vortices
revolving about Jupiter and the sun, the vortices will also have to revolve
according to the same law. But the periodic times of the parts of a vortex
turned out to be in the squared ratio of the distances from the center of
motion, and that ratio cannot be decreased and reduced to the 3% power,
unless either the matter of the vortex is the more fluid the further it is from
the center, or the resistance arising from a deficiency in the slipperiness of
the parts of the fluid (as a result of the increased velocity by which the parts
of the fluid are separated from one another) is increased in a greater ratio
than the ratio in which the velocity is increased. Yet neither of these seems
reasonable. The thicker and less-fluid parts, if they are not heavy toward
the center, will seek the circumference; and although—for the sake of the

proofs—I proposed at the beginning of this section a hypothesis in which the
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resistance would be proportional to the velocity, it is nevertheless likely that
the resistance is in a lesser ratio than that of the velocity. If this is conceded,
then the periodic times of the parts of a vortex will be in a ratio greater than
the squared ratio of the distances from its center. But if vortices (as is the
opinion of some) move more quickly near the center, then more slowly up
to a certain limit, then again more quickly near the circumference, certainly
neither the % power nor any other fixed and determinate ratio can hold. It
is therefore up to philosophers to see how that phenomenon of the %2 power

can be explained by vortices.

Proposition 53 Bodies that are carried along in a vortex and return in the same orbit have the
Theorem 41 same density as the vortex and move according to the same law as the parts of the
vortex with respect to velocity and direction.

For if some tiny part of the vortex is composed of particles or physical
points which preserve a given situation with respect to one another and is
supposed to be frozen, then this part will move according to the same law
as before, since it is not changed with respect to its density, or its inherent
force or figure. And conversely, if a frozen and solid part of the vortex has
the same density as the rest of the vortex and is resolved into a fluid, this
part will move according to the same law as before, except insofar as its
particles, which have now become fluid, move with respect to one another.
Therefore, the motion of the particles with respect to one another may be
ignored as having no relevance to the progressive motion of the whole, and
the motion of the whole will be the same as before. But this motion will be
the same as the motion of other parts of the vortex that are equally distant
from the center, because the solid resolved into a fluid becomes a part of the
vortex similar in every way to the other parts. Therefore, if a solid is of the
same density as the matter of the vortex, it will move with the same motion
as the parts of the vortex and will be relatively at rest in the immediately
surrounding matter. But if the solid is denser, it will now endeavor to recede
from the center of the vortex more than before; and thus, overcoming that
force of the vortex by which it was formerly kept in its orbit as if set in
equilibrium, it will recede from the center and in revolving will describe
a spiral and will no longer return into the same orbit. And by the same
argument, if the solid is rarer, it will approach the center. Therefore, the

solid will not return into the same orbit unless it is of the same density as
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the fluid. And it has been shown that in this case the solid would revolve
according to the same law as the parts of the fluid that are equally distant
from the center of the vortex. Q.E.D.

CororLary 1. Therefore a solid that revolves in a vortex and always
returns into the same orbit is relatively at rest in the fluid in which it is
immersed.

CororLary 2. And if the vortex is of a uniform density, the same body

can revolve at any distance from the center of the vortex.

Hence it is clear that the planets are not carried along by corporeal vor-
tices. For the planets, which-——according to the Copernican hypothesis—move
about the sun, revolve in ellipses hav-
ing a focus in the sun, and by radii
drawn to the sun describe areas pro-
portional to the times. But the parts
of a vortex cannot revolve with such
a motion. Let AD, BE, and CF des- F| E| D AB |C
ignate three orbits described about the
sun S, of which let the outermost CF
be a circle concentric with the sun, and
let A and B be the aphelia of the two
inner ones, and D and E their perihelia. Therefore, a body that revolves in
the orbit CF, describing areas proportional to the times by a radius drawn
to the sun, will move with a uniform motion. And a body that revolves in
the orbit BE will, according to the laws of astronomy, move more slowly
in the aphelion B and more swiftly in the perihelion E, although according
to the laws of mechanics the matter of the vortex ought to move more swiftly
in the narrower space between A and C than in the wider space between
D and F, that is, more swiftly in the aphelion than in the perihelion. These
two statements are contradictory. Thus in the beginning of the sign of Virgo,
where the aphelion of Mars now is, the distance between the orbits of Mars
and Venus is to the distance between these orbits in the beginning of the sign
of Pisces as roughly 3 to 2, and therefore the matter of the vortex between
these orbits in the beginning of Pisces must move more swiftly than in the
beginning of Virgo in the ratio of 3 to 2. For the narrower the space through

which a given quantity of matter passes in the given time of one revolution,
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the greater the velocity with which it must pass. Therefore, if the earth, rel-
atively at rest in this celestial matter, were carried by it and revolved along
with it about the sun, its velocity in the beginning of Pisces would be to its
velocity in the beginning of Virgo as 3 to 2. Hence the apparent daily motion
of the sun in the beginning of Virgo would be greater than 70 minutes, and
in the beginning of Pisces less than 48 minutes, although (as experience bears
witness) the apparent motion of the sun is greater in the beginning of Pisces
than in the beginning of Virgo, and thus the earth is swifter in the beginning
of Virgo than in the beginning of Pisces. Therefore the hypothesis of vortices
can in no way be reconciled with astronomical phenomena and serves less
to clarify the celestial motions than to obscure them. But how those motions
are performed in free spaces without vortices can be understood from book

1 and will now be shown more fully in book 3 on the system of the world.
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In the preceding books I have presented principles of philosophy® that are
not, however, philosophical but strictly mathematical—that is, those on which
the study of philosophy can be based. These principles are the laws and con-
ditions of motions and of forces, which especially relate to philosophy. But
in order to prevent these principles from seeming sterile, I have illustrated
them with some philosophical scholiums [i.e., scholiums dealing with natural
philosophy], treating topics that are general and that seem to be the most fun-
damental for philosophy, such as the density and resistance of bodies, spaces
void of bodies, and the motion of light and sounds. It still remains for us to
exhibit the system of the world from these same principles. On this subject
I composed an earlier version of book 3 in popular form, so that it might be
more widely read. But those who have not sufficiently grasped the principles
set down here will certainly not perceive the force of the conclusions, nor will
they lay aside the preconceptions to which 