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Portrait of Isaac Newton at about the age of sixty, presented by Newton to David Gregory

(1661—1708). This small oval drawing (roughly 33/4 in. from top to bottom and 3!/4 in. from

left to right) is closely related to the large oval portrait in oils made by Kneller in 1702, which

is considered to be the second authentic portrait made of Newton. The kinship between this

drawing and the oil painting can be seen in the pose, the expression, and such unmistakable

details as the slight cast in the left eye and the button on the shirt. Newton is shown in both

this drawing and the painting of 1702 in his academic robe and wearing a luxurious wig,

whereas in the previous portrait by Kneller (now in the National Portrait Gallery in London),

painted in 1689, two years after the publication of the Principia, Newton is similarly attired

but is shown with his own shoulder-length hair.

This drawing was almost certainly made after the painting, since Kneller's preliminary

drawings for his paintings are usually larger than this one and tend to concentrate on the

face rather than on the details of the attire of the subject. The fact that this drawing shows

every detail of the finished oil painting is thus evidence that it was copied from the finished

portrait. Since Gregory died in 1708, the drawing can readily be dated to between 1702 and

1708. In those days miniature portraits were commonly used in the way that we today would

use portrait photographs. The small size of the drawing indicates that it was not a copy made

in preparation for an engraved portrait but was rather made to be used by Newton as a gift.

The drawing captures Kneller's powerful representation of Newton, showing him as a

person with a forceful personality, poised to conquer new worlds in his recently gained position

of power in London. This high level of artistic representation and the quality of the drawing

indicate that the artist responsible for it was a person of real talent and skill.

The drawing is mounted in a frame, on the back of which there is a longhand note

reading: "This original drawing of Sir Isaac Newton, belonged formerly to Professor Gregory

of Oxford; by him it was bequeathed to his youngest son (Sir Isaac's godson) who was later

Secretary of Sion College; & by him left by Will to the Revd. Mr. Mence, who had the

Goodness to give it to Dr. Douglas; March 8th 1870."

David Gregory first made contact with Newton in the early 1690s, and although their

relations got off to a bad start, Newton did recommend Gregory for the Savilian Professorship

of Astronomy at Oxford, a post which he occupied until his death in 1708. As will be evident to

readers of the Guide, Gregory is one of our chief sources of information concerning Newton's

intellectual activities during the 1690s and the early years of the eighteenth century, the period

when Newton was engaged in revising and planning a reconstruction of his Principia. Gregory

recorded many conversations with Newton in which Newton discussed his proposed revisions

of the Principia and other projects and revealed some of his most intimate and fundamental

thoughts about science, religion, and philosophy. So far as is known, the note on the back of

the portrait is the only record that Newton stood godfather to Gregory's youngest son.
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Publisher's Note

This volume contains I. Bernard Cohen and Anne Whitman's 1999 translation of
Newton's Principia. In the preface and in the notes to the translation, Cohen refers
to his "Guide to Newton's Principia" ("the Guide"). This volume contains an ex-
cerpt from the Guide ("A Brief History of the Principia'). The Guide appears in
full in The Principia: The Authoritative Translation and Guide, also available from
University of California Press.
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Preface to the 1999 Edition

A L T H O U G H N E W T O N ' s FRiNciPiA has been translated into many languages, the

last complete translation into English (indeed, the only such complete translation)

was produced by Andrew Motte and published in London more than two and a

half centuries ago. This translation was printed again and again in the nineteenth

century and in the 1930s was modernized and revised as a result of the efforts

of Florian Cajori. This latter version, with its partial modernization and partial

revision, has become the standard English text of the Principia.

Motte's version is often almost as opaque to the modern reader as Newton's

Latin original, since Motte used such older and unfamiliar expressions as "sub-

sesquialterate" ratio. Additionally, there are statements in which the terms are no

longer immediately comprehensible today, such as book 3, prop. 8, corol. 3, in

which Motte writes that "the densities of dissimilar spheres are as those weights

applied to the diameters of the spheres," a statement unaltered in the Motte-Cajori

version. Of course, a little thought reveals that Newton was writing about the

densities of nonhomogeneous spheres and was concluding with a reference to the

weights divided by the diameters. The Motte-Cajori version, as explained in §2.3

of the Guide to the present translation, is also not satisfactory because it too is

frequently difficult to read and, what is more important, does not always present

an authentic rendition of Newton's original. The discovery of certain extraordinary

examples in which scholars have been misled in this regard was a chief factor in

our decision to produce the present translation.

When we completed our Latin edition, somewhat awed by the prospect of

undertaking a wholly new translation, we thought of producing a new edition of

Motte's English version, with notes that either would give the reader a modern

equivalent of difficult passages in Motte's English prose or would contain some
aids to help the reader with certain archaic mathematical expressions. That is,

since Motte's text had been a chief means of disseminating Newton's science for

over two centuries, we considered treating it as an important historical document

XI
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in its own right. Such a plan was announced in our Latin edition, and we even

prepared a special interleaved copy of the facsimile of the 1729 edition to serve as
our working text.*

After the Latin edition appeared, however, many colleagues and some review-

ers of that edition insisted that it was now our obligation to produce a completely

new translation of the Principia > rather than confine our attentions to Motte's older

pioneering work. We were at first reluctant to accept this assignment, not only

because of the difficulty and enormous labor involved, but also because of our

awareness that we ourselves would thereby become responsible for interpretations

of Newton's thought for a long period of time.

Goaded by our colleagues and friendly critics, Anne Whitman and I finally

agreed to produce a wholly new version of the Principia. We were fortunate in ob-

taining a grant from the National Science Foundation to support our efforts. Many

scholars offered good advice, chief among them our good friends D. T. Whiteside

and R. S. Westfall. In particular, Whiteside stressed for us that we should pay

no attention to any existing translation, not even consulting any other version on

occasions when we might be puzzled, until after our own assignment had been

fully completed. Anyone who has had to translate a technical text will appreciate

the importance of this advice, since it is all too easy to be influenced by other

translations, even to the extent of unconsciously repeating their errors. Accord-

ingly, during the first two or three rounds of translation and revision, we recorded

puzzling or doubtful passages, and passages for which we hoped to produce a

final version that would be less awkward than our preliminary efforts, reserving

for some later time a possible comparison of our version with others. It should be

noted that in the final two rounds of our revision, while checking some difficult

passages and comparing some of our renditions with others, the most useful works

for such purpose were Whiteside's own translation of an early draft of what corre-

sponds to most of book 1 of the Principia and the French translation made in the

*An Index Verborum of the Latin edition of the Principia has been produced by Anne Whitman

and I. Bernard Cohen in association with Owen Gingerich and Barbara Welther. This index includes the

complete text of the third edition (1726) and also the variant readings as given in the Latin edition of the

Principia (edited by Alexandre Koyre, I. Bernard Cohen, and Anne Whitman), published in 1972 by the

Harvard University Press and the Cambridge University Press. Thus the Index includes the complete text

of the three authorized Latin editions (1687, 1713, 1726) as well as the MS annotations in both Newton's

"annotated" and "interleaved" personal copies of the first and second editions. The Index is on deposit

in the Burndy Library of the Dibner Institute (Cambridge, Mass.), where it may be consulted. Microfilm

copies can be purchased.

Very useful tools for scholars and students are the planned Octavo editions of the first and third

Latin editions of Newton's Principia; the latter will include this English translation. The high-resolution

facsimiles on CD-ROM allow readers to view the original book and search the complete Latin texts and

translation. For publication information, see the Octavo web site: www.octavo.com.

http://www.octavo.com
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mid-eighteenth century by the marquise du Chatelet. On some difficult points, we

also profited from the exegeses and explanations in the Le Seur and Jacquier Latin

edition and the Krylov Russian edition. While neither Anne Whitman nor I could

read Russian, we did have the good fortune to have two former students, Richard

Kotz and Dennis Brezina, able and willing to translate a number of Krylov's notes

for us.

The translation presented here is a rendition of the third and final edition of

Newton's Principia into present-day English with two major aims: to make New-

ton's text understandable to today's reader and yet to preserve Newton's form of

mathematical expression. We have thus resisted any temptation to rewrite Newton's

text by introducing equations where he expressed himself in words. We have, how-

ever, generally transmuted such expressions as "subsesquiplicate ratio" into more

simply understandable terms. These matters are explained at length in §§10.3-10.5

of the Guide.

After we had completed our translation and had checked it against Newton's

Latin original several times, we compared our version with Motte's and found

many of our phrases to be almost identical, except for Motte's antique mathematical

expressions. This was especially the case in the mathematical portions of books 1

and 2 and the early part of book 3. After all, there are not many ways of saying

that a quantity A is proportional to another quantity B. Taking into account that

Motte's phrasing represents the prose of Newton's own day (his translation was

published in 1729) and that in various forms his rendition has been the standard

for the English-reading world for almost three centuries, we decided that we would

maintain some continuity with this tradition by making our phrasing conform to

some degree to Motte's. This comparison of texts did show, however, that Motte

had often taken liberties with Newton's text and had even expanded Newton's

expressions by adding his own explanations—a result that confirmed the soundness

of the advice that we not look at Motte's translation until after we had completed

our own text.

This translation was undertaken in order to provide a readable text for stu-

dents of Newton's thought who are unable to penetrate the barrier of Newton's

Latin. Following the advice of scholarly friends and counselors, we have not over-

loaded the translation with extensive notes and comments of the sort intended for

specialists, rather allowing the text to speak for itself. Much of the kind of editorial

comment and explanation that would normally appear in such notes may be found

in the Guide. Similarly, information concerning certain important changes in the

text from edition to edition is given in the Guide, as well as in occasional textual
notes. The table of contents for the Guide, found on pages 3-7, will direct the
reader to specific sections of the Principia, or even to particular propositions.



XIV P R E F A C E

The Guide to the present translation is intended to be just that—a kind of

extended road map through the sometimes labyrinthine pathways of the Principia.

Some propositions, methods, and concepts are analyzed at length, and in some

instances critical details of Newton's argument are presented and some indica-

tions are given of the alterations produced by Newton from one edition to the

next. Sometimes reference is made to secondary works where particular topics are

discussed, but no attempt has been made to indicate the vast range of scholarly

information relating to this or that point. That is, I have tended to cite, in the

text and in the footnote references, primarily those works that either have been of

special importance for my understanding of some particular point or some sections

of the Principia or that may be of help to the reader who wishes to gain a more

extensive knowledge of some topic. As a result, I have not had occasion in the

text to make public acknowledgment of all the works that have been important

influences on my own thinking about the Principia and about the Newtonian prob-

lems associated with that work. In this rubric I would include, among others, the

important articles by }. E. McGuire, the extremely valuable monographs on many

significant aspects of Newton's science and philosophic background by Maurizio

Mamiani (which have not been fully appreciated by the scholarly world because

they are written in Italian), the two histories of mechanics by Rene Dugas and the

antecedent documentary history by Leon Jouguet, the analysis of Newton's con-

cepts and methods by Pierre Duhem and Ernst Mach, and monographic studies by

Michel Blay, G. Bathelemy, Pierre Costabel, and A. Rupert Hall, and by Francois

de Gandt.

I also fear that in the Guide I may not have sufficiently stressed how greatly

my understanding of the Principia has profited from the researches of D. T. White-

side and Curtis Wilson and from the earlier commentaries of David Gregory, of

Thomas Le Seur and Francois Jacquier, and of Alexis Clairaut. The reader will

find, as I have done, that R. S. Westfall's Never at Rest not only provides an

admirable guide to the chronology of Newton's life and the development of his

thought in general, but also analyzes the whole range of Newton's science and

presents almost every aspect of the Principia in historical perspective.

All students of the Principia find a guiding beacon in D. T. Whiteside's essays

and his texts and commentaries in his edition of Newton's Mathematical Papers, esp.
vols. 6 and 8 (cited on p. 9 below). On Newton's astronomy, the concise analysis
by Curtis Wilson (cited on p. 10 below) has been of enormous value. Many of
the texts quoted in the Guide have been translated into English. It did not seem
necessary to mention this fact again and again.

From the very start of this endeavor, Anne Whitman and I were continuously
aware of the awesome responsibility that was placed on our shoulders, having
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in mind all too well the ways in which even scholars of the highest distinction

have been misled by inaccuracies and real faults in the current twentieth-century

English version. We recognized that no translator or editor could boast of having

perfectly understood Newton's text and of having found the proper meaning of

every proof and construction. We have ever been aware that a translation of a work

as difficult as Newton's Principia will certainly contain some serious blunders or

errors of interpretation. We were not so vain that we were always sure that we

fully understood every level of Newton's meaning. We took comfort in noting that

even Halley, who probably read the original Principia as carefully as anyone could,

did not always fully understand the mathematical significance of Newton's text.

We therefore, in close paraphrase of Newton's own preface to the first edition,

earnestly ask that everything be read with an open mind and that the defects in

a subject so difficult may be not so much reprehended as kindly corrected and

improved by the endeavors of our readers.

I. B.C.

Some Acknowledgments

Anne Whitman died in 1984, when our complete text was all but ready for pub-

lication, being our fourth (and in some cases fifth and even sixth) version. It was

her wish, as well as mine, that this translation be dedicated to the scholar whose

knowledge of almost every aspect of Newton's mathematics, science, and life is

unmatched in our time and whose own contributions to knowledge have raised

the level of Newtonian scholarship to new heights.

We are fortunate that Julia Budenz has been able to help us with various

aspects of producing our translation and especially in the final stages of preparing

this work for publication.

It has been a continual joy to work with the University of California Press.

I am especially grateful to Elizabeth Knoll, for her thoughtfuiness with regard to

every aspect of converting our work into a printed book, and to Rose Vekony, for

the care and wisdom she has exercised in seeing this complex work through pro-

duction, completing the assignment so skillfully begun by Rebecca Frazier. I have

profited greatly from the many wise suggestions made by Nicholas Goodhue, whose

command of Latin has made notable improvements in both the Guide and the

translation. One of the fortunate aspects of having the translation published by the

University of California Press is that we have been able to use the diagrams (some

with corrections) of the older version.

I gladly acknowledge and record some truly extraordinary acts of scholarly

friendship. Three colleagues—George E. Smith, Richard S. Westfall, and Curtis
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Wilson—not only gave my Guide a careful reading, sending me detailed com-

mentaries for its improvement; these three colleagues also checked our translation

and sent me many pages of detailed criticisms and useful suggestions for its im-

provement. I am particularly indebted to George Smith of Tufts University for

having allowed me to make use of his as yet unpublished Companion to Newton's

"Principia," a detailed analysis of the Principia proposition by proposition. Smith

used the text of our translation in his seminar on the Principia at Tufts during

the academic year 1993/94 and again during 1997/98. Our final version has prof-

ited greatly from the suggestions of the students, who were required to study the

actual text of the Principia from beginning to end. I am happy to be able to in-

clude in the Guide a general presentation he was written (in his dual capacity as a

philosopher of science and a specialist in fluid mechanics) on the contents of book

2 and also two longish notes, one on planetary perturbations, the other on the mo-

tion of the lunar apsis. I have also included a note by Prof. Michael Nauenberg of

the University of California, Santa Cruz, on his current research into the origins

of some of Newton's methods.

I am grateful to the University Library, Cambridge, for permission to quote

extracts and translations of various Newton MSS. I gladly record here my deep

gratitude to the staff and officers of the UL for their generosity, courtesy, kindness,

and helpfulness over many years.

I am especially grateful to Robert S. Pirie for permission to reproduce the

miniature portrait which serves as frontispiece to this work. The following il-

lustrations are reproduced, with permission, from books in the Grace K. Babson

Collection of the Works of Sir Isaac Newton, Burndy Library, Dibner Institute for

the History of Science and Technology: the title pages of the first and second edi-

tions of the Principia\ the half title, title page, and dedication of the third edition;

and the diagrams for book 2, prop. 10, in the Jacquier and Le Seur edition of the

Principia.

I gratefully record the continued and generous support of this project by the

National Science Foundation, which also supported the prior production of our

Latin edition with variant readings. Without such aid this translation and Guide

would never have come into being.

Finally, I would like to thank the Alfred P. Sloan Foundation for a grant that

made it possible to add an index to the second printing.

ADDENDUM

I am particularly grateful to four colleagues who helped me read the proofs.

Bruce Brackenridge checked the proofs of the Guide and shared with me many
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of his insights into the methods used by Newton in the Principia, while George

Smith worked through the proofs of each section of the Guide and also helped

me check the translation. Michael Nauenberg and William Harper helped me find

errors in the Guide. A student, Luis Campos, gave me the benefit of his skill at

proofreading.

I also gladly acknowledge the importance of correspondence with Mary Ann

Rossi which helped me to clarify certain grammatical puzzles. Edmund }. Kelly

kindly sent me the fruit of his detailed textual study of the Motte-Cajori version of

the Principia.

Readers' attention is called to three collections of studies that are either in pro-

cess of publication or appeared too late to be used in preparing the Guide: Planetary

Astronomy from the Renaissance to the Rise of Astrophysics, Part B: The Eighteenth

and Nineteenth Centuries, ed. Rene Taton and Curtis Wilson (Cambridge: Cam-

bridge University Press, 1995); Isaac Newton's Natural Philosophy, ed. Jed Buch-

wald and I. B. Cohen (Cambridge: MIT Press, forthcoming); and The Foundations

of Newtonian Scholarship: Proceedings of the 1997 Symposium at the Royal Society,

ed. R. Dalitz and M. Nauenberg (Singapore: World Scientific, forthcoming). Some

of the chapters in these collections, notably those by Michael Nauenberg, either

suggest revisions of the interpretations set forth in the Guide or offer alternative

interpretations. Other contributions of Nauenberg are cited in the notes to the

Guide.
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A Brief History of the Principia

The Origins of the Principia

Isaac Newton's Principia was published in 1687. The full title is Philosophiae

Naturalis Principia Mathematica, or Mathematical Principles of Natural Philosophy.

A revised edition appeared in 1713, followed by a third edition in 1726, just one

year before the author's death in 1727. The subject of this work, to use the name

assigned by Newton in the first preface, is "rational mechanics." Later on, Leibniz

introduced the name "dynamics." Although Newton objected to this name,1 "dy-

namics" provides an appropriate designation of the subject matter of the Principia,

since "force" is a primary concept of that work. Indeed, the Principia can quite

properly be described as a study of a variety of forces and the different kinds of

motions they produce. Newton's eventual goal, achieved in the third of the three

"books" of which the Principia is composed, was to apply the results of the prior

study to the system of the world, to the motions of the heavenly bodies. This sub-

ject is generally known today by the name used a century or so later by Laplace,

"celestial mechanics."

1. Newton's objections were not based on the name in terms of its Greek roots or its adequacy or

inadequacy to describe the subject matter. Rather, he took umbrage at Leibniz's having devised a name as

if he had been the inventor of the subject, whereas Newton believed that he himself had been the primary

creator. In a private memorandum (my Introduction, p. 296, §6), Newton wrote that "Galileo began to

consider the effect of Gravity upon Projectiles. Mr. Newton in his Principia Philosophiae improved that

consideration into a large science. Mr. Leibnitz christened the child by [aj new name as if it had been

his own, calling it Dynamica." In another such memorandum (ibid., p. 297), he declared that Leibniz

"changed the name of vis centripeta used by Newton into that of sollicitatio paracentrica, not because it

is a fitter name, but to avoid being thought to build upon Mr. Newton's foundation." He also held that

Leibniz "has set his mark upon this whole science of forces calling it Dynamick, as if he had invented it

himself & is frequently setting his mark upon things by new names & new Notations."

I



The history of how the Principia came into being has been told and retold.2

In the summer of 1684, the astronomer Edmond Halley visited Newton in order

to find out whether he could solve a problem that had baffled Christopher Wren,

Robert Hooke, and himself: to find the planetary orbit that would be produced

by an inverse-square central force. Newton knew the answer to be an ellipse.3 He

had solved the problem of elliptical orbits earlier, apparently in the period 1679-

1680 during the course of an exchange of letters with Hooke. When Halley heard

Newton's reply, he urged him to write up his results. With Halley's prodding and

encouragement, Newton produced a short tract which exists in several versions

and will be referred to as De Motu* (On Motion), the common beginning of all

the titles Newton gave to the several versions. Once started, Newton could not

restrain the creative force of his genius, and the end product was the Principia.

In his progress from the early versions of De Motu to the Principia, Newton's

conception of what could be achieved by an empirically based mathematical science

had become enlarged by several orders of magnitude.

2. E.g., my Introduction, Westfall's Never at Rest, Whiteside's introduction in Math. Papers (vol. 6),

Herivel's Background, and more recently A. Rupert Hall, Isaac Newton: Adventurer in Thought (Oxford

and Cambridge, Mass.: Blackwell, 1992).

3. Our source for this anecdote may be found in the notes accumulated by John Conduitt, husband

of Newton's niece and Newton's successor at the Mint, for a proposed biography of Newton. Conduitt

got the story from the mathematician Abraham de Moivre. The main lines of the story are undoubtedly

correct, but we may doubt the accuracy of the details, since this is a secondhand record of an event that

had happened about half a century earlier. What was the exact question that Halley would have asked

Newton ?

The question recorded by Conduitt has puzzled critical historians, because it does not have a simple

answer. There has even been some speculation whether Halley may have asked Newton for the force

acting in the case of an elliptical orbit rather than for the orbit produced by an inverse-square force. It

is doubtful whether Conduitt knew enough mathematics to see the difference between the two. But, in

fact, there is a real difference. As Newton shows in the Principia, in prop. 11, and as he proved in the

drafts of De Motu, an elliptical orbit does imply an inverse-square force. Yet, as readers of the Principia

would have been aware, an inverse-square force does not necessarily imply an elliptic orbit, rather a conic

section (which can be an ellipse, a parabola, or a hyperbola).

Of course, Halley's question may have implied (or have been thought by Newton to have implied)

an orbit of a planet or possibly a planetary satellite. Since such an orbit is a closed curve, and therefore

not a parabola or a hyperbola, Halley's question to Newton would then have been, in effect, What is

the planetary orbit (or closed orbit) produced by an inverse-square force? In this case, the answer would

legitimately be the one recorded by Conduitt.

4. The several versions of De Motu may be found (with translations and commentary) in Whiteside's

edition of Math. Papers 6:30-80; the Halls' Unpublished Sci. Papers, pp. 237-239, 243-292; Herivel's Bac^-

ground, pp. 256-303; and, earlier, in Rouse Ball's Essay, pp. 31-56, and in Stephen P. Rigaud, Historical

Essay on the First Publication of Sir Isaac Newton's "Principia" (Oxford: Oxford University Press, 1838;

reprint, with an introd. by I. B. Cohen, New York and London: Johnson Reprint Corp., 1972), appendix,

no. 1, pp. 1—19. For a facsimile reprint of the MSS of De Motu, see n. 5 below.

2 A B R I E F H I S T O R Y OF THE PRINCIPIA



A BRIEF HISTORY OF THE PRINCIPIA 

As first conceived, the Principia consisted of two "books" and bore the simple

title De Motu Corporum (On the Motion of Bodies). This manuscript begins, as

does the Principia, with a series of Definitions and Laws of Motion, followed by a

book 1 whose subject matter more or less corresponds to book 1 of the Principia.6

The subject matter of book 2 of this early draft is much the same as that of book

3 of the Principia. In revising this text for the Principia, Newton limited book 1

to the subject of forces and motion in free spaces, that is, in spaces devoid of any

resistance. Book 2 of the Principia contains an expanded version of the analysis

of motion in resisting mediums, plus discussions of pendulums,7 of wave motion,

and of the physics of vortices. In the Principia, the system of the world became the

subject of what is there book 3, incorporating much that had been in the older

book 2 but generally recast in a new form. As Newton explained in the final

Principia, while introducing book 3, he had originally presented this subject in a

popular manner, but then decided to recast it in a more mathematical form so

that it would not be read by anyone who had not first mastered the principles

of rational mechanics. Even so, whole paragraphs of the new book 3 were copied

word for word from the old book 2.

Steps Leading to the Composition and Publication of the Principia

The history of the development of Newton's ideas concerning mechanics, more

specifically dynamics, has been explored by many scholars and is still the subject

of active research and study.9 The details of the early development of Newton's

5. On this first draft of book 1, see my Introduction, chap. 4 and suppl. 3, where it is referred to as

Newton's Lucasian Lectures (LL) because Newton later deposited this MS in the University Library as if

it were the text of his university lectures for 1684 and 1685. This text has been edited and translated by

D. T. Whiteside in vol. 6 of Math. Papers, and Whiteside has also prepared a facsimile edition of the whole

MS, together with the drafts of De Motu, under the general title The Preliminary Manuscripts for Isaac

Newton's 1687 "Principia," 1684-1685 (Cambridge and New York: Cambridge University Press, 1989).

6. This early book 1 concluded (as did De Motu) with a brief presentation of motion in resisting

fluids, which was later considerably expanded so as to become the first sections of book 2 of the Principia.

7. Pendulums are also discussed in book 1.

8. A new translation of this early version of book 3, by Anne Whitman and I. Bernard Cohen, is

scheduled for publication by the University of California Press. In order to distinguish this work from

book 3 of the Principia (with its subtitle "De Systemate Mundi"), we have called this early version Essay

on the System of the World. A list of the paragraphs that are the same in both versions may be found in a

supplement to our edition of the Principia with variant readings, cited in n. 45 below.

9. The books and articles devoted to this topic are so numerous, and continue to appear at so rapid a

rate, that it would hardly be practical to cite them all. The most accessible and authoritative presentations

are to be found in Curtis Wilson's "Newt. Achievement" and especially in D. T. Whiteside, "Before

the Principia: The Maturing of Newton's Thoughts on Dynamical Astronomy, 1664-84," Journal for the

History of Astronomy 1 (1970): 5—19; "The Mathematical Principles Underlying Newton's Principia" ibid.,
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ideas about force and motion, however interesting in their own right, are not

directly related to the present assignment, which is to provide a reader's guide to

the Principia. Nevertheless, some aspects of this prehistory should be of interest

to every prospective reader of the Principia. In the scholium to book 1, prop. 4,

v2
Newton refers to his independent discovery (in the 1660s) of the — rule for the

r

force in uniform circular motion (at speed v along a circle of radius r), a discovery

usually attributed to Christiaan Huygens, who formally announced it to the world

in his Horologium Oscillatorium of 1673.10 It requires only the minimum skill in

v2

algebraic manipulation to combine the — rule with Kepler's third law in order
r

to determine that in a system of bodies in uniform circular motion the force is

proportional to — or is inversely proportional to the square of the distance. Of
r1

course, this computation does not of itself specify anything about the nature of the

force, whether it is a centripetal or a centrifugal force or whether it is a force in

the sense of the later Newtonian dynamics or merely a Cartesian "conatus," or

endeavor. In a manuscript note Newton later claimed that at an early date, in the

vl

1660s, he had actually applied the — rule to the moon's motion, much as he does
r

later on in book 3, prop. 4, of the Principia^ in order to confirm his idea of the

force of "gravity extending to the Moon."11 In this way he could counter Hooke's

allegation that he had learned the concept of an inverse-square force of gravity

from Hooke.

A careful reading of the documents in question shows that sometime in the

1660s, Newton made a series of computations, one of which was aimed at proving

that what was later known as the outward or centrifugal force arising from the

116—138. See also my Newt, Revolution, chaps. 4 and 5; R. S. Westfall's Never at Rest and his earlier Force

in Newton's Physics (London: Macdonald; New York: American Elsevier, 1971), chaps. 7 and 8; Herivel's

Background. A splendid review of this topic is available in Hall, Isaac Newton: Adventurer in Thought, pp.

55-64. A list of other scholars who have made contributions to this subject would include, among others,

Bruce Brackenridge, Herman Ehrlichson, J. E. McGuire, and Michael M. Nauenberg.
v2

10. The text of Newton's early discovery of the — rule is published (from Newton's "Waste Book")

in Background, pp. 130—131.

11. This celebrated autobiographical document was first printed in A Catalogue of the Portsmouth

Collection of Booths and Papers Written by or Belonging to Sir Isaac Newton, the Scientific Portion of Which

Has Been Presented by the Earl of Portsmouth to the University of Cambridge, ed. H. R. Luard et al.

(Cambridge: Cambridge University Press, 1888), and has been reprinted many times since. A corrected

version, taken from the manuscript in the Cambridge University Library (ULC MS Add. 3968, §41,

fol. 85) may be found in my Introduction, pp. 290-292.
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earth's rotation is less than the earth's gravity, as it must be for the Copernican

system to be possible. He then computed a series of forces. Cartesian vortical

endeavors are not the kind of forces that, in the Principia, are exerted by the sun

on the planets to keep them in a curved path or the similar force exerted by the

earth on the moon. At this time, and for some years to come, Newton was deeply

enmeshed in the Cartesian doctrine of vortices. He had no concept of a "force of

gravity" acting on the moon in anything like the later sense of the dynamics of the

Principia. These Cartesian "endeavors" (Newton used Descartes's own technical

term, "conatus") are the magnitude of the planets' endeavors to fly out of their

orbits. Newton concludes that since the cubes of the distances of the planets from

the sun are "reciprocally as the squared numbers of their revolutions in a given

time," their "conatus to recede from the Sun will be reciprocally as the squares of

their distances from the Sun."12

Newton also made computations to show that the endeavor or "conatus" of

receding from the earth's surface (caused by the earth's daily rotation) is l2l/2

times greater than the orbital endeavor of the moon to recede from the earth. He

concludes that the force of receding at the earth's surface is "4000 and more times

greater than the endeavor of the Moon to recede from the Earth."

In other words, "Newton had discovered an interesting mathematical correla-

tion within the solar vortex,"13 but he plainly had not as yet invented the radically

new concept of a centripetal dynamical force, an attraction that draws the planets

toward the sun and the moon toward the earth.14 There was no "twenty years'

delay" (from the mid-1660s to the mid-1680s) in Newton's publication of the theory

of universal gravity, as was alleged by Florian Cajori.15

In 1679/80, Hooke initiated an exchange of correspondence with Newton on

scientific topics. In the course of this epistolary interchange, Hooke suggested to

Newton a "hypothesis" of his own devising which would account for curved orbital

motion by a combination of two motions: an inertial or uniform linear component

12. Corresp. 1:300; see A. Rupert Hall, "Newton on the Calculation of Central Forces," Annals of

Science 13 (1957): 62-71.

13. Hall, Isaac Newton: Adventurer in Thought, p. 62. This work gives an excellent critical summary

of Newton's thoughts about celestial motions during the 1660s.

14. For the documents and an analysis, see Hall, "Newton on the Calculation of Central Forces,"

pp. 62-71; also Background, pp. 192-198, 68-69; and esp. Never at Rest, pp. 151-152. See, further, Newt.

Revolution, esp. pp. 238-240. A splendid review of this subject is available in D. T. Whiteside, "The

Prehistory of the Principia from 1664 to 1686," Notes and Records of the Royal Society of London 45 (1991):

11-61, esp. 18-22.

15. Florian Cajori, "Newton's Twenty Years' Delay in Announcing the Law of Gravitation," in

Sir Isaac Newton, 1727—1927: A Bicentenary Evaluation of His Wort{, ed. Frederic E. Brasch (Baltimore:

Williams and Wilkins, 1928), pp. 127-188.
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along the tangent to the curve and a motion of falling inward toward a center.

Newton told Hooke that he had never heard of this "hypothesis."16 In the course of

their letters, Hooke urged Newton to explore the consequences of his hypothesis,

advancing the opinion or guess that in combination with the supposition of an

inverse-square law of solar-planetary force, it would lead to the true planetary

motions.17 Hooke also wrote that the inverse-square law would lead to a rule

for orbital speed being inversely proportional to the distance of a planet from

the sun.18 Stimulated by Hooke, Newton apparently then proved that the solar-

planetary force is as the inverse square of the distance, a first step toward the

eventual Principia.

We cannot be absolutely certain of exactly how Newton proceeded to solve

the problem of motion in elliptical orbits, but most scholars agree that he more

or less followed the path set forth in the tract De Motu which he wrote after

Halley's visit a few years later in 1684.19 Essentially, this is the path from props. 1

and 2 of book 1 to prop. 4, through prop. 6, to props. 10 and 11. Being secretive

by nature, Newton didn't tell Hooke of his achievement. In any event, he would

hardly have announced so major a discovery to a jealous professional rival, nor in

a private letter. What may seem astonishing, in retrospect, is not that Newton did

not reveal his discovery to Hooke, but that Newton was not at once galvanized

into expanding his discovery into the eventual Principia.

Several aspects of the Hooke-Newton exchange deserve to be noted. First,

Hooke was unable to solve the problem that arose from his guess or his intuition;

he simply did not have sufficient skill in mathematics to be able to find the orbit

produced by an inverse-square force. A few years later, Wren and Halley were

equally baffled by this problem. Newton's solution was, as Westfall has noted, to

invert the problem, to assume the path to be an ellipse and find the force rather

16. The Newton-Hooke correspondence during 1679/80 is to be found in Corresp., vol. 2. See, in

this regard, Alexandre Koyre, "An Unpublished Letter of Robert Hooke to Isaac Newton," Isis 43 (1952):

312-337, reprinted in Koyre's Newtonian Studies (Cambridge, Mass.: Harvard University Press, 1965), pp.

221-260. Also J. A. Lohne, "Hooke versus Newton: An Analysis of the Documents in the Case of Free

Fall and Planetary Motion," Centaurus 7 (1960): 6—52.

17. Later, Newton quite correctly insisted that Hooke could not prove this assertion. In any event he

himself had already been thinking of an inverse-square force.

18. Newton was to prove that this particular conclusion or guess of Hooke's was wrong. The force on

a planet at a point P (see book 1, prop. 1, corol. 1) is inversely proportional to the perpendicular distance

from the sun to the tangent to the curve at P. We shall take note, below, that Hooke's rule, previously

stated by Kepler, is true only at the apsides.

19. There has, however, been some consideration given to the possibility that what Newton wrote up

at this time was a prototype of the paper he later sent to John Locke.

This work is available, with a commentary by D. T. Whiteside, in Math. Papers, vol. 6, and in Herivel's

Background and the Halls' edition of Unpubl. Sci. Papers.
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than "investigating the path in an inverse-square force field."20 Second, there is no

certainty that the tract De Motu actually represents the line of Newton's thought

after corresponding with Hooke; Westfall, for one, has argued that a better can-

didate would be an essay in English which Newton sent later to John Locke, a

position he maintains in his biography of Newton.21 A third point is that Newton

was quite frank in admitting (in private memoranda) that the correspondence with

Hooke provided the occasion for his investigations of orbital motion that eventu-

ally led to the Principia22 Fourth, as we shall see in §3.4 below, the encounter

with Hooke was associated with a radical reorientation of Newton's philosophy of

nature that is indissolubly linked with the Principia. Fifth, despite Newton's success

in proving that an elliptical orbit implies an inverse-square force, he was not at

that time stimulated—as he would be some four years later—to move ahead and

to create modern rational mechanics. Sixth, Newton's solution of the problems of

planetary force depended on both his own new concept of a dynamical measure

of force (as in book 1, prop. 6) and his recognition of the importance of Kepler's

law of areas.23 A final point to be made is that most scholarly analyses of New-

ton's thoughts during this crucial period concentrate on conceptual formulations

and analytical solutions, whereas we know that both Hooke24 and Newton made

20. Never at Rest, p. 387. I have discussed this matter in my Introduction, pp. 49—52, in relation to

the question of what Halley asked Newton on the famous visit in the summer of 1684 and what Newton

would have replied.

21. Most scholars date the Locke paper after the Principia. An earlier dating was suggested by Herivel

in 1961 and reaffirmed in his Background, pp. 108—117. This assigned date was then challenged by the

Halls in 1963, and supported by Westfall in 1969, whose arguments were refuted by Whiteside in 1970.

See the summary in Westfall's Never at Rest, pp. 387-388 n. 145.

An admirable discussion of the various attempts to date this work is given in Bruce Brackenridge, "The

Critical Role of Curvature in Newton's Developing Dynamics," in The Investigation of Difficult Things:

Essays on Newton and the History of the Exact Sciences, ed. P. M. Harman and Alan E. Shapiro (Cambridge:

Cambridge University Press, 1992), pp. 231-260, esp. 241-242 and n. 35. Brackenridge concludes by

agreeing with Whiteside that the date of a "prototype manuscript" on which this tract is based should be

fixed at August 1684, shortly after Halley's visit.

22. Newton to Halley, 27 July 1686, Corresp. 2:447; my Introduction, suppl. 1. My own awareness of

the significance of the Hooke-Newton correspondence (in suggesting a fruitful way to analyze celestial

orbital motions) derives from a pioneering study by R. S. Westfall, "Hooke and the Law of Universal

Gravitation," The British Journal for the History of Science 3 (1967): 245-261.

23. On the problems of using Kepler's law of areas and the various approximations used by

seventeenth-century astronomers in place of this law, see Curtis Wilson, "From Kepler's Laws, So-Called,

to Universal Gravitation: Empirical Factors," Archive for History of Exact Sciences 6 (1970): 89-170; and

my Newt. Revolution, pp. 224—229.

24. Patri Pugliese, "Robert Hooke and the Dynamics of Motion in the Curved Path," in Robert

Hooke: New Studies, ed. Michael Hunter and Simon Schaffer (London: Boydell Press, 1989), pp. 181-205.

See, further, Michael Nauenberg, "Hooke, Orbital Motion, and Newton's Principia" American Journal of

Physics 62 (1994): 331-350.
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important use of graphical methods, a point rightly stressed by Curtis Wilson.25

Newton, in fact, in an early letter to Hooke, wrote of Hooke's "acute Letter having

put me upon considering.. . the species of this curve," saying he might go on to

"add something about its description quam proxime," 6 or by graphic methods.

The final proposition in the Principia (book 3, prop. 42) declared its subject (in the

first edition) to be: "To correct a comet's trajectory found graphically." In the sec-

ond and third editions, the text of the demonstration was not appreciably altered,

but the statement of the proposition now reads: "To correct a comet's trajectory

that has been found."

When Newton wrote up his results for Halley (in the tract De Motu) and

proved (in the equivalent of book 1, prop. 11) that an elliptical orbit implies an

inverse-square central force, he included in his text the joyous conclusion: "There-

fore the major planets revolve in ellipses having a focus in the center of the sun;

and the radii to the sun describe areas proportional to the times, exactly ["omnino"]

as Kepler supposed."27 But after some reflection, Newton recognized that he had

been considering a rather artificial situation in which a body moves about a math-

ematical center of force. In nature, bodies move about other bodies, not about

mathematical points. When he began to consider such a two-body system, he came

to recognize that in this case each body must act on the other. If this is true for

one such pair of bodies, as for the sun-earth system, then it must be so in all such

systems. In this way he concluded that the sun (like all the planets) is a body on

which the force acts and also a body that gives rise to the force. It follows at once

that each planet must exert a perturbing force on every other planet in the solar

system. The consequence must be, as Newton recognized almost at once, that "the

displacement of the sun from the center of gravity" may have the effect that "the

centripetal force does not always tend to" an "immobile center" and that "the plan-

ets neither revolve exactly in ellipses nor revolve twice in the same orbit." In other

words, "Each time a planet revolves it traces a fresh orbit, as happens also with

the motion of the moon, and each orbit is dependent upon the combined motions

of all the planets, not to mention their actions upon each other." This led him

to the melancholy conclusion: "Unless I am much mistaken, it would exceed the

force of human wit to consider so many causes of motion at the same time, and to

define the motions by exact laws which would allow of any easy calculation."

25. "Newt. Achievement," pp. 242-243.

26. Newton to Hooke, 13 December 1679, Corresp. 2:308. Wilson's suggested reconstruction occurs in

"Newt. Achievement," p. 243.

27. Unpubl. Sci. Papers, pp. 253, 277.

28. Ibid., pp. 256, 281.
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We don't know exactly how Newton reached this conclusion, but a major

factor may have been the recognition of the need to take account of the third

law, that to every action there must be an equal and opposite reaction. Yet, in the

texts of De Motu, the third law does not appear explicitly among the "laws" or

"hypotheses." We do have good evidence, however, that Newton was aware of the

third law long before writing De Motu.29 In any event, the recognition that there

must be interplanetary perturbations was clearly an essential step on the road to

universal gravity and the Principia.

In reviewing this pre-Principia development of Newton's dynamics, we should

take note that by and large, Newton has been considering exclusively the motion

of a particle, of unit mass. Indeed, a careful reading of the Principia will show

that even though mass is the subject of the first definition at the beginning of

the Principia, mass is not a primary variable in Newton's mode of developing

his dynamics in book 1. In fact, most of book 1 deals exclusively with particles.

Physical bodies with significant dimensions or shapes do not appear until sec. 12,

"The attractive forces of spherical bodies."

Newton's concept of mass is one of the most original concepts of the Principia.

Newton began thinking about mass some years before Halley's visit. Yet, in a

series of definitions which he wrote out some time after De Motu and before

composing the Principia, mass does not appear as a primary entry. We do not

have documents that allow us to trace the development of Newton's concept of

mass with any precision. We know, however, that two events must have been

important, even though we cannot tell whether they initiated Newton's thinking

about mass or reinforced ideas that were being developed by Newton. One of

these was the report of the Richer expedition, with evidence that indicated that

weight is a variable quantity, depending on the terrestrial latitude. Hence weight is

a "local" property and cannot be used as a universal measure of a body's quantity

of matter. Another was Newton's study of the comet of 1680. After he recognized

that the comet turned around the sun and after he concluded that the sun's action

29. See D. T. Whiteside's notes in Math. Papers 5:148-149 n. 152; 6:98-99 n. 16.

30. A quite different reconstruction of Newton's path to universal gravity has been proposed by

George Smith. He suggests: "The 'one-body' solutions of the tract 'De Motu' expressly entail that the

a3/T2 value associated with each celestial central body is a measure of the centripetal tendency toward it.

The known values for the Sun, Jupiter, Saturn, and the Earth can then be used, in conjunction with the

principle that the center of gravity of the system remains unaffected (corollary 4 of the Laws of Motion),

first to conclude independently of any explicit reference to mass that the Copernican system is basically

correct (as in the 'Copernican scholium' of the revised version of 'De Motu'), and then to infer that the

gravitational force acting celestially is proportional to the masses of the central and orbiting bodies. The

final step to universal gravitation then follows along the lines of Propositions 8 and 9 of Book III of the

Principia." See, also, Wilson's "From Kepler's Laws" (n. 23 above).
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on the comet cannot be magnetic, he came to believe that Jupiter must also exert

an influence on the comet. Clearly, this influence must derive from the matter in

Jupiter, Jupiter acting on the comet just as it does on its satellites.

Once Newton had concluded that planets are centers of force because of their

matter or mass, he sought some kind of empirical confirmation of so bold a con-

cept. Since Jupiter is by far the most massive of all the planets, it was obvious

that evidence of a planetary force would be most manifest in relation to the ac-

tion of Jupiter on a neighboring planet. In happened that in 1684/85 the orbital

motions of Jupiter and Saturn were bringing these two planets to conjunction. If

Newton's conclusion were correct, then the interactions of these two giant planets

should show the observable effects of an interplanetary force. Newton wrote to the

astronomer John Flamsteed at the Royal Observatory at Greenwich for informa-

tion on this point. Flamsteed reported that Saturn's orbital speed in the vicinity of

Jupiter did not exactly follow the expected path, but he could not detect the kind

of effect or perturbation that Newton had predicted.31 As we shall see, the effect

predicted by Newton does occur, but its magnitude is so tiny that Flamsteed could

never have observed it. Newton needed other evidence to establish the validity of

his force of universal gravity.

Newton's discovery of interplanetary forces as a special instance of universal

gravity enables us to specify two primary goals of the Principia. The first is to

show the conditions under which Kepler's laws of planetary motion are exactly or

accurately true; the second is to explore how these laws must be modified in the

world of observed nature by perturbations, to show the effects of perturbations on

the motions of planets and their moons.32

It is well known that after the Principia was presented to the Royal Society,

Hooke claimed that he should be given credit for having suggested to Newton the

idea of universal gravity. We have seen that Hooke did suggest to Newton that

the sun exerts an inverse-square force on the planets, but Newton insisted that

he didn't need Hooke to suggest to him that there is an inverse-square relation.

Furthermore, Newton said that this was but one of Hooke's guesses. Newton again

and again asserted that Hooke didn't know enough mathematics to substantiate

his guess, and he was right. As the mathematical astronomer Alexis Clairaut said

31. Corresp. 2:419-420.
32. These two goals are discussed in my "Newton's Theory vs. Kepler's Theory and Galileo's Theory:

An Example of a Difference between a Philosophical and a Historical Analysis of Science," in The

Interaction between Science and Philosophy, ed. Yehuda Elkana (Atlantic Highlands, N.J.: Humanities Press,

1974), pp. 299-388.
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of Hooke's claim, a generation later, it serves "to show what a distance there is

between a truth that is glimpsed and a truth that is demonstrated."33

In explaining his position with respect to Hooke's guess, Newton compared

his own work with that of Hooke and Kepler. Newton evidently believed that he

himself had "as great a right" to the inverse-square law "as to the ellipsis." For,

just "as Kepler knew the orb to be not circular but oval, and guessed it to be

elliptical, so Mr. Hooke, without knowing what I have found out since his letters

to me,"34 knew only "that the proportion was duplicata quam proxime at great

distances from the centre," and "guessed it to be so accurately, and guessed amiss

in extending that proportion down to the very centre." But, unlike Hooke, "Kepler

guessed right at the ellipsis," so that "Mr. Hooke found less of the proportion than

Kepler of the ellipsis."35 Newton believed that he himself deserved credit for the

law of elliptical orbits, as well as the law of the inverse square, on the grounds that

he had proved both in their generality. In the Principia (e.g., in the "Phenomena"

in book 3), Newton gave Kepler credit only for the third or harmonic law. At the

time that Newton was writing his Principia, there were alternatives to the area law

that were in use in making tables of planetary motion. Newton proposed using

the eclipses of Jupiter's satellites (and later of those of Saturn) to show that this

law holds to a high degree. But the law of elliptical orbits was of a different sort

because there was no observational evidence that would distinguish between an

ellipse and other ovals. Thus there may have been very different reasons for not

giving Kepler credit for these two laws.

At one point during the exchange of letters with Halley on Hooke's claims

to recognition, Newton—in a fit of pique—threatened to withdraw book 3 al-

together.37 We do not know how serious this threat was, but Halley was able

to explain matters and to calm Newton's rage. Halley deserves much praise for

his services as midwife to Newton's brainchild. Not only was he responsible for

goading Newton into writing up his preliminary results; he encouraged Newton

to produce the Principia. At an early stage of composition of the Principia, as I

discovered while preparing the Latin edition with variant readings, Halley even

33. "Exposition abregee du systeme du monde, et explication des principaux phenomenes as-

tronomiques tiree des Principes de M. Newton," suppl. to the marquise du Chatelet's translation of the

Principia (Paris: chez Desaint & Saillant [&] Lambert, 1756), 2:6.

34. Newton was referring to the problem of the gravitational action of a homogeneous sphere on an

external particle; see Whiteside's note in Math. Papers 6:19 n. 59.

35. Newton to Halley, 20 June 1686, Corresp., vol. 2.

36. Ibid. "I do pretend [i.e., claim]," Newton wrote, "to have done as much for the proportion [of

the inverse square] as for the ellipsis, and to have as much right to the one from Mr. Hooke and all men,

as to the other from Kepler."

37. See §3.1 below.



helped Newton by making suggestive comments on an early draft of book 1, the

manuscript of which no longer exists.38

Although publication of the Principia was sponsored by the Royal Society, there

were no funds available for the costs of printing, and so Halley had to assume those

expenses.39 Additionally, he edited the book for the printer, saw to the making of

the woodcuts of the diagrams, and read the proofs. He wrote a flattering ode to

Newton that introduces the Principia in all three editions,40 and he also wrote a

book review that was published in the Royal Society's Philosophical Transactions?1

Revisions and Later Editions

Within a decade of publication of the Principia, Newton was busy with a

number of radical revisions, including an extensive restructuring of the opening

sections.42 He planned to remove sees. 4 and 5, which are purely geometrical and

not necessary to the rest of the text, and to publish them separately.43 He also devel-

oped plans to include a mathematical supplement on his methods of the calculus,

his treatise De Quadratura. Many of the proposed revisions and restructurings of the

1690s are recorded in Newton's manuscripts; others were reported in some detail

by David Gregory.44 When Newton began to produce a second edition, however,

with the aid of Roger Cotes, the revisions were of a quite different sort. Some

of the major or most interesting alterations are given in the notes to the present

translation. The rest are to be found in the apparatus criticus of our Latin edition

of the Principia with variant readings.45

There were a number of truly major emendations that appeared in the second

edition, some of which involved a complete replacement of the original text. One

38. See my Introduction, suppl. 7.

39. A. N. L. Munby estimated the size of the first edition at some 300 or 400 copies, but this number

has recently been increased to perhaps 500. See Whiteside, "The Prehistory of the Principia" (n. 14 above),

esp. p. 34. Whiteside reckons that, granting this larger size of the edition, Halley would not have suffered

financially by paying the printing costs of the Principia and would even have made not "less than £10 in

pocket for all his time and trouble."

40. Or. the alterations in the poem in successive editions of the Principia, see our Latin edition, cited

in n. 45 below.

41. Philosophical Transactions 16, no. 186 (Jan.-Feb.-March 1687): 291-297, reprinted in Isaac Newton's

Papers and Letters on Natural Philosophy, ed. I. B. Cohen and Robert E. Schofield, 2d ed. (Cambridge,

Mass.: Harvard University Press, 1978), pp. 405-411.

42. See my Introduction, chap. 7, and esp. Math. Papers, vol. 6.

43. Introduction, p. 193.

44. Ibid., pp. 188-198.

45. Isaac Newton's "Philosophiae Naturalis Principia Mathematica": The Third Edition (1726) with Variant

Readings, assembled and edited by Alexandre Koyre, I. Bernard Cohen, and Anne Whitman, 2 vols.

(Cambridge: Cambridge University Press; Cambridge, Mass.: Harvard University Press, 1972).
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of these was the wholly new proof of book 2, prop. 10, a last-minute alteration in

response to a criticism made by Johann Bernoulli.46 Another occurred in book 2,

sec. 7, on the motion of fluids and the resistance encountered by projectiles, where

most of the propositions and their proofs are entirely different in the second edition

from those of the first edition. That is, the whole set of props. 34—40 of the first

edition were cast out and replaced.47 This complete revision of sec. 7 made it more

appropriate to remove to the end of sec. 6 the General Scholium on pendulum

experiments which originally had been at the end of sec. 7. This was a more

thorough revision of the text than occurred in any other part of the Principia.

Another significant novelty of the second edition was the introduction of a

conclusion to the great work, the celebrated General Scholium that appears at the

conclusion of book 3. The original edition ended rather abruptly with a discussion

of the orbits of comets, a topic making up about a third of book 3. Newton

had at first essayed a conclusion, but later changed his mind. His intentions were

revealed in 1962 by A. Rupert Hall and Marie Boas Hall, who published the

original drafts. In these texts, Newton shows that he intended to conclude the

Principia with a discussion of the forces between the particles of matter, but then

thought better of introducing so controversial a topic. While preparing the second

edition, Newton thought once again of an essay on "the attraction of the small

particles of bodies," but on "second thought" he chose "rather to add but one short

Paragraph about that part of Philosophy."48 The conclusion he finally produced

is the celebrated General Scholium, with its oft-quoted slogan "Hypotheses non

fingo." This General Scholium ends with a paragraph about a "spirit" which has

certain physical properties, but whose laws have not as yet been determined by

experiment. Again thanks to the researches of A. Rupert Hall and Marie Boas

Hall, we now know that while composing this paragraph, Newton was thinking

about the new phenomena of electricity.49

Another change that occurs in the second edition is in the beginning of book 3.

In the first edition, book 3 opened with a preliminary set of Hypotheses^ Perhaps

46. See D. T. Whiteside's magisterial discussion of this episode, together with all the relevant docu-

ments concerning the stages of alteration of book 2, prop. 10, in Math. Papers 8:50-53, esp. nn. 175, 180,

and esp. §6, appendix 2.1.52 in that same volume. See also §7.3 below and my Introduction, §9.4.

47. These props. 34-40 of the first edition (translated by I. Bernard Cohen and Anne Whitman)

will be published, together with a commentary by George Smith, in Newton's Natural Philosophy, ed. Jed

Buchwald and I. Bernard Cohen (Cambridge: MIT Press, forthcoming).

48. Unpubl. Sci. Papers, pp. 320-347 (see §9.3 below); Newton to Cotes, 2 Mar. 1712/13. On the

production of the second edition, see the texts, notes, and commentaries in Correspondence of Sir Isaac

Newton and Professor Cotes, ed. J. Edleston (London: John W. Parker; Cambridge: John Deighton, 1850).

49. See §9.3 below.

50. See §8.2 below.
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in reply to the criticism in the Journal des Scavans?1 Newton now renamed the

"hypotheses" and divided them into several classes. Some became Regulae Philoso-

phandi, or "Rules for Natural Philosophy," with a new rule (no. 3). Others became

"Phenomena," with new numerical data. Yet another was transferred to a later

place in book 3, where it became "hypothesis 1."

Newton also made a slight modification in the scholium following lem. 2

(book 2, sec. 2), in reference to Leibniz's method of the calculus. He had originally

written that Leibniz's method "hardly differed from mine except in the forms

of words and notations." In the second edition Newton altered this statement

by adding that there was another difference between the two methods, namely, in

"the generation of quantities." This scholium and its successive alterations attracted

attention because of the controversy over priority in the invention of the calculus.

In the third edition, Newton eliminated any direct reference to Leibniz.

Critical readers of the Principia paid close attention to the alteration in the

scholium following book 3, prop. 35. In the second edition, the original short

text was replaced by a long discussion of Newton's attempts to apply the theory

of gravity to some inequalities of the moon's motion.52 Much of the text of this

scholium had been published separately by David Gregory.53

Many of Newton's plans for the actual revisions of the first edition, in order to

produce a second edition, were entered in two personal copies of the Principia. One

of these was specially bound and interleaved. Once the second edition had been

published, Newton again prepared an interleaved copy and kept track of proposed

alterations or emendations in his interleaved copy and in an annotated copy. These

four special copies of the Principia have been preserved among Newton's books,

and their contents have been noted in our Latin edition with variant readings.54

Soon after the appearance of the second edition, Newton began planning for

yet another revision. The preface which he wrote for this planned edition of the

late 1710s is of great interest in that it tells us in Newton's own words about some

of the features of the Principia he believed to be most significant. It is printed below

in §3.2. Newton at this time once again planned to have a treatise on the calculus

published together with the Principia. In the end he abandoned this effort. Later

on, when he was in his eighties, he finally decided to produce a new edition. He

51. See my Introduction, chap. 6, sec. 6.

52. See §8.14 below.
53. For details see Isaac Newton's Theory of the Moon's Motion (1702), introd. I. Bernard Cohen

(Folkestone: Dawson, 1975).

54. These four special copies are described in my Introduction; Newton's MS notes appear in our

edition with variant readings (n. 45 above).
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chose as editor Dr. Henry Pemberton, a medical doctor and authority on pharmacy

and an amateur mathematician.

The revisions in the third edition were not quite as extensive as those in the

second edition.55 A new rule 4 was added on the subject of induction, and there
were other alterations, some of which may be found in the notes to the present

translation. An important change was made in the "Leibniz Scholium" in book 2,

sec. 2. The old scholium was replaced by a wholly different one. Newton now

boldly asserted his own claims to be the primary inventor of the calculus, referring

to some correspondence to prove the point. Even though Leibniz had been dead

for almost a decade, Newton still pursued his rival with dogged obstinacy. Another

innovation in the third edition appeared in book 3, where Newton inserted (follow-

ing prop. 33) two propositions by John Machin, astronomy professor at Gresham

College, whose academic title would later lead to the invention of a fictitious sci-

entist in the Motte-Cajori edition.57

By the time of the third edition, Newton seems to have abandoned his earlier

attempts to explain the action of gravity by reference to electrical phenomena and

had come rather to hope that an explanation might be found in the actions of

an "aethereal medium" of varying density. In his personal copy of the Principia,

in which he recorded his proposed emendations and revisions, he at first had

entered an addition to specify that the "spirit" to which he had referred in the

final paragraph of the General Scholium was "electric and elastic."59 Later on, he

apparently decided that since he no longer believed in the supreme importance

of the electrical theory, he would cancel the whole paragraph. Accordingly, he

drew a line through the text, indicating that this paragraph should be omitted.

It is one of the oddities of history that Andrew Motte should have learned of

Newton's planned insertion of the modifier "electricus et elasticus" but not of

Newton's proposed elimination of the paragraph. Without comment, Motte entered

"electric and elastic" into his English version of 1729. These words were in due

course preserved in the Motte-Cajori version and have been quoted in the English-

speaking world ever since.

55. See my Introduction, chap. 11.

56. See A. Rupert Hall, Philosophers at War: The Quarrel between Newton and Leibniz (Cambridge,

London, New York: Cambridge University Press, 1980), and especially Math. Papers, vol. 8.

57. See §2.3 below.

58. See the later Queries of the Opticf^s and the discussion by Betty Jo Dobbs, Janus Faces (§3.1, n. 10

below).

59. See §9.3 below.
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N E W T 0 N 1

P R I N C I P I A

P H I L O S O P H I C .

The third edition of Newton's Principia begins with this half title followed by two inserted
leaves. One is a portrait of Newton engraved by George Vertue from a painting by John
Vanderbank, the other the "privilege" or license for publication, dated 25 March 1726. (Grace

K. Babson Collection, Burndy Library)
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Title page of the third edition of Newton's Principia. In the original, the words PHILOSO-
PHIAE and PRINCIPIA are printed in red, as are ISAACO NEWTONO and LONDINI.
(Grace K. Babson Collection, Burndy Library)
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TO THE MOST I L L U S T R I O U S

R O Y A L S O C I E T Y ,

F O U N D E D

FOR THE PROMOTION OF PHILOSOPHY

B Y

HIS MOST SERENE MAJESTY

C H A R L E S I I ,
A N D

F L O U R I S H I N G

UNDER THE P A T R O N A G E OF

HIS MOST SERENE MAJESTY

G E O R G E ,
THIS T R E A T I S E I S D E D I C A T E D .

IS. NEWTON.

The Latin dedication to the third edition (opposite; Grace K. Babson Collection, Burndy Li-
brary) describes the Royal Society as "ad philosophiam promovendam," in the sense of the
promotion of natural philosophy or science. In this expression, Newton was producing a vari-
ant of the official name, "The Royal Society of London for Promoting Natural Knowledge."
The Latin original of this English version, however, is "Regalis Societas Londini pro scientia
naturali promovenda," as stated in the third charter. In the first edition of the Principia, the
latter part of the dedication reads: "and flourishing under the patronage of the Most Powerful
Monarch James II"; additionally, it is said that this treatise is "most humbly" ("humillime")
dedicated. In the second edition, the latter part of the dedication reads: "and flourishing under
the patronage of the Most August Queen Anne."
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Ode on This Splendid Ornament

of Our Time and Our Nation,

the Mathematico-Physical Treatise
by the Eminent
Isaac Newton

Behold the pattern of the heavens, and the balances of the divine structure;

Behold Jove's calculation and the laws

That the creator of all things, while he was setting the beginnings of the world,

would not violate;

Behold the foundations he gave to his works.

Heaven has been conquered and its innermost secrets are revealed;

The force that turns the outermost orbs around is no longer hidden.

The Sun sitting on his throne commands all things

To tend downward toward himself, and does not allow the chariots of the

heavenly bodies to move

Through the immense void in a straight path, but hastens them all along

In unmoving circles around himself as center.

Now we know what curved path the frightful comets have;

No longer do we marvel at the appearances of a bearded star.

From this treatise we learn at last why silvery Phoebe moves at an unequal pace,

Why, till now, she has refused to be bridled by the numbers of any astronomer,

Why the nodes regress, and why the upper apsides move forward.

We learn also the magnitude of the forces with which wandering Cynthia

Impels the ebbing sea, while its weary waves leave the seaweed far behind

And the sea bares the sands that sailors fear, and alternately beat high up on

the shores.

The things that so often vexed the minds of the ancient philosophers
And fruitlessly disturb the schools with noisy debate

We see right before our eyes, since mathematics drives away the cloud.
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2" H A L L E Y ' S ODE TO N E W T O N

Error and doubt no longer encumber us with mist;

For the keenness of a sublime intelligence has made it possible for us to enter

The dwellings of the gods above and to climb the heights of heaven.

Mortals arise, put aside earthly cares,

And from this treatise discern the power of a mind sprung from heaven,

Far removed from the life of beasts.

He who commanded us by written tablets to abstain from murder,

Thefts, adultery, and the crime of bearing false witness,

Or he who taught nomadic peoples to build walled cities, or he who enriched the

nations with the gift of Ceres,

Or he who pressed from the grape a solace for cares,

Or he who with a reed from the Nile showed how to join together

Pictured sounds and to set spoken words before the eyes,

Exalted the human lot less, inasmuch as he was concerned with only a few

comforts of a wretched life,

And thus did less than our author for the condition of mankind.

But we are now admitted to the banquets of the gods;

We may deal with the laws of heaven above; and we now have

The secret keys to unlock the obscure earth; and we know the immovable order

of the world

And the things that were concealed from the generations of the past.

O you who rejoice in feeding on the nectar of the gods in heaven,

Join me in singing the praises of NEWTON, who reveals all this,

Who opens the treasure chest of hidden truth,

NEWTON, dear to the Muses,

The one in whose pure heart Phoebus Apollo dwells and whose mind he has filled

with all his divine power;

No closer to the gods can any mortal rise.

Edm. Halley



Author's Preface to the Reader

S I N C E THE A N C I E N T S (according to Pappus) considered mechanics to be of

the greatest importance in the investigation of nature and science and since the

moderns—rejecting substantial forms and occult qualities—have undertaken to

reduce the phenomena of nature to mathematical laws, it has seemed best in

this treatise to concentrate on mathematics as it relates to natural philosophy. The

ancients divided mechanics into two parts: the rational, which proceeds rigorously

through demonstrations, and the practical? Practical mechanics is the subject that

comprises all the manual arts, from which the subject of mechanics as a whole

has adopted its name. But since those who practice an art do not generally work

with a high degree of exactness, the whole subject of mechanics is distinguished

from geometry by the attribution of exactness to geometry and of anything less

than exactness to mechanics. Yet the errors do not come from the art but from

those who practice the art. Anyone who works with less exactness is a more

imperfect mechanic, and if anyone could work with the greatest exactness, he
would be the most perfect mechanic of all. For the description of straight lines

and circles, which is the foundation of geometry, appertains to mechanics. Geometry

All notes to the translation are keyed to the text by superscript letters. When a note is introduced by

two letters, such as "aa," it refers to that part of the text enclosed between an opening superscript "a" and

a final or closing "a."

These notes are, for the most part, extracts from variant passages or expressions as found in the first

two editions. The glosses and explanations of the text are to be found in the Guide, the text of which

follows the order of Newton's presentation in the Principia.

a. Newton's comparison and contrast between the subject of rational or theoretical mechanics and

practical mechanics was a common one at the time of the Principia. Thus John Harris in his Newtonian

Lexicon Technicum (London, 1704), citing the authority of John Wallis, made a distinction between the

two as follows. One was a "Geometry of Motion," a "Mathematical Science which shews the Effects of

Powers, or moving Forces," and "demonstrates the Laws of Motion." The other is "commonly taken for

those Handy-crafts, which require as well the Labour of the Hands, as the Study of the Brain." The subject

of the Principia became generally known as "rational mechanics" following Newton's use of that name in

his Preface.
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does not teach how to describe these straight lines and circles, but postulates such

a description. For geometry postulates that a beginner has learned to describe lines

and circles exactly before he approaches the threshold of geometry, and then it

teaches how problems are solved by these operations. To describe straight lines

and to describe circles are problems, but not problems in geometry. Geometry

postulates the solution of these problems from mechanics and teaches the use of

the problems thus solved. And geometry can boast that with so few principles

obtained from other fields, it can do so much. Therefore geometry is founded on

mechanical practice and is nothing other than that part of universal mechanics

which reduces the art of measuring to exact propositions and demonstrations. But

since the manual arts are applied especially to making bodies move, geometry is

commonly used in reference to magnitude, and mechanics in reference to motion.

In this sense rational mechanics will be the science, expressed in exact propositions

and demonstrations, of the motions that result from any forces whatever and of

the forces that are required for any motions whatever. The ancients studied this

part of mechanics in terms of the five powers that relate to the manual arts [i.e.,

the five mechanical powers] and paid hardly any attention to gravity (since it

is not a manual power) except in the moving of weights by these powers. But

since we are concerned with natural philosophy rather than manual arts, and are

writing about natural rather than manual powers, we concentrate on aspects of

gravity, levity, elastic forces, resistance of fluids, and forces of this sort, whether

attractive or impulsive. And therefore our present work sets forth mathematical

principles of natural philosophy. For the basic problem [lit. whole difficulty13] of

philosophy seems to be to discover the forces of nature from the phenomena of

motions and then to demonstrate the other phenomena from these forces. It is to

these ends that the general propositions in books 1 and 2 are directed, while in

book 3 our explanation of the system of the world illustrates these propositions.

For in book 3, by means of propositions demonstrated mathematically in books 1

and 2, we derive from celestial phenomena the gravitational forces by which

bodies tend toward the sun and toward the individual planets. Then the motions

of the planets, the comets, the moon, and the sea are deduced from these forces

by propositions that are also mathematical. If only we could derive the other

phenomena of nature from mechanical principles by the same kind of reasoning!

For many things lead me to have a suspicion that all phenomena may depend on

certain forces by which the particles of bodies, by causes not yet known, either

are impelled toward one another and cohere in regular figures, or are repelled

b. Newton would seem to be expressing in Latin more or less the same concept that later appears in

English (in query 28 of the Optic^s) as "the main Business of natural Philosophy."
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from one another and recede. Since these forces are unknown, philosophers have

hitherto made trial of nature in vain. But I hope that the principles set down here

will shed some light on either this mode of philosophizing or some truer one.

In the publication of this work, Edmond Halley, a man of the greatest in-

telligence and of universal learning, was of tremendous assistance; not only did

he correct the typographical errors and see to the making of the woodcuts, but

it was he who started me off on the road to this publication. For when he had

obtained my demonstration of the shape of the celestial orbits, he never stopped

asking me to communicate it to the Royal Society, whose subsequent encourage-

ment and kind patronage made me begin to think about publishing it. But after I

began to work on the inequalities of the motions of the moon, and then also began

to explore other aspects of the laws and measures of gravity and of other forces,

the curves that must be described by bodies attracted according to any given laws,

the motions of several bodies with respect to one another, the motions of bodies in

resisting mediums, the forces and densities and motions of mediums, the orbits of

comets, and so forth, I thought that publication should be put off to another time,

so that I might investigate these other things and publish all my results together.

I have grouped them together in the corollaries of prop. 66 the inquiries (which are

imperfect) into lunar motions, so that I might not have to deal with these things

one by one in propositions and demonstrations, using a method more prolix than

the subject warrants, which would have interrupted the sequence of the remaining

propositions. There are a number of things that I found afterward which I pre-

ferred to insert in less suitable places rather than to change the numbering of the

propositions and the cross-references. I earnestly ask that everything be read with

an open mind and that the defects in a subject so difficult may be not so much

reprehended as investigated, and kindly supplemented, by new endeavors of my

readers.

Trinity College, Cambridge Is. Newton

8 May 1686



Author's Preface to the Second Edition

I N T H I S S E C O N D E D I T I O N of the Principles, many emendations have been made

here and there, and some new things have been added. In sec. 2 of book 1, the

finding of forces by which bodies could revolve in given orbits has been made

easier and has been enlarged. In sec. 7 of book 2, the theory of the resistance

of fluids is investigated more accurately and confirmed by new experiments. In

book 3 the theory of the moon and the precession of the equinoxes are deduced

more fully from their principles; and the theory of comets is confirmed by more

examples of their orbits, calculated with greater accuracy.

London Is. Newton

28 March 1713
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Editor's Preface to the Second Edition

THE L O N G - A W A I T E D NEW E D I T I O N of Newton's Principles of Natural Philosophy

is presented to you, kind reader, with many corrections and additions. The main

topics of this celebrated work are listed in the table of contents and the index

prepared for this edition. The major additions or changes are indicated in the

author's preface. Now something must be said about the method of this philosophy.

Those who have undertaken the study of natural science can be divided into

roughly three classes. There have been those who have endowed the individual

species of things with specific occult qualities, on which—they have then alleged—

the operations of individual bodies depend in some unknown way. The whole of

Scholastic doctrine derived from Aristotle and the Peripatetics is based on this.

Although they affirm that individual effects arise from the specific natures of

bodies, they do not tell us the causes of those natures, and therefore they tell us

nothing. And since they are wholly concerned with the names of things rather than

with the things themselves, they must be regarded as inventors of what might be

called philosophical jargon, rather than as teachers of philosophy.

Therefore, others have hoped to gain praise for greater carefulness by reject-

ing this useless hodgepodge of words. And so they have held that all matter is

homogeneous, and that the variety of forms that is discerned in bodies all arises

from certain very simple and easily comprehensible attributes of the component

particles. And indeed they are right to set up a progression from simpler things to

more compounded ones, so long as they do not give those primary attributes of the

particles any characteristics other than those given by nature itself. But when they

take the liberty of imagining that the unknown shapes and sizes of the particles

are whatever they please, and of assuming their uncertain positions and motions,

and even further of feigning certain occult fluids that permeate the pores of bodies

very freely, since they are endowed with an omnipotent subtlety and are acted on
by occult motions: when they do this, they are drifting off into dreams, ignoring

the true constitution of things, which is obviously to be sought in vain from false
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conjectures, when it can scarcely be found out even by the most certain observa-

tions. Those who take the foundation of their speculations from hypotheses, even if

they then proceed most rigorously according to mechanical laws, are merely putting

together a romance, elegant perhaps and charming, but nevertheless a romance.

There remains then the third type, namely, those whose natural philosophy is

based on experiment. Although they too hold that the causes of all things are to be

derived from the simplest possible principles, they assume nothing as a principle

that has not yet been thoroughly proved from phenomena. They do not contrive

hypotheses, nor do they admit them into natural science otherwise than as ques-

tions whose truth may be discussed. Therefore they proceed by a twofold method,

analytic and synthetic. From certain selected phenomena they deduce by analysis

the forces of nature and the simpler laws of those forces, from which they then

give the constitution of the rest of the phenomena by synthesis. This is that in-

comparably best way of philosophizing which our most celebrated author thought

should be justly embraced in preference to all others. This alone he judged worthy

of being cultivated and enriched by the expenditure of his labor. Of this therefore

he has given a most illustrious example, namely, the explication of the system of

the world most successfully deduced from the theory of gravity. That the force

of gravity is in all bodies universally, others have suspected or imagined; Newton

was the first and only one who was able to demonstrate it [universal gravity] from

phenomena and to make it a solid foundation for his brilliant theories.

I know indeed that some men, even of great reputation, unduly influenced by

certain prejudices, have found it difficult to accept this new principle [of gravity]

and have repeatedly preferred uncertainties to certainties. It is not my intention to

carp at their reputation; rather, I wish to give you in brief, kind reader, the basis

for making a fair judgment of the issue for yourself.

Therefore, to begin our discussion with what is simplest and nearest to us,

let us briefly consider what the nature of gravity is in terrestrial bodies, so that

when we come to consider celestial bodies, so very far removed from us, we may

proceed more securely. It is now agreed among all philosophers that all bodies on

or near the earth universally gravitate toward the earth. Manifold experience has

long confirmed that there are no truly light bodies. What is called relative levity

is not true levity, but only apparent, and arises from the more powerful gravity of

contiguous bodies.
Furthermore, just as all bodies universally gravitate toward the earth, so the

earth in turn gravitates equally toward the bodies; for the action of gravity is
mutual and is equal in both directions. This is shown as follows. Let the whole
body of the earth be divided into any two parts, whether equal or in any way
unequal; now, if the weights of the parts toward each other were not equal, the
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lesser weight would yield to the greater, and the parts, joined together, would

proceed to move straight on without limit in the direction toward which the greater

weight tends, entirely contrary to experience. Therefore the necessary conclusion is

that the weights of the parts are in equilibrium—that is, that the action of gravity

is mutual and equal in both directions.

The weights of bodies equally distant from the center of the earth are as the

quantities of matter in the bodies. This is gathered from the equal acceleration of

all bodies falling from rest by the force of their weights; for the forces by which

unequal bodies are equally accelerated must be proportional to the quantities of

matter to be moved. Now, that all falling bodies universally are equally accelerated

is evident from this, that in the vacuum produced by Boyle's air pump (that is,

with the resistance of the air removed), they describe, in falling, equal spaces in

equal times, and this is proved more exactly by experiments with pendulums.

The attractive forces of bodies, at equal distances, are as the quantities of mat-

ter in the bodies. For, since bodies gravitate toward the earth, and the earth in turn

gravitates toward the bodies, with equal moments [i.e., strengths or powers], the

weight of the earth toward each body, or the force by which the body attracts the

earth, will be equal to the weight of the body toward the earth. But, as mentioned

above, this weight is as the quantity of matter in the body, and so the force by

which each body attracts the earth, or the absolute force of the body, will be as its

quantity of matter.

Therefore the attractive force of entire bodies arises and is compounded from

the attractive force of the parts, since (as has been shown), when the amount of

matter is increased or diminished, its force is proportionally increased or dimin-

ished. Therefore the action of the earth must result from the combined actions of

its parts; hence all terrestrial bodies must attract one another by absolute forces that

are proportional to the attracting matter. This is the nature of gravity on earth; let

us now see what it is in the heavens.

Every body perseveres in its state either of being at rest or of moving uniformly

straight forward, except insofar as it is compelled by impressed forces to change

that state: this is a law of nature accepted by all philosophers. It follows that bodies

that move in curves, and so continually deviate from straight lines tangent to their

orbits, are kept in a curvilinear path by some continually acting force. Therefore,

for the planets to revolve in curved orbits, there will necessarily be some force by

whose repeated actions they are unceasingly deflected from the tangents.

Now, it is reasonable to accept something that can be found by mathematics

and proved with the greatest certainty: namely, that all bodies moving in some

curved line described in a plane, which by a radius drawn to a point (either at

rest or moving in any way) describe areas about that point proportional to the
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times, are urged by forces that tend toward that same point. Therefore, since it is

agreed among astronomers that the primary planets describe areas around the sun

proportional to the times, as do the secondary planets around their own primary

planets, it follows that the force by which they are continually pulled away from

rectilinear tangents and are compelled to revolve in curvilinear orbits is directed

toward the bodies that are situated in the centers of the orbits. Therefore this force

can, appropriately, be called centripetal with respect to the revolving body, and

attractive with respect to the central body, from whatever cause it may in the end

be imagined to arise.

The following rules must also be accepted and are mathematically demon-

strated. If several bodies revolve with uniform motion in concentric circles, and if

the squares of the periodic times are as the cubes of the distances from the common

center, then the centripetal forces of the revolving bodies will be inversely as the

squares of the distances. Again, if the bodies revolve in orbits that are very nearly

circles, and if the apsides of the orbits are at rest, then the centripetal forces of the

revolving bodies will be inversely as the squares of the distances. Astronomers agree

that one or the other case holds for all the planets, [both primary and secondary].

Therefore the centripetal forces of all the planets are inversely as the squares of

the distances from the centers of the orbits. If anyone objects that the apsides of

the planets, especially the apsides of the moon, are not completely at rest but are

carried progressively forward [or in consequentia] with a slow motion, it can be

answered that even if we grant that this very slow motion arises from a slight

deviation of the centripetal force from the proportion of the inverse square, this

difference can be found by mathematical computation and is quite insensible. For

the ratio of the moon's centripetal force itself, which should deviate most of all

from the square, will indeed exceed the square by a very little, but it will be about

sixty times closer to it than to the cube. But our answer to the objection will be

truer if we say that this progression of the apsides does not arise from a deviation

from the proportion of the [inverse] square but from another and entirely different

cause, as is admirably shown in Newton's philosophy. As a result, the centripetal

forces by which the primary planets tend toward the sun, and the secondary planets

toward their primaries, must be exactly as the squares of the distances inversely.

From what has been said up to this point, it is clear that the planets are kept

in their orbits by some force continually acting upon them, that this force is always
directed toward the centers of the orbits, and that its efficacy is increased in ap-
proaching the center and decreased in receding from the center—actually increased
in the same proportion in which the square of the distance is decreased, and de-
creased in the same proportion in which the square of the distance is increased.
Let us now, by comparing the centripetal forces of the planets and the force of



E D I T O R ' S P R E F A C E TO THE S E C O N D E D I T I O N 35

gravity, see whether or not they might be of the same kind. They will be of the

same kind if the same laws and the same attributes are found in both. Let us first,

therefore, consider the centripetal force of the moon, which is closest to us.
When bodies are let fall from rest, and are acted on by any forces whatever,

the rectilinear spaces described in a given time at the very beginning of the motion

are proportional to the forces themselves; this of course follows from mathematical

reasoning. Therefore the centripetal force of the moon revolving in its orbit will

be to the force of gravity on the earth's surface as the space that the moon would

describe in a minimally small time in descending toward the earth by its centripetal

force—supposing it to be deprived of all circular motion—is to the space that a

heavy body describes in the same minimally small time in the vicinity of the earth,

in falling by the force of its own gravity. The first of these spaces is equal to the

versed sine of the arc described by the moon during the same time, inasmuch as

this versed sine measures the departure of the moon from the tangent caused by

centripetal force and thus can be calculated if the moon's periodic time and its

distance from the center of the earth are both given. The second space is found

by experiments with pendulums, as Huygens has shown. Therefore, the result of

the calculation will be that the first space is to the second space, or the centripetal

force of the moon revolving in its orbit is to the force of gravity on the surface of

the earth, as the square of the semidiameter of the earth is to the square of the

semidiameter of the orbit. By what is shown above, the same ratio holds for

the centripetal force of the moon revolving in its orbit and the centripetal force

of the moon if it were near the earth's surface. Therefore this centripetal

force near the earth's surface is equal to the force of gravity. They are not, there-

fore, different forces, but one and the same; for if they were different, bodies

acted on by both forces together would fall to the earth twice as fast as from

the force of gravity alone. And therefore it is clear that this centripetal force by

which the moon is continually either drawn or impelled from the tangent and

is kept in its orbit is the very force of terrestrial gravity extending as far as the

moon. And indeed it is reasonable for this force to extend itself to enormous

distances, since one can observe no sensible diminution of it even on the highest

peaks of mountains. Therefore the moon gravitates toward the earth. Further, by

mutual action, the earth in turn gravitates equally toward the moon, a fact which

is abundantly confirmed in this philosophy, when we deal with the tide of the sea

and the precession of the equinoxes, both of which arise from the action of both

the moon and the sun upon the earth. Hence finally we learn also by what law
the force of gravity decreases at greater distances from the earth. For since gravity

is not different from the moon's centripetal force, which is inversely proportional
to the square of the distance, gravity will also be diminished in the same ratio.
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Let us now proceed to the other planets. The revolutions of the primary planets

about the sun and of the secondary planets about Jupiter and Saturn are phenomena

of the same kind as the revolution of the moon about the earth; furthermore, it has

been demonstrated that the centripetal forces of the primary planets are directed

toward the center of the sun, and those of the secondary planets toward the centers

of Jupiter and of Saturn, just as the moon's centripetal force is directed toward the

center of the earth; and, additionally, all these forces are inversely as the squares

of the distances from the centers, just as the force of the moon is inversely as

the square of the distance from the earth. Therefore it must be concluded that

all of these primary and secondary planets have the same nature. Hence, as the

moon gravitates toward the earth, and the earth in turn gravitates toward the

moon, so also all the secondary planets will gravitate toward their primaries, and

the primaries in turn toward the secondaries, and also all the primary planets will

gravitate toward the sun, and the sun in turn toward the primary planets.

Therefore the sun gravitates toward all the primary and secondary planets,

and all these toward the sun. For the secondary planets, while accompanying their

primaries, revolve with them around the sun. By the same argument, therefore,

both kinds of planets gravitate toward the sun, and the sun toward them. Ad-

ditionally, that the secondary planets gravitate toward the sun is also abundantly

clear from the inequalities of the moon, concerning which a most exact theory is

presented with marvelous sagacity in the third book of this work.

The motion of the comets shows very clearly that the attractive force of the

sun is propagated in every direction to enormous distances and is diffused to

every part of the surrounding space, since the comets, starting out from immense

distances, come into the vicinity of the sun and sometimes approach so very close to

it that in their perihelia they all seemingly touch its globe. Astronomers until now

have tried in vain to find the theory of these comets; now at last, in our time, our

most illustrious author has succeeded in finding the theory and has demonstrated it

with the greatest certainty from observations. It is therefore evident that the comets

move in conic sections having their foci in the center of the sun and by radii drawn

to the sun describe areas proportional to the times. From these phenomena it is

manifest and it is mathematically proved that the forces by which the comets are

kept in their orbits are directed toward the sun and are inversely as the squares of

their distances from its center. Thus the comets gravitate toward the sun; and so

the attractive force of the sun reaches not only to the bodies of the planets, which

are at fixed distances and in nearly the same plane, but also to the comets, which

are in the most diverse regions of the heavens and at the most diverse distances. It

is the nature of gravitating bodies, therefore, that they propagate their forces at all

distances to all other gravitating bodies. From this it follows that all planets and
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comets universally attract one another and are heavy toward one another—which

is also confirmed by the perturbation of Jupiter and Saturn, known to astronomers

and arising from the actions of these planets upon each other; it is also confirmed

by the very slow motion of the apsides that was mentioned above and that arises

from an entirely similar cause.

We have at last reached the point where it must be acknowledged that the

earth and the sun and all the celestial bodies that accompany the sun attract one

another. Therefore every least particle of each of them will have its own attractive

force in proportion to the quantity of matter, as was shown above for terrestrial

bodies. And at different distances their forces will also be in the squared ratio of the

distances inversely; for it is mathematically demonstrated that particles attracting

by this law must constitute globes attracting by the same law.

The preceding conclusions are based upon an axiom which is accepted by

every philosopher, namely, that effects of the same kind—that is, effects whose

known properties are the same—have the same causes, and their properties which

are not yet known are also the same. For if gravity is the cause of the fall of

a stone in Europe, who can doubt that in America the cause of the fall is the

same? If gravity is mutual between a stone and the earth in Europe, who will

deny that it is mutual in America? If in Europe the attractive force of the stone

and the earth is compounded of the attractive forces of the parts, who will deny

that in America the force is similarly compounded? If in Europe the attraction

of the earth is propagated to all kinds of bodies and to all distances, why should

we not say that in America it is propagated in the same way? All philosophy is

based on this rule, inasmuch as, if it is taken away, there is then nothing we can

affirm about things universally. The constitution of individual things can be found

by observations and experiments; and proceeding from there, it is only by this rule

that we make judgments about the nature of things universally.

Now, since all terrestrial and celestial bodies on which we can make experi-

ments or observations are heavy, it must be acknowledged without exception that

gravity belongs to all bodies universally. And just as we must not conceive of bod-

ies that are not extended, mobile, and impenetrable, so we should not conceive of

any that are not heavy. The extension, mobility, and impenetrability of bodies are

known only through experiments; it is in exactly the same way that the gravity

of bodies is known. All bodies for which we have observations are extended and

mobile and impenetrable; and from this we conclude that all bodies universally

are extended and mobile and impenetrable, even those for which we do not have

observations. Thus all bodies for which we have observations are heavy; and from
this we conclude that all bodies universally are heavy, even those for which we do
not have observations. If anyone were to say that the bodies of the fixed stars are
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not heavy, since their gravity has not yet been observed, then by the same argument

one would be able to say that they are neither extended nor mobile nor impene-

trable, since these properties of the fixed stars have not yet been observed. Need I

go on? Among the primary qualities of all bodies universally, either gravity will

have a place, or extension, mobility, and impenetrability will not. And the nature

of things either will be correctly explained by the gravity of bodies or will not be

correctly explained by the extension, mobility, and impenetrability of bodies.

I can hear some people disagreeing with this conclusion and muttering some-

thing or other about occult qualities. They are always prattling on and on to the

effect that gravity is something occult, and that occult causes are to be banished

completely from philosophy. But it is easy to answer them: occult causes are not

those causes whose existence is very clearly demonstrated by observations, but only

those whose existence is occult, imagined, and not yet proved. Therefore gravity is

not an occult cause of celestial motions, since it has been shown from phenomena

that this force really exists. Rather, occult causes are the refuge of those who assign

the governing of these motions to some sort of vortices of a certain matter utterly

fictitious and completely imperceptible to the senses.

But will gravity be called an occult cause and be cast out of natural philosophy

on the grounds that the cause of gravity itself is occult and not yet found? Let

those who so believe take care lest they believe in an absurdity that, in the end,

may overthrow the foundations of all philosophy. For causes generally proceed in

a continuous chain from compound to more simple; when you reach the simplest

cause, you will not be able to proceed any further. Therefore no mechanical expla-

nation can be given for the simplest cause; for if it could, the cause would not yet

be the simplest. Will you accordingly call these simplest causes occult, and banish

them? But at the same time the causes most immediately depending on them,

and the causes that in turn depend on these causes, will also be banished, until

philosophy is emptied and thoroughly purged of all causes.

Some say that gravity is preternatural and call it a perpetual miracle. There-

fore they hold that it should be rejected, since preternatural causes have no place

in physics. It is hardly worth spending time on demolishing this utterly absurd

objection, which of itself undermines all of philosophy. For either they will say

that gravity is not a property of all bodies—which cannot be maintained—or they

will assert that gravity is preternatural on the grounds that it does not arise from

other affections of bodies and thus not from mechanical causes. Certainly there are

primary affections of bodies, and since they are primary, they do not depend on

others. Therefore let them consider whether or not all these are equally preter-

natural, and so equally to be rejected, and let them consider what philosophy will

then be like.
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There are some who do not like all this celestial physics just because it seems

to be in conflict with the doctrines of Descartes and seems scarcely capable of being

reconciled with these doctrines. They are free to enjoy their own opinion, but they

ought to act fairly and not deny to others the same liberty that they demand for

themselves. Therefore, we should be allowed to adhere to the Newtonian philoso-

phy, which we consider truer, and to prefer causes proved by phenomena to causes

imagined and not yet proved. It is the province of true philosophy to derive the

natures of things from causes that truly exist, and to seek those laws by which

the supreme artificer willed to establish this most beautiful order of the world, not

those laws by which he could have, had it so pleased him. For it is in accord with

reason that the same effect can arise from several causes somewhat different from

one another; but the true cause will be the one from which the effect truly and

actually does arise, while the rest have no place in true philosophy. In mechanical

clocks one and the same motion of the hour hand can arise from the action of a

suspended weight or an internal spring. But if the clock under discussion is really

activated by a weight, then anyone will be laughed at if he imagines a spring

and on such a premature hypothesis undertakes to explain the motion of the hour

hand; for he ought to have examined the internal workings of the machine more

thoroughly, in order to ascertain the true principle of the motion in question. The

same judgment or something like it should be passed on those philosophers who

have held that the heavens are filled with a certain most subtle matter, which

is endlessly moved in vortices. For even if these philosophers could account for

the phenomena with the greatest exactness on the basis of their hypotheses, still

they cannot be said to have given us a true philosophy and to have found the true

causes of the celestial motions until they have demonstrated either that these causes

really do exist or at least that others do not exist. Therefore if it can be shown

that the attraction of all bodies universally has a true place in the nature of things,

and if it further can be shown how all the celestial motions are solved by that

attraction, then it would be an empty and ridiculous objection if anyone said that

those motions should be explained by vortices, even if we gave our fullest assent

to the possibility of such an explanation. But we do not give our assent; for the

phenomena can by no means be explained by vortices, as our author fully proves

with the clearest arguments. It follows that those who devote their fruitless labor

to patching up a most absurd figment of their imagination and embroidering it

further with new fabrications must be overly indulging their fantasies.

If the bodies of the planets and the comets are carried around the sun by
vortices, the bodies carried around must move with the same velocity and in the
same direction as the immediately surrounding parts of the vortices, and must have
the same density or the same force of inertia in proportion to the bulk of the matter.
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But it is certain that planets and comets, while they are in the same regions of the

heavens, move with a variety of velocities and directions. Therefore it necessarily

follows that those parts of the celestial fluid that are at the same distances from

the sun revolve in the same time in different directions with different velocities;

for there will be need of one direction and velocity to permit the planets to move

through the heavens, and another for the comets. Since this cannot be accounted

for, either it will have to be confessed that all the celestial bodies are not carried

by the matter of a vortex, or it will have to be said that their motions are to be

derived not from one and the same vortex, but from more than one, differing from

one another and going through the same space surrounding the sun.

If it is supposed that several vortices are contained in the same space and pen-

etrate one another and revolve with different motions, then—since these motions

must conform to the motions of the bodies being carried around, motions highly

regular in conic sections that are sometimes extremely eccentric and sometimes

very nearly circular—it will be right to ask how it can happen that these same

vortices keep their integrity without being in the least perturbed through so many

centuries by the interactions of their matter. Surely, if these imaginary motions are

more complex and more difficult to explain than the true motions of the planets

and comets, I think it pointless to admit them into natural philosophy; for every

cause must be simpler than its effect. Granted the freedom to invent any fiction,

let someone assert that all the planets and comets are surrounded by atmospheres,

as our earth is, a hypothesis that will certainly seem more reasonable than the

hypothesis of vortices. Let him then assert that these atmospheres, of their own

nature, move around the sun and describe conic sections, a motion that can surely

be much more easily conceived than the similar motion of vortices penetrating

one another. Finally, let him maintain that it must be believed that the planets

themselves and the comets are carried around the sun by their atmospheres, and

let him celebrate his triumph for having found the causes of the celestial motions.

Anyone who thinks that this fiction should be rejected will also reject the other

one; for the hypothesis of atmospheres and the hypothesis of vortices are as alike

as two peas in a pod.

Galileo showed that when a stone is projected and moves in a parabola, its

deflection from a rectilinear path arises from the gravity of the stone toward the
earth, that is, from an occult quality. Nevertheless it can happen that some other
philosopher, even more clever, may contrive another cause. He will accordingly
imagine that a certain subtle matter, which is not perceived by sight or by touch or
by any of the senses, is found in the regions that are most immediately contiguous
to the surface of the earth. He will argue, moreover, that this matter is carried
in different directions by various and—for the most part—contrary motions and
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that it describes parabolic curves. Finally he will beautifully show how the stone is

deflected and will earn the applause of the crowd. The stone, says he, floats in that

subtle fluid and, by following the course of that fluid, cannot but describe the same

path. But the fluid moves in parabolic curves; therefore the stone must move in a

parabola. Who will not now marvel at the most acute genius of this philosopher,

brilliantly deducing the phenomena of nature from mechanical causes [i.e., matter

and motion]—at a level comprehensible even to ordinary people! Who indeed will

not jeer at that poor Galileo, who undertook by a great mathematical effort once

more to bring back occult qualities, happily excluded from philosophy! But I am

ashamed to waste any more time on such trifles.
It all finally comes down to this: the number of comets is huge; their motions

are highly regular and observe the same laws as the motions of the planets. They

move in conic orbits; these orbits are very, very eccentric. Comets go everywhere

into all parts of the heavens and pass very freely through the regions of the planets,

often contrary to the order of the signs. These phenomena are confirmed with the

greatest certainty by astronomical observations and cannot be explained by vortices.

Further, these phenomena are even inconsistent with planetary vortices. There will

be no room at all for the motions of the comets unless that imaginary matter is

completely removed from the heavens.

For if the planets are carried around the sun by vortices, those parts of the

vortices that most immediately surround each planet will be of the same density

as the planet, as has been said above. Therefore all the matter that is contiguous

to the perimeter of the earth's orbit will have the same density as the earth, while

all the matter that lies between the earth's orbit and the orbit of Saturn will have

either an equal or a greater density. For, in order that the constitution of a vortex

may be able to last, the less dense parts must occupy the center, and the more

dense parts must be further away from the center. For since the periodic times

of the planets are as the 3/2 powers of the distances from the sun, the periods of

the parts of the vortex should keep the same ratio. It follows that the centrifugal

forces of these parts will be inversely as the squares of the distances. Therefore

those parts that are at a greater distance from the center strive to recede from it

by a smaller force; accordingly, if they should be less dense, it would be necessary

for them to yield to the greater force by which the parts nearer to the center

endeavor to ascend. Therefore the denser parts will ascend, the less dense will

descend, and a mutual exchange of places will occur, until the fluid matter of the

whole vortex has been arranged in such order that it can now rest in equilibrium
[i.e., its parts are completely at rest with respect to one another or no longer have

any motion of ascent or descent]. If two fluids of different density are contained
in the same vessel, certainly it will happen that the fluid whose density is greater
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will go to the lowest place under the action of its greater force of gravity, and by

similar reasoning it must be concluded that the denser parts of the vortex will go

to the highest place under the action of their greater centrifugal force. Therefore

the whole part of the vortex that lies outside the earth's orbit (much the greatest

part) will have a density and so a force of inertia (proportional to the quantity

of matter) that will not be smaller than the density and force of inertia of the

earth. From this will arise a huge and very noticeable resistance to the comets as

they pass through, not to say a resistance that rightly seems to be able to put a

complete stop to their motion and absorb it entirely. It is however clear from the

altogether regular motion of comets that they encounter no resistance that can be

in the least perceived, and thus that they do not come upon any matter that has

any force of resistance, or accordingly that has any density or force of inertia. For

the resistance of mediums arises either from the inertia of fluid matter or from

its friction.3 That which arises from friction is extremely slight and indeed can

scarcely be observed in commonly known fluids, unless they are very tenacious

like oil and honey. The resistance that is encountered in air, water, quicksilver,

and nontenacious fluids of this sort is almost wholly of the first kind and cannot

be decreased in subtlety by any further degree, if the fluid's density or force of

inertia—to which this resistance is always proportional—remains the same. This

is most clearly demonstrated by our author in his brilliant theory of the resistance

of fluids, which in this second edition is presented in a somewhat more accurate

manner and is more fully confirmed by experiments with falling bodies.

As bodies move forward, they gradually communicate their motion to a sur-

rounding fluid, and by communicating their motion lose it, and by losing it are

retarded. Therefore the retardation is proportional to the motion so communicated,

and the motion communicated (where the velocity of the moving body is given)

is as the density of the fluid; therefore the retardation or resistance will also be

as the density of the fluid and cannot be removed by any means unless the fluid,

returning to the back of the body, restores the lost motion. But this cannot be the

case unless the force of the fluid on the rear of the body is equal to the force the

body exerts on the fluid in front, that is, unless the relative velocity with which

the fluid pushes the body from behind is equal to the velocity with which the body

pushes the fluid, that is, unless the absolute velocity of the returning fluid is twice

as great as the absolute velocity of the fluid pushed forward, which cannot happen.

Therefore there is no way in which the resistance of fluids that arises from their

density and force of inertia can be taken away. And so it must be concluded that

the celestial fluid has no force of inertia, since it has no force of resistance; it has

a. Literally, lack of lubricity or slipperiness.
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no force by which motion may be communicated, since it has no force of inertia;

it has no force by which any change may be introduced into one or more bodies,

since it has no force by which motion may be communicated; it has no efficacy at

all, since it has no faculty to introduce any change. Surely, therefore, this hypoth-

esis, plainly lacking in any foundation and not even marginally useful to explain

the nature of things, may well be called utterly absurd and wholly unworthy of

a philosopher. Those who hold that the heavens are filled with fluid matter, but

suppose this matter to have no inertia, are saying there is no vacuum but in fact

are assuming there is one. For, since there is no way to distinguish a fluid matter

of this sort from empty space, the whole argument comes down to the names of

things and not their natures. But if anyone is so devoted to matter that he will in

no way admit a space void of bodies, let us see where this will ultimately lead him.

For such people will say that this constitution of the universe as everywhere

full, which is how they imagine it, has arisen from the will of God, so that a

very subtle aether pervading and filling all things would be there to facilitate the

operations of nature; this cannot be maintained, however, since it has already been

shown from the phenomena of comets that this aether has no efficacy. Or they

will say that this constitution has arisen from the will of God for some unknown

purpose, which ought not to be said either, since a different constitution of the uni-

verse could equally well be established by the same argument. Or finally they will

say that it has not arisen from the will of God but from some necessity of nature.

And so at last they must sink to the lowest depths of degradation, where they have

the fantasy that all things are governed by fate and not by providence, that matter

has existed always and everywhere of its own necessity and is infinite and eternal.

On this supposition, matter will also be uniform everywhere, for variety of forms

is entirely inconsistent with necessity. Matter will also be without motion; for if by

necessity matter moves in some definite direction with some definite velocity, by

a like necessity it will move in a different direction with a different velocity; but

it cannot move in different directions with different velocities; therefore it must

be without motion. Surely, this world—so beautifully diversified in its forms and

motions—could not have arisen except from the perfectly free will of God, who

provides and governs all things.

From this source, then, have all the laws that are called laws of nature come,

in which many traces of the highest wisdom and counsel certainly appear, but no

traces of necessity. Accordingly we should not seek these laws by using untrust-

worthy conjectures, but learn them by observing and experimenting. He who is

confident that he can truly find the principles of physics, and the laws of things,

by relying only on the force of his mind and the internal light of his reason should

maintain either that the world has existed from necessity and follows the said laws
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from the same necessity, or that although the order of nature was constituted by

the will of God, nevertheless a creature as small and insignificant as he is has a

clear understanding of the way things should be. All sound and true philosophy

is based on phenomena, which may lead us—however unwilling and reluctant—

to principles in which the best counsel and highest dominion of an all-wise and

all-powerful being are most clearly discerned; these principles will not be rejected

because certain men may perhaps not like them. These men may call the things

that they dislike either miracles or occult qualities, but names maliciously given

are not to be blamed on the things themselves, unless these men are willing to

confess at last that philosophy should be based on atheism. Philosophy must not

be overthrown for their sake, since the order of things refuses to be changed.

Therefore honest and fair judges will approve the best method of natural

philosophy, which is based on experiments and observations. It need scarcely be

said that this way of philosophizing has been illumined and dignified by our

illustrious author's well-known book; his tremendous genius, enodating each of

the most difficult problems and reaching out beyond the accepted limits of the

human, is justly admired and esteemed by all who are more than superficially

versed in these matters. Having unlocked the gates, therefore, he has opened our

way to the most beautiful mysteries of nature. He has finally so clearly revealed a

most elegant structure of the system of the world for our further scrutiny that even

were King Alfonso himself to come to life again, he would not find it wanting

either in simplicity or in grace of harmony. And hence it is now possible to have

a closer view of the majesty of nature, to enjoy the sweetest contemplation, and to

worship and venerate more zealously the maker and lord of all; and this is by far

the greatest fruit of philosophy. He must be blind who does not at once see, from

the best and wisest structures of things, the infinite wisdom and goodness of their

almighty creator; and he must be mad who refuses to acknowledge them.

Therefore Newton's excellent treatise will stand as a mighty fortress against

the attacks of atheists; nowhere else will you find more effective ammunition

against that impious crowd. This was understood long ago, and was first splendidly

demonstrated in learned discourses in English and in Latin, by a man of universal

learning and at the same time an outstanding patron of the arts, Richard Bentley,

a great ornament of his time and of our academy, the worthy and upright master

of our Trinity College. I must confess that I am indebted to him on many grounds;

you as well, kind reader, will not deny him due thanks. For, as a long-time inti-

mate friend of our renowned author (he considers being celebrated by posterity for

this friendship to be of no less value than becoming famous for his own writings,

which are the delight of the learned world), he worked simultaneously for the pub-

lic recognition of his friend and for the advancement of the sciences. Therefore,
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since the available copies of the first edition were extremely rare and very expen-

sive, he tried with persistent demands to persuade Newton (who is distinguished as

much by modesty as by the highest learning) and finally—almost scolding him—

prevailed upon Newton to allow him to get out this new edition, under his auspices

and at his own expense, perfected throughout and also enriched with significant

additions. He authorized me to undertake the not unpleasant duty of seeing to it

that all this was done as correctly as possible.

Cambridge, 12 May 1713 Roger Cotes,

Fellow of Trinity College,

Plumian Professor of Astronomy

and Experimental Philosophy
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IN T H I S T H I R D E D I T I O N , supervised by Henry Pemberton, M.D., a man greatly

skilled in these matters, some things in the second book concerning the resistance

of mediums are explained a little more fully than previously, and new experiments

are added concerning the resistance of heavy bodies falling in air. In the third book,

the argument proving that the moon is kept in its orbit by gravity is presented a

little more fully; and new observations, made by Mr. Pound, on the proportion of

the diameters of Jupiter to each other have been added. There are also added some

observations of the comet that appeared in 1680, which were made in Germany

during the month of November by Mr. Kirk, and which recently came into our

hands; these observations make it clear how closely parabolic orbits correspond

to the motions of comets. The orbit of that comet, by Halley's computations, is

determined a little more accurately than heretofore, and in an ellipse. And it is

shown that the comet traversed its course through nine signs of the heavens in this

elliptical orbit just as exactly as the planets move in the elliptical orbits given by

astronomy. There is also added the orbit of the comet that appeared in the year

1713, which was calculated by Mr. Bradley, professor of astronomy at Oxford.

London, Is. Newton

12 Jan. 1725/6.

[In the third edition, the final Author's Preface was followed by a two-page table

of contents and a list of corrigenda.]
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* Quantity of matter is a measure of matter that arises from its density and volume Definition 1

jointly?
blf the density of air is doubled in a space that is also doubled, there is

four times as much air, and there is six times as much if the space is tripled.b

The case is the same for snow and powders condensed by compression or

liquefaction, and also for all bodies that are condensed in various ways by any

causes whatsoever. For the present, I am not taking into account any medium,

if there should be any, freely pervading the interstices between the parts of

aa. In translating def. 1, we have rendered Newton's "Quantitas materiae est mensura ejusdem ..."

as "Quantity of matter is a measure of matter ..." rather than the customary "... is the measure ..." The

indefinite article is more in keeping with the Latin usage, with its absence of articles, and accords better

with the sense in which we have interpreted this definition. See the Guide, §4.2. It should be noted that

the indefinite article permits the possibility of the sense of either a definite or an indefinite article, whereas

a definite article precludes the possibility of the sense of an indefinite article.

bb. Ed. 3 reads literally: "Air, if the density is doubled, in a space also doubled, becomes quadruple;

in [a space] tripled, sextuple." The printer's manuscript for ed. 1 and the printed text of ed. 1 have: "Air

twice as dense in twice the space is quadruple." Newton's interleaved copy of ed. 1 has: "Air twice as

dense in twice the space is quadruple; in three times [the space], sextuple." Newton's annotated copy of ed.

1 has first: "Air twice as dense in twice the space becomes quadruple; in three times [the space], sextuple."

This is then deleted and replaced with: "Air, by doubling the density, in the same container becomes

double; in a container twice as large, quadruple; in one three times as large, sextuple; and by tripling the

density, it becomes triple in the same container and sextuple in a container twice as large," but the last

clause, "and by tripling.. . large," is then deleted.

The manuscript errata at the end of the annotated copy have: "For this quantity, if the density is

given [or fixed], is as the volume and, if the volume is given, is as the density and therefore, if neither

is given, is as the product of both. Thus indeed Air, if the density is doubled, in a space also doubled,

becomes quadruple; in [a space] tripled, sextuple." The first sentence, "For this . . . product of both," and

the following two words, "Thus indeed," are inserted over a caret preceding "Air."

An interleaf of the interleaved copy of ed. 1 and then the printed text of ed. 2 have exactly the same
phrasing as ed. 3.
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bodies. Furthermore, I mean this quantity whenever I use the term "body" or

"mass" in the following pages. It can always be known from a body's weight,

for—by making very accurate experiments with pendulums—I have found

it to be proportional to the weight, as will be shown below.

Definition 2    Quantity of motion is a measure of motion that arises from the velocity and the

quantity of matter jointly.

The motion of a whole is the sum of the motions of the individual parts,

and thus if a body is twice as large as another and has equal velocity there

is twice as much motion, and if it has twice the velocity there is four times

as much motion.

Definition 3 Inherent force of matter is the power of resisting by which every body, aso far as

it is able* perseveres in its state either of resting or of moving ^uniformly straight

forward^

This force is always proportional to the body and does not differ in any

way from the inertia of the mass except in the manner in which it is con-

ceived. Because of the inertia of matter, every body is only with difficulty

put out of its state either of resting or of moving. Consequently, inherent

force may also be called by the very significant name of force of inertia.0

Moreover, a body exerts this force only during a change of its state, caused

by another force impressed upon it, and this exercise of force is, depending

on the viewpoint, both resistance and impetus: resistance insofar as the body,

in order to maintain its state, strives against the impressed force, and impe-

tus insofar as the same body, yielding only with difficulty to the force of a

resisting obstacle, endeavors to change the state of that obstacle. Resistance

is commonly attributed to resting bodies and impetus to moving bodies; but

aa. Newton's Latin clause is "quantum in se est," which here means "to the degree that it can of

and by itself." See I. Bernard Cohen, " 'Quantum in se est': Newton's Concept of Inertia in Relation to

Descartes and Lucretius," Notes and Records of the Royal Society of London 19 (1964): 131-155.

bb. Newton's "in directum" (used together with "uniformiter" ["uniformly"]) has the sense of moving

straight on, of going continuously straight forward, and therefore in a straight line. In an earlier version,

Newton had used the phrase "in linea recta" ("in a right line" or "in a straight line"), but by the time

of the Principia he had rejected this expression in favor of "in directum." For details, see the Guide,

§10.2. On Newton's "vis insita" and our rendition, see the Guide, §4.7.

c. Newton's interleaved copy of ed. 2 adds the following, which was never printed: "I do not mean

Kepler's force of inertia, by which bodies tend toward rest, but a force of remaining in the same state

either of resting or of moving."
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motion and rest, in the popular sense of the terms, are distinguished from

each other only by point of view, and bodies commonly regarded as being at

rest are not always truly at rest.

Impressed force is the action exerted on a body to change its state either of resting Definition 4

or of moving uniformly straight forward.

This force consists solely in the action and does not remain in a body

after the action has ceased. For a body perseveres in any new state solely by

the force of inertia. Moreover, there are various sources of impressed force,

such as percussion, pressure, or centripetal force.

Centripetal force is the force by which bodies are drawn from all sides, are im- Definition 5

felled, or in any way tend, toward some point as to a center.

One force of this kind is gravity, by which bodies tend toward the center

of the earth; another is magnetic force, by which iron seeks a lodestone;

and yet another is that force, whatever it may be, by which the planets are

continually drawn back from rectilinear motions and compelled to revolve in

curved lines.
aA stone whirled in a sling endeavors to leave the hand that is whirling it,

and by its endeavor it stretches the sling, doing so the more strongly the more

swiftly it revolves; and as soon as it is released, it flies away. The force opposed

to that endeavor, that is, the force by which the sling continually draws the

stone back toward the hand and keeps it in an orbit, I call centripetal, since it

is directed toward the hand as toward the center of an orbit. And the same

applies to all bodies bthat are made to move in orbits.b They all endeavor

to recede from the centers of their orbits, and unless some force opposed to

that endeavor is present, restraining them and keeping them in orbits and

hence called by me centripetal, they will go off in straight lines with uniform

motion. If a projectile were deprived of the force of gravity, it would not

be deflected toward the earth but would go off in a straight line into the

heavens and do so with uniform motion, provided that the resistance of

the air were removed. The projectile, by its gravity, is drawn back from a

rectilinear course and continually deflected toward the earth, and this is so

aa. Ed. 1 lacks this,

bb. See the Guide, §2.4.
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to a greater or lesser degree in proportion to its gravity and its velocity of

motion. The less its gravity in proportion to its quantity of matter, or the

greater the velocity with which it is projected, the less it will deviate from

a rectilinear course and the farther it will go. If a lead ball were projected

with a given velocity along a horizontal line from the top of some mountain

by the force of gunpowder and went in a curved line for a distance of two

miles before falling to the earth, then the same ball projected with twice the

velocity would go about twice as far and with ten times the velocity about

ten times as far, provided that the resistance of the air were removed. And

by increasing the velocity, the distance to which it would be projected could

be increased at will and the curvature of the line that it would describe could

be decreased, in such a way that it would finally fall at a distance of 10 or

30 or 90 degrees or even go around the whole earth or, lastly, go off into the

heavens and continue indefinitely in this motion. And in the same way that

a projectile could, by the force of gravity, be deflected into an orbit and go

around the whole earth, so too the moon, whether by the force of gravity—if

it has gravity—or by any other force by which it may be urged toward the

earth, can always be drawn back toward the earth from a rectilinear course

and deflected into its orbit; and without such a force the moon cannot be

kept in its orbit. If this force were too small, it would not deflect the moon

sufficiently from a rectilinear course; if it were too great, it would deflect the

moon excessively and draw it down from its orbit toward the earth. In fact,

it must be of just the right magnitude, and mathematicians have the task of

finding the force by which a body can be kept exactly in any given orbit with

a given velocity and, alternatively, to find the curvilinear path into which a

body leaving any given place with a given velocity is deflected by a given

force.3

The quantity of centripetal force is of three kinds: absolute, accelerative,

and motive.

Definition 6 The absolute quantity of centripetal force is the measure of this force that is

greater or less in proportion to the efficacy of the cause propagating it from a

center through the surrounding regions.

An example is magnetic force, which is greater in one lodestone and less

in another, in proportion to the bulk or potency of the lodestone.
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The accelerative quantity of centripetal force is the measure of this force that is Definition 7

proportional to the velocity which it generates in a given time.

One example is the potency of a lodestone, which, for a given lodestone,

is greater at a smaller distance and less at a greater distance. Another example

is the force that produces gravity, which is greater in valleys and less on the

peaks of high mountains and still less (as will be made clear below) at greater

distances from the body of the earth, but which is everywhere the same at

equal distances, because it equally accelerates all falling bodies (heavy or light,

great or small), provided that the resistance of the air is removed.

The motive quantity of centripetal force is the measure of this force that is pro- Definition 8

portional to the motion which it generates in a given time.

An example is weight, which is greater in a larger body and less in a

smaller body; and in one and the same body is greater near the earth and less

out in the heavens. This quantity is the centripetency, or propensity toward a

center, of the whole body, and (so to speak) its weight, and it may always be

known from the force opposite and equal to it, which can prevent the body

from falling.

These quantities of forces, for the sake of brevity, may be called motive,

accelerative, and absolute forces, and, for the sake of differentiation, may

be referred to bodies seeking a center, to the places of the bodies, and to

the center of the forces: that is, motive force may be referred to a body as

an endeavor of the whole directed toward a center and compounded of the

endeavors of all the parts; accelerative force, to the place of the body as a

certain efficacy diffused from the center through each of the surrounding

places in order to move the bodies that are in those places; and absolute

force, to the center as having some cause without which the motive forces

are not propagated through the surrounding regions, whether this cause is

some central body (such as a lodestone in the center of a magnetic force or

the earth in the center of a force that produces gravity) or whether it is some

other cause which is not apparent. This concept is purely mathematical, for

I am not now considering the physical causes and sites of forces.

Therefore, accelerative force is to motive force as velocity to motion. For

quantity of motion arises from velocity and quantity of matter jointly, and

motive force from accelerative force and quantity of matter jointly. For the

sum of the actions of the accelerative force on the individual particles of
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a body is the motive force of the whole body. As a consequence, near the

surface of the earth, where the accelerative gravity, or the force that produces

gravity, is the same in all bodies universally, the motive gravity, or weight, is

as the body, but in an ascent to regions where the accelerative gravity becomes

less, the weight will decrease proportionately and will always be as the body

and the accelerative gravity jointly. Thus, in regions where the accelerative

gravity is half as great, a body one-half or one-third as great will have a

weight four or six times less.

Further, it is in this same sense that I call attractions and impulses ac-

celerative and motive. Moreover, I use interchangeably and indiscriminately

words signifying attraction, impulse, or any sort of propensity toward a cen-

ter, considering these forces not from a physical but only from a mathematical

point of view. Therefore, let the reader beware of thinking that by words of

this kind I am anywhere defining a species or mode of action or a physical

cause or reason, or that I am attributing forces in a true and physical sense to

centers (which are mathematical points) if I happen to say that centers attract

or that centers have forces.

Scholium Thus far it has seemed best to explain the senses in which less familiar words

are to be taken in this treatise. Although time, space, place, and motion

are very familiar to everyone, it must be noted that these quantities are

popularly conceived solely with reference to the objects of sense perception.

And this is the source of certain preconceptions; to eliminate them it is useful

to distinguish these quantities into absolute and relative, true and apparent,

mathematical and common.

1. Absolute, true, and mathematical time, in and of itself and of its

own nature, without reference to anything external, flows uniformly and by

another name is called duration. Relative, apparent, and common time is any

sensible and external measure a(precise or imprecise)3 of duration by means

of motion; such a measure—for example, an hour, a day, a month, a year—is

commonly used instead of true time.

2. Absolute space, of its own nature without reference to anything ex-

ternal, always remains homogeneous and immovable. Relative space is any

aa. Newton uses the phrase "seu accurata seu inaequabilis"—literally, "exact or nonuniform."
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movable measure or dimension of this absolute space; such a measure or di-

mension is determined by our senses from the situation of the space with

respect to bodies and is popularly used for immovable space, as in the case

of space under the earth or in the air or in the heavens, where the dimen-

sion is determined from the situation of the space with respect to the earth.

Absolute and relative space are the same in species and in magnitude, but

they do not always remain the same numerically. For example, if the earth

moves, the space of our air, which in a relative sense and with respect to the

earth always remains the same, will now be one part of the absolute space

into which the air passes, now another part of it, and thus will be changing

continually in an absolute sense.

3. Place is the part of space that a body occupies, and it is, depending on

the space, either absolute or relative. I say the part of space, not the position of

the body or its outer surface. For the places of equal solids are always equal,

while their surfaces are for the most part unequal because of the dissimilarity

of shapes; and positions, properly speaking, do not have quantity and are not

so much places as attributes of places. The motion of a whole is the same

as the sum of the motions of the parts; that is, the change in position of a

whole from its place is the same as the sum of the changes in position of its

parts from their places, and thus the place of a whole is the same as the sum

of the places of the parts and therefore is internal and in the whole body.

4. Absolute motion is the change of position of a body from one absolute

place to another; relative motion is change of position from one relative place

to another. Thus, in a ship under sail, the relative place of a body is that

region of the ship in which the body happens to be or that part of the whole

interior of the ship which the body fills and which accordingly moves along

with the ship, and relative rest is the continuance of the body in that same

region of the ship or same part of its interior. But true rest is the continuance

of a body in the same part of that unmoving space in which the ship itself,

along with its interior and all its contents, is moving. Therefore, if the earth

is truly at rest, a body that is relatively at rest on a ship will move truly

and absolutely with the velocity with which the ship is moving on the earth.

But if the earth is also moving, the true and absolute motion of the body

will arise partly from the true motion of the earth in unmoving space and

partly from the relative motion of the ship on the earth. Further, if the body

is also moving relatively on the ship, its true motion will arise partly from



56 D E F I N I T I O N S

the true motion of the earth in unmoving space and partly from the relative

motions both of the ship on the earth and of the body on the ship, and

from these relative motions the relative motion of the body on the earth will

arise. For example, if that part of the earth where the ship happens to be is

truly moving eastward with a velocity of 10,010 units, and the ship is being

borne westward by sails and wind with a velocity of 10 units, and a sailor is

walking on the ship toward the east with a velocity of 1 unit, then the sailor

will be moving truly and absolutely in unmoving space toward the east with

a velocity of 10,001 units and relatively on the earth toward the west with a

velocity of 9 units.

In astronomy, absolute time is distinguished from relative time by the

equation of common time. For natural days, which are commonly considered

equal for the purpose of measuring time, are actually unequal. Astronomers

correct this inequality in order to measure celestial motions on the basis of

a truer time. It is possible that there is no uniform motion by which time

may have an exact measure. All motions can be accelerated and retarded, but

the flow of absolute time cannot be changed. The duration or perseverance

of the existence of things is the same, whether their motions are rapid or

slow or null; accordingly, duration is rightly distinguished from its sensible

measures and is gathered from them by means of an astronomical equation.

Moreover, the need for using this equation in determining when phenomena

occur is proved by experience with a pendulum clock and also by eclipses of

the satellites of Jupiter.

Just as the order of the parts of time is unchangeable, so, too, is the

order of the parts of space. Let the parts of space move from their places,

and they will move (so to speak) from themselves. For times and spaces are,

as it were, the places of themselves and of all things. All things are placed

in time with reference to order of succession and in space with reference to

order of position. It is of the essence of spaces to be places, and for primary

places to move is absurd. They are therefore absolute places, and it is only

changes of position from these places that are absolute motions.

But since these parts of space cannot be seen and cannot be distinguished

from one another by our senses, we use sensible measures in their stead. For

we define all places on the basis of the positions and distances of things from

some body that we regard as immovable, and then we reckon all motions

with respect to these places, insofar as we conceive of bodies as being changed



S C H O L I U M 57

in position with respect to them. Thus, instead of absolute places and motions

we use relative ones, which is not inappropriate in ordinary human affairs,

although in philosophy abstraction from the senses is required. For it is pos-

sible that there is no body truly at rest to which places and motions may be

referred.

Moreover, absolute and relative rest and motion are distinguished from

each other by their properties, causes, and effects. It is a property of rest that

bodies truly at rest are at rest in relation to one another. And therefore, since

it is possible that some body in the regions of the fixed stars or far beyond is

absolutely at rest, and yet it cannot be known from the position of bodies in

relation to one another in our regions whether or not any of these maintains

a given position with relation to that distant body, true rest cannot be defined

on the basis of the position of bodies in relation to one another.

It is a property of motion that parts which keep given positions in relation

to wholes participate in the motions of such wholes. For all the parts of

bodies revolving in orbit endeavor to recede from the axis of motion, and

the impetus of bodies moving forward arises from the joint impetus of the

individual parts. Therefore, when bodies containing others move, whatever is

relatively at rest within them also moves. And thus true and absolute motion

cannot be determined by means of change of position from the vicinity of

bodies that are regarded as being at rest. For the exterior bodies ought to be

regarded not only as being at rest but also as being truly at rest. Otherwise

all contained bodies, besides being subject to change of position from the

vicinity of the containing bodies, will participate in the true motions of the

containing bodies and, if there is no such change of position, will not be truly

at rest but only be regarded as being at rest. For containing bodies are to

those inside them as the outer part of the whole to the inner part or as the

shell to the kernel. And when the shell moves, the kernel also, without being

changed in position from the vicinity of the shell, moves as a part of the

whole.

A property akin to the preceding one is that when a place moves, what-

ever is placed in it moves along with it, and therefore a body moving away

from a place that moves participates also in the motion of its place. There-

fore, all motions away from places that move are only parts of whole and

absolute motions, and every whole motion is compounded of the motion of

a body away from its initial place, and the motion of this place away from
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its place, and so on, until an unmoving place is reached, as in the above-

mentioned example of the sailor. Thus, whole and absolute motions can be

determined only by means of unmoving places, and therefore in what has

preceded I have referred such motions to unmoving places and relative mo-

tions to movable places. Moreover, the only places that are unmoving are

those that all keep given positions in relation to one another from infinity

to infinity and therefore always remain immovable and constitute the space

that I call immovable.

The causes which distinguish true motions from relative motions are the

forces impressed upon bodies to generate motion. True motion is neither gen-

erated nor changed except by forces impressed upon the moving body itself,

but relative motion can be generated and changed without the impression

of forces upon this body. For the impression of forces solely on other bodies

with which a given body has a relation is enough, when the other bodies

yield, to produce a change in that relation which constitutes the relative rest

or motion of this body. Again, true motion is always changed by forces im-

pressed upon a moving body, but relative motion is not necessarily changed

by such forces. For if the same forces are impressed upon a moving body and

also upon other bodies with which it has a relation, in such a way that the

relative position is maintained, the relation that constitutes the relative mo-

tion will also be maintained. Therefore, every relative motion can be changed

while the true motion is preserved, and can be preserved while the true one

is changed, and thus true motion certainly does not consist in relations of

this sort.

The effects distinguishing absolute motion from relative motion are the

forces of receding from the axis of circular motion. For in purely relative

circular motion these forces are null, while in true and absolute circular

motion they are larger or smaller in proportion to the quantity of motion. If

a bucket is hanging from a very long cord and is continually turned around

until the cord becomes twisted tight, and if the bucket is thereupon filled

with water and is at rest along with the water and then, by some sudden

force, is made to turn around in the opposite direction and, as the cord

unwinds, perseveres for a while in this motion; then the surface of the water

will at first be level, just as it was before the vessel began to move. But after

the vessel, by the force gradually impressed upon the water, has caused the

water also to begin revolving perceptibly, the water will gradually recede
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from the middle and rise up the sides of the vessel, assuming a concave

shape (as experience has shown me), and, with an ever faster motion, will

rise further and further until, when it completes its revolutions in the same

times as the vessel, it is relatively at rest in the vessel. The rise of the water

reveals its endeavor to recede from the axis of motion, and from such an

endeavor one can find out and measure the true and absolute circular motion

of the water, which here is the direct opposite of its relative motion. In the

beginning, when the relative motion of the water in the vessel was greatest,

that motion was not giving rise to any endeavor to recede from the axis;

the water did not seek the circumference by rising up the sides of the vessel

but remained level, and therefore its true circular motion had not yet begun.

But afterward, when the relative motion of the water decreased, its rise up

the sides of the vessel revealed its endeavor to recede from the axis, and

this endeavor showed the true circular motion of the water to be continually

increasing and finally becoming greatest when the water was relatively at

rest in the vessel. Therefore, that endeavor does not depend on the change

of position of the water with respect to surrounding bodies, and thus true

circular motion cannot be determined by means of such changes of position.

The truly circular motion of each revolving body is unique, corresponding to

a unique endeavor as its proper and sufficient effect, while relative motions

are innumerable in accordance with their varied relations to external bodies

and, like relations, are completely lacking in true effects except insofar as

they participate in that true and unique motion. Thus, even in the system of

those who hold that our heavens revolve below the heavens of the fixed stars

and carry the planets around with them, the individual parts of the heavens,

and the planets that are relatively at rest in the heavens to which they belong,

are truly in motion. For they change their positions relative to one another

(which is not the case with things that are truly at rest), and as they are

carried around together with the heavens, they participate in the motions of

the heavens and, being parts of revolving wholes, endeavor to recede from

the axes of those wholes.

Relative quantities, therefore, are not the actual quantities whose names

they bear but are those sensible measures of them (whether true or erro-

neous) that are commonly used instead of the quantities being measured.

But if the meanings of words are to be defined by usage, then it is these

sensible measures which should properly be understood by the terms "time,"
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"space," "place," and "motion," and the manner of expression will be out of

the ordinary and purely mathematical if the quantities being measured are

understood here. Accordingly those who there interpret these words as re-

ferring to the quantities being measured do violence to the Scriptures. And

they no less corrupt mathematics and philosophy who confuse true quantities

with their relations and common measures.

It is certainly very difficult to find out the true motions of individual

bodies and actually to differentiate them from apparent motions, because

the parts of that immovable space in which the bodies truly move make no

impression on the senses. Nevertheless, the case is not utterly hopeless. For

it is possible to draw evidence partly from apparent motions, which are the

differences between the true motions, and partly from the forces that are the

causes and effects of the true motions. For example, if two balls, at a given

distance from each other with a cord connecting them, were revolving about

a common center of gravity, the endeavor of the balls to recede from the

axis of motion could be known from the tension of the cord, and thus the

quantity of circular motion could be computed. Then, if any equal forces were

simultaneously impressed upon the alternate faces of the balls to increase or

decrease their circular motion, the increase or decrease of the motion could

be known from the increased or decreased tension of the cord, and thus,

finally, it could be discovered which faces of the balls the forces would have

to be impressed upon for a maximum increase in the motion, that is, which

were the posterior faces, or the ones that are in the rear in a circular motion.

Further, once the faces that follow and the opposite faces that precede were

known, the direction of the motion would be known. In this way both the

quantity and the direction of this circular motion could be found in any

immense vacuum, where nothing external and sensible existed with which

the balls could be compared. Now if some distant bodies were set in that

space and maintained given positions with respect to one another, as the

fixed stars do in the regions of the heavens, it could not, of course, be known

from the relative change of position of the balls among the bodies whether

the motion was to be attributed to the bodies or to the balls. But if the cord

was examined and its tension was discovered to be the very one which the

motion of the balls required, it would be valid to conclude that the motion

belonged to the balls and that the bodies were at rest, and then, finally,

from the change of position of the balls among the bodies, to determine
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the direction of this motion. But in what follows, a fuller explanation will

be given of how to determine true motions from their causes, effects, and

apparent differences, and, conversely, of how to determine from motions,

whether true or apparent, their causes and effects. For this was the purpose

for which I composed the following treatise.
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Law 1 Every body perseveres in its state of being at rest or of moving ^uniformly straight

forward* except insofar as bitb is compelled to change citsc state by forces impressed.
Projectiles persevere in their motions, except insofar as they are retarded

by the resistance of the air and are impelled downward by the force of gravity.

A spinning hoop,d which has parts that by their cohesion continually draw

one another back from rectilinear motions, does not cease to rotate, except

insofar as it is retarded by the air. And larger bodies—planets and comets—

preserve for a longer time both their progressive and their circular motions,

which take place in spaces having less resistance.

Law 2 A change in motion is proportional to the motive force impressed and tal^es place

along the straight line in which that force is impressed.

If some force generates any motion, twice the force will generate twice

the motion, and three times the force will generate three times the motion,

whether the force is impressed all at once or successively by degrees. And if

the body was previously moving, the new motion (since motion is always in

the same direction as the generative force) is added to the original motion

if that motion was in the same direction or is subtracted from the original

motion if it was in the opposite direction or, if it was in an oblique direction,

aa. See note bb to def. 3.
bb. Ed. 1 and ed. 2 lack the pronoun "illud," which, by expressing the subject, renders it somewhat

more emphatic than it is when conveyed only by the form of the verb ("is compelled") and which makes

more explicit the reference to an antecedent noun ("body").

cc. Ed. 1 and ed. 2 have "that."

d. The Latin word is "trochus," i.e., a top or some kind of spinner.

62
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is combined obliquely and compounded with it according to the directions

of both motions.

To any action there is always an opposite and equal reaction; in other words, the Law 3

actions of two bodies upon each other are always equal and always opposite in

direction.

Whatever presses or draws something else is pressed or drawn just as

much by it. If anyone presses a stone with a finger, the finger is also pressed

by the stone. If a horse draws a stone tied to a rope, the horse will (so to

speak) also be drawn back equally toward the stone, for the rope, stretched

out at both ends, will urge the horse toward the stone and the stone toward

the horse by one and the same endeavor to go slack and will impede the

forward motion of the one as much as it promotes the forward motion of

the other. If some body impinging upon another body changes the motion of

that body in any way by its own force, then, by the force of the other body

(because of the equality of their mutual pressure), it also will in turn undergo

the same change in its own motion in the opposite direction. By means of

these actions, equal changes occur in the motions, not in the velocities—

that is, of course, if the bodies are not impeded by anything else.a For the

changes in velocities that likewise occur in opposite directions are inversely

proportional to the bodies because the motions are changed equally. This law

is valid also for attractions, as will be proved in the next scholium.

A body acted on by [two] forces acting jointly describes the diagonal of a paral- Corollary 1

lelogram in the same time in which it would describe the sides if the forces were

acting separately.

Let a body in a given time, by force M

alone impressed in A, be carried with uniform

motion from A to B, and, by force N alone

impressed in the same place, be carried from A

to C; then complete the parallelogram ABDC,

and by both forces the body will be carried in the same time along the

diagonal from A to D. For, since force N acts along the line AC parallel to

a. By "body" Newton means quantity of matter or mass (def. 1) and by "motion" he means quantity
of motion (def. 2) or momentum.
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BD, this force, by law 2, will make no change at all in the velocity toward

the line BD which is generated by the other force. Therefore, the body will

reach the line BD in the same time whether force N is impressed or not, and

so at the end of that time will be found somewhere on the line BD. By the

same argument, at the end of the same time it will be found somewhere on

the line CD, and accordingly it is necessarily found at the intersection D of

both lines. And, by law 1, it will go with [uniform] rectilinear motion from

A to D.

Corollary 2 And hence the composition of a direct force AD out of any oblique forces AB

and BD is evident, and conversely the resolution of any direct force AD into any

oblique forces AB and BD. And this fynd of composition and resolution is indeed

abundantly confirmed from mechanics.

For example, let OM and ON be unequal spokes going out from the

center O of any wheel, and let the spokes support the weights A and P

by means of the cords MA and NP; it is

required to find the forces of the weights

to move the wheel. Draw the straight line

KOL through the center O, so as to meet

the cords perpendicularly at K and L;

and with center O and radius OL, which

is the greater of OK and OL, describe

a circle meeting the cord MA at D; and

draw the straight line OD, and let AC

be drawn parallel to it and DC perpen-

dicular to it. Since it makes no difference

whether points K, L, and D of the cords are attached or not attached to

the plane of the wheel, the weights will have the same effect whether they

are suspended from the points K and L or from D and L. And if now the

total force of the weight A is represented by line AD, it will be resolved

into forces [i.e., components] AC and CD, of which AC, drawing spoke OD

directly from the center, has no effect in moving the wheel, while the other

force DC, drawing spoke DO perpendicularly, has the same effect as if it

were drawing spoke OL (equal to OD) perpendicularly; that is, it has the

same effect as the weight P, provided that the weight P is to the weight

A as the force DC is to the force DA; that is (because triangles ADC and
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DOK are similar), as OK to OD or OL. Therefore, the weights A and P,

which are inversely as the spokes OK and OL (which are in a straight line),

will be equipollent and thus will stand in equilibrium, which is a very well

known property of the balance, the lever, and the wheel and axle. But if

either weight is greater than in this ratio, its force to move the wheel will be

so much the greater.

But if the weight p, equal to the weight P, is partly suspended by the

cord N/? and partly lies on the oblique plane />G, draw />H perpendicular

to the plane of the horizon and NH perpendicular to the plane pG\ then

if the force of the weight p tending downward is represented by the line

/?H, it can be resolved into the forces [i.e., components] /?N and HN. If

there were some plane pQ perpendicular to the cord />N and cutting the

other plane pG in a line parallel to the horizon, and the weight p were only

lying on these planes pQ and /?G, the weight p would press these planes

perpendicularly with the forces /?N and HN—plane />Q, that is, with force

/?N and plane pG with force HN. Therefore, if the plane pQ is removed,

so that the weight stretches the cord, then—since the cord, in sustaining the

weight, now takes the place of the plane which has been removed—the cord

will be stretched by the same force />N with which the plane was formerly

pressed. Thus the tension of this oblique cord will be to the tension of the

other, and perpendicular, cord PN as />N to />H. Therefore, if the weight

p is to the weight A in a ratio that is compounded of the inverse ratio of

the least distances of their respective cords pN and AM from the center of

the wheel and the direct ratio of /?H to /?N, the weights will have the same

power to move the wheel and so will sustain each other, as anyone can test.

Now, the weight /?, lying on those two oblique planes, has the role of

a wedge between the inner surfaces of a body that has been split open; and

hence the forces of a wedge and hammer can be determined, because the

force with which the weight p presses the plane pQ is to the force with

which weight p is impelled along the line pH toward the planes, whether by

its own gravity or by the blow of a hammer, as /?N is to />H, and because

the force with which p presses plane pQ is to the force by which it presses

the other plane pG as /?N to NH. Furthermore, the force of a screw can also

be determined by a similar resolution of forces, inasmuch as it is a wedge

impelled by a lever. Therefore, this corollary can be used very extensively,

and the variety of its applications clearly shows its truth, since the whole of
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mechanics—demonstrated in different ways by those who have written on

this subject—depends on what has just now been said. For from this are easily

derived the forces of machines, which are generally composed of wheels,

drums, pulleys, levers, stretched strings, and weights, ascending directly or

obliquely, and the other mechanical powers, as well as the forces of tendons

to move the bones of animals.

Corollary 3 The quantity of motion, which is determined by adding the motions made in

one direction and subtracting the motions made in the opposite direction, is not

changed by the action of bodies on one another.

For an action and the reaction opposite to it are equal by law 3, and thus

by law 2 the changes which they produce in motions are equal and in opposite

directions. Therefore, if motions are in the same direction, whatever is added

to the motion of the first body [lit. the fleeing body] will be subtracted from

the motion of the second body [lit. the pursuing body] in such a way that

the sum remains the same as before. But if the bodies meet head-on, the

quantity subtracted from each of the motions will be the same, and thus the

difference of the motions made in opposite directions will remain the same.

For example, suppose a spherical body A is three times as large as a

spherical body B and has two parts of velocity, and let B follow A in the

same straight line with ten parts of velocity; then the motion of A is to the

motion of B as six to ten. Suppose that their motions are of six parts and

ten parts respectively; the sum will be sixteen parts. When the bodies collide,

therefore, if body A gains three or four or five parts of motion, body B

will lose just as many parts of motion and thus after reflection body A will

continue with nine or ten or eleven parts of motion and B with seven or

six or five parts of motion, the sum being always, as originally, sixteen parts

of motion. Suppose body A gains nine or ten or eleven or twelve parts of

motion and so moves forward with fifteen or sixteen or seventeen or eighteen

parts of motion after meeting body B; then body B, by losing as many parts

of motion as A gains, will either move forward with one part, having lost

nine parts of motion, or will be at rest, having lost its forward motion of ten

parts, or will move backward with one part of motion, having lost its motion

and (if I may say so) one part more, or will move backward with two parts of

motion because a forward motion of twelve parts has been subtracted. And

thus the sums, 15 + 1 or 16 + 0, of the motions in the same direction and the



C O R O L L A R Y 4 67

differences, 17—1 and 18 — 2, of the motions in opposite directions will always

be sixteen parts of motion, just as before the bodies met and were reflected.

And since the motions with which the bodies will continue to move after

reflection are known, the velocity of each will be found, on the supposition

that it is to the velocity before reflection as the motion after reflection is to

the motion before reflection. For example, in the last case, where the motion

of body A was six parts before reflection and eighteen parts afterward, and

its velocity was two parts before reflection, its velocity will be found to be

six parts after reflection on the basis of the following statement: as six parts

of motion before reflection is to eighteen parts of motion afterward, so two

parts of velocity before reflection is to six parts of velocity afterward.

But if bodies that either are not spherical or are moving in different

straight lines strike against each other obliquely and it is required to find

their motions after reflection, the position of the plane by which the colliding

bodies are touched at the point of collision must be determined; then (by

corol. 2) the motion of each body must be resolved into two motions, one

perpendicular to this plane and the other parallel to it. Because the bodies act

upon each other along a line perpendicular to this plane, the parallel motions

[i.e., components] must be kept the same after reflection; and equal changes

in opposite directions must be attributed to the perpendicular motions in such

a way that the sum of the motions in the same direction and the difference

of the motions in opposite directions remain the same as before the bodies

came together. The circular motions of bodies about their own centers also

generally arise from reflections of this sort. But I do not consider such cases in

what follows, and it would be too tedious to demonstrate everything relating

to this subject.

The common center of gravity of two or more bodies does not change its state Corollary 4

whether of motion or of rest as a result of the actions of the bodies upon one

another; and therefore the common center of gravity of all bodies acting upon one

another (excluding external actions and impediments) either is at rest or moves

uniformly straight forward.

For if two points move forward with uniform motion in straight lines,

and the distance between them is divided in a given ratio, the dividing point

either is at rest or moves forward uniformly in a straight line. This is demon-

strated below in lem. 23 and its corollary for the case in which the motions
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same reasoning for the case in which those motions do not take place in the

same plane. Therefore, if any number of bodies move uniformly in straight

lines, the common center of gravity of any two either is at rest or moves

forward uniformly in a straight line, because any line joining these bodies

through their centers—which move forward uniformly in straight lines—is

divided by this common center in a given ratio. Similarly, the common center

of gravity of these two bodies and any third body either is at rest or moves

forward uniformly in a straight line, because the distance between the com-

mon center of the two bodies and the center of the third body is divided in a

given ratio by the common center of the three. In the same way, the common

center of these three and of any fourth body either is at rest or moves forward

uniformly in a straight line, because that common center divides in a given

ratio the distance between the common center of the three and the center of

the fourth body, and so on without end. Therefore, in a system of bodies in

which the bodies are entirely free of actions upon one another and of all other

actions impressed upon them externally, and in which each body accordingly

moves uniformly in its individual straight line, the common center of gravity

of them all either is at rest or moves uniformly straight forward.

Further, in a system of two bodies acting on each other, since the distances

of their centers from the common center of gravity are inversely as the bodies,

the relative motions of these bodies, whether of approaching that center or of

receding from it, will be equal. Accordingly, as a result of equal changes in

opposite directions in the motions of these bodies, and consequently as a result

of the actions of the bodies on each other, that center is neither accelerated

nor retarded nor does it undergo any change in its state of motion or of rest.

In a system of several bodies, the common center of gravity of any two acting

upon each other does not in any way change its state as a result of that action,

and the common center of gravity of the rest of the bodies (with which that

action has nothing to do) is not affected by that action; the distance between

these two centers is divided by the common center of gravity of all the bodies

into parts inversely proportional to the total sums of the bodies whose centers

they are, and (since those two centers maintain their state of moving or of

being at rest) the common center of all maintains its state also—for all these

reasons it is obvious that this common center of all never changes its state

with respect to motion and rest as a result of the actions of two bodies upon

XIOMS, OR THE LAWS OF MOTION68
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each other. Moreover, in such a system all the actions of bodies upon one

another either occur between two bodies or are compounded of such actions

between two bodies and therefore never introduce any change in the state of

motion or of rest of the common center of all. Thus, since that center either

is at rest or moves forward uniformly in some straight line, when the bodies

do not act upon one another, that center will, notwithstanding the actions of

the bodies upon one another, continue either to be always at rest or to move

always uniformly straight forward, unless it is driven from this state by forces

impressed on the system from outside. Therefore, the law is the same for a

system of several bodies as for a single body with respect to perseverance in

a state of motion or of rest. For the progressive motion, whether of a single

body or of a system of bodies, should always be reckoned by the motion of

the center of gravity.

When bodies are enclosed in a given space, their motions in relation to one another Corollary 5

are the same whether the space is at rest or whether it is moving uniformly straight

forward without circular motion.

For in either case the differences of the motions tending in the same

direction and the sums of those tending in opposite directions are the same

at the beginning (by hypothesis), and from these sums or differences there

arise the collisions and impulses [lit. impetuses] with which the bodies strike

one another. Therefore, by law 2, the effects of the collisions will be equal in

both cases, and thus the motions with respect to one another in the one case

will remain equal to the motions with respect to one another in the other

case. This is proved clearly by experience: on a ship, all the motions are the

same with respect to one another whether the ship is at rest or is moving

uniformly straight forward.

If bodies are moving in any way whatsoever with respect to one another and are Corollary 6

urged by equal accelerative forces along parallel lines, they will all continue to

move with respect to one another in the same way as they would if they were not

acted on by those forces.

For those forces, by acting equally (in proportion to the quantities of

the bodies to be moved) and along parallel lines, will (by law 2) move all

the bodies equally (with respect to velocity), and so will never change their

positions and motions with respect to one another.
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Scholium The principles I have set forth are accepted by mathematicians and con-

firmed by experiments of many kinds. By means of the first two laws and

the first two corollaries Galileo found that the descent of heavy bodies is

in the squared ratio of the time and that the motion of projectiles occurs

in a parabola, as experiment confirms, except insofar as these motions are

somewhat retarded by the resistance of the air. aWhen a body falls, uniform

gravity, by acting equally in individual equal particles of time, impresses equal

forces upon that body and generates equal velocities; and in the total time it

impresses a total force and generates a total velocity proportional to the time.

And the spaces described in proportional times are as the velocities and the

times jointly, that is, in the squared ratio of the times. And when a body is

projected upward, uniform gravity impresses forces and takes away velocities

proportional to the times; and the times of ascending to the greatest heights

are as the velocities to be taken away, and these heights are as the velocities

and the times jointly, or as the squares of the velocities. And when a body

is projected along any straight line, its motion arising from the projection is

compounded with the motion arising from gravity.

For example, let body A by the motion of projection alone describe the

straight line AB in a given time, and by the motion of

falling alone describe the vertical distance AC in the

same time; then complete the parallelogram ABDC,

and by the compounded motion the body will be found

in place D at the end of the time; and the curved line

AED which the body will describe will be a parabola

which the straight line AB touches at A and whose

ordinate BD is as AB2.a

What has been demonstrated concerning the times of oscillating pendu-

lums depends on the same first two laws and first two corollaries, and this

is supported by daily experience with clocks. From the same laws and corol-

laries and law 3, Sir Christopher Wren, Dr. John Wallis, and Mr. Christiaan

Huygens, easily the foremost geometers of the previous generation, indepen-

dently found the rules of the collisions and reflections of hard bodies, and

communicated them to the Royal Society at nearly the same time, entirely

agreeing with one another (as to these rules); and Wallis was indeed the

aa. Ed. 1 and ed. 2 lack this.
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first to publish what had been found, followed by Wren and Huygens. But

Wren additionally proved the truth of these rules before the Royal Society by

means of an experiment with pendulums, which the eminent Mariotte soon

after thought worthy to be made the subject of a whole book.

However, if this experiment is to agree precisely with the theories, ac-

count must be taken of both the resistance of the air and the elastic force

of the colliding bodies. Let the spherical bodies A and B be suspended

from centers C and D by parallel and

equal cords AC and BD. With these

centers and with those distances as

radii describe semicircles EAF and

GBH bisected by radii CA and DB.

Take away body B, and let body A

be brought to any point R of the arc

EAF and be let go from there, and let it return after one oscillation to point

V. RV is the retardation arising from the resistance of the air. Let ST be

a fourth of RV and be located in the middle so that RS and TV are equal

and RS is to ST as 3 to 2. Then ST will closely approximate the retardation

in the descent from S to A. Restore body B to its original place. Let body

A fall from point S, and its velocity at the place of reflection A, without

sensible error, will be as great as if it had fallen in a vacuum from place

T. Therefore let this velocity be represented by the chord of the arc TA.

For it is a proposition very well known to geometers that the velocity of a

pendulum in its lowest point is as the chord of the arc that it has described

in falling. After reflection let body A arrive at place s, and body B at place

^. Take away body B and find place v such that if body A is let go from this

place and after one oscillation returns to place r, st will be a fourth of rv

and be located in the middle, so that rs and tv are equal; and let the chord

of the arc /A represent the velocity that body A had in place A immediately

after reflection. For / will be that true and correct place to which body A

must have ascended if there had been no resistance of the air. By a similar

method the place ^, to which body B ascends, will have to be corrected, and

the place /, to which that body must have ascended in a vacuum, will have

to be found. In this manner it is possible to make all our experiments, just

as if we were in a vacuum. Finally body A will have to be multiplied (so

to speak) by the chord of the arc TA, which represents its velocity, in order
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to get its motion in place A immediately before reflection, and then by the

chord of the arc /A in order to get its motion in place A immediately after

reflection. And thus body B will have to be multiplied by the chord of the arc

El in order to get its motion immediately after reflection. And by a similar

method, when two bodies are let go simultaneously from different places, the

motions of both will have to be found before as well as after reflection, and

then finally the motions will have to be compared with each other in order

to determine the effects of the reflection.

On making a test in this way with ten-foot pendulums, using unequal

as well as equal bodies, and making the bodies come together from very

large distances apart, say of eight or twelve or sixteen feet, I always found—

within an error of less than three inches in the measurements—that when the

bodies met each other directly, the changes of motions made in the bodies in

opposite directions were equal, and consequently that the action and reaction

were always equal. For example, if body A collided with body B, which was

at rest, with nine parts of motion and, losing seven parts, proceeded after

reflection with two, body B rebounded with those seven parts. If the bodies

met head-on, A with twelve parts of motion and B with six, and A rebounded

with two, B rebounded with eight, fourteen parts being subtracted from each.

Subtract twelve parts from the motion of A and nothing will remain; subtract

another two parts, and a motion of two parts in the opposite direction will be

produced; and so, subtracting fourteen parts from the six parts of the motion

of body B, eight parts will be produced in the opposite direction. But if the

bodies moved in the same direction, A more quickly with fourteen parts

and B more slowly with five parts, and after reflection A moved with five

parts, then B moved with fourteen, nine parts having been transferred from

A to B. And so in all other cases. As a result of the meeting and collision

of bodies, the quantity of motion—determined by adding the motions in the

same direction and subtracting the motions in opposite directions—was never

changed. I would attribute the error of an inch or two in the measurements

to the difficulty of doing everything with sufficient accuracy. It was difficult

both to release the pendulums simultaneously in such a way that the bodies

would impinge upon each other in the lowest place AB, and to note the places

s and ^ to which the bodies ascended after colliding. But also, with respect

to the pendulous bodies themselves, errors were introduced by the unequal

density of the parts and by irregularities of texture arising from other causes.



S C H O L I U M 73

Further, lest anyone object that the rule which this experiment was de-

signed to prove presupposes that bodies are either absolutely hard or at least

perfectly elastic and thus of a kind which do not occur bnaturally,b I add that

the experiments just described work equally well with soft bodies and with

hard ones, since surely they do not in any way depend on the condition of

hardness. For if this rule is to be tested in bodies that are not perfectly hard,

it will only be necessary to decrease the reflection in a fixed proportion to

the quantity of elastic force. In the theory of Wren and Huygens, absolutely

hard bodies rebound from each other with the velocity with which they have

collided. This will be affirmed with more certainty of perfectly elastic bodies.

In imperfectly elastic bodies the velocity of rebounding must be decreased

together with the elastic force, because that force (except when the parts of

the bodies are damaged as a result of collision, or experience some sort of ex-

tension such as would be caused by a hammer blow) is fixed and determinate

(as far as I can tell) and makes the bodies rebound from each other with a

relative velocity that is in a given ratio to the relative velocity with which they

collide. I have tested this as follows with tightly wound balls of wool strongly

compressed. First, releasing the pendulums and measuring their reflection, I

found the quantity of their elastic force; then from this force I determined

what the reflections would be in other cases of their collision, and the ex-

periments which were made agreed with the computations. The balls always

rebounded from each other with a relative velocity that was to the relative

velocity of their colliding as 5 to 9, more or less. Steel balls rebounded with

nearly the same velocity and cork balls with a slightly smaller velocity, while

with glass balls the proportion was roughly 15 to 16. And in this manner

the third law of motion—insofar as it relates to impacts and reflections—is

proved by this theory, which plainly agrees with experiments.

I demonstrate the third law of motion for attractions briefly as follows.

Suppose that between any two bodies A and B that attract each other any

obstacle is interposed so as to impede their coming together. If one body A is

more attracted toward the other body B than that other body B is attracted

toward the first body A, then the obstacle will be more strongly pressed by

body A than by body B and accordingly will not remain in equilibrium. The

stronger pressure will prevail and will make the system of the two bodies and

bb. Evidently "in natural compositions" or "in natural bodies."
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the obstacle move straight forward in the direction from A toward B and,

in empty space, go on indefinitely with a motion that is always accelerated,

which is absurd and contrary to the first law of motion. For according to

the first law, the system will have to persevere in its state of resting or of

moving uniformly straight forward, and accordingly the bodies will urge the

obstacle equally and on that account will be equally attracted to each other.

I have tested this with a lodestone and iron. If these are placed in separate

vessels that touch each other and float side by side in still water, neither one

will drive the other forward, but because of the equality of the attraction in

both directions they will sustain their mutual endeavors toward each other,

and at last, having attained equilibrium, they will be at rest.
cln the same way gravity is mutual between the earth and its parts. Let

the earth FI be cut by any plane EG into two parts EGF and EGI; then their

weights toward each other will be equal. For if

the greater part EGI is cut into two parts EGKH

and HKI by another plane HK parallel to the

first plane EG, in such a way that HKI is equal

to the part EFG that has been cut off earlier,

it is manifest that the middle part EGKH will

not preponderate toward either of the outer parts

but will, so to speak, be suspended in equilibrium

between both and will be at rest. Moreover, the outer part HKI will press

upon the middle part with all its weight and will urge it toward the other

outer part EGF, and therefore the force by which EGI, the sum of the parts

HKI and EGKH, tends toward the third part EGF is equal to the weight

of the part HKI, that is, equal to the weight of the third part EGF. And

therefore the weights of the two parts EGI and EGF toward each other

are equal, as I set out to demonstrate. And if these weights were not equal,

the whole earth, floating in an aether free of resistance, would yield to the

greater weight and in receding from it would go off indefinitely.0

As bodies are equipollent in collisions and reflections if their velocities

are inversely as their inherent forces [i.e., forces of inertia], so in the motions

of machines those agents [i.e., acting bodies] whose velocities (reckoned in the

direction of their forces) are inversely as their inherent forces are equipol-

cc. Ed. 1 lacks this.
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lent and sustain one another by their contrary endeavors. Thus weights are

equipollent in moving the arms of a balance if during oscillation of the bal-

ance they are inversely as their velocities upward and downward; that is,

weights which move straight up and down are equipollent if they are in-

versely as the distances between the axis of the balance and the points from

which they are suspended; but if such weights are interfered with by oblique

planes or other obstacles that are introduced and thus ascend or descend

obliquely, they are equipollent if they are inversely as the ascents and de-

scents insofar as these are reckoned with respect to a perpendicular, and this

is so because the direction of gravity is downward. Similarly, in a pulley or

combination of pulleys, the weight will be sustained by the force of the hand

pulling the rope vertically, which is to the weight (ascending either straight

up or obliquely) as the velocity of the perpendicular ascent to the velocity

of the hand pulling the rope. In clocks and similar devices, which are con-

structed out of engaged gears, the contrary forces that promote and hinder

the motion of the gears will sustain each other if they are inversely as the

velocities of the parts of the gears upon which they are impressed. The force

of a screw to press a body is to the force of a hand turning the handle as the

circular velocity of the handle, in the part where it is urged by the hand, is to

the progressive velocity of the screw toward the pressed body. The forces by

which a wedge presses the two parts of the wood that it splits are to the force

of the hammer upon the wedge as the progress of the wedge (in the direction

of the force impressed upon it by the hammer) is to the velocity with which

the parts of the wood yield to the wedge along lines perpendicular to the

faces of the wedge. And the case is the same for all machines.

The effectiveness and usefulness of all machines or devices consist wholly

in our being able to increase the force by decreasing the velocity, and vice

versa; in this way the problem is solved in the case of any working machine

or device: "To move a given weight by a given force" or to overcome any

other given resistance by a given force. For if machines are constructed in

such a way that the velocities of the agent [or acting body] and the resistant

[or resisting body] are inversely as the forces, the agent will sustain the re-

sistance and, if there is a greater disparity of velocities, will overcome that

resistance. Of course the disparity of the velocities may be so great that it can

also overcome all the resistance which generally arises from the friction of

contiguous bodies sliding over one another, from the cohesion of continuous
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bodies that are to be separated from one another, or from the weights of

bodies to be raised; and if all this resistance is overcome, the remaining force

will produce an acceleration of motion proportional to itself, partly in the

parts of the machine, partly in the resisting body.d

But my purpose here is not to write a treatise on mechanics. By these

examples I wished only to show the wide range and the certainty of the

third law of motion. For if the action of an agent is reckoned by its force

and velocity jointly, and if, similarly, the reaction of a resistant is reckoned

jointly by the velocities of its individual parts and the forces of resistance

arising from their friction, cohesion, weight, and acceleration, the action and

reaction will always be equal to each other in all examples of using devices

or machines. And to the extent to which the action is propagated through

the machine and ultimately impressed upon each resisting body, its ultimate

direction will always be opposite to the direction of the reaction.

d. Newton writes of "instrumentorum" (literally, "equipment") and of "instruments mechanicis"

(literally, "mechanical instruments"), as well as "machinae." See §5.7 of the Guide.



BOOK 1

THE M O T I O N OF B O D I E S



This page intentionally left blank 



L E M M A 3 79

SECTION 1

The method of first and ultimate ratios, for use in demonstrating what follows

Quantities, and also ratios of quantities, which in * any finite time* constantly tend Lemma 1

to equality, and which before the end of that time approach so close to one another

that their difference is less than any given quantity, become ultimately equal.

If you deny this, blet them become ultimately unequal, andb let their

ultimate difference be D. Then they cannot approach so close to equality that

their difference is less than the given difference D, contrary to the hypothesis.

If in any figure AacE, comprehended by the straight lines A a and AE and the Lemma 2

curve #<:£, any number of parallelograms Ab, Be, Cd, . .. are inscribed upon

equal bases AB, BC, CD, . .. and have sides Bb,

Cc, Dt/, . . . parallel to the side Aa of the figure;

and if the parallelograms aKbl, bLcm, cMdn, ...

are completed; if then the width of these parallel-

ograms is diminished and their number increased

indefinitely, I say that the ultimate ratios which the

inscribed figure AK£L<:NWD, the circumscribed

figure Aalbmcndofc, and the curvilinear figure

Aabcd}L have to one another are ratios of equality.

For the difference of the inscribed and circumscribed figures is the sum

of the parallelograms K/, Lra, M/2, and Do, that is (because they all have

equal bases), the rectangle having as base Kb (the base of one of them) and

as altitude Aa (the sum of the altitudes), that is, the rectangle ABla. But

this rectangle, because its width AB is diminished indefinitely, becomes less

than any given rectangle. Therefore (by lem. 1) the inscribed figure and the

circumscribed figure and, all the more, the intermediate curvilinear figure

become ultimately equal. Q.E.D.

The same ultimate ratios are also ratios of equality when the widths AB, BC, Lemma 3

CD, ... of the parallelograms are unequal and are all diminished indefinitely.

aa. Ed. 1 has "a given time."

bb. Ed. 1 lacks this.
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For let AF be equal to the greatest width,

and let the parallelogram FAaf be completed.

This parallelogram will be greater than the dif-

ference of the inscribed and the circumscribed

figures; but if its width AF is diminished indefi-

nitely, it will become less than any given rect-

angle. Q.E.D.

COROLLARY 1. Hence the ultimate sum of

the vanishing parallelograms coincides with the curvilinear figure in its every

part.

COROLLARY 2. And, all the more, the rectilinear figure that is compre-

hended by the chords of the vanishing arcs ab, be, cd, ... coincides ulti-

mately with the curvilinear figure.

COROLLARY 3. And it is the same for the circumscribed rectilinear figure

that is comprehended by the tangents of those same arcs.

COROLLARY 4. And therefore these ultimate figures (with respect to their

perimeters acE) are not rectilinear, but curvilinear limits of rectilinear figures.

Lemma 4 If in two figures AacE and PprT two series of parallelograms are inscribed (as

above) and the number of parallelograms in both series is the same; and if, when

their widths are diminished indefinitely, the ultimate ratios of the parallelograms

in one figure to the corresponding parallelograms in the other are the same; then

I say that the two figures AacE and PprT are to each other in that same ratio.

For as the individual parallelograms in the one figure are to the cor-

responding individual parallelograms in the other, so (by composition [or

componendo]) will the sum of all the parallelograms in the one become to
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the sum of all the parallelograms in the other, and so also the one figure

to the other—the first figure, of course, being (by lem. 3) to the first sum,

and the second figure to the second sum, in a ratio of equality. Q.E.D.

COROLLARY. Hence, if two quantities of any kind are divided in any

way into the same number of parts, and these parts—when their number is

increased and their size is diminished indefinitely—maintain a given ratio

to one another, the first to the first, the second to the second, and so on

in sequence, then the wholes will be to each other in the same given ratio.

For if the parallelograms in the figures of this lemma are taken in the same

proportion to one another as those parts, the sums of the parts will always

be as the sums of the parallelograms; and therefore, when the number of

parts and parallelograms is increased and their size diminished indefinitely,

the sums of the parts will be in the ultimate ratio of a parallelogram in one

figure to a corresponding parallelogram in the other, that is (by hypothesis),

in the ultimate ratio of part to part.

All the mutually corresponding sides—curvilinear as well as rectilinear—of similar Lemma 5

figures are proportional, and the areas of such figures are as the squares of their

sides.

If any arc ACB, given in position, is subtended by the chord AB and at some point Lemma 6

A, in the middle of the continuous

curvature, is touched by the straight

line AD, produced in both directions,

and if then points A and B approach

each other and come together, I say

that the angle BAD contained by the

chord and the tangent will be indefi-

nitely diminished and will ultimately

vanish.

For aif that angle does not vanish, the angle contained by the arc ACB

and the tangent AD will be equal to a rectilinear angle, and therefore the

curvature at point A will not be continuous, contrary to the hypothesis.3

aa. Ed. 1 has "produce AB to b and AD to d\ then, since points A and B come together and thus
no part AB of Ab still lies within the curve, it is obvious that this straight line Ab will either coincide
with the tangent Ad or be drawn between the tangent and the curve. But the latter case is contrary to
the nature of curvature; therefore, the former obtains. Q.E.D."
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Lemma 7 With the same suppositions, I say that the ultimate ratios of the arc, the chord,

and the tangent to one another are ratios of equality.

For while point B approaches point A, let AB and AD be understood

always to be produced to the distant points b and d\ and let bd be drawn

parallel to secant BD. And let arc Acb be always similar to arc ACB. Then as

points A and B come together, the angle

dAb will vanish (by lem. 6), and thus the

straight lines Ab and Ad (which are al-

ways finite) and the intermediate arc Acb

will coincide and therefore will be equal. Hence, the straight lines AB and

AD and the intermediate arc ACB (which are always proportional to the

lines Ab and Ad and the arc Acb respectively) will also vanish and will

have to one another an ultimate ratio of equality. Q.E.D.

COROLLARY 1. Hence, if BF is drawn through B parallel to the tangent

and always cutting at F any straight line AF passing through A, then BF

will ultimately have a ratio of equality to the vanishing arc ACB, because, if

parallelogram AFBD is completed, BF always has a ratio of equality to AD.

COROLLARY 2. And if through B and A additional straight lines BE,

BD, AF, and AG are drawn cutting the tangent AD and its parallel BF, the

ultimate ratios of all the abscissas AD, AE, BF, and BG and of the chord

and arc AB to one another will be ratios of equality.

COROLLARY 3. And therefore all these lines can be used for one another

interchangeably in any argumentation concerning ultimate ratios.

Lemma 8 If the given straight lines AR and BR, together with the arc ACB, its chord AB,

and the tangent AD, constitute three triangles RAB, RACB, and RAD, and if

then points A and B approach each other, I say that the triangles as they vanish

are similar in their ultimate form, and that their ultimate ratio is one of equality.

For while point B approaches

point A, let AB, AD, and AR be

understood always to be produced

to the distant points £, d, and r, and

rbd to be drawn parallel to RD;

and let arc Acb be always similar

to arc ACB. Then as points A and

B come together, the angle bA d will
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vanish, and therefore the three triangles rAb, rAcb, and rAd, which are al-

ways finite, will coincide and on that account are similar and equal. Hence

also RAB, RACE, and RAD, which will always be similar and proportional

to these, will ultimately become similar and equal to one another. Q.E.D.

COROLLARY. And hence those triangles can be used for one another in-

terchangeably in any argumentation concerning ultimate ratios.

If the straight line AE and the curve ABC, both given in position, intersect each Lemma 9

other at a given angle A, and //BD and CE are drawn as ordinates to the straight

line AE at another given angle and meet the curve in B and C, and if then points

B and C simultaneously approach point A, I say that the areas of the triangles

ABD and ACE will ultimately be to each other as the squares of the sides.

For while points B and C approach point A, let AD be understood al-

ways to be produced to the distant points d and e, so that Ad and Ae are pro-

portional to AD and AE; and erect ordi-

nates db and ec parallel to ordinates DB

and EC and meeting AB and AC, pro-

duced, at b and c. Understand the curve

Abe to be drawn similar to ABC, and

the straight line Ag to be drawn touching

both curves at A and cutting the ordinates

DB, EC, db, and ec at F, G, /, and g.

Then, with the length Ae remaining the

same, let points B and C come together

with point A; and as the angle cAg van-

ishes, the curvilinear areas Abd and Ace will coincide with the rectilinear

areas Afd and Age, and thus (by lem. 5) will be in the squared ratio of the

sides Ad and Ae. But areas ABD and ACE are always proportional to these

areas, and sides AD and AE to these sides. Therefore areas ABD and ACE

also are ultimately in the squared ratio of the sides AD and AE. Q.E.D.

The spaces which a body describes when urged by any * finite* force, ^whether Lemma 10

that force is determinate and immutable or is continually increased or continually

aa. Ed. 1 has "regular."

bb. Ed. 1 lacks this.
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decreased}0 are at the very beginning of the motion in the squared ratio of the

times.

Let the times be represented by lines AD and AE, and the generated

velocities by ordinates DB and EC; then the spaces described by these veloc-

ities will be as the areas ABD and ACE described by these ordinates, that

is, at the very beginning of the motion these spaces will be (by lem. 9) in the

squared ratio of the times AD and AE. Q.E.D.

COROLLARY 1. And hence it is easily concluded that when bodies de-

scribe similar parts of similar figures in proportional times, the errors that

are generated by any equal forces similarly applied to the bodies, and that

are measured by the distances of the bodies from those points on the similar

figures at which the same bodies would arrive in the same proportional times

without these forces, are very nearly as the squares of the times in which they

are generated.

COROLLARY 2. But the errors that are generated by proportional forces

similarly applied to similar parts of similar figures are as the forces and the

squares of the times jointly.

°COROLLARY 3. The same is to be understood of any spaces which bod-

ies describe when different forces urge them. These spaces are, at the very

beginning of the motion, as the forces and the squares of the times jointly.

COROLLARY 4. And thus the forces are as the spaces described at the very

beginning of the motion directly and as the squares of the times inversely.

COROLLARY 5. And the squares of the times are directly as the spaces

described and inversely as the forces.

Scholium If indeterminate quantities of different kinds are compared with one another

and any one of them is said to be directly or inversely as any other, the

meaning is that the first one is increased or decreased in the same ratio as

the second or as its reciprocal. And if any one of them is said to be as two or

more others, directly or inversely, the meaning is that the first is increased

or decreased in a ratio that is compounded of the ratios in which the others,

or the reciprocals of the others, are increased or decreased. For example, if

A is said to be as B directly and C directly and D inversely, the meaning is

cc. Ed. 1 lacks corols. 3-5 and scholium.
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that A is increased or decreased in the same ratio as B X C x —, that is, that

Rf^
A and are to each other in a given ratio.0

In all curves having a finite curvature at the point of contact, the vanishing Lemma 11

subtense of the angle of contact is ultimately in the squared ratio of the subtense

of the conterminous arc.

CASE 1. Let AB be the arc, AD its tangent, BD the subtense of the angle

of contact perpendicular to the tangent [angle BAD], and [the line] AB the

subtense [i.e., the conterminous chord] of the arc [AB].

Erect BG and AG perpendicular to this subtense AB

and tangent AD and meeting in G; then let points D,

B, and G approach points d, b, and g, and let J be

the intersection of lines BG and AG, which ultimately

occurs when points D and B reach A. It is evident that

the distance GJ can be less than any assigned distance.

And (from the nature of the circles passing through

points A, B, G and a, b, g) AB2 is equal to AG x BD,

and Ab2 is equal to Ag x bd, and thus the ratio of AB2

to Ab2 is compounded of the ratios of AG to Ag and

BD to bd. But since GJ can be taken as less than any assigned length, it can

happen that the ratio of AG to Ag differs from the ratio of equality by less

than any assigned difference, and thus that the ratio of AB2 to Ab2 differs

from the ratio of BD to bd by less than any assigned difference. Therefore,

by lem. 1, the ultimate ratio of AB2 to Ab2 is the same as the ultimate ratio

of BD to bd. Q.E.D.

CASE 2. Now let BD be inclined to AD at any given angle, and the

ultimate ratio of BD to bd will always be the same as before and thus the

same as AB2 to Ab2. Q.E.D.

CASE 3. And even when angle D is not given, if the straight line BD

converges to a given point or is drawn according to any other specification,

still the angles D and d (constructed according to the specification common

to both) will always tend to equality and will approach each other so closely

that their difference will be less than any assigned quantity, and thus will

ultimately be equal, by lem. 1; and therefore lines BD and bd are in the

same ratio to each other as before. Q.E.D.

1

D

D
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COROLLARY 1. Hence, since tangents AD and Ad, arcs AB and Ab, and

their sines BC and be become ultimately equal to chords AB and Ab, their

squares will also be ultimately as the subtenses BD and bd.
aCoROLLARY 2. The squares of these tangents, arcs, and sines are also

ultimately as the sagittas of the arcs, which bisect the chords and converge

to a given point. For these sagittas are as the subtenses BD and bd.

COROLLARY 3. And thus the sagitta is in the squared ratio of the time

in which a body describes the arc with a given velocity.3

COROLLARY 4. The rectilinear triangles ADB and

Adb are ultimately in the cubed ratio of the sides

AD and Ad, and in the sesquialteral ratio [i.e., as

the 3/2 power] of the sides DB and db, inasmuch as

these triangles are in a ratio compounded of the ratios

of AD and DB to Ad and db. So also the triangles

ABC and Abe are ultimately in the cubed ratio of the

sides BC and be. bThe ratio that I call sesquialteral

is the halved of the tripled, namely, the one that is

compounded of the simple and the halved.b

COROLLARY 5. And since DB and db are ultimately parallel and in the

squared ratio of AD and Ad, the ultimate curvilinear areas ADB and Adb

will be (from the nature of the parabola) two-thirds of the rectilinear triangles

ADB and Adb; and the segments AB and Ab will be thirds of these same

triangles. And hence these areas and segments will be in the cubed ratio

of both of the tangents AD and Ad and of the chords AB and Ab and

their arcs.

Scholium But we suppose throughout that the angle of contact is neither infinitely

greater nor infinitely less than the angles of contact that circles contain with

their tangents, that is, that the curvature at point A is neither infinitely

small nor infinitely great—in other words, that the distance AJ is of a finite

magnitude. For DB can be taken proportional to AD3, in which case no

circle can be drawn through point A between tangent AD and curve AB,

and accordingly the angle of contact will be infinitely less than those of

aa. Ed. 1 lacks corols. 2 and 3.

bb. Ed. 1 lacks this sentence.
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circles. And, similarly, if DB is made successively proportional to AD4, AD5,

AD6, AD7, . .. , there will be a sequence of angles of contact going on to

infinity, any succeeding one of which is infinitely less than the preceding

one. And if DB is made successively proportional to AD2, AD3/2, AD4/3,

AD5/4, AD6/5, AD?/6, ... , there will be another infinite sequence of angles

of contact, the first of which is of the same kind as those of circles, the second

infinitely greater, and any succeeding one infinitely greater than the preceding

one. Moreover, between any two of these angles a sequence of intermediate

angles, going on to infinity in both directions, can be inserted, any succeeding

one of which will be infinitely greater or smaller than the preceding one—

as, for example, if between the terms AD2 and AD3 there were inserted

the sequence AD13/6, ADH/5, AD9/4, AD?/3, AD5/2, AD8/3, ADU/4, ADH/5,

AD /6, . . . . And again, between any two angles of this sequence a new

sequence of intermediate angles can be inserted, differing from one another

by infinite intervals. And nature knows no limit.

What has been demonstrated concerning curved lines and the [plane]

surfaces comprehended by them is easily applied to curved surfaces and their

solid contents. In any case, I have presented these lemmas before the proposi-

tions in order to avoid the tedium of working outclengthy0 proofs by reductio

ad absurdum in the manner of the ancient geometers. Indeed, proofs are ren-

dered more concise by the method of indivisibles. But since the hypothesis

of indivisibles is problematical6 and this method is therefore accounted less

geometrical, I have preferred to make the proofs of what follows depend on

the ultimate sums and ratios of vanishing quantities and the first sums and

ratios of nascent quantities, that is, on the limits of such sums and ratios, and

therefore to present proofs of those limits beforehand as briefly as I could.

For the same result is obtained by these as by the method of indivisibles,

and we shall be on safer ground using principles that have been proved.

Accordingly, whenever in what follows I consider quantities as consisting of

particles or whenever I use curved line-elements [or minute curved lines] in

cc. For "lengthy" (Lat. "longas") ed. 1 and ed. 2 have "complicated" (Lat. "perpiexas"), which Newton

inserted with his own hand into the manuscript of ed. 1. Motte gives "perplexed," thus obviously using

ed. 2, and Cajori has "involved," revealing that the Latin text was not consulted at this point. But in

A History of the Conceptions of Limits and Fluxions in Great Britain from Newton to Woodhouse (Chicago

and London: Open Court Publishing Co., 1919), Cajori notes on p. 5 that "in the third edition 'longas'

takes the place of 'perpiexas,' " and on p. 8 he uses Thorp's translation ("long").

dd. Newton uses the adjective "durior," which is traditionally translated by "rather harsh."



place of straight lines, I wish it always to be understood that I have in mind

not indivisibles but evanescent divisibles, and not sums and ratios of definite

parts but the limits of such sums and ratios, and that the force of such proofs

always rests on the method of the preceding lemmas.

It may be objected that there is no such thing as an ultimate proportion

of vanishing quantities, inasmuch as before vanishing the proportion is not

ultimate, and after vanishing it does not exist at all. But by the same argument

it could equally be contended that there is no ultimate velocity of a body

reaching a certain place at which the motion ceases; for before the body

arrives at this place, the velocity is not the ultimate velocity, and when it

arrives there, there is no velocity at all. But the answer is easy: to understand

the ultimate velocity as that with which a body is moving, neither before it

arrives at its ultimate place and the motion ceases, nor after it has arrived

there, but at the very instant when it arrives, that is, the very velocity with

which the body arrives at its ultimate place and with which the motion ceases.

And similarly the ultimate ratio of vanishing quantities is to be understood

not as the ratio of quantities before they vanish or after they have vanished,

but the ratio with which they vanish. Likewise, also, the first ratio of nascent

quantities is the ratio with which they begin to exist [or come into being].

And the first and the ultimate sum is the sum with which they begin and

cease to exist (or to be increased or decreased). There exists a limit which

their velocity can attain at the end of the motion, but cannot exceed. This is

their ultimate velocity. And it is the same for the limit of all quantities and

proportions that come into being and cease existing. And since this limit is

certain and definite, the determining of it is properly a geometrical problem.

But everything that is geometrical is legitimately used in determining and

demonstrating whatever else may be geometrical.

It can also be contended that if the ultimate ratios of vanishing quantities

are given, their ultimate magnitudes will also be given; and thus every quan-

tity will consist of indivisibles, contrary to what Euclid had proved concern-

ing incommensurables in the tenth book of his Elements. But this objection

is based on a false hypothesis. Those ultimate ratios with which quantities

vanish are not actually ratios of ultimate quantities, but limits which the ra-

tios of quantities decreasing without limit are continually approaching, and

which they can approach so closely that their difference is less than any given

quantity, but which they can never exceed and can never reach before the
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quantities are decreased indefinitely. This matter will be understood more

clearly in the case of quantities that are indefinitely great. If two quantities

whose difference is given are increased indefinitely, their ultimate ratio will

be given, namely the ratio of equality, and yet the ultimate or maximal quan-

tities of which this is the ratio will not on this account be given. Therefore,

whenever, to make things easier to comprehend, I speak in what follows of

quantities as minimally small or vanishing or ultimate, take care not to un-

derstand quantities that are determinate in magnitude, but always think of

quantities that are to be decreased without limit.
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S E C T I O N 2

To find centripetal forces

Proposition la The areas which bodies bmade to move in orbits^ describe by radii drawn to an

Theorem 1 unmoving center of forces lie in unmoving planes and are proportional to the

times.

Let the time be divided into equal parts, and in the first part of the

time let a body by its inherent force describe the straight line AB. In the

second part of the time, if nothing hindered it, this body would (by law 1)

go straight on to c, describing line Be equal to AB, so that—when radii AS,

BS, and cS were drawn to the center—the equal areas ASB and ESc would

be described. But when the body comes to B, let a centripetal force act with

a single but great impulse and make the body deviate from the straight line

Be and proceed in the straight line BC. Let cC be drawn parallel to BS and

meet BC at C; then, when the second part of the time has been completed,

the body (by corol. 1 of the laws) will be found at C in the same plane as

a. For a gloss on this proposition see the Guide, §10.8.

bb. In the statement of prop. 1, Newton uses the phrase "in gyros acta"; see the Guide, §2.4.
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triangle ASB. Join SC; and because SB and Cc are parallel, triangle SBC

will be equal to triangle SBc and thus also to triangle SAB. By a similar

argument, if the centripetal force acts successively at C, D, E, . .. , making

the body in each of the individual particles of time describe the individual

straight lines CD, DE, EF, .. . , all these lines will lie in the same plane;

and triangle SCD will be equal to triangle SBC, SDE to SCD, and SEF to

SDE. Therefore, in equal times equal areas are described in an unmoving

plane; and by composition [or componendo], any sums SADS and SAFS of

the areas are to each other as the times of description. Now let the number

of triangles be increased and their width decreased indefinitely, and their

ultimate perimeter ADF will (by lem. 3, corol. 4) be a curved line; and

thus the centripetal force by which the body is continually drawn back from

the tangent of this curve will act uninterruptedly, while any areas described,

SADS and SAFS, which are always proportional to the times of description,

will be proportional to those times in this case. Q.E.D.
GCoROLLARY 1. In nonresisting spaces, the velocity of a body attracted

to an immobile center is inversely as the perpendicular dropped from that

center to the straight line which is tangent to the orbit. For the velocities

in those places A, B, C, D, and E are respectively as the bases of the equal

triangles AB, BC, CD, DE, and EF, and these bases are inversely as the

perpendiculars dropped to them.

COROLLARY 2. If chords AB and BC of two arcs successively described

by the same body in equal times in nonresisting spaces are completed into the

parallelogram ABCV, and diagonal BV (in the position that it ultimately has

when those arcs are decreased indefinitely) is produced in both directions, it

will pass through the center of forces.0

dCoROLLARY 3. If chords AB, BC and DE, EF of arcs described in equal

times in nonresisting spaces are completed into parallelograms ABCV and

DEFZ, then the forces at B and E are to each other in the ultimate ratio

of the diagonals BV and EZ when the arcs are decreased indefinitely. For

the motions BC and EF of the body are (by corol. 1 of the laws) com-

pounded of the motions Be, BV and E/, EZ; but in the proof of this

cc. In ed. 1, corols. 1 and 2 are earlier versions of prop. 2, corols. 1 and 2, and the corols. 1 and 2 of

ed. 2 and ed. 3 are lacking,

dd. Ed. 1 lacks corols. 3-6.
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proposition BV and EZ, equal to Cc and F/, were generated by the im-

pulses of the centripetal force at B and E, and thus are proportional to these

impulses.

COROLLARY 4. The forces by which any bodies in nonresisting spaces

are drawn back from rectilinear motions and are deflected into curved orbits

are to one another as those sagittas of arcs described in equal times which

converge to the center of forces and bisect the chords when the arcs are

decreased indefinitely. For these sagittas are halves of the diagonals with

which we dealt in corol. 3.

COROLLARY 5. And therefore these forces are to the force of gravity as

these sagittas are to the sagittas, perpendicular to the horizon, of the parabolic

arcs that projectiles describe in the same time.

COROLLARY 6. All the same things hold, by corol. 5 of the laws, when

the planes in which the bodies are moving, together with the centers of forces

that are situated in those planes, are not at rest but move uniformly straight

forward.d

Proposition 2 Every body that moves in some curved line described in a plane and, by a radius

Theorem 2 drawn to a point, either unmoving or moving uniformly forward with a rectilinear

motion, describes areas around that point proportional to the times, is urged by a

centripetal force tending toward that same point.

CASE 1. For every body that moves in a curved line is deflected from

a rectilinear course by some force acting upon it (by law 1). And that force

by which the body is deflected from a rectilinear course and in equal times

is made to describe, about an immobile point S, the equal minimally small

triangles SAB, SBC, SCD, . .. , acts in place B along a line parallel to cC (by

book 1, prop. 40, of the Elements, and law 2), that is, along the line BS; and

in place C, the force acts along a line parallel to */D, that is, along the line

SC, . . . . Therefore it always acts along lines tending toward that unmoving

point S. Q.E.D.

CASE 2. And, by corol. 5 of the laws, it makes no difference whether

the surface on which the body describes a curvilinear figure is at rest or

whether it moves uniformly straight forward, together with the body, the

figure described, and the point S.
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aCoROLLARY 1. bln nonresisting spaces or mediums, if the areas are not

proportional to the times, the forces do not tend toward the point where the

radii meet but deviate forward [or in consequentia] from it, that is, in the

direction toward which the motion takes place, provided that the description

of the areas is accelerated; but if it is retarded, they deviate backward [or in

antecedentia, i.e., in a direction contrary to that in which the motion takes

place].b

COROLLARY 2. cln resisting mediums also, if the description of areas is

accelerated, the directions of the forces deviate from the point where the radii

meet in the direction toward which the motion takes place.3 c

A body can be urged by a centripetal force compounded of several forces. Scholium

In this case the meaning of the proposition is that the force which is com-

pounded of all the forces tends toward point S. Further, if some force acts

aa. In ed. 1, prop. 2 has no corollaries. Corols. 1 and 2 of ed. 2 and ed. 3 are basically revised versions

of corols. 1 and 2 to prop. 1 of ed. 1.

bb. Ed. 1 has (as prop. 1, corol. 1): "In nonresisting mediums, if the areas are not proportional to the

times, the forces do not tend toward the point where the radii meet."

cc. Ed. 1 has (as prop. 1, corol. 2): "In all mediums, if the description of areas is accelerated, the forces

do not tend toward the point where the radii meet but deviate forward [or in consequentia] from it."



94 BOOK I, S E C T I O N 2

continually along a line perpendicular to the surface described, it will cause

the body to deviate from the plane of its motion, but it will neither increase

nor decrease the quantity of the surface-area described and is therefore to be

ignored in the compounding of forces.

Proposition 3 *Every body that, by a radius drawn to the center of a second body moving in any

Theorem 3 way whatever, describes about that center areas that are proportional to the times

is urged by a force compounded of the centripetal force tending toward that second

body and of the whole accelerative force by which that second body is urged.

Let the first body be L, and the second body T; and (by corol. 6 of the

laws) if each of the two bodies is urged along parallel lines by a new force

that is equal and opposite to the force by which body T is urged, body L

will continue to describe about body T the same areas as before; but the

force by which body T was urged will now be annulled by an equal and

opposite force, and therefore (by law 1) body T, now left to itself, either will

be at rest or will move uniformly straight forward; and body L, since the

difference of the forces [i.e., the remaining force] is urging it, will continue

to describe areas proportional to the times about body T. Therefore, the

difference of the forces tends (by theor. 2) toward the second body T as center.

Q.E.D.

COROLLARY 1. Hence, if a body L, by a radius drawn to another body T,

describes areas proportional to the times, and from the total force (whether

simple or compounded of several forces according to corol. 2 of the laws) by

which body L is urged there is subtracted (according to the same corol. 2 of

the laws) the total accelerative force by which body T is urged, the whole

remaining force by which body L is urged will tend toward body T as center.

COROLLARY 2. And if the areas are very nearly proportional to the times,

the remaining force will tend toward body T very nearly.

aa. In both the statement and the demonstration of the proposition and also in the corollaries, ed. 1

lacks letters to designate the two bodies. In Newton's annotated copy of ed. 1, the letters L and T are

added in all of these parts of the proposition. In Newton's interleaved copy of ed. 1, letters are added in

all of these sections but are then deleted from the statement of the proposition, where the letters written

in might have first been A and B and then been changed to L and T before being crossed out. In the

first sentence of the demonstration in this interleaved copy, the first two letters added at the beginning of

the sentence were originally A and B, which were then altered to L and T. It is these letters, L and T,

that were added elsewhere and were kept in the demonstration and corollaries.
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COROLLARY 3. And conversely, if the remaining force tends very nearly

toward body T, the areas will be very nearly proportional to the times.

COROLLARY 4. If body L, by a radius drawn to another body T, describes

areas which, compared with the times, are extremely unequal, and body

T either is at rest or moves uniformly straight forward, either there is no

centripetal force tending toward body T or the action of the centripetal force

is mixed and compounded with the very powerful actions of other forces; and

the total force compounded of all the forces, if there are several, is directed

toward another center (whether fixed or moving). The same thing holds

when the second body moves with any motion whatever, if the centripetal

force is what remains after subtraction of the total force acting upon body T.a

Since the uniform description of areas indicates the center toward which that Scholium

force is directed by which a body is most affected and by which it is drawn

away from rectilinear motion and kept in orbit, why should we not in what

follows use uniform description of areas as a criterion for a center about

which all orbital motion takes place in free spaces?

The centripetal forces of bodies that describe different circles with uniform motion Proposition 4

tend toward the centers of those circles and are to one another as the squares of Theorem 4

the arcs described in the same time divided by the radii of the circles.
aThese forces tend toward the centers of the circles by prop. 2 and prop. 1,

corol. 2, and are to another as the versed sines of the arcs described in

aa. Ed. 1 has: "Let bodies B and b, revolving in the circumferences of circles BD and bd, de-

scribe arcs BD and bd in the same time. Since by their inherent force alone they would describe

tangents BC and be equal to these arcs, it is obvious that cen-

tripetal forces are the ones which continually draw the bod-

ies back from the tangents to the circumferences of the cir-

cles, and thus these forces are to each other in the first ratio

of the nascent spaces CD and cd, and they tend toward the

centers of the circles, by theor. 2, because the areas described

by the radii are supposed proportional to the times. [Newton

is using "first ratio" here in the special sense developed in

sec. 1 above, where he introduces the concept of "first" and

"ultimate" ratio.] Let figure t\b be similar to DCB and, by

lem. 5, line-element CD will be to line-element t(t as arc BD

to arc bt, and also, by lem. 11, the nascent line-element /^

will be to the nascent line-element dc as btl to bd1 and, from the equality of the ratios [or ex

aequo], the nascent line-element DC will be to the nascent line-element dc as BD x bt to bd2 or,



minimally small equal times, by prop. 1, corol. 4, that is, as the squares of

those arcs divided by the diameters of the circles, by lem. 7; and therefore,

since these arcs are as the arcs described in any equal times and the diameters

are as their radii, the forces will be as the squares of any arcs described in

the same time divided by the radii of the circles. Q.E.D.a

bCoROLLARY 1. °Since those arcs are as the velocities of the bodies, the

centripetal forces will be in a ratio compounded of the squared ratio of the

velocities directly and the simple ratio of the radii inversely.0

COROLLARY 2. dAnd since the periodic times are in a ratio compounded

of the ratio of the radii directly and the ratio of the velocities inversely, the

centripetal forces are in a ratio compounded of the ratio of the radii directly

and the squared ratio of the periodic times inversely.d

COROLLARY 3. Hence, if the periodic times are equal and therefore the

velocities are as the radii, the centripetal forces also will be as the radii; and

conversely.

bt bdl bt BD
what comes to the same thing, as BD x — to and thus (because the ratios — and are equal)

RfV A//2 ^^ ^^ ^^ ^^
as 11-to IT Q-E-D'"

Here, as in the very similar earlier formulation of De Motu and in a later handwritten revision of

ed. 1, the sentence specifying centrifugal forces has some ambiguity because the grammatical structure can

indicate that Newton is redefining these forces whereas the context shows that he is giving one of their

properties.

bb. Different versions of corols. 1, 2, 4, 5, and 6 exemplify interesting variations in basic mathematical

terminology, as is indicated in the following notes.

cc. In ed. 1 this corollary reads: "Hence the centripetal forces are as the squares of the velocities

divided by the radii of the circles." In manuscript revisions of ed. 1 "Hence" is deleted and the sentence

begins with an additional clause: "Whence, since the arcs described in the same time are directly as the

velocities and inversely as the periodic times." Ed. 2 reads: "Therefore, since those arcs are as the velocities

of the bodies, the centripetal forces are as the squares of the velocities divided by the radii of the circles;

that is, to express it as the geometers do, the forces are in a ratio compounded of the squared ratio of

the velocities directly and the simple ratio of the radii inversely." And then, in ed. 3, Newton decides to

eliminate the first formulation and express his result only "as the geometers do."

dd. In ed. 1 this corollary reads: "And inversely as the squares of the periodic times divided by the

radii so are these forces to one another. That is (to express it as the geometers do), these forces are in a

ratio compounded of the squared ratio of the velocities directly and the simple ratio of the radii inversely,

and also in a ratio compounded of the simple ratio of the radii directly and the squared ratio of the

periodic times inversely." The inversion in the first sentence suggests that originally it was not a full

sentence but a continuation from corol. 1, as comparison with the earlier De Motu shows to be true. Ed. 2

reads: "And since the periodic times are in a ratio compounded of the ratio of the radii directly and the

ratio of the velocities inversely, the centripetal forces are inversely as the squares of the periodic times

divided by the radii of the circles: that is, in a ratio compounded of the ratio of the radii directly and the

squared ratio of the periodic times inversely."
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COROLLARY 4. elf both the periodic times and the velocities are as the

square roots of the radii, the centripetal forces will be equal to one another;

and conversely.6

COROLLARY 5. flf the periodic times are as the radii, and therefore the

velocities are equal, the centripetal forces will be inversely as the radii; and

conversely/

COROLLARY 6. glf the periodic times are as the 3/2 powers of the radii,

and therefore the velocities are inversely as the square roots of the radii,

the centripetal forces will be inversely as the squares of the radii; and

conversely.13 g

hCoROLLARY 7. And universally, if the periodic time is as any power R"

of the radius R, and therefore the velocity is inversely as the power R""1 of

the radius, the centripetal force will be inversely as the power R2""1 of the

radius; and conversely.

COROLLARY 8. In cases in which bodies describe similar parts of any

figures that are similar and have centers similarly placed in those figures,

all the same proportions with respect to the times, velocities, and forces fol-

low from applying the foregoing demonstrations to these cases. And the

application is made by substituting the uniform description of areas for uni-

form motion, and by using the distances of bodies from the centers for

the radii.

COROLLARY 9. From the same demonstration it follows also that the arc

which a body, in revolving uniformly in a circle with a given centripetal

force, describes in any time is a mean proportional between the diameter

of the circle and the distance through which the body would fall under the

action of the same given force and in the same time.h

ee. In ed. 1 this corollary reads: "If the squares of the periodic times are as the radii, the centripetal

forces are equal, and the velocities are in the halved ratio of the radii, and vice versa."

ff. In ed. 1 this corollary reads: "If the squares of the periodic times are as the squares of the radii,

the centripetal forces are inversely as the radii, and the velocities are equal, and vice versa." After "of the

radii," handwritten revisions of ed. 1 add "that is, the times [are] as the radii."

gg. In ed. 1 this corollary reads: "If the squares of the periodic times are as the cubes of the radii,

the centripetal forces are inversely as the squares of the radii, but the velocities are in the halved ratio of
the radii, and vice versa."

hh. Ed. 1 lacks corols. 7 and 9, and in corol. 8, which is numbered 7, it lacks "in those figures" in
the first sentence and all of the second sentence.



Scholium 'The case of corol. 6 holds for the heavenly bodies (as our compatriots Wren,

Hooke, and Halley have also found out independently). Accordingly, I have

decided that in what follows I shall deal more fully with questions relating to

the centripetal forces that decrease as the squares of the distances from centers

[i.e., centripetal forces that vary inversely as the squares of the distances].

Further, with the help of the preceding proposition and its corollaries the

proportion of a centripetal force to any known force, such as that of gravity,

may also be determined. 'For if a body revolves by the force of its gravity in a

circle concentric with the earth, this gravity is its centripetal force. Moreover,

by prop. 4, corol. 9, both the time of one revolution and the arc described in

any given time are given from the descent of heavy bodies J And by propo-

sitions of this sort Huygens in his excellent treatise On the Pendulum Clocf(

compared the force of gravity with the centrifugal forces of revolving bodies.

This proposition can also be demonstrated in the following manner. In

any circle, suppose that a polygon of any number of sides is described. And

if a body moving with a given velocity along the sides of the polygon is

reflected from the circle at each of the angles of the polygon, the force with

which it impinges upon the circle at each reflection will be as its velocity; and

therefore the sum of the forces in a given time will be as that velocity and the

number of reflections jointly; that is (if the sides and angles of the polygon

are specified), as the length described in that given time and increased or de-

creased in the ratio of the length to the radius of the above-mentioned circle,

that is, as the square of that length divided by the radius. And, therefore,

ii. In the printer's manuscript of ed. 1 the scholium originally consisted of a single sentence, corre-

sponding to the first sentence of ed. 3 but without the parenthesis containing the three proper names.

A separate sheet in this manuscript and the printed text of ed. 1 contain the entire scholium, but in

the addition to the manuscript the names are listed as Wren, Halley, and Hooke, whereas in ed. 1 they

appear in the order retained in ed. 3. We cannot tell by whose authority Hooke's name was moved to a

position before Halley's, but we can infer that the alteration was made in proof (and so presumably by

Halley), since the handwritten addition to the manuscript as sent by Newton to Halley and by Halley to

the printer is unaltered. It is very probable that Halley put Hooke's name ahead of his own because he

did not want Hooke to be offended.
jj. Ed. 1 has: "For since the former force, in the time in which a body traverses arc BC, impels the

body through space CD, which at the very beginning of the motion is equal to the square of that arc BD

divided by the diameter of the circle, and since every body, by the same force continued always in the

same direction, describes spaces that are in the squared ratio of the times, that force, in the time in which

the revolving body describes any given arc, will cause the body as it advances directly forward to describe

a space equal to the square of that arc divided by the diameter of the circle and thus is to the force of

gravity as that space is to the space which a heavy body in falling describes in the same time."
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if the sides are diminished indefinitely, the polygon will coincide with the

circle, and the sum of the forces in a given time will be as the square of the

arc described in the given time divided by the radius. This is the centrifu-

gal force with which the body urges the circle; and the opposite force, with

which the circle continually repels the body toward the center, is equal to

this centrifugal force.1

Given, in any places, the velocity with which a body describes a given curve when Proposition 5

acted on by forces tending toward some common center, to find that center. Problem 1

Let the curve so described be touched in three points P, Q, and R by three

straight lines PT, TQV, and VR, meeting in T and V. Erect PA, QB, and

RC perpendicular to the tangents and

inversely proportional to the velocities

of the body at the points P, Q, and

R from which the perpendiculars are

erected—that is, so that PA is to QB

as the velocity at Q to the velocity at

P, and QB to RC as the velocity at R

to the velocity at Q. Through the ends

A, B, and C of the perpendiculars draw AD, DBE, and EC at right angles

to those perpendiculars, and let them meet in D and E; then TD and VE,

when drawn and produced, will meet in the required center S.

For the perpendiculars dropped from center S to tangents PT and QT

are (by prop. 1, corol. 1) inversely as the velocities of the body at points P

and Q, and therefore, by the construction, as the perpendiculars AP and BQ

directly, that is, as the perpendiculars dropped from point D to the tangents.

Hence it is easily gathered that points S, D, and T are in one straight line.

And, by a similar argument, the points S, E, and V are also in one straight

line; and therefore the center S is at the point where the straight lines TD

and VE meet. Q.E.D.

blf in a nonresisting space a body revolves in any orbit about an immobile center Proposition 6a

and describes any just-nascent arc in a minimally small time, and if the sagitta of Theorem 5

a. For a gloss on this proposition see the Guide, §10.8.

bb. In ed. 1 there is a different prop. 6, with its proof and single unnumbered corollary. In ed. 2

and ed. 3 the statement of this proposition becomes corol. 1 to the new prop. 6 and the single corollary
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the arc is understood to be drawn so as to bisect the chord and, when produced,

to pass through the center of forces, the centripetal force in the middle of the arc

will be as the sagitta directly and as the time twice [i.e., as the square of the time]

inversely.

For the sagitta in a given time is as the force (by prop. 1, corol. 4), and

if the time is increased in any ratio, then—because the arc is increased in the

same ratio—the sagitta is increased in that ratio squared (by lem. 11, corols. 2

and 3) and therefore is as the force once and the time twice [i.e., as the force

and the square of the time jointly]. Take away from both sides the squared

ratio of the time, and the force will become as the sagitta directly and as the

time twice [or as the square of the time] inversely. Q.E.D.

This proposition is also easily proved by lem. 10, corol. 4.

COROLLARY 1. If a body P, revolving

about a center S, describes the curved line

APQ, while the straight line ZPR touches

the curve at any point P; and QR, paral-

lel to distance SP, is drawn to the tangent

from any other point Q of the curve, and

QT is drawn perpendicular to that dis-
SP2 x QT2

tance SP; then the centripetal force will be inversely as the solid ,
QR

provided that the magnitude of that solid is always taken as that which it

has ultimately when the points P and Q come together. For QR is equal to

the sagitta of an arc that is twice the length of arc QP, with P being in the

middle; and twice the triangle SQP (or SP x QT) is proportional to the time

in which twice that arc is described and therefore can stand for the time.

COROLLARY 2. By the same argument the centripetal force is inversely as
SY2 x QP2

the solid , provided that SY is a perpendicular dropped from the
QR

becomes corol. 5. The proof in ed. 1 reads as follows: "For in the indefinitely small figure QRPT the

nascent line-element QR, if the time is given, is as the centripetal force (by law 2) and, if the force is

given, is as the square of the time (by lem. 10) and thus, if neither is given, is as the centripetal force

and the square of the time jointly, and thus the centripetal force is as the line-element QR directly and

the square of the time inversely. But the time is as the area SPQ, or its double SP X QT, that is, as SP

and QT jointly, and thus the centripetal force is as QR directly and SP2 times QT2 inversely, that is, as
SP2 x QT2

inversely. Q.E.D." (The figure for prop. 6 in ed. 1 is the same as in eds. 2 and 3, except
QR

that the line PS does not extend below the line SA, so that there is no point V.)
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center of forces to the tangent PR of the orbit. For the rectangles SY x QP

and SP x QT are equal.

COROLLARY 3. If the orbit APQ either is a circle or touches a circle

concentrically or cuts it concentrically—that is, if it makes with the circle an

angle of contact or of section which is the least possible—and has the same

curvature and the same radius of curvature at point P, and if the circle has a

chord drawn from the body through the center of forces, then the centripetal

QP2
force will be inversely as the solid SY x PV. For PV is equal to .

QR
COROLLARY 4. Under the same conditions [as corol. 3], the centripetal

force is directly as the square of the velocity and inversely as the chord. For,

by prop. 1, corol. 1, the velocity is inversely as the perpendicular SY.

COROLLARY 5. Hence, if there is given any curvilinear figure APQ and

on it there is given also point S, to which the centripetal force is continually

directed, the law of the centripetal force can be found by which any body

P, continually drawn away from a rectilinear course, will be kept in the

perimeter of that figure and will describe it as an orbit. That is, the solid

SP2 x QT2

or the solid SY2 x PV, inversely proportional to this force, is
QR

to be found by computation. We will give examples of this in the following

problems.b

Let a body revolve in the circumference of a circle; it is required to find the law Proposition 7

of the centripetal force tending toward any given point. Problem 2

Let VQPA be the circum-

ference of the circle, S the given

point toward which the force

tends as to its center, P the body

revolving in the circumference, Q

the place to which it will move

next, and PRZ the tangent of

the circle at the previous place.

Through point S draw chord PV;

and when the diameter VA of

the circle has been drawn, join

AP; and to SP drop perpendicular
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QT, which when produced meets the tangent PR at Z; and finally through

point Q draw LR parallel to SP and meeting both the circle at L and the

tangent PZ at R. Then because the triangles ZQR, ZTP, and VPA are

similar, RP2 (that is, QR x RL) will be to QT2 as AV2 to PV2. And therefore

QR x RL x PV2 .
is equal to QT . Multiply these equals by and, the

AV2
SP2 x PV3

points P and Q coming together, write PV for RL. Thus will

SP2 x QT2

become equal to . Therefore (by prop. 6, corols. 1 and 5), the
QR

SP2 x PV3

centripetal force is inversely as , that is (because AV2 is given),

inversely as the square of the distance or altitude SP and the cube of the

chord PV jointly. Q.E.I.

Another solution

Draw SY perpendicular to the tangent PR produced; then, because tri-

angles SYP and VPA are similar, AV will be to PV as SP to SY, and thus

SP x PV SP2 x PV3

will be equal to SY, and will be equal to SY2 x PV.

And therefore (by prop. 6, corols. 3 and 5), the centripetal force is inversely

SP2 x PV3

as ? t-hat is, because AV is given, inversely as SP2 X PV3. Q.E.I.

COROLLARY 1. Hence, if the given point S to which the centripetal force

always tends is located in the circumference of this circle, say at V, the

centripetal force will be inversely as the fifth power of the altitude SP.

COROLLARY 2. The force by which body

P revolves in the circle APTV around the

center of forces S is to the force by which the

same body P can revolve in the same circle

and in the same periodic time around any

other center of forces R as RP2 x SP to the

cube of the straight line SG, which is drawn

from the first center of forces S to the tangent

of the orbit PG and is parallel to the distance of the body from the second

center of forces. For by the construction of this proposition the first force is

SP2

QR

AV AV2

AV2
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to the second force as RP2 x PT3 to SP2 x PV3, that is, as SP x RP2 to

SP3 x PV3

-------, or (because the triangles PSG and TPV are similar) to SG3.

COROLLARY 3. The force by which body P revolves in any orbit around

the center of forces S is to the force by which the same body P can revolve

in the same orbit and in the same periodic time around any other center of

forces R as the solid SP x RP2—contained under the distance of the body

from the first center of forces S and the square of its distance from the second

center of forces R—to the cube of the straight line SG, which is drawn from

the first center of forces S to the tangent of the orbit PG and is parallel to

the distance RP of the body from the second center of forces. For the forces

in this orbit at any point of it P are the same as in a circle of the same

curvature.

Let a body move in the semicircle PQA; // is required to find the law of the Proposition 8

centripetal force for this effect, when the centripetal force tends toward a point S Problem 3

so distant that all the lines PS and RS drawn to it can be considered parallel.

From the center C of the semicircle

draw the semidiameter CA, intersecting

those parallels perpendicularly at M and

N, and join CP. Because triangles CPM,

PZT, and RZQ are similar, CP2 is to

PM2 as PR2 to QT2, and from the na-

ture of a circle PR2 is equal to the rect-

angle QR x (RN + QN), or, the points

P and Q coming together, to the rectangle QR x 2PM. Therefore, CP2 is

QT2 2PM3

to PM2 as QR x 2PM to QT2, and thus is equal to , and
v^lv v>l

— is equal to . Therefore (by prop. 6, corols. 1 and
2PM3 x SP2 /

5), the centripetal force is inversely as , that is I neglecting the
V

2SP2\ ,
determinate3 ratio I, inversely as PM . Q.E.I.

CP /

The same is easily gathered also from the preceding proposition.

a. CP is the radius of the semicircle, and SP may be considered constant.

PT3

QT2 x SP2 2PM3 x SP2

C P 2
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Scholium And by a not very different argument, a body will be found to move in an

ellipse, or even in a hyperbola or a parabola, under the action of a centripetal

force that is inversely as the cube of the ordinate tending toward an extremely

distant center of forces.

Proposition 9 Let a body revolve in a spiral PQS intersecting all its radii SP, SQ, ... , at a

Problem 4 given angle; it is required to find the law of the centripetal force tending toward

the center of the spiral.

Let the indefinitely small angle PSQ be given, and because all the angles

are given, the species [i.e., the ratio of all the parts] of the figure SPRQT

will be given/Therefore, the ratio is given, and is as QT, that is
QR QR

(because the species of the figure is given), as SP. Now change the angle PSQ

in any way, and the straight line QR subtending the angle of contact QPR
QT2

will be changed (by lem. 11) as the square of PR or QT. Therefore,
QR

QT2 x SP2

will remain the same as before, that is, as SP. And therefore is
QR

as SP3, and thus (by prop. 6, corols. 1 and 5) the centripetal force is inversely

as the cube of the distance SP. Q.E.I.

Another solution

The perpendicular SY dropped to the tangent, and the chord PV of the

circle cutting the spiral concentrically, are to the distance SP in given ratios;

and thus SP3 is as SY2 x PV, that is (by prop. 6, corols. 3 and 5), inversely

as the centripetal force.

Lemma 12 All the parallelograms described about any conjugate diameters of a given ellipse

or hyperbola are equal to one another.

This is evident from the Conies.

QT QT2
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Let a body revolve in an ellipse', it is required to find the law of the centripetal Proposition 10

force tending toward the center of the ellipse. Problem 5

Let CA and CB be the semiaxes of the ellipse, GP and DK other conju-

gate diameters, PF and QT perpendiculars to those diameters, Qv an ordi-

nate to diameter GP; then, if parallelogram Q^PR is completed, the rectan-

gle Pv x vG will (from the Conies*) be to Qv2 as PC2 to CD2, and (because

triangles QvT and PCF are similar) Qv2 is to QT2 as PC2 to PF2, and,

when these ratios are combined, the rectangle Pv x vG is to QT2 as PC2 to
OT2 CO2 x PF2

CD2 and PC2 to PF2; that is, vG is to —— as PC2 to ————. Write
Pv PC2

QR for Pv and (by lem. 12) BC x CA for CD x PF, and also (points P

and Q coming together) 2PC for vG, and, multiplying the extremes and

QT2 x PC2 „ ,
means together, ———— will become equal to ————. Therefore

2BC2 x CA2

(by prop. 6, corol. 5), the centripetal force is as ———— inversely, that
1 v>

is (because 2BC2 x CA2 is given), as inversely, that is, as the distance PC
1 v>

directly. Q.E.I.

a. Concerning this reference to "the Conies" see the Guide, §10.10.

2 B C 2  x  C A 2

Q R PC

1
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Another solution

On the straight line PG take a point u on the other side of point T,

so that Tu is equal to TV; then take uV such that it is to vG as DC2 is to

PC2. And since (from the Conies) Qz/2 is to Pv x vG as DC2 to PC2, Qz/2

will be equal to Pv X uV. Add the rectangle uP X Pv to both sides, and the

square of the chord of arc PQ will come out equal to the rectangle VP x Pv;

and therefore a circle that touches the conic section at P and passes through

point Q will also pass through point V. Let points P and Q come together,

and the ratio of uV to z/G, which is the same as the ratio of DC2 to PC2,

will become the ratio of PV to PG or PV to 2PC; and therefore PV will
2DC2

be equal to ——. Accordingly, the force under the action of which body P

2DC2

revolves in the ellipse will (by prop. 6, corol. 3) be as —— x PF inversely,
i. \^i

that is (because 2DC2 x PF2 is given), as PC directly. Q.E.I.

COROLLARY 1. Therefore, the force is as the distance of the body from

the center of the ellipse; and, conversely, if the force is as the distance, the

body will move in an ellipse having its center in the center of forces, or

perhaps it will move in a circle, into which an ellipse can be changed.

COROLLARY 2. And the periodic times of the revolutions made in all el-

lipses universally around the same center will be equal. For in similar ellipses

those times are equal (by prop. 4, corols. 3 and 8), while in ellipses having a

common major axis they are to one another as the total areas of the ellipses

directly and the particles of the areas described in the same time inversely;

that is, as the minor axes directly and the velocities of bodies in their princi-

pal vertices inversely; that is, as those minor axes directly and the ordinates

to the same point of the common axis inversely; and therefore (because of

the equality of the direct and inverse ratios) in the ratio of equality.

Scholium If the center of the ellipse goes off to infinity, so that the ellipse turns into

a parabola, the body will move in this parabola, and the force, now tending

toward an infinitely distant center, will prove to be uniform. This is Galileo's

theorem. And if (by changing the inclination of the cutting plane to the

cone) the parabolic section of the cone turns into a hyperbola, the body will

move in the perimeter of the hyperbola, with the centripetal force turned

into a centrifugal force. And just as in a circle or an ellipse, if the forces

PC
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tend toward a figure's center located in the abscissa, and if the ordinates are

increased or decreased in any given ratio or even if the angle of the inclination

of the ordinates to the abscissa is changed, these forces are always increased

or decreased in the ratio of the distances from the center, provided that the

periodic times remain equal; so also in all figures universally, if the ordinates

are increased or decreased in any given ratio or the angle of inclination of

the ordinates is changed in any way while the periodic time remains the

same, the forces tending toward any center located in the abscissa are, for

each individual ordinate, increased or decreased in the ratio of the distances

from the center.
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S E C T I O N S

The motion of bodies in eccentric conic sections

Proposition lla Let a body revolve in an ellipse; it is required to find the law of the centripetal

Problem 6 force tending toward a focus of the ellipse.

Let S be a focus of the ellipse. Draw SP cutting both the diameter DK

of the ellipse in E and the ordinate Qv in x, and complete the parallelogram

Q.rPR. It is evident that EP is equal to the semiaxis major AC because when

line HI is drawn parallel to EC from the other focus H of the ellipse, ES

and El are equal because CS and CH are equal; so that EP is the half-sum

of PS and PI, that is (because HI and PR are parallel and angles IPR and

HPZ are equal), the half-sum of PS and PH (which taken together equal

the whole axis 2AC). Drop QT perpendicular to SP, and if L denotes the

as QR to Pt/, that is, as PE or AC to PC; and L x Pz/ will be to Gv x z/P as

a. For a gloss on this proposition see the Guide, §10.9.

principal latus rectum of the ellipse ( or  ——), L x QR will be to L x Pv
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L to Gv, andb Gv x vP will be to Qv2 as PC2 to CD2; and (by lem. 7, corol.

2) the ratio of Qv2 to Q#2, with the points Q and P coming together, is the

ratio of equality; and Q*2 or Qv2 is to QT2 as EP2 to PF2, that is, as CA2 to

PF2 or (by lem. 12) as CD2 to CB2. And when all these ratios are combined,

L x QR will be to QT2 as AC x L x PC2 x CD2, or as 2CB2 x PC2 x CD2

to PC x Gv x CD2 x CB2, or as 2PC to Gv. But with the points Q and P

coming together, 2PC and Gv are equal. Therefore, L x QR and QT , which

SP2

are proportional to these, are also equal. Multiply these equals by , and
QR

SP x QT
L x SP2 will become equal to ——. Therefore (by prop. 6, corols. 1

QR
and 5) the centripetal force is inversely as L x SP2, that is, inversely as the

square of the distance SP. Q.E.I.

Another solution

The force which tends toward the center of the ellipse, and by which

body P can revolve in that ellipse, is (by prop. 10, corol. 1) as the distance CP

of the body from the center C of the ellipse; hence, if CE is drawn parallel to

the tangent PR of the ellipse and if CE and PS meet at E, then the force by

which the same body P can revolve around any other point S of the ellipse

PE3

will (by prop. 7, corol. 3) be as -; that is, if point S is a focus of the ellipse,
Ol

and therefore PE is given, this force will be inversely as SP2. Q.E.I.

This solution could be extended to the parabola and the hyperbola as

concisely as in prop. 10, but because of the importance of this problem and

its use in what follows, it will not be too troublesome to confirm each of

these other cases by a separate demonstration.

Let a body move in a hyperbola; it is required to find the law of the centripetal Proposition 12

force tending toward the focus of the figure. Problem 7

Let CA and CB be the semiaxes of the hyperbola, PG and KD other

conjugate diameters, PF a perpendicular to the diameter KD, and Qv an

ordinate to the diameter GP. Draw SP cutting diameter DK in E and ordi-

nate Qv in x, and complete the parallelogram QRP#. It is evident that EP is

b. This result is given in prop. 10 with reference to "the Conies"; see the Guide, §10.10.
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equal to the transverse semiaxis AC, because when line HI is drawn parallel

to EC from the other focus H of the hyperbola, ES and El are equal because

CS and CH are equal; so that EP is the half-difference of PS and PI, that

is (because IH and PR are parallel and the angles IPR and HPZ are equal),

of PS and PH, the difference of which equals the whole axis 2AC. Drop

QT perpendicular to SP. Then, if L denotes the principal latus rectum of
/ 2BC2\

the hyperbola I or I, L x QR will be to L x Vv as QR to Vv, or P*
V AC /

to P^, that is (because the triangles Pxv and PEC are similar), as PE to PC,

or AC to PC. L x Vv will also be to Gv x Pv as L to Gv\ and (from the

nature of conies) the rectangle Gv x vP will be to Qv2 as PC2 to CD2; and

(by lem. 7, corol. 2) the ratio of Qv2 to Q.r2, the points Q and P coming

together, comes to be the ratio of equality; and Q*2 or Qv2 is to AT2 as EP2

to PF2, that is, as CA2 to PF2, or (by lem. 12) as CD2 to CB2; and if all these

ratios are combined, L x QR will be to QT2 as AC x L x PC2 x CD2 or

2CB2 x PC2 x CD2 to PC x Gv x CD2 x CB2, or as 2PC to Gv. But, the points
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P and Q coming together, 2PC and Gv are equal. Therefore, L x QR and

QT2, which are proportional to these, are also equal. Multiply these equals by

SP2 SP2 x QT2

—, and L x SP2 will become equal to ————. Therefore (by prop. 6,
QR QR
corols. 1 and 5), the centripetal force is inversely as L x SP2, that is, inversely

as the square of the distance SP. Q.E.I.

Another solution

Find the force that tends from the center C of the hyperbola. This will

come out proportional to the distance CP. And hence (by prop. 7, corol. 3)

PE3

the force tending toward the focus S will be as , that is, because PE is

given, inversely as SP . Q.E.I.

It is shown in the same way that if this centripetal force is turned into a

centrifugal force, a body will move in the opposite branch of the hyperbola.

In a parabola the latus rectum belonging to any vertex is four times the distance Lemma 13

of that vertex from the focus of the figure.

This is evident from the Conies.

A perpendicular dropped from the focus of a parabola to its tangent is a mean Lemma 14

proportional between the distance of the focus from the point of contact and its

distance from the principal vertex of the figure.

For let AP be the parabola, S its focus, A the principal vertex, P the

point of contact, PO an ordinate to the principal diameter, PM a tangent

meeting the principal diameter in M,

and SN a perpendicular line from

the focus to the tangent. Join AN,

and because MS and SP, MN and

NP, and MA and AO are equal, the

straight lines AN and OP will be

parallel; and hence triangle SAN will

be right-angled at A and similar to the equal triangles SNM and SNP; there-

fore, PS is to SN as SN to SA. Q.E.D.

COROLLARY 1. PS2 is to SN2 as PS to SA.

COROLLARY 2. And because SA is given, SN2 is as PS.

in

S P 2
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COROLLARY 3. And the point where any tangent PM meets the straight

line SN, which is drawn from the focus perpendicular to that tangent, occurs

in the straight line AN, which touches the parabola in the principal vertex.

Proposition 13 Let a body move in the perimeter of a parabola; it is required to find the law of

Problem 8 the centripetal force tending toward a focus of the figure.

Let the construction be the same as in lem. 14, and let P be the body in

the perimeter of the parabola; from the place Q into which the body moves

next, draw QR parallel and QT perpendicular to SP and draw Qv parallel

to the tangent and meeting both the diameter PG in v and the distance SP

in x. Now, because triangles Pxv and SPM are similar and the sides SM

and SP of the one are equal, the sides Px or QR and Pv of the other are

equal. But from the Conies the square of the ordinate Qv is equal to the

rectangle contained by the latus rectum and the segment Pv of the diameter,

that is (by lem. 13), equal to the rectangle 4PS x Pv, or 4PS X QR, and, the

points P and Q coming together, the ratio of Qv to Qx (by lem. 7, corol.

2) becomes the ratio of equality. Therefore, in this case Qx2 is equal to the

rectangle 4PS x QR. Moreover (because triangles QxT and SPN are similar),

Q*2 is to QT2 as PS2 to SN2, that is (by lem. 14, corol. 1), as PS to SA,

that is, as 4PS x QR to 4SA x QR, and hence (by Euclid's Elements, book

SP2

5, prop. 9) QT2 and 4SA x QR are equal. Multiply these equals by ,
QR

SP2 x QT2

an(j wiJi become equal to SP2 x 4SA; and therefore (by prop.
QR

6, corols. 1 and 5) the centripetal force is inversely as SP2 X 4SA, that is,

because 4SA is given, inversely as the square of the distance SP. Q.E.I.
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COROLLARY 1. From the last three propositions it follows that if any

body P departs from the place P along any straight line PR with any velocity

whatever and is at the same time acted upon by a centripetal force that is

inversely proportional to the square of the distance of places from the center,

this body will move in some one of the conies having a focus in the center

of forces; and conversely. For if the focus and the point of contact and the

position of the tangent are given, a conic can be described that will have

a given curvature at that point. But the curvature is given from the given

centripetal force and velocity of the body; and two different orbits touching

each other cannot be described with the same centripetal force and the same

velocity.

COROLLARY 2. If the velocity with which the body departs from its place

P is such that the line-element PR can be described by it in some minimally

small particle of time, and if the centripetal force is able to move the same

body through space QR in that same time, this body will move in some

conic whose principal latus rectum is the quantity which ultimately

results when the line-elements PR and QR are diminished indefinitely. In

these corollaries I include the circle along with the ellipse, but not for the

case where the body descends straight down to a center.

If several bodies revolve about a common center and the centripetal force is in- Proposition 14

versely as the square of the distance of places from the center, I say that the Theorem 6

principal latera recta of the orbits are as the squares of the areas which the bodies

describe in the same time by radii drawn to the center.

F^nr (\\\i nrrm 1 3 rr»rr»1 7^ the latiiQ rertiim T ic e<nma1 tr» the riiian-
QT2

tity that results ultimately when points
QR

P and Q come together. But the minimally

small line QR is in a given time as the gen-

erating centripetal force, that is (by hypoth-
QT2

esis), inversely as SP2. Therefore, is as

QT2 x SP2, that is, the latus rectum L is as

the square of the area QT x SP. Q.E.D.

COROLLARY. Hence the total area of the ellipse and, proportional to it,

the rectangle contained by the axes is as the square root of the latus rectum

Q T 2

Q R

Q R
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and as the periodic time. For the total area is as the area QT x SP, which is

described in a given time, multiplied by the periodic time.

Proposition 15 Under the same suppositions as in prop. 14, I say that the squares of the periodic

Theorem 7 times in ellipses are as the cubes of the major axes.

For the minor axis is a mean proportional between the major axis and the

latus rectum, and thus the rectangle contained by the axes is as the square

root of the latus rectum and as the 3/2 power of the major axis. But this

rectangle (by prop. 14, corol.) is as the square root of the latus rectum and

as the periodic time. Take away from both sides [i.e., divide through by] the

square root of the latus rectum, and the result will be that the squares of the

periodic times are as the cubes of the major axes. Q.E.D.

COROLLARY. Therefore the periodic times in ellipses are the same as in

circles whose diameters are equal to the major axes of the ellipses.

Proposition 16 Under the same suppositions as in prop. 15, if straight lines are drawn to the bodies

Theorem 8 in such a way as to touch the orbits in the places where the bodies are located,

and if perpendiculars are dropped from the common focus to these tangents, I say

that the velocities of the bodies are inversely as the perpendiculars and directly as

the square roots of the principal latera recta.

From focus S to tangent PR drop per-

pendicular SY, and the velocity of body P

SY2

will be inversely as the square root of .
-L<

For this velocity is as the minimally small

arc PQ described in a given particle of time,

that is (by lem. 7), as the tangent PR, that

is—because the proportion of PR to QT is

SP x QT
as SP to SY—as , or as SY inversely and SP x QT directly; and

^ JL

SP X QT is as the area described in the given time, that is (by prop. 14), as

the square root of the latus rectum. Q.E.D.

COROLLARY 1. The principal latera recta are as the squares of the per-

pendiculars and as the squares of the velocities.

COROLLARY 2. The velocities of bodies at their greatest and least dis-

tances from the common focus are inversely as the distances and directly as
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the square roots of the principal latera recta. For the perpendiculars are now

the distances themselves.

COROLLARY 3. And thus the velocity in a conic, at the greatest or least

distance from the focus, is to the velocity with which the body would move

in a circle, at the same distance from the center, as the square root of the

principal latus rectum is to the square root of twice that distance.

COROLLARY 4. The velocities of bodies revolving in ellipses are, at their

mean distances from the common focus, the same as those of bodies revolving

in circles at the same distances, that is (by prop. 4, corol. 6), inversely as the

square roots of the distances. For the perpendiculars now coincide with the

semiaxes minor, and these are as mean proportionals between the distances

and the latera recta. Compound this ratio [of the semiaxes] inversely with

the square root of the ratio of the latera recta directly, and it will become the

square root of the ratio of the distances inversely.

COROLLARY 5. In the same figure, or even in different figures whose

principal latera recta are equal, the velocity of a body is inversely as the

perpendicular dropped from the focus to the tangent.

COROLLARY 6. In a parabola the velocity is inversely as the square root

of the distance of the body from the focus of the figure; in an ellipse the

velocity varies in a ratio that is greater than this, and in a hyperbola in a

ratio that is less. For (by lem. 14, corol. 2) the perpendicular dropped from

the focus to the tangent of a parabola is as the square root of that distance.

In a hyperbola the perpendicular is smaller, and in an ellipse greater, than in

this ratio.

COROLLARY 7. In a parabola the velocity of a body at any distance from

the focus is to the velocity of a body revolving in a circle at the same distance

from the center as the square root of the ratio of 2 to 1; in an ellipse it is

smaller and in a hyperbola greater than in this ratio. For by corol. 2 of this

proposition the velocity in the vertex of a parabola is in this ratio, and—by

corol. 6 of this proposition and by prop. 4, corol. 6—the same proportion is

kept at all distances. Hence, also, in a parabola the velocity everywhere is

equal to the velocity of a body revolving in a circle at half the distance; in

an ellipse it is smaller and in a hyperbola greater.

COROLLARY 8. The velocity of a body revolving in any conic is to the

velocity of a body revolving in a circle at a distance of half the principal latus
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rectum of the conic as that distance is to the perpendicular dropped from the

focus to the tangent of the conic. This is evident by corol. 5.

COROLLARY 9. Hence, since (by prop. 4, corol. 6) the velocity of a body

revolving in this circle is to the velocity of a body revolving in any other circle

inversely in the ratio of the square roots of the distances, it follows from the

equality of the ratios [or ex aequo] that the velocity of a body revolving in a

conic will have the same ratio to the velocity of a body revolving in a circle

at the same distance that a mean proportional between that common distance

and half of the principal latus rectum of the conic has to the perpendicular

dropped from the common focus to the tangent of the conic.

Proposition 17 Supposing that the centripetal force is inversely proportional to the square of the

Problem 9 distance of places from the center and that the absolute quantity of this force is

known, it is required to find the line which a body describes when going forth

from a given place with a given velocity along a given straight line.

Let the centripetal force tending toward a point S be such that a body p

revolves by its action in any given orbit pq, and let its velocity in the place p

be found out. Let body P go forth from place P along line PR with a given

velocity and thereupon be deflected from that line into a conic PQ under

the compulsion of the centripetal force. Therefore the straight line PR will

touch this conic at P. Let some straight line pr likewise touch the orbit pq

at /?, and if perpendiculars are understood to be dropped from S to these

tangents, the principal latus rectum of the conic will (by prop. 16, corol. 1)

be to the principal latus rectum of the orbit in a ratio compounded of the

squares of the perpendiculars and the squares of the velocities and thus is
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given. Let L be the latus rectum of the conic. The focus S of the conic is

also given. Let angle RPH be the complement of angle RPS to two right

angles [i.e., the supplement of angle RPS]; then the line PH, on which the

other focus H is located, will be given in position. Drop the perpendicular

SK to PH and understand the conjugate semiaxis BC to be erected; then

SP2 - 2KP x PH + PH2 = SH2 = 4CH2 = 4BH2 - 4BC2 = (SP + PH)2 -

L x (SP + PH) = SP2 + 2SP x PH + PH2 - L x (SP + PH). Add to each side

2(KP x PH) - SP2 - PH2 + L x (SP + PH), and L x (SP + PH) will become

= 2(SP x PH) + 2(KP x PH), or SP + PH will be to PH as 2SP + 2KP to L.

Hence PH is given in length as well as in position. Specifically, if the velocity

of the body at P is such that the latus rectum L is less than 2SP + 2KP, PH

will lie on the same side of the tangent PR as the line PS; and thus the figure

will be an ellipse and will be given from the given foci S and H and the

given principal axis SP + PH. But if the velocity of the body is so great that

the latus rectum L is equal to 2SP + 2KP, the length PH will be infinite; and

accordingly the figure will be a parabola having its axis SH parallel to the

line PK, and hence will be given. But if the body goes forth from its place

P with a still greater velocity, the length PH will have to be taken on the

other side of the tangent; and thus, since the tangent goes between the foci,

the figure will be a hyperbola having its principal axis equal to the difference

of the lines SP and PH, and hence will be given. For if the body in these

cases revolves in a conic thus found, it has been demonstrated in props. 11,

12, and 13 that the centripetal force will be inversely as the square of the

distance of the body from the center of forces S; and thus the line PQ is

correctly determined, which a body will describe under the action of such a

force, when it goes forth from a given place P with a given velocity along a

straight line PR given in position. Q.E.F.

COROLLARY 1. Hence in every conic, given the principal vertex D, the

latus rectum L, and a focus S, the other focus H is given when DH is taken

to DS as the latus rectum is to the difference between the latus rectum and

4DS. For the proportion SP + PH to PH as 2SP + 2KP to L in the case of

this corollary becomes DS + DH to DH as 4DS to L and, by separation [or

dividendo], becomes DS to DH as 4DS — L to L.

COROLLARY 2. Hence, given the velocity of a body in the principal vertex

D, the orbit will be found expeditiously, namely, by taking its latus rectum to

twice the distance DS as the square of the ratio of this given velocity to the
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velocity of a body revolving in a circle at a distance DS (by prop. 16, corol.

3), and then taking DH to DS as the latus rectum to the difference between

the latus rectum and 4DS.

COROLLARY 3. Hence also, if a body moves in any conic whatever and

is forced out of its orbit by any impulse, the orbit in which it will afterward

pursue its course can be found. For by compounding the body's own motion

with that motion which the impulse alone would generate, there will be

found the motion with which the body will go forth from the given place of

impulse along a straight line given in position.

COROLLARY 4. And if the body is continually perturbed by some force

impressed from outside, its trajectory can be determined very nearly, by not-

ing the changes which the force introduces at certain points and estimating

from the order of the sequence the continual changes at intermediate places.3

Scholium If a body P, under the action of a centripetal force tending toward any given

point R, moves in the perimeter of any

given conic whatever, whose center is

C, and the law of the centripetal force

is required, let CG be drawn parallel to

the radius RP and meeting the tangent

PG of the orbit at G; then the force

(by prop. 10, corol. 1 and schol.; and
CG3

prop. 7, corol. 3) will be as -.

a. The sense of corol. 4 is that Newton can determine "the changes which the [impressed] force

will make at certain points" and, by interpolation, estimate the changes continually made at intermediary

points.

RP2
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S E C T I O N 4 a

To find elliptical, parabolic, and hyperbolic orbits, given a focus

If from the two foci S and H of any ellipse or hyperbola two straight lines SV Lemma 15

and HV are inclined to any third point V, one of the lines HV being equal to the

principal axis of the figure, that is, to the axis on which the foci lie, and the other

line SV being bisected in T by TR perpendicular to it, then the perpendicular

TR will touch the conic at some point, and conversely, if TR touches the conic,

HV will be equal to the principal axis of the figure.

For let the perpendicular TR cut the straight

line HV (produced, if need be) in R; and join SR.

Because TS and TV are equal, the straight lines

SR and VR and the angles TRS and TRV will

be equal. Hence the point R will be on the conic, and the perpendicular TR

will touch that conic, and conversely. Q.E.D.

Given a focus and the principal axes, to describe elliptical and hyperbolic trajec- Proposition 18

tones that will pass through given points and will touch straight lines given in Problem 10

position.

Let S be the common focus of the figures, AB the length of the prin-

cipal axis of any trajectory, P a point through which the trajectory ought to

pass, and TR a straight line which it ought

to touch. Describe the circle HG with P as

center and AB — SP as radius if the orbit is

an ellipse, or AB + SP if it is a hyperbola.

Drop the perpendicular ST to the tangent

TR and produce ST to V so that TV is

equal to ST, and with center V and radius AB describe the circle FH. By

this method, whether two points P and p are given, or two tangents TR

and /r, or a point P and a tangent TR, two circles are to be described. Let

H be their common intersection, and with foci S and H and the given axis,

describe the trajectory. I say that the problem has been solved. For the tra-

jectory described (because PH + SP in an ellipse, or PH — SP in a hyperbola,

a. For Newton's statement of the reason for including sees. 4 and 5 in book 1, see book 3, prop. 41
(p. 901).
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is equal to the axis) will pass through point P and (by lem. 15) will touch

the straight line TR. And by the same argument, this trajectory will pass

through the two points P and p or will touch the two straight lines TR and

tr. Q.E.E

Proposition 19 To describe about a given focus a parabolic trajectory that will pass through given

Problem 11 points and will touch straight lines given in position.

Let S be the focus, P a given point, and TR a tangent of the trajectory

to be described. With center P and radius PS describe the circle FG. Drop

the perpendicular ST from the focus to the tangent

and produce ST to V, so that TV is equal to ST.

In the same manner, if a second point p is given,

a second circle fg is to be described; or if a second

tangent tr is given, or a second point v is to be found,

then the straight line IF is to be drawn touching the

two circles FG and fg if the two points P and p are

given, or passing through the two points V and v if

the two tangents TR and tr are given, or touching the circle FG and passing

through the point V if the point P and tangent TR are given. To FI drop

the perpendicular SI, and bisect it in K; and with axis SK and principal

vertex K describe a parabola. I say that the problem has been solved. For,

because SK and IK are equal, and SP and FP are equal, the parabola will

pass through point P; and (by lem. 14, corol. 3) because ST and TV are equal

and the angle STR is a right angle, the parabola will touch the straight line

TR. Q.E.F.

Proposition 20 To describe about a given focus any trajectory, given in species [i.e., of given

Problem 12 eccentricity], that will pass through given points and will touch straight lines

given in position.

CASE 1. Given a focus S, let it be required to describe a trajectory ABC

through two points B and C. Since the trajectory is given in species, the

ratio of the principal axis to the distance

between the foci will be given. Take KB

to BS in this ratio and also LC to CS.

With centers B and C and radii BK and

CL, describe two circles, and drop the
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perpendicular SG to the straight line KL, which touches those circles in K

and L, and cut SG in A and a so that GA is to AS, and Ga to aS, as

KB is to BS; and describe a trajectory with axis Aa and vertices A and a.

I say that the problem has been solved. For let H be the other focus of the

figure described, and since GA is to AS as Ga to #S, then by separation

[or dividendo] Ga — GA or Aa to aS — AS or SH will be in the same

ratio and thus in the ratio which the principal axis of the figure that was

to be described has to the distance between its foci; and therefore the figure

described is of the same species as the one that was to be described. And

since KB to BS and LC to CS are in the same ratio, this figure will pass

through the points B and C, as is manifest from the Conies.

CASE 2. Given a focus S, let it be required to describe a trajectory which

somewhere touches the two straight lines TR and tr. Drop the perpendiculars

ST and St from the focus to the tangents

and produce ST and St to V and z/, so

that TV and tv are equal to TS and tS.

Bisect Vv in O, and erect the indefinite

perpendicular OH, and cut the straight

line VS, indefinitely produced, in K and

^, so that VK is to KS and V^ to ^S as

the principal axis of the trajectory to be

described is to the distance between the foci. On the diameter K^ describe a

circle cutting OH in H; and with foci S and H and a principal axis equal to

VH, describe a trajectory. I say that the problem has been solved. For bisect

K^ in X, and draw HX, HS, HV, and H*. Since VK is to KS as V^ to

^S and, by composition [or componendo], as VK + V^ to KS + ^S and,

by separation [or dividendo], as V^ — VK to ^S — KS, that is, as 2VX to

2KX and 2KX to 2SX and thus as VX to HX and HX to SX, the triangles

VXH and HXS will be similar, and therefore VH will be to SH as VX to

XH and thus as VK to KS. Therefore the principal axis VH of the trajectory

which has been described has the same ratio to the distance SH between its

foci as the principal axis of the trajectory to be described has to the distance

between its foci and is therefore of the same species. Besides, since VH and

z/H are equal to the principal axis and since VS and z/S are perpendicularly

bisected by the straight lines TR and tr, it is clear (from lem. 15) that these

straight lines touch the trajectory described. Q.E.F.
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CASE 3. Given a focus S, let it be required to describe a trajectory which

will touch the straight line TR in a given point R. Drop the perpendicular

ST to the straight line TR and pro-

duce ST to V so that TV is equal to

ST. Join VR and cut the straight line

VS, indefinitely produced, in K and ^

so that VK is to SK and V^ to S^

as the principal axis of the ellipse to

be described is to the distance between

the foci; and after describing a circle on the diameter K^, cut the straight

line VR, produced, in H, and with foci S and H and a principal axis equal

to the straight line VH, describe a trajectory. I say that the problem has

been solved. For, from what has been demonstrated in case 2, it is evi-

dent that VH is to SH as VK to SK and thus as the principal axis of

the trajectory which was to be described to the distance between its foci, and

therefore the trajectory which was described is of the same species as the

one which was to be described, while it is evident from the Conies that

the straight line TR by which the angle VRS is bisected touches the trajec-

tory at point R. Q.E.F.

CASE 4. About a focus S let it be now required to describe a trajectory

APR which touches the straight line TR and passes through any point P

outside the given tangent and which is similar to the figure apb described

with principal axis ab and foci s and h. Drop the perpendicular ST to the

tangent TR and produce ST to V so that TV is equal to ST. Next make

122
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the angles hsq and shq equal to the angles VSP and SVP; and with center

q and a radius that is to ab as SP to VS, describe a circle cutting the figure

apb in p. Join sp and draw SH such that it is to sh as SP is to sp and

makes the angle PSH equal to the angle psh and the angle VSH equal to

the angle psq. Finally with foci S and H and with principal axis AB equaling

the distance VH, describe a conic. I say that the problem has been solved.

For if SV is drawn such that it is to sp as sh is to sq, and makes the angle

vsp equal to the angle hsq and the angle vsh equal to the angle psq, the

triangles svh and spq will be similar, and therefore vh will be to pq as sh

is to sq, that is (because the triangles VSP and bsq are similar), as VS is to

SP or ab to pq. Therefore vh and ab are equal. Furthermore, because the

triangles VSH and vsh are similar, VH is to SH as vh to sh\ that is, the axis

of the conic just described is to the distance between its foci as the axis ab

to the distance sh between the foci; and therefore the figure just described

is similar to the figure apb. But because the triangle PSH is similar to the

triangle psh, this figure passes through point P; and since VH is equal to

the axis of this figure and VS is bisected perpendicularly by the straight line

TR, the figure touches the straight line TR. Q.E.F.

From three given points to draw three slanted straight lines to a fourth point, Lemma 16

which is not given, when the differences between the lines either are given or

are nil.

CASE 1. Let the given points be A, B,

and C, and let the fourth point be Z, which

it is required to find; because of the given

difference of the lines AZ and BZ, point

Z will be located in a hyperbola whose foci

are A and B and whose principal axis is

the given difference. Let the axis be MN.

Take PM to MA as MN is to AB, and let

PR be erected perpendicular to AB and let

ZR be dropped perpendicular to PR; then,

from the nature of this hyperbola, ZR will

be to AZ as MN is to AB. By a similar process, point Z will be located in

another hyperbola, whose foci are A and C and whose principal axis is the

difference between AZ and CZ; and QS can be drawn perpendicular to AC,
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whereupon, if the normal ZS is dropped to QS from any point Z of this

hyperbola, ZS will be to AZ as the difference between AZ and CZ is to AC.

Therefore the ratios of ZR and ZS to AZ are given, and consequently the

ratio of ZR and ZS to each other is given; and thus if the straight lines RP

and SQ meet in T, and TZ and TA are drawn, the figure TRZS will be

given in species, and the straight line TZ, in which point Z is somewhere

located, will be given in position. The straight line TA will also be given, as

will also the angle ATZ; and because the ratios of AZ and TZ to ZS are

given, their ratio to each other will be given; and hence the triangle ATZ,

whose vertex is the point Z, will be given. Q.E.I.

CASE 2. If two of the three lines, say AZ and BZ, are equal, draw the

straight line TZ in such a way that it bisects the straight line AB; then find

the triangle ATZ as above.

CASE 3. If all three lines are equal, point Z will be located in the center

of a circle passing through points A, B, and C. Q.E.I.

The problem dealt with in this lemma is also solved by means of Apol-

lonius's book On Tangencies, restored by Viete.

Proposition 21 To describe about a given focus a trajectory that will pass through given points

Problem 13 and will touch straight lines given in position.

Let a focus S, a point P, and a tangent TR be given; the second focus

H is to be found. Drop the perpendicular ST to the tangent and produce

ST to Y so that TY is equal to ST, and YH

will be equal to the principal axis. Join SP

and also HP, and SP will be the difference

between HP and the principal axis. In this

way, if more tangents TR or more points P

are given, there will always be the same num-

ber of lines YH or PH, which can be drawn

from the said points Y or P to the focus H, and which either are equal to the

axes or differ from them by given lengths SP and so either are equal to one

another or have given differences; and hence, by lem. 16, that second focus

H is given. And once the foci are found, together with the length of the axis

(which length is either YH, or PH + SP if the trajectory is an ellipse, but

PH — SP if the trajectory is a hyperbola), the trajectory is found. Q.E.I.
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When the trajectory is a hyperbola, I do not include the opposite branch of Scholium

the hyperbola as part of the trajectory. For a body going on with an un-

interrupted motion cannot pass from one branch of a hyperbola into the

other.

The case in which three points are given is solved more speedily as

follows: Let the points B, C, and D be given. Join BC and also CD and

produce them to E and F so that EB is to EC as SB to SC and FC is to FD

as SC to SD. Draw EF, and drop the normals SG and BH to EF produced,

and on GS indefinitely produced take GA to AS and Ga to aS as HB is

to BS; then A will be the vertex and Aa the principal axis of the trajectory.

According as GA is greater than, equal to, or less than AS, this trajectory

will be an ellipse, a parabola, or a hyperbola, with point a in the first case

falling on the same side of the line GF as point A, in the second case going

off to infinity, in the third falling on the other side of the line GF. For if

the perpendiculars CI and DK are dropped to GF, 1C will be to HB as EC

to EB, that is, as SC to SB; and by alternation [or alternando], 1C will be

to SC as HB to SB or as GA to SA. And by a similar argument it will be

proved that KD is to SD in the same ratio. Therefore points B, C, and D

lie in a conic described about the focus S in such a way that all the straight

lines drawn from the focus S to the individual points of the conic are to the

perpendiculars dropped from the same points to the straight line GF in that

given ratio.

By a method that is not very different, the eminent geometer La Hire

presents a solution of this problem in his Conies, book 8, prop. 25.
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S E C T I O N S

To find orbits when neither focus is given

Lemma 17 If four straight lines PQ, PR, PS, and PT are drawn at given angles from any

point P of a given conic to the four indefinitely produced sides AB, CD, AC, and

DB of some quadrilateral ABDC inscribed in the conic, one line being drawn to

each side, the rectangle PQ x PR of the lines drawn to two opposite sides will

be in a given ratio to the rectangle PS x PT of the lines drawn to the other two

opposite sides.

CASE 1. Let us suppose first that the lines drawn to opposite sides are

parallel to either one of the other sides, say PQ and PR parallel to side

AC, and PS and PT parallel to side AB.

In addition, let two of the opposite sides,

say AC and BD, be parallel to each other.

Then the straight line which bisects those

parallel sides will be one of the diameters

of the conic and will bisect RQ also. Let

O be the point in which RQ is bisected,

and PO will be an ordinate to that di-

ameter. Produce PO to K so that OK is

equal to PO, and OK will be the ordinate on the opposite side of the diame-

ter. Therefore, since points A, B, P, and K are on the conic and PK cuts AB

at a given angle, the rectangle PQ x QK will be to the rectangle AQ x QB

in a given ratio (by book 3, props. 17, 19, 21, and 23, of the Conies of Apol-

lonius). But QK and PR are equal, inasmuch as they are differences of the

equal lines OK and OP, and OQ and OR, and hence also the rectangles

PQ x QK and PQ x PR are equal, and therefore the rectangle PQ x PR

is to the rectangle AQ x QB, that is, to the rectangle PS x PT, in a given

ratio. Q.E.D.

CASE 2. Let us suppose now that the opposite sides AC and BD of the

quadrilateral are not parallel. Draw Ed parallel to AC, meeting the straight

line ST in / and the conic in d. Join Cd cutting PQ in r\ and draw DM

parallel to PQ, cutting Cd in M and AB in N. Now, because triangles BT/

and DBN are similar, B/ or PQ is to T/ as DN to NB. So also Rr is to

AQ or PS as DM to AN. Therefore, multiplying the antecedents by the
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antecedents and the consequents by the

consequents, the rectangle PQ X Rr is

to the rectangle PS x Tt as the rectangle

ND x DM is to the rectangle AN x NB,

and (by case 1) as the rectangle PQ x

Pr is to the rectangle PS x Pr, and by

separation [or dividendo] as the rectangle

PQ x PR is to the rectangle PS x PT.

Q.E.D.

CASE 3. Let us suppose finally that the four lines PQ, PR, PS, and PT

are not parallel to the sides AC and AB, but are inclined to them in any

way whatever. In place of these lines draw

Pq and Pr parallel to AC, and P^ and Pt

parallel to AB; then because the angles of

the triangles PQq, PRr, PSs, and PT/ are

given, the ratios of PQ to Pq, PR to Pr,

PS to Ps, and PT to Pt will be given, and

thus the compound ratios of PQ x PR to

Pq x Pr, and PS x PT to Ps x Pt. But,

by what has been demonstrated above, the

ratio of Pq x Pr to Ps x Pt is given, and therefore also the ratio of PQ x PR

to PS x PT. Q.E.D.

With the same suppositions as in lem. 17, if the rectangle PQ x PR of the lines Lemma 18

drawn to two opposite sides of the quadrilateral is in a given ratio to the rectangle

PS x PT of the lines drawn to the other two sides, the point P from which the

lines are drawn will lie on a conic circumscribed about the quadrilateral.

Suppose that a conic is described through points A, B, C, D, and some

one of the infinite number of points P, say p\ I say that point P always

lies on this conic. If you deny it, join AP cutting this conic in some point

other than P, if possible, say in b. Therefore, if from these points p and

b the straight lines pq, pr, ps, pt and b\, bn, bf, bd are drawn at given

angles to the sides of the quadrilateral, then bf^ x bn will be to bf x bd

as (by lem. 17) pq X pr is to ps x pt, and as (by hypothesis) PQ X PR is

to PS x PT. Also, because the quadrilaterals b^Af and PQAS are simi-

lar, b\ is to bf as PQ to PS. And therefore, if the terms of the previous
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proportion are divided by the corre-

sponding terms of this one, bn will

be to bd as PR to PT. Therefore

the angles of the quadrilateral Dnbd

are respectively equal to the angles of

quadrilateral DRPT and the quadri-

laterals are similar, and consequently

their diagonals D£ and DP coincide.

And thus b falls upon the intersec-

tion of the straight lines AP and

DP and accordingly coincides with

point P. And therefore point P, wherever it is taken, falls on the assigned

conic. Q.E.D.

COROLLARY. Hence if three straight lines PQ, PR, and PS are drawn at

given angles from a common point P to three other straight lines given in

position, AB, CD, and AC, one line being drawn to each of the other lines,

and if the rectangle PQ x PR of two of the lines drawn is in a given ratio

to the square of the third line PS, then the point P, from which the straight

lines are drawn, will be located in a conic which touches lines AB and CD

at A and C, and conversely. For let line BD coincide with line AC, while

the position of the three lines AB, CD, and AC remains the same, and let

line PT also coincide with line PS; then the rectangle PS x PT will come to

be PS2, and the straight lines AB and CD, which formerly cut the curve in

points A and B, C and D, can no longer cut the curve in those points which

now coincide, but will only touch it.

Scholium The term "conic" [or "conic section"] is used in this lemma in an extended

sense, so as to include both a rectilinear section passing through the vertex

of a cone and a circular section parallel to the base. For if point p falls on a

straight line which joins points A and D or C and B, the conic section will

turn into twin straight lines, one of which is the straight line on which point

p falls and the other the straight line which joins the other two of the four

points.

If two opposite angles of the quadrilateral, taken together, are equal to

two right angles, and the four lines PQ, PR, PS, and PT are drawn to its



L E M M A 19 I29

sides either perpendicularly or at any

equal angles, and the rectangle PQ X

PR of two of the lines drawn is equal

to the rectangle PS x PT of the other

two, the conic will turn out to be a

circle. The same will happen if the

four lines are drawn at any angles and

the rectangle PQ x PR of two of the

lines drawn is to the rectangle PS x

PT of the other two as the rectangle

of the sines of the angles S and T, at

which the last two lines PS and PT are drawn, is to the rectangle of the

sines of the angles Q and R, at which the first two lines PQ and PR are

drawn.

In the other cases the locus of point P will be some one of the three

figures that are commonly called conic sections [or conies]. In place of the

quadrilateral ABCD, however, there can be substituted a quadrilateral whose

two opposite sides decussate each other as diagonals do. But also, one or two

of the four points A, B, C, and D can go off to infinity, and in this way the

sides of the figure which converge to these points can turn out to be parallel,

in which case the conic will pass through the other points and will go off to

infinity in the direction of the parallels.

To find a point P such that if four straight lines PQ, PR, PS, and PT are drawn Lemma 19

from it at given angles to four other straight lines AB, CD, AC, and BD given in

position, one line being drawn from the point P to each of the four other straight

lines, the rectangle PQ x PR of two of the lines drawn will be in a given ratio

to the rectangle PS x PT of the other two.

Let lines AB and CD, to which the two straight lines PQ and PR

containing one of the rectangles are drawn, meet the other two lines

given in position in the points A, B, C, and D. From some one of

them A draw any straight line AH, in which you wish point P to be

found. Let this line AH cut the opposite lines BD and CD—that is,

BD in H and CD in I—and because all the angles of the figure are

given, the ratios of PQ to PA and PA to PS, and consequently the ratio



130 B O O K I, S E C T I O N 5

of PQ to PS, will be given. On

eliminating this ratio of PQ to PS

from the given ratio of PQ x PR

to PS x PT, the ratio of PR to PT

will be given; and when the given

ratios of PI to PR and PT to PH

are combined, the ratio of PI to

PH, and thus the point P, will be

given. Q.E.I.

COROLLARY 1. Hence also a tangent can be drawn to any point D of

the locus of the infinite number of points P. For when points P and D come

together—that is, when AH is drawn through the point D—the chord PD

becomes a tangent. In this case the ultimate ratio of the vanishing lines IP

and PH will be found as above. Therefore, draw CF parallel to AD and

meeting BD in F and being cut in E in that ultimate ratio; then DE will

be a tangent, because CF and the vanishing line IH are parallel and are

similarly cut in E and P.

COROLLARY 2.a Hence also, the lo-

cus of all the points P can be deter-

mined. Through any one of the points

A, B, C, D—say A—draw the tan-

gent AE of the locus, and through any

other point B draw BF parallel to the

tangent and meeting the locus in F.

The point F will be found by means

of lem. 19. Bisect BF in G, and the

indefinite line AG, when drawn, will

be the position of the diameter to which BG and FG are ordinates. Let

this line AG meet the locus in H, and AH will be the diameter or la-

a. In the index prepared by Cotes for ed. 2 and retained in ed. 3, this corollary is keyed under

"Problematis" ("of the problem") and characterized as follows: "Geometrical synthesis of the classical

problem of four lines made famous by Pappus and attempted by Descartes through algebraic compu-

tation." As this description makes explicit, Newton's rejection of "an [analytical] computation" in favor

of "a geometrical synthesis" is directed at Descartes, who reduced the four-line locus to a curve defined

algebraically by an equation of the second degree. See The Mathematical Papers of Isaac Newton, ed. D. T.

Whiteside (Cambridge: Cambridge University Press, 1967-1981), 6:252-254 n. 35, 4:291 n. 17, 4:274-282,

esp. 274-276.
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tus transversum [i.e., transverse diameter] to which the latus rectum will be

as BG2 to AG x GH. If AG nowhere meets the locus, the line AH be-

ing indefinitely produced, the locus will be a parabola, and its latus rectum

BG2

corresponding to the diameter AG will be . But if AG does meet the
A.VJ

locus somewhere, the locus will be a hyperbola when points A and H are

situated on the same side of G, and an ellipse when G is between points

A and H, unless angle AGB happens to be a right angle and additionally

BG2 is equal to the rectangle AG x GH, in which case the locus will be

a circle.

And thus there is exhibited in this corollary not an [analytical] com-

putation but a geometrical synthesis, such as the ancients required, of the

classical problem of four lines, which was begun by Euclid and carried on

by Apollonius.

If any parallelogram ASPQ touches a conic in points A and P with two of its Lemma 20

opposite angles A and P, and if the sides AQ and AS, indefinitely produced, of

one of these angles meet the said conic in B and C, and if from the meeting

points B and C two straight lines BD and CD are drawn to any fifth point D

of the conic, meeting the other two indefinitely produced sides PS and PQ of the

parallelogram in T and R; then PR and PT, the parts cut off from the sides, will

always be to each other in a given ratio. And conversely, if the parts which are

cut off are to each other in a given ratio, the point D will touch a conic passing

through the four points A, B, C, and P.

CASE 1. Join BP and also

CP, and from point D draw two

straight lines DG and DE, the

first of which (DG) is parallel to

AB and meets PB, PQ, and CA

at H, I, and G, while the second

(DE) is parallel to AC and meets

PC, PS, and AB at F, K, and E;

then (by lem. 17) the rectangle

DExDF will be to the rectangle

DG x DH in a given ratio. But

PQ is to DE (or IQ) as PB to
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HB and thus as PT to DH; and by alternation [or alternando] PQ is to PT

as DE to DH. Additionally, PR is to DF as RC to DC and hence as (IG

or) PS to DG; and by alternation [or alternando] PR is to PS as DF to DG;

and when the ratios are combined, the rectangle PQ x PR comes to be to the

rectangle PS x PT as the rectangle DE x DF to the rectangle DG x DH,

and hence in a given ratio. But PQ and PS are given, and therefore the ratio

of PR to PT is given. Q.E.D.

CASE 2. But if PR and PT are supposed in a given ratio to each other,

then on working backward with a similar argument, it will follow that the

rectangle DE x DF is to the rectangle DG x DH in a given ratio and

consequently that point D (by lem. 18) lies in a conic passing through points

A, B, C, and P. Q.E.D.

COROLLARY 1. Hence, if BC is drawn cutting PQ in r, and if Pt is taken

on PT in the ratio to Pr which PT has to PR, Bt will be a tangent of the

conic at point B. For conceive of point D as coming together with point B

in such a way that, as chord BD vanishes, BT becomes a tangent; then CD

and BT will coincide with CB and Bt.

COROLLARY 2. And vice versa, if Bt is a tangent and BD and CD meet

in any point D of the conic, PR will be to PT as Pr to Pt. And conversely,

if PR is to PT as Pr to P/, BD and CD will meet in some point D of the

conic.

COROLLARY 3. One conic does not intersect another conic in more than

four points. For, if it can be done, let two conies pass through five points A,

B, C, P, and O, and let the straight line BD cut these conies in points D and

d, and let the straight line Cd cut PQ in q. Then PR is to PT as Pq to PT;

hence PR and Pq are equal to each other, contrary to the hypothesis.

Lemma 21 If two movable and infinite straight lines BM and CM, drawn through given

points B and C as poles, describe by their meeting-point M a third straight line

MN given in position, and if two other infinite straight lines BD and CD are

drawn, making given angles MBD and MCD with the first two lines at those

given points B and C; then I say that the point D, where these two lines BD and

CD meet, will describe a conic passing through points B and C. And conversely, if

the point D, where the straight lines BD and CD meet, describes a conic passing

through the given points B, C, and A, and the angle DBM is always equal to the
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given angle ABC, and the angle DCM is always equal to the given angle ACB;

then point M will lie in a straight line given in position.

For let point N be given in the straight line MN; and when the movable

point M falls on the stationary point N, let the movable point D fall on the

stationary point P. Draw CN, BN, CP, and BP, and from point P draw the

straight lines PT and PR meeting BD and CD in T and R and forming

an angle BPT equal to the given angle BNM, and an angle CPR equal

to the given angle CNM. Since therefore (by hypothesis) angles MBD and

NBP are equal, as are also angles MCD and NCP, take away the angles

NBD and NCD that are common, and there will remain the equal angles

NBM and PBT, NCM and PCR; and therefore triangles NBM and PBT

are similar, as are also triangles NCM and PCR. And therefore PT is to

NM as PB to NB, and PR is to NM as PC to NC. But the points B, C, N,

and P are stationary. Therefore, PT and PR have a given ratio to NM and

accordingly a given ratio to each other; and thus (by lem. 20) the point D,

the perpetual meeting-point of the movable straight lines BT and CR, lies

in a conic passing through points B, C, and P. Q.E.D.

And conversely, if the movable point D lies in a conic passing through

the given points B, C, and A; and if angle DBM is always equal to the given

angle ABC, and the angle DCM is always equal to the given angle ACB;

and if, when point D falls successively on any two stationary points p and
P of the conic, the movable point M falls successively on the two stationary
points n and N; then through these same points n and N draw the straight
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line flN, and this will be the perpetual locus of the movable point M. For,

if it can be done, let point M move in some curved line. Then the point D

will lie in a conic passing through the five points B, C, A, p, and P when

the point M perpetually lies in a curved line. But from what has already

been demonstrated, point D will also lie in a conic passing through the same

five points B, C, A, /?, and P when point M perpetually lies in a straight

line. Therefore, two conies will pass through the same five points, contrary to

lem. 20, corol. 3. Therefore, it is absurd to suppose the point M to be moving

in a curved line. Q.E.D.

Proposition 22 To describe a trajectory through five given points.

Problem 14 Let five points A, B, C, P, and D be given. From one of them A to any

other two B and C (let B and C be called poles), draw the straight lines AB

and AC, and parallel to these draw TPS and PRQ through the fourth point

P. Then from the two poles B and C draw two indefinite lines BDT and

CRD through the fifth point D, BDT meeting the line TPS (just drawn) in

T, and CRD meeting PRQ in R. Finally, draw the straight line tr parallel

to TR, and cut off from the straight lines PT and PR any straight lines Pt

and Pr proportional to PT and PR; then, if through their ends t and r and

poles B and C the lines B/ and Cr are drawn meeting in dy that point d will

be located in the required trajectory. For that point d (by lem. 20) lies in a

conic passing through the four points A, B, C, and P; and, the lines Rr and
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Tt vanishing, point d coincides with point D. Therefore, the conic section

passes through the five points A, B, C, P, and D. Q.E.D.

Another solution

Join any three of the given points, A, B, and C; and, rotating the angles

ABC and ACB, given in magnitude, around two of these points B and C as

poles, apply the legs BA and CA first to point D and then to point P, and

note the points M and N in which the other legs BL and CL cross in each
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case. Draw the indefinite straight line MN, and rotate these movable angles

around their poles B and C in such a way that the intersection of the legs BL

and CL or BM and CM (which now let be m) always falls on that indefinite

straight line MN; and the intersection of the legs BA and CA or BD and

CD (which now let be d) will trace out the required trajectory PADdB. For

point d (by lem. 21) will lie in a conic passing through points B and C: and

when point m approaches points L, M, and N, point d (by construction) will

approach points A, D, and P. Therefore a conic will be described passing

through the five points A, B, C, P, and D. Q.E.R

COROLLARY 1. Hence a straight line can readily be drawn that will touch

the required trajectory in any given point B. Let point d approach point B,

and the straight line Ed will come to be the required tangent.

COROLLARY 2. Hence also the centers, diameters, and latera recta of the

trajectories can be found, as in lem. 19, corol. 2.

Scholium The first of the constructions of prop. 22 will become a little simpler by

joining BP, producing it if necessary, and in it taking B/? to BP as PR is to

PT, and then drawing through

p the indefinite straight line pe

parallel to SPT and in it always

taking pe equal to Pr, and then

drawing the straight lines Be and

Cr meeting in d. For since the

ratios Pr to Pr, PR to PT, pB to

PB, and pe to Pt are equal, pe

and Pr will always be equal. By

this method the points of the trajectory are found most readily, unless you

prefer to describe the curve mechanically, as in the second construction.

Proposition 23 To describe a trajectory that will pass through four given points and touch a

Problem 15 straight line given in position.

CASE 1. Let the tangent HB, the point of contact B, and three other

points C, D, and P be given. Join BC, and by drawing PS parallel to the

straight line BH, and PQ parallel to the straight line BC, complete the par-

allelogram BSPQ. Draw BD cutting SP in T, and CD cutting PQ in R.

Finally, by drawing any line tr parallel to TR, cut off Pr and P/ from PQ
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and PS in such a way that Pr and Pr are proportional respectively to PR

and PT; then draw Cr and B/, and their meeting-point d (by lem. 20) will

always fall on the trajectory to be described.

Another solution

Revolve the angle CBH, given in magni-

tude, about the pole B, and revolve about the

pole C any rectilinear radius DC, produced

at both ends. Note the points M and N at

which the leg BC of the angle cuts that ra-

dius when the other leg BH meets the same

radius in points P and D. Then draw the in-

definite line MN, and let that radius CP or

CD and the leg BC of the angle meet perpet-

ually in the line MN; and the meeting-point

of the other leg BH with the radius will trace

out the required trajectory.

For if, in the constructions of prop. 22, point A approaches point B, lines

CA and CB will coincide, and line AB in its ultimate position will come

to be the tangent BH; and therefore the constructions set forth in prop. 22

will come to be the same as the constructions described in this proposition.

Therefore, the meeting-point of the leg BH with the radius will trace out a

conic passing through points C, D, and P and touching the straight line BH

in point B. Q.E.F.

CASE 2. Let four points B, C, D, and P be given, situated outside the

tangent HI. Join them in pairs by the lines BD and CP coming together in
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G and meeting the tangent in H and I. Cut the tangent in A in such a way

that HA is to IA as the rectangle of the mean proportional between CG

and GP and the mean proportional between BH and HD is to the rectangle

of the mean proportional between

DG and GB and the mean propor-

tional between PI and 1C, and A will

be the point of contact. For if HX,

parallel to the straight line PI, cuts

the trajectory in any points X and Y,

then (from the Conies] point A will

have to be so placed that HA2 is to

AI2 in a ratio compounded of the

ratio of the rectangle XH x H Y to the product BH x HD, or of the rectangle

CG x GP to the rectangle DG x GD, and of the ratio of the rectangle

BH x HD to the rectangle PI x 1C. And once the point of contact A has

been found, the trajectory will be described as in the first case. Q.E.F.

But point A can be taken either between points H and I or outside them,

and accordingly two trajectories can be described as solutions to the problem.

Proposition 24 To describe a trajectory that will pass through three given points and touch two

Problem 16 straight lines given in position.

Let tangents HI and KL and points B, C, and D be given. Through

any two of the points, B and D, draw an indefinite straight line BD

meeting the tangents in points H

and K. Then, likewise, through any

two other points, C and D, draw the

indefinite straight line CD meeting

the tangents in points I and L. Cut

BD in R and CD in S in such a way

that HR will be to KR as the mean

proportional between BH and HD

is to the mean proportional between

BK and KD and that IS will be to LS as the mean proportional between

CI and ID is to the mean proportional between CL and LD. And cut these

lines at will either between points K and H, and between I and L, or outside

them; then draw RS cutting the tangents in A and P, and A and P will be



L E M M A 22 139

the points of contact. For if A and P are supposed to be the points of contact

situated anywhere on the tangents, and if through any one of the points

H, I, K, and L, say I, situated in either tangent HI, the straight line IY is

drawn parallel to the other tangent KL and meeting the curve in X and Y;

and if in this line, IZ is taken so as to be the mean proportional between IX

and IY; then, from the Conies, the rectangle XI x IY or IZ2 will be to LP2

as the rectangle CI x ID to the rectangle CL x LD, that is (by construction),

as SI2 to SL2, and thus IZ will be to LP as SI to SL. Therefore the points

S, P, and Z lie in one straight line. Furthermore, since the tangents meet in

G, the rectangle XI x IY or IZ2 will be to IA2 (from the Conies) as GP2 to

GA2, and hence IZ will be to IA as GP to GA. Therefore, the points P, Z,

and A lie in one straight line, and thus the points S, P, and A are in one

straight line. And by the same argument it will be proved that the points

R, P, and A are in one straight line. Therefore the points of contact A and

P lie in the straight line RS. And once these points have been found, the

trajectory will be described as in prop. 23, case 1. Q.E.F.

In this proposition and in prop. 23, case 2, the constructions are the

same whether or not the straight line XY cuts the trajectory in X and Y,

and they do not depend on this cut. But once the constructions have been

demonstrated for the case in which the straight line does cut the trajectory,

the constructions for the case in which it does not cut the trajectory also can

be found; and for the sake of brevity I do not take the time to demonstrate

them further.

To change figures into other figures of the same class. Lemma 22

Let it be required to transmute any figure HGI. Draw at will two parallel

straight lines AO and BL cutting in A and B any third line AB, given in

position; and from any point G of the figure draw to the straight line AB

any other straight line GD parallel to OA. Then from some point O, given

in line OA, draw to the point D the straight line OD meeting BL at d,

and from the meeting-point erect the straight line dg containing any given

angle with the straight line BL and having the same ratio to Od that DG

has to OD; and g will be the point in the new figure hgi corresponding to

point G. By the same method, each of the points in the first figure will yield

a corresponding point in the new figure. Therefore, suppose point G to be

running through all the points in the first figure with a continual motion;
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then point g—also with a contin-

ual motion—will run through all

the points in the new figure and

will describe that figure. For the

sake of distinction let us call DG

the first ordinate, dg the new or-

dinate, AD the first abscissa, ad

the new abscissa, O the pole, OD

the abscinding radius, OA the first

ordinate radius, and Oa (which completes the parallelogram OAba) the new

ordinate radius.

I say now that if point G traces a straight line given in position, point

g will also trace a straight line given in position. If point G traces a conic,

point g will also trace a conic. I here count a circle among the conic sections.

Further, if point G traces a curved line of the third analytic order, point g

will likewise trace a curved line of the third order; and so on with curves of

higher orders, the two curved lines which points G and g trace will always

be of the same analytic order. For as ad is to OA, so are Od to OD, dg to
OA x AB

DG, and AB to AD; and hence AD is equal to , and DG is equal
ad

to . Now, if point G traces a straight line and consequently, in
ad

any equation which gives the relation between the abscissa AD and the

ordinate DG, the indeterminate lines AD and DG rise to only one dimen-

sion, and if in this equation is written for AD and

for DG, then the result will be a new equation in which the new abscissa

ad and the new ordinate dg will rise to only one dimension and which

therefore designates a straight line. But if AD and DG or either one of

them rose to two dimensions in the first equation, then ad and dg will

also rise to two dimensions in the second equation. And so on for three or

more dimensions. The indeterminates ad and dg in the second equation,

and AD and DG in the first, will always rise to the same number of dimen-

sions, and therefore the lines which points G and g trace are of the same

analytic order.

I say further that if some straight line touches a curved line in the first

figure, this straight line—after being transferred into the new figure in the

OA X dg

ad ad

OA X AB OA X dg
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same manner as the curve—will touch that curved line in the new figure;

and conversely. For if any two points of the curve approach each other and

come together in the first figure, the same points—after being transferred—

will approach each other and come together in the new figure; and thus the

straight lines by which these points are joined will simultaneously come to

be tangents of the curves in both figures.

The demonstrations of these assertions could have been composed in a

more geometrical style. But I choose to be brief.

Therefore, if one rectilinear figure is to be transmuted into another, it

is only necessary to transfer the intersections of the straight lines of which

it is made up and to draw straight lines through them in the new figure.

But if it is required to transmute a curvilinear figure, then it is necessary

to transfer the points, tangents, and other straight lines which determine

the curved line. Moreover, this lemma is useful for solving more difficult

problems by transmuting the proposed figures into simpler ones. For any

converging straight lines are transmuted into parallels by using for the first

ordinate radius any straight line that passes through the meeting-point of

the converging lines; and this is so because the meeting-point goes off this

way to infinity, and lines that nowhere meet are parallel. Moreover, after the

problem is solved in the new figure, if this figure is transmuted into the first

figure by the reverse procedure, the required solution will be obtained.

This lemma is useful also for solving solid problems. For whenever two

conies occur by whose intersection a problem can be solved, either one of them,

if it is a hyperbola or parabola, can be transmuted into an ellipse; then the

ellipse is easily changed into a circle. Likewise, in constructing plane problems,

a straight line and a conic are turned into a straight line and a circle.

To describe a trajectory that will pass through two given points and touch three Proposition 25

straight lines given in position. Problem 17

Through the meeting-point of any two tangents with each other and

the meeting-point of a third tangent with the straight line that passes

through two given points, draw an indefinite straight line; and using it

as the first ordinate radius, transmute the figure, by lem. 22, into a new

figure. In this figure the two tangents will come to be parallel to each

other, and the third tangent will become parallel to the straight line passing

through the two given points. Let hi and \l be the two parallel tangents,
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it{ the third tangent, and hi the

straight line parallel to it, passing

through the points a and b through

which the conic ought to pass in

this new figure and completing the

parallelogram hifyj. Cut the straight

lines hi, H^, and f^l in c, d, and e, so

that he is to the square root of the

rectangle ah x hb, and ic is to id,

and /^e is to f(d, as the sum of the

straight lines hi and f(l is to the sum of three lines, of which the first is

the straight line i\ and the other two are the square roots of the rectangles

ah X hb and al X Ib', then e, d, and e will be the points of contact. For,

from the Conies, he2 is to the rectangle ah x hb in the same ratio as ic2 to

id2, and \e2 to %d2, and el2 to the rectangle al x /£; and therefore he is

to the square root of ah x hb, and iV is to id, and ^ is to I(d, and ^/ is

to the square root of al x Ib, as the square root of that ratio and hence,

by composition [or componendo], in the given ratio of all the antecedents

hi and f^l to all the consequents, which are the square root of the rectangle

ah x hb, the straight line if(, and the square root of the rectangle al x Ib [i.e.,

in the given ratio of hi + kj to *J(ah x hb) + H{ + *J(al x Ib)]. Therefore,

the points of contact e, d, and e in the new figure are obtained from that

given ratio. By the reverse procedure of lem. 22, transfer these points to

the first figure, and there (by prop. 22) the trajectory will be described.

Q.E.F.

But according as points a and b lie between points h and / or lie outside

them, points e, d, and e must be taken either between points h, i, ^, and /,

or outside them. If either one of the points a and b falls between points h

and /, and the other outside, the problem is impossible.

Proposition 26 To describe a trajectory that will pass through a given point and touch four straight

Problem 18 lines given in position.

From the common intersection of any two of the tangents to the com-

mon intersection of the other two, draw an indefinite straight line; then,

using this as the first ordinate radius, transmute the figure (by lem. 22) into
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a new figure; then the tangents, which

formerly met in the first ordinate radius,

will now come to be parallel in pairs. Let

those tangents be hi and ^/, H{ and hi,

forming the parallelogram hi^l. And let

p be the point in this new figure corre-

sponding to the given point in the first

figure. Through the center O of the fig-

ure draw pq, and, on Oq being equal to

O/?, q will be another point through which the conic must pass in this new

figure. By the reverse procedure of lem. 22 transfer this point to the first

figure, and in that figure two points will be obtained through which the tra-

jectory is to be described. And that trajectory can be described through these

same points by prop. 25.

If two straight lines AC and BD, given in position, terminate at the given points Lemma 23

A and B and have a given ratio to each other; and if the straight line CD, by

which the indeterminate points C and D are joined, is cut in K in a given ratio;

I say that point K will be located in a straight line given in position.

For let the straight lines AC and BD meet in E, and in BE take BG

to AE as BD is to AC, and let FD

always be equal to the given line

EG; then, by construction, EC will

be to GD, that is, to EF, as AC to

BD, and thus in a given ratio, and

therefore the species of the triangle

EFC will be given. Cut CF in L

so that CL is to CF in the ratio of

CK to CD; then, because that ratio

is given, the species of the triangle EFL will also be given, and accordingly

point L will be located in the straight line EL given in position. Join LK,

and the triangles CLK and CFD will be similar; and because FD and the

ratio of LK to FD are given, LK will be given. Take EH equal to LK, and

ELKH will always be a parallelogram. Therefore, point K is located in the

side HK, given in position, of the parallelogram. Q.E.D.
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COROLLARY. Because the species of the figure EFLC is given, the three

straight lines EF, EL, and EC (that is, GD, HK, and EC) have given ratios

to one another.

Lemma 24 If three straight lines, two of which are parallel and given in position, touch any

conic section, I say that the semidiameter of the section which is parallel to the

two given parallel lines is a mean proportional between their segments that are

intercepted between the points of contact and the third tangent.

Let AF and GB be two paral-

lel lines touching the conic ADB

in A and B; and let EF be a third

straight line touching the conic in

I and meeting the first tangents

in F and G; and let CD be the

semidiameter of the figure paral-

lel to the tangents; then I say that

AF, CD, and BG are continually

proportional.

For if the conjugate diameters AB and DM meet the tangent FG in E

and H and cut each other in C, and the parallelogram IKCL is completed,

then, from the nature of conies, EC will be to CA as CA to CL, and by

separation [or dividendo] as EC - CA to CA - CL, or EA to AL; and by

composition [or componendo], EA will be to EA + AL or EL as EC to

EC + CA or EB; and therefore, because the triangles EAF, ELI, ECH, and

EBG are similar, AF will be to LI as CH to BG. And likewise, from the

nature of conies, LI or CK is to CD as CD to CH and therefore from the

equality of the ratios in inordinate proportion [or ex aequo perturbate] AF

will be to CD as CD to BG. Q.E.D.

COROLLARY 1. Hence if two tangents FG and PQ meet the parallel

tangents AF and BG in F and G, P and Q, and cut each other in O;

then, from the equality of the ratios in inordinate proportion [or ex aequo

perturbate] AF will be to BQ as AP to BG, and by separation [or dividendo]

as FP to GQ, and thus as FO to OG.

COROLLARY 2. Hence also, two straight lines PG and FQ drawn through

points P and G, F and Q, will meet in the straight line ACB that passes

through the center of the figure and the points of contact A and B.
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If the indefinitely produced four sides of a parallelogram touch any conic and are Lemma 25

intercepted at any fifth tangent, and if the intercepts of any two conterminous sides

are taf$en so as to be terminated at opposite corners of the parallelogram; I say

that either intercept is to the side from which it is intercepted as the part of the

other conterminous side between the point of contact and the third side is to the

other intercept.

Let the four sides ML, IK, KL, and MI of the parallelogram MLIK

touch the conic section in A, B, C, and D, and let a fifth tangent FQ cut

those sides in F, Q, H, and E; and take the intercepts ME and KQ of the

sides MI and KI or the intercepts KH and MF of the sides KL and ML; I

say that ME is to MI as BK to KQ, and KH is to KL as AM to MF. For

by lem. 24, corol. 1, ME is to El as AM or BK to BQ, and by composition

[or cornponendo] ME is to MI as BK to KQ. Q.E.D. Likewise, KH is to

HL as BK or AM to AF, and by separation [or dividendo] KH is to KL as

AM to MF. Q.E.D.

COROLLARY 1. Hence if the parallelogram IKLM is given, described

about a given conic, the rectangle KQ x ME will be given, as will also the

rectangle KH x MF equal to it. For those rectangles are equal because the

triangles KQH and MFE are similar.

COROLLARY 2. And if a sixth tangent eq is drawn meeting the tangents

KI and MI at q and <?, the rectangle KQ x ME will be equal to the rectangle

Kg x M^, and KQ will be to Me as K.q to ME, and by separation [or

dividendo] as Qg to Re.
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COROLLARY 3. Hence also, if Eg and eQ are drawn and bisected and

a straight line is drawn through the points of bisection, this line will pass

through the center of the conic. For since Qq is to E^ as KQ to M^, the

same straight line will (by lem. 23) pass through the middle of all the lines

Eg, ^Q, and MK, and the middle of the straight line MK is the center of

the section.

Proposition 27 To describe a trajectory that will touch five straight lines given in position.

Problem 19 Let the tangents ABG, BCF, GCD, FDE, and EA be given in position.

Bisect in M and N the diagonals AF and BE of the quadrilateral figure

ABFE formed by any four of those tangents, and (by lem. 25, corol. 3) the

straight line MN drawn through the points of bisection will pass through

the center of the trajectory. Again, bisect in P and Q the diagonals (as I

call them) BD and GF of the quadrilateral figure BGFD formed by any

other four tangents; then the straight line PQ drawn through the points of

bisection will pass through the center of the trajectory. Therefore, the center

will be given at the meeting-point of the bisecting lines. Let that center be

O. Parallel to any tangent BC draw KL at such a distance that the center

O is located midway between the parallels, and KL so drawn will touch the

trajectory to be described. Let this line KL cut any other two tangents GCD

and FDE in L and K. Through the meeting-points C and K, F and L, of

these nonparallel tangents CL and FK with the parallels CF and KL, draw
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CK and FL meeting in R, and the straight line OR, drawn and produced,

will cut the parallel tangents CF and KL in the points of contact. This is

evident by lem. 24, corol. 2. By the same method other points of contact may

be found, and then finally the trajectory may be described by the construction

of prop. 22. Q.E.F.

number of other points and tangents are

given equally distant from the center on

its other side. Moreover, an asymptote

is to be regarded as a tangent, and its

infinitely distant end-point (if it is per-

missible to speak of it in this way) as

a point of contact. Imagine the point of

contact of any tangent to go off to infin-

ity, and the tangent will be turned into

an asymptote, and the constructions of the preceding problems will be turned

into constructions in which the asymptote is given.

After the trajectory has been described, its axes and foci may be found

by the following method. In the construction and figure of lem. 21 make the

legs BP and CP (by the meeting of which the trajectory was there described)

of the mobile angles PBN and PCN be parallel to each other, and let them—

while maintaining that position—revolve about their poles B and C in that

figure. Meanwhile, let the circle BGKC be described by the point K or ^

in which the other legs CN and BN of those angles meet. Let the center of

this circle be O. From this center to the ruler MN, at which those other legs

CN and BN met while the trajectory was being described, drop the normal

OH meeting the circle in K and L. And when those other legs CK and BK

meet in K, the point that is nearer to the ruler, the first legs CP and BP

will be parallel to the major axis and perpendicular to the minor axis; and

the converse will occur if the same legs meet in the farther point L. Hence,

if the center of a trajectory is given, the axes will be given. And when these

are given, the foci are apparent.

What has gone before includes problems in which either the centers or Scholium

the asymptotes of trajectories are given. For when points and tangents are

given together with the center, the same
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But the squares of the axes are to

each other as KH to LH, and hence

it is easy to describe a trajectory,

given in species, through four given

points. For if two of the given points

constitute the poles C and B, a third

will give the mobile angles PCK and

PBK; and once these are given, the

circle BGKC can be described. Then,

because the species of the trajectory

is given, the ratio of OH to OK, and thus OH itself, will be given. With

center O and radius OH describe another circle, and the straight line that

touches this circle and passes through the meeting-point of the legs CK and

BK when the first legs CP and BP meet in the fourth given point will be

that ruler MN by means of which the trajectory will be described. Hence, in

turn, a quadrilateral given in species can (except in certain impossible cases)

also be inscribed in any given conic.

There are also other lemmas by means of which trajectories given in

species can be described if points and tangents are given. An example: if a

straight line, drawn through any point given in position, intersects a given

conic in two points, and the distance between the intersections is bisected,

the point of bisection will lie on another conic that is of the same species as

the first one and that has its axes parallel to the axes of the first. But I pass

quickly to what is more useful.

Lemma 26 To place the three corners of a triangle given in species and magnitude on three

straight lines given in position and not all parallel, with one corner on each line.
aThree indefinite straight lines, AB, AC, and BC, are given in position,

and it is required to place triangle DEF in such a way that its corner D

touches line AB, corner E line AC, and corner F line BC.a On DE, DF, and

aa. In all three editions, and in the preliminary manuscripts (see The Mathematical Papers of Isaac

Newton, ed. D. T. Whiteside [Cambridge: Cambridge University Press, 1967-1981], 6:287), there is a minor

discrepancy between the text and the accompanying diagram. The text refers (in the opening sentence) to

"triangle DEF," but the corresponding diagram would indicate that this should rather be "triangle def "

and similarly "corner [lit. vertex] D" and "corner F" should be respectively "corner d" and "corner /."

At the end of the paragraph, however, and in the succeeding paragraph, Newton introduces lowercase

letters a, b, c for the triangle abc.
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EF describe three segments DRE,

DGF, and EMF of circles, contain-

ing angles equal respectively to an-

gles BAG, ABC, and ACB. And

let these segments be described on

those sides of the lines DE, DF,

and EF that will make the letters

DRED go round in the same or-

der as the letters BACB, the letters

DGFD in the same order as ABCA, and the letters EMFE in the same

order as ACBA; then complete these segments into full circles. Let the first

two circles cut each other in G, and let their centers be P and Q. Joining GP

and also PQ, take Ga to AB as GP is to PQ; and with center G and radius

Ga describe a circle that cuts the first circle DGE in a. Join <zD cutting the

second circle DFG in £, and #E cutting the third circle EMF in c. And

now the figure ABCdef may be constructed similar and equal to the figure

#£cDEF. This being done, the problem is solved.

For draw Fc meeting <zD in #, and join #G, £G, QG, QD, and PD.

By construction, angle E<zD is equal to angle CAB, and angle acF is equal

to angle ACB, and thus the angles of triangle anc are respectively equal to

the angles of triangle ABC. Therefore angle anc or F/?D is equal to angle
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ABC, and hence equal to angle F£D; and therefore point n coincides with

point b. Further, angle GPQ, which is half of angle GPD at the center, is

equal to angle GaD at the circumference; and angle GQP, which is half of

angle GQD at the center, is equal to the supplement of angle G£D at the

circumference, and hence equal to angle Gba; and therefore triangles GPQ

and Gab are similar, and Ga is to ab as GP to PQ, that is (by construction),

as Ga to AB. And thus ab and AB are equal; and therefore triangles abc

and ABC, which we have just proved to be similar, are also equal. Hence,

since in addition the corners D, E, and F of the triangle DEF touch the

sides ab, ac, and be respectively of the triangle abc, the figure ABCdef can

be completed similar and equal to the figure abcDEF', and by its completion

the problem will be solved. Q.E.F.

COROLLARY. Hence a straight line can be drawn whose parts given in

length will lie between three straight lines given in position. Imagine that

triangle DEF, with point D approaching side EF and sides DE and DF

placed in a straight line, is changed into a straight line whose given part DE

is to be placed between the straight lines AB and AC given in position and

whose given part DF is to be placed between the straight lines AB and BC

given in position; then, by applying the preceding construction to this case,

the problem will be solved.

Proposition 28 To describe a trajectory given in species and magnitude, whose given parts will lie

Problem 20 between three straight lines given in position.

Let it be required to describe a trajectory that is similar and equal to the

curved line DEF and that will be cut by three straight lines AB, AC, and

BC, given in position, into parts similar and equal to the given parts DE and

EF of this curved line.

Draw the straight lines DE, EF, and DF, place one of the corners D, E,

and F of this triangle DEF on each of those straight lines given in position
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(by lem. 26); then about the triangle describe a trajectory similar and equal

to the curve DEF. Q.E.F.

To describe a quadrilateral given in species, whose corners will lie on four straight Lemma 27

lines, given in position, which are not all parallel and do not all converge to a

common point—each corner lying on a separate line.

Let four straight lines ABC, AD, BD, and CE

be given in position, the first of which cuts the sec-

ond in A, cuts the third in B, and cuts the fourth

in C; let it be required to describe a quadrilateral

fghi which is similar to the quadrilateral FGHI

and whose corner f, equal to the given corner F,

touches the straight line ABC, and whose other cor-

ners g, h, and /, equal to the other given corners

G, H, and I, touch the other lines AD, BD, and

CE respectively. Join FH, and on FG, FH, and

FI describe three segments of circles, FSG, FTH,

and FVI, of which the first (FSG) contains an

angle equal to angle BAD, the sec-

ond (FTH) contains an angle equal

to angle CBD, and the third (FVI)

contains an angle equal to angle

ACE. The segments ought, more-

over, to be described on those sides

of the lines FG, FH, and FI that

will make the circular order of the

letters FSGF the same as that of

the letters BADB, and will make

the letters FTHF go round in the

same order as CBDC, and the letters

FVIF in the same order as ACEA.

Complete the segments into whole circles, and let P be the center of the

first circle FSG, and Q the center of the second circle FTH. Join PQ and

produce it in both directions; and in it take QR in the ratio to PQ that BC

has to AB. And take QR on the side of the point Q which makes the order

of the letters P, Q, and R the same as that of the letters A, B, and C; and
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then with center R and radius RF describe a fourth circle FNc cutting the

third circle FVI in c. Join Fc cutting the first circle in a and the second

in b. Draw aG, £H, and cl, and the figure ABCfghi can be constructed

similar to the figure abcFGHl. When this is done, the quadrilateral fghi

will be the very one which it was required to construct.

For let the first two circles FSG and FTH intersect each other in K.

Join PK, QK, RK, aK, £K, and <rK, and produce QP to L. The angles

F#K, F£K, and FcK at the circumferences are halves of the angles FPK,

FQK, and FRK at the centers, and hence are equal to the halves LPK,

LQK, and LRK of these angles. Therefore, the angles of figure PQRK are

respectively equal to the angles of figure abcY^, and the figures are similar;

and hence ab is to be as PQ to QR, that is, as AB to BC. Besides, the angles

/Ag, /BA, and fCi are (by construction) equal to the angles F#G, F£H,

and Pel. Therefore, ABCfghi, a figure similar to the figure <z£<:FGHI, can

be completed. When this is done, the quadrilateral fghi will be constructed

similar to the quadrilateral FGHI with its corners /, g, A, and / touching

the straight lines ABC, AD, BD, and CE. Q.E.F.

COROLLARY. Hence a straight line can be drawn whose parts, intercepted

in a given order between four straight lines given in position, will have a

given proportion to one another. Increase the angles FGH and GHI until

the straight lines FG, GH, and HI lie in a single straight line; and by

constructing the problem in this case, a straight line fghi will be drawn,

whose parts fg, gh, and A / , intercepted between four straight lines given in

position, AB and AD, AD and BD, BD and CE, will be to one another as

the lines FG, GH, and HI, and will keep the same order with respect to one

another. But the same thing is done more expeditiously as follows.

Produce AB to K and BD to L so that BK is to AB as HI to GH, and

DL to BD as GI to FG; and join KL meeting the straight line CE in i.

Produce /L to M, so that LM is to /L as GH to HI; and draw MQ parallel

to LB and meeting the straight line AD in g, and draw gi cutting AB and

BD in / and h. I declare it done.

For let Mg cut the straight line AB in Q, and let AD cut the straight line

KL in S, and draw AP parallel to BD and meeting /L in P; then gM will be

to LA (gi to hi, Mi to Li, GI to HI, AK to BK) and AP to BL in the same

ratio. Cut DL in R so that DL is to RL in that same ratio; then, because

gS to gM, AS to AP, and DS to DL are proportional, from the equality of
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the ratios [or ex aequo] ASa will be to BL, and DS to RL, as gS to LA, and

by a mixture of operations BL — RL will be to LA — BL as AS — DS to

gS - AS. That is, BR will be to Eh as AD to Ag and thus as BD to gQ.

And by alternation [or alternando] BR is to BD as Bh to gQ or as fh to fg.

But by construction the line BL was cut in D and R in the same ratio as the

line FI in G and H; and therefore BR is to BD as FH to FG. As a result,

fh is to fg as FH to FG. Therefore, since gi is also to hi as M/ to L/, that

is, as GI to HI, it is evident that the lines FI and fi are similarly cut in g

and h, G and H. Q.E.F.

In the construction of this corollary, after LK is drawn cutting CE in /',

it is possible to produce /E to V, so that EV is to E/ as FH to HI, and then

to draw Vf parallel to BD. It comes to the same thing if with center / and

radius IH a circle is described cutting BD in X, and if /X is produced to Y,

so that / Y is equal to IF, and if Y/" is drawn parallel to BD.

Other solutions of this problem were devised some time ago by Wren

and Wallis.

To describe a trajectory, given in species, which four straight lines given in position Proposition 29

will cut into parts given in order, species, and proportion. Problem 21

Let it be required to describe a trajectory that is similar to the curved

line FGHI and whose parts, similar and proportional to the parts FG, GH,

and HI of the curve, are intercepted between the straight lines AB and AD,
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AD and BD, BD and CE given in position, the first part between the first

two lines, the second between the second two lines, and the third between

the third two lines. After drawing the straight lines FG, GH, HI, and FI,

describe (by lem. 27) a quadrilateral fghi that is similar to the quadrilateral

FGHI and whose corners /, g, h, and i touch the straight lines AB, AD, BD,

and CE, given in position, each corner touching a separate line in the order

stated. Then about this quadrilateral describe a trajectory exactly similar to

the curved line FGHI.

Scholium This problem can also be constructed as follows. After joining FG, GH, HI,

and FI, produce GF to V, join FH and IG, and make angles CAK and

DAL equal to angles FGH and VFH. Let AK and AL meet the straight

line BD in K and L, and from these points draw KM and LN, of which

KM makes an angle AKM equal to angle GHI and is to AK as HI is to

GH, and LN makes an angle ALN equal to angle FHI and is to AL as HI

to FH. And draw AK, KM, AL, and LN on those sides of the lines AD,

AK, and AL that will make the letters CAKMC, ALKA, and DALND go

round in the same order as the letters FGHIF; and draw MN meeting the

straight line CE in /. Make angle /EP equal to the angle IGF, and let PE
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be to Ei as FG to GI; and through P draw PQ/, which with the straight
line ADE contains the angle PQE equal to the angle FIG and meets the

straight line AB in /; and join ft. Now draw PE and PQ on those sides of
the lines CE and PE that will make the circular order of the letters PE/'P

and PEQP the same as that of the letters FGHIF; and then, if on line // a
quadrilateral fghi similar to the quadrilateral FGHI is constructed (with the

same order of the letters), and a trajectory given in species is circumscribed
about the quadrilateral, the problem will be solved.

So much for the finding of orbits. It remains to determine the motions

of bodies in the orbits that have been found.
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S E C T I O N 6

To find motions in given orbits

Proposition 30 If a body moves in a given parabolic trajectory, to find its position at an assigned

Problem 22 time.

Let S be the focus and A the principal vertex of the parabola, and

let 4AS x M be equal to the parabolic area APS to be cut off, which ei-

ther was described by the radius SP after the

body's departure from the vertex or is to be de-

scribed by that radius before the body's arrival

at the vertex. The quantity of that area to be

cut off can be found from the time, which is

proportional to it. Bisect AS in G, and erect

the perpendicular GH equal to 3M, and a cir-

cle described with center H and radius HS will

cut the parabola in the required place P. For,

when the perpendicular PO has been dropped to the axis and PH has

been drawn, then AG2 + GH2 (= HP2 = (AO - AG)2 + (PO - GH)2) =

AO2 + PO2 - 2GA x AO - 2GH x PO + AG2 + GH2. Hence 2GH x PO
AO x PO2

(= AO2 + PO2 - 2GA x AO) = AO2 + 3/
4AS

and if all the terms are divided by 3PO and multiplied by 2 AS, it will result

that 4/3GH x AS I = VfcAO x PO + l/2AS x PO = x PO =
4AO - 3SO x PO = area (APO - SPO) 1 = area APS. But GH was 3M,
and hence VsGH x AS is 4AS x M. Therefore, the area APS that was cut

off is equal to the area 4AS x M that was to be cut off. Q.E.D.

COROLLARY 1. Hence GH is to AS as the time in which the body de-

scribed the arc AP is to the time in which it described the arc between the

vertex A and a perpendicular erected from the focus S to the axis.

COROLLARY 2. And if a circle ASP continually passes through the mov-

ing body P, the velocity of point H is to the velocity which the body had

at the vertex A as 3 to 8, and thus the line GH is also in this ratio to the

straight line which the body could describe in the time of its motion from A

to P with the velocity which it had at the vertex A.
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COROLLARY 3. Hence also, conversely, the time can be found in which

the body described any assigned arc AP. Join AP and at its midpoint erect a

perpendicular meeting the straight line GH in H.

No oval figure exists whose area, cut off by straight lines at will, can in general be Lemma 28

found by means of equations finite in the number of their terms and dimensions.

Within an oval let any point be given about which, as a pole, a straight

line revolves continually with uniform motion, and meanwhile in that straight

line let a mobile point go out from the pole and proceed always with the ve-

locity that is as the square of that straight line within the oval. By this motion

that point will describe a spiral with an infinite number of gyrations. Now, if

the portion of the area of the oval cut off by that straight line can be found

by means of a finite equation, there will also be found by the same equation

the distance of the point from the pole, a distance that is proportional to this

area, and thus all the points of the spiral can be found by means of a finite

equation; and therefore the intersection of any straight line, given in position,

with the spiral can also be found by means of a finite equation. But every

infinitely produced straight line cuts a spiral in an infinite number of points;

and the equation by which some intersection of two lines [i.e., curved lines] is

found gives all their intersections by as many roots [as there are intersections]

and therefore rises to as many dimensions as there are intersections. Since two

circles cut each other in two points, one intersection will not be found except

by an equation of two dimensions, by which the other intersection may also

be found. Since two conies can have four intersections, one of these intersec-

tions cannot generally be found except by an equation of four dimensions, by

means of which all four of the intersections may be found simultaneously. For

if those intersections are sought separately, since they all have the same law

and condition, the computation will be the same in each case, and therefore

the conclusion will always be the same, which accordingly must comprehend

all the intersections together and give them indiscriminately. Hence also the

intersections of conies and of curves of the third power, because there can be

six such intersections, are found simultaneously by equations of six dimen-

sions; and intersections of two curves of the third power, since there can be

nine of them, are found simultaneously by equations of nine dimensions. If

this did not happen necessarily, all solid problems might be reduced to plane

problems, and higher than solid to solid problems. I am speaking here of
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curves with a power that cannot be reduced. For if the equation by which

the curve is defined can be reduced to a lower power, the curve will not be

simple, but will be compounded of two or more curves whose intersections

can be found separately by different computations. In the same way, the pairs

of intersections of straight lines and conies are always found by equations of

two dimensions; the trios of intersections of straight lines and of irreducible

curves of the third power, by equations of three dimensions; the quartets of

intersections of straight lines and of irreducible curves of the fourth power,

by equations of four dimensions; and so on indefinitely. Therefore, the in-

tersections of a straight line and of a spiral, which are infinite in number

(since this curve is simple and cannot be reduced to more curves), require

equations infinite in the number of their dimensions and roots, by which all

the intersections can be given simultaneously. For they all have the same law

and computation. For if a perpendicular is dropped from the pole to the in-

tersecting straight line, and the perpendicular, together with the intersecting

straight line, revolves about the pole, the intersections of the spiral will pass

into one another, and the one that was the first or the nearest to the pole will

be the second after one revolution, and after two revolutions will be third,

and so on; nor will the equation change in the meantime except insofar as

there is a change in the magnitude of the quantities by which the position

of the intersecting line is determined. Hence, since the quantities return to

their initial magnitudes after each revolution, the equation will return to its

original form, and thus one and the same equation will give all the intersec-

tions and therefore will have an infinite number of roots by which all of the

intersections can be given. Therefore, it is not possible for the intersection

of a straight line and a spiral to be found universally by means of a finite

equation, and on that account no oval exists whose area, cut off by prescribed

straight lines, can universally be found by such an equation.

By the same argument, if the distance between the pole and the point by

which the spiral is described is taken proportional to the intercepted part of

the perimeter of the oval, it can be proved that the length of the perimeter

cannot universally be found by a finite equation. aBut here I am speaking of

ovals that are not touched by conjugate figures extending out to infinity.3

aa. This concluding sentence appeared for the first time in ed. 2.
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COROLLARY. Hence the area of an ellipse that is described by a radius

drawn from a focus to a moving body cannot be found, from a time that has

been given, by means of a finite equation, and therefore cannot be determined

by describing geometrically rational curves. I call curves "geometrically ratio-

nal" when all of their points can be determined by lengths defined by equa-

tions, that is, by involved ratios of lengths, and I call the other curves (such

as spirals, quadratrices, and cycloids) "geometrically irrational." For lengths

that are or are not as integer to integer (as in book 10 of the Elements] are

arithmetically rational or irrational. Therefore I cut off an area of an ellipse

proportional to the time by a geometrically irrational curve as follows.

If a body moves in a given elliptical trajectory, to find its position at an assigned Proposition 31a

time. Problem 23

Let A be the principal vertex of the ellipse APB, S a focus, and O the

center, and let P be the position of the body. Produce OA to G so that OG

is to OA as OA to OS. Erect the perpendicular GH, and with center O and

radius OG describe the circle GEF; then, along the rule GH as a base let

the wheel GEF move progressively forward, revolving about its own axis,

while the point A on the wheel describes the cycloid ALL When this has

been done, take GK so that it will have the same ratio to the perimeter

GEFG of the wheel as the time in which the body, in moving forward from

A, described the arc AP has to the time of one revolution in the ellipse.

a. In the index prepared by Cotes for ed. 2 and retained in ed. 3, this proposition is keyed under

"Problematis" ("of the problem") and characterized as follows: "Solution of Kepler's problem by the cycloid
and by approximations."
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Erect the perpendicular KL meeting the cycloid in L; and when LP has

been drawn parallel to KG, it will meet the ellipse in the required position

P of the body.

For with center O and radius OA describe the semicircle AQB, and let

LP, produced if necessary, meet the arc AQ in Q, and join SQ and also OQ.

Let OQ meet the arc EFG in F, and drop the perpendicular SR to OQ.

Area APS is as area AQS, that is, as the difference between sector OQA

and triangle OQS, or as the difference of the rectangles ViOQ X AQ and

1/2OQ x SR, that is, because VzOQ is given, as the difference between the

arc AQ and the straight line SR, and hence (because of the equality of the

given ratios of SR to the sine of the arc AQ, OS to OA, OA to OG, AQ to

GF, and so by separation [or dividendo] AQ — SR to GF — the sine of the

arc AQ) as GK, the difference between the arc GF and the sine of the arc

AQ. Q.E.D.

Scholium But the description of this curve is difficult; hence it is preferable to use a

solution that is approximately true. Find a certain angle B that is to the angle

of 57.29578° (which an arc equal to the radius subtends) as the distance SH

between the foci is to the diameter AB of the ellipse; and also find a certain

length L that is to the radius in the inverse of that ratio. Once these have

been found, the problem can thereupon be solved by the following analysis.

By any construction, or by making any kind of guess, find the body's

position P very close to its true position p. Then, when the ordinate PR has

been dropped to the axis of the ellipse, the ordinate RQ of the circumscribed

circle AQB will be given from the proportion of the diameters of the ellipse,

where the ordinate RQ is the sine of the angle AOQ (AO being the radius)



S C H O L I U M l6l

and cuts the ellipse in P. It is sufficient to find this angle AOQ approximately

by a rough numerical calculation. Also find the angle proportional to the time,

that is, the angle that is to four right angles as the time in which the body

described the arc Ap is to the time of one revolution in the ellipse. Let that

angle be N. Then take an angle D that will be to angle B as the sine of

angle AOQ is to the radius, and also take an angle E that will be to angle

N — AOQ + D as the length L is to this same length L minus the cosine of

angle AOQ when that angle is less than a right angle, but plus that cosine

when it is greater. Next take an angle F that will be to angle B as the sine

of angle AOQ + E is to the radius, and take an angle G that will be to angle

N — AOQ — E + F as the length L is to this same length minus the cosine

of angle AOQ + E when that angle is less than a right angle, and plus that

cosine when it is greater. Thirdly, take an angle H that will be to angle B as

the sine of angle AOQ + E + G is to the radius, and take an angle I that will

be to angle N — AOQ — E — G + H as the length L is to this same length L

minus the cosine of angle AOQ + E + G when that angle is less than a right

angle, but plus that cosine when it is greater. And so on indefinitely. Finally

take angle AOq equal to angle AOQ + E + G +1 + • • • . And from its cosine

Or and ordinate pr, which is to its sine qr as the minor axis of the ellipse

to the major axis, the body's corrected place p will be found. If the angle

N — AOQ + D is negative, the + sign of E must everywhere be changed

to —, and the — sign to +. The same is to be understood of the signs of G

and I when the angles N - AOQ - E + F and N - AOQ - E - G + H

come out negative. But the infinite series AOQ + E + G + H converges

so very rapidly that it is scarcely ever necessary to proceed further than the

second term E. And the computation is based on this theorem: that the area

APS is as the difference between the arc AQ and the straight line dropped

perpendicularly from the focus S to the radius OQ.

In the case of a hyperbola the problem is solved by a similar computation.

Let O be its center, A a vertex, S a focus, and OK an asymptote. Find

the quantity of the area to be cut off, which is proportional to the time.

Let this quantity be A, and guess the position of the straight line SP that

cuts off an approximately true area APS. Join OP, and from A and P to

the asymptote OK draw AI and PK parallel to the second asymptote; then

a table of logarithms will give the area AIKP and the equal area OPA,
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which, on being subtracted from the

triangle OPS, will leave the cut-off

area APS. Divide 2APS - 2A or

2A — 2APS (twice the difference of

the area A to be cut off and the

cut-off area APS) by the line SN,

which is perpendicular to the tan-

gent TP from the focus S, so as to

obtain the length of the chord PQ.

Now, draw the chord PQ between

A and P if the cut-off area APS is greater than the area A to be cut off, but

otherwise draw PQ on the opposite side of point P, and then the point Q

will be a more accurate position of the body. And by continually repeating

the computation, a more and more accurate position will be obtained.

And by these computations a general analytical solution of the problem is

achieved. But the particular computation that follows is more suitable for as-

tronomical purposes. Let AO, OB, and OD

be the semiaxes of the ellipse, and L its la-

tus rectum, and D the difference between

the semiaxis minor OD and half of the la-

tus rectum V^L; find an angle Y, whose

sine is to the radius as the rectangle of that

difference D and the half-sum of the axes

AO + OD is to the square of the major axis

AB; and find also an angle Z, whose sine is to the radius as twice the rectan-

gle of the distance SH between the foci and the difference D is to three times

the square of the semiaxis major AO. Once these angles have been found,

the position of the body will thereupon be determined as follows: Take an

angle T proportional to the time in which arc BP was described, or equal to

the mean motion (as it is called); and an angle V (the first equation of the

mean motion) that shall be to angle Y (the greatest first equation) as the sine

of twice angle T is to the radius; and an angle X (the second equation) that

shall be to angle Z (the greatest second equation) as the cube of the sine of

angle T is to the cube of the radius. Then take the angle BHP (the equated

mean motion) equal either to the sum T + X + V of angles T, X, and V if

angle T is less than a right angle, or to the difference T + X — V if angle
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T is greater than a right angle and less than two right angles; and if HP

meets the ellipse in P, SP (when drawn) will cut off the area BSP very nearly

proportional to the time.

This technique seems expeditious enough because it is sufficient to find

the first two or three figures of the extremely small angles V and X (reckoned

in seconds, if it is agreeable). This technique is also accurate enough for

the theory of the planets. For even in the orbit of Mars itself, whose greatest

equation of the center is ten degrees, the error will hardly exceed one second.

But when the angle BHP of equated mean motion has been found, the angle

BSP of true motion and the distance SP are readily found by the very well

known method.

So much for the motion of bodies in curved lines. It can happen, however,

that a moving body descends straight down or rises straight up; and I now

go on to expound what relates to motions of this sort.
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S E C T I O N ?

The rectilinear ascent and descent of bodies

Proposition 32a Given a centripetal force inversely proportional to the square of the distance of

Problem 24 places from its center, to determine the spaces which a body in falling straight

down describes in given times.

CASE 1. If the body does not fall perpendicularly, it will (by prop. 13,

corol. 1) describe some conic having a focus coinciding with the center of

forces. Let the conic be ARPB, and its focus S. And

first, if the figure is an ellipse, on its major axis AB

describe the semicircle ADB, and let the straight line

DPC pass through the falling body and be perpen-

dicular to the axis; and when DS and PS have been

drawn, area ASD will be proportional to area ASP

and thus also to the time. Keeping the axis AB fixed,

continually diminish the width of the ellipse, and area

ASD will always remain proportional to the time. Di-

minish that width indefinitely; and, the orbit APB

now coming to coincide with the axis AB, and the

focus S with the terminus B of the axis, the body will descend in the straight

line AC, and the area ABD will become proportional to the time. Therefore

the space AC will be given, which the body in

falling perpendicularly from place A describes in a

given time, provided that area ABD is taken pro-

portional to that time and the perpendicular DC

is dropped from point D to the straight line AB.

Q.E.I.

CASE 2. If the figure RPB is a hyperbola,

describe the rectangular hyperbola BED on the

same principal diameter AB; and since the areas

CSP, CB/P, and SP/B are respectively to the ar-

eas CSD, CBED, and SDEB in the given ratio of

the distances CP and CD, and the area SP/B is

a. For a gloss on this proposition see the Guide, §10.11.
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proportional to the time in which body P will move through the arc P/B,

the area SDEB will also be proportional to that same time. Diminish the

latus rectum of the hyperbola RPB indefinitely, keeping the principal diam-

eter fixed, and the arc PB will coincide with the straight line CB, and the

focus S with the vertex B, and the straight line SD with the straight line

BD. Accordingly, the area BDEB will be proportional to the time in which

body C, falling straight down, describes the line CB. Q.E.I.

CASE 3. And by a similar argument, let the

figure RPB be a parabola and let another parabola

BED with the same principal vertex B be described

and always remain given, while the latus rectum of

the first parabola (in whose perimeter the body P

moves) is diminished and reduced to nothing, so

that this parabola comes to coincide with the line

CB; then the parabolic segment BDEB will become proportional to the time

in which the body P or C will descend to the center S or B. Q.E.I.

Supposing what has already been found, I say that the velocity of a falling body Proposition 33

at any place C is to the velocity of a body describing a circle with center B and Theorem 9

radius BC as the square root of the ratio of AC (the distance of the body from the

further vertex A of the circle or rectangular hyperbola) to VzAB (the principal

semidiameter of the figure).

Bisect AB, the common diameter of both figures RPB and DEB, in

O; and draw the straight line PT touching the figure RPB in P and also

cutting the common diameter AB (produced if necessary) in T, and let SY be

perpendicular to this straight line and BQ be perpendicular to this diameter,

and take the latus rectum of the figure RPB to be L. It is established by

prop. 16, corol. 9, that at any place P the velocity of a body moving about

the center S in the [curved] line RPB is to the velocity of a body describing a

circle about the same center with the radius SP as the square root of the ratio

of the rectangle ViL x SP to SY2. But from the Conies, AC x CB is to CP2

2CP2 x AO
as 2AO to L, and thus is equal to L. Therefore, the velocities

are to each other as the square root or the ratio or to SY .
 AC x CB

Further, from the Conies, CO is to BO as BO to TO, and by composition [or

componendo] or by separation [or dividendo], as CB to BT. Hence, either

A C  X  C B C P 2  X  A O  X  S P
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by separation or by composition, BO =p CO becomes to BO as CT to BT,

CP2 x AO x SP
that is, AC to AO as CP to BQ; and hence is equal to

AC> X L>ij

BQ2 x AC x SP
————. Now let the width CP of the figure RPB be diminished

AvJ X JL>V->

indefinitely, in such a way that point P comes to coincide with point C and

point S with point B and the line SP with the line BC and the line SY with

the line BQ; then the velocity of the body now descending straight down in

the line CB will become to the velocity of a body describing a circle with

r BQ2 x AC x SP

center B and radius BC as the square root of the ratio of

to SY2, that is (neglecting the ratios of equality SP to BC and BQ2 to SY2),

as the square root of the ratio of AC to AO or Vi AB. Q.E.D.

COROLLARY 1. When the points B and S come to coincide, TC becomes

to TS as AC to AO.

COROLLARY 2. A body revolving in any circle at a given distance from

the center will, when its motion is converted to an upward motion, ascend

to twice that distance from the center.

AO X BC
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If the figure BED is a parabola, I say that the velocity of a falling body at any Proposition 34

place C is equal to the velocity with which a body can uniformly describe a circle Theorem 10

with center B and a radius equal to one-half of EC.

For at any place P the velocity of a body describing the parabola RPB

about the center S is (by prop. 16, corol. 7) equal to the velocity of a body

uniformly describing a circle about the

same center S with a radius equal to half

of the interval SP. Let the width CP of

the parabola be diminished indefinitely,

so that the parabolic arc P/B will come

to coincide with the straight line CB, the

center S with the vertex B, and the in-

terval SP with the interval BC, and the

proposition will be established. Q.E.D.

Making the same suppositions, I say that the area of the figure DES described by Proposition 35

the indefinite radius SD is equal to the area that a body revolving uniformly in Theorem 11

orbit about the center S can describe in the same time by a radius equal to half

of the latus rectum of the figure DES.

For suppose that body C falling in a minimally small particle of time

describes the line-element Cc while another body K, revolving uniformly in

the circular orbit OK^ about the center S, describes the arc K^. Erect the
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perpendiculars CD and cd meeting the figure DES in D and d. Join SD,

Sd, SK, and S^, and draw Dd meeting the axis AS in T, and drop the

perpendicular SY to Dd.

CASE 1. Now, if the figure DES is a circle or a rectangular hyperbola,

bisect its transverse diameter AS in O, and SO will be half of the latus

rectum. And since TC is to TD as Cc to Dd, and TD to TS as CD to SY,

from the equality of the ratios [or ex aequo] TC will be to TS as CD x Cc

to SY x Dd. But (by prop. 33, corol. 1) TC is to TS as AC to AO, if, say,

in the coming together of points D and d the ultimate ratios of the lines are

taken. Therefore, AC is to AO or SK as CD x Cc is to SY x Dd. Further,

the velocity of a descending body at C is to the velocity of a body describing

a circle about the center S with radius SC as the square root of the ratio

of AC to AO or SK (by prop. 33). And this velocity is to the velocity of a

body describing the circle OK^ as the square root of the ratio of SK to SC

(by prop. 4, corol. 6), and from the equality of the ratios [or ex aequo] the

first velocity is to the ultimate velocity, that is, the line-element Cc is to the

arc K^, as the square root of the ratio of AC to SC, that is, in the ratio of

AC to CD. Therefore, CD x Cc is equal to AC x K^, and thus AC is to

SK as AC x K^ to SY x Dd, and hence SK x K{ is equal to SY x Dd,

and !/2SK X K^ is equal to ]/2SY X Dd, that is, the area KS^ is equal to the

area SD .̂ Therefore, in each particle of time, particles KS>^ and SDd of the

two areas are generated such that, if their magnitude is diminished and their

number increased indefinitely, they obtain the ratio of equality; and therefore

(by lem. 4, corol.), the total areas generated in the same times are always

equal. Q.E.D.

CASE 2. But if the figure DES is

a parabola, then it will be found that,

as above, CD x Cc is to SY x Dd

as TC to TS, that is, as 2 to 1, and

thus 1ACD x Cc will be equal to

l/2SY x Dd. But the velocity of the

falling body at C is equal to the

velocity with which a circle can be

described uniformly with the radius

ViSC (by prop. 34). And this velocity

is to the velocity with which a circle
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can be described with the radius SK, that is, the line-element Cc is to the

arc K^ (by prop. 4, corol. 6), as the square root of the ratio of SK to ViSC,

that is, in the ratio of SK to ViCD. And therefore 1/2SK x K^ is equal to

ViCD x Cc and thus equal to 1/2SY x Dd; that is, the area KS^ is equal to

the area SD<3?, as above. Q.E.D.

To determine the times of descent of a body falling from a given place A.

Describe a semicircle ADS with diameter AS (the dis-

tance of the body from the center at the beginning of the

descent), and about the center S describe a semicircle OKH

equal to ADS. From any place C of the body erect the or-

dinate CD. Join SD, and construct the sector OSK equal

to the area ASD. It is evident by prop. 35 that the body

in falling will describe the space AC in the same time in

which another body, revolving uniformly in orbit about the

center S, can describe the arc OK. Q.E.F.

Proposition 36

Problem 25

To define the times of the ascent or descent of a body projected upward or down- Proposition 37

ward from a given place. Problem 26

Let the body depart from the given place G along the line GS with any

velocity whatever. Take GA to 1/2 AS as the square of the ratio of this velocity

to the uniform velocity in a circle with which the body could revolve about

the center S at the given interval (or distance) SG. If that ratio is as 2 to

1, point A is infinitely distant, in which case a parabola is to be described

with vertex S, axis SG, and any latus rectum, as is evident by prop. 34. But

if that ratio is smaller or greater than the ratio of 2 to 1, then in the former
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case a circle, and in the latter case a rectangular hyperbola, must be described

on the diameter SA, as is evident by prop. 33. Then, with center S and a

radius equaling half of the latus rectum, describe the circle H^K, and to the

place G of the descending or ascending body and to any other place C, erect

the perpendiculars GI and CD meeting the conic or the circle in I and D.

Then joining SI and SD, let the sectors HSK and HS^ be made equal to

the segments SEIS and SEDS, and by prop. 35 the body G will describe the

space GC in the same time as the body K can describe the arc K^. Q.E.F.

Proposition 38 Supposing that the centripetal force is proportional to the height or distance of

Theorem 12 places from the center, I say that the times of falling bodies, their velocities, and

the spaces described are proportional respectively to the arcs, the right sines, and

the versed sines.

Let a body fall from any place A along the

straight line AS; and with center of forces S and

radius AS describe the quadrant AE of a circle,

and let CD be the right sine of any arc AD; then

the body A, in the time AD, will in falling describe

the space AC and at place C will acquire the veloc-

ity CD.

This is demonstrated from prop. 10 in the same way that prop. 32 was

demonstrated from prop. 11.

COROLLARY 1. Hence the time in which one body, falling from place A,

arrives at the center S is equal to the time in which another body, revolving,

describes the quadrantal arc ADE.

COROLLARY 2. Accordingly, all the times are equal in which bodies fall

from any places whatever as far as to the center. For all the periodic times

of revolving bodies are (by prop. 4, corol. 3) equal.

Proposition 39 Suppose a centripetal force of any tynd, and grant the quadratures of curvilinear

Problem 27 figures; it is required to find, for a body ascending straight up or descending straight

down, the velocity in any of its positions and the time in which the body will reach

any place; and conversely.

Let a body E fall from any place A whatever in the straight line ADEC,

and let there be always erected from the body's place E the perpendicular
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EG, proportional to the centripetal force

in that place tending toward the center C;

and let BFG be the curved line which the

point G continually traces out. At the very

beginning of the motion let EG coincide

with the perpendicular AB; then the ve-

locity of the body in any place E will be

as the straight line whose square is equal

to the curvilinear area ABGE. Q.E.I.

In EG take EM inversely proportional

to the straight line whose square is equal to

the area ABGE, and let VLM be a curved

line which the point M continually traces

out and whose asymptote is the straight

line AB produced; then the time in which

the body in falling describes the line AE

will be as the curvilinear area ABTVME.

For in the straight line AE take a minimally small line DE of a given

length, and let DLF be the location of the line EMG when the body was at

D; then, if the centripetal force is such that the straight line whose square

is equal to the area ABGE is as the velocity of the descending body, the

area itself will be as the square of the velocity, that is, if V and V + I are

written for the velocities at D and E, the area ABFD will be as V2, and

the area ABGE as V2 + 2VI + I2, and by separation [or dividendo] the area
OPf^P 7 VI -L T^

DFGE will be as 2VI + I2, and thus will be as , that is,
DE DE

if the first ratios of nascent quantities are taken, the length DF will be as
2VI I x V

the quantity , and thus also as half of that quantity, or . But the
DE DE

time in which the body in falling describes the line-element DE is as that

line-element directly and the velocity V inversely, and the force is as the

increment I of the velocity directly and the time inversely, and thus—if the
I X V

first ratios of nascent quantities are taken—as , that is, as the length
LJ I-j

DF. Therefore a force proportional to DF or EG makes the body descend

with the velocity that is as the straight line whose square is equal to the area

ABGE. Q.E.D.
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Moreover, since the time in which any line-element DE of a given length

is described is as the velocity inversely, and hence inversely as the straight

line whose square is equal to the area ABFD, and since DL (and hence the

nascent area DLME) is as the same straight line inversely, the time will be

as the area DLME, and the sum of all the times will be as the sum of all

the areas, that is (by lem. 4, corol.), the total time in which the line AE is

described will be as the total area ATVME. Q.E.D.

COROLLARY 1. Let P be the place from which a body must fall so that,

under the action of some known uniform centripetal force (such as gravity is

commonly supposed to be), it will acquire at place D a velocity equal to the

velocity that another body, falling under the action of any force whatever,

acquired at the same place D. In the perpendicular DF take DR such that it

is to DF as that uniform force is to the other force at the place D. Complete

the rectangle PDRQ and cut off the area ABFD equal to it. Then A will be

the place from which the other body fell.

For, when the rectangle DRSE has been completed, the area ABFD is

to the area DFGE as V2 to 2VI and hence as ViV to I, that is, as half of

the total velocity to the increment of the velocity of the body falling under

the action of the nonuniform force; and similarly, the area PQRD is to the

area DRSE as half of the total velocity is to the increment of the velocity of

the body falling under the action of the

uniform force, and those increments (be-

cause the nascent times are equal) are

as the generative forces, that is, as the

ordinates DF and DR, and thus as the

nascent areas DFGE and DRSE. There-

fore, the total areas ABFD and PQRD

will then from the equality of the ratios

[or ex aequo] be to each other as halves

of the total velocities and therefore are

equal because the velocities are equal.

COROLLARY 2. Hence if any body is

projected with a given velocity either up-

ward or downward from any place D

and the law of centripetal force is given,

the velocity of the body at any other



P R O P O S I T I O N 39 173

place e will be found by erecting the ordinate eg and taking that veloc-

ity at place e to the velocity at place D as the straight line whose square is

equal to the rectangle PQRD, either increased by the curvilinear area DFge

(if place e is lower than place D) or diminished by DFge (if place e is higher),

is to the straight line whose square is equal to the rectangle PQRD alone.

COROLLARY 3. The time, also, will be determined by erecting the ordi-

nate em inversely proportional to the square root of PQRD it DFg<?, and by

taking the time in which the body described the line De to the time in which

the other body fell under the action of a uniform force from P and (by so

falling) reached D as the curvilinear area DLme to the rectangle 2PD x DL.

For the time in which the body descending under the action of a uniform

force described the line PD is to the time in which the same body described

the line PE as the square root of the ratio of PD to PE, that is (the line-

element DE being just now nascent), in the ratio of PD to PD + VzDE or

2PD to 2PD + DE and by separation [or dividendo] to the time in which

the same body described the line-element DE as 2PD to DE, and thus as the

rectangle 2PD x DL to the area DLME; and the time in which each of the

two bodies described the line-element DE is to the time in which the second

body with nonuniform motion described the line F)e as the area DLME to

the area DLw^, and from the equality of the ratios [or ex aequo] the first

time is to the ultimate time as the rectangle 2PD x DL to the area DLme.
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SECTION 8

To find the orbits in which bodies revolve when acted upon by any centripetal

forces

Proposition 40 If a body, under the action of any centripetal force, moves in any way whatever,

Theorem 13 and another body ascends straight up or descends straight down, and if their

velocities are equal in some one instance in which their distances from the center

are equal, their velocities will be equal at all equal distances from the center.

Let some body descend from A through D and E to the center C, and

let another body move from V in the curved line VIK^. With center C and

any radii describe the concentric circles DI and EK meeting

the straight line AC in D and E and the curve VIK in

I and K. Join 1C meeting KE in N, and to IK drop the

perpendicular NT, and let the interval DE or IN between

the circumferences of the circles be minimally small, and

let the bodies have equal velocities at D and I. Since the

distances CD and CI are equal, the centripetal forces at D

and I will be equal. Represent these forces by the equal line-

elements DE and IN; then, if one of these forces IN is (by

corol. 2 of the laws) resolved into two, NT and IT, the

force NT, acting along the line NT perpendicular to the

path ITK of the body, will in no way change the velocity of

the body in that path but will only draw the body back from

a rectilinear path and make it turn aside continually from the tangent of the

orbit and move forward in the curvilinear path ITK^. That whole force

will be spent in producing this effect, while the whole of the other force IT,

acting along the body's path, will accelerate the body and in a given minimally

small time will generate an acceleration proportional to itself. Accordingly,

the accelerations of the bodies at D and I that are made in equal times (if

the first ratios of the nascent lines DE, IN, IK, IT, and NT are taken) are

as the lines DE and IT, but in unequal times they are as those lines and the

times jointly. Now, the times in which DE and IK are described are as the

described paths DE and IK (because the velocities are equal), and hence

the accelerations in the path of the bodies along the lines DE and IK are

jointly as DE and IT, DE and IK, that is, as DE2 and the rectangle IT x IK.



P R O P O S I T I O N 41 175

But the rectangle IT x IK is equal to IN2, that is, equal to DE2, and therefore

the accelerations generated in the passing of the bodies from D and I to E

and K are equal. Therefore the velocities of the bodies at E and K are equal,

and by the same argument they will always be found equal at subsequent

equal distances. Q.E.D.

But also by the same argument bodies that have equal velocities and are

equally distant from the center will be equally retarded in ascending to equal

distances. Q.E.D.

COROLLARY 1. Hence if a body either oscillates while hanging by a

thread or is compelled by any very smooth and perfectly slippery imped-

iment to move in a curved line, and another body ascends straight up or

descends straight down, and their velocities are equal at any identical height,

their velocities at any other equal heights will be equal. For the thread of the

pendent body or the impediment of an absolutely slippery vessel produces

the same effect as the transverse force NT. The body is neither retarded nor

accelerated by these, but only compelled to depart from a rectilinear course.

COROLLARY 2. Now let the quantity P be the greatest distance from

the center to which a body, either oscillating or revolving in any trajectory

whatever, can ascend when projected upward from any point of the trajectory

with the velocity that it has at that point. Further, let the quantity A be the

distance of the body from the center at any other point of the orbit. And let

the centripetal force be always as any power A""1 of A, the index n — l being

any number n diminished by unity. Then the velocity of the body at every

height A [i.e., distance A] will be as ^/(Pn — A") and therefore is given.

For the velocity of a body ascending straight up and descending straight

down is (by prop. 39) in this very ratio.

Supposing a centripetal force of any kind and granting the quadratures of curvi- Proposition 41a

linear figures, it is required to find the trajectories in which bodies will move and Problem 28

also the times of their motions in the trajectories so found.

Let any force tend toward a center C; and let it be required to find the

trajectory VIK^. Let the circle VR be given, described about the center C

with any radius CV; and about the same center let there be described any

other circles ID and KE cutting the trajectory in I and K and cutting the

a. For a gloss on this proposition see the Guide, §10.12.
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straight line CV in D and E. Then draw the straight line CNIX cutting

the circles KE and VR in N and X, and also draw the straight line CKY
meeting the circle VR in Y. Let the points I and K be very close indeed

to each other, and let the body proceed from V through I and K to ^; and

let point A be the place from which another body must fall so as to acquire

at place D a velocity equal to the velocity of the first body at I. And with

everything remaining as it was in prop. 39, the line-element IK, described in

a given minimally small time, will be as the velocity and hence as the straight

line whose square equals the area ABFD, and the triangle ICK proportional
to the time will be given; and therefore KN will be inversely as the height

1C, that is, if some quantity Q is given and the height 1C is called A, as

Q Q—. Let us denote this quantity — by Z, and let us suppose the magnitude
A. A

of Q to be such that in some one case y^ABFD is to Z as IK is to KN,
and in every case ,/ABFD will be to Z as IK to KN and ABFD to Z2 as

IK2 to KN2, and by separation [or dividendo] ABFD — Z2 will be to Z2 as

IN2 to KN2, and therefore ^(ABFD - Z2) will be to Z, or —, as IN to
Q x IN

KN, and therefore A x KN will be equal to — —. Hence, since
- /̂ ^-iV-D r \~J ~~ Z~i J

YX x XC is to A x KN as CX2 to A2, the rectangle XY x XC will be equal

to : . Therefore, in the perpendicular DF take D£ and DC
AV(ABFD-Z')

always equal respectwely to

A

Q

Q X IN X CX2

AV(ABFD-Z') AV(ABFD-Z')

Q Q X CX2
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describe the curved lines ab and ac which the points b and c continually trace

out, and from point V erect Va perpendicular to the line AC so as to cut

off the curvilinear areas VDba and VDr<z, and also erect the ordinates E#

and EAT. Then, since the rectangle D£ x IN or D£#E is equal to half of the

rectangle A x KN or is equal to the triangle ICK, and the rectangle DC x IN

or DcxE is equal to half of the rectangle YX x XC or is equal to the triangle

XC Y—that is, since the nascent particles D£zE and ICK of the areas VF)ba

and VIC are always equal, and the nascent particles DtrxE and XCY of the

areas VDca and VCX are always equal—the generated area VDba will be

equal to the generated area VIC and hence will be proportional to the time,

and the generated area VY)ca will be equal to the generated sector VCX.

Therefore, given any time that has elapsed since the body set out from place

V, the area VDba proportional to it will be given and hence the body's

height CD or CI will be given, and the area VGca and, equal to that area,

the sector VCX along with its angle VCI. And given the angle VCI and the

height CI, the place I will be given, in which the body will be found at the

end of that time. Q.E.I.

COROLLARY 1. Hence the greatest and least heights of bodies (that is,

the apsides of their trajectories) can be found expeditiously. For the apsides

are those points in which the straight line 1C drawn through the center falls

perpendicularly upon the trajectory VIK, which happens when the straight

lines IK and NK are equal, and thus when the area ABFD is equal to Z2.

COROLLARY 2. The angle KIN, in which the trajectory anywhere cuts

the line 1C, is also expeditiously found from the given height 1C of the body,

namely, by taking its sine to the radius as KN to IK, that is, as Z to the

square root of the area ABFD.

COROLLARY 3. If with center C

and principal vertex V any conic VRS

is described, and from any point R

of it the tangent RT is drawn so as

to meet the axis CV, indefinitely pro-

duced, at point T; and, joining CR,

there is drawn the straight line CP,

which is equal to the abscissa CT and

makes an angle VCP proportional to

the sector VCR; then, if a centripetal
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force inversely proportional to the cube of the distance of places from the

center tends toward that center C, and the body leaves the place V with the

proper velocity along a line perpendicular to the straight line CV, the body

will move forward in the trajectory VPQ which point P continually traces

out; and therefore, if the conic VRS is a hyperbola, the body will descend

to the center. But if the conic is an ellipse, the body will ascend continually

and will go off to infinity.

And conversely, if the body leaves

the place V with any velocity and, de-

pending on whether the body has be-

gun either to descend obliquely to the

center or to ascend obliquely from it,

the figure VRS is either a hyperbola or

an ellipse, the trajectory can be found

by increasing or diminishing the angle

VCP in some given ratio. But also, if

the centripetal force is changed into a

centrifugal force, the body will ascend obliquely in the trajectory VPQ, which

is found by taking the angle VCP proportional to the elliptic sector VRC and

by taking the length CP equal to the length CT, as above. All this follows

from the foregoing (prop. 41), by means of the quadrature of a certain curve,

the finding of which, as being easy enough, I omit for the sake of brevity.

Proposition 42 Let the law of centripetal force be given; it is required to find the motion of a

Problem 29 body setting out from a given place with a given velocity along a given straight

line.

With everything remaining as it was in the three preceding propositions,

let the body go forth from the place I along the line-element IK, with the

velocity which another body, falling from the place P under the action of

some uniform centripetal force, could acquire at D; and let this uniform

force be to the force with which the first body is urged at I as DR to DF.

Let the body go on toward ^; and with center C and radius C^ describe the

circle J^e meeting the straight line PD at ^, and erect the ordinates eg, ev,

and ew of the curves BFg, abv, and acw. From the given rectangle PDRQ

and the given law of the centripetal force acting on the first body, the curved

line BFg is given by the construction of prop. 39 and its corol. 1. Then, from
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the given angle CIK, the proportion of the nascent lines IK and KN is given,

and hence, by the construction of prop. 41, the quantity Q is given, along

with the curved lines abv and acw\ and therefore, when any time Dbve is

completed, the body's height Ce or C^ is given and the area Dcwe and the

sector XCy equal to it and the angle IC^ and the place ^ in which the body

will then be. Q.E.I.

In these propositions we suppose that the centripetal force in receding

from the center varies according to any law which can be imagined, but that

at equal distances from the center it is everywhere the same. And so far we

have considered the motion of bodies in nonmoving orbits. It remains for us

to add a few things about the motion of bodies in orbits that revolve about

a center of forces.
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S E C T I O N 9

The motion of bodies in mobile orbits, and the motion of the apsides

Proposition 43 a// is required to find the force that mattes a body capable of moving in any

Problem 30 trajectory that is revolving about the center of forces in the same way as another

body in that same trajectory at rest*

Let a body P revolve in the orbit VPK given in position, moving for-

ward from V toward K. From center C continually draw Cp equal to CP

and making the angle VC/? which is propor-

tional to the angle VCP; and the area that

the line Cp describes will be to the area VCP

that the line CP simultaneously describes as

the velocity of the describing line Cp to the

velocity of the describing line CP, that is, as

the angle VCp to the angle VCP and thus

in a given ratio and therefore proportional

to the time. Since the area that line Cp de-

scribes in the immobile plane is proportional

to the time, it is manifest that the body, under the action of a centripetal

force of just the right quantity, can revolve along with point p in the curved

line that the same point />, in the manner just explained, describes in an im-

mobile plane. Let the angle VCu be made equal to the angle PC/?, and the

line Cu equal to the line CV, and the figure uCp equal to the figure VCP;

then the body, being always at the point /?, will move in the perimeter of the

revolving figure uCp, and will describe its arc up in the same time in which

another body P can describe the arc VP, similar and equal to «/?, in the

figure VPK at rest. Determine, therefore, by prop. 6, corol. 5, the centripetal

force by which a body can revolve in the curved line that point p describes

in an immobile plane, and the problem will be solved. Q.E.F.

aa. Newton does not use the word "force" in the statement of prop. 43, but he does so in the

conclusion of the demonstration. A literal translation of prop. 43 would read: "It is required to make it

happen [or, It is to be effected] that a body may be able to move in any trajectory that is revolving about

the center of forces exactly as another body moves in that same trajectory at rest." The force in question

must be centripetal.
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The difference between the forces under the action of which two bodies are able Proposition 44

to move equally—one in an orbit that is at rest and the other in an identical orbit Theorem 14

that is revolving—is inversely as the cube of their common height.

Let the parts up and p\ of the revolving orbit be similar and equal to

the parts VP and PK of the orbit at rest; and let it be understood that the

distance between points P and K is minimally small. From point f( drop the

perpendicular \r to the straight line /?C, and produce %r to m so that mr is

to kr as the angle VCp to the angle VCP. Since the heights PC and /?C, KC

and ^C, of the bodies are always equal, it is manifest that the increments

and decrements of the lines PC and pC are always equal, and hence, if the

motions of each of these bodies, when they are at places P and />, are resolved

(by corol. 2 of the laws) into two components, of which one is directed toward

the center, or along the line PC or />C, and the second is transverse to the first

and has a direction along a line perpendicular to PC or pC, the components

of motion toward the center will be equal, and the transverse component of

motion of body p will be to the transverse component of motion of body P

as the angular motion of line pC to the angular motion of line PC, that is,

as the angle VCp to the angle VCP. Therefore, in the same time in which

body P by the two components of its motion reaches point K, body p by

its equal component of motion toward the center will move equally from p
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toward C and thus, when that time is completed, will be found somewhere

on the line m\r (which is perpendicular to the line pC through point ^) and

by its transverse motion will reach a distance from the line pC that is to the

distance from the line PC (which the other body P reaches) as the transverse

motion of body p is to the transverse motion of the other body P. Therefore,

since %r is equal to the distance from the line PC which body P reaches,

and since mr is to \r as the angle VCp to the angle VCP, that is, as the

transverse motion of body p to the transverse motion of body P, it is manifest

that body />, at the completion of the time, will be found at the place m.

This will be the case when bodies p and P move equally along lines pC

and PC and thus are urged along those lines by equal forces. But now, take

the angle pCn to the angle pCf( as the angle VCp is to the angle VCP, and

let nC be equal to ^C, and then body p—at the completion of the time—

will actually be found at the place n\ and thus body p is urged by a greater

force than that by which body P is urged, provided that the angle nCp is

greater than the angle I(Cp, that is, if the orbit upf( either moves forward

[or in consequential or moves backward [or in antecedentia] with a speed

greater than twice that with which the line CP is carried forward [or in

consequential and it is urged by a smaller force if the orbit moves backward

[or in antecedentia] more slowly. And the difference between the forces is as

the intervening distance mn through which the body p ought to be carried

by the action of that difference in the given space of time.

Understand that a circle is described, with center C and radius Cn or

C^, cutting in s and t the lines mr and mn produced; then the rectangle

mn x mt will be equal to the rectangle mt{ x ms, and thus mn will be equal
m\ x ms

to . But since the triangles pCf( and pCn are, in a given time, given
mt

in magnitude, \r and mr and their difference ml^ and sum ms are inversely

as the height pC, and thus the rectangle mf^ x ms is inversely as the square

of the height pC. Also, mt is directly as Vimt, that is, as the height pC.

These are the first ratios of the nascent lines; and hence (that is,
mt

the nascent line-element mn and, proportional to it, the difference between

the forces) becomes inversely as the cube of the height pC. Q.E.D.

COROLLARY 1. Hence the difference of the forces in the places P and

p or K and ^ is to the force by which a body would be able to revolve

mk x ms
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with circular motion from R to K in the same time in which body P in

an immobile orbit describes the arc PK as the nascent line-element mn is to

m\ x ms rJ^1

the versed sine of the nascent arc RK, that is. as to or as
mt 2^C

m\ x ms to r^2, that is, if the given quantities F and G are taken in the

ratio to each other that the angle VCP has to the angle VC/?, as G2 — F2

to F2. And therefore, if with center C and any radius CP or Cp a circular

sector is described equal to the total area VPC which the body P revolving

in an immobile orbit has described in any time by a radius drawn to the

center, the difference between the forces by which body P in an immobile

orbit and body p in a mobile orbit revolve will be to the centripetal force by

which some body, by a radius drawn to the center, would have been able to

describe that sector uniformly in the same time in which the area VPC was

described, as G2 — F2 to F2. For that sector and the area pCf^ are to each

other as the times in which they are described.

COROLLARY 2. If the orbit VPK is an ellipse having a focus C and an

upper apsis V, and the mobile ellipse upt{ is supposed similar and equal to

it, so that pC is always equal to PC and the angle VCp is to the angle VCP

in the given ratio of G to F; and if A is written for the height PC or pC,

and 2R is put for the latus rectum of the ellipse; then the force by which
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a body can revolve in the mobile ellipse will be as 1 , and

conversely. For let the force by which a body revolves in the unmoving ellipse
F2 F2

be represented by the quantity —, and then the force at V will be .

But the force by which a body could revolve in a circle at the distance CV

with the velocity that a body revolving in an ellipse has at V is to the force

by which a body revolving in an ellipse is urged at the apsis V as half of the

latus rectum of the ellipse to the semidiameter CV of the circle, and thus
R x F2

has the value —; and the force that is to this as G2 — F2 to F2 has the

R(G2 - F2)
value ; and this force (by corol. 1 of this prop.) is the difference

between the forces at V by which body P revolves in the unmoving ellipse

VPK and body p revolves in the mobile ellipse up\. Hence, since (by this

proposition) that difference at any other height A is to itself at the height

CV as —- to -, the same difference at every height A will have the value
A C> V

R(G2 - F2) R(G2 - F2) F2
. Tneretore, add the excess to the force — by which

a body can revolve in the immobile ellipse VPK, and the result will be the
F2 R(G2 - F2)

total force — H by which a body may be able to revolve in the
A A

same times in the mobile ellipse upf(.

COROLLARY 3. In the same way it will be gathered that if the immobile

orbit VPK is an ellipse having its center at the center C of forces, and a

mobile ellipse up\ is supposed similar, equal, and concentric with it; and if

2R is the principal latus rectum of this ellipse, and 2T the principal diameter

or major axis, and the angle VCp is always to the angle VCP as G to F; then

the forces by which bodies can revolve in equal times in the immobile ellipse
p2 A F2A R(C*2 F2)

and the mobile ellipse will be as and 1 respectively.

COROLLARY 4. And universally, if the greatest height CV of a body is

called T; and the radius of the curvature which the orbit VPK has at V (that

is, the radius of a circle of equal curvature) is called R; and the centripetal

force by which a body can revolve in any immobile trajectory VPK at place
VF2

V is called —— and at other places P is indefinitely styled X, while the

height CP is called A; and if G is taken to F in the given ratio of the angle
2

p2 A F2A R(C*2 F2)

a body can revolve in the mobile ellipse will be as 1 , and

a body can revolve in the mobile ellipse will be as 1 , and a body can revolve in the mobile ellipse will be as 1 , and

a body can revolve in the mobile ellipse will be as 1 , and a body can revolve in the mobile ellipse will be as 1 , and

a body can revolve in the mobile ellipse will be as 1 , and

a body can revolve in the mobile ellipse will be as 1 , and

VPK and body p revolves in the mobile ellipse up\. Hence, since (by this VPK and body p revolves in the mobile ellipse up\. Hence, since (by this

a body can revolve in the mobile ellipse will be as 1 , and

R(G2 - F2) R(G2 - F2) F2 25
2

25 25 25

a3
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VCp to the angle VCP; then the centripetal force by which the same body

can complete the same motions in the same times in the same trajectory up\

VR(G2 - F2)
which is moving circularly will be as the sum of the forces XH .

COROLLARY 5. Therefore, given the motion of a body in any immobile

orbit, its angular motion about the center of forces can be increased or di-

minished in a given ratio, and hence new immobile orbits can be found in

which bodies may revolve by new centripetal forces.

COROLLARY 6. Therefore, if on the straight line CV, given in position,

there is erected the perpendicular VP of indeterminate length, and CP is

joined, and Cp is drawn equal to it making the

angle VCp that is to the angle VCP in a given

ratio; then the force by which a body can re-

volve in the curve Vpf( which the point p con-

tinually traces out will be inversely as the cube

of the height Cp. For body P, by its own force

of inertia, and with no other force urging it, can

move forward uniformly in the straight line VP.

Add the force toward the center C, inversely proportional to the cube of the

height CP or C/?, and (by what has just been demonstrated) the rectilinear

motion will be bent into the curved line Vp\. But this curve Vp\ is the same

as the curve VPQ found in prop. 41, corol. 3, and (as we said there) bodies

attracted by forces of this kind ascend obliquely in this curve.

Proposition 45

Problem 31

It is required to find the motions of the apsides of orbits that differ very little from

circles.

This problem is solved arithmetically by taking the orbit that is described

in an immobile plane by a body revolving in a mobile ellipse (as in prop. 44,

corol. 2 or 3) and making it approach the form of the orbit whose apsides are

required, and by seeking the apsides of the orbit which that body describes

in an immobile plane. Orbits will acquire the same shape if the centripetal

forces with which those orbits are described, when compared with each other,

are made proportional at equal heights. Let point V be the upper apsis, and

write T for the greatest height CV, A for any other height CP or C/?, and

X for the difference C V — CP of the heights; then the force by which a body

moves in an ellipse revolving about its own focus C (as in corol. 2)—and

a3
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F2 RG2 - RF2 . F2A + RG2 - RF2
which in corol. 2 was as 1 , that is, as —

will, when T — X is substituted for A, be as .

Any other centripetal force is similarly to be reduced to a fraction whose

denominator is A3; and the numerators are to be made analogous [i.e., made

proportional in the same degree] by bringing together homologous terms [i.e.,

corresponding terms, or terms of the same degree]. All of this will be clarified

by the following examples.

EXAMPLE 1. Let us suppose the centripetal force to be uniform and thus
A3

as —-, or (writing T — X for A in the numerator) as
rx

T3 - 3T2X + 3TX2 - X

A 3 " ;

and by bringing together the corresponding [or homologous] terms of the

numerators (namely, given ones with given ones, and ones not given with

ones not given), RG2 - RF2 + TF2 to T3 will come to be as -F2X to

-3T2X + 3TX2 - X3 or as -F2 to -3T2 +3TX - X2. Now, since the orbit

is supposed to differ very little from a circle, let the orbit come to coincide

with a circle; and because R and T become equal and X is diminished

indefinitely, the ultimate ratios will be RG2 to T3 as —F2 to —3T2, or G2 to

T2 as F2 to 3T2, and by alternation [or alternando] G2 to F2 as T2 to 3T2,

that is, as 1 to 3; and therefore G is to F, that is, the angle VCp is to the

angle VCP, as 1 to ^/3. Therefore, since a body in an immobile ellipse, in

descending from the upper apsis to the lower apsis, completes the angle VCP

(so to speak) of 180 degrees, another body in the mobile ellipse (and hence

in the immobile orbit with which we are dealing) will, in descending from
180

the upper apsis to the lower apsis, complete the angle VCp of —j- degrees;
y3

this is so because of the similarity of this orbit, which the body describes

under the action of a uniform centripetal force, to the orbit which a body

completing its revolutions in a revolving ellipse describes in a plane at rest.

By the above collation of terms, these orbits are made similar, not universally

but at the time when they very nearly approach a circular form. Therefore

a body revolving with uniform centripetal force in a very nearly circular
180

orbit will always complete an angle of —r- degrees between the upper apsis
V^

F2 RG2 - RF2 . F2A + RG2 - RF2

25 25 25

25

25

A3";
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and the lower apsis, or 103°55/23// at the center, arriving at the lower apsis

from the upper apsis when it has completed this angle once, and returning

from the lower to the upper apsis when it has completed the same angle

again, and so on without end.

EXAMPLE 2. Let us suppose the centripetal force to be as the height A
A"

raised to any power, as A"~3 (that is, —-), where n — 3 and n signify any
A

indices of powers whatsoever—integral or fractional, rational or irrational,

positive or negative. On reducing the numerator A" = (T — X)" to an

indeterminate series by our method of converging series, the result is Tn —

terms of the other numerator RG2 — RF2 + TF2 — F2X, the result is that

RG2-RF2 + TF2 is to Tn as -F2 to -nTn~l + ^—^XT*~2 - - -. And after

taking the ultimate ratios that result when the orbits approach circular form,

RG2 will be to Tn as -F2 to -nTn~\ or G2 to Tn~l as F2 to nTn~\ and

by alternation [or alternando] G2 is to F2 as Tn~l to nTn~l, that is, as 1 to

n; and therefore G is to F, that is, the angle VCp is to the angle VCP as 1

to +Jn. Therefore, since the angle VCP, completed in the descent of a bod

from the upper apsis to the lower apsis in an ellipse, is 180 degrees, the angle

VC/7, completed in the descent of a body from the upper apsis to the lower

apsis in the very nearly circular orbit which any body describes under the

action of a centripetal force proportional to A"~3, will be equal to an angle
180

of —— degrees; and when this angle is repeated, the body will return from
V»

the lower apsis to the upper apsis, and so on without end.

For example, if the centripetal force is as the distance of the body from
A4

the center, that is, as A or —, n will be equal to 4 and +Jn will be equal
A

to 2; and therefore the angle between the upper apsis and the lower apsis
180°

will be equal to or 90°. Therefore, at the completion of a quarter of a

revolution the body will arrive at the lower apsis, and at the completion of

another quarter the body will arrive at the upper apsis, and so on by turns

without end. This is also manifest from prop. 10. For a body urged by this

centripetal force will revolve in an immobile ellipse whose center is in the

center of forces. But if the centripetal force is inversely as the distance, that

2

wi l l  be  equa l  to  or  90° .  There fore ,  a t  the  comple t ion  o f  a  quarter  o f  a
w i l l  b e  e q u a l  t o  o r  9 0 ° .  T h e r e f o r e ,  a t  t h e  c o m p l e t i o n  o f  a  q u a r t e r  o f  a

2

w i l l  b e  e q u a l  t o  o r  9 0 ° .  T h e r e f o r e ,  a t  t h e  c o m p l e t i o n  o f  a  q u a r t e r  o f  a

2
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1 A2
is, directly as — or —-, n will be equal to 2, and thus the angle between the

A A

upper and the lower apsis will be —j- degrees, or 127°16'45", and therefore
y2

a body revolving under the action of such a force will—by the continual

repetition of this angle—go alternately from the upper apsis to the lower

and from the lower to the upper forever. Further, if the centripetal force

is inversely as the fourth root of the eleventh power of the height, that is,

1 A1/4

inversely as A /4 and thus directly as —— or as , n will be equal to

1/4, and —— will be equal to 360°; and therefore a body, setting out from
Jn

the upper apsis and continually descending from then on, will arrive at the

lower apsis when it has completed an entire revolution, and then, completing

another entire revolution by continually ascending, will return to the upper

apsis; and so on by turns forever.

EXAMPLE 3. Let m and n be any indices of powers of the height, and

let b and c be any given numbers, and let us suppose that the centripetal

A A
method of converging series) as

bTm + cTn - mbXT™ ' l - ncXTn ~ 1 + ™ bX2Tm ~2 + ^—-^-cX2Tn ~2 - • •
25

then, if the terms of the numerators are collated, the result will be RG —

RF2+TF2 to bTm+cT" as -F2 to -mbTm-l-ncT'-l + ™ ^XTm~2+

cXTn~2 • • •. And after taking the ultimate ratios that result when

the orbits approach circular form, G2 will be to bTm~l + cTn~l as F2 to

mbTm~l + ncTn~\ and by alternation [or alternando] G2 will be to F2 as

bTm~l+cTn~l to mbTn~{ +ncTn~l. This proportion, if the greatest height

CV or T is expressed arithmetically by unity, becomes G2 to F2 as b + c to

mb + nc and thus as 1 to . Hence G is to F, that is, the angle VC/>
b + c

is to the angle VCP, as 1 to / . And therefore, since the angle VCP
V b + c

between the upper apsis and the lower apsis in the immobile ellipse is 180

5
180

180
inversely as A /4 and thus directly as —— or as , n will be equal to

rorce is as , that is, as or (again by our
A A

A A A A A A

22
---------------------------------------.

RF2+TF2 to bTm+cT" as -F2 to -mbTm-l-ncT'-l + ™ ^XTm~2+

-

cXTn~2 • • •. And after taking the ultimate ratios that result when
2

mb + nc and thus as 1 to . Hence G is to F, that is, the angle VC/>

is to the angle VCP, as 1 to / . And therefore, since the angle VCP
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degrees, the angle VCp between the same apsides, in the orbit described by

a body under the action of a centripetal force proportional to the quantity

£Am 4- ^A" / b + c
, will be equal to an angle of 180 / degrees. And by the

A3 V mb + nc
bA™ — cAn

same argument, if the centripetal force is as , the angle between
A

\ b-c
the apsides will be found to be 180 / degrees. And the problem

V mb — nc

will be resolved in just the same way in more difficult cases. The quantity

to which the centripetal force is proportional must always be resolved into

converging series having the denominator A3. Then the ratio of the given

part of the numerator (resulting from that operation) to its other part, which

is not given, is to be made the same as the ratio of the given part of this

numerator RG2 — RF2 + TF2 — F2X to its other part, which is not given;

and when the superfluous quantities are taken away and unity is written for

T, the proportion of G to F will be obtained.

COROLLARY 1. Hence, if the centripetal force is as some power of the

height, that power can be found from the motion of the apsides, and con-

versely. That is, if the total angular motion with which the body returns to

the same apsis is to the angular motion of one revolution, or 360 degrees, as

some number m to another number n, and the height is called A, the force

^--3 n2

will be as the power of the height A**2 whose index is 3. This is
m

manifest by the instances in ex. 2. Hence it is clear that the force, in receding

from the center, cannot decrease in a ratio greater than that of the cube of

the height; if a body revolving under the action of such a force and setting

out from an apsis begins to descend, it will never reach the lower apsis or

minimum height but will descend all the way to the center, describing that

curved line which we treated in prop. 41, corol. 3. But if the body, on setting

out from an apsis, begins to ascend even the least bit, it will ascend indefi-

nitely and will never reach the upper apsis. For it will describe the curved

line treated in the above-mentioned corol. 3 and in prop. 44, corol. 6. So also,

when the force, in receding from the center, decreases in a ratio greater than

that of the cube of the height, a body setting out from an apsis (depending

on whether it begins to descend or to ascend) either will descend all the way

to the center or will ascend indefinitely. But if the force, in receding from

the center, either decreases in a ratio less than that of the cube of the height

----
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or increases in any ratio of the height whatever, the body will never descend

all the way to the center, but will at some time reach a lower apsis; and

conversely, if a body descending and ascending alternately from apsis to apsis

never gets to the center, either the force in receding from the center will be

increased or it will decrease in a ratio less than that of the cube of the height;

and the more swiftly the body returns from apsis to apsis, the farther the

ratio of the forces will recede from that of the cube.

For example, if by alternate descent and ascent a body returns from

upper apsis to upper apsis in 8 or 4 or 2 or 1 Vi revolutions, that is, if m is to

n as 8 or 4 or 2 or \Vi to 1, and therefore —- — 3 has the value !/64 — 3 or
m2

1/16-3 or 1/4-3 or % -3, the force will be as A1/64~3 or A1/16~3 or A1/4~3 or

A4/9~3, that is, inversely as A3~1/64 or A3~1/16 or A3~1/4 or A3~4/9. If the body

returns in each revolution to the same unmoving apsis, m will be to n as 1
n2 \

to 1, and thus A«2 will be equal to A~2 or —-; and therefore the decrease

in force will be as the square of the height, as has been demonstrated in

the preceding propositions. If the body returns to the same apsis in three-

quarters or two-thirds or one-third or one-quarter of a single revolution, m
~-3

will be to n as 3/4 or 2/3 or 1A or !/4 to 1, and so A™2 will be equal to

A16/9~3 or A9/4~3 or A9~3 or A16~3; and therefore the force will be either

inversely as A /9 or A/4, or directly as A6 or A13. Finally, if the body in

proceeding from upper apsis to upper apsis completes an entire revolution

and an additional three degrees (and therefore, during each revolution of

the body, that apsis moves three degrees forward [or in consequential), m
— —3

will be to n as 363° to 360° or as 121 to 120, and thus A^2 will be equal
29,523 29,523

to A 14>641, and therefore the centripetal force will be inversely as A H>641 or
2_J_

inversely as A 243 approximately. Therefore the centripetal force decreases in

a ratio a little greater than that of the square, but 593/4 times closer to that

of the square than to that of the cube.

COROLLARY 2. Hence also if a body, under the action of a centripetal

force that is inversely as the square of the height, revolves in an ellipse

having a focus in the center of forces, and any other extraneous force is

added to or taken away from this centripetal force, the motion of the apsides

that will arise from that extraneous force can be found out (by instances in

ex. 3), and conversely. For example, if the force under the action of which

25

to 1, and thus A«2 will be equal to A~2 or —-; and therefore the decrease
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the body revolves in the ellipse is as — and the extraneous force which has
A ^ _ ^4

been taken away is as rA, and hence the remaining force is as , then
A

(as in ex. 3) b will be equal to 1, m will be equal to 1, and n will be equal

to 4, and therefore the angle of the revolution between apsides will be equal

to an angle of 180 / degrees. Let us suppose the extraneous force to

be 357.45 times less than the other force under the action of which the body
100

revolves in the ellipse, that is, let us suppose c to be , A or T being

equal to 1, and then 180 / will come to be 180t/
3^64^, or 180.7623,

that is, 180°45/44//. Therefore a body, setting out from the upper apsis, will

reach the lower apsis by an angular motion of 180°45/44// and will return to

the upper apsis if this angular motion is doubled; and thus in each revolution

the upper apsis will move forward through l°31/28^. aThe [advance of the]

apsis of the moon is about twice as swift.3

So much concerning the motion of bodies in orbits whose planes pass

through the center of forces. It remains for us to determine additionally

those motions which occur in planes that do not pass through the center of

forces. For writers who deal with the motion of heavy bodies are wont to

consider the oblique ascents and descents of weights in any given planes as

well as perpendicular ascents and descents, and there is equal justification for

considering here the motion of bodies that tend to centers under the action

of any forces whatever and are supported by eccentric planes. We suppose,

however, that these planes are highly polished and absolutely slippery, so as

not to retard the bodies. Further, in these demonstrations, in place of the

planes on which bodies rest and which they touch by resting on them, we

even make use of planes parallel to them, in which the centers of the bodies

move and by so moving describe orbits. And by the same principle we then

determine the motions of bodies performed in curved surfaces.

aa. Ed. 1 and ed. 2 lack this, but it appears both in the interleaved copy and in the annotated copy

of ed. 2. The interleaved copy also has: "Query: Can this motion arise from twice the external force?" See

further the Guide to the present translation, §6.10.

t o  a n  a n g l e  o f  1 8 0  /  d e g r e e s .  L e t  u s  s u p p o s e  t h e  e x t r a n e o u s  f o r c e  t o

to  an  ang le  o f  180  /  degrees .  Le t  us  suppose  the  ex t raneous  fo rce  to

1

been  t aken  away  i s  a s  rA ,  and  hence  the  remain ing  fo rce  i s  a s  ,  t hen

35
to  an  ang le  o f  180  /  degrees .  Le t  us  suppose  the  ex t raneous  fo rce  to

to  an  ang le  o f  180  /  degrees .  Le t  us  suppose  the  ex t raneous  fo rce  to to  an  ang le  o f  180  /  degrees .  Le t  us  suppose  the  ex t raneous  fo rce  to

to  an  ang le  o f  180  /  degrees .  Le t  us  suppose  the  ex t raneous  fo rce  to
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SECTION 10

The motion of bodies on given surfaces and the oscillating motion of ^simple

pendulums*

Proposition 46 Suppose a centripetal force of any tynd, and let there be given both the center

Problem 32 of force and any plane in which a body revolves, and grant the quadratures of

curvilinear figures; it is required to find the motion of a body setting out from a

given place with a given velocity along a given straight line in that plane.

Let S be the center of force, SC the least distance of this center from the

given plane, P a body setting out from place P along the straight line PZ, Q

the same body revolving in its trajectory, and PQR the required trajectory

described in the given plane. Join CQ and also QS, and if SV is taken in

QS and is proportional to the centripetal force by which the body is drawn

toward the center S, and VT is drawn parallel to CQ and meeting SC in T,

then the force SV will be resolved (by corol. 2 of the laws) into the forces ST

and TV, of which ST, by drawing the body along a line perpendicular to the

plane, does not at all change the body's motion in this plane. But the other

aa. We use the term "simple pendulum" in its classical and technical sense. For example, according

to Brougham and Routh, "A simple pendulum consists of a material particle suspended from a fixed point

by an inflexible inextensible string without weight" (Henry Lord Brougham and E. J. Routh, Analytical

View of Sir Isaac Newton's "Principia" [1855; reprint, with an introd. by I. Bernard Cohen, New York and

London: Johnson Reprint Corp., 1972], pp. 240-241). See, further, §7.5 of the Guide.
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force TV, by acting along the position of the plane, draws the body directly

toward [i.e., along a line directed toward] the given point C in the plane

and thus causes the body to move in this plane just as if the force ST were

removed and as if the body revolved in free space about the center C under

the action of the force TV alone. But, given the centripetal force TV under

the action of which the body Q revolves in free space about the given center

C, there are also given (by prop. 42) not only the trajectory PQR described

by the body, but also the place Q in which the body will be at any given

time, and finally the velocity of the body in that place Q; and conversely.

Q.E.I.

Suppose that a centripetal force is proportional to the distance of a body from a Proposition 47

center; then all bodies revolving in any planes whatever will describe ellipses and Theorem 15

will rna^e their revolutions in equal times; and bodies that move in straight lines,

by oscillating to and fro, will complete in equal times their respective periods of

going and returning.

For, under the same conditions as in prop. 46, the force SV, by which the

body Q revolving in any plane PQR is drawn toward the center S, is as the

distance SQ; and thus—because SV and SQ, TV and CQ are proportional—

the force TV, by which the body is drawn toward the given point C in the

plane of the orbit, is as the distance CQ. Therefore, the forces by which bodies

that are in the plane PQR are drawn toward point C are, in proportion to the

distances, equal to the forces by which bodies are drawn from all directions

toward the center S; and thus in the same times the bodies will move in the

same figures in any plane PQR about the point C as they would move in

free spaces about the center S; and hence (by prop. 10, corol. 2, and prop. 38,

corol. 2) in times which are always equal, they will either describe ellipses

[i.e., complete a whole revolution in such ellipses] in that plane about the

center C or will complete periods of oscillating to and fro in straight lines

drawn through the center C in that plane. Q.E.D.

The ascents and descents of bodies in curved surfaces are very closely related Scholium

to the motions just discussed. Imagine that curved lines are described in a

plane, that they then revolve around any given axes passing through the cen-

ter of force and describe curved surfaces by this revolution, and then that
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bodies move in such a way that their centers are always found in these sur-

faces. If those bodies, in ascending and descending obliquely, oscillate to and

fro, their motions will be made in planes passing through the axis and hence

in curved lines by whose revolution those curved surfaces were generated. In

these cases, therefore, it is sufficient to consider the motion in those curved

lines.

Proposition 48 If a wheel stands upon the outer surface of a globe at right angles to that surface

Theorem 16 and, rolling as wheels do, moves forward in a great circle [in the globe's surface],

the length of the curvilinear path traced out by any given point in the perimeter

[or rim] of the wheel from the time when that point touched the globe (a curve

which may be called a cycloid or epicycloid) will be to twice the versed sine of

half the arc [of the rim of the wheel] which during the time of rolling has been

in contact with the globe's surface as the sum of the diameters of the globe and

wheel is to the semidiameter of the globe.

Proposition 49 If a wheel stands upon the inner surface of a hollow globe at right angles to

Theorem 17 that surface and, rolling as wheels do, moves forward in a great circle [in the

globe's surface], the length of the curvilinear path traced out by any given point

in the perimeter [or rim] of the wheel from the time when that point touched the

globe will be to twice the versed sine of half the arc [of the rim of the wheel]

which during the time of rolling has been in contact with the globe's surface as

the difference of the diameters of the globe and wheel is to the semidiameter of

the globe.

Let ABL be the globe, C its center, BPV the wheel standing upon it,

E the center of the wheel, B the point of contact, and P the given point in

the perimeter of the wheel. Imagine that this wheel proceeds in the great

circle ABL from A through B toward L and, while rolling, rotates in such

a way that the arcs AB and PB are always equal to each other and that

the given point P in the perimeter of the wheel is meanwhile describing the

curvilinear path AP. Now, let AP be the whole curvilinear path described

since the wheel was in contact with the globe at A, and the length AP of

this path will be to twice the versed sine of the arc ViPB as 2CE to CB. For

let the straight line CE (produced if need be) meet the wheel in V, and join

CP, BP, EP, VP, and drop the normal VF to CP produced. Let PH and
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VH, meeting in H, touch the circle in P and V, and let PH cut VF in G,

and drop the normals GI and HK to VP. With the same center C and with

any radius whatever describe the circle nom cutting the straight line CP in /2,

the wheel's perimeter BP in o, and the curvilinear path AP in m\ and with

center V and radius Vo describe a circle cutting VP produced in q.

Since the wheel, in rolling, always revolves about the point of contact B,

it is manifest that the straight line BP is perpendicular to the curved line AP

described by the wheel's point P, and therefore that the straight line VP will

touch this curve in point P. Let the radius of the circle nom be gradually

increased or decreased, and so at last become equal to the distance CP; then,

because the evanescent figure Vnomq and the figure PFGVI are similar, the

ultimate ratio of the evanescent line-elements Pw, Prc, Po, and Pg, that is,

the ratio of the instantaneous changes of the curve AP, the straight line CP,

the circular arc BP, and the straight line VP, will be the same as that of the
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lines PV, PF, PG, and PI respectively. But since VF is perpendicular to CF,

and VH is perpendicular to CV, and the angles HVG and VCF are therefore

equal, and the angle VHG is equal to the angle CEP (because the angles of

the quadrilateral HVEP are right angles at V and P), the triangles VHG

and CEP will be similar; and hence it will come about that EP is to CE as

HG to HV or HP and as KI to KP, and by composition [or componendo]

or by separation [or dividendo] CB is to CE as PI to PK, and—by doubling

of the consequents—CB is to 2CE as PI to PV and as Vq to Pm. Therefore

the decrement of the line VP, that is, the increment of the line BV — VP,

is to the increment of the curved line AP in the given ratio of CB to 2CE,

and therefore (by lem. 4, corol.) the lengths BV — VP and AP, generated by

those increments, are in the same ratio. But since BV is the radius, VP is

the cosine of the angle BVP or V^BEP, and therefore BV — VP is the versed

sine of the same angle; and therefore in this wheel, whose radius is VzBV,

BV — VP will be twice the versed sine of the arc ^BP. And thus AP is to

twice the versed sine of the arc 1/2BP as 2CE to CB. Q.E.D.

For the sake of distinction, we shall call the curved line AP in prop. 48

a cycloid outside the globe, and the curved line AP in prop. 49 a cycloid inside

the globe.

COROLLARY 1. Hence, if an entire cycloid ASL is described and is bi-

sected in S, the length of the part PS will be to the length VP (which is

twice the sine of the angle VBP, where EB is the radius) as 2CE to CB, and

thus in a given ratio.

COROLLARY 2. And the length of the semiperimeter AS of the cycloid

will be equal to a straight line that is to the diameter BV of the wheel as

2CE to CB.

Proposition 50 To maf^e a pendulum bob oscillate in a given cycloid.

Problem 33 Within a globe QVS described with center C, let the cycloid QRS be

given, bisected in R and with its end-points Q and S meeting the surface of

the globe on the two sides. Draw CR bisecting the arc QS in O, and produce

CR to A, so that CA is to CO as CO to CR. Describe an outer globe DAF

with center C and radius CA; and inside this globe let two half-cycloids

AQ and AS be described by means of a wheel whose diameter is AO, and

let these two half-cycloids touch the inner globe at Q and S and meet the

outer globe in A. Let a body T hang from the point A by a thread APT
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equal to the length AR, and let this body T oscillate between the two half-

cycloids AQ and AS in such a way that each time the pendulum departs

from the perpendicular AR, the upper part AP of the thread comes into

contact with that half-cycloid APS toward which the motion is directed, and

is bent around it as an obstacle, while the other part PT of the thread, to

which the half-cycloid is not yet exposed, stretches out in a straight line; then

the weight T will oscillate in the given cycloid QRS. Q.E.F.

For let the thread PT meet the cycloid QRS in T and the circle QOS in

V, and draw CV; and from the end-points P and T of the straight part PT

of the thread, erect BP and TW perpendicular to PT, meeting the straight

line CV in B and W. It is evident, from the construction and the generation

of the similar figures AS and SR, that the perpendiculars PB and TW cut

off from CV the lengths VB and VW equal respectively to OA and OR, the

diameters of the wheels. Therefore, TP is to VP (which is twice the sine of

the angle VBP, where VzBV is the radius) as BW to BV, or AO + OR to

AO, that is (since CA is proportional to CO, CO to CR, and by separation

[or dividendo] AO to OR), as CA + CO to CA, or, if BV is bisected in E,

as 2CE to CB. Accordingly (by prop. 49, corol. 1), the length of the straight

part PT of the thread is always equal to the arc PS of the cycloid, and the

whole thread APT is always equal to the half-arc APS of the cycloid, that
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is (by prop. 49, corol. 2), to the length AR. And therefore, conversely, if the

thread always remains equal to the length AR, point T will move in the

given cycloid QRS. Q.E.D.

COROLLARY. The thread AR is equal to the half-cycloid AS and thus has

the same ratio to the semidiameter AC of the outer globe that the half-cycloid

SR, similar to it, has to the semidiameter CO of the inner globe.

Proposition 51 If a centripetal force tending from all directions to the center C of a globe is in

Theorem 18 each individual place as the distance of that place from the center; and if, under

the action of this force alone, the body T oscillates (in the way just described)

in the perimeter of the cycloid QRS; then I say that the times of the oscillations,

however unequal the oscillations may be, will themselves be equal.

For let the perpendicular CX fall to the indefinitely produced tangent

TW of the cycloid and join CT. Now the centripetal force by which the

body T is impelled toward C is as

the distance CT, and CT may be

resolved (by corol. 2 of the laws)

into the components CX and TX,

of which CX (by impelling the

body directly from P) stretches the

thread PT and is wholly nullified

by the resistance of the thread and

produces no other effect, while the

other component TX (by urging

the body transversely or toward X)

directly accelerates the motion of

the body in the cycloid; hence it

is manifest that the body's accel-

eration, which is proportional to

this accelerative force, is at each

individual moment as the length TX, that is (because CV and WV—and

TX and TW, proportional to them—are given), as the length TW, that is

(by prop. 49, corol. 1), as the length of the arc of the cycloid TR. Therefore,

if the two pendulums APT and Apt are drawn back unequally from the

perpendicular [or vertical] AR and are let go simultaneously, their accelera-

tions will always be as the respective arcs to be described TR and rR. But
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the parts of these arcs described at the beginning of the motion are as the

accelerations, that is, as the whole arcs to be described at the beginning,

and therefore the parts that remain to be described and the subsequent

accelerations proportional to these parts are also as the whole arcs, and so on.

Therefore the accelerations—and hence the velocities generated, the parts of

the arcs described with these velocities, and the parts to be so described—are

always as the whole arcs; and therefore the parts to be described, preserving

a given ratio to one another, will vanish simultaneously, that is, the two

oscillating bodies will arrive at the same time at the perpendicular [or

vertical] AR. And since, conversely, the ascents of the pendulums, made

from the lowest place R through the same cycloidal arcs with a reverse

motion, are retarded in individual places by the same forces by which their

descents were accelerated, it is evident that the velocities of the ascents and

descents made through the same arcs are equal and hence occur in equal

times; and therefore, since the two parts RS and RQ of the cycloid, each

lying on a different side of the perpendicular [or vertical], are similar and

equal, the two pendulums will always make their whole oscillations as well

as their half-oscillations in the same times. Q.E.D.

COROLLARY. The force by which body T is accelerated or retarded in

any place T of the cycloid is to the total weight of body T in the highest

place S or Q as the arc TR of the cycloid to its arc SR or QR.

To determine both the velocities of pendulums in individual places and the times Proposition 52

in which complete oscillations, as well as the separate parts of oscillations, are Problem 34

completed.

With any center G and with a radius GH equal to the arc RS of the

cycloid, describe the semicircle HKM bisected by the semidiameter GK. And

if a centripetal force proportional to the distances of places from the center

tends toward that center G, and if in the perimeter HIK that force is equal

to the centripetal force in the perimeter of the globe QOS tending toward

its center, and if, at the same time that the pendulum T is let go from its

highest place S, some other body L falls from H to G; then, since the forces

by which the bodies are urged are equal at the beginning of the motion, and

are always proportional to the spaces TR and LG which are to be described,

and are therefore equal in the places T and L if TR and LG are equal, it

is evident that the two bodies describe the equal spaces ST and HL at the
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beginning of the motion and thus will proceed thereafter to be equally urged

and to describe equal spaces. Therefore (by prop. 38), the time in which

the body describes the arc ST is to the time of one oscillation as the arc

HI (the time in which the body H will reach L) to the semiperiphery HKM

(the time in which the body H will reach M). And the velocity of the pendulum

bob at the place T is to its velocity at the lowest place R (that is, the velocity

of body H in the place L to its velocity in the place G, or the instantaneous

increment of the line HL to the instantaneous increment of the line HG,

where the arcs HI and HK increase with a uniform flow) as the ordinate

LI to the radius GK, or as ^/(SR2 — TR2) to SR. Hence, since in unequal

oscillations arcs proportional to the total arcs of the oscillations are described

in equal times, both the velocities and the arcs described in all oscillations

universally can be found from the given times. As was first to be found.

Now let simple pendulums oscillate in different cycloids described within

different globes, whose absolute forces are also different; and if the absolute

force of any globe QOS is called V, the accelerative force by which the pen-

dulum is urged in the circumference of this globe, when it begins to move

directly toward its center, will be jointly as the distance of the pendulum bob

from that center and the absolute force of the globe, that is, as CO x V.

Therefore the line-element HY (which is as this accelerative force CO x V)

will be described in a given time; and if the normal YZ is erected so as to

meet the circumference in Z, the nascent arc HZ will denote that given time.

But this nascent arc HZ is as the square root of the rectangle GH x HY, and

thus as ^/(GH x CO x V). Hence the time of a complete oscillation in the
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cycloid QRS (since it is directly as the semiperiphery HKM, which denotes

that complete oscillation, and inversely as the arc HZ, which similarly denotes

the given time) will turn out to be as GH directly and ^/(GH x CO x V)
/ SR

inversely, that is, because GH and SR are equal, as / , or (by
/ AR

prop. 50, corol.) as / . Therefore the oscillations in all globes and
y /\v~>» x v

cycloids, made with any absolute forces whatever, are as the square root of

the length of the thread directly and as the square root of the distance be-

tween the point of suspension and the center of the globe inversely and also

as the square root of the absolute force of the globe inversely. Q.E.I.

COROLLARY 1. Hence also the times of bodies oscillating, falling, and

revolving can be compared one with another. For if the diameter of the

wheel by which a cycloid is described within a globe is made equal to the

semidiameter of the globe, the cycloid will turn out to be a straight line

passing through the center of the globe, and the oscillation will now be a

descent and subsequently an ascent in this straight line. Hence the time of

the descent from any place to the center is given, as well as the time (equal

to that time of descent) in which a body, by revolving uniformly about the

center of the globe at any distance, describes a quadrantal arc. For this time

(by the second case [that is, according to the second paragraph above]) is to

COROLLARY 2. Hence also there follows what Wren and Huygens dis-

covered about the common cycloid. For if the diameter of the globe is in-

creased indefinitely, its spherical surface will be changed into a plane, and the

centripetal force will act uniformly along lines perpendicular to this plane,

and our cycloid will turn into a common cycloid. But in that case the length

of the arc of the cycloid between that plane and the describing point will

come out equal to four times the versed sine of half of the arc of the wheel

between that same plane and the describing point, as Wren discovered; and

a pendulum between two cycloids of this sort will oscillate in a similar and

equal cycloid in equal times, as Huygens demonstrated. But also the descent

of heavy bodies during the time of one oscillation will be the descent which

Huygens indicated.

Moreover, the propositions that we have demonstrated fit the true con-

stitution of the earth, insofar as wheels, moving in the earth's great circles,

i n v e r s e l y ,  t h a t  i s ,  b e c a u s e  G H  a n d  S R  a r e  e q u a l ,  a s  /  ,  o r  ( b y

(by the second case [that is, according to the second paragraph above]) is 
( b y  t h e  s e c o n d  c a s e  [ t h a t  i s ,  a c c o r d i n g  t o  t h e  s e c o n d  p a r a g r a p h  a b o v e ] )  i s  t o

( b y  t h e  s e c o n d  c a s e  [ t h a t  i s ,  a c c o r d i n g  t o  t h e  s e c o n d  p a r a g r a p h  a b o v e ] )  i s  t o
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describe cycloids outside this globe by the motion of nails fastened in their

perimeters; and pendulums suspended lower down in mines and caverns of

the earth must oscillate in cycloids within globes in order that all their oscilla-

tions may be isochronous. For gravity (as will be shown in book 3) decreases

in going upward from the surface of the earth as the square of the distance

from the earth's center, and in going downward from the surface is as the

distance from that center.

Proposition 53 Granting the quadratures of curvilinear figures, it is required to find the forces by

Problem 35 whose action bodies moving in given curved lines will ma^e oscillations that are

always isochronous.

Let a body T oscillate in any

curved line STRQ whose axis is AR

passing through the center of forces C.

Draw TX touching that curve in any

place T of the body, and on this tan-

gent TX take TY equal to the arc TR.

[This may be done] since the length

of that arc can be known from the

quadratures of figures by commonly

used methods. From point Y draw the

straight line YZ perpendicular to the

tangent. Draw CT meeting the perpen-

dicular in Z, and the centripetal force

will be proportional to the straight line

TZ. Q.E.I.

For if the force by which the body

is drawn from T toward C is represented by the straight line TZ taken

proportional to it, this will be resolved into the forces TY and YZ, of which

YZ, by drawing the body along the length of the thread PT, does not change

its motion at all, while the other force TY directly accelerates or directly re-

tards its motion in the curve STRQ. Accordingly, since this force is as the

projection TR to be described, the body's accelerations or retardations in

describing proportional parts of two oscillations (a greater and a lesser oscil-

lation) will always be as those parts, and will therefore cause those parts to

be described simultaneously. And bodies that in the same time describe parts
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always proportional to the wholes will describe the wholes simultaneously.

Q.E.D.

COROLLARY 1. Hence, if body T, hanging by a rectilinear thread AT

from the center A, describes the circular arc STRQ and meanwhile is urged

downward along parallel lines by some force that

is to the uniform force of gravity as the arc TR

to its sine TN, the times of any single oscillations

will be equal. For, because TZ and AR are paral-

lel, the triangles ATN and ZTY will be similar;

and therefore TZ will be to AT as TY to TN;

that is, if the uniform force of gravity is repre-

sented by the given length AT, the force TZ, by

the action of which the oscillations will turn out

to be isochronous, will be to the force of gravity AT as the arc TR (equal to

TY) to the sine TN of that arc.

COROLLARY 2. And therefore in [pendulum] clocks, if the forces im-

pressed by the mechanism upon the pendulum to maintain the motion can

be compounded with the force of gravity in such a way that the total force

downward is always as the line that arises from dividing the rectangle of

the arc TR and the radius AR by the sine TN, all the oscillations will be

isochronous.

Granting the quadratures of curvilinear figures, to find the times in which bodies Proposition 54

under the action of any centripetal force will descend and ascend in any curved Problem 36

lines described in a plane passing through the center of forces.

Let a body descend from any place S through any curved line ST^R

given in a plane passing through the center of forces C. Join CS and divide

it into innumerable equal parts, and let D*/ be some one of those parts. With

center C and radii CD and C<^, describe the circles DT and dt, meeting the

curved line ST/R in T and t. Then, since both the law of centripetal force

and the height CS from which the body has fallen are given, the velocity

of the body at any other height CT will be given (by prop. 39). Moreover,

the time in which the body describes the line-element Tt is as the length

of this line-element (that is, as the secant of the angle /TC) directly and as

the velocity inversely. Let the ordinate DN be proportional to this time and

perpendicular to the straight line CS through point D; then, because Dd is
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given, the rectangle Dd x DN, that is,

the area DNnd, will be proportional

to that same time. Therefore if PN« is

the curved line that point N continu-

ally traces out, aand its asymptote is the

straight line SQ standing perpendicu-

larly upon the straight line CS,a the area

SQPND will be proportional to the time

in which the body, by descending, has

described the line ST; and accordingly,

when that area has been found, the time

will be given. Q.E.I.

Proposition 55 If a body moves in any curved surface whose axis passes through a center of

Theorem 19 forces, and a perpendicular is dropped from the body to the axis, and a straight

line parallel and equal to the perpendicular is drawn from any given point of the

axis; I say that the parallel will describe an area proportional to the time.

Let BKL be the curved surface, T the body revolving in it, STR the

trajectory which the body de-

scribes in it, S the beginning of

the trajectory, OMK the axis of

the curved surface, TN the per-

pendicular straight line dropped

from the body to the axis; and let

OP be the straight line parallel

and equal to TN and drawn

from a point O that is given in

the axis, AP the path described

by point P in the plane AOP

of the revolving line OP, A

the beginning of the projection

(corresponding to point S); and

let TC be a straight line drawn

aa. A clarification by Pemberton after he had called Newton's attention to the incorrect diagrams in

eds. 1 and 2 (cf. The Mathematical Papers of Isaac Newton, ed. D. T. Whiteside [Cambridge: Cambridge

University Press, 1967-1981], 6:409, nn. 308-309).
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from the body to the center, TG the part of TC that is proportional to

the centripetal force by which the body is urged toward the center C, TM

a straight line perpendicular to the curved surface, TI the part of TM

proportional to the force of pressure by which the body urges the surface

and is in turn urged by the surface toward M; and let PTF be a straight line

parallel to the axis and passing through the body, and GF and IH straight

lines dropped perpendicularly from the points G and I to the parallel

PHTF. I say now that the area AOP, described by the radius OP from the

beginning of the motion, is proportional to the time. For the force TG (by

corol. 2 of the laws) is resolved into the forces TF and FG, and the force

TI into the forces TH and HI. But the forces TF and TH, by acting along

the line PF perpendicular to the plane AOP, change the body's motion only

insofar as it is perpendicular to this plane. And therefore the body's motion,

insofar as it takes place in the position of the plane—that is, the motion of

point P, by which the projection AP of the trajectory is described in this

plane—is the same as if the forces TF and TH were taken away and the

body were acted on by the forces FG and HI alone; that is, it is the same

as if the body were to describe the curve AP in the plane AOP under the

action of a centripetal force tending toward the center O and equal to the

sum of the forces FG and HI. But by the action of such a force the area

AOP is (by prop. 1) described proportional to the time.3 Q.E.D.

COROLLARY. By the same argument, if a body, acted on by forces tending

toward two or more centers in any one given straight line CO, described any

curved line ST in free space, the area AOP would always be proportional to

the time.

Granting the quadratures of curvilinear figures, and given both the law of cen- Proposition 56

tripetal force tending toward a given center and a curved surface whose axis passes Problem 37

through that center, it is required to find the trajectory that a body will describe

in that same surface when it has set out from a given place with a given velocity,

in a given direction in that surface.

Assuming the same constructions as in prop. 55, let body T go forth

from the given place S, along a straight line given in position, in the required

a. In this proposition, Newton's "vestigium," literally, "a trace," has been translated as "projection,"

following D. T. Whiteside.
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trajectory ST,R, and let the pro-

jection of this trajectory in the

plane BLO be AP. And since the

velocity of the body is given at

the height SC, its velocity at any

other height TC will be given.

With this velocity, let the body in

a given minimally small time de-

scribe the particle Tt of its trajec-

tory, and let Pp be its projection

described in the plane AOP. Join

O/?, and let the projection (in the

plane AOP) of the little circle de-

scribed with center T and radius

Tt in the curved surface be the ellipse pQ. Then, because the little circle

Tt is given in magnitude, and its distance TN or PO from the axis CO is

given, the ellipse pQ will be given in species and in magnitude, as well as

in its position with respect to the straight line PO. And since the area POp

is proportional to the time and therefore given because the time is given, the

angle POp will be given. And hence the common intersection p of the ellipse

and the straight line Op will be given, along with the angle OPp in which

the projection APp of the trajectory cuts the line OP. And accordingly (by

consulting prop. 41 with its corol. 2) the way of determining the curve APp

is readily apparent. Then, erecting perpendiculars to the plane AOP one by

one, from the points P of the projection, so as to meet the curved surface in

T, the points T of the trajectory will be given one by one. Q.E.I.
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S E C T I O N 11

The motion of bodies drawn to one another by centripetal forces

Up to this point, I have been setting forth the motions of bodies attracted

toward an immovable center, such as, however, hardly exists in the natural

world. For attractions are always directed toward bodies, and—by the third

law—the actions of attracting and attracted bodies are always mutual and

equal; so that if there are two bodies, neither the attracting nor the attracted

body can be at rest, but both (by corol. 4 of the laws) revolve about a common

center of gravity as if by a mutual attraction; and if there are more than two

bodies that either are all attracted by and attract a single body or all attract

one another, these bodies must move with respect to one another in such a

way that the common center of gravity either is at rest or moves uniformly

straight forward. For this reason I now go on to set forth the motion of

bodies that attract one another, considering centripetal forces as attractions,

although perhaps—if we speak in the language of physics—they might more

truly be called impulses. For here we are concerned with mathematics; and

therefore, putting aside any debates concerning physics, we are using familiar

language so as to be more easily understood by mathematical readers.

Two bodies that attract each other describe similar figures about their common Proposition 57

center of gravity and also about each other. Theorem 20

For the distances of these bodies from their common center of gravity

are inversely proportional to the masses of the bodies and therefore in a

given ratio to each other and, by composition [or componendo], in a given

ratio to the total distance between the bodies. These distances, moreover,

rotate about their common end-point with an equal angular motion because,

since they always lie in the same straight line, they do not change their

inclination toward each other. And straight lines that are in a given ratio

to each other and that rotate about their end-points with an equal angular

motion describe entirely similar figures about the end-points in planes that,

along with these end-points, either are at rest or move with any motion that

is not angular. Accordingly, the figures described by the rotation of these

distances are similar. Q.E.D.
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Proposition 58 If two bodies attract each other with any forces whatever and at the same time

Theorem 21 revolve about their common center of gravity, I say that by the action of the same

forces there can be described around either body if unmoved a figure similar and

equal to the figures that the bodies so moving describe around each other.

Let bodies S and P revolve about their common center of gravity C,

going from S to T and from P to Q. From a given point s let sp and sq be

drawn always equal and parallel to SP and TQ; then the curve pqv^ which

the point p describes by revolving around the motionless point s, will be

similar and equal to the curves that bodies S and P describe around each

other; and accordingly (by prop. 57) this curve pqv will be similar to the

curves ST and PQV, which the same bodies describe around their common

center of gravity C; and this is so because the proportions of the lines SC,

CP, and SP or sp to one another are given.

CASE 1. The common center of gravity C (by corol. 4 of the laws) either

is at rest or moves uniformly straight forward. Let us suppose first that it is

at rest, and at s and p let two bodies be placed, a motionless one at s and a

moving one at /?, similar and equal to bodies S and P. Then let the straight

lines PR and pr touch the curves PQ and pq in P and /?, and let CQ and

sq be produced to R and r. Then, because the figures CPRQ and sprq are

similar, RQ will be to rq as CP to sp and thus in a given ratio. Accordingly,

if the force with which body P is attracted toward body S, and therefore

toward the intermediate center C, were in that same given ratio to the force

with which body p is attracted toward center s, then in equal times these

forces would always attract the bodies from the tangents PR and pr to the

arcs PQ and pq through the distances RQ and rq proportional to them; and

therefore the latter force would cause body p to revolve in orbit in the curve

pqv, which would be similar to the curve PQV, in which the former force

causes body P to revolve in orbit, and the revolutions would be completed

in the same times. But those forces are not to each other in the ratio CP to
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sp but are equal to each other (because bodies S and s

and equal, and distances SP and sp are equal); therefore, the bodies will in

equal times be equally drawn away from the tangents; and therefore, for

the second body p to be attracted through the greater distance rq, a greater

time is required, which is as the square root of the distances, because (by

lem. 10) the spaces described at the very beginning of the motion are as the

squares of the times. Therefore, let the velocity of body p be supposed to be

to the velocity of body P as the square root of the ratio of the distance sp

to the distance CP, so that the arcs pq and PQ, which are in a simple ratio,

are described in times which are as the square roots of the distances. Then

bodies P and /?, being always attracted by equal forces, will describe around

the centers C and s at rest the similar figures PQV and pqv, of which pqv

is similar and equal to the figure that body P describes around the moving

body S. Q.E.D.

CASE 2. Let us suppose now that the common center of gravity, along

with the space in which the bodies are moving with respect to each other, is

moving uniformly straight forward; then (by corol. 6 of the laws) all motions

in this space will occur as in case 1. Hence the bodies will describe around

each other figures which are the same as before and which therefore will be

similar and equal to the figure pqv. Q.E.D.

COROLLARY 1. Hence (by prop. 10) two bodies, attracting each other with

forces proportional to their distance, describe concentric ellipses, both around

their common center of gravity and also around each other; and, conversely,

if such figures are described, the forces are proportional to the distance.

COROLLARY 2. And (by props. 11, 12, and 13) two bodies, under the

action of forces inversely proportional to the square of the distance, describe—

around their common center of gravity and also around each other—conies

having their focus in that center about which the figures are described. And,

conversely, if such figures are described, the centripetal forces are inversely

proportional to the square of the distance.

COROLLARY 3. Any two bodies revolving in orbit around a common

center of gravity describe areas proportional to the times, by radii drawn to

that center and also to each other.

The periodic time of two bodies S and P revolving about their common center of Proposition 59

gravity C is to the periodic time of one of the two bodies P, revolving in orbit Theorem 22
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about the other body S which is without motion, and describing a figure similar

and equal to the figures that the bodies describe around each other, as the square

root of the ratio of the mass of the second body S to the sum of the masses of the

bodies S + P.

For, from the proof of prop. 58, the times in which any similar arcs PQ

and pq are described are as the square roots of the distances CP and SP or

S + P [or, as ^/S to >/(S + P)]. And by composition [or componendo] the

sums of the times in which all the similar arcs PQ and pq are described, that

is, the whole times in which the whole similar figures are described, are in

that same ratio. Q.E.D.

Proposition 60 If two bodies S and P, attracting each other with forces inversely proportional to

Theorem 23 the square of the distance, revolve about a common center of gravity, I say that

the principal axis of the ellipse which one of the bodies P describes by this motion

about the other body S will be to the principal axis of the ellipse which the same

body P would be able to describe in the same periodic time about the other body

S at rest as the sum of the masses of the two bodies S + P is to the first of two

mean proportionals between this sum and the mass of the other body S.a

For if the ellipses so described were equal to each other, the periodic

times would (by prop. 59) be as the square root of the mass of body S is

to the square root of the sum of the masses of the bodies S + P. Let the

periodic time in the second ellipse be decreased in this same ratio, and then

the periodic times will become equal; but the principal axis of the second

ellipse (by prop. 15) will be decreased as the 3/2 power of the former ratio,

that is, in the ratio of which the ratio S to S + P is the cube; and therefore

the principal axis of the second ellipse will be to the principal axis of the first

ellipse as the first of two mean proportionals between S + P and S to S + P.

And inversely, the principal axis of the ellipse described about the body in

motion will be to the principal axis of the ellipse described about the body

not in motion as S + P to the first of two mean proportionals between S + P

and S. Q.E.D.

Proposition 61 If two bodies, attracting each other with any tynd of forces and not otherwise acted

Theorem 24 on or impeded, move in any way whatever, their motions will be the same as if

a. That is, as (S + P) to the cube root of S x (S + P)2.

and pq are described are as the square roots of the distances CP and SP or
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they were not attracting each other but were each being attracted with the same

forces by a third body set in their common center of gravity. And the law of the

attracting forces will be the same with respect to the distance of the bodies from

that common center and with respect to the total distance between the bodies.

For the forces with which the bodies attract each other, in tending to-

ward the bodies, tend toward a common center of gravity between them

and therefore are the same as if they were emanating from a body between

them. Q.E.D.

And since there is given the ratio of the distance of either of the two

bodies from that common center to the distance between the bodies, there

will also be given the ratio of any power of one such distance to the same

power of the other distance, as well as the ratio that any quantity derived

in any manner from one such distance together with given quantities has

to another quantity derived in the same manner from the other distance

together with the same number of given quantities having that given ratio of

distances to the former ones. Accordingly, if the force with which one body

is attracted by the other is directly or inversely as the distance of the bodies

from each other or as any power of this distance or finally as any quantity

derived in any manner from this distance and given quantities, the same

force with which the same body is attracted to the common center of gravity

will be likewise directly or inversely as the distance of the attracted body

from that common center or as the same power of this distance or finally

as a quantity derived in the same manner from this distance and analogous

given quantities. That is, the law of the attracting force will be the same with

respect to either of the distances. Q.E.D.

To determine the motions of two bodies that attract each other with forces inversely Proposition 62

proportional to the square of the distance and are let go from given places.

These bodies will (by prop. 61) move just as if they were being attracted

by a third body set in their common center of gravity; and by hypothesis, that

center will be at rest at the very beginning of the motion and therefore (by

corol. 4 of the laws) will always be at rest. Accordingly, the motions of the

bodies are (by prop. 36) to be determined just as if they were being urged by

forces tending toward that center, and the motions of the bodies attracting

each other will then be known. Q.E.I.

Problem 38
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Proposition 63 To determine the motions of two bodies that attract each other with forces inversely

Problem 39 proportional to the square of the distance and that set out from given places with

given velocities along given straight lines.

From the given motions of the bodies at the beginning the uniform

motion of the common center of gravity is given, as well as the motion of the

space that moves along with this center uniformly straight forward, and also

the initial motions of the bodies with respect to this space. Now (by corol. 5

of the laws and prop. 61), the subsequent motions take place in this space just

as if the space itself, along with that common center of gravity, were at rest,

and as if the bodies were not attracting each other but were being attracted

by a third body situated in that center. Therefore the motion of either body

in this moving space, setting out from a given place with a given velocity

along a given straight line and pulled by a centripetal force tending toward

that center, is to be determined (by props. 17 and 37), and at the same time

the motion of the other body about the same center will be known. This

motion is to be compounded with that uniform progressive motion (found

above) of the system of the space and bodies revolving in it, and the absolute

motion of the bodies in an unmoving space will be known. Q.E.I.

Proposition 64 If the forces with which bodies attract one another increase in the simple ratio of

Problem 40 the distances from the centers, it is required to find the motions of more than two

bodies in relation to one another.

Suppose first that two bodies T and L have a common center of gravity

D. These bodies will (by prop. 58, corol. 1) describe ellipses that have their

centers at D and that have magnitudes which become known by prop. 10.

Now let a third body S attract the first two bodies T and L with ac-

celerative forces ST and SL, and let it be attracted by those bodies in turn.

The force ST (by corol. 2 of the

laws) is resolved into forces SD

and DT, and the force SL into

forces SD and DL. Moreover, the

forces DT and DL, which are as

their sum TL and therefore as

the accelerative forces with which

bodies T and L attract each other, when added respectively to those forces

of bodies T and L, compose forces proportional to the distances DT and
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DL, as before, but greater than those former forces, and therefore (by prop.

10, corol. 1, and prop. 4, corols. 1 and 8) they cause those bodies to describe

ellipses as before, but with a swifter motion. The remaining accelerative

forces, each of which is SD, by attracting those bodies T and L equally

and along lines TI and LK (which are parallel to DS) with motive actions

SD x T and SD X L (which are as the bodies), do not at all change the

situations of those bodies in relation to one another, but make them equally

approach line IK, which is to be conceived as drawn through the middle of

body S, perpendicular to the line DS. That approach to line IK, however,

will be impeded by causing the system of bodies T and L on one side and

body S on the other to revolve in orbit with just the right velocities about

a common center of gravity C. Body S describes an ellipse about that same

point C with such a motion, because the sum of the motive forces SD x T

and SD x L, which are proportional to the distance CS, tends toward the

center C; and because CS and CD are proportional, point D will describe

a similar ellipse directly opposite. But bodies T and L, being attracted

respectively by motive forces SD x T and SD x L equally and along the

parallel lines TI and LK (as has been said), will (by corols. 5 and 6 of the

laws) proceed to describe their own ellipses about the moving center D, as

before. Q.E.I.

Now let a fourth body V be added, and by a similar argument it will be

concluded that this point and point C describe ellipses about B, the common

center of gravity of all the bodies, while the motions of the former bodies T,

L, and S about centers D and C remain the same as before, but accelerated.

And by the same method it will be possible to add more bodies. Q.E.I.

These things are so, even if bodies T and L attract each other with accel-

erative forces that are greater or less than those by which they attract the rest

of the bodies in proportion to the distance. Let the mutual accelerative at-

tractions of all the bodies to one another be as the distances multiplied by the

attracting bodies; then, from what has gone before, it will be easily deduced

that all the bodies describe different ellipses in equal periodic times about B,

the common center of gravity of them all, in a motionless plane. Q.E.I.

More than two bodies whose forces decrease as the squares of the distances from Proposition 65

their centers are able to move with respect to one another in ellipses and, by radii Theorem 25

drawn to the foci, are able to describe areas proportional to the times very nearly.
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In prop. 64 the case was demonstrated in which the several motions

occur exactly in ellipses. The more the law of force departs from the law

there supposed, the more the bodies will perturb their mutual motions; nor

can it happen that bodies will move exactly in ellipses while attracting one

another according to the law here supposed, except by maintaining a fixed

proportion of distances one from another. In the following cases, however,

the orbits will not be very different from ellipses.

CASE 1. Suppose that several lesser bodies revolve about some very much

greater one at various distances from it, and that absolute forces proportional

to these bodies [i.e., their masses] tend toward each and every one of them.

Then, since the common center of gravity of them all (by corol. 4 of the laws)

either is at rest or moves uniformly straight forward, let us imagine that the

lesser bodies are so small that the greater body never is sensibly distant from

this center. In this case, the greater body will—without any sensible error—

either be at rest or move uniformly straight forward, while the lesser ones

will revolve about this greater one in ellipses and by radii drawn to it will

describe areas proportional to the times, except insofar as there are errors

introduced either by a departure of the greater body from that common

center of gravity or by the mutual actions of the lesser bodies on one another.

The lesser bodies, however, can be diminished until that departure and the

mutual actions are less than any assigned values, and therefore until the orbits

square with ellipses and the areas correspond to the times without any error

that is not less than any assigned value. Q.E.O.

CASE 2. Let us now imagine a system of lesser bodies revolving in the

way just described around a much greater one, or any other system of two

bodies revolving around each other, to be moving uniformly straight forward

and at the same time to be urged sideways by the force of another very much

greater body, situated at a great distance. Then, since the equal accelerative

forces by which the bodies are urged along parallel lines do not change the

situations of the bodies in relation to one another, but cause the whole system

to be transferred simultaneously, while the motions of the parts with respect

to one another are maintained; it is manifest that no change whatsoever of

the motion of the bodies attracted among themselves will result from their

attractions toward the greater body, unless such a change comes either from

the inequality of the accelerative attractions or from the inclination to one

another of the lines along which the attractions take place. Suppose, therefore,
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that all the accelerative attractions toward the greater body are with respect

to one another inversely as the squares of the distances; then by increasing

the distance of the greater body until the differences (with respect to their

length) among the straight lines drawn from this body to the other bodies

and their inclinations with respect to one another are less than any assigned

values, the motions of the parts of the system with respect to one another

will persevere without any errors that are not less than any assigned values.

And since, because of the slight distance of those parts from one another, the

whole system is attracted as if it were one body, that system will be moved

by this attraction as if it were one body; that is, by its center of gravity

it will describe about the greater body some conic (namely, a hyperbola or

parabola if the attraction is weak, an ellipse if the attraction is stronger)

and by a radius drawn to the greater body will describe areas proportional

to the times without any errors except the ones that may be produced by

the distances between the parts, and these are admittedly slight and may be

diminished at will. Q.E.O.

By a similar argument one can go on to more complex cases indefinitely.

COROLLARY 1. In case 2, the closer the greater body approaches to the

system of two or more bodies, the more the motions of the parts of the system

with respect to one another will be perturbed, because the inclinations to one

another of the lines drawn from this great body to those parts are now

greater, and the inequality of the proportion is likewise greater.

COROLLARY 2. But these perturbations will be greatest if the accelerative

attractions of the parts of the system toward the greater body are not to

one another inversely as the squares of the distances from that greater body,

especially if the inequality of this proportion is greater than the inequality of

the proportion of the distances from the greater body. For if the accelerative

force, acting equally and along parallel lines, in no way perturbs the motions

of the parts of the system with respect to one another, it will necessarily cause

a perturbation to arise when there is an inequality in its action, and such

perturbation will be greater or less according as this inequality is greater or

less. The excess of the greater impulses acting on some bodies, but not acting

on others, will necessarily change the situation of the bodies with respect to

one another. And this perturbation, added to the perturbation that arises from

the inclination and inequality of the lines, will make the total perturbation

greater.
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Proposition 66a

Theorem 26

COROLLARY 3. Hence, if the parts of this system—without any significant

perturbation—move in ellipses or circles, it is manifest that these parts either

are not urged at all (except to a very slight degree indeed) by accelerative

forces tending toward other bodies, or are all urged equally and very nearly

along parallel lines.

Let three bodies—whose forces decrease as the squares of the distances—attract

one another, and let the accelerative attractions of any two toward the third be

to each other inversely as the squares of the distances, and let the two lesser

ones revolve about the greatest. Then I say that if that greatest body is moved

by these attractions, the inner body [of the two revolving bodies] will describe

about the innermost and greatest body, by radii drawn to it, areas more nearly

proportional to the times and a figure more closely approaching the shape of an

ellipse (having its focus in the meeting point of the radii) than would be the case if

that greatest body were not attracted by the smaller ones and were at rest, or if it

were much less or much more attracted and were acted on either much less or much

more.

This is sufficiently clear from the demonstration of the second corollary

of prop. 65, but it is proved as follows by a more lucid and more generally

convincing argument.

CASE 1. Let the lesser bodies P and S revolve in the same plane about

a greatest body T, and let P describe the inner orbit PAB, and S the outer

orbit ESE. Let SK be the mean distance between bodies P and S, and let the

accelerative attraction of body P toward S at that mean distance be repre-

sented by that same line SK. Let SL be taken to SK as SK2 to SP2, and SL

will be the accelerative attraction of body P toward S at any distance SP. Join

PT, and parallel to it draw LM meeting ST in M; then the attraction SL

will be resolved (by corol. 2 of the laws) into attractions SM and LM. And

a. In ed. 1, Newton used a different system of letters. In imitation of the usual form of Copernican

diagram, the central body was labeled S (for "Sol," the sun) and the encircling body was P (for "Planeta,"

or planet). The next or outer body continued the sequence from P to Q. In ed. 2, as in ed. 3, the central

body is T (suggesting "Terra" for the earth), the encircling body is still P (but now secondary planet or

planetary satellite), while the outermost or perturbing body is S (suggesting "Sol"). In this way, in ed. 2

and ed. 3, Newton quite properly alerts the reader to the fact that he is basically analyzing mathematically

a form of the three-body problem, exemplified by the moon moving in orbit around the earth while being

perturbed by the gravitational force of the distant sun. The corollaries will not only serve for the discussion

of the moon's motion in book 3 but also be used in determining the mass of the moon in book 3, prop. 37,

corol. 3.
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thus body P will be urged by a threefold accelerative force. One such force

tends toward T and arises from the mutual attraction of bodies T and P.

By this force alone (whether T is motionless or is moved by this attraction),

body P must, by a radius PT, describe around body T areas proportional to

the times and must also describe an ellipse whose focus is in the center of

body T. This is clear from prop. 11 and prop. 58, corols. 2 and 3.

The second force is that of the attraction LM, which (since it tends from

P to T) will, when added to the first of these forces, coincide with it and

will thus cause areas to be described that are still proportional to the times,

by prop. 58, corol. 3. But since this force is not inversely proportional to

the square of the distance PT, it will, together with the first force, com-

pose a force differing from this proportion—and the more so, the greater

the proportion of this force is to that first force, other things being equal.

Accordingly, since (by prop. 11 and by prop. 58, corol. 2) the force by which

an ellipse is described about the focus T must tend toward that focus and be

inversely proportional to the square of the distance PT, that composite force,

by differing from this proportion, will cause the orbit PAB to deviate from

the shape of an ellipse having its focus in T, and the more so the greater the

difference from this proportion; and the difference from this proportion will

be greater according as the proportion of the second force LM to the first

force is greater, other things being equal.

But now the third force SM, by attracting body P along a line parallel to

ST, will, together with the former forces, compose a force which is no longer

directed from P to T and which deviates from this direction the more, the

greater the proportion of this third force is to the former forces, other things

being equal; and this compound force therefore will make body P describe,

by a radius TP, areas no longer proportional to the times and will make the

divergence from this proportionality be the greater, the greater the proportion

of this third force is to the other forces. This third force will increase the
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deviation of the orbit PAB from the aforesaid elliptical shape for two reasons:

not only is this force not directed from P to T, but also it is not inversely

proportional to the square of the distance PT. Once these things have been

understood, it is manifest that the areas will be most nearly proportional to

the times when this third force is least, the other forces remaining the same

as they were; and that the orbit PAB approaches closest to the aforesaid

elliptical shape when both the second force and the third (but especially the

third force) are least, the first force remaining the same as it was.

Let the accelerative attraction of body T toward S be represented by line

SN; and if the accelerative attractions SM and SN were equal, they would, by

attracting bodies T and P equally and along parallel lines, not at all change

the situation of those two bodies with respect to each other. In this case, their

motions with respect to each other would (by corol. 6 of the laws) be the

same as it would be without these attractions. And for the same reason, if

the attraction SN were smaller than the attraction SM, it would take away

the part SN of the attraction SM, and only the part MN would remain, by

which the proportionality of the times and areas and the elliptical shape of the

orbit would be perturbed. And similarly, if the attraction SN were greater

than the attraction SM, the perturbation of the proportionality and of the

orbit would arise from the difference MN alone. Thus SM, the third attrac-

tion above, is always reduced by the attraction SN to the attraction MN, the

first and second attractions remaining completely unchanged; and therefore

the areas and times approach closest to proportionality, and the orbit PAB

approaches closest to the aforesaid elliptical shape, when the attraction MN

is either null or the least possible—that is, when the accelerative attractions

of bodies P and T toward body S approach as nearly as possible to equality,

in other words, when the attraction SN is neither null nor less than the least

of all the attractions SM, but is a kind of mean between the maximum and

minimum of all those attractions SM, that is, not much greater and not much

smaller than the attraction SK. Q.E.D.

CASE 2. Now let the lesser bodies P and S revolve about the greatest

body T in different planes; then the force LM, acting along a line PT situated

in the plane of orbit PAB, will have the same effect as before, and will not

draw body P away from the plane of its orbit. But the second force NM,

acting along a line that is parallel to ST (and therefore, when body S is

outside the line of the nodes, is inclined to the plane of orbit PAB), besides
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the perturbation of its motion in longitude, already set forth above, will

introduce a perturbation of the motion in latitude, by attracting body P out

of the plane of its orbit. And this perturbation, in any given situation of

bodies P and T with respect to each other, will be as the generating force

MN, and therefore becomes least when MN is least, that is (as I have already

explained), when the attraction SN is not much greater and not much smaller

than the attraction SK. Q.E.D.

COROLLARY 1. Hence it is easily gathered that if several lesser bodies

P, S, R, ... revolve about a greatest body T, the motion of the innermost

body P will be least perturbed by the attractions of the outer bodies when

the greatest body T is attracted and acted on as much by the other bodies

(according to the ratio of the accelerative forces) as the other bodies are by

one another.

COROLLARY 2. In a system of three bodies T, P, and S, if the accelerative

attractions of any two toward the third are to each other inversely as the

squares of the distances, body P will describe, by a radius PT, an area about

body T more swiftly near their conjunction A and their opposition B than

near the quadratures C and D. For every force by which body P is urged

and body T is not, and which does not act along line PT, accelerates or

retards the description of areas, according as its direction is forward and

direct [or in consequentia] or retrograde [or in antecedentia]. Such is the force

NM. In the passage of body P from C to A, this force is directed forward

[or in consequentia] and accelerates the motion; afterward, as far as D, it is

retrograde [or in antecedentia] and retards the motion; then forward up to

B, and finally retrograde in passing from B to C.

COROLLARY 3. And by the same argument it is evident that body P, other

things being the same, moves more swiftly in conjunction and opposition than

in the quadratures.
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COROLLARY 4. The orbit of body P, other things being the same, is more

curved in the quadratures than in conjunction and opposition. For swifter

bodies are deflected less from a straight path. And besides, in conjunction and

opposition the force KL, or NM, is opposite to the force with which body

T attracts body P and therefore diminishes that force, while body P will be

deflected less from a straight path when it is less urged toward body T.

COROLLARY 5. Accordingly, body P, other things being the same, will

recede further from body T in the quadratures than in conjunction and

opposition. These things are so if the motion of [i.e., change in] eccentricity

is neglected. For if the orbit of body P is eccentric, its eccentricity (as will

shortly be shown in corol. 9 of this proposition) will come out greatest when

the apsides are in the syzygies; and thus it can happen that body P, arriving

at the upper apsis, may be further away from body T in the syzygies than

in the quadratures.

COROLLARY 6. Since the centripetal force of the central body T, which

keeps body P in its orbit, is increased in the quadratures by the addition of

the force LM and is diminished in the syzygies by the subtraction of the force

KL and, because of the magnitude of the force KL [which is greater than

LM], is more diminished than increased; and since that centripetal force (by

prop. 4, corol. 2) is in a ratio compounded of the simple ratio of the radius

TP directly and the squared ratio of the periodic time inversely [i.e., the

force is directly as the radius and inversely as the square of the periodic

time], it is evident that this compound ratio is diminished by the action of

the force KL, and therefore that the periodic time (assuming the radius TP

of the orbit to remain unchanged) is increased as the square root of the ratio

in which that centripetal force is diminished. It is therefore further evident

that, assuming this radius to be increased or diminished, the periodic time

is increased more or diminished less than as the Vi power of this radius, by

prop. 4, corol. 6. If the force of the central body were gradually to weaken,

body P, attracted always less and less, would continually recede further and

further from the center T; and on the contrary, if the force were increased,

body P would approach nearer and nearer. Therefore, if the action of the

distant body S, whereby the force is diminished, is alternately increased and

diminished, radius TP will at the same time also be alternately increased and

diminished, and the periodic time will be increased and diminished in a ratio

compounded of the 3/2 power of the ratio of the radius and the square root
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of the ratio in which the centripetal force of the central body T is diminished

or increased by the increase or decrease of the action of the distant body S.

COROLLARY 7. From what has gone before, it follows also that with

respect to angular motion the axis of the ellipse described by body P, or

the line of the apsides, advances and regresses alternately, but nevertheless

advances more than it regresses and is carried forward [or in consequentia]

by the excess of its direct forward motion. For the force whereby body P is

urged toward body T in the quadratures, when the force MN vanishes, is

compounded of the force LM and the centripetal force with which body T

attracts body P. If the distance PT is increased, the first force LM is increased

in about the same ratio as this distance, and the latter force is decreased as

the square of that ratio, and so the sum of these forces is decreased in a less

than squared ratio of the distance PT, and therefore (by prop. 45, corol. 1)

causes the auge, or upper apsis, to regress. But in conjunction and opposition

the force whereby body P is urged toward body T is the difference between

the force by which body T attracts body P and the force KL; and that

difference, because the force KL is increased very nearly in the ratio of the

distance PT, decreases in a ratio of the distance PT that is greater than the

square of the distance PT, and so (by prop. 45, corol. 1) causes the upper

apsis to advance. In places between the syzygies and quadratures the motion

of the upper apsis depends on both of these causes jointly, so that according

to the excess of the one or the other it advances or regresses. Accordingly,

since the force KL in the syzygies is roughly twice as large as the force LM

in the quadratures, the excess will have the same sense as the force KL and

will carry the upper apsis forward [or in consequentia]. The truth of this

corollary and its predecessor will be easily understood by supposing that a

system of two bodies T and P is surrounded on all sides by more bodies S, S,

S, .. . that are in an orbit ESE. For by the actions of these bodies, the action
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of T will be diminished on all sides and will decrease in a ratio greater than

the square of the distance.

COROLLARY 8. Since, however, the advance or retrogression of the ap-

sides depends on the decrease of the centripetal force, a decrease occurring

in a ratio of the distance TP that is either greater or less than the square of

the ratio of the distance TP, in the passage of the body from the lower to

the upper apsis, and also depends on a similar increase in its return to the

lower apsis, and therefore is greatest when the proportion of the force in the

upper apsis to the force in the lower apsis differs most from the ratio of

the inverse squares of the distances, it is manifest that KL or NM — LM,

the force that subtracts, will cause the apsides to advance more swiftly in their

syzygies and that LM, the force that adds, will cause them to recede more

slowly in their quadratures. And because of the length of time in which the

swiftness of the advance or slowness of the retrogression is continued, this

inequality becomes by far the greatest.

COROLLARY 9. If a body, by the action of a force inversely proportional

to the square of its distance from a center, were to revolve about this center

in an ellipse, and if then, in its descent from the upper apsis or auge to the

lower apsis, that force—because of the continual addition of a new force—

were increased in a ratio that is greater than the square of the diminished

distance, it is manifest that that body, being always impelled toward the center

by the continual addition of that new force, would incline toward this center

more than if it were urged only by a force increasing as the square of the

diminished distance, and therefore would describe an orbit inside the elliptical

orbit and in its lower apsis would approach nearer to the center than before.

Therefore by the addition of this new force, the eccentricity of the orbit will

be increased. Now if, during the receding of the body from the lower to

the upper apsis, the force were to decrease by the same degrees by which

it had previously increased, the body would return to its former distance;

and so, if the force decreases in a greater ratio, the body, now attracted less,

will ascend to a greater distance, and thus the eccentricity of its orbit will be

increased still more. And therefore, if the ratio of the increase and decrease

of the centripetal force is increased in each revolution, the eccentricity will

always be increased; and contrariwise, the eccentricity will be diminished if

that ratio decreases.

222



P R O P O S I T I O N 66 223

Now, in the system of bodies T, P, and S, when the apsides of the orbit

PAB are in the quadratures, this ratio of the increase and decrease is least,

and it becomes greatest when the apsides are in the syzygies. If the apsides are

in the quadratures, the ratio near the apsides is smaller and near the syzygies

is greater than the squared ratio of the distances, and from that greater ratio

arises the forward or direct motion of the upper apsis, as has already been

stated. But if one considers the ratio of the total increase or decrease in the

forward motion between the apsides, this ratio is smaller than the squared

ratio of the distances. The force in the lower apsis is to the force in the upper

apsis in a ratio that is less than the squared ratio of the distance of the upper

apsis from the focus of the ellipse to the distance of the lower apsis from that

same focus; and conversely, when the apsides are in the syzygies, the force in

the lower apsis is to the force in the upper apsis in a ratio greater than that

of the squares of the distances.

For the forces LM in the quadratures, added to the forces of body T,

compose forces in a smaller ratio, and the forces KL in the syzygies, sub-

tracted from the forces of body T, leave forces in a greater ratio. Therefore,

the ratio of the total decrease and increase during the passage between ap-

sides is least in the quadratures and greatest in the syzygies; and therefore,

during the passage of the apsides from quadratures to syzygies, this ratio is

continually increased and it increases the eccentricity of the ellipse; and in

the passage from syzygies to quadratures, this ratio is continually diminished

and it diminishes the eccentricity.

COROLLARY 10. To give an account of the errors in latitude, let us imag-

ine that the plane of the orbit EST remains motionless; then from the cause

of errors just expounded, it is manifest that of the forces NM and ML (which

are the entire cause of these errors) the force ML, always acting in the plane

of the orbit PAB, never perturbs the motions in latitude. It is likewise man-

ifest that when the nodes are in the syzygies, the force NM, also acting in
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the same plane of the orbit, does not perturb these motions; but when the

nodes are in the quadratures, this force perturbs those motions to the great-

est extent, and—by continually attracting body P away from the plane of its

orbit—diminishes the inclination of the plane during the passage of the body

from quadratures to syzygies and increases that inclination in turn during the

passage from syzygies to quadratures. Hence it happens that when the body

is in the syzygies the inclination turns out to be least of all, and it returns

approximately to its former magnitude when the body comes to the next

node. But if the nodes are situated in the octants after the quadratures, that

is, between C and A, or D and B, it will be understood from what has just

been explained that in the passage of body P from either node to a position

90 degrees from there, the inclination of the plane is continually diminished;

then, in its passage through the next 45 degrees to the next quadrature, the

inclination is increased; and afterward, in its next passage through another

45 degrees to the next node, it is diminished. Therefore, the inclination is

diminished more than it is increased, and hence it is always less in each

successive node than in the immediately preceding one. And by a similar

reasoning, it follows that the inclination is increased more than it is dimin-

ished when the nodes are in the other octants between A and B, or B and

C. Thus, when the nodes are in the syzygies, the inclination is greatest of all.

In the passage of the nodes from syzygies to quadratures, the inclination is

diminished in each appulse of the body to the nodes, and it becomes least of

all when the nodes are in the quadratures and the body is in the syzygies;

then it increases by the same degrees by which it had previously decreased,

and at the appulse of the nodes to the nearest syzygies it returns to its original

magnitude.

COROLLARY 11. When the nodes are in the quadratures, the body P is

continually attracted away from the plane of its orbit in the direction toward

S, during its passage from the node C through the conjunction A to the

node D, and in the opposite direction in its passage from node D through
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opposition B to node C; hence it is manifest that the body, in its motion

from node C, continually recedes from the first plane CD of its orbit until it

has reached the next node; and therefore at this node, being at the greatest

distance from that first plane CD, it passes through EST, the plane of the

orbit, not in the other node D of that plane but in a point that is closer to

body S and which accordingly is a new place of the node, behind its former

place. By a similar argument the nodes will continue to recede in the passage

of the body from this node to the next node. Hence the nodes, when situated

in the quadratures, continually recede; in the syzygies, when the motion in

latitude is not at all perturbed, the nodes are at rest; in the intermediate places,

since they share in both conditions, they recede more slowly; and therefore,

since the nodes always either have a retrograde motion or are stationary, they

are carried backward [or in antecedentia] in each revolution.

COROLLARY 12. All the errors described in these corollaries are slightly

greater in the conjunction of bodies P and S than in their opposition; and

this occurs because then the generating forces NM and ML are greater.

COROLLARY 13. And since the proportions in these corollaries do not

depend on the magnitude of the body S, all the preceding statements are

valid when the magnitude of body S is assumed to be so great that the

system of two bodies T and P will revolve about it. And from this increase

of body S, and consequently the increase of its centripetal force (from which

the errors of body P arise), all those errors will—at equal distances—come

out greater in this case than in the other, in which body S revolves around

the system of bodies P and T.

COROLLARY 14.b When body S is extremely far away, the forces NM

and ML are very nearly as the force SK and the ratio of PT to ST jointly

(that is, if both the distance PT and the absolute force of body S are given, as

ST3 inversely), and those forces NM and ML are the causes of all the errors

and effects that have been dealt with in the preceding corollaries; hence it is

manifest that all these effects—if the system of bodies T and P stays the same

and only the distance ST and the absolute force of body S are changed—are

very nearly in a ratio compounded of the direct ratio of the absolute force of

body S and the inverse ratio of the cube of the distance ST. Accordingly, if

the system of bodies T and P revolves about the distant body S, those forces

NM and ML and their effects will (by prop. 4, corols. 2 and 6) be inversely

b. For a gloss on this corollary see the Guide, §10.16.



as the square of the periodic time. And hence also, if the magnitude of body

S is proportional to its absolute force, those forces NM and ML and their

effects will be directly as the cube of the apparent diameter of the distant

body S when looked at from body T, and conversely. For these ratios are the

same as the above-mentioned compounded ratio.

COROLLARY 15. If the magnitudes of the orbits ESE and PAB are

changed, while their forms and their proportions and inclinations to each

other remain the same, and if the forces of bodies S and T either remain the

same or are changed in any given ratio, then these forces (that is, the force

of body T, by whose action body P is compelled to deflect from a straight

path into an orbit PAB; and the force of body S, by whose action that same

body P is compelled to deviate from that orbit) will always act in the same

way and in the same proportion; thus it will necessarily be the case that

all the effects will be similar and proportional and that the times for these

effects will be proportional as well—that is, all the linear errors will be as

the diameters of the orbits, the angular errors will be the same as before,

and the times of similar linear errors or of equal angular errors will be as

the periodic times of the orbits.

COROLLARY 16. And hence, if the forms of the orbits and their incli-

nation to each other are given, and the magnitudes, forces, and distances of

the bodies are changed in any way, then from the given errors and given

times of errors in one case there can be found the errors and times of errors

in any other case very nearly. This may be done more briefly, however, by

the following method. The forces NM and ML, other things remaining the

same, are as the radius TP, and their periodic effects are (by lem. 10, corol. 2)

jointly as the forces and the square of the periodic time of body P. These are

the linear errors of body P, and hence the angular errors as seen from the

center T (that is, the motions of the upper apsis and of the nodes, as well

as all the apparent errors in longitude and latitude) are in any revolution of

body P very nearly as the square of the time of revolution. Let these ratios

226 PROPOSITION 3 28l
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be compounded with the ratios of corol. 14; then in any system of bodies T,

P, and S, in which P revolves around T which is near to it and T revolves

around a distant S, the angular errors of body P, as seen from the center

T, will—in each revolution of that body P—be as the square of the peri-

odic time of body P directly and the square of the periodic time of body T

inversely. And thus the mean motion of the upper apsis will be in a given

ratio to the mean motion of the nodes, and each of the two motions will be

as the periodic time of body P directly and the square of the periodic time of

body T inversely. By increasing or decreasing the eccentricity and inclination

of the orbit PAB, the motions of the upper apsis and of the nodes are not

changed sensibly, except when the eccentricity and inclination are too great.

COROLLARY 17. Since, however, the line LM is sometimes greater and

sometimes less than the radius PT, let the mean force LM be represented by

that radius PT; then this force will be to the mean force SK or SN (which

can be represented by ST) as the length PT to the length ST. But the mean

force SN or ST by which body T is kept in its orbit around S is to the force

by which body P is kept in its orbit around T in a ratio compounded of the

ratio of the radius ST to the radius PT and the square of the ratio of the

periodic time of body P around T to the periodic time of body T around S.

And from the equality of the ratios [or ex aequo] the mean force LN is to

the force by which a body P is kept in its orbit around T (or by which the

same body P could revolve in the same periodic time around any immobile

point T at a distance PT) in the same squared ratio of the periodic times.

Therefore, if the periodic times are given, along with the distance PT, the

mean force LM is also given; and if the force LM is given, the force MN is

also given very nearly by the proportion of lines PT and MN.

COROLLARY 18. Let us imagine many fluid bodies to move around body

T at equal distances from it according to the same laws by which body P

revolves around the same body T; then let a ring—fluid, round, and concen-

tric to body T—be produced by making these individual fluid bodies come

into contact with one another; these individual parts of the ring, carrying

out all their motions according to the law of body P, will approach closer

to body T and will move more swiftly in the conjunction and opposition

of themselves and body S than in the quadratures. The nodes of this ring,

or its intersections with the plane of the orbit of body S or T, will be at

rest in the syzygies, but outside the syzygies they will move backward [or

in antecedentia], and do so most swiftly in the quadratures and more slowly



in other places. The inclination of the ring will also vary, and its axis will

oscillate in each revolution; and when a revolution has been completed, it

will return to its original position except insofar as it is carried around by

the precession of the nodes.

COROLLARY 19. Now imagine the globe T, which consists of nonfluid

matter, to be so enlarged as to extend out to this ring, and to have a channel

to contain water dug out around its whole circumference; and imagine this

new globe to revolve uniformly about its axis with the same periodic motion.

This water, being alternately accelerated and retarded (as in the previous

corollary), will be swifter in the syzygies and slower in the quadratures than

the surface of the globe itself, and thus will ebb and flow in the channel just

as the sea does. If the attraction of body S is taken away, the water—now

revolving about the quiescent center of the globe—will acquire no motion

of ebb and flow. This is likewise the case for a globe advancing uniformly

straight forward and meanwhile revolving about its own center (by corol. 5

of the laws), and also for a globe uniformly attracted away from a rectilinear

path (by corol. 6 of the laws). But let body S now draw near, and by its

nonuniform attraction of the water, the water will soon be disturbed. For its

attraction of the nearer water will be greater and that of the more distant

water will be smaller. Moreover, the force LM will attract the water down-

ward in the quadratures and will make it descend as far as the syzygies, and

the force KL will attract this same water upward in the syzygies and will

prevent its further descent and will make it ascend as far as the quadratures,

except insofar as the motion of ebb and flow is directed by the channel of

water and is somewhat retarded by friction.

COROLLARY 20. If the ring now becomes hard and the globe is dimin-

ished, the motion of ebb and flow will cease; but the oscillatory motion of the

inclination and the precession of the nodes will remain. Let the globe have

the same axis as the ring and complete its revolutions in the same times, and

let its surface touch the inside of the ring and adhere to it; then, with the

228 PROPOSITION 3 28l
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globe participating in the motion of the ring, the structure of the two will

oscillate and the nodes will regress. For the globe, as will be shown presently,

is susceptible to all impressions equally. The greatest angle of inclination of

the ring alone, with the globe removed, occurs when the nodes are in the

syzygies. From there in the forward motion of the nodes to the quadratures

it endeavors to diminish its inclination and by that endeavor impresses a

motion upon the whole globe. The globe keeps this impressed motion until

the ring removes this motion by an opposite endeavor and impresses a new

motion in the opposite direction; and in this way the greatest motion of the

decreasing inclination occurs when the nodes are in the quadratures, and

the least angle of inclination occurs in the octants after the quadratures; and

the greatest motion of reclination occurs in the syzygies, and the greatest

angle in the next octants. And this is likewise the case for a globe which has

no such ring and which in the regions of the equator is either a little higher

than near the poles or consists of matter a little denser. For that excess of

matter in the regions of the equator takes the place of a ring. And although,

by increasing the centripetal force of this globe in any way whatever, all its

parts are supposed to tend downward, as the gravitating parts of the earth

do, nevertheless the phenomena of this corollary and of corol. 19 will scarcely

be changed on that account, except that the places of the greatest and least

height of the water will be different. For the water is now sustained and

remains in its orbit not by its own centrifugal force but by the channel in

which it is flowing. And besides, the force LM attracts the water downward

to the greatest degree in the quadratures, and the force KL or NM — LM

attracts the same water upward to the greatest degree in the syzygies. And

these forces conjoined cease to attract the water downward and begin to at-

tract the water upward in the octants before the syzygies, and they cease to

attract the water upward and begin to attract the water downward in the oc-

tants after the syzygies. As a result, the greatest height of the water can occur

very nearly in the octants after the syzygies, and the least height can occur

very nearly in the octants after the quadratures, except insofar as the motion

of ascent or descent impressed on the water by these forces either perseveres

a little longer because of the inherent force of the water or is stopped a little

more swiftly because of the impediments of the channel.

COROLLARY 21. In the same way that the excess matter of a globe near

its equator makes the nodes regress (and thus the retrogression is increased

by increase of equatorial matter and is diminished by its diminution and is



23° B O O K I , S E C T I O N I I

removed by its removal), it follows that if more than the excess matter is

removed, that is, if the globe near the equator is made either more depressed

or more rare than near the poles, there will arise a motion of the nodes

forward [or in consequential.

COROLLARY 22. And thus, in turn, from the motion of the nodes the

constitution of a globe can be found. That is to say, if a globe constantly

preserves the same poles and there occurs a motion backward [or in an-

tecedentia], there is an excess of matter near the equator; if there occurs a

motion forward [or in consequential, there is a deficiency. Suppose that a

uniform and perfectly spherical globe is at first at rest in free space; then is

propelled by any impetus whatever delivered obliquely upon its surface, from

which it takes on a motion that is partly circular [i.e., rotational] and partly

straight forward. Because the globe is indifferent to all axes passing through

its center and does not have a greater tendency to turn around any one axis

or an axis at any particular inclination, it is clear that the globe, by its own

force alone, will never change its axis and the inclination of the axis. Now

let the globe be impelled obliquely by any new impulse whatever, delivered

to that same part of the surface as before; then, since the effect of an impulse

is in no way changed by its being delivered sooner or later, it is manifest that

the same motion will be produced by these two impulses being successively

impressed as if they had been impressed simultaneously, that is, the resultant

motion will be the same as if the globe had been impelled by a simple force

compounded of these two (by corol. 2 of the laws), and hence will be a simple

motion about an axis of a given inclination. This is likewise the case for a

second impulse impressed in any other place on the equator of the first mo-

tion; and also for a first impulse impressed in any place on the equator of the

motion which the second impulse would generate without the first, and hence

for both impulses impressed in any places whatever. These two impulses will

generate the same circular motion as if they had been impressed together

and all at once in the place of intersection of the equators of the motions

which each of them would generate separately. Therefore a homogeneous

and perfect globe does not retain several distinct motions but compounds all

the motions impressed on it and reduces them to one; and insofar as it can

in and of itself, it always rotates with a simple and uniform motion about a

single axis of a given and always invariable inclination. A centripetal force

cannot change either this inclination of the axis or the velocity of rotation.
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If a globe is thought of as divided into two hemispheres by any plane

passing through the center of the globe and the center toward which a force is

directed, that force will always urge both hemispheres equally and therefore

will not cause the globe—as regards its motion of rotation—to incline in any

direction. Let some new matter, heaped up in the shape of a mountain, be

added to the globe anywhere between the pole and the equator; then this

matter, by its continual endeavor to recede from the center of its motion,

will disturb the motion of the globe and will make its poles wander over

its surface and continually describe circles about themselves and the point

opposite to them. And this tremendous wandering of the poles will not be

corrected, save by placing the mountain either in one of the two poles, in

which case (by corol. 21) the nodes of the equator will advance, or on the

equator, in which case (by corol. 20) the nodes will regress, or finally by

placing on the other side of the axis some additional matter by which the

mountain is balanced in its motion, and in this way the nodes will either

advance or regress, according as the mountain and this new matter are closer

to a pole or to the equator.

With the same laws of attraction being supposed, I say that with respect to the Proposition 67

common center of gravity O of the inner bodies P and T, the outer body S—by Theorem 27

radii drawn to that center—describes areas more nearly proportional to the times,

and an orbit more closely approaching the shape of an ellipse having its focus in

that same center, than it can describe about the innermost and greatest body T by

radii drawn to that body.

For the attractions of body S toward

T and P compose its absolute attraction,

which is directed more toward the common

center of gravity O of bodies T and P than

toward the greatest body T, and which is

more nearly inversely proportional to the

square of the distance SO than to the square of the distance ST, as will

easily be seen by anyone carefully considering the matter.

With the same laws of attraction being supposed, I say that with respect to the Proposition 68

common center of gravity O of the inner bodies P and T, the outer body S—by Theorem 28
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radii drawn to that center—describes areas more nearly proportional to the times,

and an orbit more closely approaching the shape of an ellipse having its focus in

the same center, if the innermost and greatest body is acted on by these attractions

just as the others are, than would be the case if it is either not attracted and

is at rest or is much more or much less attracted or much more or much less

moved.

This is demonstrated in almost the same way as prop. 66, but the proof

is more prolix and I therefore omit it. The following considerations should

suffice.

From the demonstration of the last

proposition it is apparent that the center

toward which body S is urged by both

forces combined is very near to the com-

mon center of gravity of the other bodies P

and T. If this center were to coincide with

the common center of those two bodies, and the common center of gravity of

all three bodies were to be at rest, body S on the one hand and the common

center of the other two bodies on the other would describe exact ellipses

about the common center of them all which is at rest. This is clear from the

second corollary of prop. 58 compared with what is demonstrated in props.

64 and 65. Such an exact elliptical motion is perturbed somewhat by the

distance of the center of the two bodies from the center toward which the

third body S is attracted. Let a motion be given, in addition, to the common

center of the three, and the perturbation will be increased. Accordingly, the

perturbation is least when the common center of the three is at rest, that is,

when the innermost and greatest body T is attracted by the very same law

as the others; and it always becomes greater when the common center of the

three bodies, by a diminution of the motion of body T, begins to be moved

and thereupon acted on more and more.

COROLLARY. And hence, if several lesser bodies revolve about a greatest

one, it can be found that the orbits described will approach closer to elliptical

orbits, and the descriptions of areas will become more uniform, if all the

bodies attract and act on one another by accelerative forces that are directly

as their absolute forces and inversely as the squares of the distances, and if

the focus of each orbit is located in the common center of gravity of all the

inner bodies (that is to say, with the focus of the first and innermost orbit
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in the center of gravity of the greatest and innermost body; the focus of the

second orbit in the common center of gravity of the two innermost bodies;

the focus of the third in the common center of gravity of the three inner

bodies; and so on), than if the innermost body is at rest and is set at the

common focus of all the orbits.

If, in a system of several bodies A, B, C, D, . . . , some body A attracts all the Proposition 69

others, B, C, D, .. ., by accelerative forces that are inversely as the squares of Theorem 29

the distances from the attracting body; and if another body B also attracts the rest

of the bodies A, C, D, . .. , by forces that are inversely as the squares of the

distances from the attracting body; then the absolute forces of the attracting bodies

A and B will be to each other in the same ratio as the bodies [i.e., the masses] A

and B themselves to which those forces belong.

For, at equal distances, the accelerative attractions of all the bodies B,

C, D, .. . toward A are equal to one another by hypothesis; and similarly,

at equal distances, the accelerative attractions of all the bodies toward B

are equal to one another. Moreover, at equal distances, the absolute attractive

force of body A is to the absolute attractive force of body B as the accelerative

attraction of all the bodies toward A is to the accelerative attraction of all the

bodies toward B at equal distances; and the accelerative attraction of body

B toward A is also in the same proportion to the accelerative attraction of

body A toward B. But the accelerative attraction of body B toward A is to

the accelerative attraction of body A toward B as the mass of body A is to

the mass of body B, because the motive forces—which (by defs. 2, 7, and

8) are as the accelerative forces and the attracted bodies jointly—are in this

case (by the third law of motion) equal to each other. Therefore the absolute

attractive force of body A is to the absolute attractive force of body B as the

mass of body A is to the mass of body B. Q.E.D.

COROLLARY 1. Hence if each of the individual bodies of the system A, B,

C, D, ... , considered separately, attracts all the others by accelerative forces

that are inversely as the squares of the distances from the attracting body, the

absolute forces of all those bodies will be to one another in the ratios of the

bodies [i.e., the masses] themselves.

COROLLARY 2. By the same argument, if each of the individual bodies of

the system A, B, C, D, . . . , considered separately, attracts all the others by
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accelerative forces that are either inversely or directly as any powers whatever

of the distances from the attracting body, or that are defined in terms of the

distances from each one of the attracting bodies according to any law common

to all these bodies; then it is evident that the absolute forces of those bodies

are as the bodies [i.e., the masses].

COROLLARY 3. If, in a system of bodies whose forces decrease in the

squared ratio of the distances [i.e., vary inversely as the squares of the dis-

tances], the lesser bodies revolve about the greatest one in ellipses as exact as

they can be, having their common focus in the center of that greatest body,

and—by radii drawn to the greatest body—describe areas as nearly as pos-

sible proportional to the times, then the absolute forces of those bodies will

be to one another, either exactly or very nearly, as the bodies, and conversely.

This is clear from the corollary of prop. 68 compared with corol. 1 of this

proposition.

Scholium By these propositions we are directed to the analogy between centripetal

forces and the central bodies toward which those forces tend. For it is rea-

sonable that forces directed toward bodies depend on the nature and the

quantity of matter of such bodies, as happens in the case of magnetic bodies.

And whenever cases of this sort occur, the attractions of the bodies must be

reckoned by assigning proper forces to their individual particles and then

taking the sums of these forces.

I use the word "attraction" here in a general sense for any endeavor

whatever of bodies to approach one another, whether that endeavor occurs as

a result of the action of the bodies either drawn toward one another or acting

on one another by means of spirits emitted or whether it arises from the

action of aether or of air or of any medium whatsoever—whether corporeal

or incorporeal—in any way impelling toward one another the bodies floating

therein. I use the word "impulse" in the same general sense, considering

in this treatise not the species of forces and their physical qualities but

their quantities and mathematical proportions, as I have explained in the

definitions.

Mathematics requires an investigation of those quantities of forces and

their proportions that follow from any conditions that may be supposed.

Then, coming down to physics, these proportions must be compared with
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the phenomena, so that it may be found out which conditions [or laws]

of forces apply to each kind of attracting bodies. And then, finally, it will

be possible to argue more securely concerning the physical species, physical

causes, and physical proportions of these forces. Let us see, therefore, what

the forces are by which spherical bodies, consisting of particles that attract

in the way already set forth, must act upon one another, and what sorts of

motions result from such forces.
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SECTION 12

The attractive forces of spherical bodies

Proposition 70 If toward each of the separate points of a spherical surface there tend equal cen-

Theorem 30 tripetal forces decreasing as the squares of the distances from the point, I say that

a corpuscle placed inside the surface will not be attracted by these forces in any

direction.

Let HIKL be the spherical surface, and P the corpuscle placed inside.

Through P draw to this surface the two lines HK and IL intercepting min-

imally small arcs HI and KL; and because tri-

angles HPI and LPK are similar (by lem. 7,

corol. 3), those arcs will be proportional to the

distances HP and LP; and any particles of the

spherical surface at HI and KL, terminated ev-

erywhere by straight lines passing through point

P, will be in that proportion squared. Therefore

the forces exerted on body P by these particles of

surface are equal to one another. For they are as the particles directly and the

squares of the distances inversely. And these two ratios, when compounded,

give the ratio of equality. The attractions, therefore, being made equally in

opposite directions, annul each other. And by a similar argument, all the

attractions throughout the whole spherical surface are annulled by opposite

attractions. Accordingly, body P is not impelled by these attractions in any

direction. Q.E.D.

Proposition 71 With the same conditions being supposed as in prop. 70, I say that a corpuscle

Theorem 31 placed outside the spherical surface is attracted to the center of the sphere by a

force inversely proportional to the square of its distance from that same center.

Let AHKB and ah\b be two equal spherical surfaces, described about

centers S and s with diameters AB and ab, and let P and p be corpuscles

located outside those spheres in those diameters produced. From the cor-

puscles draw lines PHK, PIL, ph\, and pil, so as to cut off from the great

circles AHB and ahb the equal arcs HK and h\, and IL and il. And onto

these lines drop perpendiculars SD and sd, SE and se, IR and />, of which

SD and sd cut PL and pi at F and /. Also drop perpendiculars IQ and
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iq onto the diameters. Let angles DPE and dpe vanish; then, because DS

and ds, ES and es are equal, lines PE, PF and pe, pf and the line-elements

DF and df may be considered to be equal, inasmuch as their ultimate ratio,

when angles DPE and dpe vanish simultaneously, is the ratio of equality.

On the basis of these things, therefore, PI will be to PF as RI to DF, and

pf to pi as df or DF to ri, and from the equality of the ratios [or ex aequo]

PI x pf will be to PF x pi as RI to ri, that is (by lem. 7, corol. 3), as the arc

PI x pf will be to PF x pi as RI to ri, that is (by lem. 7, corol. 3), as the arc

se or SE to iq\ and from the equality of the ratios [or ex aequo] PI x ps will

be to PS x pi as IQ to iq. And by compounding these ratios, PI2 x pf x ps

will be to pi2 x PF x PS as IH x IQ to ih x iq\ that is, as the circular surface

that the arc IH will describe by the revolution of the semicircle AKB about

the diameter AB to the circular surface that the arc ih will describe by the

revolution of the semicircle al\b about the diameter ab. And the forces by

which these surfaces attract the corpuscles P and p (along lines tending to

these same surfaces) are (by hypothesis) as these surfaces themselves directly

and the squares of the distances of these surfaces from the bodies inversely,

that is, as pf X ps to PF x PS.

Now (once the resolution of the forces has been made according to

corol. 2 of the laws), these forces are to their oblique parts, which tend

along the lines PS and ps toward the centers, as PI to PQ and pi to pq\

that is (because the triangles PIQ and PSF, piq and psf are similar), the

forces are to their oblique parts as PS to PF and ps to pf. Hence, from the

equality of the ratios [or ex aequo] the attraction of this corpuscle P toward

S becomes to the attraction of the corpuscle p toward s as to
pf x PF x PS

, that is, as ps to PS . And by a similar argument, the forces
ps

by which the surface described by the revolution of the arcs KL and \l at-

tract the corpuscles will be as ps2 to PS2. And the same ratio will hold for

2 5

S  b e c o m e s  t o  t h e  a t t r a c t i o n  o f  t h e  c o r p u s c l e  p  t o w a r d  s  a s  t o
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the forces of all the spherical surfaces into which each of the two spherical

surfaces can be divided by taking sd always equal to SD and se equal to

SE. And by composition [or componendo] the forces of the total spherical

surfaces exercised upon the corpuscles will be in the same ratio. Q.E.D.

Proposition 72 If toward each of the separate points of any sphere there tend equal centripetal

Theorem 32 forces, decreasing in the squared ratio of the distances from those points, and there

are given both the density of the sphere and the ratio of the diameter of the sphere

to the distance of the corpuscle from the center of the sphere, I say that the force

by which the corpuscle is attracted will be proportional to the semidiameter of the

sphere.

For imagine that two corpuscles are attracted separately by two spheres,

one corpuscle by one sphere, and the other corpuscle by the other sphere, and

that their distances from the centers of the spheres are respectively propor-

tional to the diameters of the spheres, and that the two spheres are resolved

into particles that are similar and similarly placed with respect to the cor-

puscles. Then the attractions of the first corpuscle, made toward each of the

separate particles of the first sphere, will be ̂ b^the attractions of the second

toward as many analogous particles of the secbnd sphere in a ratio com-

pounded of the direct ratio of the particles and the inverse squared ratio

of the distances [i.e., the attractions will be to one another as the particles

directly and the squares of the distances inversely]. But the particles are as

the spheres, that is, they are in the cubed ratio of the diameters, and the dis-

tances are as the diameters; and thus the first of these ratios directly combined

with the second ratio taken twice inversely becomes the ratio of diameter to

diameter. Q.E.D.

COROLLARY 1. Hence, if corpuscles revolve in circles about spheres con-

sisting of equally attractive matter, and their distances from the centers of the

spheres are proportional to the diameters of the spheres, the periodic times

will be equal.

COROLLARY 2. And conversely, if the periodic times are equal, the dis-

tances will be proportional to the diameters. These two corollaries are evident

from prop. 4, corol. 3.

COROLLARY 3. If toward each of the separate points of any two similar

and equally dense solids there tend equal centripetal forces decreasing in

the squared ratio of the distances from those points, the forces by which
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corpuscles will be attracted by those two solids, if they are similarly situated

with regard to them, will be to each other as the diameters of the solids.

If toward each of the separate points of any given sphere there tend equal cen- Proposition 73

tripetal forces decreasing in the squared ratio of the distances from those points, I Theorem 33

say that a corpuscle placed inside the sphere is attracted by a force proportional to

the distance of the corpuscle from the center of the sphere.

Let a corpuscle P be placed inside the sphere ABCD, described about

center S; and about the same center S with radius SP, suppose that an inner

sphere PEQF is described. It is manifest (by

prop. 70) that the concentric spherical surfaces

of which the difference AEBF of the spheres is

composed do not act at all upon body P, their

attractions having been annulled by opposite at-

tractions. There remains only the attraction of

the inner sphere PEQF. And (by prop. 72) this

is as the distance PS. Q.E.D.

The surfaces of which the solids are composed are here not purely mathe- Scholium

matical, but orbs [or spherical shells] so extremely thin that their thickness is

as null: namely, evanescent orbs of which the sphere ultimately consists when

the number of those orbs is increased and their thickness diminished indefi-

nitely. Similarly, when lines, surfaces, and solids are said to be composed of

points, such points are to be understood as equal particles of a magnitude so

small that it can be ignored.

With the same things being supposed as in prop. 73, I say that a corpuscle placed Proposition 74

outside a sphere is attracted by a force inversely proportional to the square of the Theorem 34

distance of the corpuscle from the center of the sphere.

For let the sphere be divided into innumerable concentric spherical sur-

faces; then the attractions of the corpuscle that arise from each of the surfaces

will be inversely proportional to the square of the distance of the corpuscle

from the center (by prop. 71). And by composition [or componendo] the sum

of the attractions (that is, the attraction of the corpuscle toward the total

sphere) will come out in the same ratio. Q.E.D.
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COROLLARY 1. Hence at equal distances from the centers of homoge-

neous spheres the attractions are as the spheres themselves. For (by prop. 72)

if the distances are proportional to the diameters of the spheres, the forces

will be as the diameters. Let the greater distance be diminished in that ratio;

and, the distances having now become equal, the attraction will be increased

in that ratio squared, and thus will be to the other attraction in that ratio

cubed, that is, in the ratio of the spheres.

COROLLARY 2. At any distances the attractions are as the spheres divided

by the squares of the distances.

COROLLARY 3. If a corpuscle placed outside a homogeneous sphere is

attracted by a force inversely proportional to the square of the distance of the

corpuscle from the center of the sphere, and the sphere consists of attracting

particles, the force of each particle will decrease in the squared ratio of the

distance from the particle.

Proposition 75 If toward each of the points of a given sphere there tend equal centripetal forces

Theorem 35 decreasing in the squared ratio of the distances from the points, I say that this sphere

will attract any other homogeneous sphere with a force inversely proportional to

the square of the distance between the centers*

For the attraction of any particle is inversely as the square of its distance

from the center of the attracting sphere (by prop. 74), and therefore is the

same as if the total attracting force emanated from one single corpuscle situ-

ated in the center of this sphere. Moreover, this attraction is as great as the

attraction of the same corpuscle would be if, in turn, it were attracted by

each of the individual particles of the attracted sphere with the same force

by which it attracts them. And that attraction of the corpuscle (by prop. 74)

would be inversely proportional to the square of its distance from the center

of the sphere; and therefore the sphere's attraction, which is equal to the

attraction of the corpuscle, is in the same ratio. Q.E.D.

COROLLARY 1. The attractions of spheres toward other homogeneous

spheres are as the attracting spheres [i.e., as the masses of the attracting

spheres] divided by the squares of the distances of their own centers from

the centers of those that they attract.

a. Newton writes of a "sphaera quaevis alia similaris," literally, "any other like [or similar] sphere,"

but the context (see prop. 74, corols. 1 and 3) is that of a homogeneous sphere.
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COROLLARY 2. The same is true when the attracted sphere also attracts.

For its individual points will attract the individual points of the other with

the same force by which they are in turn attracted by them; and thus, since

in every attraction the attracting point is as much urged (by law 3) as the

attracted point, the force of the mutual attraction will be duplicated, the

proportions remaining the same.

COROLLARY 3. Everything that has been demonstrated above concerning

the motion of bodies about the focus of conies is valid when an attracting

sphere is placed in the focus and the bodies move outside the sphere.

COROLLARY 4. And whatever concerns the motion of bodies around the

center of conies applies when the motions are performed inside the sphere.

If spheres are in any way nonhomogeneous (as to the density of their matter and Proposition 76

their attractive force) going from the center to the circumference, but are uniform Theorem 36

throughout in every spherical shell at any given distance from the center, and the

attractive force of each point decreases in the squared ratio of the distance of the

attracted body, I say that the total force by which one sphere of this sort attracts

another is inversely proportional to the square of the distance between their centers.
aLet there be any number of concentric homogeneous spheres [i.e., hollow

spheres, or spherical shells or surfaces] AB, CD, EF, . . . ; and suppose that

the addition of one or more inner ones to the outer one or ones forms a

sphere composed of matter more dense, or the taking away leaves it less

dense, toward the center than at the circumference. Then these spheres will

together (by prop. 75) attract any number of other concentric homogeneous

spheres GH, IK, LM, .. ., each sphere of one set attracting every one of

aa. The text of this proof has been translated somewhat freely, and in part expanded, for greater
ease in comprehension.
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the other set with forces inversely proportional to the square of the distance

SP. And by adding up these forces (or by the reverse process when spheres

are taken away) the sum of all those forces (or the excess of any one—

or of some—of them above the others); that is, the force with which the

whole sphere AB, composed of any concentric spheres (or the difference

between some concentric spheres and others which have been taken away),

attracts the whole sphere GH, composed of any concentric spheres (or the

differences between some such concentric spheres and others)—will be in

the same inverse ratio of the square of the distance SP. Let the number of

concentric spheres be increased indefinitely, in such a way that the density

of the matter, together with the force of attraction, may—on going from

the circumference to the center—increase or decrease according to any law

whatever; and by the addition of non-attracting matter, let the deficiencies

in density be supplied wherever needed so that the spheres may acquire any

desired form; then the force with which one of these spheres attracts the

other will still be, by the former argument, in the same inverse ratio of the

square of the distance.3 Q.E.D.

COROLLARY 1. Hence, if many spheres of this sort, similar to one another

in all respects, attract one another, the accelerative attraction of any one to

any other of them, at any equal distances between the centers, will be as the

attracting spheres.

COROLLARY 2. And at any unequal distances, as the attracting sphere

divided by the square of the distances between the centers.

COROLLARY 3. And the motive attractions, or the weights of spheres

toward other spheres, will—at equal distances from the centers—be as the

attracting and the attracted spheres jointly, that is, as the products produced

by multiplying the spheres by each other.

COROLLARY 4. And at unequal distances, as those products directly and

the squares of the distances between the centers inversely.

COROLLARY 5. These results are valid when the attraction arises from

each sphere's force of attraction being mutually exerted upon the other sphere.

For the attraction is duplicated by both forces acting, the proportion remain-

ing the same.

COROLLARY 6. If some spheres of this sort revolve about others at rest,

one sphere revolving about each sphere at rest, and the distances between



P R O P O S I T I O N 77 243

the centers of the revolving spheres and those at rest are proportional to the

diameters of those at rest, the periodic times will be equal.

COROLLARY 7. And conversely, if the periodic times are equal, the dis-

tances will be proportional to those diameters.

COROLLARY 8. Everything that has been demonstrated above about the

motion of bodies around the foci of conies holds when the attracting sphere,

of any form and condition that has already been described, is placed in the

focus.

COROLLARY 9. As also when the bodies revolving in orbit are also at-

tracting spheres of any condition that has already been described.

If toward each of the individual points of spheres there tend centripetal forces Proposition 77

proportional to the distances of the points from attracted bodies, I say that the Theorem 37

composite force by which two spheres will attract each other is as the distance

between the centers of the spheres.

CASE 1. Let AEBF be a sphere, S its center, P an attracted exterior

corpuscle, PASB that axis of the sphere which passes through the center of

the corpuscle, EF and ef two planes by

which the sphere is cut and which are

perpendicular to this axis and equally

distant on both sides from the center of

the sphere, G and g the intersections

of the planes and the axis, and H any

point in the plane EF. The centripetal

force of point H upon the corpuscle P,

exerted along the line PH, is as the distance PH; and (by corol. 2 of the laws)

along the line PG, or toward the center S, as the length PG. Therefore the

force of all the points in the plane EF (that is, of the total plane) by which the

corpuscle P is attracted toward the center S is as the distance PG multiplied

by the number of such points, that is, as the solid contained by that plane

EF itself and the distance PG [i.e., as the product of the plane EF and the

distance PG]. And similarly the force of the plane ef, by which the corpuscle

P is attracted toward the center S, is as that plane multiplied by its distance

P£, or as the plane EF equal thereto multiplied by that distance Pg; and the

sum of the forces of both planes is as the plane EF multiplied by the sum of

the distances PG + Pg; that is, as that plane multiplied by twice the distance
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PS between the center S and the corpuscle P; that is, as twice the plane EF

multiplied by the distance PS, or as the sum of the equal planes EF + ef

multiplied by that same distance. And by a similar argument, the forces of all

the planes in the whole sphere, equally distant on both sides from the center

of the sphere, are as the sum of those planes multiplied by the distance PS,

that is, as the whole sphere and the distance PS jointly. Q.E.D.

CASE 2. Now let the corpuscle P attract the sphere AEBF. Then by

the same argument it can be proved that the force by which that sphere is

attracted will be as the distance PS. Q.E.D.

CASE 3. Now let a second sphere be composed of innumerable corpus-

cles P; then, since the force by which any one corpuscle is attracted is as

the distance of the corpuscle from the center of the first sphere and as that

same sphere jointly, and thus is the same as if all the force came from one

single corpuscle in the center of the sphere, the total force by which all the

corpuscles in the second sphere are attracted (that is, by which that whole

sphere is attracted) will be the same as if that sphere were attracted by a

force coming from one single corpuscle in the center of the first sphere, and

therefore is proportional to the distance between the centers of the spheres.

Q.E.D.

CASE 4. Let the spheres attract each other mutually; then the force, now

duplicated, will keep the former proportion. Q.E.D.

CASE 5. Now let a corpuscle p be placed inside the sphere AEBF. Then,

since the force of the plane ef upon the corpuscle is as the solid contained by

[or the product of] that plane and the distance

pg\ and the opposite force of the plane EF is

as the solid contained by [or the product of]

that plane and the distance pG\ the force com-

pounded of the two will be as the difference of

the solids [or the products], that is, as the sum

of the equal planes multiplied by half of the dif-

ference of the distances, that is, as that sum multiplied by />S, the distance

of the corpuscle from the center of the sphere. And by a similar argument,

the attraction of all the planes EF and ef in the whole sphere (that is, the

attraction of the whole sphere) is jointly as the sum of all the planes (or the

whole sphere) and as /?S, the distance of the corpuscle from the center of

the sphere. Q.E.D.
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CASE 6. And if from innumerable corpuscles p a new sphere is com-

posed, placed inside the former sphere AEBF, then it can be proved as above

that the attraction, whether the simple attraction of one sphere toward the

other, or a mutual attraction of both toward each other, will be as the distance

pS between the centers. Q.E.D.

If spheres, on going from the center to the circumference, are in any way nonho-

mogeneous and nonuniform, but in every concentric spherical shell at any given

distance from the center are homogeneous throughout; and the attracting force of

each point is as the distance of the body attracted; then I say that the total force

by which two spheres of this sort attract each other is proportional to the distance

between the centers of the spheres.

This is demonstrated from prop. 77 in the same way that prop. 76 was

demonstrated from prop. 75.

COROLLARY. Whatever was demonstrated above in props. 10 and 64 on

the motion of bodies about the centers of conies is valid when all the at-

tractions take place by the force of spherical bodies of the condition already

described, and when the attracted bodies are spheres of the same condition.

Proposition 78

Theorem 38

I have now given explanations of the two major cases of attractions, namely, Scholium

when the centripetal forces decrease in the squared ratio of the distances or

increase in the simple ratio of the distances, causing bodies in both cases to

revolve in conies, and composing centripetal forces of spherical bodies that

decrease or increase in proportion to the distance from the center according

to the same law—which is worthy of note. It would be tedious to go one by

one through the other cases which lead to less elegant conclusions. I prefer

to comprehend and determine all the cases simultaneously under a general

method as follows.

If any circle AEB is described with center S; and then two circles EF and ef are Lemma 29a

described with center P, cutting the first circle in E and e, and cutting the line

PS in F and f; and if the perpendiculars ED and ed are dropped to PS; then I

say that if the distance between the arcs EF and ef is supposed to be diminished

a. For a gloss on this lemma see the Guide, §10.13.
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indefinitely, the ultimate ratio of the evanescent line Dd to the evanescent line

Ff is the same as that of line PE to line PS.

For if line Pe cuts arc EF in q, and the straight line Ee, which coincides

with the evanescent arc Ee, when produced meets the straight line PS in

T, and the normal SG is dropped from S to PE; then because the triangles

DTE, die, and DES are similar, Dd will be to Ee as DT to TE, or DE

to ES; and because the triangles Eeq and ESG (by sec. 1, lem. 8 and lem.

7, corol. 3) are similar, Ee will be to eq or Ff as ES to SG; and from the

equality of the ratios [or ex aequo] Dd will be to Ff as DE to SG—that is

(because the triangles PDE and PGS are similar), as PE to PS. Q.E.D.

Proposition 79 If the surface EFfe, just now vanishing because its width has been indefinitely di-

Theorem 39 minished, describes by its revolution about the axis PS a concavo-convex spherical

solid, toward each of whose individual equal particles there tend equal centripetal

forces; then I say that the force by which that solid attracts an exterior corpus-

cle located in P is in a ratio compounded of the ratio of the solid [or product]

DE2 x Ff and the ratio of the force by which a given particle at the place Ff

would attract the same corpuscle.

For if we first consider the force of the spherical surface FE, which

is generated by the revolution of the arc FE and is cut anywhere by the

line de in r, the annular part of this surface generated by the revolution

of the arc rE will be as the line-element Dd, the radius PE of the sphere

remaining the same (as Archimedes demonstrated in his book on the Sphere

and Cylinder). And the force of that surface, exerted along lines PE or Pr,

placed everywhere in the surface of a cone, will be as this annular part of the

surface—that is, as the line-element Dd or, what comes to the same thing, as

the rectangle of the given radius PE of the sphere and that line-element Dd;
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but along the line PS tending toward

the center S, this force will be smaller

in the ratio of PD to PE, and hence

this force will be as PD x Dd. Now

suppose the line DF to be divided into

innumerable equal particles, and let

each of them be called DJ; then the

surface FE will be divided into the

same number of equal rings, whose total forces will be as the sum of all

the products PD x Dd, that is, as Vc

multiply the surface FE by the altitude F/", and the force of the solid EF/V

exerted upon the corpuscle P will become as DE2 x F/, if there is given the

force that some given particle Ff exerts on the corpuscle P at the distance

PF. But if that force is not given, the force of the solid EF/V will become as

the solid DE2 x Ff and that non-given force jointly. Q.E.D.

If equal centripetal forces tend toward each of the individual equal particles of Proposition 80

some sphere ABE, described about a center S; and if from each of the individual Theorem 40

points D to the axis AB of the sphere, in which some corpuscle P is located, there

are erected the perpendiculars DE, meeting the sphere in the points E; and if, on

these perpendiculars, the lengths DN are ta^en, which are jointly as the quantity

DE2 x PS
and as the force that a particle of the sphere, located on the axis,

i f-j

exerts at the distance PE upon the corpuscle P; then I say that the total force

with which the corpuscle P is attracted toward the sphere is as the area ANB

comprehended by the axis AB of the sphere and the curved line ANB, which the

point N traces out.

- - - - - - - - - - - - - -
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For, keeping the same constructions as in lem. 29 and prop. 79, suppose

the axis AB of the sphere to be divided into innumerable equal particles D J,

and the whole sphere to be divided into as many spherical concavo-convex

laminae EF/V; and erect the perpendicular dn. By prop. 79, the force with

which the lamina EF/V attracts the corpuscle P is jointly as DE2 x Ff and

the force of one particle exerted at the distance PE or PF. But Dd is to
PS x Dd

Ff (by lem. 29) as PE to PS, and hence Ff is equal to , and

DE2 x PS
DE2 X Ff is equal to Dd ; and therefore the force of the lamina

1 J_y

DE2 x PS
EF/V is jointly as Dd and the force of a particle exerted at the

1 JL-i

distance PF; that is (by hypothesis) as DN x Dd, or as the evanescent area

DNnd. Therefore the forces upon body P exerted by all the laminae are

as all the areas DNnd, that is, the total force of the sphere is as the total

area ANB. Q.E.D.

COROLLARY 1. Hence, if the centripetal force tending toward each of

the individual particles always remains the same at all distances, and DN is
DE2 x PS

taken proportional to , the total force by which the corpuscle P is

attracted by the sphere will be as the area ANB.

COROLLARY 2. If the centripetal force of the particles is inversely as

the distance of the attracted corpuscle, and DN is taken proportional to
DE2 x PS

, the force by which the corpuscle P is attracted by the whole

sphere will be as the area ANB.

COROLLARY 3. If the centripetal force of the particles is inversely as the

cube of the distance of the attracted corpuscle, and DN is taken proportional
DE2 x PS

to , the force by which the corpuscle is attracted by the whole
1 LLj

sphere will be as the area ANB.

1 LLj
-----------

1 LLj

1 J_y
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COROLLARY 4. And universally, if the centripetal force tending toward

each of the individual particles of a sphere is supposed to be inversely as the

quantity V, and DN is taken proportional to , the force by which
L IL X V

a corpuscle is attracted by the whole sphere will be as the area ANB.

Under the same conditions as before, it is required to measure the area ANB. Proposition 81

From point P draw the straight line PH touching the sphere in H; and, Problem 41

having dropped the normal HI to the axis PAB, bisect PI in L; then (by book

2, prop. 12, of Euclid's Elements] PE2 will be equal to PS2 + SE2+2(PS xSD).

Moreover, SE2 or SH2 (because the triangles SPH and SHI are similar) is

equal to the rectangle PS x SI. Therefore PE2 is equal to the rectangle of PS

and PS + SI + 2SD, that is, of PS and 2LS + 2SD, that is, of PS and 2LD.

Further, DE2 is equal to SE2 - SD2, or SE2 - LS2 + 2(SL x LD) - LD2, that

is, 2(SL x LD) - LD2 - AL x LB. For LS2 - SE2 or LS2 - SA2 (by book 2,

prop. 6, of the Elements] is equal to the rectangle AL x LB. Write, therefore,
DE2 x PS

2(SL x LD) - LD2 - AL x LB for DE2; and the quantity ,
PE x V

which (according to corol. 4 of the preceding prop. 80) is as the length of
2(SL x LD x PS)

the ordinate DN, will resolve itself into the three parts

LD2 x PS AL x LB x PS
: where, if for V we write the inverse ratio

PE x V PE x V
of the centripetal force, and for PE the mean proportional between PS and

2LD, those three parts will become ordinates of as many curved lines, whose

areas can be found by ordinary methods. Q.E.F.

EXAMPLE 1. If the centripetal force tending toward each of the indi-

vidual particles of the sphere is inversely as the distance, write the dis-

tance PE in place of V, and then 2PS x LD in place of PE2, and DN

quantity V, and DN is taken proportional to , the force by which

t h e  o r d i n a t e  D N ,  w i l l  r e s o l v e  i t s e l f  i n t o  t h e  t h r e e  p a r t s

------------ ------------



AL x LB
will become as SL — ViLD . Suppose DN equal to its double

z--L .L/
AL x LB

2SL — LD ; and the given part 2SL of that ordinate multi-
.Li .L/

plied by the length AB will describe a rectangular

area 2SL x AB, and the indefinite part LD multi-

plied perpendicularly by the same length AB in a

continual motion (according to the rule that, while

moving, either by increasing or decreasing, it is al-

ways equal to the length LD) will describe an area
LB2 - LA2

, that is, the area SL x AB, which, sub-

tracted from the first area 2SL x AB, leaves the area SL x AB. Now the
AL x LB

third part , likewise multiplied perpendicularly by the same length
i j i j

AB in a local [i.e., continual] motion, will describe a hyperbolic area, which

subtracted from the area SL x AB will leave the required area ANB. Hence,

there arises the following construction of the problem.

At points L, A, and B erect perpendiculars L/, Aa, and B£, of which

Aa is equal to LB, and B£ to LA. With asymptotes LI and LB, through

points a and b describe the hyperbola ab. Then the chord ba> when drawn,

will enclose the area aba equal to the required area ANB.

EXAMPLE 2. If the centripetal force tending toward each of the indi-

vidual particles of the sphere is inversely as the cube of the distance, or

(which comes to the same thing) as that cube divided by any given plane,
PE3

write for V, and then 2PS x LD for PE2, and DN will become
2. Ao

SL x AS2 AS2 AL x LB x AS2
as , that is (because PS, AS, and SI

PS x LD 2PS 2PS x LD2
LS x SI

are continually proportional [or PS is to AS as AS to SI]), as
L^LJ

AL x LB x SI
!/2SI . If the three parts of this quantity are multiplied

z, .L.L/

by the length AB, the first, , will generate a hyperbolic area; the

AL x LB x SI
second, ViSI, will generate the area ViAE x SI; the third, ,

Z, .L/ .L'

AL x LB x SI AL x LB x SI
will generate the area , that is, 1/2 AB x SI.

250 tance PE in place of V, and then 2PS x LD in place of PE2, and DN

------------
2

by the length AB, the first, , will generate a hyperbolic area; the

ld

24 24
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From the first subtract the sum of the second and third, and the required

area ANB will remain.

Hence there arises the following construction

of the problem. At the points L, A, S, and B erect

the perpendiculars L/, Aa, Ss, and B£, of which

S^ is equal to SI; and through the point j, with

asymptotes L/ and LB, describe the hyperbola

asb meeting the perpendiculars Aa and Bb in a

asb meeting the perpendiculars Aa and Bb in a

from the hyperbolic area AasbB will leave the required area ANB.

EXAMPLE 3. If the centripetal force tending toward each of the individ-

ual particles of the sphere decreases as the fourth power of the distance from

PE4

those particles, write for V, and then ^/(2PS x LD) for PE, and DN
L AS

SI2 x SL 1 SI2 1 SI2 x AL x LB
will become as —; x —; : x —; ; x

V(2SI) VLD3 2V(2SI) VLD 2V(2SI)

— -. Those three parts, multiplied by the length AB, produce three ar-
\/LL)

by (VLB — VLA); and

And these, arter the due reduction, become , SI , and .
-L< 1 j J_^l

And when the latter two quantities are subtracted from the first one, the
4SI3

result comes out to be . Accordingly, the total force by which the cor-
J J—/1

1

A n d  t h e s e ,  a r t e r  t h e  d u e  r e d u c t i o n ,  b e c o m e  ,  S I  ,  a n d  .

A n d  t h e s e ,  a r t e r  t h e  d u e  r e d u c t i o n ,  b e c o m e  ,  S I  ,  a n d  . And these, arter the due reduction, become , SI , and .

A n d  t h e s e ,  a r t e r  t h e  d u e  r e d u c t i o n ,  b e c o m e  ,  S I  ,  a n d  .
A n d  t h e s e ,  a r t e r  t h e  d u e  r e d u c t i o n ,  b e c o m e  ,  S I  ,  a n d  .

A n d  t h e s e ,  a r t e r  t h e  d u e  r e d u c t i o n ,  b e c o m e  ,  S I  ,  a n d  .
And these, arter the due reduction, become , SI , and . And these ,  arter  the  due reduct ion,  become ,  SI  ,  and .

A n d  t h e s e ,  a r t e r  t h e  d u e  r e d u c t i o n ,  b e c o m e  ,  S I  ,  a n d  . A n d  t h e s e ,  a r t e r  t h e  d u e  r e d u c t i o n ,  b e c o m e  ,  S I  ,  a n d  .
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SI3

puscle P is attracted to the center of the sphere is as —, that is, inversely as

PS3 x PL Q.E.I.

The attraction of a corpuscle located inside a sphere can be determined

by the same method, but more expeditiously by means of the following

proposition.

Proposition 82 If-—in a sphere described about center S with radius SA—SI, SA, and SP are

Theorem 41 ta^en continually proportional [i.e., SI to SA as SA to SP/, / say that the

attraction of a corpuscle inside the sphere at any place I is to its attraction outside

the sphere at place P in a ratio compounded of the square root of the ratio of

the distances IS and PS from the center, and the square root of the ratio of the

centripetal forces, tending at those places P and I toward the center.

If, for example, the centripetal forces of the particles of the sphere are

inversely as the distances of the corpuscle attracted by them, the force by

which the corpuscle situated at I is attracted by the total sphere will be to

the force by which it is attracted at P in a ratio compounded of the square

root of the ratio of the distance SI to the distance SP and the square root

of the ratio of the centripetal force at place I arising from some particle in

the center to the centripetal force at place P arising from the same particle

in the center, which is the square root of the ratio of the distances SI and

SP to each other inversely. Compounding these two square roots of ratios

gives the ratio of equality, and therefore the attractions produced at I and P

by the whole sphere are equal. By a similar computation, if the forces of the

particles of the sphere are inversely in the squared ratio of the distances, it

will be seen that the attraction at I is to the attraction at P as the distance

25
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SP is to the semidiameter SA of the sphere. If those forces are inversely in

the cubed ratio of the distances, the attractions at I and P will be to each

other as SP2 to SA2; if as the inverse fourth power, as SP3 to SA3. Hence,

since—in this last case [of the inverse fourth power, as in the final ex. 3 of

prop. 81]—the attraction at P was found to be inversely as PS3 x PI, the

P, the ordinate DN was found to be as . Therefore, if IE is

inversely as PI. And the progression goes on in the same way indefinitely.

Moreover, the theorem is demonstrated as follows.

With the same construction and with the corpuscle being in any place

DE2 x PS
P, the ordinate DN was found to be as . Therefore, if IE is

PE x V

drawn, that ordinate for any other place I of the corpuscle will—mutatis

mutandis [i.e., by substituting I for P in the considerations and arguments

DE2 x IS
that have previously been applied to P]—come out as . Suppose

the centripetal forces emanating from any point E of the sphere to be to

each other at the distances IE and PE as PE" to IE" (where let the number

n designate the index of the powers of PE and IE); then those ordinates

DE2 x PS DE2 x IS
will become as and -, whose ratio to each other is as

PS x IE x IE* to IS x PE x PE". Because SI, SE, and SP are continually

proportional, the triangles SPE and SEI are similar, and hence IE becomes

to PE as IS to SE or SA; for the ratio of IE to PE, write the ratio of IS to

SA, and the ratio of the ordinates will come out PS x IE" to SA x PE". But

PS to SA is the square root of the ratio of the distances PS and SI, and IE"

to PE" (because IE is to PE as IS to S A) is the square root of the ratio of the

forces at the distances PS and IS. Therefore the ordinates, and consequently

the areas that the ordinates describe and the attractions proportional to them,

are in a ratio compounded of the foregoing square-root ratios. Q.E.D.

To find the force by which a corpuscle located in the center of a sphere is attracted Proposition 83

toward any segment of it whatever. Problem 42

Let P be the corpuscle in the center of the sphere, and RBSD a segment

of the sphere contained by the plane RDS and the spherical surface RBS.

w i l l  b e c o m e  a s  a n d  - ,  w h o s e  r a t i o  t o  e a c h  o t h e r  i s  a s w i l l  b e c o m e  a s  a n d  - ,  w h o s e  r a t i o  t o  e a c h  o t h e r  i s  a s

t h a t  h a v e  p r e v i o u s l y  b e e n  a p p l i e d  t o  P ] — c o m e  o u t  a s  .  S u p p o s e
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Let DB be cut at F by the spherical surface EFG described about the cen-
ter P, and divide that segment into the parts BREFGS and FEDG. But

let that surface be taken to be not purely math-

ematical, but physical, having a minimally small

thickness. Call that thickness O, and this surface

(by what Archimedes has demonstrated), will be

as PF x DF x O. Let us suppose, additionally, the

attractive forces of the particles of the sphere to

be inversely as that power of the distances whose

index is n\ then the force by which the surface

EFG attracts the body P will be (by prop. 79)

DE2 x O 2DF x O DF2 x O
as

Let the perpendicular FN drawn in [the thick-

Proposition 84 To find the force with which a corpuscle is attracted by a segment of a sphere

Problem 43 when it is located on the axis of the segment beyond the center of the sphere.

Let corpuscle P, located on the
axis ADB of the segment EBK, be

attracted by that segment. About cen-

ter P and with radius PE describe the

spherical surface EFK, which divides

the segment into two parts EBKFE

and EFKDE. Find the force of the

first part by prop. 81 and the force of

the second part by prop. 83, and the
sum of these two forces will be the force of the whole segment EBKDE.

Q.E.I.

Scholium Now that the attractions of spherical bodies have been explained, it would
be possible to go on to the laws of the attractions of certain other bodies

ness] O be proportional to this quantity; then the

curvilinear area BDI, as described by the ordinate FN, drawn in a continual

motion, applied to the length DB, will be as the whole force by which the

whole segment RBSD attracts the corpuscle P. Q.E.I.

other as SP2 to SA2; if as the inverse fourth power, as SP3 to SA3. Hence,
other as SP2 to SA2; if as the inverse fourth power, as SP3 to SA3. Hence, other as SP2 to SA2; if as the inverse fourth power, as SP3 to SA3. Hence, other as SP2 to SA2; if as the inverse fourth power, as SP3 to SA3. Hence,
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similarly consisting of attracting particles, but to treat these in particular

cases is not essential to my design. It will be enough to subjoin certain more

general propositions concerning the forces of bodies of this sort and the mo-

tions that arise from such forces, because these propositions are of some use

in philosophical questions [i.e., questions of natural philosophy, or physical

science].



256 BOOK I, S E C T I O N 13

SECTION 13

The attractive forces of nonspherical bodies

Proposition 85 If the attraction of an attracted body is far stronger when it is contiguous to the

Theorem 42 attracting body than when the bodies are separated from each other by even a very

small distance, then the forces of the particles of the attracting body decrease, as

the attracted body recedes, in a more than squared ratio of the distances from the

particles.

For if the forces decrease in the squared ratio of the distances from the

particles, the attraction toward a spherical body will not be sensibly increased

by contact, because (by prop. 74) it is inversely as the square of the distance

of the attracted body from the center of the sphere; and still less will it be in-

creased by contact, if the attraction decreases in a smaller ratio as the attracted

body recedes. Therefore, this proposition is evident in the case of attracting

spheres. It is the same for concave spherical orbs3 attracting external bodies.

And it is much more established in the case of orbs attracting bodies placed

inside of them, since the attractions spreading out through the concavities of

the orbs are annulled by opposite attractions (by prop. 70), and therefore the

attracting forces are null, even in contact. But if any parts remote from the

place of contact are taken away from these spheres and spherical orbs, and

new parts are added anywhere away from the place of contact, the shapes

of these attracting bodies can be changed at will; and yet the parts added

or subtracted will not notably increase the excess of attraction that arises

from contact, since they are remote from the place of contact. Therefore the

proposition is established concerning bodies of all shapes. Q.E.D.

Proposition 86 If the forces of the particles composing an attracting body decrease, as an attracted

Theorem 43 body recedes, in the cubed or more than cubed ratio of the distances from the

particles, the attraction will be far stronger in contact than when the attracting

body and attracted body are separated from each other by even a very small

distance.

a. Here, as elsewhere in the Principia, Newton uses the word "orb" for what we would more precisely

call a spherical shell.
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For by the solution of prop. 81 given in exx. 2 and 3, it is established that

the attraction is increased indefinitely in the approach of an attracted corpus-

cle to an attracting sphere of this sort. By the combination of those examples

and prop. 82, the same result is easily inferred concerning the attractions of

bodies toward concavo-convex orbs whether the attracted bodies are placed

outside those orbs or in the cavities inside the orbs. But the proposition will

also be established concerning all bodies universally by adding some attractive

matter to these spheres and orbs, or taking some away from them, anywhere

away from the place of contact, so that the attracting bodies take on any

desired shape. Q.E.D.

If two bodies, similar to each other and consisting of equally attracting matter,

separately attract corpuscles proportional to those bodies and similarly placed with

respect to them, then the accelerative attractions of the corpuscles toward the whole

bodies will be as the accelerative attractions of those corpuscles toward particles

of those bodies proportional to the wholes and similarly situated in those whole

bodies.

For if the bodies are divided into particles that are proportional to the

whole bodies and similarly placed in those whole bodies, then the attraction

toward an individual particle of the first body will be to the attraction toward

the corresponding individual particle of the second body as the attractions

toward any given particles of the first body are to the attractions toward

the corresponding particles of the second body, and by compounding, the

attraction toward the whole first body will be to the attraction toward the

whole second body in that same ratio. Q.E.D.

COROLLARY 1. Therefore, if the attracting forces of the particles, on in-

creasing the distances of the attracted corpuscles, decrease in the ratio of any

power of those distances, the accelerative attractions toward the whole bodies

will be as the bodies directly and those powers of the distances inversely.

For example, if the forces of the particles decrease in the squared ratio of

the distances from the attracted corpuscles, and the bodies are as A3 and B3,

and thus both the cube roots of the bodies and the distances of the attracted

corpuscles from the bodies are as A and B, the accelerative attractions toward

A3 B3

the bodies will be as — and —, that is, as those cube roots A and B of the
A2 B2

bodies. If the forces of the particles decrease in the cubed ratio of the distances

Proposition 87

Theorem 44
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from the attracted corpuscles, the accelerative attractions toward the whole

A3 B3

bodies will be as —- and —, that is, will be equal. If the forces decrease in

the fourth power of the distance, the attractions toward the bodies will be as

A3 B3

— and —, that is, inversely as the cube roots A and B. And so on.
A .D

COROLLARY 2. Hence, on the other hand, from the forces with which

similar bodies attract corpuscles similarly placed with respect to such bodies,

there can be gathered the ratio of the decrease of the forces of the attracting

particles, as the attracted corpuscle recedes, so long as that decrease is directly

or inversely in some ratio of the distances.

Proposition 88 If the attracting forces of equal particles of any body are as the distances of places

Theorem 45 from the particles, the force of the whole body will tend toward its center of

gravity, and will be the same as the force of a globe consisting of entirely similar

and equal matter and having its center in that center of gravity.

Let the particles A and B of the body RSTV attract some corpuscle Z

by forces which, if the particles are equal to each other, are as the distances

AZ and BZ: but if the particles are

supposed unequal, are as these particles

and their distances AZ and BZ jointly,

or (so to speak) as these particles multi-

plied respectively by their distances AZ

and BZ. And let the forces be rep-

resented by those solids [or products]

A x AZ and B x BZ. Join AB, and let

it be cut in G so that AG is to BG as the particle B to the particle A; then

G will be the common center of gravity of the particles A and B. The force

A x AZ (by corol. 2 of the laws) is resolved into the forces A x GZ and

A x AG, and the force B x BZ into the forces B x GZ and B x BG. But

the forces A x AG and B x BG are equal (because A is to B as BG to AG);

and therefore, since they tend in opposite directions, they nullify each other.

There remain the forces A x GZ and B x GZ. These tend from Z toward

the center G and compose the force (A + B) x GZ—that is, the same force

as if the attracting particles A and B were situated in their common center

of gravity G and there composed a globe.

25 25

25
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By the same argument, if a third particle C is added, and its force is

compounded with the force (A + B) x GZ tending toward the center G, the

force thence arising will tend toward the common center of gravity of the

globe (at G) and the particle C (that is, toward the common center of gravity

of the three particles A, B, and C), and will be the same as if the globe

and the particle C were situated in their common center, there composing a

greater globe. And so on indefinitely. Therefore the whole force of all the

particles of any body RSTV is the same as if that body, while maintaining

the same center of gravity, were to assume the shape of a globe. Q.E.D.

COROLLARY. Hence the motion of the attracted body Z will be the same

as if the attracting body RSTV were spherical; and therefore, if that at-

tracting body either is at rest or progresses uniformly straight forward, the

attracted body will move in an ellipse having its center in the center of gravity

of the attracting body.

If there are several bodies consisting of equal particles whose forces are as the Proposition 89

distances of places from each individual particle, the force—compounded of the Theorem 46

forces of all these particles—by which any corpuscle is attracted will tend toward

the common center of gravity of the attracting bodies and will be the same as if

those attracting bodies, while maintaining their common center of gravity, were

united together and were formed into a globe.

This is demonstrated in the same way as the preceding proposition.

COROLLARY. Therefore the motion of an attracted body will be the same

as if the attracting bodies, while maintaining their common center of gravity,

came together and were formed into a globe. And hence, if the common

center of gravity of the attracting body either is at rest or progresses uniformly

in a straight line, the attracted body will move in an ellipse having its center

in the common center of gravity of the attracting bodies.

If equal centripetal forces, increasing or decreasing in any ratio of the distances, Proposition 90

tend toward each of the individual points of any circle, it is required to find the Problem 44

force by which a corpuscle is attracted when placed anywhere on the straight line

that stands perpendicularly upon the plane of the circle at its center.

Suppose a circle to be described with center A and any radius AD in a

plane to which the straight line AP is perpendicular; then it is required to

find the force by which any corpuscle P is attracted toward the circle. From
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any point E of the circle, draw the straight

line PE to the attracted corpuscle P. In the

straight line PA take PF equal to PE, and

erect the normal FK so that it will be as the

force by which the point E attracts the cor-

puscle P. And let IKL be the curved line

that the point K traces out. Let that line

meet the plane of the circle in L. In PA take

PH equal to PD, and erect the perpendicu-

lar HI meeting the aforesaid curve at I, and

the attraction of the corpuscle P toward the circle will be as the area AHIL

multiplied by the altitude AP. Q.E.I.

For on AE take the minimally small line Ee. Join Pe, and in PE and

PA take PC and Pf equal to Pe. And since the force by which any point

E of the ring described with center A and radius AE in the aforesaid plane

attracts body [i.e., corpuscle] P toward itself has been supposed to be as FK,

and hence the force by which that point attracts body P toward A is as

AP x FK
; and the force by which the whole ring attracts body P toward

L L-J
AP x FK

A is as the ring and jointly; and that ring is as the rectangle of
PE

the radius AE and the width Ee, and this rectangle (because PE is to AE

as Ee to CE) is equal to the rectangle PE x CE or PE x F/; it follows that

the force by which that ring attracts body P toward A will be as PE X F/
AP x FK

and jointly, that is, as the solid [or product] Ff x FK x AP, or
\L JZ/

as the area FK^/ multiplied by AP. And therefore the sum of the forces

by which all the rings in the circle that is described with center A and

radius AD attract body P toward A is as the whole area AHIKL multiplied

by AP. Q.E.D.

COROLLARY 1. Hence, if the forces of the points decrease in the squared

ratio of the distances, that is, if FK is as I and thus the area AHIKL is
PF2 \

as I, the attraction of the corpuscle P toward the circle will be as
PA PH/

1 , that is, as .
PH PH

---------

1

(

(

as I, the attraction of the corpuscle P toward the circle will be as

1 , that is, as . 1 , that is, as .
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COROLLARY 2. And universally, if the forces of the points at the distances

D are inversely as any power D" of the distances I that is, if FK is as —, and

hence the area AHIKL is as — I, the attraction of the cor-

1 PA
puscle P toward the circle will be as -.F PA"~2 PH*-1

COROLLARY 3. And if the diameter of the circle is increased indefinitely

and the number n is greater than unity, the attraction of the corpuscle P

toward the whole indefinitely extended plane will be inversely as PA"~2,
PA

because the other term. , will vanish.
PH""1

To find the attraction of a corpuscle placed in the axis of a round solid, to each of Proposition 91

whose individual points there tend equal centripetal forces decreasing in any ratio Problem 45

of the distances.

Let corpuscle P, placed in the axis AB of the solid DECG, be attracted

toward that same solid. Let this solid be cut by any circle RFS perpendic-

ular to this axis, and in its semidiameter

FS, in a plane PALKB passing through

the axis, take (according to prop. 90) the

length FK proportional to the force by

which the corpuscle P is attracted toward

that circle. Let point K touch the curved

line LKI meeting the planes of the out-

ermost circles AL and BI at L and I, and

the attraction of the corpuscle P toward the solid will be as the area LABI.

Q.E.I.

COROLLARY 1. Hence, if the solid is

a cylinder described by parallelogram

ADEB revolving about the axis AB,

and the centripetal forces tending to-

ward each of its individual points are

inversely as the squares of the distances

from the points, the attraction of the

corpuscle P toward this cylinder will be

as AB - PE + PD. For the ordinate FK (by prop. 90, corol. 1) will be as

h e n c e  t h e  a r e a  A H I K L  i s  a s  —  I ,  t h e  a t t r a c t i o n  o f  t h e  c o r -

h e n c e  t h e  a r e a  A H I K L  i s  a s  —  I ,  t h e  a t t r a c t i o n  o f  t h e  c o r -
2 5

1(

(

2 5
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\
1 . The unit part of this or the quantity 1 in 1 multiplied by

PF
the length AB describes the area 1 x AB, and the other part multiplied

PR

by the length PB describes the area 1 x (PE — AD), which can easily be

shown from the quadrature of the curve LKI; and similarly the same part

PF
multiplied by the length PA describes the area 1 X (PD — AD), and

multiplied by the difference AB of PB and PA describes the difference of

the areas 1 x (PE — PD). From the first product 1 x AB take away the

last product 1 x (PE — PD), and there will remain the area LABI equal

to 1 x (AB — PE + PD). Therefore the force proportional to this area is as

AB - PE + PD.

COROLLARY 2. Hence also the force becomes known by which a spheroid

AGBC attracts any body P, situated outside the spheroid in its axis AB.

Let NKRM be a conic whose ordinate ER, perpendicular to PE, is always

equal to the length of the line PD, which is drawn to the point D in which

the ordinate cuts the spheroid. From the vertices A and B of the spheroid,

erect AK and BM perpendicular to the axis AB of the spheroid and equal

respectively to AP and BP, and therefore meeting the conic in K and M; and

join KM cutting off the segment KMRK from the conic. Let the center of the

spheroid be S, and its greatest semidiameter SC. Then the force by which the

spheroid attracts the body P will be to the force by which a sphere described
AS x CS2 - PS x KMRK

with diameter AB attracts the same body as to

\

[

[

\

\

[

[

the length AB describes the area 1 x AB, and the other part multiplied

with diameter AB attracts the same body as to
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AS3

. And by the same mode of computation it is possible to find the forces

of the segments of the spheroid.

COROLLARY 3. But if the corpuscle is located inside the spheroid and

in its axis, the attraction will be as its distance from the center. This is seen

more easily by the following argument,

whether the particle is in the axis or in

any other given diameter. Let AGOF be

the attracting spheroid, S its center, and P

the attracted body. Through that body P

draw both the semidiameter SPA and any

two straight lines DE and FG meeting the

spheroid in D and F on one side and in E

and G on the other; and let PCM and HLN be the surfaces of two inner

spheroids, similar to and concentric with the outer spheroid; and let the first

of these pass through the body P and cut the straight lines DE and FG in

B and C, and let the latter cut the same straight lines in H, I and K, L.

Let all the spheroids have a common axis, and the parts of the straight lines

intercepted on the two sides, DP and BE, FP and CG, DH and IE, FK

and LG will be equal to one another, because the straight lines DE, PB, and

HI are bisected in the same point, as are also the straight lines FG, PC, and

KL. Now suppose that DPF and EPG designate opposite cones described

with the infinitely small vertical angles DPF and EPG, and that the lines

DH and El also are infinitely small; then the particles of the cones—that

is, the particles DHKF and GLIE—cut off by the surfaces of the spheroids

will (because of the equality of the lines DH and El) be to each other as the

squares of their distances from the corpuscle P, and therefore will attract the

corpuscle equally. And by a like reasoning, if the spaces DPF and EGCB

are divided into particles by the surfaces of innumerable similar concentric

spheroids, having a common axis, then all of these particles will attract the

body P in opposite directions equally on both sides. Therefore the forces

of the cone DPF and of the conical segment [or truncated cone] EGCB

are equal, and—being opposite—annul each other. And it is the same with

regard to the forces of all the matter outside the innermost spheroid PCBM.

Therefore the body P is attracted only by the innermost spheroid PCBM,

and accordingly (by prop. 72, corol. 3) its attraction is to the force by which

with diameter AB attracts  the same body as  to

263
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the body A is attracted by the whole spheroid AGOD as the distance PS to

the distance AS. Q.E.D.

Proposition 92 Given an attracting body, it is required to find the ratio by which the centripetal

Problem 46 forces tending toward each of its individual points decrease [i.e., decrease as a

function of distance].

From the given body a sphere or cylinder or other regular figure is to

be formed, whose law of attraction—corresponding to any ratio of decrease

[in relation to distance]—can be found by props. 80, 81, and 91. Then, by

making experiments, the force of attraction at different distances is to be

found; and the law of attraction toward the whole that is thus revealed will

give the ratio of the decrease of the forces of the individual parts, which was

required to be found.

Proposition 93 If a solid, plane on one side but infinitely extended on the other sides, consists of

Theorem 47 equal and equally attracting particles, whose forces—in receding from the solid—

decrease in the ratio of any power of the distances that is more than the square;

and if a corpuscle set on either side of the plane is attracted by the force of the

whole solid; then I say that that force of attraction of the solid in receding from

its plane surface will decrease in the ratio of the distance of the corpuscle from

the plane raised to a power whose index is less by 3 units than that of the power

of the distances in the law of attractive force [\\L will decrease in the ratio of the

power whose base is the distance of the corpuscle from the plane and whose index

is less by 3 than the index of the power of the distances].

CASE 1. Let LG/ be the plane by which the solid is terminated.

Let the solid lie on the side of this plane toward I, and let it be resolved into

innumerable planes mHM, nIN,

oKO, ... parallel to GL. And

first let the attracted body C be

placed outside the solid. Draw

CGHI perpendicular to those in-

numerable planes, and let the

forces of attraction of the points

of the solid decrease in the ra-

tio of a power of the distances

whose index is the number n not
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smaller than 3. Therefore (by prop. 90, corol. 3) the force by which any

plane raHM attracts the point C is inversely as CHn~2. In the plane raHM

take the length HM inversely proportional to CH"~2, and that force will be

as HM. Similarly, on each of the individual planes /GL, «IN, oKO, . .. ,

take the lengths GL, IN, KO, . . . inversely proportional to CGn~2, CP~2,

CK"~2, . . . ; then the forces of these same planes will be as the lengths

taken, and thus the sum of the forces will be as the sum of the lengths;

that is, the force of the whole solid will be as the area GLOK produced

infinitely in the direction OK. But that area (by the well-known methods

of quadratures) is inversely as CG"~3, and therefore the force of the whole

solid is inversely as CG"~~3. Q.E.D.

CASE 2. Now let the corpuscle C be placed on the side of the plane /GL

inside the solid, and take the distance CK equal to the distance CG. Then the

part LG/oKO of this solid, terminated by the

parallel planes /GL and oKO, will not attract

the corpuscle C (situated in the middle) in

any direction, the opposite actions of opposite

points annulling each other because of their

equality. Accordingly, corpuscle C is attracted

only by the force of the solid situated beyond

the plane OK. But this force (by case 1) is

inversely as CK"~3, that is (because CG and CK are equal), inversely as

CG*-3. Q.E.D.

COROLLARY 1. Hence, if the solid LGIN is terminated on both sides by

two infinitely extended and parallel planes LG and IN, its force of attraction

becomes known by subtracting from the force of attraction of the whole

infinitely extended solid LGKO the force of attraction of the further part

NIKO produced infinitely in the direction KO.

COROLLARY 2. If the more distant part of this infinitely extended solid is

ignored, since its attraction compared with the attraction of the nearer part is

of almost no moment, then the attraction of that nearer part, with an increase

of the distance, will decrease very nearly in the ratio of the power CG"~3.

COROLLARY 3. And hence, if any body that is finite and plane on one

side attracts a corpuscle directly opposite the middle of that plane, and the

distance between the corpuscle and the plane is exceedingly small compared

with the dimensions of the attracting body, and the attracting body consists of
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homogeneous particles whose forces of attraction decrease in the ratio of any

power of the distances that is more than the fourth; the force of attraction of

the whole body will decrease very nearly in the ratio of a power of that ex-

ceedingly small distance, whose index is less by 3 than the index of the stated

power. This assertion is not valid for a body consisting of particles whose

forces of attraction decrease in the ratio of the third power of the distances,

because in this case the attraction of the more distant part of the infinitely

extended body in corol. 2 is always infinitely greater than the attraction of

the nearer part.

Scholium If a body is attracted perpendicularly toward a given plane, and the motion of

the body is required to be found from the given law of attraction, the problem

will be solved by seeking (by prop. 39) the motion of the body descending

directly to this plane and by compounding this motion (according to corol. 2

of the laws) with a uniform motion performed along lines parallel to the

same plane. And conversely, if it is required to find the law of an attraction

made toward the plane along perpendicular lines, under the condition that

the attracted body moves in any given curved line whatever, the problem will

be solved by the operations used in the third problem [i.e., prop. 8].

The procedure can be shortened by resolving the ordinates into converg-

ing series. For example, if B is the ordinate to the base A at any given angle,

and is as any power A" of that base, and the force is required by which a

body that is either attracted toward the base or repelled away from the base

(according to the position of the ordinate) can move in a curved line that the

upper end of the ordinate traces out; I suppose the base to be increased by a

minimally small part O, and I resolve the ordinate (A + O)n into the infinite

series

m

A - + -OA " + ———O2 A -
n 2nl

and I suppose the force to be proportional to the term of this series in which
m — mn 7 m-in

O is of two dimensions, that is, to the term O A * . Therefore the
m — mn *»-2» m — mn m~2n

required force is as A " , or, which is the same, as B m .
n2 n2

For example, if the ordinate traces out a parabola, where m = 2 and n = 1,

266 BOOK I, SECTION 13

A -  + -OA " + ———O2 A -
2

25

3
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the force will become as the given quantity 2B°, and thus will be given.

Therefore with a given [i.e., constant] force the body will move in a parabola,

as Galileo demonstrated. But if the ordinate traces out a hyperbola, where

m = 0 — 1 and n = 1, the force will become as 2A~3 or 2B3; and therefore

with a force that is as the cube of the ordinate, the body will move in a

hyperbola. But putting aside propositions of this sort, I go on to certain

others on motion which I have not as yet considered.
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S E C T I O N 14

The motion of minimally small bodies that are acted on by centripetal forces

tending toward each of the individual parts of some great body

Proposition 94 If two homogeneous mediums are separated from each other by a space terminated

Theorem 48 on the two sides by parallel planes, and a body passing through this space is

attracted or impelled perpendicularly toward either medium and is not acted on or

impeded by any other force, and the attraction at equal distances from each plane

(tafen on the same side of that plane) is the same everywhere; then I say that the

sine of the angle of incidence onto either plane will be to the sine of the angle of

emergence from the other plane in a given ratio.

CASE 1. Let Aa and Bb be the two parallel planes. Let the body be

incident upon the first plane Aa along line GH, and in all its passage

through the intermediate space let

it be attracted or impelled toward

the medium of incidence, and by

this action let it describe the curved

line HI and emerge along the line

IK. To the plane of emergence Bb

erect the perpendicular IM meeting

the line of incidence GH produced

in M and the plane of incidence Aa

in R; and let the line of emergence

KI produced meet HM in L. With

center L and radius LI describe a circle cutting HM in P and Q, as well

as MI produced in N. Then first, if the attraction or impulse is supposed

uniform, the curve HI (from what Galileo demonstrated) will be a parabola,

of which this is a property: that the rectangle of its given latus rectum and

the line IM is equal to HM squared; but also the line HM will be bisected in

L. Hence, if the perpendicular LO is dropped to MI, MO and OR will be

equal; and when the equals ON and OI have been added to these quantities,

the totals MN and IR will become equal. Accordingly, since IR is given,

MN is also given; and the rectangle NM x MI is to the rectangle of the

latus rectum and IM (that is, to HM2) in a given ratio. But the rectangle

NM x MI is equal to the rectangle PM x MQ, that is, to the difference of
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the squares ML2 and PL2 or LI2; and HM2 has a given ratio to its fourth

part ML2: therefore the ratio of ML2 — LI2 to ML2 is given, and by conver-

sion [or convertendo] the ratio LI2 to ML2 is given, and also the square root

of that ratio, LI to ML. But in every triangle LMI, the sines of the angles

are proportional to the opposite sides. Therefore the ratio of the sine of the

angle of incidence LMR to the sine of the angle of emergence LIR is given.

Q.E.D.

CASE 2. Now let the body pass successively through several spaces ter-

minated by parallel planes, AabB, BbcC, . . . , and be acted on by a force

that is uniform in each of the individual

spaces considered separately but is differ-

ent in each of the different spaces. Then

by what has just been demonstrated, the

sine of the angle of incidence upon the first

plane Aa will be to the sine of the angle

of emergence from the second plane Bb in a given ratio; and this sine, which

is the sine of the angle of incidence upon the second plane Bb, will be to

the sine of the angle of emergence from the third plane Cc in a given ratio;

and this sine will be in a given ratio to the sine of the angle of emergence

from the fourth plane Dd\ and so on indefinitely. And from the equality

of the ratios [or ex aequo] the sine of the angle of incidence upon the first

plane will be in a given ratio to the sine of the angle of emergence from the

last plane. Now let the distances between the planes be diminished and their

number increased indefinitely, so that the action of attraction or of impulse,

according to any assigned law whatever, becomes continuous; then the ratio

of the sine of the angle of incidence upon the first plane to the sine of the

angle of emergence from the last plane, being always given, will still be given

now. Q.E.D.

With the same suppositions as in prop. 94, I say that the velocity of the body before Proposition 95

incidence is to its velocity after emergence as the sine of the angle of emergence Theorem 49

to the sine of the angle of incidence.

Let AH be taken equal to Id, and erect the perpendiculars AG and dK

meeting the lines of incidence and emergence GH and IK in G and K. In

GH take TH equal to IK, and drop TV perpendicular to the plane Aa. And

(by corol. 2 of the laws) resolve the motion of the body into two motions, one
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perpendicular, the other parallel, to the

planes A#, B£, Cc, . . . . The [compo-

nent of the] force of attraction or of

impulse acting along perpendicular lines

does not at all change the motion in the

direction of the parallels; and therefore

the body, by this latter motion, will in

equal times pass through equal distances

along parallels between the line AG and the point H, and between the point

I and the line rfK, that is, it will describe the lines GH and IK in equal times.

Accordingly, the velocity before incidence is to the velocity after emergence

as GH to IK or TH; that is, as AH or Id to t/H, that is (with respect to the

radius TH or IK), as the sine of the angle of emergence to the sine of the

angle of incidence. Q.E.D.

Proposition 96 With the same suppositions, and supposing also that the motion before incidence

Theorem 50 is faster than afterward, I say that as a result of * changing the inclination* of the

line of incidence, the body will at last be reflected, and the angle of reflection will

become equal to the angle of incidence.

For suppose the body to describe parabolic arcs between the parallel

planes A<z, B£, C<:, . . . , as before; and let those arcs be HP, PQ, QR, ... .

And let the obliquity of the line

of incidence GH to the first

plane Aa be such that the sine

of the angle of incidence is to

the radius of the circle whose

sine it is in the ratio which that same sine of the angle of incidence has to

the sine of the angle of emergence from the plane D^/ into the space D^E;

then, because the sine of the angle of emergence will now have become

equal to the radius, the angle of emergence will be a right angle, and hence

the line of emergence will coincide with the plane Dd. Let the body arrive

at this plane at the point R; and since the line of emergence coincides with

aa. The sense of Newton's "changing the inclination" is that of increasing the angle of incidence.
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that same plane, it is obvious that the body cannot go any further toward

the plane Ee. But neither can it go on in the line of emergence Rd, because

it is continually attracted or impelled toward the medium of incidence.

Therefore, this body will be turned back between the planes Cc and Dd,

describing an arc of the parabola QR#, whose principal vertex (according to

what Galileo demonstrated) is at R, and will cut the plane Cc in the same

angle at q as formerly at Q; and then, proceeding in the parabolic arcs qp^

ph, . .. , similar and equal to the former arcs QP and PH, this body will

cut the remaining planes in the same angles at />, A, . .. , as formerly at P,

H, . .. , and will finally emerge at h with the same obliquity with which

it was incident upon the plane at H. Now suppose the distances between

the planes Aa, B£, C<r, D^/, E^, ... to be diminished and their number

increased indefinitely, so that the action of attraction or impulse, according

to any assigned law whatever, is made to be continuous; then the angle of

emergence, being always equal to the angle of incidence, will still remain

equal to it now. Q.E.D.

These attractions are very similar to the reflections and refractions of light Scholium

made according to a given ratio of the secants, as Snel discovered, and conse-

quently according to a given ratio of the sines, as Descartes set forth. For the

fact that light is propagated successively [i.e., in time and not instantaneously]

and comes from the sun to the earth in about seven or eight minutes is now

established by means of the phenomena of the satellites of Jupiter, confirmed

by the observations of various astronomers. Moreover, the rays of light that

are in the air (as Grimaldi recently discovered, on admitting light into a

dark room through a small hole—something I myself have also tried) in

their passing near the edges of bodies, whether opaque or transparent (such

as are the circular-rectangular edges of coins minted from gold, silver, and

bronze, and the sharp edges of knives, stones, or broken glass), are inflected

around the bodies, as if attracted toward them; and those of the rays that

in such passing approach closer to the bodies are inflected the more, as if

more attracted, as I myself have also diligently observed. And those that

pass at greater distances are less inflected, and at still greater distances are

inflected somewhat in the opposite direction and form three bands of colors.
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In the figure, s designates the sharp edge

of a knife or of any wedge A^B, and

gowog, fnunf, emtme, and dlsld are

rays, inflected in the arcs owo, nun, mtm,

and hi toward the knife, more so or less

so according to their distance from the

knife. Moreover, since such an inflection

of the rays takes place in the air outside the knife, the rays which are incident

upon the knife must also be inflected in the air before they reach it. And the

case is the same for those rays incident upon glass. Therefore refraction takes

place not at the point of incidence, but gradually by a continual inflection of

the rays, made partly in the air before the rays touch the glass, and partly (if

I am not mistaken) within the glass after they have entered it, as has been

delineated in the rays c^zc, biyb, and ahxa

incident upon the glass at r, ^, and /?, and

inflected between ^ and z, i and y, h and

x. Therefore because of the analogy that ex-

ists between the propagation of rays of light

and the motion of bodies, I have decided to

subjoin the following propositions for opti-

cal uses, meanwhile not arguing at all about

the nature of the rays (that is, whether they

are bodies or not), but only determining the trajectories of bodies, which are

very similar to the trajectories of rays.

Proposition 97 Supposing that the sine of the angle of incidence upon some surface is to the sine

Problem 47 of the angle of emergence in a given ratio, and that the inflection of the paths of

bodies in close proximity to that surface ta^es place in a very short space, which

can be considered to be a point; it is required to determine the surface that may

ma\e all the corpuscles emanating successively from a given place converge to

another given place.

Let A be the place from

which the corpuscles diverge, B

the place to which they should

converge, CDE the curved line

that—by revolving about the axis
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AB—describes the required surface, D and E any two points of that curve,

and EF and EG perpendiculars dropped to the paths AD and DB of the

body. Let point D approach point E; then the ultimate ratio of the line DF

(by which AD is increased) to the line DG (by which DB is decreased) will

be the same as that of the sine of the angle of incidence to the sine of the

angle of emergence. Therefore the ratio of the increase of the line AD to

the decrease of the line DB is given; and as a result, if a point C is taken

anywhere on the axis AB, this being a point through which the curve CDE

should pass, and the increase CM of AC is taken in that given ratio to the

decrease CN of BC, and if two circles are described with centers A and B

and radii AM and BN and cut each other at D, that point D will touch the

required curve CDE, and by touching it anywhere whatever will determine

that curve. Q.E.I.

COROLLARY 1. But by making point A or B in one case go off indefi-

nitely, in another case move to the other side of point C, all the curves which

Descartes exhibited with respect to refractions in his treatises on optics and

geometry will be traced out. Since Descartes concealed the methods of finding

these, I have decided to reveal them by this proposition.

COROLLARY 2. If a body, incident upon any surface CD along the

straight line AD drawn according to any law, emerges along any other

straight line DK; and if from point

C the curved lines CP and CQ, al-

ways perpendicular to AD and DK,

are understood to be drawn; then the

increments of the lines PD and QD,

and hence the lines themselves PD

and QD generated by those increments, will be as the sines of the angles of

incidence and emergence to each other, and conversely.

The same conditions being supposed as in prop. 97, and supposing that there Proposition 98

is described about the axis AB any attracting surface CD, regular or irregular, Problem 48

through which the bodies coming out from a given place A must pass; it is required

to find a second attracting surface EF that will ma^e the bodies converge to a

given place B.

Join AB and let it cut the first surface in C and the second in E, point D

being taken in any way whatever. And supposing that the sine of the angle
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of incidence upon the first surface is to the sine of the angle of emergence

from that first surface, and that the sine of the angle of emergence from

the second surface is to the sine of the angle of incidence upon the second

surface, as some given quantity M is to another given quantity N; produce

AB to G so that BG is to CE as M — N to N, and produce AD to H so

that AH is equal to AG, and also produce DF to K so that DK is to DH

as N to M. Join KB, and with center D and radius DH describe a circle

meeting KB produced in L, and draw BF parallel to DL; then the point F

will touch the line EF, which—on being revolved about the axis AB—will

describe the required surface. Q.E.F.

Now suppose the lines CP and CQ to be everywhere perpendicular to

AD and DF respectively, and the lines ER and ES to be similarly perpen-

dicular to FB and FD, with the result that QS is always equal to CE; then

(by prop. 97, corol. 2) PD will be to QD as M to N, and therefore as DL

to DK or FB to FK; and by separation [or dividendo] as DL — FB or

PH — PD — FB to FD or FQ — QD, and by composition [or componendo]

as PH — FB to FQ, that is (because PH and CG, QS and CE are equal), as

CE + BG - FR to CE - FS. But (because BG is proportional to CE and

M — N is proportional to N) CE + BG is also to CE as M to N, and thus

by separation [or dividendo] FR is to FS as M to N; and therefore (by prop.

97, corol. 2) the surface EF compels a body incident upon it along the line

DF to go on in the line FR to the place B. Q.E.D.

Scholium It would be possible to use the same method for three surfaces or more. But

for optical uses spherical shapes are most suitable. If the objective lenses of

telescopes are made of two lenses that are spherically shaped and water is

enclosed between them, it can happen that errors of the refractions that take

place in the extreme surfaces of the lenses are accurately enough corrected
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by the refractions of the water. Such objective lenses are to be preferred to

elliptical and hyperbolical lenses, not only because they can be formed more

easily and more accurately but also because they more accurately refract the

pencils of rays situated outside the axis of the glass. Nevertheless, the differing

refrangibility of different rays [i.e., of rays of different colors] prevents optics

from being perfected by spherical or any other shapes. Unless the errors

arising from this source can be corrected, all labor spent in correcting the

other errors will be of no avail.
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S E C T I O N 1

The motion of bodies that are resisted in proportion to their velocity

If a body is resisted in proportion to its velocity, the motion lost as a result of the Proposition 1

resistance is as the space described in moving.

For since the motion lost in each of the equal particles of time is as

the velocity, that is, as a particle of the path described, then, by composition

[or componendo], the motion lost in the whole time will be as the whole

path. Q.E.D.

COROLLARY. Therefore, if a body, devoid of all gravity, moves in free

spaces by its inherent force alone and if there are given both the whole

motion at the beginning and also the remaining motion after some space

has been described, the whole space that the body can describe in an infinite

time will be given. For that space will be to the space already described as

the whole motion at the beginning is to the lost part of that motion.

Theorem 1

Quantities proportional to their differences are continually proportional. Lemma 1

Let A be to A —B as B to B —C and C to C —D, . . . ; then, by conversion

[or convertendo], A will be to B as B to C and C to D, . . . . Q.E.D.

If a body is resisted in proportion to its velocity and moves through a homogeneous Proposition 2

medium by its inherent force alone and if the times are ta^en as equal, the velocities Theorem 2

at the beginnings of the individual times are in a geometric progression, and the

spaces described in the individual times are as the velocities.

CASE 1. Divide the time into equal particles; and if, at the very begin-

nings of the particles, a force of resistance which is as the velocity acts with

a single impulse, the decrease of the velocity in the individual particles of

time will be as that velocity. The velocities are therefore proportional to their

differences and thus (by book 2, lem. 1) are continually proportional. Accord-

ingly, if any equal times are compounded of an equal number of particles,

the velocities at the very beginnings of the times will be as the terms in a

continual progression in which some have been skipped, omitting an equal

number of intermediate terms in each interval. The ratios of these terms

are indeed compounded of equally repeated equal ratios of the intermediate

terms, and therefore these compound ratios are also equal to one another.
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Therefore, since the velocities are proportional to these terms, they are in a

geometric progression. Now let those equal particles of times be diminished,

and their number increased indefinitely, so that the impulse of the resistance

becomes continual; then the velocities at the beginnings of equal times, which

are always continually proportional, will also be continually proportional in

this case. Q.E.D.

CASE 2. And by separation [or dividendo] the differences of the veloc-

ities (that is, the parts of them which are lost in the individual times) are

as the wholes, while the spaces described in the individual times are as the

lost parts of the velocities (by book 2, prop. 1) and are therefore also as the

wholes. Q.E.D.

COROLLARY. Hence, if a hyperbola BG is described with respect to the

rectangular asymptotes AC and CH and if AB and DG are perpendicular

to asymptote AC and if both the velocity of the body and the resistance of

the medium are represented, at the very beginning

of the motion, by any given line AC, but after some

time has elapsed, by the indefinite line DC, then the

time can be represented by area ABGD, and the space

described in that time can be represented by line AD.

For if the area is increased uniformly by the motion of

point D, in the same manner as the time, the straight line DC will decrease

in a geometric ratio in the same way as the velocity, and the parts of the

straight line AC described in equal times will decrease in the same ratio.

Proposition 3 To determine the motion of a body which, while moving straight up or down in a

Problem 1 homogeneous medium, is resisted in proportion to the velocity, and which is acted

on by uniform gravity.

When the body is moving up,

represent the gravity by any given

rectangle BACH, and the resistance

of the medium at the beginning of

the ascent by the rectangle BADE

taken on the other side of the

straight line AB. With respect to

the rectangular asymptotes AC and

CH, describe a hyperbola through

280 BOOK 2, SECTION I
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point B, cutting perpendiculars DE and de in G and g\ then the body, by

ascending in the time DGgd, will describe the space EGge', and in the time

DGBA will describe the space of the total ascent EGB; and in the time

ABKI will describe the space of descent BFK; and in the time IK^/ will

describe the space of descent KF/^; and the body's velocities (proportional

to the resistance of the medium) in these periods of time will be ABED,

AEed, null, ABFI, and AB// respectively; and the greatest velocity that the

body can attain in descending will be BACH.

For resolve the rectangle BACH into innumerable rectangles A^, K/,

Lra, Mra, . . . , which are as the increases of the velocities, occurring in

the same number of equal times; then nil, A^, A/, Am, An, . .. will be

as the total velocities, and thus (by hypothesis) as the resistances of the

medium at the beginning of each of the equal times. Make AC to AK,

or ABHC to AB^K, as the force of gravity to the resistance at the be-

ginning of the second time, and subtract the resistances from the force

of gravity; then the remainders ABHC,

KJ^HC, L/HC, MraHC, .. . will be as

the absolute forces by which the body is

urged at the beginning of each of the

times, and thus (by the second law of

motion) as the increments of the veloc-

ities, that is, as the rectangles A^, K/,

"Lm, M#, . . . , and therefore (by book

2, lem. 1) in a geometric progression. Therefore, if the straight lines K^, L/,

Mm, N/2, . . ., produced, meet the hyperbola in q, r, s, t, . . . , areas AB^K,

KgrL, Lr^M, M.y£N, . .. will be equal, and thus proportional both to the

times and to the forces of gravity, which are always equal. But area ABgK

(by book 1, lem. 7, corol. 3, and lem. 8) is to area Bt(q as K^ to Vi^q or

AC to VzAK, that is, as the force of gravity to the resistance in the middle

of the first time. And by a similar argument, areas qKLr, rLMs, sMNt, . . .

are to areas qt(lr, rims, smnt, ... as the force of gravity to the resistance in

the middle of the second time, of the third, of the fourth, . . . . Accordingly,

since the equal areas BAKg, ^KLr, rLM^, ^MN/, ... are proportional to

the forces of gravity, areas B^#, qkjr, rims, smnt, . . . will be proportional

to the resistance in the middle of each of the times, that is (by hypothesis),

to the velocities, and thus to the spaces described. Take the sums of the pro-

2 8 1
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portional quantities; then areas B^g, B/r, Ems, Bnt, ... will be proportional

to the total spaces described, and areas ABgK, ABrL, AB^M, AB/N, ...

will be proportional to the times. Therefore the body, while descending in

any time ABrL, describes the space B/r, and in the time Lr/N describes

the space rlnt. Q.E.D. And the proof is similar for an ascending motion.

Q.E.D.

COROLLARY 1. Therefore the greatest velocity that a body can acquire

in falling is to the velocity acquired in any given time as the given force of

gravity by which the body is continually urged to athe force of the resistance

by which it is impeded at the end of that time.3

COROLLARY 2. If the time is increased in an arithmetic progression, the

sum of that greatest velocity and of the velocity in the ascent, and also their

difference in the descent, decreases in a geometric progression.

COROLLARY 3. The differences of the spaces which are described in equal

differences of the times decrease in the same geometric progression.

COROLLARY 4. The space described by a body is the difference of two

spaces, of which one is as the time reckoned from the beginning of the

descent, and the other is as the velocity; and these spaces are equal to each

other at the very beginning of the descent.

Proposition 4 Supposing that the force of gravity in some homogeneous medium is uniform and

Problem 2 tends perpendicularly toward the plane of the horizon, it is required to determine

the motion of a projectile in that medium, while it is resisted in proportion to the

velocity.

From any place D let a projectile go forth along any straight line DP, and

represent its velocity at the beginning of the motion by the length DP. Drop

the perpendicular PC from point P to the horizontal line DC, and cut DC

in A so that DA is to AC as the resistance of the medium arising from the

upward motion at the beginning is to the force of gravity; or (which comes

to the same thing) so that the rectangle of DA and DP is to the rectangle

of AC and CP as the whole resistance at the beginning of the motion is to

the force of gravity. Describe any hyperbola GTBS with asymptotes DC and

CP which cuts the perpendiculars DG and AB in G and B; and complete

the parallelogram DGKC, whose side GK cuts AB in Q. Take the line N

aa. Ed. 2 has "the excess of this force over the force by which it is resisted at the end of that time."
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in the same ratio to QB as DC

to CP, and at any point R of the

straight line DC erect the perpen-

dicular RT which meets the hyper-

bola in T and the straight lines

EH, GK, and DP in I, /, and V,
and then on RT take Vr equal to
tGT

. or (which comes to the same
N

GTIE
thing) take Rr equal to .

Then in the time DRTG the pro-

jectile will arrive at point r, describ-

ing the curved line Dr#F which

point r traces out, reaching its great-

est height a in the perpendicular

AB, and afterward always approach-

ing the asymptote PC. And its ve-

locity at any point r is as the tangent

rL of the curve. Q.E.I.

For N is to QB as DC to CP or DR to RV, and thus RV is equal
DR x QB / . DRxQB-rGT\

to , and Rr I that is, RV — Vr, or I is equal
N V N /

DR x AB - RDGT
to . Now represent the time by area RDGT, and (by

corol. 2 of the laws) divide the motion of the body into two parts, one upward

and the other lateral. Since the resistance is as the motion, it also will be

divided into two parts proportional to and opposite to the parts of the motion;

and thus the distance described by the lateral motion will be (by book 2,

prop. 2) as line DR, and the distance described by the upward motion will

be (by book 2, prop. 3) as the area DR x AB —RDGT, that is, as line Rr. But

at the very beginning of the motion the area RDGT is equal to the rectangle
/ D R x A B - D R x A Q X

DR x AQ, and thus that line Rr I or is then to
V N /

DR as AB —AQ or QB to N, that is, as CP to DC, and hence as the upward

motion to the lateral motion at the beginning. Since, therefore, Rr is always

as the distance upward, and DR is always as the distance sideward, and Rr

---

n

( (

( (

( (

( (

For N is to QB as DC to CP or DR to RV, and thus RV is equal

N V N /

n
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is to DR at the beginning as the distance upward to the distance sideward,

Rr must always be to DR as the distance upward to the distance sideward,

and therefore the body must move in the line DraF, which the point r traces

out. Q.E.D.

COROLLARY 1. Rr is therefore equal to ; and thus,
N N

DR x AB
if RT is produced to X so that RX is equal to , that is, if the

parallelogram ACPY is completed, and DY is joined cutting CP in Z, and
R or^T

RT is produced until it meets DY in X, then Xr will be equal to ,

and therefore will be proportional to the time.

COROLLARY 2. Hence, if innumerable lines CR are taken (or, which

comes to the same thing, innumerable lines ZX) in a geometric progression,

then as many lines Xr will be in an arithmetic progression. And hence it is

easy to draw curve DnzF with the help of a table of logarithms.

COROLLARY 3. If a parabola is constructed with vertex D and diameter

DG (produced downward) and a latus rectum that is to 2DP as the whole

resistance at the very beginning of

the motion is to the force of gravity,

then the velocity with which a body

must go forth from place D along

the straight line DP in order to de-

scribe curve DraF in a uniform re-

sisting medium will be the very one

with which it must go forth from

the same place D along the same

straight line DP in order to describe

the parabola in a nonresisting space.

For the latus rectum of this parabola, at the very beginning of the mo-

DV2 /GT DR x Tt
tion, is ; and Vr is or . But the straight line that, if

Vr N 2N
it were drawn, would touch the hyperbola GTS in G is parallel to DK,

and thus It is , and N has been taken as . Ihererore
DC CP

DR2 x CK x CP
Vr is , that is (because DR is to DC as DV is to DP),

2DC2 x QB ' V

COROLLARY 1. Rr is therefore equal to ; and thus,

2

2

and thus It is , and N has been taken as . Ihererore and thus It is , and N has been taken as . Ihererore
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DV2 x CK x CP DV2 2DP2 x QB

2DP2 x DA
is (because QB is to CK as DA is to AC), — —, and thus is to 2DP

AC> X L>r

as DP x DA to CP x AC—that is, as the resistance to the gravity. Q.E.D.

COROLLARY 4. Hence, if a body

is projected from any place D with

a given velocity along any straight

line DP given in position, and the

resistance of the medium at the very

beginning of the motion is given,

the curve Dr<zF which the body will

describe can be found. For from the

given velocity the latus rectum of

the parabola is given, as is well

known. And if 2DP is taken to that

latus rectum as the force of gravity

to the force of resistance, DP is

given. Then, if DC is cut in A so

that CP x AC is to DP x DA in that

same ratio of gravity to resistance,

point A will be given. And hence

curve DnzF is given.

COROLLARY 5. And conversely,

if curve DraF is given, both the velocity of the body and the resistance of

the medium in each of the places r will be given. For since the ratio of

CP x AC to DP x DA is given, both the resistance of the medium at the

beginning of the motion and the latus rectum of the parabola are also given;

and hence the velocity at the beginning of the motion is also given. Then

from the length of the tangent rL, both the velocity (which is proportional

to it) and the resistance (which is proportional to the velocity) are given in

any place r.

COROLLARY 6. The length 2DP is to the latus rectum of the parabola

as the gravity to the resistance at D; and when the velocity is increased the

resistance is increased in the same ratio, but the latus rectum of the parabola

is increased in the square of that ratio; hence it is evident that the length

2 D C 2  x  Q B  '  V

D V 2  x  C K  x  C P  D V 2  2 D P 2  x  Q B

D V 2  x  C K  x  C P  D V 2  2 D P 2  x  Q B
D V 2  x  C K  x  C P  D V 2  2 D P 2  x  Q B

D V 2  x  C K  x  C P  D V 2  2 D P 2  x  Q B

D V 2  x  C K  x  C P  D V 2  2 D P 2  x  Q B
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2DP is increased in the simple ratio and thus is always proportional to the

velocity and is not increased or decreased when the angle CDP is changed

unless the velocity is also changed.

COROLLARY 7. Hence the method is apparent for determining the

curve DraF from phenomena approximately and for obtaining thereby the

resistance and the velocity with which the body is projected. Project two

similar and equal bodies with

the same velocity from place

D along the different angles

CDP and CDp, and let the

places F and / where they fall

upon the horizontal plane DC

be known. Then, taking any

length for DP or Dp, suppose

that the resistance at D is to

the gravity in any ratio, and

represent that ratio by any

length SM. Then, by computa-

tion, find the lengths DF and

D/ from that assumed length

F/
DP, and from the ratio

DF

(found by computation) take

away the same ratio (found by experiment), and represent the difference by

the perpendicular MN. Do the same thing a second and a third time, always

taking a new ratio SM of resistance to gravity, and obtain a new difference

MN. But draw the positive differences on one side of the straight line SM

and the negative differences on the other, and through points N, N, N draw

the regular curve NNN cutting the straight line SMMM in X, and then SX

will be the true ratio of the resistance to the gravity, which it was required

to find. From this ratio the length DF is to be obtained by calculation; then

the length that is to the assumed length DP as the length DF (found out by

experiment) to the length DF (just found by computation) will be the true

length DP. When this is found, there will be known both the curved line

DrflF that the body describes and the body's velocity and resistance in every

place.
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However, the hypothesis that the resistance encountered by bodies is in the Scholium

ratio of the velocity belongs more to mathematics than to nature.3 In medi-

ums wholly lacking in rigidity, the resistances encountered by bodies are as

the squares of the velocities. For by the action of a swifter body, a motion

that is greater in proportion to that greater velocity is communicated to a

given quantity of the medium in a smaller time; and thus in an equal time,

because a greater quantity of the medium is disturbed, a greater motion is

communicated in proportion to the square of the velocity, and (by the second

and third laws of motion) the resistance is as the motion communicated. Let

us see, therefore, what kinds of motions arise from this law of resistance.

a. Ed. 1 and ed. 2 have an additional sentence: "This ratio obtains very nearly when bodies are

moving very slowly in mediums having some rigidity." In Newton's annotated copy of ed. 2, "very

nearly" is changed to "more closely."
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S E C T I O N 2

The motion of bodies that are resisted as the squares of the velocities

Proposition 5 If the resistance of a body is proportional to the square of the velocity and if the

Theorem 3 body moves through a homogeneous medium by its inherent force alone and if the

times are ta^en in a geometric progression going from the smaller to the greater

terms, I say that the velocities at the beginning of each of the times are inversely

in that same geometric progression and that the spaces described in each of the

times are equal.

For since the resistance of the medium is proportional to the square

of the velocity, and the decrement of the velocity is proportional to the re-

sistance, if the time is divided into innu-

merable equal particles, the squares of the

velocities at each of the beginnings of the

times will be proportional to the differences

of those same velocities. Let the particles of

time be AK, KL, LM, . . ., taken in the

straight line CD, and erect perpendiculars

AB, K^, LI, Mm, . . . , meeting the hyper-

bola Bf^lmG (described with center C and rectangular asymptotes CD and

CH) in B, ^, /, m, .. .; then AB will be to K^ as CK to CA, and by sep-

aration [or dividendo] AB — K^ to K^ as AK to CA, and by alternation

[or alternando] AB — K^ to AK as K^ to CA, and thus as AB x K^ to

AB x CA. Hence, since AK and AB x CA are given, AB — K^ will be as

AB x K^; and ultimately, when AB and K^ come together, as AB2. And by

a similar argument K^ — L/, L/ — Mm, .. . will be as K^2, L/2, . . . . The

squares of lines AB, K^, LI, Mm, therefore, are as their differences; and on

that account, since the squares of the velocities were also as their differences,

the progression of both will be similar. It follows from what has been proved

that the areas described by these lines are also in a progression entirely simi-

lar to that of the spaces described by the velocities. Therefore, if the velocity

at the beginning of the first time AK is represented by line AB, and the

velocity at the beginning of the second time KL by line K^, and the length

described in the first time is represented by area AK^B, then all the sub-

sequent velocities will be represented by the subsequent lines L/, Mm, . . . ,
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and the lengths described will be represented by areas K/, Lm, . . . . And by

composition [or componendo], if the whole time is represented by the sum

of its parts AM, the whole length described will be represented by the sum

of its parts AMraB. Now imagine time AM to be divided into parfs AK,

KL, LM, . . . in such a way that CA, CK, CL, CM, ... are in a geometric

progression; then those parts will be in the same progression, and the veloci-

ties AB, K^, L/, Mm, . . . will be in the same progression inverted, and the

spaces described A^, K/, Lra, .. . will be equal. Q.E.D.

COROLLARY 1. Therefore it is evident that if the time is represented by

any part AD of the asymptote, and the velocity at the beginning of the time

by ordinate AB, then the velocity at the end of the time will be represented

by ordinate DG, and the whole space described will be represented by the

adjacent hyperbolic area ABGD; and furthermore, the space that a body in

a nonresisting medium could describe in the same time AD, with the first

velocity AB, will be represented by the rectangle AB x AD.

COROLLARY 2. Hence the space described in a resisting medium is given

by taking that space to be in the same proportion to the space which could

be described simultaneously with a uniform velocity AB in a nonresisting

medium as the hyperbolic area ABGD is to the rectangle AB x AD.

COROLLARY 3. The resistance of the medium is also given by setting it

to be, at the very beginning of the motion, equal to the uniform centripetal

force that in a nonresisting medium could generate the velocity AB in a

falling body in the time AC. For if BT is drawn, touching the hyperbola in

B and meeting the asymptote in T, the straight line AT will be equal to AC

and will represent the time in which the first resistance uniformly continued

could annul the whole velocity AB.

COROLLARY 4. And hence the proportion of this resistance to the force

of gravity or to any other given centripetal force is also given.

COROLLARY 5. And conversely, if the proportion of the resistance to any

given centripetal force is given, the time AC is given in which a centripetal

force equal to the resistance could generate any velocity AB; and hence point

B is given, through which the hyperbola with asymptotes CH and CD must

be described, as is also the space ABGD which the body, beginning its mo-

tion with that velocity AB, can describe in any time AD in a homogeneous

resisting medium.
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Proposition 6 Equal homogeneous spherical bodies that are resisted in proportion to the square

Theorem 4 of the velocity, and are carried forward by their inherent forces alone, will, in

times that are inversely as the initial velocities, always describe equal spaces, and

lose parts of their velocities proportional to the wholes.

Describe any hyperbola B£E<?, with rectangular asymptotes CD and CH,

which cuts perpendiculars AB, ab, DE, and de in B, b, E, and <?; and repre-

sent the initial velocities by perpendiculars

AB and DE and the times by lines Aa and

Dd. Therefore Aa is to Dd as (by hypothe-

sis) DE is to AB, and as (from the nature of

the hyperbola) CA is to CD, and by com-

position [or componendo] as Ca is to Cd.

Hence areas ABba and DE^J, that is, the

spaces described, are equal to each other,

and the first velocities AB and DE are pro-

portional to the ultimate velocities ab and de, and therefore, by separation

[or dividendo], also to the lost parts of those velocities AB — ab and DE — de.

Q.E.D.

Proposition 7 Spherical bodies that are resisted in proportion to the squares of the velocities will,

Theorem 5 in times that are as the first motions directly and the first resistances inversely, lose

parts of the motions proportional to the wholes and will describe spaces propor-

tional to those times and the first velocities jointly.

For the lost parts of the motions are as the resistances and the times

jointly. Therefore, for those parts to be proportional to the wholes, the re-

sistance and time jointly must be as the motion. Accordingly, the time will

be as the motion directly and the resistance inversely. Therefore, if the par-

ticles of times are taken in this ratio, the bodies will always lose particles of

their motions proportional to the wholes and thus will retain velocities always

proportional to their first velocities. And because the ratio of the velocities is

given, they will always describe spaces that are as the first velocities and the

times jointly. Q.E.D.

COROLLARY 1. Therefore, if equally swift bodies are resisted in pro-

portion to the squares of their diameters, then homogeneous globes moving

with any velocities will, in describing spaces proportional to their diame-
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ters, lose parts of their motions proportional to the wholes. For the motion

of each globe will be as its velocity and mass jointly, that is, as its veloc-

ity and the cube of its diameter; the resistance (by hypothesis) will be as

the square of the diameter and the square of the velocity jointly; and the

time (by this proposition) is in the former ratio directly and the latter ra-

tio inversely, that is, as the diameter directly and the velocity inversely; and

thus the space, being proportional to the time and the velocity, is as the

diameter.

COROLLARY 2. If equally swift bodies are resisted in proportion to the 3/2

powers of the diameters, then homogeneous globes moving with any velocities

will, in describing spaces that are as the 3/2 powers of the diameters, lose parts

of motions proportional to the wholes.

COROLLARY 3. And universally, if equally swift bodies are resisted in

the ratio of any power of the diameters, the spaces in which homogeneous

globes moving with any velocities will lose parts of their motions pro-

portional to the wholes will be as the cubes of the diameters divided by

that power. Let the diameters be D and E; and if the resistances, when

the velocities are supposed equal, are as Dw and E", then the spaces in

which the globes, moving with any velocities, will lose parts of their mo-

tions proportional to the wholes will be as D3"" and E3~". And therefore

homogeneous globes, in describing spaces proportional to D3~" and E3"",

will retain velocities in the same ratio to each other that they had at the

beginning.

COROLLARY 4. But if the globes are not homogeneous, the space de-

scribed by the denser globe must be augmented in proportion to the den-

sity. For the motion, with an equal velocity, is greater in proportion to

the density, and the time (by this proposition) is increased in proportion to
\

the motion directly, and the space described is increased in proportion to the

time.

COROLLARY 5. And if the globes move in different mediums, the

space in the medium that, other things being equal, resists more will

have to be decreased in proportion to the greater resistance. For the

time (by this proposition) will be decreased in proportion to the increase

of the resistance, and the space will be decreased in proportion to the

time.
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Lemma 2a The moment of a generated quantity is equal to the moments of each of the

generating roots multiplied continually by the exponents of the powers of those

roots and by their coefficients.

I call "generated" every quantity that is, without addition or subtraction,

generated from any roots or terms: in arithmetic by multiplication, division,

or extraction of roots; in geometry by the finding either of products and

roots or of extreme and mean proportionals. Quantities of this sort are prod-

ucts, quotients, roots, rectangles, squares, cubes, square roots, cube roots, and

the like.b I here consider these quantities as indeterminate and variable, and

increasing or decreasing as if by a continual motion or flux; and it is their

a. Newton's use of "terminus" and "latus" for "root" is of particular interest in lem. 2 and its cases,

corollaries, and scholium. "Radix" appears only twice and is unchanged from edition to edition, but

Newton tends to replace the "terminus" ("term," "root") of ed. 1 with the "latus" ("side," "root") of ed.

2 and ed. 3. In the statement of the lemma, for example, ed. 1 has "momentis Terminorum singulorum

generantium" ("the moments of the individual generating terms," i.e., "the moments of each of the

generating roots") and "eorundem laterum indices dignitatum" ("the exponents of the powers of the same

sides," i.e., "the exponents of the powers of those roots"). Thus "terminus" and "latus" are obviously

synonyms. In ed. 2 and ed. 3, however, "laterum" ("sides," "roots") is substituted for "Terminorum"

("terms," "roots"). In the first sentence of the explanation, where ed. 1 has "ex Terminis quibuscunque"

("from any terms," i.e., "from any roots"), ed. 2 and ed. 3 have "ex lateribus vel terminis quibuscunque"

("from any sides or terms," i.e., "from any roots or terms"). As the explanation proceeds, ed. 1 has, like ed.

2 and ed. 3, "extractionem radicum" ("extraction of roots"), "contentorum & laterum" ("of products and

roots"), "Radices" ("roots"), and "latera quadrata, latera cubica" ("square roots, cube roots"), but ed. 1 has

"Termini" and "Terminum" where ed. 2 and ed. 3 have "Lateris" and "latus" in the last sentence of the

first paragraph: "And the coefficient of each generating root is the quantity that results from dividing the

generated quantity by this root." In corol. 1, on the other hand, all the editions have "terminus" (with

the ordinary sense of "term," not with the sense of "root"), while all have "latus" (with the sense of "root")

in cases 1 and 2 and corols. 2 and 3. "Terminus" also occurs, in the phrase "in terminis surdis" ("in surd

terms"), in the scholium of ed. 1 and ed. 2, which is, as will be seen below, very different from that of

ed. 3, where, however, "quantitatibus surdis" ("surd quantities") is at least comparable, especially since

"surdis" ("surd") appears nowhere else in all the editions of the Principia.

b. In the Latin text of this lemma, Newton referred to roots in two senses. The first occurs in the

opening sentence, where he writes of "extraction of roots," using the Latin term "radix," or "root." The

second occurs in the next sentence, where he writes of "products, quotients, roots, rectangles, squares,

cubes, square roots, cube roots, and the like." Here both senses of "roots" appear in a single sentence, the

first as "radices" (or "roots"), the second as "latera quadrata, latera cubica" (lit. "square sides" and "cubic

sides"). In the geometric language of algebra, in which a "rectangle" of A and B indicates the product of

two unequal quantities A and B as the area of a rectangle whose sides are A and B, the square root and

cube root have similar geometric expression. Thus the square root of A is the side of a square whose area

is A, while the cube root of A is the "side" (actually the edge) of a cube whose volume is A.

In his Lexicon Technicum (London, 1704), John Harris explained these two different mathematical

senses of the word "root." An "Unknown Quantity in an Algebraick Equation," he wrote, "is often called

the Root." This is the sense of the word as it appears in the first sentence of the lemma. But, as Harris

explained, a root is also "whatever Quantity being multiplied by it self produces a Square" and when
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instantaneous increments or decrements that I mean by the word "moments,"

in such a way that increments are considered as added or positive moments,

and decrements as subtracted or negative moments. But take care: do not un-

derstand them to be finite particles! cFinite particles are not moments, but the

very quantities generated from the moments.0 They must be understood to be

the just-now nascent beginnings of finite magnitudes. For in this lemma the

magnitude of moments is not regarded, but only their first proportion when

nascent. It comes to the same thing if in place of moments there are used

either the velocities of increments and decrements (which it is also possible

to call motions, mutations, and fluxions of quantities) or any finite quanti-

ties proportional to these velocities. And the coefficient of each generating

root is the quantity that results from dividing the generated quantity by this

root.

Therefore, the meaning of this lemma is that if the moments of any

quantities A, B, C, . . . increasing or decreasing by a continual motion, or

the velocities of mutation which are proportional to these moments are called

<z, £, < : , . . . , then the moment or mutation of the generated rectangle AB

would be aB + £A, and the moment of the generated solid ABC would

be aBC + bAC + cAB, and the moments of the generated powers A2, A3,

A4, A1/2, A3/2, A1/3, A2/3, A'1, A~2, and A~1/2 would be 2aA, 3aA\ 40A3,

V2aA-l/2, y20A1/2, ViaA~2/\ 2/3tfA~1/3, -*A~2, -2aA~\ and -V2aA-'/2 re-
*2

spectively. And generally, the moment of any power A ™ would be — a A ~ ™ ~ .
m

Likewise, the moment of the generated quantity A2B would be 2<zAB + £A2,

and the moment of the generated quantity A3B4C2 would be 3<zA2B4C2 +

once again "multiplied by that first Quantity produces a Cube, &c." These, he said, are called "Square,

Cube .. . Root"

Even without any knowledge of the geometric sense of algebra, one might easily guess that Newton

is referring to square and cube roots in the phrase "products, quotients,. . . squares, cubes, square sides,

cube sides, and the like." Yet Andrew Motte, in his English translation (London, 1729), rendered these

terms literally as "products, quotients, roots, rectangles, squares, cubes, square and cubic sides, and the

like," which was carried over into the Motte-Cajori version. The marquise du Chatelet knew better and

in her French translation (Paris, 1756) wrote, just as we would today, of "les produits, les quotiens, le

racines, les rectangles, les quarres, les cubes, les racines quarrees, & les racines cubes."

cc. Ed. 1 has: "Moments, as soon as they are of finite magnitude, cease to be moments. For being

finite is somewhat incompatible with their continual increment or decrement." When one reads the

"somewhat" ("aliquatenus": "to a certain extent," "in some respects") in the second of these sentences, one

can understand why Newton decided to revise this portion of his explanation.
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A3

4£A3B3C2 + 2<rA3B4C, and the moment of the generated quantity — or

A3B~2 would be 3aA2B~2 — 2£A3B~3, and so on. The lemma is proved as

follows.

CASE 1. Any rectangle AB increased by continual motion, when the

halves of the moments, Via and Vib, were lacking from the sides A and B,

was A—Via multiplied by B — Vib, or AB — ViaB — VibA + lAab, and as soon

as the sides A and B have been increased by the other halves of the moments,

it comes out A + Via multiplied by B + Vib, or AB + ViaB + VibA + lAab.

Subtract the former rectangle from this rectangle, and there will remain the

excess aB + bA. Therefore by the total increments a and b of the sides there

is generated the increment aB + bA of the rectangle. Q.E.D.

CASE 2. Suppose that AB is always equal to G; then the moment of the

solid ABC or GC (by case 1) will be gC + cG, that is (if AB and aB + bA

are written for G and g), aBC + bAC + <:AB. And the same is true of the

solid contained under any number of sides [or the product of any number of

terms]. Q.E.D.

CASE 3. Suppose that the sides A, B, and C are always equal to one

another; then the moment aB + bA of A2, that is, of the rectangle AB, will

be 2aA, while the moment aBC + bAC + cAB of A3, that is, of the solid

ABC, will be 3aA2. And by the same argument, the moment of any power

An is naAn~l. Q.E.D.

CASE 4. Hence, since — multiplied by A is 1, the moment of — multi-
A A

plied by A together with — multiplied by a will be the moment of 1, that is,
J\.

nil. Accordingly, the moment of — or of A"1 is -. And in general, since
A A

— multiplied by A" is 1, the moment of — multiplied by A" together
An A

with — multiplied by naAn~l will be nil. And therefore the moment of
J\.

1 na
— or A"" will be —. Q.E.D.
An An+\

CASE 5. And since A1/2 multiplied by A1/2 is A, the moment of A1/2

multiplied by 2A1/2 will be a, by case 3; and thus the moment of A1/2 will be

j— or ViaA~l/2. And in general, if A^ is supposed equal to B, Am will be
2 A

25

1 1

1

25

1 1

An A

11

1

CASE 5. And since A1/2 multiplied by A1/2 is A, the moment of A1/2
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equal to Bw, and hence maAm~l will be equal to nbBn~l, and maA~l will
*yt

be equal to nbB~l or nbA~, and thus —aA~~"~ equal to b, that is, equal to
n

the moment of A «". Q.E.D.

CASE 6. Therefore the moment of any generated quantity A^B" is the

moment of A™ multiplied by B72, together with the moment of B* multiplied

by A™, that is, maAm~lBn+ nbBn~l Am; and this is so whether the exponents

m and n of the powers are whole numbers or fractions, whether positive or

negative. And it is the same for a solid contained by more than two terms

raised to powers. Q.E.D.

COROLLARY 1. Hence in continually proportional quantities, if one term

is given, the moments of the remaining terms will be as those terms multi-

plied by the number of intervals between them and the given term. Let A,

B, C, D, E, and F be continually proportional; then, if the term C is given,

the moments of the remaining terms will be to one another as —2A, —B, D,

2E, and 3F.

COROLLARY 2. And if in four proportionals the two means are given,

the moments of the extremes will be as those same extremes. The same is to

be understood of the sides of any given rectangle.

COROLLARY 3. And if the sum or difference of two squares is given, the

moments of the sides will be inversely as the sides.

dln a certain letter written to our fellow Englishman Mr. J. Collins on 10 Scholium

December 1672, when I had described a method of tangents that I suspected

to be the same as Sluse's method, which at that time had not yet been made

public, I added: "This is one particular, or rather a corollary, of a general

dd. In ed. 1 this scholium reads: "In correspondence which I carried on ten years ago with the very

able geometer G. W. Leibniz, I indicated that I was in possession of a method of determining maxima

and minima, drawing tangents, and performing similar operations, and that the method worked for surd

as well as rational terms. I concealed this method under an anagram comprising this sentence: 'Given an

equation involving any number of fluent quantities, to find the fluxions, and vice versa.' The distinguished

gentleman wrote back that he too had come upon a method of this kind, and he communicated his method,

which hardly differed from mine except in the forms of words and notations. The foundation of both

methods is contained in this lemma." In ed. 2 the scholium is exactly the same except that "and the

concept of the generation of quantities" is added at the end of the penultimate sentence.

For the principal texts with interpretative comments on the Newton-Leibniz controversy over priority
in the invention of the calculus, see The Mathematical Papers of Isaac Newton, ed. D. T. Whiteside (Cam-

bridge: Cambridge University Press, 1967-1981), vol. 8, esp. pp. 469-697; also A. Rupert Hall, Philosophers

at War: The Quarrel between Newton and Leibniz (Cambridge: Cambridge University Press, 1980).
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method, which extends, without any troublesome calculation, not only to

the drawing of tangents to all curve lines, whether geometric or mechanical

or having respect in any way to straight lines or other curves, but also to

resolving other more abstruse kinds of problems concerning curvatures, areas,

lengths, centers of gravity of curves,. . . , and is not restricted (as Hudde's

method of maxima and minima is) only to those equations which are free

from surd quantities. I have interwoven this method with that other by which

I find the roots of equations by reducing them to infinite series." So much

for the letter. And these last words refer to the treatise that I had written on

this topic in 1671. The foundation of this general method is contained in the

preceding lemma.d

Proposition 8 If a body, acted on by gravity uniformly, goes straight up or down in a uniform

Theorem 6 medium, and the total space described is divided into equal parts, and the absolute

forces at the beginnings of each of the parts are found (adding the resistance of

the medium to the force of gravity when the body is ascending, or subtracting it

when the body is descending), I say that those absolute forces are in a geometric

progression.

Represent the force of gravity by the given line AC; the resistance,

by the indefinite line AK; the absolute force in the descent of the body,

by the difference KG; the velocity of

the body, by the line AP, which is

the mean proportional between AK

and AC, and thus is as the square

root of the resistance; the increment

of the resistance occurring in a given

particle of time, by the line-element

KL; and the simultaneous increment

of the velocity, by the line-element PQ; then with center C and rectangular

asymptotes CA and CH, describe any hyperbola BNS, meeting the erected

perpendiculars AB, KN, and LO in B, N, and O. Since AK is as AP2, the

moment KL of AK will be as the moment 2AP x PQ of AP2, that is, as

AP multiplied by KC, since the increment PQ of the velocity (by the second

law of motion) is proportional to the generating force KC. Compound the

ratio of KL with the ratio of KN, and the rectangle KL x KN will become

as AP x KC x KN—that is, because the rectangle KC x KN is given, as
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AP. But the ultimate ratio of the hyperbolic area KNOL to the rectangle

KL x KN, when points K and L come together, is the ratio of equality.

Therefore that evanescent hyperbolic area is as AP. Hence the total hyper-

bolic area ABOL is composed of the particles KNOL, which are always

proportional to the velocity AP, and therefore this area is proportional to

the space described with this velocity. Now divide that area into equal parts

ABMI, IMNK, KNOL, ... , and the absolute forces AC, 1C, KC, LC, . . .

will be in a geometric progression. Q.E.D.

And by a similar argument, if—in the ascent of the body—equal areas

ABra/, imn^ f(nol, . .. are taken on the opposite side of point A, it will

be manifest that the absolute forces AC, /C, ^C, /C, . . . are continually

proportional. And thus, if all the spaces in the ascent and descent are taken

equal, all the absolute forces /C, ^C, i'C, AC, 1C, KC, LC, .. . will be

continually proportional. Q.E.D.

COROLLARY 1. Hence, if the space described is represented by the hy-

perbolic area ABNK, the force of gravity, the velocity of the body, and the

resistance of the medium can be represented by lines AC, AP, and AK re-

spectively, and vice versa.

COROLLARY 2. And line AC represents the greatest velocity that the body

can ever acquire by descending infinitely.

COROLLARY 3. Therefore, if for a given velocity the resistance of the

medium is known, the greatest velocity will be found by taking its ratio to

the given velocity as the square root of the ratio of the force of gravity to

that known resistance of the medium.3

Given what has already been proved, I say that if the tangents of the angles of a Proposition 9

sector of a circle and of a hyperbola are tat^en proportional to the velocities, the Theorem 7

radius being of the proper magnitude, the whole time * of ascending to the highest

a. Ed. 1 has two additional corollaries as follows: "Corol. 4. But also the particle of time wherein the

minimally small particle of space NKLO is described in descent is as the rectangle KN x PQ. For since

the space NKLO is as the velocity multiplied by the particle of time, the particle of time will be as that

space divided by the velocity, that is, as the minimally small rectangle KN x KL divided by AP. For KL,

above, was as AP x PQ. Therefore the particle of time is as KN X PQ, or what comes to the same, as
PQ
—. Q.E.D."
CK

"Corollary 5. By the same argument the particle of time wherein the particle of space nf^lo is described
P4 „moment of A™ multiplied by B72, together with the moment of B* multiplied
C^

aa. Ed. 1 and ed. 2 have "of the future ascent."
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place* will be as the sector of the circle, and the whole time ^of descending from

the highest place0 will be as the sector of the hyperbola.

Draw AD perpendicular and equal to the straight line AC, which rep-

resents the force of gravity. With center D and semidiameter AD describe

the quadrant A/E of a circle and the rectangular hyperbola AVZ having

axis AX, principal vertex A, and asymptote DC. Draw Dp and DP, and

the sector AtD of the circle will be as cthe whole time of ascending to the

highest place,0 and the sector ATD of the hyperbola will be as dthe whole

time of descending from the highest place,d provided that the tangents Ap

and AP of the sectors are as the velocities.

CASE 1. Draw Dvq cutting off the moments or the minimally small

particles tDv and qDp, described simultaneously, of the sector AD/ and of

the triangle AD/?. Since those particles, because of the common angle D, are

qDp x tD2

as the squares of the sides, particle tDv will be as , that is, because

tD is given, as ^—7. But pD2 is AD2 + A/?2, that is, AD2 + AD x A^, or
pD

AD x C>^; and qDp is Vi AD x pq. Therefore particle tDv of the sector is as

, that is, directly as the minimally small decrement pq of the velocity and
C^

bb. Ed. 1 and ed. 2 have "of the past descent."

cc. Ed. 1 and ed. 2 have "the time of the whole future ascent."

dd. Ed. 1 and ed. 2 have "the time of the whole past descent."

tD is given, as ^—7. But pD2 is AD2 + A/?2, that is, AD2 + AD x A^, ortD is given, as ^—7. But pD2 is AD2 + A/?2, that is, AD2 + AD x A^, or

AD x C>^; and qDp is Vi AD x pq. Therefore particle tDv of the sector is as
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inversely as the force C^ that decreases the velocity, and thus as the particle

of time corresponding to the decrement of the velocity. And by composition

[or componendo] the sum of all the particles tDv in the sector ADt will be

as the sum of the particles of time corresponding to each of the lost particles

pq of the decreasing velocity A/?, until that velocity, decreased to nil, has

vanished; that is, the whole sector AD^ is as ethe whole time of ascending to

the highest place.e Q.E.D.

CASE 2. Draw DQV cutting off the minimally small particles TDV and

PDQ of the sector DAV and of the triangle DAQ; and these particles will

be to each other as DT2 to DP2, that is (if TX and AP are parallel), as DX2

to DA2 or TX2 to AP2, and by separation [or dividendo] as DX2 — TX2

to DA2 - AP2. But from the nature of the hyperbola, DX2 - TX2 is AD2,

and by hypothesis AP2 is AD x AK. Therefore the particles are to each

other as AD2 to AD2 - AD x AK, that is, as AD to AD - AK or ACother as AD2 to AD2 - AD x AK, that is, as AD to AD - AK or AC
PDO x AC

to CK; and thus the particle TDV of the sector is , and hence,

because AC and AD are given, as , that is, directly as the increment of
CK

the velocity and inversely as the force generating the increment, and thus as

the particle of time corresponding to the increment. And by composition [or

componendo] the sum of the particles of time in which all the particles PQ

of the velocity AP are generated will be as the sum of the particles of the

sector ATD, that is, the whole time will be as the whole sector. Q.E.D.

COROLLARY 1. Hence, if AB is equal to a fourth of AC, the space that

a body describes by falling in any time will be in the same ratio to the space

that the body can describe by progressing uniformly in that same time with

its greatest velocity AC as the ratio of area ABNK (which represents the

space described in falling) to area ATD (which represents the time). For,

since AC is to AP as AP to AK, it follows (by book 2, lem. 2, corol. 1) that

LK will be to PQ as 2AK to AP, that is, as 2AP to AC, and hence LK will

be to '/2PQ as AP to l/4AC or AB; KN is also to AC or AD as AB to CK;

and thus, from the equality of the ratios [or ex aequo], LKNO will be to

DPQ as AP to CK. But DPQ was to DTV as CK to AC. Therefore, once

again by the equality of the ratios [or ex aequo], LKNO is to DTV as AP to

AC, that is, as the velocity of the falling body to the greatest velocity that the

ee. Ed. 1 and ed. 2 have "the time of the whole future ascent."

2 5 t o  C K ;  a n d  t h u s  t h e  p a r t i c l e  T D V  o f  t h e  s e c t o r  i s  ,  a n d  h e n c e ,b e c a u s e  A C  a n d  A D  a r e  g i v e n ,  a s  ,  t h a t  i s ,  d i r e c t l y  a s  t h e  i n c r e m e n t  o f
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body can acquire in falling. Since, therefore, the moments LKNO and DTV

of areas ABNK and ATD are as the velocities, all the parts of those areas

generated simultaneously will be as the spaces described simultaneously, and

thus the whole areas ABNK and ATD generated from the beginning will

be as the whole spaces described from the beginning of the descent. Q.E.D.

COROLLARY 2. The same result follows for the space described in ascent:

namely, the whole space is to the space described in the same time with a

uniform velocity AC as area AB«^ is to sector AD/.

COROLLARY 3. The velocity of a body falling in time ATD is to the

velocity that it would acquire in the same time in a nonresisting space as the

triangle APD to the hyperbolic sector ATD. For the velocity in a nonresisting

medium would be as time ATD, and in a resisting medium is as AP, that

is, as triangle APD. And the velocities at the beginning of the descent are

equal to each other, as are those areas ATD and APD.

COROLLARY 4. By the same argument, the velocity in the ascent is to the

velocity with which the body in the same time in a nonresisting space could

lose its whole ascending motion as the triangle A^D is to the sector A/D of

the circle, or as the straight line Ap is to the arc At.

COROLLARY 5. Therefore the time in which a body, by falling in a resist-

ing medium, acquires the velocity AP is to the time in which it could acquire

its greatest velocity AC, by falling in a nonresisting space, as sector ADT to

triangle ADC; and the time in which it could lose the velocity Ap by as-
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cending in a resisting medium is to the time in which it could lose the same

velocity by ascending in a nonresisting space as arc At is to its tangent Ap.

COROLLARY 6. Hence, from the given time, the space described by ascent

or descent is given. For the greatest velocity of a body descending infinitely

is given (by book 2, prop. 8, corols. 2 and 3), and hence the time is given in

which a body could acquire that velocity by falling in a nonresisting space.

And if sector ADT or ADt is taken to be to triangle ADC in the ratio of

the given time to the time just found, there will be given both the velocity

AP or Af> and the area ABNK or ABra^, which is to the sector ADT or

AD/ as the required space is to the space that can be described uniformly in

the given time with that greatest velocity which has already been found.

COROLLARY 7. And working backward, the time AD/ or ADT will be

given from the given space AB/2^ or ABNK of ascent or descent.

Let a uniform force of gravity tend straight toward the plane of the horizon, and Proposition 10

let the resistance be as the density of the medium and the square of the velocity Problem 3

jointly; it is required to find, in each individual place, the density of the medium

that ma^es the body move in any given curved line and also the velocity of the

body and resistance of the medium.
aLet PQ be the plane of the horizon, perpendicular to the plane of the

figure; PFHQ a curved line meeting this plane in points P and Q; G, H, I,

aa. Ed. 1 has: "Let AK be the plane of the horizon, perpendicular to the plane of the figure; ACK

a curved line; C a body moving along the line; and FC/ a straight line touching it in C. And suppose

that body C now goes forward from A to K along the line ACK and now goes back along the same line

and that in going forward it is impeded by the medium and in going back is equally assisted, so that in

the same places the velocity of the body as it goes forward and back is always the same.

"And in equal times let the body as it goes forward describe the minimally small arc CG, and let

the body as it goes back describe arc Cg, and let CH and Ch be equal rectilinear lengths which bodies
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and K four places of the body as it goes in the curve from F to Q; and

GB, HC, ID, and KE four parallel ordinates dropped from these points

to the horizon and standing upon

the horizontal line PQ at points

B, C, D, and E; and let BC, CD,

and DE be distances between the

ordinates equal to one another. From

points G and H draw the straight

lines GL and HN touching the

curve in G and H, and meeting

in L and N the ordinates CH and DI produced upward; and complete

the parallelogram HCDM. Then the times in which the body describes

arcs GH and HI will be as the square roots of the distances LH and

NI which the body could describe in those times by falling from the

tangents; and the velocities will be directly as GH and HI (the lengths

described) and inversely as the times. Represent the times by T and t,

moving away from place C would describe in these times without the actions of the medium and of

gravity, and from points C, G, and g to the horizontal plane AK drop perpendiculars CB, GD, and gd,

letting GD and gd meet the tangent in F and f. Through the resistance of the medium it comes about

that the body as it goes forward describes, instead of length CH, only length CF, and through the force of

gravity the body is transferred from F to G, and thus line-element HF and line-element FG are generated

simultaneously, the first by the force of resistance and the second by the force of gravity. Accordingly (by

book 1, lem. 10), line-element FG is as the force of gravity and the square of the time jointly and thus

(since the gravity is given) as the square of the time, and line-element HF is as the resistance and the

square of the time, that is, as the resistance and line-element FG. And hence the resistance comes to be
T TT7

as HF directly and FG inversely, or as . This is so in the case of nascent line-elements. For in the
FG

case of line-elements of finite magnitude these ratios are not accurate.

"And by a similar argument fg is as the square of the time and thus, since the times are equal, is

equal to FG, and the impulse by which the body going back is urged is as —. But the impulse upon
fg

the body as it goes back and the resistance to it as it goes forward are equal at the very beginning of the

motion, and thus also — and , proportional to them, are equal, and therefore, because fg and FG

are equal, hf and HF are also equal, and thus CF, CH (or Ch), and C/ are in arithmetic progression,
HF

and hence HF is half the difference between C/ and CF, and the resistance, which above was as , is
C/ - CF FG

as~T^-
"But the resistance is as the density of the medium and the square of the velocity. And the velocity is

as the described length CF directly and the time ^/FG inversely, that is, as — , and thus the square of
CF2 Cf — CF **

the velocity is as . Therefore the resistance, proportional to , is as the density of the medium
FG FG

and hence HF is half the difference between C/ and CF, and the resistance, which above was as , is

and hence HF is half the difference between C/ and CF, and the resistance, which above was as , is

fg

fg

fg

as the described length CF directly and the time ^/FG inversely, that is, as — , and thus the square of

as the described length CF directly and the time ^/FG inversely, that is, as — , and thus the square of
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GH HI
and the velocities by and —; and the decrement of the velocity

T l  GH HI
occurring in time t will be represented by . This decrement arises

from the resistance retarding the body and from the gravity accelerating

the body. In a body falling and describing in its fall the space NI, gravity

generates a velocity by which twice that space could have been described in
2NI

the same time, as Galileo proved, that is, the velocity ; but in a body

describing arc HI, gravity increases the arc by only the length HI — HN or

. and thus generates only the velocity . Add this velocity

to the above decrement, and the result is the decrement of the velocity
GH HI 2MI x NI

arising from the resistance alone, namely — — + . And
l t t x ril

2NI
accordingly, since gravity generates the velocity in the same time in a

GH HI 2MI x NI
falling body, the resistance will be to the gravity as 1

T t t x HI
2NI / x GH 2MI x NI

to , or as HI H to 2NI.
t T HI

CF2 C/ - CF CF2

FG FG FG
Cf -CF

is, as 7

"Corollary 1. And hence it is gathered that if C^ on Cf is taken as equal to CF and the perpendicular

f(i is dropped to the horizontal plane AK, cutting the curve ACK in /, the density of the medium will
p/"< 11

come to be as . For fC will be to ^C as «Jfg or ^/FG to v^> an^ by separation [orcome to be as . For fC will be to ^C as «Jfg or ^/FG to v^> an^ by separation [or

dividendo] f\ will be to ^C, that is, C/ — CF to CF, as ^/FG + «Jkl to *Jk}, tnat 1S> ^ both terms are

multiplied by ^/FG + *Jt{l, as FG — t(l to ^/ + ^/(FG x ^/), or to FG + ^/. For the first ratio of the nascent
FG — kl Cf — CF

quantities ^/ + X/(FG x ^/) and FG + ^/ is that of equality. And so let be written for ,
/"> r f̂ 'p v Pf* b] ̂ J"1

and the density of the medium, which was as , will turn out to be as .y

"Corollary 2. Hence, since 2HF and Cf — CF are equal and FG and ^/ (because of the ratio of

equality) compose 2FG, 2HF will be to CF as FG — ̂ / to 2FG, and hence HF will be to FG, that is,

the resistance will be to the gravity, as the rectangle CF x (FG — ̂ /) to 4FG2."

The demonstration in ed. 1 is incorrect, and the error was brought to Newton's attention only after

the corresponding pages in ed. 2 had been printed off. For details see the Guide to the present translation,

§7.3; also The Mathematical Papers of Isaac Newton, ed. D. T. Whiteside (Cambridge: Cambridge University

Press, 1967-1981), 8:312-424; The Correspondence of Isaac Newton, vol. 5, ed. A. Rupert Hall and Laura

Tilling (Cambridge: published for the Royal Society by Cambridge University Press, 1975); A. Rupert

Hall, "Correcting the Principia" Osiris 13 (1958): 291-326; I. Bernard Cohen, Introduction to Newton's

"Principia" (Cambridge, Mass.: Harvard University Press; Cambridge: Cambridge University Press, 1971),

pp. 236-238.

t

T l t

t

. and thus generates only the velocity . Add this velocity
.  a n d  t h u s  g e n e r a t e s  o n l y  t h e  v e l o c i t y  .  A d d  t h i s  v e l o c i t y

.  a n d  t h u s  g e n e r a t e s  o n l y  t h e  v e l o c i t y  .  A d d  t h i s  v e l o c i t y

t

"Corollary 1. And hence it is gathered that if C^ on Cf is taken as equal to CF and the perpendicular

i s ,  a s  7

p/"< 11

/"> r f̂ 'p v Pf* b] ̂ J"1

/ " >  r  f ^ ' p  v  P f *  b ]  ^ J " 1

/ " >  r  f ^ ' p  v  P f *  b ]  ^ J " 1 / " >  r  f ^ ' p  v  P f *  b ]  ^ J " 1

/ " >  r  f ^ ' p  v  P f *  b ]  ^ J " 1
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Now for the abscissas CB, CD, and CE write —o, o, and 20. For the

ordinate CH write P, and for MI write any series Qo + Ro2 + So3 + • • • .

And all the terms of the series after the first, namely Ro2 + So3 + • • • , will

be NI, and the ordinates DI, EK, and BG will be P - Qo - Ro2 - So3 ,

P - 2Qo - 4Ro2 - 8S03 , and P + Qo - Ro2 + So3 respectively. And

by squaring the differences of the ordinates BG — CH and CH — DI and

by adding to the resulting squares the

squares of BC and CD, there will re-

sult the squares of the arcs GH and

HI: o2 + Q2o2 - 2QR03 + • • • and

o2 + Q2o2 + 2QR03 + .... The roots

of these, 0V(1+Q2) ^° and
V(I + V )

<V(1+Q2)+ /

GH and HI. Furthermore, if from ordinate CH half the sum of ordinates

BG and DI is subtracted, and from ordinate DI half the sum of ordinates CH

and EK is subtracted, the remainders will be the sagittas Ro2 and Ro2+3S03

of arcs GI and HK. And these are proportional to the line-elements LH and

NI, and thus as the squares of the infinitely small times T and /; and hence

the ratio — is ./ or ; and it the values mst round or —,

GH, HI, MI, and NI are substituted in HI H , the
T HI

9Q 2

result will be ^/(\ +Q2). And since 2NI is 2R02, the resistance will now
2R

 3S02

be to the gravity as —^VO + Q2) to 2R02, that is, as 38^/0 + Q2) to 4R2.
2R

And the velocity is that with which a body going forth from any place

H along tangent HN can then move in a vacuum in a parabola having a

HN2 1 + Q2

diameter HC and a latus rectum or .

And the resistance is as the density of the medium and the square of the

velocity jointly, and therefore the density of the medium is as the resistance

directly and the square or the velocity inversely, that is, as

1 + Q2 . . S
directly and inversely, that is, as —. Q.E.I.

R RV(I + Q )

V(I + V )

<V(1+Q2)+ /

<V(1+Q2)+ /

the ratio — is ./ or ; and it the values mst round or —,

the ratio — is ./ or ; and it the values mst round or —, t

the ratio — is ./ or ; and it the values mst round or —,
GH, HI, MI, and NI are substituted in HI H , the

diameter HC and a latus rectum or .

directly and the square or the velocity inversely, that is, as
directly and inversely, that is, as —. Q.E.I.

directly and inversely, that is, as —. Q.E.I.
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COROLLARY 1. If the tangent HN is produced in both directions until it
WT

meets any ordinate AF in T, will be equal to ^/(l + Q2) and thus can
A.C_>

be written for ^/(l + Q2) above. And so the resistance will be to the gravity
HT

as 3S x HT to 4R2 x AC, the velocity will be as —, and the density ofas 3S x HT to 4R2 x AC, the velocity will be as —, and the density of

the medium will be as .a
R x HT

bCoROLLARY 2. And hence, if the curved line PFHQ is defined by the

relation between the base or abscissa AC and the ordinate CH, as is custom-

ary, and the value of the ordinate is resolved into a converging series, then

the problem will be solved readily by means of the first terms of the series,

as in the following examples.b

EXAMPLE 1. Let line PFHQ be a semicircle described on the diameter

PQ, and let it be required to find the density of the medium that would

make a projectile move in this semicircle.

Bisect diameter PQ in A; call AQ, n\ AC, a\ CH, e\ and CD, o. Then

DI2 or AQ2 — AD2 will be = n2 — a2 — 2ao — o2, or e2 — 2ao — o2, and when
ao o2

the root has been extracted by our method, DI will become = e

• • •. Here write n for e + a , and DI will come out
2«?3 2«?3 2e5

ao n2o2 an2or>

I divide series of this sort into successive terms in the following manner.

What I call the first term is the term in which the infinitely small quantity o

does not exist; the second, the term in which that quantity is of one dimen-

sion; the third, the term in which it is of two dimensions; the fourth, the term

in which it is of three dimensions; and so on indefinitely. And the first term,

which here is ^, will always denote the length of the ordinate CH, standing

at the beginning of the indefinite quantity o. The second term, which here
ao

is —, will denote the difference between CH and DN, that is, the line-
e

element MN, which is cut off by completing the parallelogram HCDM and

thus always determines the position of the tangent HN; as, for example, in
ao

this case by taking MN to HM as — is to o, or a to e. The third term,
e

bb. In ed. 1 this is, with some variants, corol. 3.

t h e  m e d i u m  w i l l  b e  a s  . a
t h e  m e d i u m  w i l l  b e  a s  . a

• • •. Here write n for e + a , and DI will come out

•  •  • .  H e r e  w r i t e  n  f o r  e  +  a  ,  a n d  D I  w i l l  c o m e  o u t
ao n2o2 an2or>

a o  n 2 o 2  a n 2 o r >
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n2o2

which here is —-, will designate the
2e*

line-element IN, which lies between

the tangent and the curve and thus

determines the angle of contact IHN

or the curvature that the curved line

has in H. If that line-element IN is

of a finite magnitude, it will be desig-

nated by the third term along with the terms following without limit. But if

that line-element is diminished infinitely, the subsequent terms will come out

infinitely smaller than the third and thus can be ignored. The fourth term

determines the variation of the curvature, the fifth the variation of the varia-

tion, and so on. Hence, by the way, one can see clearly the not inconsiderable

usefulness of these series in the solution of problems that depend on tangents

and the curvature of curves.

Now compare the series e • • • with the series

P — Qo — Ro2 — So3 — - - • , and in the same manner for P, Q, R, and S

write e, -, —-, and —-, and for ^/(l +Q2) write /( 1 + — ) or -; then the

a a
density of the medium will come outc as —, that is (because n is given), as -,

or , that is, as the tangent's length HT terminated at the semidiameter
CH

cc. Ed. 1 has: "Besides, CF is the square root of CI2 and IF2, that is, of BD2 and the square of the

second term. And FG + /^/ is equal to twice the third term, and FG — ̂ / is equal to twice the fourth. For

the value of DG is converted into the value of //, and the value of FG into the value of ^/, by writing B/
n2o2 an2or> n2o2 an2o^

for BD, or — o for +o. Accordingly, since FG is — ..., ^/ will be = H — ....
2(?J 2e^ 2e5 2e^

And the sum of these is ; the difference, —. The fifth and following terms I ignore here as

infinitely less than such as come under consideration in this problem. And so if the series is universally

designated by the terms =F Qo - Ro2 - So3 ..., CF will be equal to J(o2 + Q2o2), FG + ^/ will be

equal to 2Ro2, and FG - J(l will be equal to 2So3. For CF, FG + ^/, and FG - ^/, write these values
P/~» L J C

of theirs, and the density of the medium, which was as , will now be as —.

Therefore by reducing each problem to a converging series and here writing for Q, R, and S the terms of

the series corresponding to these and then supposing the resistance of the medium in any place G to be

to the gravity as S^/(l + Q2) to 2R2, and the velocity to be the same as that with which a body, departing

from place C along straight line CF, could subsequently move in a parabola having diameter CB and
1 +Q2

latus rectum , the problem will be solved.

"Thus, in now solving the problem, if J{ H ) or - is written for J(\ + Q2), —- for R, and —-
v \ e2 / e 2e* 2e^

for S, the density of the medium will come out."

c
Now compare the series e • • • with the series

Now compare the series e • • • with the series

write e, -, —-, and —-, and for ^/(l +Q2) write /( 1 + — ) or -; then the

write e, -, —-, and —-, and for ^/(l +Q2) write /( 1 + — ) or -; then the

write e, -, —-, and —-, and for ^/(l +Q2) write /( 1 + — ) or -; then the

write e, -, —-, and —-, and for ^/(l +Q2) write /( 1 + — ) or -; then the

write e, -, —-, and —-, and for ^/(l +Q2) write /( 1 + — ) or -; then the write e, -, —-, and —-, and for ^/(l +Q2) write /( 1 + — ) or -; then theor , that is, as the tangent's length HT terminated at the semidiameter

And the sum of these is ; the difference, —. The fifth and following terms I ignore here as And the sum of these is ; the difference, —. The fifth and following terms I ignore here as

And the sum of these is ; the difference, —. The fifth and following terms I ignore here as And the sum of these is ; the difference, —. The fifth and following terms I ignore here as

of theirs, and the density of the medium, which was as , will now be as —.

P/~» L J C

of theirs, and the density of the medium, which was as , will now be as —.

latus rectum , the problem will be solved. "Thus, in now solving the problem, if J{ H ) or - is written for J(\ + Q2), —- for R, and —-
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AF, which stands perpendicularly upon PQ; and the resistance will be to the

gravity as 3a to 2/2, that is, as SAC to the diameter PQ of the circle, while

the velocity will be as ^CH. Therefore, if the body goes forth from place

F with the proper velocity along a line parallel to PQ, and the density of

the medium in each place H is as the length of the tangent HT, and the

resistance, also in some place H, is to the force of gravity as SAC to PQ,

then that body will describe the quadrant FHQ of a circle. Q.E.I.

But if the same body were to go forth from place P along a line per-

pendicular to PQ and were to begin to move in an arc of the semicircle

PFQ, AC or a would have to be taken on the opposite side of center A,

and therefore its sign would have to be changed, and — a would have to be

a
written for +a. Thus the density of the medium would come out as . But

e

nature does not admit of a negative density, that is, a density that accelerates

the motions of bodies; and therefore it cannot naturally happen that a body

by ascending from P should describe the quadrant PF of a circle. For this

effect the body would have to be accelerated by an impelling medium, not

impeded by a resisting medium.

EXAMPLE 2. Let the line PFQ be a parabola having its axis AF perpen-

dicular to the horizon PQ, and let it be required to find the density of the

medium that would make a projectile move in that parabola.

From the nature of the parabola, the rectangle PD x DQ is equal to the

rectangle of the ordinate DI and some given straight line. Let that straight

line be called b\ PC, a\ PQ, c\ CH, e\ and CD, o.

Then the rectangle (a+o)x(c—a—o\ or ac—a2 —

2ao+co — o2, is equal to the rectangle £xDI, and

ac — a2 c — 2a o2

thus DI is equal to 1 o . Now

the second term o of this series should be
* 2

written for Qo, the third term — likewise for Ro2. But since there are
b

not more terms, the coefficient S of the fourth will have to vanish, and
s

therefore the quantity —, to which the density of the medium is
R V \ I ~ f~Q )

proportional, will be nil. Therefore, if the density of the medium is null, a

projectile will move in a parabola, as Galileo once proved. Q.E.I.

t h e r e f o r e  t h e  q u a n t i t y  — ,  t o  w h i c h  t h e  d e n s i t y  o f  t h e  m e d i u m  i s
t h e r e f o r e  t h e  q u a n t i t y  — ,  t o  w h i c h  t h e  d e n s i t y  o f  t h e  m e d i u m  i s

t h e r e f o r e  t h e  q u a n t i t y  — ,  t o  w h i c h  t h e  d e n s i t y  o f  t h e  m e d i u m  i s
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EXAMPLE 3. Let line AGK be a hyperbola having an asymptote NX

perpendicular to the horizontal plane AK; and let it be required to find the

density of the medium that would make a projectile move in this hyperbola.

Let MX be the other asymptote, meeting in V the ordinate DG pro-

duced; and from the nature of the hyperbola, the rectangle XV x VG will

be given. Moreover, the ratio of DN to VX is given, and therefore the

rectangle DN x VG is given also. Let this rectangle be b2. And after com-

pleting the parallelogram DNXZ, call BN a\ BD, o\ NX, c\ and suppose the

given ratio of VZ to ZX or DN to be —. Then DN will be equal to a — o,
n

b1

VG will be equal to , VZ will
a — o

be equal to — (a — o), and GD or
n

NX - VZ - VG will be equal to

m m b1

c a H o . Resolve thec a H o . Resolve the
n n a — o

term into the converging se-

b2 b2 b2
 ? b2 ,

ries — H -o -\ -o1 H—-o5...,
a a1 a5 cf

and GD will become equal to c —

m b2 m b2 b2
 2

— a 1 o -o -o —
n a n a1 a5

— o3 . . . . The second term —o o of this series is to be used for Qo,
cr n a2

the third (with the sign changed) —o2 for Ro2, and the fourth (with the
a3

b2 m b2 b2 b2

sign also changed) —-o for So, and their coefficients -, —, and —
cr n a2 a3 cr

are to be written in the above rule for Q, R, and S. When this is done,

the density of the medium comes out as —-—— 7— or

^V v + ~^~~^~ + 7/
—— —, that is (if in VZ, VY is taken equal to VG),
// m 2mb b \

therefore the quantity —, to which the density of the medium is

VG wil l  be  equal  to  ,  VZ wi l l

term into the converging se-

term into the converging se-

— o3 . . . . The second term —o o of this series is to be used for Qo, — o3 . . . . The second term —o o of this series is to be used for Qo,

— o3 . . . . The second term —o o of this series is to be used for Qo,

the density of the medium comes out as —-—— 7— or

// m 2mb b \

1
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1 m2 2mb2 b*
// m 2mb b \// m 2mb b \

XY n2 n a2

the resistance is found to have the same ratio to gravity that 3XY has to 2YG;

and the velocity is that with which the body would go in a parabola having

XY2

vertex G, diameter DG, and latus rectum . Therefore suppose that the
VG

densities of the medium in each of the individual places G are inversely as

the distances XY and that the resistance in some place G is to gravity as

3XY to 2YG; then a body sent forth from place A with the proper velocity

will describe that hyperbola AGK. Q.E.I.

EXAMPLE 4. Suppose generally that line AGK is a hyperbola described

with center X and asymptotes MX and NX with the condition that when

the rectangle XZDN is described, whose side ZD cuts the hyperbola in

G and its asymptote in V, VG would be inversely as some power DN"

(whose index is the number n) of ZX or DN; and let it be required to

find the density of the medium in which a projectile would progress in this

curve.

For BN, BD, and NX write A, O, and C respectively, and let VZ be

b2

to XZ or DN as d to e, and let VG be equal to ; then DN will

b2 d
be equal to A - O, VG = , VZ = -(A - O), and GD or

d d b2

NX - VZ - VG will be equal to C A + -O . Resolve
e e (A - O)"

b1 , b2 nb2 n2 + n , ,
the term into the infinite series 1 O H b O +

n3 + 3>n2 + 2n

d nb2 +n2 + n , , +rc3 + 3n2 + 2n , ,
-O - —— O - _ ^ b202 - ^ £203 .... The second term

of this series —O — O is to be used for Go, the third term b2O2
e A»+l 2A*+2

for Ro2, the fourth term — £2O3 for So3. And hence the density
6A"+3

$
of the medium, —, in any place G, becomes

RY 0 + Q )

t o  X Z  o r  D N  a s  d  t o  e ,  a n d  l e t  V G  b e  e q u a l  t o  ;  t h e n  D N  w i l l

b e  e q u a l  t o  A  -  O ,  V G  =  ,  V Z  =  - ( A  -  O ) ,  a n d  G D  o r

b 1  ,  b 2  n b 2  n 2  +  n  ,  ,

b 1  ,  b 2  n b 2  n 2  +  n  ,  , b 1  ,  b 2  n b 2  n 2  +  n  ,  ,

the term into the infinite series 1 O H b O +
t h e  t e r m  i n t o  t h e  i n f i n i t e  s e r i e s  1  O  H  b  O  +

t h e  t e r m  i n t o  t h e  i n f i n i t e  s e r i e s  1  O  H  b  O  +

t h e  t e r m  i n t o  t h e  i n f i n i t e  s e r i e s  1  O  H  b  O  +

d nb2 +n2 + n , , +rc3 + 3n2 + 2n , ,
o f  t h i s  s e r i e s  — O  —  O  i s  t o  b e  u s e d  f o r  G o ,  t h e  t h i r d  t e r m  b 2 O 2 o f  t h i s  s e r i e s  — O  —  O  i s  t o  b e  u s e d  f o r  G o ,  t h e  t h i r d  t e r m  b 2 O 2

f o r  R o 2 ,  t h e  f o u r t h  t e r m  —  £ 2 O 3  f o r  S o 3 .  A n d  h e n c e  t h e  d e n s i t y
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n + 2

// d2 2dnb2 n2b*\'
3 / A2 + — A2 A + —
V V e2 eKn A2n)

and thus if in VZ, VY is taken equal to n x VG, the density is inversely
d2 2dnb2 n2b*

as XY. For A and —A A H are the squares of XZ and
e2 eAn A2n M

ZY. Moreover, the resistance in the same place G becomes to the gravity
"VV 9*72 I 7*7

as 3S x is to 4R2, that is, as XY to VG. And the velocity in
A n + 2

the same place is the very velocity with which a projected body would go

1+Q2

in a parabola having vertex G, diameter GD, and latus rectum or

2XY2

(n2 + «) x VG

Scholium dln the same way in which the density of the medium turned out to be
S x A C  .  .  .

as in corol. 1, ir the resistance is supposed to be as any power
R x HX

V" of the velocity V, the density of

to (1 + Q2)""1, a body will move in this curve in a uniform medium with a

resistance that is as the power Vn of the velocity. But let us return to simpler

curves.d

Since motion does not take place in a parabola except in a nonre-

sisting medium, but does take place in the hyperbola here described if

there is a continual resistance, it is obvious that the line which a projec-

tile describes in a uniformly resisting medium approaches closer to these

hyperbolas than to a parabola. At any rate, that line is of a hyperbolic

kind, but about its vertex it is more distant from the asymptotes, and in

dd. Ed. 1 lacks this.

// d2 2dnb2 n2b*\'

e2 eAn A2n M

in a parabola having vertex G, diameter GD, and latus rectum or

(n2 + «) x VG

V" of the velocity V, the density of

V" of the velocity V, the density of
V" of the velocity V, the density of
V" of the velocity V, the density of
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those parts that are further from the

vertex it approaches the asymptotes

more closely, than the hyperbolas

which I have described here. But

the difference between them is not

so great that one cannot be conve-

niently used in place of the other in

practice. And the hyperbolas which

I have been describing will perhaps

prove to be more useful than a hy-

perbola that is more exact and at

the same time more compounded.

And they will be brought into use

as follows.

Complete the parallelogram XYGT, and the straight line GT will touch

the hyperbola in G, and thus the density of the medium in G is inversely as
/GT2

the tangent GT, and the velocity in the same place is as / , while the
2n2 + 2n

resistance is to the force of gravity as GT to x GV.
n + 2

Accordingly, if a body projected from place A along the straight line

AH describes the hyperbola AGK and if AH produced meets the asymptote

NX in H and if AI drawn parallel to NX meets the other asymptote MX

in I, then the density of the medium in A will be inversely as AH, and the

, and the resistance in the same place

will be to the gravity as AH to x AI. Hence the following rules.
n + 2

RULE 1. If both the density of the medium at A and the velocity with

which the body is projected remain the same, and angle NAH is changed,

lengths AH, AI, and HX will remain the same. And thus, if those lengths

are found in some one case, the hyperbola can then be determined readily

from any given angle NAH.

RULE 2. If both angle NAH and the density of the medium at A remain

the same, and the velocity with which the body is projected is changed, the

length AH will remain the same, and AI will be changed in the ratio of the

inverse square of the velocity.

t h e  t a n g e n t  G T ,  a n d  t h e  v e l o c i t y  i n  t h e  s a m e  p l a c e  i s  a s  /  ,  w h i l e  t h e

res i s tance  i s  to  the  force  of  gravi ty  as  GT to  x  GV.
r e s i s t a n c e  i s  t o  t h e  f o r c e  o f  g r a v i t y  a s  G T  t o  x  G V .

r e s i s t a n c e  i s  t o  t h e  f o r c e  o f  g r a v i t y  a s  G T  t o  x  G V .

r e s i s t a n c e  i s  t o  t h e  f o r c e  o f  g r a v i t y  a s  G T  t o  x  G V .



3I2 B O O K 2, S E C T I O N 2

RULE 3. If angle NAH, the velocity of the body at A, and the acceler-

ative gravity remain the same, and the proportion of the resistance at A to

the motive gravity is increased in any ratio, the proportion of AH to AI will

be increased in the same ratio, and the latus rectum of the above parabola as
AH2

well as the length (proportional to it) will remain the same; and there-
AI

fore AH will be decreased in the same ratio, and AI will be decreased as

the square of that ratio. But the proportion of the resistance to the weight is

increased when the specific gravity (the volume remaining constant) becomes

smaller, or the density of the medium becomes greater, or the resistance (as

a result of the decreased volume) is decreased in a smaller ratio than the

weight.

RULE 4. The density of the medium near the vertex of the hyperbola is

greater than at place A; hence, in order to have the mean density, the ratio of

the least of the tangents GT to tangent AH must be found, and the density

at A must be increased in a slightly greater ratio than that of half the sum

of these tangents to the least of the tangents GT.

RULE 5. If lengths AH and AI are given, and it is required to describe

the figure AGK, produce HN to X so that HX is to AI as n + 1 to 1, and

with center X and asymptotes MX and NX, describe a hyperbola through

point A in such a way that AI is to any VG as XV" to XP.
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RULE 6. The greater the number #, the more exact are these "hyper-

bolas" in the ascent of the body from A, and the less exact in its descent to

K, and conversely. A conic hyperbola holds a mean ratio between them and

is simpler than the others. Therefore, if the hyperbola is of this kind, and if

it is required to find point K, where the projected body will fall upon any

straight line AN passing through point A, let AN produced meet asymptotes

MX and NX in M and N, and take NK equal to AM.

RULE 7. And hence a ready method of determining this kind of hy-

perbola from the phenomena is clear. Project two similar and equal bodies

with the same velocity in different an-

gles HAK and ^A^, and let them fall

upon the plane of the horizon in K

and ^, and note the proportion of AK

to A^ (let this be d to e). Then, hav-

ing erected a perpendicular AI of any

length, assume length AH or Ah in any way and from this determine graph-

ically lengths AK and A^ by rule 6. If the ratio of AK to A^ is the same

as the ratio of d to £, length AH was correctly assumed. But if not, then on

the indefinite straight line SM take a length SM equal to the assumed AH,

and erect perpendicular MN equal to the difference of the ratios, ,
l\r? €

multiplied by any given straight line. From several assumed lengths AH find

several points N by a similar method eand through them all draw a regular

curved line NNXN cutting the straight line SMMM in X. Finally, assume

AH equal to abscissa SX, and from this find length AK again; then the

lengths that are to the assumed length AI and this last length AH as that

length AK (found by experiment) is to the length AK (last found) will be

those true lengths AI and AH which it was required to find. And these being

given, the resistance of the medium in place A will also be given, inasmuch

as it is to the force of gravity as AH to 2AI. The density of the medium,

moreover, must be increased (by rule 4), and the resistance just found, if it is

increased in the same ratio, will become more exact.c

ee. Ed. 1 has: "and then finally, if a regular curved line NN x N is drawn through them all, this

will cut off SX equal to the required length AH. For mechanical purposes it suffices to keep the same

lengths AH, AI in all angles HAK. But if the figure must be determined more exactly in order to find

the resistance of the medium, these lengths must always be corrected (by rule 4)."

and erect perpendicular MN equal to the difference of the ratios, ,
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[In ed. 1, as well as in ed. 2, the same letter H is used for both the upper and the lower intersection

of the two curves on the right side of the diagram, but in ed. 3 only the upper intersection is lettered.

For the sake of clarity, we have introduced an [H] to designate the lower intersection and we have

decreased the inclination of the tangent Ah so that h is quite distinct from [H]. For further details, see the

Guide, §7.4.]

RULE 8. If the lengths AH and HX have been found, and the position

of the straight line AH is now desired along which a projectile sent forth

with that given velocity falls upon any point K, erect at points A and K

the straight lines AC and KF perpendicular to the horizon, of which AC

tends downward and is equal to AI or VzHX. With asymptotes AK and

KF describe a hyperbola whose conjugate passes through point C, and with

center A and radius AH describe a circle cutting that hyperbola in point

H; then a projectile sent forth along the straight line AH will fall upon

point K. Q.E.I.

For point H, because length AH is given, is located somewhere in the

circle described. Draw CH meeting AK and KF, the former in E, the latter

in F; then, because CH and MX are parallel and AC and AI are equal, AE

will be equal to AM, and therefore also equal to KN. But CE is to AE as

FH to KN, and therefore CE and FH are equal. Point H therefore falls

upon the hyperbola described with asymptotes AK and KF whose conjugate

passes through point C, and thus H is found in the common intersection of

this hyperbola and the circle described. Q.E.D.
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It is to be noted, moreover, that this operation is the same whether the

straight line AKN is parallel to the horizon or is inclined to the horizon at

any angle, and that from the two intersections H and H two angles NAH

and NAH arise, and that in a mechanical operation it is sufficient to describe

a circle once, then to apply the indeterminate rule CH to point C in such a

way that its part FH, placed between the circle and the straight line FK, is

equal to its part CE situated between point C and the straight line AK.

What has been said about hyperbolas is easily applied to parabolas. For

if XAGK designates a parabola that the straight line XV touches in ver-

tex X and if ordinates IA and VG are as any

powers XI" and XV* of abscissas XI and XV,

draw XT, GT, and AH, of which XT is parallel

to VG, and GT and AH touch the parabola in

G and A; then a body projected with the proper

velocity from any place A along the straight line

AH (produced) will describe this parabola, pro-

vided that the density of the medium in each in-

dividual place G is inversely as tangent GT. The

velocity in G, however, will be that with which a projectile would go, in a

nonresisting space, in a conic parabola having vertex G, diameter VG pro-
2GT2

several points N by a similar method eand through them all draw a regularseveral points N by a similar method eand through them all draw a regular
(n2 - n) x VG

G will be to the force of gravity as GT to VG. Hence, if NAK
n — 2

designates a horizontal line and if, while both the density of the medium

in A and the velocity with which the body is projected remain the same,

the angle NAH is changed in any way, then lengths AH, AI, and HX will

remain the same; and hence vertex X of the parabola and the position of the

straight line XI are given, and, by taking VG to IA as XV" to XP, all the

points G of the parabola, through which the projectile will pass, are given.

G  w i l l  b e  t o  t h e  f o r c e  o f  g r a v i t y  a s  G T  t o  V G .  H e n c e ,  i f  N A K
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S E C T I O N S

The motion of bodies that are resisted partly in the ratio of the velocity and partly

in the squared ratio of the velocity

Proposition 11 If a body is resisted partly in the ratio of the velocity and partly in the squared

Theorem 8 ratio of the velocity and moves in a homogeneous medium by its inherent force

alone, and if the times are ta^en in an arithmetic progression, then quantities

inversely proportional to the velocities and increased by a certain given quantity

will be in a geometric progression.

With center C and rectangular asymptotes CAD*/ and CH, describe

a hyperbola BE^, and let AB, DE, and dc be parallel to asymptote CH.

Let points A and G be given in asymptote

CD. Then if the time is represented by the

hyperbolic area ABED increasing uniformly, I

say that the velocity can be represented by the

length DF, whose reciprocal GD together with

the given quantity CG composes the length

CD increasing in a geometric progression.

For let the area-element DEed be a minimally small given increment of

time; then Y)d will be inversely as DE and thus directly as CD. And the
1 Dd CD

decrement of , which (by book 2, lem. 2) is -, will be as or
GD GD2 GD2

CG + GD 1 CG
, that is, as 1 . Therefore, when the time ABED in-

GD2 ' GD GD2

creases uniformly by the addition of the given particles ED*fe, decreases

in the same ratio as the velocity. For the decrement of the velocity is as the

resistance, that is (by hypothesis), as the sum of two quantities, of which

one is as the velocity and the other is as the square of the velocity; and the

decrement of is as the sum of the quantities and -, of which the
GD GD GD

1 CG 1
former is itself and the latter is as -. Accordingly, because the

GD GD GD

decrements are analogous, is as the velocity. And if the quantity GD,
GD

which is inversely proportional to , is increased by the given quantity
GD

-----------------

1

gf

1

1

1 1 1

2
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CG, then as the time ABED increases uniformly, the sum CD will increase

in a geometric progression. Q.E.D.

COROLLARY 1. Therefore if, given the points A and G, the time is rep-

resented by the hyperbolic area ABED, the velocity can be represented by

, the reciprocal of GD.
GD F

COROLLARY 2. And by taking GA to GD as the reciprocal of the velocity

at the beginning to the reciprocal of the velocity at the end of any time

ABED, point G will be found. And when G has been found, then if any

other time is given, the velocity can be found.

With the same suppositions, I say that if the spaces described are tafen in an

arithmetic progression, the velocities increased by a certain given quantity will be

in a geometric progression.

Let point R be given in the asymp-

tote CD, and after erecting perpendic-

ular RS meeting the hyperbola in S,

represent the described space by the

hyperbolic area RSED; then the veloc-

ity will be as the length GD, which

with the given quantity CG composes

the length CD decreasing in a geometric progression while space RSED is

increased in an arithmetic progression.

For, because the increment EDde of the space is given, the line-element

D<^, which is the decrement of GD, will be inversely as ED and thus directly

as CD, that is, as the sum of GD and the given length CG. But the decrement

of the velocity, in the time inversely proportional to it in which the given

particle DdeE of space is described, is as the resistance and the time jointly,

that is, directly as the sum of two quantities (of which one is as the velocity

and the other is as the square of the velocity) and inversely as the velocity;

and thus is directly as the sum of two quantities, of which one is given and

the other is as the velocity. Therefore the decrement of the velocity as well

as of line GD is as a given quantity and a decreasing quantity jointly; and

because the decrements are analogous, the decreasing quantities will always

be analogous, namely, the velocity and the line GD. Q.E.D.

Proposition 12

Theorem 9

1
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COROLLARY 1. If the velocity is represented by the length GD, the space

described will be as the hyperbolic area DESR.

COROLLARY 2. And if point R is taken at will, point G will be found

by taking GR to GD as the velocity at the beginning is to the velocity after

any space RSED has been described. And when point G has been found, the

space is given from the given velocity, and conversely.

COROLLARY 3. Hence, since (by prop. 11) the velocity is given from the

given time, and by this prop. 12 the space is given from the given velocity,

the space will be given from the given time, and conversely.

Proposition 13 Supposing that a body attracted downward by uniform gravity ascends straight up

Theorem 10 or descends straight down and is resisted partly in the ratio of the velocity and

partly in the squared ratio of the velocity, I say that if straight lines parallel to the

diameters of a circle and a hyperbola are drawn through the ends of the conjugate

diameters and if the velocities are as certain segments of the parallels, drawn from

a given point, then the times will be as the sectors of areas cut off by straight lines

drawn from the center to the ends of the segments, and conversely.

CASE 1. Let us suppose first that the body is ascending. With center

D and any semidiameter DB describe the quadrant BETF of a circle, and

through the end B of semidiameter DB draw the

indefinite line BAP parallel to semidiameter DF. Let

point A be given in that line, and take segment AP

proportional to the velocity. Since one part of the

resistance is as the velocity and the other part is as

the square of the velocity, let the whole resistance be

as AP2 + 2BA x AP. Draw DA and DP cutting the

circle in E and T, and represent the gravity by DA2 in such a way that the

gravity is to the resistance as DA2 to AP2 + 2BA x AP; and the time of

the whole ascent will be as sector EDT of the circle.

For draw DVQ cutting off both the moment PQ of velocity AP and the

moment DTV (corresponding to a given moment of time) of sector DET;

then that decrement PQ of the velocity will be as the sum of the forces of the

gravity DA2 and the resistance AP2 +2BA x AP, that is (by book 2, prop. 12

of the Elements), as DP2. Accordingly, the area DPQ, which is proportional to

PQ, is as DP2, and the area DTV, which is to the area DPQ as DT2 to DP2,
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is as the given quantity DT2. The area EDT therefore decreases uniformly

as the remaining time, by the subtraction of the given particles DTV, and

therefore is proportional to the time of the whole ascent. Q.E.D.

CASE 2. If the velocity in the ascent of the body is represented by the

length AP as in case 1, and the resistance is supposed to be as AP2 +

2BA x AP, and if the force of gravity

is less than what could be represented

by DA2, take BD of such a length that

AB2 — BD2 is proportional to the grav-

ity, and let DF be perpendicular and

equal to DB, and through the vertex F

describe the hyperbola FTVE, whose

conjugate semidiameters are DB and DF and which cuts DA in E and cuts

DP and DQ in T and V; then the time of the whole ascent will be as the

sector TDE of the hyperbola.

For the decrement PQ of the velocity occurring in a given particle of time

is as the sum of the resistance AP2 + 2BA x AP and the gravity AB2 — BD2,

that is, as BP2-BD2. But area DTV is to area DPQ as DT2 to DP2 and thus,

if a perpendicular GT is dropped to DF, is as GT2 or GD2 - DF2 to BD2,

and as GD2 to BP2, and by separation [or dividendo] as DF2 to BP2 — BD2.

Therefore, since area DPQ is as PQ, that is, as BP2 - BD2, area DTV

will be as DF2, which is given. Area EDT therefore decreases uniformly in

each equal particle of time, by the subtraction of the same number of given

particles DTV, and therefore is proportional to the time. Q.E.D.

CASE 3. Let AP be the velocity in the descent

of the body, and AP2 + 2BA x AP the resistance,

and BD2 — AB2 the force of gravity, angle DBA

being a right angle. And if with center D and prin-

cipal vertex B the rectangular hyperbola BETV is

described, cutting the produced lines DA, DP, and

DQ in E, T, and V, then sector DET of this hy-

perbola will be as the whole time of descent.

For the increment PQ of the velocity, and the area DPQ proportional to

it, is as the excess of the gravity over the resistance, that is, as BD2 — AB2 —

2BA x AP - AP2 or BD2 - BP2. And area DTV is to area DPQ as DT2 to

DP2 and thus as GT2 or GD2 - BD2 to BP2, and as GD2 to BD2, and by
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separation [or dividendo] as BD2 to BD2 — BP2. Therefore, since area DPQ

is as BD2 - BP2, area DTV will be as BD2, which is given. Therefore area

EDT increases uniformly in each equal particle of time, by the addition of

the same number of given particles DTV, and therefore is proportional to

the time of descent. Q.E.D.

COROLLARY. If with center D and semidiameter DA, the arc At similar

to arc ET and similarly subtending angle ADT is drawn through vertex

A, then the velocity AP will be to the velocity that the body in time EDT

in a nonresisting space could lose by ascending, or acquire by descending, as

the area of triangle DAP to the area of sector DAr and thus is given from the

given time. For in a nonresisting medium the velocity is proportional to the

time and thus proportional to this sector; in a resisting medium the velocity is

as the triangle; and in either medium, when the velocity is minimally small,

it approaches the ratio of equality just as the sector and the triangle do.

Scholium3 The case could also be proved in the ascent of the body, where the force

of gravity is less than what can be represented by DA2 or AB2 + BD2 and

greater than what can be represented by AB2 —BD2 , and must be represented

by AB2. But I hasten to other topics.

Proposition 14 With the same suppositions, I say that the space described in the ascent or descent

Theorem 11 is as the difference between the area which represents the time and a certain

other area that increases or decreases in an arithmetic progression, if the forces

compounded of the resistance and the gravity are taken in a geometric progression.

Take AC (in the three figures) proportional to the gravity, and AK pro-

portional to the resistance. And take them on the same side of point A if

the body is descending, otherwise on opposite sides. Erect A£, which is to

DB as DB2 to 4BA x AC; and when the hyperbola £N has been described

with respect to the rectangular asymptotes CK and CH, and KN has been

erected perpendicular to CK, area A£NK will be increased or decreased in

an arithmetic progression while the forces CK are taken in a geometric pro-

gression. I say therefore that the distance of the body from its greatest height

is as the excess of area A£NK over area DET.

a. Ed. 1 and ed. 2 lack the scholium.
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For since AK is as the resistance, that is, as AP2 +2BA x AP, assume
AP2 + 2BA x AP

any given quantity Z, and suppose AK equal to ,
LI

and (by book 2, lem. 2) the moment KL of AK will be equal to
2AP x PQ + 2BA x PQ 2BP x PQ

or , and the moment KLON or
Z Z

2BP x PQ x LO BP x PQ x BD3
area A£NK will be equal to or .

Z 2Z x CK x AB
CASE 1. Now, if the body is ascending and the gravity is as AB2 + BD2,

BET being a circle (in the first figure), then line AC, which is proportional to
AR^ -I- RO^

the gravity, will be , and DP2 or AP2 + 2BA x AP + AB2 + BD2
£t

will be AK x Z + AC x Z or CK x Z; and thus area DTV will be to area

DPQ as DT2 or DB2 or CK x Z.

CASE 2. But if the body is ascending and the gravity is as AB2 — BD2,
AB2 - BD2

then line AC (in the second figure) will be , and DT will be to
Zj

DP2 as DF2 or DB2 to BP2 - BD2 or AP2 + 2BA x AP + AB2 - BD2, that

is, to AK x Z + AC x Z or CK x Z. And thus area DTV will be to area

DPQ as DB2 to CK x Z.

2AP x PQ + 2BA x PQ 2BP x PQ
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CASE 3. And by the same argument, if the body is descending and

therefore the gravity is as BD2 — AB2, and line AC (in the third figure)
BD2 - AB2

therefore the gravity is as BD2 — AB2, and line AC (in the third figure)therefore the gravity is as BD2 — AB2, and line AC (in the third figure)
LJI

CK x Z, as above.

Since, therefore, those areas are always in this ratio, if for area DTV,

which represents the moment of time always equal to it, any determinate

rectangle is written, say BD x ra, then area DPQ, that is, 1/2 BD x PQ, will

be to BD x m as CK x Z to BD2. And hence PQ x BD3 becomes equal to

2BD x mx CK x Z, and the moment KLON (found above) of area A£NK
BP x BD x m

becomes . Take away the moment DTV or BD X m of area

DET, and there will remain . Therefore the difference of
AB

the moments, that is, the moment of the difference of the areas, is equal to
AP x BD x m

, and therefore (because is given) is as the velocity
AB AB * y

AP, that is, as the moment of the space that the body describes in ascending

or descending. And thus that space and the difference of the areas, increas-

ing or decreasing by proportional moments and beginning simultaneously or

vanishing simultaneously, are proportional. Q.E.D.

COROLLARY. If the length that results from dividing area DET by the

line BD is called M, and another length V is taken in the ratio to length M

that line DA has to line DE, then the space that a body describes in its whole

ascent or descent in a resisting medium will be to the space that the body

can describe in the same time in a nonresisting medium, by falling from a

BD x V2

, and therefore (because is given) is as the velocity, and therefore (because is given) is as the velocity
AB

given from the given time. For the space in a nonresisting medium is in the

squared ratio of the time, or as V2, and, because BD and AB are given, as

BD x V2 DA2 x BD x M2

. aThis area is equal to area , and the moment of
AB DE2 x AB

aa. Ed. 1 has: "But the time is as DET or VzBD x ET, and the moments of these areas are as

multiplied by the moment of V and 1/2 BD multiplied by the moment of ET, that is, as
2AB F y V

BD x V DA2 x 2m BD x V x DA2 x m
x and Vz BD x 2m, or as and BD x m. And therefore the

2AB DE2 A B x D E ' B D x V x D A x m
moment of area V2 is to the moment of the difference of areas DET and AKN£ as

AB x DE

BP x BD x mbecomes . Take away the moment DTV or BD X m of area

, and therefore (because is given) is as the velocity

, and therefore (because is given) is as the velocity

. aThis area is equal to area , and the moment of

. aThis area is equal to area , and the moment of

x and Vz BD x 2m, or as and BD x m. And therefore the

x and Vz BD x 2m, or as and BD x m. And therefore the
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DA2 x BD x 2M x m
M is m' and therefore the moment of this area is . But

DE2 x AB
this moment is to the moment of the difference of the above areas DET and

/ APxEDxm\ DA2 x BD x M
A£NK I that is, to I as is to ^BD x AP,

DA2
A£NK I that is, to I as is to ^BD x AP,A£NK I that is, to I as is to ^BD x AP,

^^ BD x V2
minimally small, in the ratio of equality. Therefore area and the

/VJJ

difference of areas DET and A£NK, when all these areas are minimally

AP x BD x m V x DA
to or as to AP and thus, when V and AP are minimally small, in the ratio of

AB DE
equality. Therefore the minimally small area is equal to the minimally small difference of areas

4AB
DET and AKN£. Hence, since the spaces described simultaneously in both mediums at the beginning of

BD x V2

the descent or at the end of the ascent approach equality and thus are then to one another as area
FF H y 4AB

and the difference of areas DET and AKN£, it follows that, because of their analogous increments, in
BD x V2

any equal times they must be to one another as the area and the difference of areas DET
4AB

and AKN£. Q.E.D." In ed. 2 the passage is the same as in ed. 1 except that AKN£ is A£NK and

the nrst two sentences read: The moment or this area or or its equivalent, , is to

the moment of the difference of areas DET and A#NK as to ,
DE2 x AB AB

A £ N K  I  t h a t  i s ,  t o  I  a s  i s  t o  ^ B D  x  A P ,

equality. Therefore the minimally small area is equal to the minimally small difference of areas

t h e  n r s t  t w o  s e n t e n c e s  r e a d :  T h e  m o m e n t  o r  t h i s  a r e a  o r  o r  i t s  e q u i v a l e n t ,  ,  i s  t o

t h e  n r s t  t w o  s e n t e n c e s  r e a d :  T h e  m o m e n t  o r  t h i s  a r e a  o r  o r  i t s  e q u i v a l e n t ,  ,  i s  t o
t h e  m o m e n t  o f  t h e  d i f f e r e n c e  o f  a r e a s  D E T  a n d  A # N K  a s  t o  ,
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small, have equal moments and thus are equal. Hence, since the velocities,

and therefore also the spaces described simultaneously in both mediums at

the beginning of the descent or the end of the ascent, approach equality and

BD x V2

thus are then to one another as area and the difference of areas
AB

DET and A£NK; and furthermore since the space in a nonresisting medium

BDx V2

is always as , and the space in a resisting medium is always as the
AJD

difference of areas DET and A£NK; it follows that the spaces described

in both mediums in any equal times must be to one another as the area

BD x V2

and the difference of areas DET and A£NK. Q.E.D.a
AB

Scholium*5 The resistance encountered by spherical bodies in fluids arises partly from the

tenacity, partly from the friction, and partly from the density of the medium.

And we have said that the part of the resistance that arises from the density

of the fluid is in the squared ratio of the velocity; the other part, which

arises from the tenacity of the fluid, is uniform, or as the moment of the

time; and thus it would now be possible to proceed to the motion of bodies

that are resisted partly by a uniform force or in the ratio of the moments of

the time and partly in the squared ratio of the velocity. But it is sufficient

to have opened the way to the examination of this subject in the preceding

props. 8 and 9 and their corollaries. In these propositions and corollaries,

in place of the uniform resistance of the ascending body, which arises from

its gravity, there can be substituted the uniform resistance that arises from

the tenacity of the medium, when the body is moved by its inherent force

alone; and when the body is ascending straight up, it is possible to add this

uniform resistance to the force of gravity, and to subtract it when the body

is descending straight down. It would also be possible to proceed to the

motion of bodies that are resisted partly uniformly, partly in the ratio of the

that is, as to ViBD x AP, or as x DET to DAP, and thus, when the areas DET and
DE2 DE2 B D x V

DAP are minimally small, in the ratio of equality." In both eds. 1 and 2 the fraction , which

occurs just before this passage, is .
4A13

b. Ed. 1 and ed. 2 lack the scholium.

is always as , and the space in a resisting medium is always as the

DAP are minimally small, in the ratio of equality." In both eds. 1 and 2 the fraction , which DAP are minimally small, in the ratio of equality." In both eds. 1 and 2 the fraction , which

occurs just before this passage, is .
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velocity, and partly in the squared ratio of the velocity. And I have opened

the way in the preceding props. 13 and 14, in which the uniform resistance

that arises from the tenacity of the medium can also be substituted for the

force of gravity, or can be compounded with it as before. But I hasten to

other topics.
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S E C T I O N 4

The revolving motion of bodies in resisting mediums

Lemma 3 Let PQR be a spiral that cuts all the radii SP, SQ, SR, ... in equal angles.

Draw the straight line PT touching the spiral in any point P and cutting the

radius SQ in T; erect PO and QO perpendicular to the spiral and meeting in O,

and join SO. / say that if points P and Q approach each other and coincide, angle

PSO will come out a right angle, and the ultimate ratio of rectangle TQ x 2PS

to PQ2 will be the ratio of equality.

For, from the right angles OPQ

and OQR subtract the equal angles

SPQ and SQR, and the equal angles

OPS and OQS will remain. There-

fore a circle that passes through points

O, S, and P will also pass through

point Q. Let points P and Q come

together, and this circle will touch the

spiral in the place PQ where they coincide, and thus will cut the straight line

OP perpendicularly. OP will therefore become a diameter of this circle, and

OSP, an angle in a semicircle, will become a right angle. Q.E.D.

Drop perpendiculars QD and SE to OP, and the ultimate ratios of the

lines will be as follows: TQ will be to PD as TS (or PS) to PE, or 2PO to

2PS; likewise, PD will be to PQ as PQ to 2PO; and from the equality of

the ratios in inordinate proportion [or ex aequo perturbate] TQ will be to

PQ as PQ to 2PS. Hence PQ2 becomes equal to TQ x 2PS. Q.E.D.

Proposition 15 If the density of a medium in every place is inversely as the distance of places

Theorem 12 from a motionless center and if the centripetal force is in the squared ratio of the

density, I say that a body can revolve in a spiral that intersects in a given angle

all the radii drawn from that center.

Let the same things be supposed as in lemma 3, and produce SQ to V, so

that SV is equal to SP. In any time, in a resisting medium, let a body describe

the minimally small arc PQ, and in twice the time, the minimally small

arc PR; then the decrements of these arcs arising from the resistance, that is,
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the differences between these arcs and

the arcs that would be described in the

same times in a nonresisting medium,

will be to each other as the squares of

the times in which they are generated.

The decrement of arc PQ is therefore

a fourth of the decrement of arc PR.

Hence also, if area QSr is taken equal

to area PSQ, the decrement of arc PQ will be equal to half of the line-element

Rr; and thus the force of resistance and the centripetal force are to each other

as the line-elements l/zR.r and TQ that they simultaneously generate. Since

the centripetal force by which the body is urged in P is inversely as SP2; and

since (by book 1, lem. 10) the line-element TQ, which is generated by that

force, is in a ratio compounded of the ratio of this force and the squared

ratio of the time in which arc PQ is described (for I ignore the resistance in

this case, as being infinitely smaller than the centripetal force); then it follows

that TQ x SP2, that is (by lem. 3), !/2PQ2 x SP, will be in the squared ratio

of the time, and thus the time is as PQ x y/SP; and the body's velocity with
PQ 1

which arc PQ is described in that time will be as ;— or —;—, that
PQx^/SP VSP

is, as the square root of SP inversely. And by a similar argument, the velocity

with which arc QR is described is as the square root of SQ inversely. But

these arcs PQ and QR are as the velocities of description to each other, that

is, as VSQ to x/SP> or as SQ to ./(SP x SQ); and because angles SPQ and

SQr are equal and areas PSQ and QSr are equal, arc PQ is to arc Qr as SQ

to SP. Take the differences of the proportional consequents, and arc PQ will

become to arc Rr as SQ to SP - ^/(SP x SQ), or 1/2 VQ. For, points P and

Q coming together, the ultimate ratio of SP — ^/(SP x SQ) to 1/2 VQ is the

ratio of equality. aSince the decrement of arc PQ arising from the resistance,

or its double Rr, is as the resistance and the square of the time jointly, the

resistance will be as .a But PQ was to Rr as SQ to VzVQ, and
j. \^ x oj.

aa. Ed. 1 has: "In a nonresisting medium, equal areas PSQ, QSr would (by book 1, theor. 1) have

to be described in equal times. From the resistance arises the difference RSr of the areas, and therefore

the resistance is as decrement Rr of line-element Qr compared with the square of the time in which it is

generated. For line-element Rr (by book 1, lem. 10) is as the square of the time. Therefore the resistance
Rr

15 aS
 PQ'xSP'"

r e s i s t a n c e  w i l l  b e  a s  . a  B u t  P Q  w a s  t o  R r  a s  S Q  t o  V z V Q ,  a n d

r e s i s t a n c e  w i l l  b e  a s  . a  B u t  P Q  w a s  t o  R r  a s  S Q  t o  V z V Q ,  a n d
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Rr V2VQ '/2OS

 P^^P- beC°meS " PQxSPxSQ' °f " OP^SF- F°r' P°intS
P and Q coming together, SP and SQ coincide, and angle PVQ becomes a

right angle; and because triangles PVQ and PSO are similar, PQ becomes to

OS
ViVQ as OP to VzOS. Therefore is as the resistance, that is, in the

\^f A X ^ J.

ratio of the density of the medium at P and the squared ratio of the velocity

jointly. Take away the squared ratio of the velocity, namely the ratio —, and
^ Jr

OS
the result will be that the density of the medium at P is as . Let

OP x SP
the spiral be given, and because the ratio of OS to OP is given, the density

of the medium at P will be as —. Therefore in a medium whose density
ol

is inversely as the distance SP from the center, a body can revolve in this

spiral. Q.E.D.

COROLLARY 1. The velocity in any place P is always the velocity with

which a body in a nonresisting medium, under the action of the same cen-

tripetal force, can revolve in a circle at the same distance SP from the center.

COROLLARY 2. The density of the medium, if the distance SP is given,
O S  .  .  . . .  O S

is as ; but if that distance is not given, it is as . And hence a
OP * ' OPxSP

spiral can be made to conform to any density of the medium.

COROLLARY 3. The force of resistance in any place P is to the centripetal

force in the same place as 1/2OS to OP. For those forces are to each other
1AVQ x PQ 1/2 PQ2

as ViRr and TQ or as and , that is, as ViVQ and PQ, or
OV^/ ^L

1/2OS and OP. Given the spiral, therefore, the proportion of the resistance to

the centripetal force is given; and conversely, from that given proportion the

spiral is given.

COROLLARY 4. The body, therefore, cannot revolve in this spiral except

when the force of resistance is less than half of the centripetal force. Let the

resistance become equal to half of the centripetal force; then the spiral will

coincide with the straight line PS, and the body will descend to the center

in this straight line with a velocity that is (as we proved in book 1, prop. 34)

to the velocity with which the body descends in a nonresisting medium in

P and Q coming together, SP and SQ coincide, and angle PVQ becomes a

1

1

O S  .  .  . . .  O S

OS . . ... OS

OV^/ ^L
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the case of a parabola in the ratio of 1 to ^/2. bAnd the times of descent will

here be inversely as the velocities, and thus are given.b

COROLLARY 5. And since at equal

distances from the center the velocity

is the same in the spiral PQR as in the

straight line SP, and since the length

of the spiral is in a given ratio to the

length of the straight line PS, namely

the ratio of OP to OS, the time of

descent in the spiral will be to the time

of descent in the straight line SP in that same given ratio, and accordingly is

given.

COROLLARY 6. If, with center S and any two given radii, two circles

are described, and if—these circles remaining the same—the angle that the

spiral contains with radius PS is changed in any way, then the number o

revolutions that the body can complete between the circumferences of the

circles, by revolving in the spiral from one circumference to the other, is as
PS

, or as the tangent of the angle that the spiral contains with radius PS.

And the time of those revolutions is as , that is, as the secant of that
\Jo

angle, or inversely as the density of the medium.

COROLLARY 7. If a body, in a medium whose density is inversely as the

distance of places from the center, has made a revolution about that center in

any curve AEB and has cut the first radius AS in the same angle in B as it did

previously in A, with a velocity that was to its prior velocity in A inversely

as the square roots of distances from the center—that is, as AS to a mean

proportional between AS and BS—then that body will make innumerable

entirely similar revolutions BFC, CGD, . . . , and by the intersections will

divide the radius AS into the continually proportional parts AS, BS, CS,

DS, . . . . And the times of revolution will be as the perimeters of the orbits

AEB, BFC, CGD, . . . , directly, and the velocities in the beginnings A, B,

C, inversely—that is, as AS3/2, BS3/2, CSV2. And the whole time in which the

body will reach the center will be to the time of the first revolution as the

bb. Ed. 1 has: "Hence the times of descent will here be twice as great as those times and so are
given."

329

And the t ime of  those revolutions is  as  ,  that  is ,  as  the secant  of  that
A n d  t h e  t i m e  o f  t h o s e  r e v o l u t i o n s  i s  a s  ,  t h a t  i s ,  a s  t h e  s e c a n t  o f  t h a t
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sum of all the continually proportional quantities AS /2, BS /2, CS/2, going

on indefinitely, is to the first term AS3/2—that is, as that first term AS3/2 is

to the difference of the first two terms AS /2 — BS /2, or very nearly as %AS

to AB. In this way the whole time is readily found.

COROLLARY 8. From what has been presented, it is also possible to deter-

mine approximately the motions of bodies in mediums whose density either

is uniform or accords with any other assigned law. With center S and radii

SA, SB, SC, . .. which are continually proportional, describe any number of

circles. And suppose that the time of the revolutions between the perimeters

of any two of these circles in the medium treated in corol. 7 is to the time

of revolutions between those perimeters in the proposed medium very nearly

as the mean density of the proposed medium between those circles is to the

mean density of the medium in corol. 7 between those same circles; and sup-

pose additionally that the secant of the angle by which the spiral in corol. 7,

in the medium treated in that corollary, cuts the radius AS is in the same

ratio to the secant of the angle by which the new spiral cuts that same radius

in the proposed medium; and also that the numbers of all the revolutions

between those same two circles are very nearly as the tangents of those same

angles. If this is done throughout between every pair of circles, the motion

will be continued through all the circles. And thus we can imagine without

difficulty in what ways and in what times bodies would have to revolve in

any regular medium.



S C H O L I U M 331

COROLLARY 9. And even if the motions are eccentric, being performed in

spirals approaching an oval shape, nevertheless by conceiving that the single

revolutions of those spirals are the same distance apart from one another and

approach the center by the same degrees as the spiral described above, we

shall also understand how the motions of bodies are performed in spirals of

this sort.

If the density of the medium in every place is inversely as the distance of places Proposition 16

from a motionless center and if the centripetal force is inversely as any power of Theorem 13

that distance, I say that a body can revolve in a spiral that intersects in a given

angle all the radii drawn from that center.

This is proved by the same method as prop. 15. For if the centripetal

force in P is inversely as any power SP"+l (whose index is n + 1) of the

distance SP, then it will be gathered,

as above, that the time in which

the body describes any arc PQ will

be as PQ x PS1/2/2, and the resis-
R r

tance in P will be as ,
PQ2 x SP"

(1 - 1/20) x VQ
or as , and thus

PQ x SP* x SQ

as , that is, because
OP x SP*+1

is given, inversely as SP" . And therefore, since the velocity

is inversely as SP /2w, the density in P will be inversely as SP.

COROLLARY 1. The resistance is to the centripetal force as (1 — Vin) X OS

to OP.

COROLLARY 2. If the centripetal force is inversely as SP3, 1 — V

be = 0, and thus the resistance and density of the medium will be null, as in

book 1, prop. 9.

COROLLARY 3. If the centripetal force is inversely as some power of the

radius SP whose index is greater than the number 3, positive resistance will

be changed to negative.

But this proposition and the previous ones, which relate to unequally dense Scholium

mediums, are to be understood of the motion of bodies so small that no

t a n c e  i n  P  w i l l  b e  a s  ,

t a n c e  i n  P  w i l l  b e  a s  ,

OP x SP*+1
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consideration need be taken of a greater density of the medium on one side

of the body than on the other. I also suppose the resistance, other things being

equal, to be proportional to the density. Hence, in mediums whose force of

resisting is not as the density, the density ought to be increased or decreased

to such an extent that either the excess of the resistance may be taken away

or its defect supplied.

Proposition 17 To find both the centripetal force and the resistance of the medium by means of

Problem 4 which a body can revolve in a given spiral, if the law of the velocity is given.

Let the spiral be PQR. The time

will be given from the velocity with

which the body traverses the mini-

mally small arc PQ, and the force will

be given from the height TQ, which

is as the centripetal force and the

square of the time. Then the retarda-

tion of the body will be given from

the difference RSr of the areas PSQ

and QSR traversed in equal particles

of time, and the resistance and density

of the medium will be found from the

retardation.

Proposition 18 Given the law of the centripetal force, it is required to find in every place the

Problem 5 density of the medium with which a body will describe a given spiral.

The velocity in every place is to be found from the centripetal force;

then the density of the medium is to be sought from the retardation of the

velocity, as in prop. 17.

I have presented the method of dealing with these problems in book 2,

prop. 10 and lem. 2, and I do not wish to detain the reader any longer in

complex inquiries of this sort. Some things must now be added on the forces

of bodies in their forward motion, and on the density and resistance of the

mediums in which the motions hitherto explained and motions related to

these are performed.
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S E C T I O N 5

The density and compression of fluids, and hydrostatics

A fluid is any body whose parts yield to any force applied to it and yielding are Definition of

moved easily with respect to one another. a Fluid

All the parts of a homogeneous and motionless fluid that is enclosed in any motion- Proposition 19

less vessel and is compressed on all sides (apart from considerations of condensation, Theorem 14

gravity, and all centripetal forces) are equally pressed on all sides and remain in

their places without any motion arising from that pressure.

CASE 1. Let a fluid be enclosed in the spherical vessel ABC and be

uniformly compressed on all sides; I say that no part of this fluid will move

as a result of that pressure. For if some one part

D moves, all the parts of this sort, standing on all

sides at the same distance from the center, must

move simultaneously with a similar motion; and

this is so because the pressure on them all is sim-

ilar and equal, and every motion is supposed ex-

cluded except that which arises from the pressure.

But they cannot all approach closer to the center

unless the fluid is condensed at the center, contrary to the hypothesis. They

cannot recede farther from it unless the fluid is condensed at the circum-

ference, also contrary to the hypothesis. They cannot move in any direction

and keep their distance from the center, since by a like reasoning they will

move in the opposite direction, and the same part cannot move in opposite

directions at the same time. Therefore no part of the fluid will move from

its place. Q.E.D.

CASE 2. I say additionally that all the spherical parts of this fluid are

equally pressed on all sides. For let EF be a spherical part of the fluid; if this

part is not pressed equally on all sides, let the lesser pressure be increased until

this part is pressed equally on all sides; then its parts, by case 1, will remain

in their places. But before the increase of the pressure they will remain in

their places, also by case 1, and by the addition of new pressure they will

be moved out of their places, by the definition of a fluid. These two results
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are contradictory. Therefore it was false to say that the sphere EF was not

pressed equally on all sides. Q.E.D.

CASE 3. I say furthermore that there is equal pressure on different

spherical parts. For contiguous spherical parts press one another equally in

the point of contact, by the third law of motion. But by case 2, they are

also pressed on all sides by the same force. Therefore any two noncontigu-

ous spherical parts will be pressed by the same force, since an intermediate

spherical part can touch both. Q.E.D.

CASE 4. I say also that all the parts of the fluid are equally pressed on

every side. For any two parts can be touched by spherical parts in any points,

and there they press those spherical parts equally, by case 3, and in turn are

equally pressed by them, by the third law of motion. Q.E.D.

CASE 5. Since, therefore, any part GHI of the fluid is enclosed in the

remaining fluid as if in a vessel and is pressed equally on all sides, while its

parts press one another equally and are at rest with respect to one another,

it is manifest that all the parts of any fluid GHI which is pressed equally

on all sides press one another equally and are at rest with respect to one

another. Q.E.D.

CASE 6. Therefore, if that fluid is enclosed in a vessel that is not rigid

and is not pressed equally on all sides, it will yield to a greater pressure, by

the definition of a fluid.

CASE 7. And thus in a rigid vessel a fluid will not sustain a pressure

that is greater on one side than on another, but will yield to it, and will do

so in an instant of time, since the rigid side of the vessel does not follow

the yielding liquid. And by yielding, it will press the opposite side, and thus

the pressure will tend on all sides to equality. And since, as soon as the fluid

endeavors to recede from the part that is pressed more, it is hindered by the

resistance of the vessel on the opposite side, the pressure will be reduced on

all sides to equality in an instant of time without local motion; and thereupon

the parts of the fluid, by case 5, will press one another equally and will be at

rest with respect to one another. Q.E.D.

COROLLARY. Hence the motions of the parts of the fluid with respect to

one another cannot be changed by pressure applied to the fluid anywhere

on the external surface, except insofar as either the shape of the surface is

changed somewhere or all the parts of the fluid, by pressing one another
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more intensely or more remissly [i.e., by pressing one another more strongly

or less strongly], flow among themselves with more or less difficulty.

If every part of a fluid that is spherical and homogeneous at equal distances from Proposition 20

the center and rests upon a concentric spherical bottom gravitates toward the center Theorem 15

of the whole, then the bottom will sustain the weight of a cylinder whose base

is equal to the surface of the bottom and whose height is the same as that of the

fluid resting upon it.

Let DHM be the surface of the bottom, and AEI the upper surface of the

fluid. Divide the fluid into equally thick concentric spherical shells3 by innu-

merable spherical surfaces BFK, CGL; and

suppose the force of gravity to act only upon

the upper surface of each spherical shell, and

the actions upon equal parts of all the sur-

faces to be equal. The highest surface AE is

pressed, therefore, by the simple force of its

own gravity, by which also all the parts of the

highest spherical shell, and the second surface

BFK (by prop. 19), are equally pressed in ac-

cordance with their measure. The second sur-

face BFK is pressed additionally by the force of its own gravity, which, added

to the previous force, makes the pressure double. The third surface CGL is

acted on by this pressure, in accordance with its measure, and additionally by

the force of its gravity, that is, by a triple pressure. And similarly the fourth

surface is urged by a quadruple pressure, the fifth by a quintuple, and so on.

The pressure by which any one surface is urged is therefore not as the solid

quantity of the fluid lying upon it, but as the number of spherical shells up

to the top of the fluid, and is equal to the gravity of the lowest spherical

shell multiplied by the number of shells; that is, it is equal to the gravity

of a solid whose ultimate ratio to the cylinder specified above will become

that of equality—provided that the number of shells is increased and their

thickness decreased indefinitely, in such a way that the action of gravity is

made continuous from the lowest surface to the highest. The lowest surface

therefore sustains the weight of the cylinder specified above. Q.E.D. And

a. Here, as elsewhere in the Principia, Newton uses the noun "orbis" (orb) for a spherical shell.
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by a similar argument this proposition is evident when the gravity decreases

in any assigned ratio of the distance from the center, and also when the fluid

is rarer upward and denser downward. Q.E.D.

COROLLARY 1. Therefore the bottom is not pressed by the whole weight

of the incumbent fluid, but sustains only that part of the weight which is

described in this proposition, the rest of the weight being sustained by the

vaulted shape of the fluid.

COROLLARY 2. At equal distances from the center, moreover, the quan-

tity of pressure is always the same, whether the pressed surface is parallel to

the horizon or perpendicular or oblique, or whether the fluid—continued up-

ward from the pressed surface—rises perpendicularly along a straight line or

snakes obliquely through twisted cavities and channels, regular or extremely

irregular, wide or very narrow. That the pressure is not at all changed by

these circumstances is gathered by applying the proof of this theorem to the

various cases of fluids.

COROLLARY 3. By the same proof it is also gathered (by prop. 19) that

the parts of a heavy fluid acquire no motion with respect to one another as

a result of the pressure of the incumbent weight, provided that the motion

arising from condensation is excluded.

COROLLARY 4. And therefore, if another body, in which there is no con-

densation, of the same specific gravity is submerged in this fluid, it will

acquire no motion as a result of the pressure of the incumbent weight; it will

not descend, it will not ascend, and it will not be compelled to change its

shape. If it is spherical, it will remain spherical despite the pressure; if it is

square, it will remain square; and it will do so whether it is soft or very fluid,

whether it floats freely in the fluid or lies on the bottom. For any internal

part of a fluid is in the same situation as a submerged body, and the case

is the same for all submerged bodies of the same size, shape, and specific

gravity. If a submerged body, while keeping its weight, were to liquefy and

assume the form of a fluid, then, if it were formerly ascending or descending

or assuming a new shape as a result of pressure, it would also now ascend or

descend or be compelled to assume a new shape, and would do so because

its gravity and the other causes of motions remain fixed. But (by prop. 19,

case 5) this body would now be at rest and would maintain its shape. Hence,

this would also be the case under the earlier conditions.
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COROLLARY 5. Accordingly, a body that is of a greater specific gravity

than a fluid contiguous to it will sink, and a body that is of a lesser specific

gravity will ascend, and will acquire as much motion and change of shape

as that excess or deficiency of gravity can bring about. For that excess or

deficiency acts like an impulse by which the body, otherwise in equilibrium

with the parts of the fluid, is urged; and it can be compared with the excess

or deficiency of weight in either of the scales of a balance.

COROLLARY 6. The gravity of bodies in fluids is therefore twofold: the

one, true and absolute; the other, apparent, common, and relative. Absolute

gravity is the whole force with which a body tends downward; relative or

common gravity is the excess of gravity with which the body tends down-

ward more than the surrounding fluid. By absolute gravity the parts of all

fluids and bodies gravitate in their places, and thus the sum of the individual

weights is the weight of the whole. For every whole is heavy, as can be tested

in vessels full of liquids, and the weight of the whole is equal to the sum

of the weights of all the parts, and thus is composed of them. By relative

gravity bodies do not gravitate in their places; that is, compared with one

another, one is not heavier than another, but each one opposes the endeavors

of the others to descend, and they remain in their places just as if they had

no gravity. Whatever is in the air and does not gravitate more than the air

is not commonly considered to be heavy. Things that do gravitate more are

commonly considered to be heavy, inasmuch as they are not sustained by the

weight of the air. Weight as commonly conceived is nothing other than the

excess of the true weight over the weight of the air. Bodies are commonly

called light which are less heavy than the surrounding air and, by yielding to

that air, which gravitates more, move upward. They are, however, only com-

paratively light and not truly so, since they descend in a vacuum. Similarly,

bodies in water that descend or ascend because of their greater or smaller

gravity are comparatively and apparently heavy or light, and their compara-

tive and apparent heaviness or lightness is the excess or deficiency by which

their true gravity either exceeds the gravity of the water or is exceeded by

it. And bodies that neither descend by gravitating more nor ascend by yield-

ing to water which gravitates more—even though they increase the weight

of the whole by their own true weights—nevertheless, comparatively and as

commonly understood, do not gravitate in water. For the demonstration of

all these cases is similar.
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COROLLARY 7. What has been demonstrated concerning gravity is valid

for any other centripetal forces.

COROLLARY 8. Accordingly, if the medium in which some body moves

is urged either by its own gravity or by any other centripetal force, and the

body is urged more strongly by the same force, then the difference between

the forces is that motive force which we have considered to be the centripetal

force in the preceding propositions. But if the body is urged more lightly by

that force, the difference between the forces should be considered a centrifu-

gal force.

COROLLARY 9. Since fluids, moreover, do not change the external shapes

of enclosed bodies that they press upon, it is evident in addition (by prop. 19,

corol.) that fluids will not change the situation of the internal parts with

respect to one another; and accordingly, if animals are immersed, and if all

sensation arises from the motion of the parts, fluids will neither harm these

immersed bodies nor excite any sensation, except insofar as these bodies can

be condensed by compression. And the case is the same for any system of

bodies that is surrounded by a compressing fluid. All the parts of the system

will be moved with the same motions as if they were in a vacuum and re-

tained only their relative gravity, except insofar as the fluid either resists their

motions somewhat or is needed to make them cohere by compression.

Proposition 21 Let the density of a certain fluid be proportional to the compression, and let its parts

Theorem 16 be drawn downward by a centripetal force inversely proportional to their distances

from the center; I say that if the distances are ta^en continually proportional, the

densities of the fluid at these distances will also be continually proportional.

Let ATV designate the spherical bottom on which

the fluid lies, S the center, and SA, SB, SC, SD, SE,

SF, ... the continually proportional distances. Erect per-

pendiculars AH, BI, CK, DL, EM, FN, . . . , which

are as the densities of the medium in places A, B, C,

D, E, F; then the specific gravities in those places will
AH BI CK .

be as , —, , . . . , or—which is the same—as
AS BS CS

AH BI CK
, , , Suppose first that these gravities

AB BC CD ^ 6
continue uniformly, the first from A to B, the second

--
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from B to C, the third from C to D, . . . , the decrements thus occurring

by degrees at points B, C, D, Then these specific gravities multiplied

by the heights AB, BC, CD, ... will give the pressures AH, BI, CK, . . . , by

which the bottom ATV (according to prop. 20) is pressed. The particle A

therefore sustains all the pressures AH, BI, CK, DL, going on indefinitely;

and the particle B, all the pressures except the first, AH; and the particle

C, all except the first two, AH and BI; and so on. And thus the density

AH of the first particle A is to the density BI of the second particle B as

the sum of all the AH + BI + CK + DL indefinitely, to the sum of all the

BI + CK + DL And the density BI of the second particle B is to the

density CK of the third particle C as the sum of all the BI + CK + DL . . .

to the sum of all the CK + DL . . . . Those sums are therefore proportional

to their differences AH, BI, CK, . . . , and thus are continually proportional

(by book 2, lem. 1); and accordingly the differences AH, BI, CK, . .. , pro-

portional to those sums, are also continually proportional. Therefore, since

the densities in places A, B, C, ... are as AH, BI, CK, .. . , these also will

be continually proportional. Proceed now by jumps, and from the equality

of the ratios [or ex aequo], at the continually proportional distances SA, SC,

SE, the densities AH, CK, EM will be continually proportional. And by the

same argument, at any continually proportional distances SA, SD, SG, the

densities AH, DL, GO will be continually proportional. Now let points A,

B, C, D, E, . . . come together so that the progression of the specific gravities

is made continual from the bottom A to the top of the fluid; and at any

continually proportional distances SA, SD, SG, the densities AH, DL, GO,

being always continually proportional, will still remain continually propor-

tional now. Q.E.D.

COROLLARY. Hence, if the density of a

fluid is given in two places, say A and E,

its density in any other place Q can be deter-

mined. With center S and rectangular asymp-

totes SQ and SX describe a hyperbola cutting

perpendiculars AH, EM, and QT in a, e,

and #, and also perpendiculars HX, MY, and

TZ, dropped to asymptote SX, in h, m, and

/. Make the area YmtZ be to the given area

Yra/^X as the given area EeqQ is to the given
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area Eea A; and the line Z/ produced will cut off the line QT proportional to

the density. For if lines SA, SE, and SQ are continually proportional, areas

E^gQ and E^A will be equal, and hence the areas proportional to these,

Yra/Z an XhmY, will also be equal, and lines SX, SY, and SZ—that is, AH,

EM, and QT—will be continually proportional, as they ought to be. And

if lines SA, SE, and SQ obtain any other order in the series of continually

proportional quantities, lines AH, EM, and QT, because the hyperbolic areas

are proportional, will obtain the same order in another series of continually

proportional quantities.

Proposition 22 Let the density of a certain fluid be proportional to the compression, and let its

Theorem 17 parts be drawn downward by a gravity inversely proportional to the squares of

their distances from the center; I say that if the distances are ta^en in a harmonic

progression, the densities of the fluid at these distances will be in a geometric

progression.

Let S designate the center, and SA, SB, SC, SD, and SE the distances in a

geometric progression. Erect perpendiculars AH, BI, CK, ... , which are as

the densities of the fluid in places A, B, C, D, E, .. .; then the specific gravi-

AH BI CK . _
ties in those places will be -, —-, —-, .... Imagine these specific gravi-

SA Sr3 oC_>

ties to be uniformly continued, the first from A to B, the second from B to C,

the third from C to D, . . . . Then these, multiplied by the heights AB, BC,
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CD, DE, . ..—or, which is the same, by the distances SA, SB, SC, ... , pro-

A T T r>T (~^l£

portional to those heights—will yield , —, , . . . , which represent
oA O£> oC>

the pressures. Therefore, since the densities are as the sums of these pressures,

the differences (AH — BI, BI — CK, . . .) of the densities will be as the differ-

and S* describe any hyperbola that cuts the perpendiculars AH, BI, CK, ...

in a, b, < : , . . . and also cuts in h, i, and ^ the perpendiculars H/, Iw, and

Kw/, dropped to asymptote Sx; then the differences tu, uw, . . . between the

A T T RT
densities will be as , —, .... And the rectangles tu x th, uw x ui, ....

SA SB *

AH x th BI x ui
or tp, uq, . . ., will be as , , . . . , that is, as Aa, Bb, ....

O A OD

For, from the nature of the hyperbola, SA is to AH or S/ as th to Aa,

AH x th . BI x m' .
and thus is equal to Aa. And by a similar argument, is

^ A OL>

equal to B£, .. .. Moreover, Aa, B£, Cc, .. . are continually proportional,

and therefore proportional to their differences Aa — Bb, Bb — Cc, .. .; and

thus the rectangles tp, uq, ... are proportional to these differences, and also

the sums of the rectangles tp + uq or tp + uq + wr are proportional to the

sums of the differences Aa — Cc or Aa — Dd. Let there be as many terms of

this sort as you wish; then the sum of all the differences, say Aa — F/, will be

proportional to the sum of all the rectangles, say zthn. Increase the number

of terms and decrease the distances of points A, B, C, ... , indefinitely; then

these rectangles will come out equal to the hyperbolic area zthn, and thus

the difference Aa — Ff is proportional to this area. Now take any distances,

say SA, SD, SF, in a harmonic progression, and the differences Aa — D*/

and Dd — Ff will be equal; and therefore the areas thlx and xlnz which are

proportional to these differences will be equal to each other, and the densi-

ties S/, Sx, and S# (that is, AH, DL, and FN) will be continually propor-

tional. Q.E.D.

COROLLARY. Hence, if any two densities of a fluid are given, say AH

and BI, the area thiu corresponding to their difference tu will be given; and

accordingly the density FN at any height SF will be found by taking the

the pressures. Therefore, since the densities are as the sums of these pressures,
t h e  p r e s s u r e s .  T h e r e f o r e ,  s i n c e  t h e  d e n s i t i e s  a r e  a s  t h e  s u m s  o f  t h e s e  p r e s s u r e s ,

t h e  p r e s s u r e s .  T h e r e f o r e ,  s i n c e  t h e  d e n s i t i e s  a r e  a s  t h e  s u m s  o f  t h e s e  p r e s s u r e s ,

AH x th . BI x m' .
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area thnz to be to that given area thiu as the difference Aa — Ff is to the

difference Aa — Bb.

Scholium Similarly, it can be proved that if the gravity of the particles of a fluid is

decreased as the cubes of the distances from the center, and if the reciprocals
/ SA3 SA3 SA3\

of the squares of the distances SA, SB, SC, ... I namely, , , I

are taken in an arithmetic progression, then the densities AH, BI, CK, ...

will be in a geometric progression. And if the gravity is decreased as the

fourth power of the distances, and if the reciprocals of the cubes of the

distances I say, -, —-, -, . .. I are taken in an arithmetic progression,
y SA or) oC J

the densities AH, BI, CK, ... will be in a geometric progression. And so on

indefinitely. Again, if the gravity of the particles of a fluid is the same at all

distances, and if the distances are in an arithmetic progression, the densities

will be in a geometric progression, as the distinguished gentleman Edmond

Halley has found. If the gravity is as the distance, and if the squares of the

distances are in an arithmetic progression, the densities will be in a geometric

progression. And so on indefinitely.

These things are so when the density of a fluid condensed by compres-

sion is as the force of the compression or, which is the same, when the

space occupied by the fluid is inversely as this force. Other laws of conden-

sation can be imagined, as, for example, that the cube of the compressing

force is as the fourth power of the density, or that the force ratio cubed is

the same as the density ratio to the fourth power. In this case, if the grav-

ity is inversely as the square of the distance from the center, the density

will be inversely as the cube of the distance. Imagine that the cube of the

compressing force is as the fifth power of the density; then, if the grav-

ity is inversely as the square of the distance, the density will be inversely

as the 3/2 power of the distance. Imagine that the compressing force is as

the square of the density, and that the gravity is inversely as the square

of the distance; then the density will be inversely as the distance. It would

be tedious to cover all cases. But it is established by experiments that the

density of air is either exactly or at least very nearly as the compressing

force; and therefore the density of the air in the earth's atmosphere is as the

weight of the whole incumbent air, that is, as the height of the mercury in a

barometer.

of the squares of the distances SA, SB, SC, ... I namely, , , I

of the squares of the distances SA, SB, SC, ... I namely, , , I
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* If the density of a fluid composed of particles that are repelled from one another Proposition 23

is as the compression, the centrifugal forces [or forces of repulsion] of the particles Theorem 18

are inversely proportional to the distances between their centers. And conversely,

particles that are repelled from one another by forces that are inversely proportional

to the distances between their centers constitute an elastic fluid whose density is

proportional to the compression*

Suppose a fluid to be enclosed in the cubic space ACE, and then by

compression to be reduced into the smaller cubic space ace\ then the distances

between particles maintaining similar

positions with respect to one another in

the two spaces will be as the edges AB

and ab of the cubes; and the densities

of the mediums will be inversely as the

containing spaces AB3 and a t f . On the

plane side ABCD of the larger cube take the square DP equal to the plane

side of the smaller cube db\ then (by hypothesis) the pressure by which the

square DP urges the enclosed fluid will be to the pressure by which the

square db urges the enclosed fluid as the densities of the medium to each

other, that is, as atf to AB3. But the pressure by which the square DB urges

the enclosed fluid is to the pressure by which the square DP urges that same

fluid as the square DB to the square DP, that is, as AB2 to ab2. Therefore,

from the equality of the ratios [or ex aequo] the pressure by which the square

DB urges the fluid is to the pressure by which the square db urges the fluid

as ab to AB. Divide the fluid into two parts by planes FGH and fgh drawn

through the middles of the cubes; then these parts will press each other with

the same forces with which they are pressed by planes AC and ac, that is,

in the proportion of ab to AB; and thus the centrifugal forces [or forces

of repulsion] by which these pressures are sustained are in the same ratio.

Because in both cubes the number of particles is the same and their situation

similar, the forces that all the particles along planes FGH and fgh exert

upon all the others are as the forces that each individual particle exerts upon

every other particle. Therefore the forces that each particle exerts upon every

other particle along the plane FGH in the larger cube are to the forces that

individual particles exert on the particle next to them along the plane fgh in

aa. In ed. 1 the order of the two sentences is reversed.
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the smaller cube as ab to AB, that is, inversely as the distances between the

particles are to one another. Q.E.D.

And conversely, if the forces of the individual particles are inversely as

the distances, that is, inversely as the edges AB and ab of the cubes, the sums

of the forces will be in the same ratio, and the pressures of the sides DB

and db will be as the sums of the forces; and the pressure of the square DP

will be to the pressure of the side DB as ab1 to AB2. And from the equality

of the ratios [or ex aequo] the pressure of the square DP will be to the

pressure of the side db as ab3 to AB3; that is, the one force of compression

will be to the other force of compression as the one density to the other

density. Q.E.D.

Scholium By a similar argument, if the centrifugal forces [or forces of repulsion] of the

particles are inversely as the squares of the distances between the centers, the

cubes of the compressing forces will be as the fourth powers of the densities.

If the centrifugal forces are inversely as the third or fourth powers of the

distances, the cubes of the compressing forces will be as the fifth or sixth

powers of the densities. And universally, if D is the distance, and E the

density of the compressed fluid, and if the centrifugal forces are inversely

as any power of the distance D", whose index is the number n, then the

compressing forces will be as the cube roots of the powers E"~*~2, whose index

is the number n + 2; and conversely. In all of this, it is supposed that the

centrifugal forces of particles are terminated in the particles which are next

to them or do not extend far beyond them. We have an example of this in

magnetic bodies. Their attractive virtue [or power] is almost terminated in

bodies of their own kind which are next to them. The virtue of a magnet

is lessened by an interposed plate of iron and is almost terminated in the

plate. For bodies farther away are drawn not so much by the magnet as

by the plate. In the same way, if particles repel other particles of their own

kind that are next to them but do not exert any virtue upon more remote

particles,b particles of this sort are the ones of which the fluids treated in this

proposition will be composed. But if the virtue of each particle is propagated

indefinitely, a greater force will be necessary for the equal condensation of a

b. Ed. 1 has in addition: "except perhaps through the increase of the intermediate particles by that

virtue."

344 BOOK 2, SECTION 5
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greater quantity of the fluid.0 Whether elastic fluids consist of particles that

repel one another is, however, a question for physics. We have mathematically

demonstrated a property of fluids consisting of particles of this sort so as

to provide natural philosophers with the means with which to treat that

question.

c. Ed. 1 has in addition: "For example, if each particle by its own force, which is inversely as the

distance of places from its center, repels all other particles indefinitely, the forces by which the fluid can be

equally compressed and condensed in similar vessels will be as the squares of the diameters of the vessels,

and thus the force by which the fluid is compressed in the same vessel will be inversely as the cube root

of the fifth power of the density."
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SECTION 6

Concerning the motion of ^simple pendulums* and the resistance to them

Proposition 24 In simple pendulums whose centers of oscillation are equally distant from the

Theorem 19 center of suspension, the quantities of matter are in a ratio compounded of the

ratio .of the weights and the squared ratio of the times of oscillation in a vacuum.

For the velocity that a given force can generate in a given time in a given

quantity of matter is as the force and the time directly and the matter in-

versely. The greater the force, or the greater the time, or the less the matter,

the greater the velocity that will be generated. This is manifest from the sec-

ond law of motion. Now if the pendulums are of the same length, the motive

forces in places equally distant from the perpendicular are as the weights; and

thus if two oscillating bodies describe equal arcs and if the arcs are divided

into equal parts, then, since the times in which the bodies describe single

corresponding parts of the arcs are as the times of the whole oscillations, the

velocities in corresponding parts of the oscillations will be to one another

as the motive forces and the whole times of the oscillations directly and the

quantities of matter inversely; and thus the quantities of matter will be as the

forces and the times of the oscillations directly and the velocities inversely.

But the velocities are inversely as the times, and thus the times are directly,

and the velocities are inversely, as the squares of the times, and therefore the

quantities of matter are as the motive forces and the squares of the times,

that is, as the weights and the squares of the times. Q.E.D.

COROLLARY 1. And thus if the times are equal, the quantities of matter

in the bodies will be as their weights.

COROLLARY 2. If the weights are equal, the quantities of matter will be

as the squares of the times.

COROLLARY 3. If the quantities of matter are equal, the weights will be

inversely as the squares of the times.

COROLLARY 4. Hence, since the squares of the times, other things being

equal, are as the lengths of the pendulums, the weights will be as the lengths

of the pendulums if both the times and the quantities of matter are equal.

aa. Newton uses the term "corpora funependula," literally "bodies hanging by a thread [or string],"

which we have translated as "simple pendulums"; see the Guide, §7.5.
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COROLLARY 5. And universally, the quantity of matter in a bob of a

simple pendulum is as the weight and the square of the time directly and

the length of the pendulum inversely.

COROLLARY 6. But in a nonresisting medium also, the quantity of matter

in the bob of a simple pendulum is as the relative weight and the square of

the time directly and the length of the pendulum inversely. For the relative

weight is the motive force of a body in any heavy medium, as I have explained

above, and thus fulfills the same function in such a nonresisting medium as

absolute weight does in a vacuum.

COROLLARY 7. And hence a method is apparent both for comparing

bodies with one another with respect to the quantity of matter in each, and

for comparing the weights of one and the same body in different places in

order to find out the variation in its gravity. And by making experiments

of the greatest possible accuracy, I have always found that the quantity of

matter in individual bodies is proportional to the weight.

The bobs of simple pendulums that are resisted in any medium in the ratio of Proposition 25

the moments of time, and those that move in a nonresisting medium of the same Theorem 20

specific gravity, perform oscillations in a cycloid in the same time and describe

proportional parts of arcs in the same time.

Let AB be the arc of a cycloid, which body D describes by oscillating

in a nonresisting medium in any time. Bisect the arc AB in C so that C

is its lowest point; then the accelerative force by which the body is urged

in any place D or d or E will be as the length of arc CD or Cd or CE.

Represent that force by the appropriate arc [CD or Cd or CE], and since

347
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the resistance is as the moment of time, and thus is given, represent it by a

given part CO of the arc of the cycloid, taking arc Od in the ratio to arc

CD that arc OB has to arc CB; then the force by which the body at d is

urged in the resisting medium (since it is the excess of the force Cd over the

resistance CO) will be represented by arc O*/, and thus will be to the force

by which body D is urged in a nonresisting medium in place D as arc Od to

arc CD, and therefore also in place B as arc OB to arc CB. Accordingly, if

two bodies D and d leave place B and are urged by these forces, then, since

the forces at the beginning are as arcs CB and OB, the first velocities and the

arcs first described will be in the same ratio. Let those arcs be DO and Ed;

then the remaining arcs CD and Od will be in the same ratio. Accordingly

the forces, being proportional to CD and Od, will remain in the same ratio

as at the beginning, and therefore the bodies will proceed simultaneously to

describe arcs in the same ratio. Therefore the forces and the velocities and

the remaining arcs CD and Od will always be as the whole arcs CB and

OB, and therefore those remaining arcs will be described simultaneously.

Therefore the two bodies D and d will arrive simultaneously at places C

and O, the one in the nonresisting medium at place C, and the one in the

resisting medium at place O. And since the velocities in C and O are as arcs

CB and OB, the arcs that the bodies describe in the same time by going on

further will be in the same ratio. Let those arcs be CE and Oe. The force by

which body D in the nonresisting medium is retarded in E is as CE, and the

force by which body d in the resisting medium is retarded in e is as the sum

of the force Ce and the resistance CO, that is, as O^; and thus the forces by

which the bodies are retarded are as arcs CB and OB, which are proportional

to arcs CE and Oe; and accordingly the velocities, which are retarded in that
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given ratio, remain in that same given ratio. The velocities, therefore, and

the arcs described with those velocities are always to one another in the given

ratio of arcs CB and OB; and therefore, if the whole arcs AB and aE are

taken in the same ratio, bodies D and d will describe these arcs together and

will simultaneously lose all motion in places A and a. The whole oscillations

are therefore isochronal, and any parts of the arcs, BD and Ed or BE and

Ee, that are described in the same time are proportional to the whole arcs

BA and Ea. Q.E.D.

COROLLARY. Therefore the swiftest motion in the resisting medium does

not occur at the lowest point C, but is found in that point O by which aE, the

whole arc described, is bisected. And the body, proceeding from that point

to a, is retarded at the same rate by which it was previously accelerated in

its descent from B to O.

If simple pendulums are resisted in the ratio of the velocities, their oscillations in Proposition 26

a cycloid are isochronal. Theorem 21

For if two oscillating bodies equally distant from the centers of suspension

describe unequal arcs and if the velocities in corresponding parts of the arcs

are to one another as the whole arcs, then the resistances, being proportional

to the velocities, will also be to one another as the same arcs. Accordingly, if

these resistances are taken away from (or added to) the motive forces arising

from gravity, which are as the same arcs, the differences (or sums) will be

to one another in the same ratio of the arcs; and since the increments or

decrements of the velocities are as these differences or sums, the velocities

will always be as the whole arcs. Therefore, if in some one case the velocities

are as the whole arcs, they will always remain in that ratio. But in the

beginning of the motion, when the bodies begin to descend and to describe

those arcs, the forces—since they are proportional to the arcs—will generate

velocities proportional to the arcs. Therefore the velocities will always be as

the whole arcs to be described, and therefore those arcs will be described in

the same time. Q.E.D.

If simple pendulums are resisted as the squares of the velocities, the differences Proposition 27

between the times of the oscillations in a resisting medium and the times of the Theorem 22

oscillations in a nonresisting medium of the same specific gravity will be very

nearly proportional to the arcs described during the oscillations.
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For let the unequal arcs A and B be described by equal pendulums in

a resisting medium; then the resistance to the body in arc A will be to the

resistance to the body in the corresponding part of arc B very nearly in the

squared ratio of the velocities, that is, as A2 to B2. If the resistance in arc

B were to the resistance in arc A as AB to A2, the times in arcs A and B

would be equal, by the previous proposition. And thus the resistance A2 in

arc A, or AB in arc B, produces an excess of time in arc A over the time

in a nonresisting medium; and the resistance B2 produces an excess of time

in arc B over the time in a nonresisting medium. And those excesses are

very nearly as the forces AB and B2 that produce them, that is, as arcs A

and B. Q.E.D.

COROLLARY 1. Hence from the times of the oscillations made in a resist-

ing medium in unequal arcs, the times of the oscillations in a nonresisting

medium of the same specific gravity can be found. For the difference be-

tween these times will be to the excess of the time in the smaller arc over

the time in the nonresisting medium as the difference between the arcs is to

the smaller arc.

COROLLARY 2. Shorter oscillations are more isochronal, and the shortest

are performed in very nearly the same times as in a nonresisting medium.

In fact, the times of those that are made in greater arcs are a little greater,

because the resistance in the descent of the body (by which the time is pro-

longed) is greater in proportion to the length described in the descent than

the resistance in the subsequent ascent (by which the time is shortened). But

also the time of short as well as long oscillations seems to be somewhat pro-

longed by the motion of the medium. For retarded bodies are resisted a little

less in proportion to the velocity, and accelerated bodies a little more, than

those that progress uniformly; and this is so because the medium, going in

the same direction as the bodies with the motion that it has received from

them, is in the first case more agitated, in the second less, and accordingly

concurs to a greater or to a less degree with the moving bodies. The medium

therefore resists the pendulums more in the descent, and less in the ascent,

than in proportion to the velocity, and the time is prolonged as a result of

both causes.

Proposition 28 If a simple pendulum oscillating in a cycloid is resisted in the ratio of the moments

Theorem 23 of time, its resistance will be to the force of gravity as the excess of the arc described

35° BOOK 2, SECTION 6
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in the whole descent over the arc described in the subsequent ascent is to twice

the length of the pendulum.

Let BC designate the arc described in the descent, Ca the arc described

in the ascent, and Aa the difference between the arcs; then, with the same

constructions and proofs as in prop. 25, the force by which the oscillating

body is urged in any place D will be to the force of resistance as arc CD to

arc CO, which is half of that difference Aa. And thus the force by which the

oscillating body is urged in the beginning (or highest point) of the cycloid—

that is, the force of gravity—will be to the resistance as the arc of the cycloid

between that highest point and the lowest point C is to arc CO, that is (if

the arcs are doubled), as the arc of the whole cycloid, or twice the length of

the pendulum, is to arc Aa. Q.E.D.

Supposing that a body oscillating in a cycloid is resisted as the square of the Proposition 29

velocity, it is required to find the resistance in each of the individual places. Problem 6

Let Ea be the arc described in an entire oscillation, and let C be the

lowest point of the cycloid, and let CZ be half of the arc of the whole cycloid

and be equal to the length of the pendulum; and let it be required to find the

resistance to the body in any place D. Cut the indefinite straight line OQ in

points O, S, P, and Q, with the conditions that—if perpendiculars OK, ST,

PI, and QE are erected; and if, with center O and asymptotes OK and OQ,

hyperbola TIGE is described so as to cut perpendiculars ST, PI, and QE

in T, I, and E; and if, through point I, KF is drawn parallel to asymptote

OQ and meeting asymptote OK in K and perpendiculars ST and QE in L

and F—the hyperbolic area PIEQ is to the hyperbolic area PITS as the arc

BC described during the body's descent is to the arc Ca described during the
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ascent, and area IEF is to area ILT as OQ to OS. Then let perpendicular

MN cut off the hyperbolic area PINM, which is to the hyperbolic area PIEQ

as arc CZ is to the arc BC described in the descent. And if perpendicular

RG cuts off the hyperbolic area PIGR, which is to area PIEQ as any arc

CD is to the arc BC described in the whole descent, then the resistance in
OR

place D will be to the force of gravity as the area IEF — IGH to the
^ 5 y OQ
area PINM.

For, since the forces which arise from gravity and by which the body is

urged in places Z, B, D, and a are as arcs CZ, CB, CD, and Ca, and those arcs

are as areas PINM, PIEQ, PIGR, and PITS, let the arcs and the forces be

represented by these areas respectively. In addition, let Dd be the minimally

small space described by the body while descending, and represent it by the

minimally small area RGgr comprehended between the parallels RG and rg\

and produce rg to h, so that GHhg and RGgr are decrements of areas IGH

and PIGR made in the same time. And the increment GHhg IEF,

or Rr x HG -IEF, of area IEF - IGH will be to the decrement
OQ OQ

IEF
RGgr, or Rr x RG, of area PIGR as HG is to RG, and thus as

OR
OR x HG IEF is to OR x GR or OP x PI, that is (because OR x HG,

or OR x HR - OR x GR, ORHK - OPIK, PIHR, and PIGR + IGH
OR

are equal), as PIGR + IGH IEF is to OPIK. Therefore, if area

OR
IEF - IGH is called Y, and if the decrement RGgr of area PIGR is

OQ *
given, then the increment of area Y will be as PIGR — Y.

are equal), as PIGR + IGH IEF is to OPIK. Therefore, if area
are equal), as PIGR + IGH IEF is to OPIK. Therefore, if area

OR x HG IEF is to OR x GR or OP x PI, that is (because OR x HG,

RGgr, or Rr x RG, of area PIGR as HG is to RG, and thus as

RGgr, or Rr x RG, of area PIGR as HG is to RG, and thus as RGgr, or Rr x RG, of area PIGR as HG is to RG, and thus as and PIGR made in the same time. And the increment GHhg IEF,

and PIGR made in the same time. And the increment GHhg IEF,
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But if V designates the force arising from gravity, by which the body is

urged in D and which is proportional to the arc CD to be described, and if

R represents the resistance, then V — R will be the whole force by which the

body is urged in D. The increment of the velocity is therefore jointly as V — R

and that particle of time in which the increment is made. But furthermore the

velocity itself is directly as the increment of the space described in the same

time and inversely as that same particle of time. Hence, since the resistance,

by hypothesis, is as the square of the velocity, the increment of the resistance

(by lem. 2) will be as the velocity and the increment of the velocity jointly,

that is, as the moment of the space and V — R jointly; and thus, if the moment

of the space is given, as V — R; that is, as PIGR — Z, if for the force V there

is written PIGR (which represents it), and if the resistance R is represented

by some other area Z.

Therefore, as area PIGR decreases uniformly by the subtraction of the

given moments, area Y increases in the ratio of PIGR — Y, and area Z

increases in the ratio of PIGR — Z. And therefore, if areas Y and Z begin

simultaneously and are equal at the beginning, they will continue to be equal

by the addition of equal moments and, thereafter decreasing by moments that

are likewise equal, will vanish simultaneously. And conversely, if they begin

simultaneously and vanish simultaneously, they will have equal moments and

will always be equal; and this is so because, if the resistance Z is increased,

the velocity will be decreased along with that arc Ca which is described in

the body's ascent, and as the point in which there is a cessation of all motion

and resistance approaches closer to point C, the resistance will vanish more

quickly than area Y. And the contrary will happen when the resistance is

decreased.

Now area Z begins and ends where the resistance is nil, that is, in the

beginning of the motion where arc CD is equal to arc CB and the straight

line RG falls upon the straight line QE, and in the end of the motion where

arc CD is equal to arc Ca and RG falls upon the straight line ST. And area
OR

Y or IEF — IGH begins and ends where the resistance is nil, and thus

OR
where ——IEF and IGH are equal; that is (by construction), where the

straight line RG falls successively upon the straight lines QE and ST. And

accordingly those areas begin simultaneously and vanish simultaneously and

Y  o r  I E F  —  I G H  b e g i n s  a n d  e n d s  w h e r e  t h e  r e s i s t a n c e  i s  n i l ,  a n d  t h u s

Y  o r  I E F  —  I G H  b e g i n s  a n d  e n d s  w h e r e  t h e  r e s i s t a n c e  i s  n i l ,  a n d  t h u s
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OR
therefore are always equal. Therefore area IEF — IGH is equal to area

Z (which represents the resistance) and therefore is to area PINM (which

represents the gravity) as the resistance is to the gravity. Q.E.D.

COROLLARY 1. The resistance in the lowest place C is, therefore, to the
OP

force of gravity as area IEF is to area PINM.

COROLLARY 2. And this resistance becomes greatest when area PIHR is

to area IEF as OR is to OQ. For in that case its moment (namely, PIGR —Y)

comes out nil.

COROLLARY 3. Hence also the velocity in each of the individual places

can be known, inasmuch as it is as the square root of the resistance, and at the

very beginning of the motion is equal to the velocity of the body oscillating

without any resistance in the same cycloid.

But because the computation by which the resistance and velocity are to

be found by this proposition is difficult, it seemed appropriate to add the

following proposition.3

Proposition 30 If the straight line <zB is equal to a cycloidal arc that is described by an oscillating

Theorem 24 body, and if at each of its individual points D perpendiculars DK are erected

that are to the length of the pendulum as the resistance encountered by the body

in corresponding points of the arc is to the force of gravity, then I say that the

difference between the arc described in the whole descent and the arc described in

the whole subsequent ascent multiplied by half the sum of those same arcs will be

equal to the area EKa occupied by all the perpendiculars DK.

a. Ed. 1 and ed. 2 have in addition: "which is both more general and more than exact enough for

use in natural philosophy."

force of gravity as area IEF is to area PINM.

therefore are always equal. Therefore area IEF — IGH is equal to area
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Represent the cycloidal arc described in an entire oscillation by the

straight line aB equal to it, and represent the arc that would be described

in a vacuum by the length AB. Bisect AB in C, and point C will represent

the lowest point of the cycloid, and CD will be as the force arising from

gravity (by which the body at D is urged along the tangent of the cycloid)

and will have the ratio to the length of the pendulum that the force at D

has to the force of gravity. Therefore represent that force by the length CD,

and the force of gravity by the length of the pendulum; then, if DK is taken

in DE in the ratio to the length of the pendulum that the resistance has to

the gravity, DK will represent the resistance. With center C and radius CA

or CB construct semicircle BE^A. And let the body describe space DJ in

a minimally small time; then, when perpendiculars DE and de have been

erected, meeting the circumference in E and <?, they will be as the velocities

that the body in a vacuum would acquire in places D and d by descending

from point B. This is evident by book 1, prop. 52. Therefore represent these

velocities by perpendiculars DE and de, and let DF be the velocity that

the body acquires in D by falling from B in the resisting medium. And if

with center C and radius CF circle F/M is described, meeting the straight

lines de and AB in f and M, then M will be the place to which the body

would then ascend if there were no further resistance, and df will be the

velocity that it would acquire in d. Hence also, if Fg designates the moment

of velocity that body D, in describing the minimally small space Dd, loses

as a result of the resistance of the medium, and if CN is taken equal to

Cg, then N will be the place to which the body would then ascend if there

were no further resistance, and MN will be the decrement of the ascent

arising from the loss of that velocity. Drop perpendicular Fm to df, and

the decrement Fg (generated by the resistance DK) of the velocity DF will

be to the increment fm (generated by the force CD) of that same velocity
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as the generating force DK is to the generating force CD. Furthermore,

because triangles Fra/, Fhg, and FDC are similar, fm is to Fw or Dd

as CD is to DF and from the equality of the ratios [or ex aequo] Fg is

to Dd as DK is to DF. aLikewise Fh is to Fg as DF to CF, and from

the equality of the ratios in inordinate proportion [or ex aequo perturbate]

Fh or MN is to Dd as DK to CF or CM; and thus the sum of all the

MN x CM will be equal to the sum of all the Dd x DK. Suppose that a

rectangular ordinate is always erected at the moving point M, equal to the

indeterminate CM, which in its continual motion is multiplied by the whole

length Aa; then the quadrilateral described as a result of that motion—or

the rectangle equal to it, Aa x ViaE—will become equal to the sum of all

the MN x CM, and thus equal to the sum of all the Dd X DK, that is,

equal to area BKVT0. Q.E.D.3

COROLLARY. Hence from the law of the resistance and the difference

Aa of arcs Ca and CB, the proportion of the resistance to the gravity can be

determined very nearly.

For if the resistance DK is uniform, the figure BKTfl will be equal

to the rectangle of Ea and DK; and hence the rectangle of ViEa and Aa

will be equal to the rectangle of Ea and DK, and DK will be equal to

1/2 Aa. Therefore, since DK represents the resistance, and the length of the

pendulum represents the gravity, the resistance will be to the gravity as ViAa

is to the length of the pendulum, exactly as was proved in prop. 28.

aa. Ed. 1 has: "Likewise Fg is to Fh as CF to DF, and from the equality of the ratios in inordinate

proportion [or ex aequo perturbate] F/i or MN is to Dd as DK to CF. Take DR to ViaB as DK to CF,

and MN will be to Dd as DR to ViaB, and thus the sum of all the MN X ViaE, that is, Aa x ViaB,

will be equal to the sum of all the Dd x DR, that is, to area BRrSa, which all the rectangles Dd x DR

or DRrd compose. Bisect Aa and aft in P and O, and ViaB or OB will be equal to CP, and thus DR

is to DK as CP to CF or CM, and by separation [or dividendo] KR will be to DR as PM to CP. And

thus, since point M, when the body is in the midpoint O of the oscillation, falls approximately on point

P and in the earlier part of the oscillation is between A and P and in the later part is between P and a,

in both cases deviating equally from point P in opposite directions, it follows that point K, at about the

midpoint of the oscillation, that is, over against point O, say in point V, will fall on point R and in the

earlier part of the oscillation will lie between R and E and in the later part between R and D, in both

cases deviating equally from point R in opposite directions. Accordingly, the area which line KR describes

will in the earlier part of the oscillation lie outside area BRSa and in the later part within it and will do

so within ranges nearly equal to each other on each of the two sides and therefore, when added to area

BRSa in the first case and subtracted from it in the second, will result in area EKTa very nearly equal

to area BRStf. Therefore the rectangle Aa x 1/20B, or AaO, will, since it is equal to area BRS0, also be

very nearly equal to area BKTa. Q.E.D."
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If the resistance is as the velocity, the figure BKTz will be very nearly

an ellipse. For if a body in a nonresisting medium were to describe the

length BA in a whole oscillation, the velocity in any place D would be as the

ordinate DE of a circle described with diameter AB. Accordingly, since Ba

in the resisting medium, and BA in a nonresisting medium, are described

in roughly equal times, and the velocities in the individual points of Ba are

thus very nearly to the velocities in the corresponding points of the length

BA as Ba is to BA, the velocity in point D in the resisting medium will be as

the ordinate of a circle or ellipse described upon diameter Ba; and thus the

figure BKVTfl will be very nearly an ellipse. Since the resistance is supposed

proportional to the velocity, let OV represent the resistance in the midpoint

O; then ellipse BRVSfl, described with center O and semiaxes OB and OV,

will be very nearly equal to the figure BKVTfl and the rectangle equal to

it, Aa x BO. Aa x BO is therefore to OV x BO as the area of this ellipse

is to OV x BO; that is, Aa is to OV as the area of the semicircle is to the

square of the radius, or as 11 to 7, roughly; and therefore 7/\\Aa is to the

length of the pendulum as the resistance of the oscillating body in O is to its

gravity.

But if the resistance DK is as the square of the velocity, the figure

BKVTtf will be almost a parabola having vertex V and axis OV, and thus

will be very nearly equal to the rectangle contained by 2ABa and OV. The

rectangle contained by ViBa and Aa is therefore equal to the rectangle con-

tained by 2ABa and OV, and thus OV is equal to 3AAa; and therefore the

resistance on the oscillating body in O is to its gravity as 3AAa is to the

length of the pendulum.

And I judge that these conclusions are more than accurate enough for

practical purposes. For, since the ellipse or parabola BRVS0 and the figure

BKVTtf have the same midpoint V, if it is greater than that figure on either

side BRV or VS<z, it will be smaller than it on the other side, and thus will

be very nearly equal to it.

If the resistance encountered by an oscillating body in each of the proportional Proposition 31

parts of the arcs described is increased or decreased in a given ratio, the difference Theorem 25

between the arc described in the descent and the arc described in the subsequent

ascent will be increased or decreased in the same ratio.
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For that difference arises from the retardation of the pendulum by the

resistance of the medium, and thus is as the whole retardation and the re-

tarding resistance, which is proportional to it. In the previous proposition the

rectangle contained under the straight line ViaE and the difference Aa of arcs

CB and Ca was equal to area BKT<z. And that area, if the length aE remains

the same, is increased or decreased in the ratio of the ordinates DK, that is,

in the ratio of the resistance, and thus is as the length aE and the resistance

jointly. And accordingly the rectangle contained by Aa and l/2aE is as aE

and the resistance jointly, and therefore Aa is as the resistance. Q.E.D.

COROLLARY 1. Hence, if the resistance is as the velocity, the difference

of the arcs in the same medium will be as the whole arc described; and

conversely.

COROLLARY 2. If the resistance is in the squared ratio of the velocity,

that difference will be in the squared ratio of the whole arc; and conversely.

COROLLARY 3. And universally, if the resistance is in the cubed or any

other ratio of the velocity, the difference will be in the same ratio of the

whole arc; and conversely.

COROLLARY 4. And if the resistance is partly in the simple ratio of the

velocity and partly in the squared ratio of the velocity, the difference will be

partly in the simple ratio of the whole arc and partly in the squared ratio

of it; and conversely. The law and ratio of the resistance in relation to the

velocity will be the same as the law and ratio of that difference of the arcs

in relation to the length of the arc itself.

COROLLARY 5. And thus if a pendulum successively describes unequal

arcs and there can be found the ratio of the increment and decrement of

this difference [i.e., the difference of the arcs] in relation to the length of

the arc described, then there will also be had the ratio of the increment and

decrement of the resistance in relation to a greater or smaller velocity.
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From these propositions it is possible to find the resistance of any mediums by General

means of pendulums oscillating in those mediums. In fact, I have investigated Scholium3

the resistance of air by the following experiments. I suspended a wooden ball

by a fine thread from a sufficiently firm hook in such a way that the distance

between the hook and the center of oscillation of the ball was lOVz feet; the

ball weighed 577/22 ounces avoirdupois and had a diameter of 67/s London

inches. I marked a point on the thread 10 feet and 1 inch distant from

the center of suspension; and at a right angle at that point I placed a ruler

divided into inches, by means of which I might note the lengths of the arcs

described by the pendulum. Then I counted the oscillations during which the

ball would lose an eighth of its motion. When the pendulum was drawn back

from the perpendicular to a distance of 2 inches and was let go from there,

so as to describe an arc of 2 inches in its whole descent and to describe an

arc of about 4 inches in the first whole oscillation (composed of the descent

and subsequent ascent), it then lost an eighth of its motion in 164 oscillations,

so as to describe an arc of 1% inches in its final ascent. When it described

an arc of 4 inches in its first descent, it lost an eighth of its motion in 121

oscillations, so as to describe an arc of 3!/2 inches in its final ascent. When it

described an arc of 8, 16, 32, or 64 inches in its first descent, it lost an eighth

of its motion in 69, 351/2, ISV^, and 92/3 oscillations respectively. Therefore the

difference between the arcs described in the first descent and the final ascent,

in the first, second, third, fourth, fifth, and sixth cases, was !/4, 1/2, 1, 2, 4, and

8 inches respectively. Divide these differences by the number of oscillations in

each case, and in one mean oscillation—in which an arc of 33/4, 71/2, 15, 30,

60, and 120 inches was described—the difference between the arcs described

in the descent and subsequent ascent will be 1/656, 1/242, 1/69, 4/7i, 8/37, and 24/29

parts of an inch respectively. In the greater oscillations, moreover, these are

very nearly in the squared ratio of the arcs described, while in the smaller

oscillations they are a little greater than in that ratio; and therefore (by book

2, prop. 31, corol. 2) the resistance of the ball when it moves more swiftly

is very nearly in the squared ratio of the velocity; when more slowly, a little

greater than in that ratio.

a. In ed. 1 the general scholium appears at the end of book 2, sec. 7, with some variations, primarily
in the numerical values.
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Now let V designate the greatest velocity in any oscillation, and let A,

B, and C be given quantities, and let us imagine the difference between the

arcs to be AV + BV /2 +CV2. In a cycloid the greatest velocities are as halves

of the arcs described in oscillating, but in a circle they are as the chords of

halves of these arcs, and thus with equal arcs are greater in a cycloid than

in a circle in the ratio of halves of the arcs to their chords, while the times

in a circle are greater than in a cycloid in the inverse ratio of the velocity.

Hence it is evident that the differences between the arcs (differences which

are as the resistance and the square of the time jointly) would be very nearly

the same in both curves. For those differences in the cycloid would have to

be increased along with the resistance in roughly the squared ratio of the

arc to the chord (because the velocity is increased in the simple ratio of the

arc to the chord) and would have to be decreased along with the square

of the time in that same squared ratio. Therefore, in order to reduce all

of this to the cycloid, take the same differences between the arcs that were

observed in the circle, while supposing the greatest velocities to correspond

to the arcs, whether halved or entire, that is, to the numbers ]/2, 1, 2, 4,

8, and 16. In the second, fourth, and sixth cases, therefore, let us write the

numbers 1, 4, and 16 for V; and the difference between the arcs will come

1/2 2
out = A + B + C in the second case; = 4A + 8B + 16C in the fourth

121 35l/i
8

case; and = 16A + 64B + 256C in the sixth case. And by the proper9%

analytic reduction of these equations taken together, A becomes = 0.0000916,

B = 0.0010847, and C = 0.0029558. The difference between the arcs is

therefore as 0.0000916V+ 0.0010847V3/2 +0.0029558V2; and therefore—since

(by prop. 30, corol., applied to this case) the resistance of the ball in the middle

of the arc described by oscillating, where the velocity is V, is to its weight as
7/nAV + 7/ioBV3/2 + 3/

found are written for A, B, and C, the resistance of the ball will become to

its weight as 0.0000583V + 0.0007593V3/2 + 0.0022169V2 is to the length of

the pendulum between the center of suspension and the ruler, that is, to 121

inches. Hence, since V in the second case has the value 1, in the fourth 4,

and in the sixth 16, the resistance will be to the weight of the ball in the

second case as 0.0030345 to 121, in the fourth as 0.041748 to 121, and in the

sixth as 0.61705 to 121.
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The arc which in the sixth case was described by the point marked on the
o

thread was 120 or 1195/29 inches. And therefore, since the radius was
9%

121 inches, and the length of the pendulum between the point of suspension

and the center of the ball was 126 inches, the arc that the center of the ball

described was 1243/3i inches. Since, because of the resistance of the air, the

greatest velocity of an oscillating body does not occur at the lowest point

of the arc described but is located near the midpoint of the whole arc, that

velocity will be roughly the same as if the ball in its whole descent in a

nonresisting medium described half that arc (623/62 inches) and did so in

a cycloid, to which we have above reduced the motion of the pendulum;

and therefore that velocity will be equal to the velocity which the ball could

acquire by falling perpendicularly and describing in its fall a space equal to

the versed sine of that arc. But that versed sine in the cycloid is to that arc

(623/62) as that same arc is to twice the length of the pendulum (252) and

thus is equal to 15.278 inches. Therefore the velocity is the very velocity that

the body could acquire by falling and describing in its fall a space of 15.278

inches. With such a velocity, then, the ball encounters a resistance that is to its

weight as 0.61705 to 121, or (if only that part of the resistance is considered

which is in the squared ratio of the velocity) as 0.56752 to 121.

By a hydrostatic experiment, I found that the weight of this wooden ball

was to the weight of a globe of water of the same size as 55 to 97; and

therefore, since 121 is to 213.4 in the same ratio as 55 to 97, the resistance

of a globe of water moving forward with the above velocity will be to its

weight as 0.56752 to 213.4, that is, as 1 to 3761/5o. The weight of the globe of

water, in the time during which the globe describes a length of 30.556 inches

with a uniformly continued velocity, could generate all that velocity in the

globe if it were falling; hence it is manifest that in the same time the force

of resistance uniformly continued could take away a velocity smaller in the

ratio of 1 to 376 Vso, that is, of the whole velocity. And therefore in
3761/5o

the same time in which the globe, with that velocity uniformly continued,

could describe the length of its own semidiameter, or 37/i6 inches, it would

lose 1/3,342 of its motion.

I also counted the oscillations in which the pendulum lost a fourth of its

motion. In the following table the top numbers denote the length of the arc

1
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described in the first descent, expressed in inches and parts of an inch; the

middle numbers signify the length of the arc described in the final ascent;

and at the bottom stand the numbers of oscillations. I have described this

experiment because it is more accurate than when only an eighth of the

motion was lost. Let anyone who wishes test the computation.

First descent
Final ascent
Number of oscillations

2
\V2

374

4
3

272

8
6

162V2

16
12

83 1/3

32
24

41 2/3

64
48

222/3

Later, using the same thread, I suspended a lead ball with a diameter of

2 inches and a weight of 261A ounces avoirdupois, in such a way that the

distance between the center of the ball and the point of suspension was 101/2

feet, and I counted the oscillations in which a given part of the motion was

lost. The first of the following tables shows the number of oscillations in

which an eighth of the whole motion was lost; the second shows the number

of oscillations in which a fourth of it was lost.

First descent
Final ascent
Number of oscillations

First descent
Final ascent
Number of oscillations

1
7/8

226

1
3/4

510

2
7/4

228

2

\Vl

518

4
3»/2

193

4
3

420

8
7

140

8
6

318

16
14

901/2

16
12

204

32
28
53

32
24

121

64
56
30

64
48
70

Select the third, fifth, and seventh observations from the first table and

represent the greatest velocities in these particular observations by the num-

bers 1, 4, and 16 respectively, and generally by the quantity V as above; then
l/2

it will be the case that in the third observation = A + B + C, in the fifth

—- = 4A+8B + 16C, in the seventh |- = 16A+64B+256C. The reduction

of these equations gives A = 0.001414, B = 0.000297, C = 0.000879. Hence

the resistance of the ball moving with velocity V comes out to have the ratio

to its own weight (261/4 ounces) that 0.0009V + 0.000208V3/2 + 0.000659V2

has to the pendulum's length (121 inches). And if we consider only that part

of the resistance which is in the squared ratio of the velocity, it will be to the

weight of the ball as 0.000659V2 is to 121 inches. But in the first experiment

this part of the resistance was to the weight of the wooden ball (57%2 ounces)

as 0.002217V2 to 121; and hence the resistance of the wooden ball becomes to

to its own weight (261/4 ounces) that 0.0009V + 0.000208V3/2 + 0.000659V2

to its own weight (261/4 ounces) that 0.0009V + 0.000208V3/2 + 0.000659V2 it will be the case that in the third observation = A + B + C, in the fifth

it will be the case that in the third observation = A + B + C, in the fifth

it will be the case that in the third observation = A + B + C, in the fifth



G E N E R A L S C H O L I U M 3 6 3

the resistance of the lead ball (their velocities being equal) as 577/22 x 0.002217

to 261/4 x 0.000659, that is, as 71A to 1. The diameters of the two balls were

67/8 and 2 inches, and the squares of these are to each other as 47!/4 and 4, or

1113/16 and 1, very nearly. Therefore the resistances of equally swift balls were

in a smaller ratio than the squared ratio of the diameters. But we have not

yet considered the resistance of the thread, which certainly was very great

and ought to be subtracted from the resistance of the pendulum that has

been found. I could not determine this resistance of the thread accurately,

but nevertheless I found it to be greater than a third of the whole resistance

of the smaller pendulum; and I learned from this that the resistances of the

balls, taking away the resistance of the thread, are very nearly in the squared

ratio of the diameters. For the ratio of 71/3 — 1A to 1 — }/3, or 101/2 to 1, is

very close to the squared ratio of the diameters H13/i6 to 1.

Since the resistance of the thread is of less significance in larger balls,

I also tried the experiment in a ball whose diameter was 183/4 inches. The

length of the pendulum between the point of suspension and the center of

oscillation was 1221/2 inches; between the point of suspension and a knot in

the thread, 1091/2 inches. The arc described by the knot in the first descent of

the pendulum was 32 inches. The arc described by that same knot in the final

ascent after five oscillations was 28 inches. The sum of the arcs, or the whole

arc described in a mean oscillation, was 60 inches. The difference between

the arcs was 4 inches. A tenth of it, or the difference between the descent

and the ascent in a mean oscillation, was 2/5 inch. The ratio of the radius

1091/2 to the radius 122!/2 is the same as the ratio of the whole arc of 60

inches described by the knot in a mean oscillation to the whole arc of 67 Vs

inches described by the center of the ball in a mean oscillation, and is equal

to the ratio of the difference 2/5 to the new difference 0.4475. If the length

of the pendulum were to be increased in the ratio of 126 to 1221/2 while

the length of the arc described remained the same, the time of oscillation

would be increased and the velocity of the pendulum would be decreased as

the square root of that ratio, while the difference 0.4475 between the arcs

described in a descent and subsequent ascent would remain the same. Then,

if the arc described were to be increased in the ratio of 1243/3i to 67!/s, that

difference 0.4475 would be increased as the square of that ratio, and thus

would come out 1.5295. These things would be so on the hypothesis that the

resistance of the pendulum was in the squared ratio of the velocity. Therefore,
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if the pendulum were to describe a whole arc of 1243/3i inches, and its length

between the point of suspension and the center of oscillation were 126 inches,

the difference between the arcs described in a descent and subsequent ascent

would be 1.5295 inches. And this difference multiplied by the weight of the

ball of the pendulum, which was 208 ounces, yields the product 318.136.

Again, when the above-mentioned pendulum (made with a wooden ball)

described a whole arc of 1243/3i inches by its center of oscillation (which was

126 inches distant from the point of suspension), the difference between the

arcs described in the descent and ascent was x , which multiplied
121 92/3

by the weight of the ball (which was 57%2 ounces) yields the product 49.396.

And I multiplied these differences by the weights of the balls in order to find

their resistances. For the differences arise from the resistances and are as the

resistances directly and the weights inversely. The resistances are therefore as

the numbers 318.136 and 49.396. But the part of the resistance of the smaller

ball that is in the squared ratio of the velocity was to the whole resistance

as 0.56752 to 0.61675, that is, as 45.453 to 49.396; and the similar part of the

resistance of the larger ball is almost equal to its whole resistance; and thus

those parts are very nearly as 318.136 and 45.453, that is, as 7 and 1. But the

diameters of the balls are 183/4 and 67/8, and the squares of these diameters,

3519/i6 and 4717/64, are as 7.438 and 1, that is, very nearly as the resistances 7

and 1 of the balls. The difference between the ratios is no greater than what

could have arisen from the resistance of the thread. Therefore, those parts of

the resistances that are (the balls being equal) as the squares of the velocities

are also (the velocities being equal) as the squares of the diameters of the

balls.

The largest ball that I used in these experiments, however, was not per-

fectly spherical, and therefore for the sake of brevity I have ignored certain

minutiae in the above computation, being not at all worried about a com-

putation being exact when the experiment itself was not sufficiently exact.

Therefore, since the demonstration of a vacuum depends on such experi-

ments, I wish that they could be tried with more, larger, and more exactly

spherical balls. If the balls are taken in geometric proportion, say with di-

ameters of 4, 8, 16, and 32 inches, it will be discovered from the progres-

sion of the experiments what ought to happen in the case of still larger

balls.

arcs described in the descent and ascent was x , which multiplied
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To compare the resistances of different fluids with one another, I made

the following experiments. I got a wooden box four feet long, one foot wide,

and one foot deep. I took off its lid and filled it with fresh water, and I

immersed pendulums in the water and made them oscillate. A lead ball

weighing \66Ve ounces, with a diameter of 35/s inches, moved as in the

following table, that is, with the length of the pendulum from the point of

suspension to a certain point marked on the thread being 126 inches, and to

the center of oscillation being 1343/s inches.

Arc described by the point marked

on the thread in the first descent

Arc described in the final ascent

Difference between the arcs,

proportional to the motion lost

Number of oscillations in water

Number of oscillations in air

64"
48"

16"

85 1/2

32"
24"

8"

287

16"
12"

4"
29/60

535

8" 4"
6" 3"

2" 1"
l!/5 3

2"
11/2"

Vi"
7

1"
3/4"

1A"
IP/4

V2"
V*"

V*"
122/3

1/4//

3/16"

Vie"
13'/3

In the experiment recorded in the fourth column, equal motions were

lost in 535 oscillations in air, and 11A in water. The oscillations were indeed

a little quicker in air than in water. But if the oscillations in water were ac-

celerated in such a ratio that the motions of the pendulums in both mediums

would become equally swift, the number 11/5 oscillations in water during

which the same motion would be lost as before would remain the same be-

cause the resistance is increased and the square of the time simultaneously

decreased in that same ratio squared. With equal velocities of the pendulums,

therefore, equal motions were lost, in air in 535 oscillations and in water in

1 !/5 oscillations; and thus the resistance of the pendulum in water is to its

resistance in air as 535 to IVs. This is the proportion of the whole resistances

in the case of the fourth column.

Now let AV + CV2 designate the difference between the arcs described

(in a descent and subsequent ascent) by the ball moving in air with the

greatest velocity V; and since the greatest velocity in the case of the fourth

column is to the greatest velocity in the case of the first column as 1 to 8,

and since that difference between the arcs in the case of the fourth column

is to the difference in the case of the first column as -— to , or as 85^2
535 851/2

to 4,280, let us write 1 and 8 for the velocities in these cases and 85 Vz and

4,280 for the differences between the arcs; then A + C will become = 85 Vz

i s  t o  t h e  d i f f e r e n c e  i n  t h e  c a s e  o f  t h e  f i r s t  c o l u m n  a s  - —  t o  ,  o r  a s  8 5 ^ 2
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and 8A + 64C = 4, 280 or A + 8C = 535; and hence, by reduction of the

equations, 7C will become = 449l/2 and C = 643/i4 and A = 212/?; and thus

the resistance, since it is as 7/hAV + 3/4CV2, will be as 136/nV + 489/

Therefore, in the case of the fourth column, where the velocity was 1, the

whole resistance is to its part proportional to the square of the velocity as

136/n + 489/56 or 6112/i7 to 48%6; and on that account the resistance of the

pendulum in water is to that part of the resistance in air which is proportional

to the square of the velocity (and which alone comes into consideration in

swifter motions) as 6112/i7 to 489/56 and 535 to P/5 jointly, that is, as 571 to 1.

If the whole thread of the pendulum oscillating in water had been immersed,

its resistance would have been still greater, to such an extent that the part

of the resistance of the pendulum oscillating in water which is proportional

to the square of the velocity (and which alone comes into consideration in

swifter bodies) is to the resistance of that same whole pendulum oscillating

in air, with the same velocity, as about 850 to 1, that is, very nearly as the

density of water to the density of air.

In this computation also, that part of the resistance of the pendulum in

water which would be as the square of the velocity ought to be taken into

consideration, but (which may perhaps seem strange) the resistance in water

was increased in more than the squared ratio of the velocity. In searching

for the reason, I hit upon this: that the box was too narrow in proportion to

the size of the ball of the pendulum, and because of its narrowness overly

impeded the motion of the water as it yielded to the oscillation of the ball.

For if a ball of a pendulum whose diameter was one inch was immersed,

the resistance was increased in very nearly the squared ratio of the velocity.

I tested this by constructing a pendulum out of two balls, so that the lower

and smaller of them oscillated in the water, and the higher and larger one

was fastened to the thread just above the water and, by oscillating in the air,

aided the pendulum's motion and made it last longer. And the experiments

made with this pendulum came out as in the following table.

Arc described in the first descent
Arc described in the final ascent
Difference between the arcs,

proportional to the motion lost
Number of oscillations

16"

12"

4"
33/8

8"
6"

2"

61/2

4"
3"

1"

121/12

2"

IVz"

V2"
21 Vs

1"
3/4"

w
34

Vi"
3/s"

V%"
53

W

Vie"
62V5

136/n + 489/56 or 6112/i7 to 48%6; and on that account the resistance of the
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In comparing the resistances of the mediums with one another I also

caused iron pendulums to oscillate in quicksilver. The length of the iron

wire was about three feet, and the diameter of the ball of the pendulum was

about !/3 inch. And to the wire just above the mercury there was fastened

another lead ball large enough to continue the motion of the pendulum for

a longer time. Then I filled a small vessel (which held about three pounds

of quicksilver) with quicksilver and common water successively, so that as

the pendulum oscillated first in one and then in the other of the two fluids I

might find the proportion of the resistances; and the resistance of the quick-

silver came out to the resistance of the water as about 13 or 14 to 1, that is,

as the density of quicksilver to the density of water. When I used ba slightly

larger pendulum ball, say one whose diameter would be about V$ or % inch,b

the resistance of the quicksilver came out in the ratio to the resistance of the

water that the number 12 or 10 has to 1, roughly. But the former experiment

is more trustworthy because in the latter the vessel was too narrow in propor-

tion to the size of the immersed ball. With the ball enlarged, the vessel also

would have to be enlarged. Indeed, I had determined to repeat experiments

of this sort in larger vessels and in molten metals and certain other liquids,

hot as well as cold; but there is not time to try them all, and from what has

already been described it is clear enough that the resistance of bodies moving

swiftly is very nearly proportional to the density of the fluids in which they

move. I do not say exactly proportional. For the more viscous fluids, of an

equal density, doubtless resist more than the more liquid fluids—as, for ex-

ample, cold oil more than hot, hot oil more than rainwater, water more than

spirit of wine. But in the liquids that are sufficiently fluid to the senses—as

in air, in water (whether fresh or salt), in spirits of wine, of turpentine, and

of salts, in oil freed of its dregs by distillation and then heated, and in oil of

vitriol and in mercury, and in liquefied metals, and any others there may be

which are so fluid that when agitated in vessels they conserve for some time

a motion impressed upon them and when poured out are quite freely broken

bb. Here Newton makes a puzzling statement, namely, that the diameter of this ball, "about }A or 2A

inch," was larger than the one mentioned earlier, which was "about 1/3 inch." The source of this puzzling

"about 1/3 or 2A inch" may be seen by comparing the various editions, as is done in our Latin edition. In
the printer's manuscript and in ed. 1, the larger ball is said to have a diameter of "about Vi or 2/s inch,"

which in ed. 2 was wrongly printed as "about Vi or 2A inch." In Newton's annotated copy of the Principia,

it was noted that this should be corrected to "about Vi or 2/3 inch," but this was not done in ed. 3.
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up into falling drops—in all these I have no doubt that the above rule holds

exactly enough, especially if the experiments are made with pendulums that

are larger and move more swiftly.

Finally, since csome people are of the opinion0 that there exists a certain

aethereal medium, by far the subtlest of all, which quite freely permeates

all the pores and passages of all bodies, and that a resistance ought to arise

from such a medium flowing through the pores of bodies, I devised the

following experiment so that I might test whether the resistance that we

experience in moving bodies is wholly on their external surface or whether

the internal parts also encounter a perceptible resistance on their own surfaces.

I suspended a round firwood box by a cord eleven feet long from a sufficiently

strong steel hook, by means of a steel ring. The upper arc of the ring rested

on the very sharp concave edge of the hook so that it might move very

freely. And the cord was attached to the lower arc of the ring. I drew this

pendulum away from the perpendicular to a distance of about six feet, and

did so along the plane perpendicular to the edge of the hook, so that the ring,

as the pendulum oscillated, would not slide to and fro on the edge of the

hook. For the point of suspension, in which the ring touches the hook, ought

to remain motionless. I marked the exact place to which I had drawn back

the pendulum and then, letting the pendulum fall, marked another three

places: those to which it returned at the end of the first, second, and third

oscillations. I repeated this quite often, so that I might find those places as

exactly as possible. Then I filled the box with lead and some of the other

heavier metals that were at hand. But first I weighed the empty box along

with the part of the cord that was wound around the box and half of the

remaining part that was stretched between the hook and the suspended box.

For a stretched cord always urges with half of its weight a pendulum drawn

aside from the perpendicular. To this weight I added the weight of the air

that the box contained. And the whole weight was about Vn of the box

full of metals. Then, since the box full of metals increased the length of the

pendulum as a result of stretching the cord by its weight, I shortened the

cc. This reads literally: "the opinion of some is." Ed. 1 and ed. 2 have: "the most widely accepted

opinion ot the philosophers of this age is." The index prepared by Cotes for ed. 2 and retained for

ed. 3 keys this opinion under "Materia" ("Matter") and specifies the "philosophers" (and hence the later

"some") by thus describing the paragraph: "The subtle matter of the Cartesians is subjected to a certain

examination."

3^8 BOOK 2, SECTION 6
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cord so that the length of the pendulum now oscillating would be the same

as before. Then, drawing the pendulum back to the first marked place and

letting it fall, I counted about 77 oscillations until the box returned to the

second marked place, and as many thereafter until the box returned to the

third marked place, and again as many until the box on its return reached

the fourth place. Hence I conclude that the whole resistance of the full box

did not have a greater proportion to the resistance of the empty box than

78 to 77. For if the resistances of both were equal, the full box, because its

inherent force was 78 times greater than the inherent force of the empty box,

ought to conserve its oscillatory motion that much longer, and thus always

return to those marked places at the completion of 78 oscillations. But it

returned to them at the completion of 77 oscillations.

Let A therefore designate the resistance of the box on its external surface,

and B the resistance of the empty box on its internal parts; then, if the

resistances of equally swift bodies on their internal parts are as the matter,

or the number of particles that are resisted, 78B will be the resistance of the

full box on its internal parts; and thus the whole resistance A + B of the

empty box will be to the whole resistance A + 78B of the full box as 77 to

78, and by separation [or dividendo] A + B will be to 77B as 77 to 1, and

hence A + B will be to B as 77 x 77 to 1, and by separation [or dividendo] A

will be to B as 5,928 to 1. The resistance encountered by the empty box on

its internal parts is therefore more than 5,000 times smaller than the similar

resistance on the external surface. This argument depends on the hypothesis

that the greater resistance encountered by the full box does not arise from

some other hidden cause but only from the action of some subtle fluid upon

the enclosed metal.

I have reported this experiment from memory. For the paper on which

I had once described it is lost. Hence I have been forced to omit certain

fractions of numbers which have escaped my memory.

There is no time to try everything again. The first time, since I had used

a weak hook, the full box was retarded more quickly. In seeking the cause,

I found that the hook was so weak as to give way to the weight of the box

and to be bent in this direction and that as it yielded to the oscillations of

the pendulum. I got a strong hook, therefore, so that the point of suspension

would remain motionless, and then everything came out as we have described

it above.
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SECTION T

The motion of fluids and the resistance encountered by projectiles

Proposition 32 Let two similar systems of bodies consist of an equal number of particles, and let

Theorem 26 each of the particles in one system be similar and proportional to the corresponding

particle in the other system, and let the particles be similarly situated with respect

to one another in the two systems and have a given ratio of density to one another.

And let them begin to move similarly with respect to one another in proportional

times (the particles that are in the one system with respect to the particles in that

system, and the particles in the other with respect to those in the other). Then,

if the particles that are in the same system do not touch one another except in

instants of reflection and do not attract or repel one another except by accelerative

forces that are inversely as the diameters of corresponding particles and directly as

the squares of the velocities, I say that the particles of the systems will continue to

move similarly with respect to one another in proportional times.

I say that bodies which are similar and similarly situated move similarly

with respect to one another in proportional times when their situations in re-

lation to one another are always similar at the end of the times—for instance,

if the particles of one system are compared with the corresponding particles

of another. Hence the times in which similar and proportional parts of similar

figures are described by corresponding particles will be proportional. There-

fore, if there are two systems of this sort, the corresponding particles, because

of the similarity of their motions at the beginning, will continue to move sim-

ilarly until they meet one another. For if they are acted upon by no forces,

they will, by the first law of motion, move forward uniformly in straight

lines. If they act upon one another by some forces and if those forces are as

the diameters of the corresponding particles inversely and the squares of the

velocities directly, then, since the situations of the particles are similar and

the forces proportional, the whole forces by which the corresponding particles

are acted upon, compounded of the separate acting forces (by corol. 2 of the

laws), will have similar directions, just as if they tended to centers similarly

a. In ed. 1, sec. 7 is very different. Props. 32-34 (32-35 in ed. 1) underwent partial alteration,

including the suppression of the original prop. 34. The remainder of sec. 7 was completely rewritten

for ed. 2 and essentially retained, with only minor changes, in ed. 3. For details, see the Guide to the

present translation, §7.6.
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placed among the particles, and those whole forces will be to one another as

the separate component forces, that is, as the diameters of the corresponding

particles inversely and the squares of the velocities directly, and therefore they

will cause corresponding particles to continue describing similar figures. This

will be so (by book 1, prop. 4, corols. 1 and 8) provided that the centers are

at rest. But if they move, since their situations with respect to the particles

of the systems remain similar (because the transferences are similar), similar

changes will be introduced in the figures which the particles describe. The

motions of corresponding similar particles will therefore be similar until they

first meet, and therefore the collisions will be similar and the reflections sim-

ilar, and then (by what has already been shown) the motions of the particles

with respect to one another will be similar until they encounter one another

again, and so on indefinitely. Q.E.D.

COROLLARY 1. Hence, if any two bodies that are similar and similarly

situated (in relation to the corresponding particles of the systems) begin to

move similarly with respect to the particles in proportional times, and if

their volumes and densities are to each other as the volumes and densities

of the corresponding particles, the bodies will continue to move similarly

in proportional times. For the case is the same for the larger parts of both

systems as for the particles.

COROLLARY 2. And if all the similar and similarly situated parts of the

systems are at rest with respect to one another, and if two of them, which are

larger than the others and correspond to each other in the two systems, begin

to move in any way with a similar motion along lines similarly situated, they

will cause similar motions in the remaining parts of the systems and will

continue to move similarly with respect to them in proportional times and

thus will continue to describe spaces proportional to their own diameters.

If the same suppositions are made, I say that the larger parts of the systems are Proposition 33

resisted in a ratio compounded of the squared ratio of their velocities and the Theorem 27

squared ratio of the diameters and the simple ratio of the density of the parts of

the systems.

For the resistance arises partly from the centripetal or centrifugal forces

with which the particles of the systems act upon one another and partly from

the collisions and reflections of the particles and the larger parts. Resistances

of the first kind, moreover, are to one another as the whole motive forces from
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which they arise, that is, as the whole accelerative forces and the quantities

of matter in corresponding parts, that is (by hypothesis), as the squares of the

velocities directly and the distances of the corresponding particles inversely

and the quantities of matter in the corresponding parts directly. Thus, since

the distances of the particles of the one system are to the corresponding

distances of the particles of the other as the diameter of a particle or part in

the first system to the diameter of the corresponding particle or part in the

other, and since the quantities of matter are as the densities of the parts and

the cubes of the diameters, the resistances are to one another as the squares

of the velocities, the squares of the diameters, and the densities of the parts

of the systems. Q.E.D.

Resistances of the second kind are as the numbers and forces of cor-

responding reflections jointly. The number of reflections in any one case,

moreover, is to the number in any other as the velocities of the correspond-

ing parts directly and the spaces between their reflections inversely. And the

forces of the reflections are as the velocities and volumes and densities of the

corresponding parts jointly, that is, as the velocities, the cubes of the diame-

ters, and the densities of the parts. And if all these ratios are compounded,

the resistances of the corresponding parts are to one another as the squares

of the velocities, the squares of the diameters, and the densities of the parts,

jointly. Q.E.D.

COROLLARY 1. Therefore, if the systems are two elastic fluids such as

air and if their parts are at rest with respect to one another, and if two

bodies which are similar and are proportional (with regard to volume and

density) to the parts of the fluids and are similarly situated with respect

to those parts are projected in any way along lines similarly situated, and

if the accelerative forces with which the particles of the fluids act upon one

another are as the diameters of the projected bodies inversely and the squares

of the velocities directly, then the bodies will cause similar motions in the

fluids in proportional times and will describe spaces that are similar and are

proportional to their diameters.

COROLLARY 2. Accordingly, in the same fluid a swift projectile encoun-

ters a resistance that is very nearly in the squared ratio of the velocity. For if

the forces with which distant particles act upon one another were increased

in the squared ratio of the velocity, the resistance would be exactly in the

squared ratio of the velocity; and thus, in a medium whose parts act upon



P R O P O S I T I O N 33 373

one another with no forces because they are far apart, the resistance is exactly

in the squared ratio of the velocity. Let A, B, and C, therefore, be three medi-

ums consisting of parts that are similar and equal and regularly distributed at

equal distances. Let the parts of mediums A and B recede from one another

with forces that are to one another as T and V, and let the parts of medium

C be entirely without forces of this sort. Then, let four equal bodies D, E,

F, and G move in these mediums, the first two bodies D and E in the first

two mediums A and B respectively, and the other two bodies F and G in the

third medium C; and let the velocity of body D be to the velocity of body

E, and let the velocity of body F be to the velocity of body G, as the square

root of the ratio of the forces T to the forces V [i.e., as ^/T to ^/V]; then the

resistance of body D will be to the resistance of body E, and the resistance of

body F to the resistance of body G, in the squared ratio of the velocities; and

therefore the resistance of body D will be to the resistance of body F as the

resistance of body E to the resistance of body G. Let bodies D and F have

equal velocities, and also bodies E and G; then, if the velocities of bodies D

and F are increased in any ratio and the forces of the particles of medium B

are decreased in the same ratio squared, medium B will approach the form

and condition of medium C as closely as is desired, and on that account the

resistances of the equal and equally swift bodies E and G in these mediums

will continually approach equality, in such a way that their difference finally

comes out less than any given difference. Accordingly, since the resistances of

bodies D and F are to each other as the resistances of bodies E and G, these

also will similarly approach the ratio of equality. Therefore, the resistances

of bodies D and F, when they move very swiftly, are very nearly equal, and

therefore, since the resistance of body F is in the squared ratio of the velocity,

the resistance of body D will be very nearly in the same ratio.

COROLLARY 3. The resistance of a body moving very swiftly in any elastic

fluid is about the same as if the parts of the fluid lacked their centrifugal

forces and did not recede from one another, provided that the elastic force

of the fluid arises from the centrifugal forces of the particles and that the

velocity is so great that the forces do not have enough time to act.

COROLLARY 4. Accordingly, since the resistances of similar and equally

swift bodies, in a medium whose parts (being far apart) do not recede from

one another, are as the squares of the diameters, the resistances of equally
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swift and very quickly moving bodies in an elastic fluid are also very nearly

as the squares of the diameters.

COROLLARY 5. And since similar, equal, and equally swift bodies, in

mediums which have the same density and whose particles do not recede

from one another, impinge upon an equal quantity of matter in equal times

(whether the particles are more and smaller or fewer and larger) and impress

upon it an equal quantity of motion and in turn (by the third law of motion)

undergo an equal reaction from it (that is, are equally resisted), it is manifest

also that in elastic fluids of the same density, when the bodies move very

swiftly, the resistances they encounter are very nearly equal, whether those

fluids consist of coarser particles or are made of the most subtle particles of

all. The resistance to projectiles moving very quickly is not much diminished

as a result of the subtlety of the medium.

COROLLARY 6. These statements all hold for fluids whose elastic force

originates in the centrifugal forces [i.e., forces of repulsion] of the particles.

But if that force arises from some other source, such as the expansion of the

particles in the manner of wool or the branches of trees, or from any other

cause which makes the particles move less freely with respect to one another,

then the resistance will be greater than in the preceding corollaries because

the medium is less fluid.

Proposition 34 In a rare medium consisting of particles that are equal and arranged freely at

Theorem 28 equal distances from one another, let a sphere and a cylinder—described with

equal diameters—move with equal velocity along the direction of the axis of the

cylinder; then the resistance of the sphere will be half the resistance of the cylinder.

For since the action of a medium on a body is (by corol. 5 of the

laws) the same whether the body moves in a medium at rest or the par-

ticles of the medium impinge with the

same velocity on the body at rest, let

us consider the body to be at rest and

see with what force it will be urged

by the moving medium. Let ABKI,

therefore, designate a spherical body

described with center C and semidi-

ameter C A, and let the particles of the
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medium strike the spherical body with a given velocity along straight lines

parallel to AC; and let FB be such a straight line. On FB take LB equal

to the semidiameter CB, and draw BD touching the sphere in B. To KG

and BD drop the perpendiculars BE and LD; then the force with which a

particle of the medium, obliquely incident along the straight line FB, strikes

the sphere at B will be to the force with which the same particle would

strike the cylinder ONGQ (described with axis ACI about the sphere) per-

pendicularly at b as LD to LB or BE to BC. Again, the efficacy of this force

to move the sphere along the direction FB (or AC) of its incidence is to its

efficacy to move the sphere along the direction of its determination—that

is, along the direction of the straight line BC in which it urges the sphere

directly [a direction through the center of the sphere]—as BE to BC. And,

compounding the ratios, if a particle strikes the sphere obliquely along the

straight line FB, its efficacy to move the sphere along the direction of its

incidence is to the efficacy of the same particle to move the cylinder in the

same direction, when striking the cylinder perpendicularly along the same

straight line, as BE2 to BC2. Therefore, if in £E, which is perpendicular to

the circular base NAO of the cylinder and equal to the radius AC, £H is
BE2

taken equal to , then £H will be to £E as the effect of a particle upon
CB

the sphere to the effect of the particle upon the cylinder. And therefore

the solid that is composed of all the straight lines £H will be to the solid

that is composed of all the straight lines £E as the effect of all the parti-

cles upon the sphere to the effect of all the particles upon the cylinder. But

the first solid is a paraboloid described with vertex C, axis CA, and latus

rectum CA, and the second solid is a cylinder circumscribed around the

paraboloid; and it is known that a paraboloid is half of the circumscribed

cylinder. Therefore the whole force of the medium upon the sphere is half

of its whole force upon the cylinder. And therefore, if the particles of the

medium were at rest and the cylinder and the sphere were moving with

equal velocity, the resistance of the sphere would be half the resistance of the

cylinder. Q.E.D.

By the same method other figures can be compared with one another with Scholium

respect to resistance, and those that are more suitable for continuing their

motions in resisting mediums can be found. For example, let it be required
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to construct a frustum CBGF of a cone with the

circular base CEBH (which is described with

center O and radius OC) and with the height

OD, which is resisted less than any other frus-

tum constructed with the same base and height

and moving forward along the direction of the

axis toward D; bisect the height OD in Q, and

produce OQ to S so that QS is equal to QC,

and S will be the vertex of the cone whose frustum is required.

Note in passing that since the angle CSB is always acute, it follows

that if the solid ADBE is generated by a revolution of the elliptical or

oval figure ADBE about the axis

AB, and if the generating figure

is touched by the three straight

lines FG, GH, and HI in points

F, B, and I, in such a way that

GH is perpendicular to the axis

in the point of contact B, and FG

and HI meet the said line GH at

the angles FGB and BHI of 135 degrees, then the solid that is generated by

the revolution of the figure ADFGHIE about the same axis AB is less re-

sisted than the former solid, provided that each of the two moves forward

along the direction of its axis AB, and the end B of each one is in front.

Indeed, I think that this proposition will be of some use for the construction

of ships.

But suppose the figure DNFG to be a curve of such a sort that if the

perpendicular NM is dropped from any point N of that curve to the axis AB,

and if from the given point G the straight line GR is drawn, which is parallel

to a straight line touching the figure in N and cuts the axis (produced) in

R, then MN would be to GR as GR3 to 4BR x GB2. Then, in this case,

the solid that is described by a revolution of this figure about the axis AB

will, in moving in the aforesaid rare medium from A toward B, be resisted

less than any other solid of revolution described with the same length and

width.
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If a rare medium consists of minimally small equal particles that are at rest and Proposition 35a

arranged freely at equal distances from one another, it is required to find the Problem 7

resistance encountered by a sphere moving forward uniformly in this medium.

CASE 1. Let a cylinder described with the same diameter and height as

before move forward with the same velocity along the length of its own axis

in the same medium. And let us suppose that the particles of the medium

upon which the sphere or cylinder impinges rebound with the greatest possi-

ble force of reflection. Then the resistance of the sphere (by prop. 34) is half

the resistance of the cylinder, and the sphere is to the cylinder as 2 to 3, and

the cylinder in impinging perpendicularly upon the particles and reflecting

them as greatly as possible communicates twice its own velocity to them.

Therefore, the cylinder, in the time in which it describes half the length of

its axis by moving uniformly forward, will communicate to the particles a

motion which is to the whole motion of the cylinder as the density of the

medium is to the density of the cylinder; and the sphere, in the time in which

it describes the whole length of its diameter by moving uniformly forward,

will communicate the same motion to the particles, and in the time in which

it describes 2/s of its diameter it will communicate to the particles a motion

which is to the whole motion of the sphere as the density of the medium to

the density of the sphere. And therefore the sphere encounters a resistance

that is to the force by which its whole motion could be either destroyed or

generated, in the time in which it describes 2/3 of its diameter by moving

uniformly forward, as the density of the medium is to the density of the

sphere.

CASE 2. Let us suppose that the particles of the medium impinging

upon the sphere or cylinder are not reflected; then the cylinder, in impinging

perpendicularly upon the particles, will communicate its whole velocity to

them and thus encounters half the resistance which it met in the former

case, and the resistance encountered by the sphere will also be half of what

it was before.

CASE 3. Let us suppose that the particles of the medium rebound from

the sphere with a force of reflection that is neither the greatest nor nil but

a. A translation of the versions of book 2, props. 35-40, that appear in the first edition has been made
by I. Bernard Cohen and Anne Whitman and will be published, together with a commentary by George

Smith, in Newton's Natural Philosophy, ed. Jed Buchwald and I. Bernard Cohen (Cambridge: MIT Press,
forthcoming).
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some intermediate force; then the resistance encountered by the sphere will

also be intermediate between the resistance in case 1 and the resistance in

case 2. Q.E.I.

COROLLARY 1. Hence, if the sphere and the particles are infinitely hard

without any elastic force and therefore also without any force of reflection,

the resistance encountered by the sphere will be to the force by which its

whole motion could be either destroyed or generated, in the time in which

the sphere describes 4/3 of its diameter, as the density of the medium is to the

density of the sphere.

COROLLARY 2. The resistance encountered by the sphere, other things

being equal, is in the squared ratio of the velocity.

COROLLARY 3. The resistance encountered by the sphere, other things

being equal, is in the squared ratio of the diameter.

COROLLARY 4. The resistance encountered by the sphere, other things

being equal, is as the density of the medium.

COROLLARY 5. The resistance encountered by the sphere is in a ratio that

is compounded of the squared ratio of the velocity and the squared ratio of

the diameter, and the simple ratio of the density of the medium.

COROLLARY 6. And the motion of the sphere with the resistance it en-

counters can be represented as follows. Let AB be the time in which the

sphere can lose its whole motion when the resis-

tance is continued uniformly. Erect AD and BC

perpendicular to AB. And let BC be the whole

motion, and through point C with asymptotes

AD and AB describe the hyperbola CF. Pro-

duce AB to any point E. Erect the perpendicu-

lar EF meeting the hyperbola in F. Complete the parallelogram CBEG, and

draw AF meeting BC in H. Then, if the sphere, in any time BE, when its

first motion BC is continued uniformly, in a nonresisting medium, describes

the space CBEG represented by the area of the parallelogram, it will in a

resisting medium describe the space CBEF represented by the area of the

hyperbola, and its motion at the end of that time will be represented by the

ordinate EF of the hyperbola, with loss of part FG of its motion. And the

resistance at the end of the same time will be represented by the length BH,

with loss of part CH of the resistance. All of this is evident by book 2, prop.

5, corols. 1 and 3.
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COROLLARY 7. Hence, if in time T, when the resistance R is continued

uniformly, the sphere loses its whole motion M, then in time / in a resisting

medium, when the resistance R decreases in the squared ratio of the velocity,
tM . TM

the sphere will lose part of its motion M without loss of part ;

and the sphere will describe a space that is to the space described by the
T + /

uniform motion M, in the same time /, as the logarithm of the number

multiplied by the number 2.302585092994 is to the number —, because the

hyperbolic area BCFE is in this proportion to the rectangle BCGE.

In this proportion I have set forth the resistance and retardation encountered Scholium

by spherical projectiles in noncontinuous mediums, and I have shown that

this resistance is to the force by which the whole motion of a sphere could

be either destroyed or generated in the time in which the sphere describes
2/3 of its diameter, with a velocity continued uniformly, as the density of

the medium is to the density of the sphere, provided that the sphere and

the particles of the medium are highly elastic and possess the greatest force

of reflecting, and I have shown that this force is half as great when the

sphere and the particles of the medium are infinitely hard and devoid of all

force of reflecting. Moreover, in continuous mediums such as water, hot oil,

and quicksilver, in which the sphere does not impinge directly upon all the

particles of the fluid which generate resistance but presses only the nearest

particles, and these press others and these still others, the resistance is half

as great as in the second case. In extremely fluid mediums of this sort the

sphere encounters a resistance that is to the force by which its whole motion

could be either destroyed or generated, in the time in which it describes 8/3

of its diameter with the motion continued uniformly, as the density of the

medium is to the density of the sphere. We will try to show this in what

follows.

To determine the motion of water flowing out of a cylindrical vessel through a Proposition 36

hole in the bottom. Problem 8

Let ACDB be the cylindrical vessel, AB its upper opening, CD its bottom

parallel to the horizon, EF a circular hole in the middle of the bottom, G the

center of the hole, and GH the cylinder's axis perpendicular to the horizon.

t M  .  T M

t M  .  T M t M  .  T M

t M  .  T M1

t M  .  T M
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And imagine that a cylinder of ice APQB is

of the same width as the interior of the vessel,

has the same axis, and descends continually with

a uniform motion. Imagine also that its parts

liquefy as soon as they touch the surface AB,

that when they have turned into water they flow

down into the vessel as a result of their gravity,

and that in falling these parts form a cataract or

column of water ABNFEM and pass through

the hole EF and fill it exactly. And let the uni-

form velocity of the descending ice, as well as that of the contiguous water

in the circle AB, be the velocity which the water can acquire in falling and

describing by its fall the space IH, and let IH and HG lie in a straight

line, and through point I draw the straight line KL parallel to the hori-

zon and meeting the sides of the ice in K and L. Then the velocity of the

water flowing out through the hole EF will be that which the water can

acquire in falling from I and describing by its fall the space IG. And thus,

by Galileo's theorems, IG will be to IH as the square of the ratio of the

velocity of the water flowing out through the hole to the velocity of the

water in the circle AB, that is, as the square of the ratio of the circle AB

to the circle EF, for these circles are inversely as the velocities of the water

passing through them in the same time and with an equal quantity, filling

them both exactly. Here it is the velocity of the water toward the horizon that

is of concern. And the motion parallel to the horizon by which the parts of

the falling water approach one another is not considered here, since it does

not arise from gravity or change the motion perpendicular to the horizon

that does arise from gravity. Indeed, we are supposing that the parts of the

water cohere somewhat and that by their cohesion they approach one another

with motions parallel to the horizon as they fall, so that they form only one

single cataract and are not divided into several cataracts, but here we are not

considering the motion parallel to the horizon arising from that cohesion.

CASE 1. Now suppose that the interior of the vessel around the falling

water ABNFEM is filled with ice, so that the water passes through the ice as

if through a funnel. Then, if the water does not quite touch the ice, or (what

comes to the same thing) if it touches it and, because of the great smoothness

of the ice, slides through it with the greatest possible freedom and without
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any resistance, the water will flow down through the hole EF with the same

velocity as before, and the whole weight of the column of water ABNFEM

will be used in generating its downflow as before, and the bottom of the

vessel will sustain the weight of the ice surrounding the column.

Now let the ice liquefy in the vessel; then the flow of the water will

remain the same as before with respect to velocity. It will not be less, since

the melted ice will endeavor to descend; and not greater, since the melted

ice cannot descend without impeding an equal descent of the original water.

The same force ought to generate the same velocity in the flowing water

[i.e., since the force is the same, the velocity that it generates will also be the

same].

But the hole in the bottom of the vessel, because of the oblique motions of

the particles of the flowing water, ought to be a little larger than before. For

now the particles of water do not all pass through the hole perpendicularly

but, flowing together from all the sides of the vessel and converging into the

hole, pass through with oblique motions and, turning their course downward,

unite into a stream of water gushing out which is narrower a little below

the hole than in the hole itself, its diameter being to the diameter of the hole

as 5 to 6, or 5l/2 to 6!/2 very nearly, provided that I measured the diameters

correctly. At any rate, I obtained a very thin flat plate perforated in the

middle, the diameter of the circular hole being 5/s inch. And so that the

stream of water gushing out might not be accelerated in falling and made

narrower by the acceleration, I fastened this plate not to the bottom but to

the side of the vessel in such a way that the stream went out along a line

parallel to the horizon. Then, when the vessel was full of water, I opened

the hole so that the water might flow out, and the diameter of the stream,

measured as accurately as possible at a distance of about l/2 inch from the

hole, came out 21/4o inch. The diameter of this circular hole, therefore, was

to the diameter of the stream very nearly as 25 to 21. Therefore the water in

passing through the hole converges from all directions, and after flowing out

of the vessel the stream is made narrower by converging and is accelerated

by narrowing until it has reached a distance of l/i inch from the hole and at

that distance becomes narrower and swifter than it is in the hole itself in the

ratio of 25 x 25 to 21 x 21 or very nearly 17 to 12, that is, roughly as the

square root of the ratio of 2 to 1. And experiments prove that the quantity

of water that flows out in a given time through a circular hole in the bottom
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of a vessel is the quantity that ought to flow out in the same time, with the

velocity mentioned above, not through that hole but through a circular hole

whose diameter is to the diameter of that hole as 21 to 25. And thus the

flowing water has the downward velocity in the hole itself that a heavy body

can acquire very nearly in falling and describing by its fall a space equal to

half the height of the water standing in the vessel. But after the water has

gone out of the vessel, it is accelerated by converging until it has reached

a distance from the hole almost equal to the diameter of the hole and has

acquired a velocity that is greater approximately as the square root of the

ratio of 2 to 1, which is, as a matter of fact, very nearly the velocity that a

heavy body can acquire in falling and describing by its fall a space equal to

the whole height of the water standing in the vessel.

In what follows, therefore, let the diameter of the stream be designated by

that smaller hole which we have called EF. And suppose that another higher

plane VW is drawn parallel to the plane of

the hole EF at a distance about equal to the

diameter of the hole and pierced by a larger

hole ST, and through this let a stream fall that

exactly fills the lower hole EF and thus has a

diameter which is to the diameter of this lower

hole as about 25 to 21. For thus the stream will

pass perpendicularly through the lower hole,

and the quantity of the water flowing out, depending on the size of this

hole, will be very nearly that which the solution of the problem demands.

Now, the space which is enclosed by the two planes and the falling stream

can be considered to be the bottom of the vessel. But so that the solution of

the problem may be simpler and more mathematical, it is preferable to use

only the lower plane for the bottom of the vessel and to imagine that the

water which flowed down through the ice as if through a funnel and came

out of the vessel through the hole EF in the lower plane keeps its motion

continually and that the ice keeps its state of rest. In what follows, therefore,

let ST be the diameter of a circular hole described with center Z, through

which a cataract flows out of the vessel when all the water in the vessel is

fluid. And let EF be the diameter of the hole which the cataract fills exactly

when falling through it, whether the water comes out of the vessel through

the upper hole ST or falls through the middle of the ice in the vessel as
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if through a funnel. And let the diameter of the upper hole ST be to the

diameter of the lower hole EF as about 25 to 21, and let the perpendicular

distance between the planes of the holes be equal to the diameter of the

smaller hole EF. Then the downward velocity of the water coming out of

the vessel through the hole ST will in the hole itself be that which a body

can acquire in falling from half of the height IZ; and the velocity of both

falling cataracts will, in the hole EF, be that which a body will acquire in

falling from the whole height IG.

CASE 2. If the hole EF is not in the middle of the bottom of the vessel,

but the bottom is perforated elsewhere, the water will flow out with the same

velocity as before, provided that the size of the hole is the same. For a heavy

body does descend to the same depth in a greater time along an oblique

line than along a perpendicular line, but in descending it acquires the same

velocity in either case, as Galileo proved.

CASE 3. The velocity of the water flowing out through a hole in the

side of the vessel is the same. For if the hole is small, so that the distance

between the surfaces AB and KL vanishes, so far as the senses can tell, and

the stream of water gushing out horizontally forms a parabolic figure, it will

be found from the latus rectum of this parabola that the velocity of the water

flowing out is that which a body could have acquired by falling from the

height HG or IG of the water standing in the vessel. Indeed, by making an

experiment I found that when the height of the standing water above the

hole was 20 inches and the height of the hole above a plane parallel to the

horizon was also 20 inches, the stream of water gushing forth would fall

upon the plane at a distance of about 37 inches, taken from a perpendicular

that was dropped to the plane from the hole. For in the absence of resistance

the stream would have had to fall upon the plane at a distance of 40 inches,

the latus rectum of the parabolic stream being 80 inches.

CASE 4. Further, if the water flowing out has an upward motion, it

comes out with the same velocity. For a small stream of water gushing out

ascends with a perpendicular motion to the height GH or GI of the water

standing in the vessel, except insofar as its ascent is somewhat impeded by

the resistance of the air; and accordingly it flows out with the velocity that

it could have acquired in falling from that height. Any one particle of the

standing water (by book 2, prop. 19) is pressed equally from all sides and,

yielding to the pressure, goes with equal force in every direction, whether it
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descends through a hole in the bottom of the vessel or flows out horizontally

through a hole in its side or comes out into a channel and ascends from

there through a small hole in the upper part of the channel. And that the

velocity with which the water flows out is that which we have designated

in this proposition is not only found by reason but is also manifest from the

well-known experiments already described.

CASE 5. The velocity of the water flowing out is the same whether the

hole is circular or square or triangular or of any other shape equal in area to

the circular one. For the velocity of the water flowing out does not depend

on the shape of the hole but on the height of the water in relation to the

plane KL.

CASE 6. If the lower part of the vessel ABDC is immersed in standing

water, and the height of the standing water above the bottom of the vessel is

GR, the velocity with which the water in the

vessel will flow out through the hole EF into

the standing water will be that which the water

can acquire in falling and describing by its fall

the space IR. For the weight of all the water in

the vessel that is lower than the surface of the

standing water will be sustained in equilibrium

by the weight of the standing water and thus

will not at all accelerate the motion of the descending water in the vessel.

This case can also be shown by experiments, by measuring the times in which

the water flows out.

COROLLARY 1. Hence, if the height CA of the water is produced to K,

so that AK is to CK in the squared ratio of the area of a hole made in any

part of the bottom to the area of the circle AB, the velocity of the water

flowing out will be equal to the velocity that the water can acquire in falling

and describing by its fall the space KC.

COROLLARY 2. And the force by which the whole motion of the water

gushing out can be generated is equal to the weight of a cylindrical column

of water whose base is the hole EF and whose height is 2GI or 2CK. For

the gushing water, in the time in which it equals this column, can acquire

in falling (by its weight) from the height GI the very velocity with which it

gushes out.
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COROLLARY 3. The weight of all the water in the vessel ABDC is to

the part of the weight that is used in making the water flow down as the

sum of the circles AB and EF to twice the circle EF. For let IO be a mean

proportional between IH and IG; then the water coming out through the

hole EF, in the time in which a drop could describe a space equal to the

height IG in falling from I, will be equal to a cylinder whose base is the circle

EF and whose height is 2IG, that is, to a cylinder whose base is the circle AB

and whose height is 2IO, for the circle EF is to the circle AB as the square

root of the ratio of the height IH to the height IG, that is, in the simple ratio

of the mean proportional IO to the height IG, and in the time in which a

drop can describe a space equal to the height IH in falling from I, the water

coming out will be equal to a cylinder whose base is the circle AB and whose

height is 2IH, and in the time in which a drop describes a space equal to

the difference HG between the heights in falling from I through H to G,

the water coming out—that is, all the water in the solid ABNFEM—will

be equal to the difference between the cylinders, that is, equal to a cylinder

whose base is AB and whose height is 2HO. And therefore all the water in

the vessel ABDC is to all the water falling in the solid ABNFEM as HG to

2HO, that is, as HO + OG to 2HO, or IH + IO to 2IH. But the weight of

all the water in the solid ABNFEM is used in making the water flow down,

and accordingly the weight of all the water in the vessel is to the part of the

weight that is used in making the water flow down as IH + IO to 2IH and

thus as the sum of the circles EF and AB to twice the circle EF.

COROLLARY 4. And hence the weight of all the water in the vessel ABDC

is to the part of the weight sustained by the bottom of the vessel as the sum

of the circles AB and EF is to the difference between these circles.

COROLLARY 5. And the part of the weight sustained by the bottom of

the vessel is to the part of the weight used in making the water flow down

as the difference between the circles AB and EF is to twice the smaller circle

EF, or as the area of the bottom to twice the hole.

COROLLARY 6. And the part of the weight which alone presses upon

the bottom is to the weight of all the water resting perpendicularly on the

bottom as the circle AB is to the sum of the circles AB and EF, or as the

circle AB is to the amount by which twice the circle AB exceeds the bottom.

For the part of the weight which alone presses upon the bottom is to the

weight of all the water in the vessel as the difference between the circles AB
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and EF is to the sum of these circles, by corol. 4; and the weight of all the

water in the vessel is to the weight of all the water resting perpendicularly

on the bottom as the circle AB is to the difference between the circles AB

and EF. Therefore, from the equality of the ratios in inordinate proportion

[or ex aequo perturbate], the part of the weight which alone presses upon

the bottom is to the weight of all the water resting perpendicularly on the

bottom as the circle AB is to the sum of the circles AB and EF, or to the

amount by which twice the circle AB exceeds the bottom.

COROLLARY 7. If in the middle of the hole EF there is placed a little

circle PQ described with center G and parallel to the horizon, the weight

of the water which that little circle sustains

is greater than the weight of 1A of a cylin-

der of water whose base is that little circle

and whose height is GH. For let ABNFEM

be a cataract or column of falling water, with

axis GH as above, and suppose that there has

been a freezing of all the water in the vessel

(around the cataract as well as above the little

circle) whose fluidity is not required for the

very ready and very swift descent of the water. And let PHQ be the frozen

column of water above the little circle, having vertex H and height GH.

And imagine that this cataract falls with its whole weight and does not rest

or press on PHQ but slides past freely and without friction, except perhaps

at the very vertex of the ice, where at the very beginning of falling the

cataract begins to be concave. And just as the frozen water (AMEC and

BNFD) which is around the cataract is convex on the inner surface (AME

and BNF) toward the falling cataract, so also this column PHQ will be con-

vex toward the cataract, and therefore will be greater than a cone whose

base is the little circle PQ and whose height is GH, that is, greater than V$

of a cylinder described with the same base and height. And the little circle

sustains the weight of this column, that is, a weight that is greater than the

weight of the cone or of 1A of the cylinder.

COROLLARY 8. The weight of the water sustained by the little circle PQ,

when it is extremely small, appears to be less than the weight of 2A of a

cylinder of water whose base is that little circle and whose height is HG.

Keeping the same suppositions, imagine that half a spheroid is described,
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whose base is the little circle and whose semiaxis or height is HG. Then

this figure will be equal to 2/3 of that cylinder and will comprehend the

column of frozen water PHQ whose weight that little circle sustains. In

order that the motion of the water may be straight down, the outer surface

of this column must meet the base PQ in a somewhat acute angle, because

the water in falling is continually accelerated and the acceleration makes the

column become narrower; and since that angle is less than a right angle, the

lower parts of this column will lie within the half-spheroid. But higher up,

the column will be acute or pointed, for otherwise the horizontal motion

of the water at the vertex of the spheroid would be infinitely swifter than

its motion toward the horizon. And the smaller the little circle PQ, the

more acute the vertex of the column; and if the little circle is diminished

indefinitely, the angle PHQ will be diminished indefinitely, and therefore

the column will lie within the half-spheroid. That column is therefore less

than the half-spheroid, or less than 2/3 of a cylinder whose base is that little

circle and whose height is GH. Moreover, the little circle sustains the water's

force equal to the weight of this column, since the weight of the surrounding

water is used in making it flow down.

COROLLARY 9. The weight of the water sustained by the little circle PQ,

when it is extremely small, is very nearly equal to the weight of a cylinder

of water whose base is that little circle and whose height is VzGH. For this

weight is an arithmetical mean between the weights of the cone and the

said half-spheroid. If, however, the little circle is not extremely small but is

increased until it equals the hole EF, it will sustain the weight of all the

water resting perpendicularly on it, that is, the weight of a cylinder of water

whose base is that little circle and whose height is GH.

COROLLARY 10. And (as far as I can tell) the weight that the little circle

sustains always has the proportion to the weight of a cylinder of water whose

base is that little circle and whose height is VzGH that EF2 has to EF2 —

V$PQ2, or that the circle EF has to the excess of this circle over half of the

little circle PQ, very nearly.

The resistance of a cylinder moving uniformly forward in the direction of its length Lemma 4

is not changed by an increase or decrease in length and thus is the same as the

resistance of a circle described with the same diameter and moving forward with

the same velocity along a straight line perpendicular to its plane.
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For the sides of a cylinder offer no opposition to its motion, and a cylinder

is turned into a circle if its length is decreased indefinitely.

Proposition 37 If a cylinder moves uniformly forward in a compressed, infinite, and nonelastic

Theorem 29 fluid in the direction of its own length, its resistance arising from the magnitude

of its transverse section is to the force by which its whole motion can be either

destroyed or generated, while it is describing four times its length, very nearly as

the density of the medium is to the density of the cylinder.

For if the bottom CD of the vessel ABDC touches the surface of stagnant

water, and if water flows out of this vessel into the stagnant water through

the cylindrical channel EFTS perpendicular to

the horizon, and if the little circle PQ is placed

parallel to the horizon anywhere in the middle

of the channel, and if CA is produced to K so

that CK is to AK in the squared ratio of the

circle AB to the amount by which the opening

of the channel EF exceeds the little circle PQ,

then it is obvious (by prop. 36, case 5, case 6,

and corol. 1) that the velocity of the water pass-

ing through the annular space between the little

circle and the sides of the vessel will be that which the water can acquire in

falling and describing by its fall a space equal to the height KG or IG.

And (by prop. 36, corol. 10) if the width of the vessel is infinite, so that

the line-element HI vanishes and the heights IG and HG are equal, then the

force of the water flowing down into the little circle will be to the weight

of a cylinder whose base is that little circle, and whose height is VzIG, very

nearly as EF2 to EF2 — ViPQ2. For the force of the water flowing down

through the whole channel with uniform motion will be the same upon the

little circle PQ in whatever part of the channel it is placed.

Now let the openings EF and ST of the channel be closed, and let the

little circle ascend in the fluid compressed on all sides, and by its ascent let it

make the upper water descend through the annular space between the little

circle and the sides of the channel; then the velocity of the ascending little

circle will be to the velocity of the descending water as the difference between

the circles EF and PQ is to the circle PQ, and the velocity of the ascending

little circle will be to the sum of the velocities (that is, to the relative velocity

388
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of the descending water, with which it flows past the ascending little circle)

as the difference between the circles EF and PQ is to the circle EF, or as

EF2 — PQ2 to EF2. Let that relative velocity be equal to the velocity with

which (as shown above) the water passes through the same annular space

while the little circle remains unmoved, that is, to the velocity that the water

can acquire in falling and describing by its fall a space equal to the height

IG; then the force of the water upon the ascending little circle will be the

same as before (by corol. 5 of the laws), that is, the resistance of the ascending

little circle will be to the weight of a cylinder of water whose base is that

little circle, and whose height is VilG, very nearly as EF2 to EF2 — ViPQ2.

And the velocity of the little circle will be to the velocity that the water

acquires in falling, and describing by its fall a space equal to the height IG,

as EF2 - PQ2 to EF2.

Let the breadth of the channel be increased indefinitely; then those ratios

between EF2 - PQ2 and EF2 and between EF2 and EF2 - 1/2PQ2 will

ultimately approach ratios of equality. And therefore the velocity of the little

circle will now be that which the water can acquire in falling and describing

by its fall a space equal to the height IG, and its resistance will come out

equal to the weight of a cylinder whose base is that little circle and whose

height is half of the height IG from which the cylinder must fall in order

to acquire the velocity of the ascending little circle, and with this velocity

the cylinder will, in the time of falling, describe four times its own length.

And the resistance of the cylinder, moving forward with this velocity in the

direction of its length, is the same as the resistance of the little circle (by

lem. 4) and thus is very nearly equal to the force by which its motion can be

generated while it is describing four times its length.

If the length of the cylinder is increased or decreased, its motion, and

also the time in which it describes four times its length, will be increased or

decreased in the same ratio; and thus that force by which the increased or de-

creased motion, in a time equally increased or decreased, could be generated

or destroyed will not be changed and accordingly is under these circumstances

still equal to the resistance of the cylinder; for this also remains unchanged,

by lem. 4.

If the density of the cylinder is increased or decreased, its motion, and also

the force by which the motion can be generated or destroyed in the same time,

will be increased or decreased in the same ratio. The resistance, therefore, of
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any cylinder to the force by which its whole motion could be either generated

or destroyed, while it is describing four times its length, will be very nearly

as the density of the medium to the density of the cylinder. Q.E.D.

A fluid must be compressed in order to be continuous, and it must be

continuous and nonelastic in order that every pressure arising from its com-

pression may be propagated instantaneously and, by acting equally upon all

parts of a moving body, not change the resistance. The pressure arising from

the body's motion is of course used in generating the motion of the parts of

the fluid and creates resistance. But the pressure arising from the compres-

sion of the fluid, however strong it may be, if it is propagated instantaneously,

generates no motion in the parts of a continuous fluid, introduces no change

of motion at all, and thus neither increases nor decreases the resistance. Cer-

tainly the action of a fluid that arises from its compression cannot be stronger

upon the back of a moving body than upon the front and thus cannot de-

crease the resistance described in this proposition; and the action will not be

stronger upon the front than upon the back provided that its propagation is

infinitely swifter than the motion of the body pressed. And the action will

be infinitely swifter and will be propagated instantaneously provided that the

fluid is continuous and nonelastic.

COROLLARY 1. The resistances to cylinders that move uniformly forward

in the direction of their lengths in infinite and continuous mediums are in a

ratio compounded of the squared ratio of the velocities and the squared ratio

of the diameters and the ratio of the density of the mediums.

COROLLARY 2. If the breadth of the channel is not increased indefi-

nitely, but the cylinder moves forward in the direction of its own length

in an enclosed medium at rest, and meanwhile

its axis coincides with the axis of the channel,

then the resistance to the cylinder will be to

the force by which its whole motion could be

either generated or destroyed, in the time in

which it describes four times its length, in a

ratio compounded of the simple ratio of EF2 to

EF2 - 1/2PQ2 and the squared ratio of EF2 to

EF2 — PQ2 and the ratio of the density of the

medium to the density of the cylinder.
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COROLLARY 3. With the same suppositions, let the length L be to four

times the length of the cylinder in a ratio compounded of the simple ratio

of EF2 - ^PQ2 to EF2 and the squared ratio of EF2 - PQ2 to EF2; then

the resistance of the cylinder will be to the force by which its whole motion

could be either destroyed or generated, while it is describing the length L,

as the density of the medium to the density of the cylinder.

In this proposition we have investigated the resistance arising solely from the Scholium

magnitude of the transverse section of a cylinder, without considering the

part of the resistance that can arise from the obliquity of the motions. In

prop. 36, case 1, the flow of the water through the hole EF was impeded

by the obliquity of the motions with which the parts of the water in the

vessel converged from all sides into the hole. Similarly, in this proposition,

the obliquity of the motions with which the parts of the water pressed by

the front end of the cylinder yield to the pressure and diverge on all sides

has these effects: it retards the passage of those motions through the places

around that front end toward the back of the cylinder, it makes the fluid

move to a greater distance, and it increases the resistance in nearly the ratio

with which it decreases the flow of the water from the vessel, that is, in the

squared ratio of 25 to 21, roughly.

In case 1 of prop. 36 we made the parts of the water pass through the

hole EF perpendicularly and in the greatest abundance by supposing that

all the water in the vessel that had been frozen around the cataract, and

whose motion was oblique and useless, remained without motion. Similarly,

in this proposition, in order that the obliquity of the motions may be an-

nulled, and the parts of the water, by

yielding with the most direct and rapid

motion, may provide the easiest passage

to the cylinder, and in order that only

the resistance may remain that arises

from the magnitude of the transverse section and that cannot be decreased

except by decreasing the diameter of the cylinder, it must be understood

that the parts of the fluid whose motions are oblique and useless and cre-

ate resistance are at rest with respect to one another at both ends of the

cylinder and cohere and are joined to the cylinder. Let ABDC be a rect-

angle, and let AE and BE be two parabolic arcs described with axis AB
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and with a latus rectum that is to the space HG, which is to be described

by the falling cylinder while it is acquiring its velocity, as HG to 1/2 AB.

Additionally, let CF and DF be two other parabolic arcs, described with

axis CD and a latus rectum that is four times the former latus rectum; and

by the revolution of the figure about its axis EF, let a solid be generated

whose middle ABDC is the cylinder with which we are dealing, and whose

extremities ABE and CDF contain the parts of the fluid which are at rest

with respect to one another and solidified into two rigid bodies that adhere

to the cylinder at the ends as head and tail. Then the resistance to the solid

EACFDB moving forward in the direction of its axis FE from F toward E

will be very nearly that which we have described in this proposition. That

is, the density of the fluid is to the density of the cylinder very nearly in

the ratio of this resistance to the force by which the whole motion of the

cylinder could be either destroyed or generated, while the length 4AC is be-

ing described with that motion continued uniformly. And with this force the

resistance cannot be less than in the ratio of 2 to 3, by prop. 36, corol. 7.

Lemma 5 If a cylinder, a sphere, and a spheroid, whose widths are equal, are placed succes-

sively in the middle of a cylindrical channel in such a way that their axes coincide

with the axis of the channel, these bodies will equally impede the flow of water

through the channel.

For the spaces through which the water passes between the channel and

the cylinder, sphere, and spheroid are equal; and water passes equally through

equal spaces.

This is so on the hypothesis that all the water is frozen which is above

the cylinder, sphere, or spheroid, and whose fluidity is not required for the

very swift passage of the water, as I have explained in prop. 36, corol. 7.

Lemma 6 With the same suppositions, these bodies are equally urged by the water flowing

through the channel.

This is evident by lem. 5 and the third law of motion. Of course, the

water and the bodies act equally upon one another.

Lemma 7 If the water is at rest in the channel, and these bodies go through the channel with

equal velocity in opposite directions, the resistances will be equal to one another.
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This is clear from lem. 6; for the relative motions remain the same with

respect to one another.

It is the same for all convex round bodies whose axes coincide with the axis Scholium

of the channel. Some difference can arise from a greater or lesser friction;

but in these lemmas we are supposing that the bodies are very smooth, that

the tenacity and friction of the medium are nil, and that the parts of the

fluid which by their oblique and superfluous motions can perturb, impede,

and retard the flow of the water through the channel are at rest with respect

to one another as if icebound and adhere to the front and back of the bodies,

as I have explained in the scholium to prop. 37. For what follows deals with

the least possible resistance of round bodies described with the greatest given

transverse sections.

Bodies moving straight ahead in fluids make the fluid ascend in front of

them and subside in back of them, especially if they are blunt in shape; and

hence they encounter a slightly greater resistance than if they had pointed

heads and tails. And bodies moving in elastic fluids, if they are blunt in

front and in back, condense the fluid a little more at the front and make

it a little less dense at the back; and hence they encounter a slightly greater

resistance than if they had pointed heads and tails. But in these lemmas and

propositions we are not dealing with elastic fluids but with nonelastic fluids,

not with bodies floating on the surface of the fluid but with bodies deeply

immersed. And once the resistance of bodies in nonelastic fluids is known,

this resistance will have to be increased somewhat for elastic fluids such as

air as well as for the surfaces of stagnant fluids such as seas and swamps.

The resistance to a sphere moving uniformly forward in an infinite and nonelastic Proposition 38

compressed fluid is to the force by which its whole motion could either be destroyed Theorem 30

or generated, in the time in which it describes 8/3 of its diameter, very nearly as

the density of the fluid to the density of the sphere.

For a sphere is to the circumscribed cylinder as 2 to 3, and therefore the

force that could take away all the motion of a cylinder, while the cylinder

is describing a length of four diameters, will take away all the motion of

the sphere while the sphere describes % of this length, that is, 8/3 of its own

diameter. And the resistance of the cylinder is to this force very nearly as

the density of the fluid to the density of the cylinder or sphere, by prop. 37,
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and the resistance of the sphere is equal to the resistance of the cylinder, by

lems. 5, 6, and 7. Q.E.D.

COROLLARY 1. The resistances of spheres in infinite compressed medi-

ums are in a ratio compounded of the squared ratio of the velocity and the

squared ratio of the diameter and the ratio of the density of the mediums.

COROLLARY 2. The greatest velocity with which a sphere, by the force

of its own relative weight, can descend in a resisting fluid is that which the

same sphere with the same weight can acquire in falling without resistance

and describing by its fall a space that is to 4/3 of its diameter as the density

of the sphere to the density of the fluid. For the sphere in the time of its fall,

with the velocity acquired in falling, will describe a space that will be to 8/3

of its diameter as the density of the sphere to the density of the fluid; and

the force of its weight generating this motion will be to the force that could

generate the same motion, in the time in which the sphere describes 8/3 of its

diameter with the same velocity, as the density of the fluid to the density of

the sphere; and thus, by this proposition, the force of its weight will be equal

to the force of resistance and therefore cannot accelerate the sphere.

COROLLARY 3. Given both the density of the sphere and its velocity at

the beginning of the motion, and also the density of the compressed fluid at

rest in which the sphere moves, then by prop. 35, corol. 7, the velocity of the

sphere, its resistance, and the space described by it are given for any time.

COROLLARY 4. A sphere moving in a compressed fluid at rest, having

the same density as itself, will, by the same corol. 7, lose half of its motion

before it has described the length of two of its diameters.

Proposition 39 The resistance to a sphere moving uniformly forward through a fluid enclosed and

Theorem 31 compressed in a cylindrical channel is to the force by which its whole motion could

be either generated or destroyed, while it describes 8/3 of its diameter, in a ratio

compounded of three ratios, very nearly: the ratio of the opening of the channel

to the excess of this opening over half of a great circle of the sphere, the squared

ratio of the opening of the channel to the excess of this opening over a great circle

of the sphere, and the ratio of the density of the fluid to the density of the sphere.

This is evident by prop. 37, corol. 2, and the proof proceeds as in prop. 38.

Scholium In the last two propositions (as in lem. 5) I assume that all the water which

is in front of the sphere, and whose fluidity increases the resistance to the
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sphere, is frozen. If all that water liquefies, the resistance will be somewhat

increased. But in these propositions the increase will be small and can be

ignored because the convex surface of the sphere has almost the same effect

as ice.

To find from phenomena the resistance of a sphere moving forward in a compressed, Proposition 40

very fluid medium. Problem 9

Let A be the weight of the sphere in a vacuum, B its weight in a resisting

medium, D the diameter of the sphere, F a space that is to 4/sD as the density

of the sphere to the density of the medium (that is, as A to A —B), G the time

in which the sphere in falling by its weight B without resistance describes the

space F, and H the velocity that the sphere acquires by this fall. Then H will

be the greatest velocity with which the sphere can descend by its weight B in

the resisting medium, by prop. 38, corol. 2, and the resistance that the sphere

encounters while descending with this velocity will be equal to its weight B;

and the resistance that it encounters with any other velocity will be to the

weight B as the square of the ratio of this velocity to the greatest velocity H,

by prop. 38, corol. 1.

This is the resistance that arises from the inertia of matter of the fluid.

And that which arises from the elasticity, tenacity, and friction of its parts

can be investigated as follows.

Drop the sphere so that it descends in the fluid by its own weight B;

and let P be the time of falling, in seconds if the time G is in seconds. Find
2P

the absolute number N that corresponds to the logarithm 0.4342944819—,
N + l . °

and let L be the logarithm of the number , then the velocity ac-

quired in falling will be H, and the space described will be

1.386294361 IF + 4.605170186LF.

If the fluid is sufficiently deep, the term 4.605170186LF can be ignored,
2PF

and 1.386294361 IF will be the space described, very nearly. These
G

things are evident by book 2, prop. 9 and its corollaries, on the hypothesis

that the sphere encounters no other resistance than that which arises from

the inertia of matter. But if it encounters another resistance in addition, the

descent will be slower, and the quantity of this resistance can be found from

the retardation.

q u i r e d  i n  f a l l i n g  w i l l  b e  H ,  a n d  t h e  s p a c e  d e s c r i b e d  w i l l  b e

q u i r e d  i n  f a l l i n g  w i l l  b e  H ,  a n d  t h e  s p a c e  d e s c r i b e d  w i l l  b e

q u i r e d  i n  f a l l i n g  w i l l  b e  H ,  a n d  t h e  s p a c e  d e s c r i b e d  w i l l  b e

q u i r e d  i n  f a l l i n g  w i l l  b e  H ,  a n d  t h e  s p a c e  d e s c r i b e d  w i l l  b e

q u i r e d  i n  f a l l i n g  w i l l  b e  H ,  a n d  t h e  s p a c e  d e s c r i b e d  w i l l  b e
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Times P

0.001G
0.01G
0.1G
0.2G
0.3G
0.4G
0.5G
0.6G
0.7G
0.8G
0.9G
1G
2G
3G
4G
5G
6G
7G
8G
9G

10G

Velocities of

body falling

in fluid

9999929/30

999967

9966799

19737532

29131261

37994896

46211716

53704957

60436778

66403677

71629787

76159416

96402758

99505475

99932930

99990920

99998771

99999834

99999980
99999997

999999993/5

Spaces described

by falling

in fluid

0.000001F
0.0001F
0.0099834F
0.0397361F
0.0886815F
0.1559070F
0.2402290F
0.3402706F
0.4545405F
0.5815071F
0.7196609F
0.8675617F
2.6500055F
4.6186570F
6.6143765F
8.6137964F

10.6137179F
12.6137073F
14.6137059F
16.6137057F
18.6137056F

Spaces described

by greatest

motion

0.002F
0.02F
0.2F
0.4F
0.6F
0.8F
l.OF
1.2F
1.4F
1.6F
1.8F
2F
4F
6F
8F

10F
12F
14F
16F
18F
20F

Spaces described

by falling

in vacuum

0.000001F
0.0001F
0.01F
0.04F
0.09F
0.16F
0.25F
0.36F
0.49F
0.64F
0.81F
IF
4F
9F

16F
25F
36F
49F
64F
81F

100F

So that the velocity and descent of a body falling in a fluid may be

found more easily, I have put together the accompanying table, in which the

first column denotes the times of descent, the second shows the velocities

acquired in falling (the greatest velocity being 100,000,000), the third shows

the spaces described in falling in those times (2F being the space that the body

describes in the time G with the greatest velocity), and the fourth shows the

spaces described in the same times with the greatest velocity. The numbers
2P

in the fourth column are —, and by subtracting the number 1.3862944 —
G

4.6051702L, the numbers in the third column are found, and these numbers

must be multiplied by the space F in order to get the spaces described in

falling. There has been added to these a fifth column, which contains the

spaces described in the same times by a body falling in a vacuum by the

force of its relative weight B.

Scholium In order to investigate the resistances of fluids by experiments, I got a square

wooden vessel, with an internal length and width of 9 inches (of a London
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foot), and a depth of 9l/2 feet, and I filled it with rainwater; and making

balls of wax with lead inside, I noted the times of descent of the balls, the

space of the descent being 112 inches. A solid cubic London foot contains

76 Roman pounds [troy] of rainwater, and a solid inch of this foot contains
19/36 ounce of this pound or 2531/3 grains; and a sphere of water described

with a diameter of 1 inch contains 132.645 grains in air, or 132.8 grains in a

vacuum; and any other ball is as the excess of its weight in a vacuum over

its weight in water.

EXPERIMENT 1. A ball which weighed 1561/4 grains in air and 77 grains

in water described the whole space of 112 inches [when dropped in water] in

a time of 4 seconds. And when the experiment was repeated, the ball again

fell in the same time of 4 seconds.

The weight of the ball in a vacuum is 15613/38 grains, and the excess of

this weight over the weight of the ball in water is 7913/38 grains. And hence

the diameter of the ball comes out 0.84224 inch. That excess is to the weight

of the ball in a vacuum as the density of water to the density of the ball,

and as % of the diameter of the ball (that is, 2.24597 inches) to the space 2F,

which accordingly will be 4.4256 inches. In a time of 1 second the ball will

fall in a vacuum by its whole weight of 15613/38 grains through 193l/3 inches;

and by a weight of 77 grains falling in water without resistance, it will in the

same time describe 95.219 inches; and in the time G, which is to 1 second as

the square root of the ratio of the space F or 2.2128 inches to 95.219 inches, it

will describe 2.2128 inches and will attain the greatest velocity H with which

it can descend in water. Therefore the time G is 0.15244 seconds. And in

this time G, with that greatest velocity H, the ball will describe a space 2F

of 4.4256 inches; and thus in the time of 4 seconds it will describe a space

of 116.1245 inches. Subtract the space 1.3862944F or 3.0676 inches and there

will remain a space of 113.0569 inches which the ball will describe in falling

in water in a very wide vessel in the time of 4 seconds. This space, because

of the narrowness of the wooden vessel, must be decreased in a ratio which

is compounded of the square root of the ratio of the opening of the vessel

to the excess of this opening over a great semicircle of the ball, and of the

simple ratio of that same opening to its excess over a great circle of the ball,

that is, in the ratio of 1 to 0.9914. When this has been done, the result will

be a space of 112.08 inches which the ball should, according to the theory,
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have very nearly described in falling in water in this wooden vessel in the

time of 4 seconds. And it described 112 inches in the experiment.

EXPERIMENT 2. Three equal balls, each of which weighed 761A grains

in air and 5 Vie grains in water, were dropped successively in water, and in a

time of 15 seconds each one fell through 112 inches.

By computation the weight of a ball in a vacuum is 765/i2 grains; the

excess of this weight over the weight in water is 7117/48 grains; the diameter

of the ball is 0.81296 inch; % of this diameter is 2.16789 inches; the space

2F is 2.3217 inches; the space that a ball describes in falling by a weight

of 5Vi6 grains in the time of 1 second without resistance is 12.808 inches;

and the time G is 0.301056 second. The ball, therefore, with the greatest

velocity with which it can descend in water by the force of the weight of

5!/i6 grains, will describe in a time of 0.301056 second a space of 2.3217

inches, and in the time of 15 seconds a space of 115.678 inches. Subtract the

space 1.3862944F or 1.609 inches, and there will remain a space of 114.069

inches which accordingly the ball ought to describe in falling in the same

time in a very wide vessel. Because of the narrowness of our vessel a space of

roughly 0.895 inch must be taken away. And thus there will remain a space

of 113.174 inches which the ball, according to the theory, should have very

nearly described in falling in this vessel in the time of 15 seconds. And it

described 112 inches in the experiment. The difference is imperceptible.

EXPERIMENT 3. Three equal balls, each of which weighed 121 grains in

air and 1 grain in water, were dropped successively in water, and in times of

46 seconds, 47 seconds, and 50 seconds, fell 112 inches.

According to the theory, these balls should have fallen in a time of

roughly 40 seconds. I am uncertain whether their falling more slowly is to

be attributed to the smaller proportion of the resistance that arises from the

force of inertia in slow motions to the resistance that arises from other causes,

or rather to some little bubbles adhering to the ball, or to the rarefaction of

the wax from the heat either of the weather or of the hand dropping the

ball, or even to imperceptible errors in weighing the balls in water. And thus

the weight of the ball in water ought to be more than 1 grain, so that the

experiment may be made certain and trustworthy.

EXPERIMENT 4. I began the experiments thus far described in order to

investigate the resistances of fluids before formulating the theory set forth in

the immediately preceding propositions. Afterward, in order to examine that
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theory, I obtained a wooden vessel with an internal width of 82/3 inches and

a depth of 151/3 feet. Then I made four balls out of wax with lead inside,

each one weighing 1391/4 grains in air and 7Vs grains in water. And I let

them fall in water in order to measure the times of falling, using a pendulum

oscillating in half-seconds. When the balls were being weighed, and afterward

when they were falling, they were cold and had remained cold for some time,

because heat rarefies the wax and by the rarefaction diminishes the weight of

the ball in water, and the rarefied wax is not immediately brought back to its

original density by chilling. Before they fell, they were entirely immersed in

water, so that their descent might not be accelerated at the beginning by the

weight of some part projecting out of the water. And when totally immersed

and at rest, they were let fall as carefully as possible, so as not to receive

some impulse from the hand letting them fall. And they fell successively in

the times of 471/2, 481/2, 50, and 51 oscillations, describing a space of 15 feet

2 inches. But the weather was now a little colder than when the balls were

weighed, and so I repeated the experiment on another day, and the balls

fell in the times of 49, 49^2, 50, and 53 oscillations, and on a third day in

the times of 491/2, 50, 51, and 53 oscillations. The experiment was made

quite often, and the balls for the most part fell in the times of 491/2 and 50

oscillations. When they fell more slowly, I suspect that they were retarded by

hitting against the sides of the vessel.

Now by computation according to the theory, the weight of a ball in a

vacuum is 1392/5 grains; the excess of this weight over the weight of the ball

in water is 132n/40 grains; the diameter of the ball is 0.99868 inch; 8/3 of the

diameter is 2.66315 inches; the space 2F is 2.8066 inches; the space that a

ball describes in falling with a weight of 7Vs grains in the time of 1 second

without resistance is 9.88164 inches; and the time G is 0.376843 second. The

ball, therefore, with the greatest velocity with which it can descend in water

by a force of weight of 7!/s grains, describes in the time of 0.376843 second

a space of 2.8066 inches; in the time of 1 second a space of 7.44766 inches;

and in the time of 25 seconds, or 50 oscillations, a space of 186.1915 inches.

Subtract the space 1.386294F, or 1.9454 inches, and there will remain the

space of 184.2461 inches which the ball will describe in the same time in a

very wide vessel. Because of the narrowness of our vessel, decrease this space

in a ratio that is compounded of the square root of the ratio of the opening

of the vessel to the excess of this opening over a great semicircle of the ball,
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and the simple ratio of that same opening to its excess over a great circle

of the ball, and the result will be the space of 181.86 inches which the ball,

according to the theory, should very nearly have described in this vessel in

the time of 50 oscillations. And in the experiment it described a space of

182 inches in the time of 491/2 or 50 oscillations.

EXPERIMENT 5. Four balls weighing 1543/s grains in air and 21 Vi grains

in water were dropped often and fell in the times of 281/2, 29, 291/2, and 30

oscillations, and sometimes 31, 32, and 33, describing a space of 15 feet 2

inches.

By the theory they ought to have fallen in the time of very nearly 29

oscillations.

EXPERIMENT 6. Five balls weighing 2123/s grains in air and 791/2 in

water were dropped often and fell in the times of 15, 15^2, 16, 17, and 18

oscillations, describing a space of 15 feet 2 inches.

By the theory they ought to have fallen in the time of very nearly 15

oscillations.

EXPERIMENT 7. Four balls weighing 2933/s grains in air and 357/s grains

in water were dropped often and fell in the times of 29!/2, 30, 30 V2, 31, 32,

and 33 oscillations, describing a space of 15 feet 11/2 inches.

By the theory they ought to have fallen in the time of very nearly 28

oscillations.

In investigating the reason why some of the balls which were of the

same weight and size fell more quickly and others more slowly, I hit upon

this: that when the balls were first dropped and were beginning to fall,

the side which happened to be heavier descended first and generated an

oscillatory motion, so that they oscillated around their centers. For by its

oscillations a ball communicates a greater motion to the water than if it

were descending without oscillations, and in the process loses part of its own

motion with which it should descend; and it is retarded more or retarded less

in proportion to the greatness or smallness of the oscillation. Further, the ball

always recedes from that side which is descending in the oscillation and, by

receding, approaches the sides of the vessel and sometimes strikes against the

sides. In the case of heavier balls, this oscillation is stronger, and with larger

balls, it agitates the water more. Therefore, in order to reduce the oscillation

of the balls, I constructed new balls of wax and lead, fixing the lead into one

side of the ball near its surface; and I dropped the ball in such a way that the
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heavier side, as far as possible, was lowest at the beginning of the descent.

Thus the oscillations became much smaller than before, and the balls fell in

less unequal times, as in the following experiments.

EXPERIMENT 8. Four balls, weighing 139 grains in air and 61/2 in water,

were dropped often and fell in the times of not more than 52 oscillations,

and not fewer than 50, and for the most part in the time of roughly 51

oscillations, describing a space of 182 inches.

By the theory they ought to have fallen in the time of roughly 52 oscil-

lations.

EXPERIMENT 9. Four balls, weighing 27314 grains in air and 1403/4 in

water, were dropped often and fell in the times of not fewer than 12 oscilla-

tions and not more than 13, describing a space of 182 inches.

And by the theory these balls ought to have fallen in the time of very

nearly 111A oscillations.

EXPERIMENT 10. Four balls, weighing 384 grains in air and H9l/2 in

water, were dropped often and fell in the times of 173/4, 18, 18!/2, and 19

oscillations, describing a space of 1811/2 inches. And when they fell in the

time of 19 oscillations, I sometimes heard them strike the sides of the vessel

before they reached the bottom.

And by the theory they ought to have fallen in the time of very nearly

155/9 oscillations.

EXPERIMENT 11. Three equal balls, weighing 48 grains in air and 329/32

in water, were dropped often and fell in the times of 431/2, 44, 44!/2, 45, and

46 oscillations, and for the most part 44 and 45, describing a space of very

nearly lS2l/2 inches.

By the theory they ought to have fallen in the time of roughly 465/9

oscillations.

EXPERIMENT 12. Three equal balls, weighing 141 grains in air and 43/s

in water, were dropped several times and fell in the times of 61, 62, 63, 64,

and 65 oscillations, describing a space of 182 inches.

And by the theory they ought to have fallen in the time of very nearly

64 Vz oscillations.

From these experiments it is obvious that when the balls fell slowly

(as in the second, fourth, fifth, eighth, eleventh, and twelfth experiments),

the times of falling are shown correctly by the theory, but that when the

balls fell more quickly (as in the sixth, ninth, and tenth experiments), the
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resistance was a little greater than in the squared ratio of the velocity. For

the balls oscillate somewhat while falling, and this oscillation—in balls that

are lighter and fall more slowly—ceases swiftly because the motion is weak,

while in heavier and larger balls, because the motion is strong, the oscillation

lasts longer and can be checked by the surrounding water only after more

oscillations. Additionally, the swifter the balls, the less they are pressed by the

fluid in back of them; and if the velocity is continually increased, they will

at length leave an empty space behind, unless the compression of the fluid

is simultaneously increased. The compression of the fluid, moreover, ought

(by props. 32 and 33) to be increased in the squared ratio of the velocity

in order for the resistance also to be in a squared ratio. Since this does not

happen, the swifter balls are pressed a little less from behind, and because of

this diminished pressure their resistance becomes a little greater than in the

squared ratio of the velocity.

The theory therefore agrees with the phenomena of bodies falling in

water; it remains for us to examine the phenomena of bodies falling in air.

EXPERIMENT 13. aFrom the top of St. Paul's Cathedral in London3 in

June 1710, glass balls were dropped simultaneously in pairs, one full of quick-

silver, the other full of air; and in falling they described a space of 220 London

feet. A wooden platform was suspended at one end by iron pivots, and at the

other was supported by a wooden peg. The two balls were placed upon this

platform and were let fall simultaneously by pulling out the peg by means

of an iron wire extending to the ground, so that the platform, resting on the

iron pivots alone, might swing downward upon the pivots and at the same

moment a seconds pendulum, pulled by that iron wire, might be released

and begin to oscillate. The diameters and weights of the balls and the times

of falling are shown in the following table.

However, the observed times need to be corrected. For balls filled with

mercury will (by Galileo's theory) describe 257 London feet in 4 seconds,

and 220 feet in only 3 seconds 42 thirds. The wooden platform, when the

aa. In expt. 13, Newton writes of weights being dropped "a culmine ecclesiae Sancti Pauli, in urbe

Londini." Newton is not referring to St. Paul's Church in Covent Garden, as is obvious from the fact

that the distance through which the weights are let fall is 220 London feet. The only house of worship

that tall (about twenty stories) was St. Paul's Cathedral. That these experiments were conducted in St.

Paul's Cathedral is evident from the fact that in the cathedral there is a balcony, just below the cupola, at

a height corresponding to Newton's 220 London feet. See, below, the note to expt. 14.
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Balls full of mercury

Weights

grains

908
983
866
747
808
784

Diameters

inches

0.8
0.8
0.8
0.75

0.75

0.75

Times of falling

seconds

4
4-
4
4+
4
4+

Balls full of air

Weights

grains

510
642
599
515
483
641

Diameters

inches

5.1
5.2
5.1
5.0
5.0
5.2

Times of falling

seconds

81/2

8
8
81/4

81/2

8

peg was withdrawn, swung downward more slowly than it should have [i.e.,

more slowly than in free fall] and as a result impeded the descent of the balls

at the start. For the balls were lying upon the platform near its center, and

were in fact a little closer to the pivots than to the peg. And hence the times

of falling were prolonged by roughly 18 thirds and so need to be corrected

by taking away those thirds, especially in the larger balls, which because of

the magnitude of their diameters remained a little longer upon the platform

as it swung downward. When this has been done, the times in which the

six larger balls fell will come out 8 sec. 12 thirds, 7 sec. 42 thirds, 7 sec. 42

thirds, 7 sec. 57 thirds, 8 sec. 12 thirds, and 7 sec. 42 thirds.

Therefore the fifth of those balls filled with air, with a diameter of 5

inches and a weight of 483 grains, fell in the time of 8 sec. 12 thirds, describ-

ing the space of 220 feet. The weight of water equal to this ball is 16,600

grains; and the weight of air equal to it is ' grains, or 193/io grains, and
860

thus the weight of the ball in a vacuum is 502Mo grains, and this weight is

to the weight of air equal to the ball as 502Mo to 19Mo, as is the ratio of 2F

to 8/3 of the diameter of the ball (that is, 2F to 131/3 inches). And hence 2F

comes out 28 feet 11 inches. The ball in falling in a vacuum, with its whole

weight of 502Mo grains, in the time of one second describes 1931/3 inches as

above, and with a weight of 483 grains describes 185.905 inches, and with

the same weight of 483 grains also in a vacuum describes the space F, or 14

feet 51/2 inches, in the time of 57 thirds 58 fourths, and attains the greatest

velocity with which it could descend in air. With this velocity the ball, in the

time of 8 sec. 12 thirds, will describe a space of 245 feet 51/s inches. Take

away 1.3863F, or 20 feet Vi inch, and there will remain 225 feet 5 inches. It

is this space, therefore, that the ball should, by the theory, have described in

g r a i n s ;  a n d  t h e  w e i g h t  o f  a i r  e q u a l  t o  i t  i s  '  g r a i n s ,  o r  1 9 3 / i o  g r a i n s ,  a n d
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falling in the time of 8 sec. 12 thirds. And it described a space of 220 feet in

the experiment. The difference is negligible.

Applying similar computations also to the remaining balls filled with air,

I constructed the following table.

Weights of

the balls

grains

510
642
599
515
483
641

Diameters

inches

5.1
5.2
5.1
5
5
5.2

Times of falling

from a height

of 220 feet

seconds

8
7
7
7
8
7

thirds

12
42
42
57
12
42

Spaces to be

described by

the theory

feet

226
230
227
224
225
230

inches

11

9
10
5
5
7

Excesses

feet

. 6

10
7
4
5

10

inches

11

9
10
5
5
7

EXPERIMENT 14. In July 1719, Dr. Desaguliers made experiments of this

sort again, making hogs' bladders into a round shape by means of a concave

wooden sphere, which the moist bladders, inflated with air, were forced to

fill; after they were dried and taken out, they were dropped bfrom the lantern

at the top of the cupola of the same cathedral, that is, from a height of 272

feet,b and at the same moment a lead ball was also dropped, whose weight

was roughly two pounds troy. And meanwhile some people standing in the

highest part of St. Paul's where the balls were released noted the whole times

of falling, and others standing on the ground noted the difference between

the times of fall of the lead ball and of the bladder. And the times were

measured by half-second pendulums. And one of those who were standing

on the ground had a clock with an oscillating spring, vibrating four times

per second; someone else had another machine ingeniously constructed with

a pendulum also vibrating four times per second. And one of those who

were standing in the gallery of the cupola had a similar device. And these

instruments were so constructed that their motions might begin or be stopped

at will. The lead ball fell in a time of roughly 41/4 seconds. And by adding

bb. Newton here writes of weights dropped "ab altiore loco in templi ejusdem turri rotunda fornicata,

nempe ab altitudine pedum 272," that is, "from a higher place in the round arched tower [i.e., from the

lantern at the top of the cupola] of the same cathedral." This position corresponds to the height given by

Newton, 272 feet.
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this time to the aforesaid difference between the times, the whole time in

which the bladder fell was determined. The times in which the five bladders

continued to fall after the lead ball had completed its fall were 143/4 sec.,

123/4 sec., 145/s sec., 173/4 sec., and 167/8 sec. the first time, and HVz sec.,

1414 sec., 14 sec., 19 sec., and 163/4 sec. the second time. Add 41/4 sec., the time

in which the lead ball fell, and the whole times in which the five bladders

fell were 19 sec., 17 sec., 187/s sec., 22 sec., and 21 Vs sec. the first time, and

183/4 sec., ISVi sec., 181/4 sec., 231/4 sec., and 21 sec. the second time. And the

times noted from the cupola were 193/s sec., 17 {A sec., 183/4 sec., 22 Vs sec.,

and 215/g sec. the first time, and 19 sec., 185/s sec., 183/s sec., 24 sec., and 2114

sec. the second time. But the bladders did not always fall straight down, but

sometimes flew about and oscillated to and fro while falling. And the times

of falling were prolonged and increased by these motions, sometimes by one-

half of one second, sometimes by a whole second. The second and fourth

bladders, moreover, fell straighter down the first time, as did the first and

third the second time. The fifth bladder was wrinkled and was somewhat

retarded by its wrinkles. I calculated the diameters of the bladders from their

circumferences, measured by a very thin thread wound round them twice.

And I compared the theory with the experiments in the following table,

assuming the density of air to be to the density of rainwater as 1 to 860, and

calculating the spaces that the balls should, by the theory, have described in

falling.

Weights of

bladders

grains

128
156
137 1/2
971/2
99V*

Times of falling Spaces to be described

from a height in those same times,

Diameters

inches

5.28
5.19
5.3
5.26
5

of 272 feet

seconds

19
17
181/2

22

21 1/8

Difference

between theory

according to the theory and experiments

feet

271
272
272
277
282

inches

11

01/2

7
4
0

feet

- 0

+ 0
+ 0
+ 5

+ 10

inches

1

Ql/2

7
4
0

Therefore almost all the resistance encountered by balls moving in air as

well as in water is correctly shown by our theory, and is proportional to the

density of the fluids—the velocities and sizes of the balls being equal.
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In the scholium at the end of sec. 6, we showed by experiments with

pendulums that the resistances encountered by equal and equally swift balls

moving in air, water, and quicksilver are as the densities of the fluids. We

have shown the same thing here more accurately by experiments with bodies

falling in air and water. For pendulums in each oscillation arouse in the fluid

a motion always opposite to the motion of the pendulum when it returns; and

the resistance arising from this motion, and also the resistance to the cord

by which the pendulum was suspended, made the whole resistance to the

pendulum greater than the resistance found by the experiments with falling

bodies. For by the experiments with pendulums set forth in that scholium, a

ball of the same density as water ought, in describing the length of its own

semidiameter in air, to lose —-— of its motion. But by the theory set forth in

this seventh section and confirmed by experiments with falling bodies, that

same ball ought, in describing that same length, to lose only of its
4,586

motion, supposing that the density of water is to the density of air as 860

to 1. The resistances therefore were found to be greater by the experiments

with pendulums (for the reasons already described) than by the experiments

with falling balls, and in a ratio of roughly 4 to 3. But since the resistances

to pendulums oscillating in air, water, and quicksilver are increased similarly

by similar causes, the proportion of the resistances in these mediums will be

shown correctly enough by the experiments with pendulums as well as by

the experiments with falling bodies. And hence it can be concluded that the

resistances encountered by bodies moving in any fluids that are very fluid,

other things being equal, are as the densities of the fluids.

On the basis of what has been established, it is now possible to predict

very nearly what part of the motion of any ball projected in any fluid will

be lost in a given time. Let D be the diameter of the ball, and V its velocity

at the beginning of the motion, and T the time in which the ball will—with

velocity V in a vacuum—describe a space that is to the space 8/;D as the

density of the ball to the density of the fluid; then the ball projected in that

*V . . /
fluid will, in any other time £, lose the part of its velocity I the part

TV \
remaining I and will describe a space that is to the space described in

a vacuum in the same time with the uniform velocity V as the logarithm of

same ball ought, in describing that same length, to lose only of its

*V . . /

(

(

( )
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the number multiplied by the number 2.302585093 is to the number

£/T, by prop. 35, corol. 7. In slow motions the resistance can be a little

less, because the shape of a ball is a little more suitable for motion than the

shape of a cylinder described with the same diameter. In swift motions the

resistance can be a little greater, because the elasticity and the compression

of the fluid are not increased in the squared ratio of the velocity. But here I

am not considering petty details of this sort.

And even if air, water, quicksilver, and similar fluids, by some infinite di-

vision of their parts, could be subtilized and become infinitely fluid mediums,

they would not resist projected balls any the less. For the resistance which is

the subject of the preceding propositions arises from the inertia of matter; and

the inertia of matter is essential to bodies and is always proportional to the

quantity of matter. By the division of the parts of a fluid, the resistance that

arises from the tenacity and friction of the parts can indeed be diminished,

but the quantity of matter is not diminished by the division of its parts; and

since the quantity of matter remains the same, its force of inertia—to which

the resistance discussed here is always proportional—remains the same. For

this resistance to be diminished, the quantity of matter in the spaces through

which bodies move must be diminished. And therefore the celestial spaces,

through which the globes of the planets and comets move continually in all

directions very freely and without any sensible diminution of motion, are

devoid of any corporeal fluid, except perhaps the very rarest vapors and rays

of light transmitted through those spaces.

Projectiles, of course, arouse motion in fluids by going through them,

and this motion arises from the excess of the pressure of the fluid on the

front of the projectile over the pressure on the back, and cannot be less in

infinitely fluid mediums than in air, water, and quicksilver in proportion

to the density of matter in each. And this excess of pressure, in proportion

to its quantity, not only arouses motion in the fluid but also acts upon the

projectile to retard its motion; and therefore the resistance in every fluid is

as the motion excited in the fluid by the projectile, and it cannot be less in

the most subtle aether, in proportion to the density of the aether, than in air,

water, and quicksilver, in proportion to the densities of these fluids.

t h e  n u m b e r  m u l t i p l i e d  b y  t h e  n u m b e r  2 . 3 0 2 5 8 5 0 9 3  i s  t o  t h e  n u m b e r

t h e  n u m b e r  m u l t i p l i e d  b y  t h e  n u m b e r  2 . 3 0 2 5 8 5 0 9 3  i s  t o  t h e  n u m b e r
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Motion propagated through fluids

Proposition 41 Pressure is not propagated through a fluid along straight lines, unless the particles

Theorem 32 of the fluid lie in a straight line.

If the particles a, b, c, d, and e lie in a straight line, a pressure can indeed

be propagated directly from a to e\ but the particle e will urge the obliquely

placed particles f and g obliquely, and those particles

f and g will not sustain the pressure brought upon

them unless they are supported by the further particles

h and ^; but to the extent that they are supported,

they press the supporting particles, and these will not

sustain the pressure unless they are supported by the

further particles / and m and press them, and so on indefinitely. Therefore,

as soon as a pressure is propagated to particles which do not lie in a straight

line, it will begin to spread out and will be obliquely propagated indefinitely;

and after the pressure begins to be propagated obliquely, if it should impinge

upon further particles which do not lie in a straight line, it will spread out

again, and will do so as often as it impinges upon particles not lying exactly

in a straight line. Q.E.D.

COROLLARY. If some part of a pressure propagated through a fluid from

a given point is intercepted by an obstacle, the remaining part (which is not

intercepted) will spread out into the spaces behind the obstacle. This can

be proved as follows. From point A let a pressure be propagated in any

direction and, if possible, along straight lines; and by the obstacle NBCK,

perforated in BC, let all the pressure be intercepted except the cone-shaped

part APQ, which passes through the circular hole BC. By transverse planes

de, fg, and hi, divide the cone APQ into frusta; then, while the cone ABC,

by propagating the pressure, is urging the further conic frustum degf on

the surface de, and this frustum is urging the next frustum fgih on the

surface fg, and that frustum is urging a third frustum, and so on indefinitely,

obviously (by the third law of motion) the first frustum defg will be as much

urged and pressed on the surface fg by the reaction of the second frustum

fghi as it urges and presses the second frustum. Therefore the frustum degf

between the cone Ade and the frustum fhig is compressed on both sides,

4°8 BOOK 2, SECTION 8
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and therefore (by book 2, prop. 19, case 6) it cannot keep its figure unless it

is compressed by the same force on all sides. With the same force, therefore,

with which it is pressed on the surfaces de and fg, it will endeavor to yield

at the sides df and eg', and there (since it is not rigid, but altogether fluid)

it will run out and expand, unless a surrounding fluid is present to restrain

that endeavor. Accordingly, by the endeavor to run out, it will press the

surrounding fluid at the sides df and eg, as well as the frustum fghi, with

the same force; and therefore the pressure will be no less propagated from

the sides df and eg into the spaces NO on one side and KL on the other,

than it is propagated from the surface fg toward PQ. Q.E.D.

All motion propagated through a fluid diverges from a straight path into the Proposition 42

motionless spaces.

CASE 1. Let a motion be propagated from point A through a hole BC,

and let it proceed, if possible, in the conic space BCQP along straight lines

diverging from point A. And let us suppose first that this motion is that

of waves on the surface of stagnant water. And let de, fg, hi, ^l, . . . be

the highest parts of the individual waves, separated from one another by the

same number of intermediate troughs. Therefore, since the water is higher

in the crests of the waves than in the motionless parts LK and NO of the

Theorem 33
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fluid, it will flow down from e, g, / , / , . . . , and d, /, h, ^, . . . , the ends of

the crests, toward KL on one side and NO on the other; and since it is lower

in the troughs of the waves than in the motionless parts KL and NO of the

fluid, it will flow down from those motionless parts into the troughs of the

waves. In one case the crests of the waves, and in the other their troughs, are

expanded and propagated toward KL on one side and NO on the other. And

since the motion of the waves from A toward PQ takes place by the continual

flowing down of the crests into the nearest troughs, and thus is not quicker

than in proportion to the quickness of the descent, and since the descent of

the water toward KL on one side and NO on the other ought to occur with

the same velocity, the expansion of the waves will be propagated toward KL

on one side and NO on the other with the same velocity with which the

waves themselves progress directly from A toward PQ. And accordingly the

whole space toward KL on one side and NO on the other will be occupied

by the expanded waves rfgr, shis, t\lt, vmnv, . . . . Q.E.D. Anyone can

test this in stagnant water.

CASE 2. Now let us suppose that de, fg, hi, ̂ /, and mn designate pulses

successively propagated from point A through an elastic medium. Think of

the pulses as propagated by successive condensations and rarefactions of the

medium, in such a way that the densest part of each pulse occupies a spher-
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ical surface described about the center A, and that the spaces which come

between successive pulses are equal. And let de, fg, hi, ^/, ... designate

the densest parts of the pulses, parts which are propagated through the hole

BC. And since the medium is denser there than in the spaces toward KL

on one side and NO on the other, it will expand toward those spaces KL

and NO situated on both sides as well as toward the rarer intervals between

the pulses; and thus, always becoming rarer next to the intervals and denser

next to the pulses, the medium will participate in their motion. And since

the progressive motion of the pulses arises from the continual slackening of

the denser parts toward the rarer intervals in front of them, and since the

pulses ought to slacken with nearly the same speed into the medium's parts

KL on one side and NO on the other, which are at rest, those pulses will

expand on all sides into the motionless spaces KL and NO with nearly the

same speed with which they are propagated straight forward from the center

A, and thus will occupy the whole space KLON. Q.E.D. We find this by

experience in the case of sounds, which are heard when there is a mountain

in the way or which expand into all parts of a room when let in through a

window and are heard in all corners, being not so much reflected from the

opposite walls as propagated directly from the window, as far as the senses

can tell.

CASE 3. Finally, let us suppose that a motion of any kind is propagated

from A through the hole BC. That propagation does not occur except insofar

as the parts of the medium that are nearer to the center A urge and move

the further parts; and the parts that are urged are fluid and thus recede in

every direction into regions where they are less pressed, and so will recede

toward all the parts of the medium that are at rest, the parts KL and NO

on the sides as well as the parts PQ in front. And therefore all the motion,

as soon as it has passed through the hole BC, will begin to spread out and

to be propagated directly from there into all parts as if from an origin and

center. Q.E.D.

Every vibrating body in an elastic medium will propagate the motion of the Proposition 43

pulses straight ahead in every direction, but in a nonelastic medium will produce Theorem 34

a circular motion.

CASE 1. For the parts of a vibrating body, by going forward and return-

ing alternately, will in their going urge and propel the parts of the medium
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that are nearest to them and by that urging will compress and condense

them; then in their return they will allow the compressed parts to recede

[i.e., to move apart from one another] and expand. Thus the parts of the

medium that are nearest to the vibrating body will go and return alternately,

like the parts of the vibrating body; and just as the parts of this body acted

upon the parts of the medium, so the latter, acted upon by similar vibrations,

will act upon the parts nearest to them, and these, similarly acted upon, will

act upon further parts, and so on indefinitely. And just as the first parts of

the medium condense in going and rarefy in returning, so the remaining

parts will condense whenever they go and will expand [i.e., rarefy] whenever

they return. And therefore they will not all go and return at the same time

(for thus, by keeping determined distances from one another, they would not

rarefy and condense alternately), but by approaching one another when they

condense and moving apart when they rarefy, some of them will go while

others return, and these conditions will alternate indefinitely. And the parts

that are going and that condense in going (because of their forward motion

with which they strike obstacles) are pulses; and therefore successive pulses

will be propagated straight ahead from every vibrating body, and they will

be so propagated at roughly equal distances from one another, because of

the equal intervals of time in which the body produces each pulse by each

of its vibrations. And even if the parts of the vibrating body go and return

in some fixed and determined direction, nevertheless the pulses propagated

from there through the medium will (by prop. 42) expand sideways and will

be propagated in all directions from the vibrating body as if from a common

center, in surfaces almost spherical and concentric. We have an example of

this in waves, which, if they are produced by a wagging finger, not only will

go to and fro according to the finger's motion but will immediately surround

the finger like concentric circles and will be propagated in all directions. For

the gravity of the waves takes the place of the elastic force.

CASE 2. But if the medium is not elastic, then, since its parts, pressed by

the oscillating parts of the vibrating body, cannot be condensed, the motion

will be propagated instantly to the parts where the medium yields most easily,

that is, to the parts that the vibrating body would otherwise leave empty

behind it. The case is the same as the case of a body projected in any medium.

A medium, in yielding to projectiles, does not recede indefinitely, but goes

with a circular motion to the spaces that the body leaves behind it. Therefore,
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whenever a vibrating body goes toward any place [or in any direction], the

medium, in yielding, will go with a circular motion to the spaces that the

body leaves; and whenever the body returns to its former place, the medium

will be forced out and will return to its former place. And even though the

vibrating body is not rigid but completely pliant, if it nevertheless remains

of a fixed size, then, since it cannot urge the medium by its vibrations in

any one place without simultaneously yielding to it in another, that body will

make the medium, by receding from the parts where it is pressed, go always

with a circular motion to the parts that yield to it. Q.E.D.

COROLLARY. Therefore it is a delusion to believe that the agitation of the

parts of flame conduces to the propagation of a pressure along straight lines

through a surrounding medium. A pressure of this sort must be derived not

only from the agitation of the parts of the flame but from the dilation of the

whole.

If water ascends and descends alternately in the vertical arms KL and MN of Proposition 44

a tube, and if a pendulum is constructed whose length between the point of Theorem 35

suspension and the center of oscillation is equal to half of the length of the water

in the tube, then I say that the water will ascend and descend in the same times

in which the pendulum oscillates.

I measure the length of the water along the axes of the tube and the

arms and make it equal to the sum of these axes, and I do not here consider

the resistance of the water that arises from the friction of the tube. Let AB

and CD therefore designate the mean height of the water in the two arms,

and when the water in the arm KL ascends to the height EF, the water

in the arm MN will have descended to the height GH. Moreover, let P

be a pendulum bob, VP the cord, V the point of suspension, RPQS the
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cycloid described by the pendulum, P its lowest point, and PQ an arc equal

to the height AE. The force by which the motion of the water is alternately

accelerated and retarded is the amount by which the weight of the water

in one of the two arms exceeds the weight in the other. And thus, when

the water in the arm KL ascends to EF, and in the other arm descends to

GH, that force is twice the weight of the water EABF and therefore is to

the weight of all the water as AE or PQ to VP or PR. Furthermore, the

force by which the weight P in any place Q is accelerated and retarded in

the cycloid is (by book 1, prop. 51, corol.) to its whole weight as its distance

PQ from the lowest place P to the length PR of the cycloid. Therefore the

motive forces of the water and the pendulum, describing the equal spaces

AE and PQ, are as the weights that are to be moved; and thus, if the water

and the pendulum are at rest in the beginning, those forces will move them

equally in equal times and will cause them to go and return synchronously

with an alternating motion. Q.E.D.

COROLLARY 1. Therefore all the alternations of the ascending and de-

scending water are isochronous, whether the motion is of greater intension

or greater remission.3

COROLLARY 2. If the length of all the water in the tube is 6Vg Paris

feet, the water will descend in the time of one second and will ascend in

another second and will continue to alternate in this way indefinitely. For a

pendulum 3 Ms feet long oscillates in the time of one second.

COROLLARY 3. When the length of the water is increased or decreased,

moreover, the time of alternation is increased or decreased as the square root

of the length.

Proposition 45 The velocity of waves is as the square roots of the lengths.

Theorem 36 This follows from the construction of the following proposition.

Proposition 46 To find the velocity of waves.

Problem 10 Set up a pendulum whose length between the point of suspension and

the center of oscillation is equal to the length of the waves; and in the same

time in which the pendulum performs each of its oscillations, the waves as

they move forward will traverse nearly their own lengths.

a. Newton evidently is referring to amplitude.
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By length of a wave I mean the transverse distance either between bot-

toms of troughs or between tops of crests. Let ABCDEF designate the surface

of stagnant water ascending and descending in successive waves; and let A,

C, E, . .. be the crests of the waves, and B, D, F, . . . the troughs in between.

Since the motion of the waves is caused by the successive ascent and descent

of the water, in such a way that its parts, A, C, E, . .., which now are

highest, soon become lowest, and since the motive force by which the highest

parts descend and the lowest ascend is the weight of the elevated water, the

alternate ascent and descent will be analogous to the alternating motion of

the water in the tube and will observe the same laws with respect to times;

and therefore (by prop. 44), if the distances between the highest places A,

C, and E of the waves and the lowest, B, D, and F, are equal to twice the

length of a pendulum, the highest parts A, C, and E will in the time of one

oscillation come to be the lowest, and in the time of a second oscillation will

ascend once again. Therefore there will be a time of two oscillations between

successive waves; that is, a wave will describe its own length in the time in

which the pendulum oscillates twice; but in the same time a pendulum whose

length is four times as great, and thus equals the length of the waves, will

oscillate once. Q.E.I.

COROLLARY 1. Therefore waves with a length of 3 Vis Paris feet will

move forward through their own length in the time of one second and thus

in the time of one minute will traverse 1831/s feet, and in the space of an

hour very nearly 11,000 feet.

COROLLARY 2. And the velocity of waves of greater or smaller length

will be increased or decreased as the square root of the length.

What has been said is premised on the hypothesis that the parts of the

water go straight up or straight down; but this ascent and descent takes place

more truly in a circle, and thus I admit that in this proposition the time has

been determined only approximately.

If pulses are propagated through a fluid, the individual particles of the fluid, going Proposition 47

and returning with a very short alternating motion, are always accelerated and Theorem 37

retarded in accordance with the law of an oscillating pendulum.
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Let AB, BC, CD, ... designate the

equal distances between successive pulses;

ABC the line of motion of the pulses,

propagated from A toward B; E, F, and

G three physical points in the medium

at rest, situated at equal intervals along

the straight line AC; Ee, F/, and Gg

very short equal spaces through which

those points go and return in each vibra-

tion with an alternating motion; £, <p, y

any intermediate positions of those same

points; and EF and FG physical line-

elements or linear parts of the medium,

put between those points and successively

transferred into the places 8(p, <py and
ef> fS- Draw the straight line PS equal

to the straight line Re. Bisect PS in O,

and with center O and radius OP de-

scribe the circle SIP/.

Let the whole circumference of this

circle with its parts represent the whole

time of one vibration with its propor-

tional parts, in such a way that when

any time PH or PHSA is completed, if

the perpendicular HL or hi is dropped

to PS, and if E£ is taken equal to PL

or P/, then the physical point E is found

in e. By this law any point E, in going

from E through e to e and returning

from there through e to E, will perform each vibration with the same de-

grees of acceleration and retardation as the oscillating pendulum. It is to be

proved that each of the physical points of the medium must move in such a

way. Let us imagine, therefore, that there is such a motion in the medium,

arising from any cause, and see what follows.

In the circumference PHS/r take the equal arcs HI and IK or hi and

/^, having the ratio to the whole circumference that the equal straight lines
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EF and FG have to the whole interval BC between pulses. Drop the per-

pendiculars IM and KN and also im and fa. Then the points E, F, and G

are successively agitated with similar motions and carry out their complete

vibrations (consisting of a going and returning) while a pulse is transferred

from B to C; accordingly, if PH or PHSh is the time from the beginning

of the motion of point E, PI or PHS/ will be the time from the beginning

of the motion of point F, and PK or PHS^ will be the time from the be-

ginning of the motion of point G; and therefore E£, F<p, and Gy will be

equal respectively to PL, PM, and PN in the going of the points, or to P/,

Pm, and Pn in the returning of the points. Hence sy or EG + Gy — E£

will be equal to EG — LN in the going of the points, and will be equal to

EG + In in their returning. But sy is the width or expansion of the part of

the medium EG in the place £y; and therefore the expansion of that part in

the going is to its mean expansion as EG — LN to EG, and in the returning

is as EG + In or EG + LN to EG. Therefore, since LN is to KH as IM to

the radius OP, and KH is to EG as the circumference PHSAP to BC, that

is (if V is put for the radius of a circle having a circumference equal to the

interval between the pulses BC), as OP to V, and since, from the equality of

the ratios [or ex aequo], LN is to EG as IM to V, the expansion of the part

EG or of the physical point F in the place sy will be to the mean expansion

which that part has in its own first place EG as V — IM to V in the going,

and as V + im to V in the returning. Hence the elastic force of point F in

the place sy is to its mean elastic force in the place EG as to — in

the going, and as to — in the returning. And by the same argument
V + / m V

the elastic forces of the physical points E and G in the going are as
1 1  .  V - H L

and to —: and the difference between the forces is to the mean

elastic force or the medium as to
V2 - V x HL - V x KN + HL x KN

1 H L - K N 1
—, that is, as to —, or as HL — KN to V, provided that (be-

cause of the narrow limits of the vibrations) we suppose HL and KN to

be indefinitely smaller than the quantity V. Therefore, since the quantity V

is given, the difference between the forces is as HL — KN, that is, as OM

(because HL — KN is proportional to HK and OM to OI or OP; and HK

and OP are given)—that is, if F/ is bisected in ft, as ft<p. And by the same

— ,  t h a t  i s ,  a s  t o  — ,  o r  a s  H L  —  K N  t o  V ,  p r o v i d e d  t h a t  ( b e -

e l a s t i c  f o r c e  o r  t h e  m e d i u m  a s  t oa n d  t o  — :  a n d  t h e  d i f f e r e n c e  b e t w e e n  t h e  f o r c e s  i s  t o  t h e  m e a n

1 1  .  V - H L

t h e  g o i n g ,  a n d  a s  t o  —  i n  t h e  r e t u r n i n g .  A n d  b y  t h e  s a m e  a r g u m e n t

t h e  p l a c e  s y  i s  t o  i t s  m e a n  e l a s t i c  f o r c e  i n  t h e  p l a c e  E G  a s  t o  —  i n

t h e  p l a c e  s y  i s  t o  i t s  m e a n  e l a s t i c  f o r c e  i n  t h e  p l a c e  E G  a s  t o  —  i n

the place sy is to its mean elastic force in the place EG as to — in
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argument the difference between the elastic forces of the physical points s

and y, in the returning of the physical line-element sy, is as £l<p. But that

difference (that is, the amount by which the elastic force of point e exceeds

the elastic force of point y) is the force by which the intervening physical

line-element sy of the medium is accelerated in the going and retarded in

the returning; and therefore the accelerative force of the physical line-element

sy is as its distance from the midpoint H of the vibration. Accordingly, the

time (by book 1, prop. 38) is correctly represented by the arc PI, and the

linear part sy of the medium moves by the law previously mentioned, that

is, by the law of an oscillating pendulum; and the same is true of all the

linear parts of which the whole medium is composed. Q.E.D.

COROLLARY. Hence it is evident that the number of pulses propagated

is the same as the number of vibrations of the vibrating body and does not

increase as the pulses move forward. For as soon as the physical line-element

sy has returned to its first place, it will be at rest and will not move afterward

unless it receives a new motion either by the impact of the vibrating body or

by the impact of pulses that are propagated from the vibrating body. It will

be at rest, therefore, as soon as the pulses cease to be propagated from the

vibrating body.

Proposition 48 The velocities of pulses propagated in an elastic fluid are as the square root of the

Theorem 38 elastic force directly and the square root of the density inversely, provided that the

elastic force of the fluid is proportional to its condensation.

CASE 1. If the mediums are homogeneous and the distances between

pulses in these mediums are equal to one another, but the motion in one

medium is more intense, then the contractions and expansions of correspond-

ing parts will be as the motions. In fact, this proportion is not exact. Even so,

unless the contractions and expansions are extremely intense, the error will

not be perceptible, and thus the proportion can be considered physically ex-

act. But the motive elastic forces are as the contractions and expansions; and

the velocities—generated in the same time—of equal parts are as the forces.

And thus equal and corresponding parts of corresponding pulses will go and

return together through spaces proportional to the contractions and expan-

sions, with velocities that are as the spaces; and therefore the pulses, which

advance through their own length in the time of one going and returning
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and which always succeed into the places of the immediately preceding pulses,

will progress in both mediums with an equal velocity, because of the equality

of the distances.

CASE 2. But if the distances between pulses, or their lengths, are greater

in one medium than in the other, let us suppose that the corresponding

parts by going and returning in each alternation describe spaces propor-

tional to the lengths of the pulses; then their contractions and expansions

will be equal. And thus if the mediums are homogeneous, those motive

elastic forces by which they are agitated with an alternating motion will

also be equal. But the matter to be moved by these forces is as the length

of the pulses; and the space through which they must move by going and

returning in each alternation is in the same ratio. And the time of going

and returning is jointly proportional to the square root of the matter and

the square root of the space and thus is as the space. But the pulses ad-

vance through their own lengths in the times of one going and returning,

that is, traverse spaces proportional to the times, and therefore have equal

velocities.

CASE 3. In mediums of the same density and elastic force, therefore,

all pulses have equal velocities. But if either the density or the elastic force

of the medium is intended [i.e., increased], then, since the motive force is

increased in the ratio of the elastic force, and the matter to be moved is

increased in the ratio of the density, the time in which the same motions as

before can be performed will be increased as the square root of the density

and will be decreased as the square root of the elastic force. And therefore

the velocity of the pulses will be jointly proportional to the square root of

the density of the medium inversely and the square root of the elastic force

directly. Q.E.D.

This proposition will be clearer from the construction of the following

proposition.

Given the density and elastic force of a medium, it is required to find the velocity Proposition 49

of the pulses. Problem 11

Let us imagine the medium to be compressed, as our air is, by an in-

cumbent weight and let A be the height of a homogeneous medium whose

weight is equal to the incumbent weight and whose density is the same as

the density of the compressed medium in which the pulses are propagated.
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And suppose that a pendulum is set up,

whose length between the point of sus-

pension and the center of oscillation is

A; then, in the same time in which that

pendulum performs an entire oscillation

composed of a going and a returning, a

pulse will advance through a space equal

to the circumference of a circle described

with radius A.

For with the same constructions as

in prop. 47, if any physical line EF,

describing the space PS in each single

vibration, is urged in the extremities P

and S of each going and returning by an

elastic force that is equal to its weight,

it will perform each single vibration

in the time in which it could oscillate

in a cycloid whose whole perimeter is

equal to the length PS; and this is so

because equal forces will simultaneously

impel equal corpuscles through equal

spaces. Therefore, since the times of the

oscillations are as the square root of the

length of the pendulums, and since the

length of the pendulum is equal to half

the arc of the whole cycloid, the time of

one vibration would be to the time of

oscillation of a pendulum whose length

is A as the square root of the length

ViPS or PO to the length A. But the elastic force by which the physical

line-element EG is urged in its extremities P and S was (in the proof of

prop. 47) to its whole elastic force as HL — KN to V, that is (since point K

now falls upon P), as HK to V; and that whole force, that is, the incumbent

weight by which the line-element EG is compressed, is to the weight of the

line-element as the height A of the incumbent weight to the length EG of

the line-element; and thus from the equality of the ratios [or ex aequo] the
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force by which the line-element EG is urged in its places P and S is to the

weight of that line-element as HK x A to V x EG, or as PO x A to V2

(for HK was to EG as PO to V). Therefore, since the times in which equal

bodies are impelled through equal spaces are inversely as the square root of

the forces, the time of one vibration under the action of that elastic force will

be to the time of the vibration, under the action of the force of weight, as the

square root of V2 to PO x A, and thus will be to the time of oscillation of a

/ V2 /PO
pendulum having a length A as / and / jointly, that is, as V

y JL^J x s\ y i\

to A. But in the time of one vibration, composed of a going and returning,

a pulse advances through its own length BC. Therefore the time in which

the pulse traverses the space BC is to the time of one oscillation (composed

of a going and returning) as V to A, that is, as BC to the circumference of

a circle whose radius is A. But the time in which the pulse will traverse the

space BC is in the same ratio to the time in which it will traverse a length

equal to this circumference; and thus in the time of such an oscillation the

pulse will traverse a length equal to this circumference. Q.E.D.

COROLLARY 1. The velocity of the pulses is that which heavy bodies

acquire in falling with a uniformly accelerated motion and describing by

their fall half of the height A. For in the time of this fall, with the velocity

acquired in falling, the pulse will traverse a space equal to the whole height

A; and thus in the time of one oscillation (composed of a going and returning)

it will traverse a space equal to the circumference of a circle described with

radius A; for the time of fall is to the time of oscillation as the radius of the

circle to its circumference.

COROLLARY 2. Hence, since that height A is as the elastic force of the

fluid directly and its density inversely, the velocity of the pulses will be as the

square root of the density inversely and the square root of the elastic force

directly.

To find the distances between pulses. Proposition 50

In a given time, find the number of vibrations of the body by whose Problem 12

vibration the pulses are excited. Divide by that number the space that a pulse

could traverse in the same time, and the part found will be the length of one

pulse. Q.E.I.
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Scholium The preceding propositions apply to the motion of light and of sounds. For

since light is propagated along straight lines, it cannot consist in action alone

(by props. 41 and 42). And because sounds arise from vibrating bodies, they

are nothing other than propagated pulses of air (by prop. 43). This is con-

firmed from the vibrations that they excite in bodies exposed to them, pro-

vided that they are loud and deep, such as the sounds of drums. For swifter

and shorter vibrations are excited with more difficulty. But it is also well

known that any sounds impinging upon strings in unison with the sonorous

bodies excite vibrations in them. It is confirmed also from the velocity of

sounds. For since the specific weights of rainwater and quicksilver are to

each other as roughly 1 to 132/3, and since, when the mercury in a barometer

reaches a height of 30 English inches, the specific weight of the air and that

of rainwater are to each other as roughly 1 to 870, the specific weights of

air and quicksilver will be as 1 to 11,890. Accordingly, since the height of

the quicksilver is 30 inches, the height of uniform air whose weight could

compress our air lying beneath it will be 356,700 inches, or 29,725 English

feet. And this height is the very one that we called A in the construction

of prop. 49. The circumference of a circle described with a radius of 29,725

feet is 186,768 feet. And since a pendulum 39 Vs inches long completes an

oscillation composed of a going and returning in the time of 2 seconds, as is

known, a pendulum 29,725 feet or 356,700 inches long must complete an en-

tirely similar oscillation in the time of 1903/4 seconds. In that time, therefore,

sound will advance 186,768 feet, and thus in the time of one second, 979 feet.
aBut in this computation no account is taken of the thickness of the solid

particles of air, a thickness through which sound is of course propagated

aa. Ed. 1 has: "Mersenne writes in prop. 35 of his Ballistics that he found by making experiments

that sound travels 1,150 French toises (that is, 6,900 French feet) in 5 seconds. Hence, since a French foot

is to an English foot as 1,068 to 1,000, sound will have to travel 1,474 English feet in the time of 1 second.

Mersenne also writes that the eminent geometer Roberval observed during the siege of Thionville that

the noise of cannons was heard 13 or 14 seconds after the fire was seen, although he was scarcely half a

league away from the cannons. A French league contains 2,500 toises, and thus, according to Roberval's

observation, in the time of 13 or 14 seconds sound traveled 7,500 Paris feet, and in the time of 1 second

560 Paris feet, or about 600 English feet. These observations are very different from one another, and our

computation falls in the middle. In the cloister of our college, which is 208 feet long, a sound excited at

either end makes a fourfold echo in four returnings. And by making experiments I found that at each

returning of the sound a pendulum of about 6 or 7 inches completed an oscillation, starting at the first

returning of the sound and completing its oscillation at the second one. I was not able to determine the

length of the pendulum exactly enough, but I judged that with a length of 4 inches the oscillations were
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instantaneously. Since the weight of air is to the weight of water as 1 to 870,

and since salts are nearly twice as dense as water, if the particles of air are

supposed to be of roughly the same density as the particles of either water or

salts, and if the rarity of air arises from the distances between the particles,

the diameter of a particle of air will be to the distance between the centers of

the particles roughly as 1 to 9 or 10, and to the distance between the particles

as 1 to 8 or 9. Accordingly, to the 979 feet which sound will travel in the

979time of 1 second according to the above calculation, —- feet or roughly 109

feet may be added, because of the density of the particles of air; and thus

sound will travel roughly 1,088 feet in the time of 1 second.

Additionally, the vapors lying hidden in the air, since they are of another

elasticity and another tone, participate scarcely or not at all in the motion of

the true air by which sounds are propagated. And when these vapors are at

rest, that motion will be propagated more swiftly through the true air alone

too fast and that with a length of 9 inches they were too slow. Hence in going and returning the sound

traveled 416 feet in a smaller time than that in which a pendulum of 9 inches oscillates and in a greater

time than a pendulum of 4 inches, that is, in a smaller time than 283/» thirds and a greater than 19'/6. And

therefore in the time of 1 second the sound travels more than 866 English feet and fewer than 1,272 and

thus is faster than according to Roberval's observation and slower than according to Mersenne's. Further,

by more accurate observations made afterward, I determined that the length of the pendulum ought to

be greater than 5'/2 inches and less than 8 inches and thus that sound in the time of 1 second traveled

more than 920 English feet and fewer than 1,085. Therefore the motion of sounds, being between these

limits according to the geometrical calculation given above, squares with the phenomena insofar as it has

been possible to test it up to now. Accordingly, since this motion depends on the density of the whole air,

it follows that sounds consist not in the motion of aether or of some more subtle air but in the agitation

of the whole air.

"Certain experiments concerning sound propagated in vessels empty of air seem to contradict this, but

vessels can scarcely be emptied of all air; and when they are sufficiently emptied, sounds are noticeably

diminished. For example, if only a hundredth of the whole air remains in the vessel, a sound will have to

be a hundred times weaker and thus should not be less audible than if someone, hearing the same sound

excited in free air, immediately withdrew to ten times the distance from the sonorous body. Two equally

sonorous bodies therefore must be compared, of which one is in an emptied vessel and the other is in

free air and whose distances from the hearer are as the square roots of the densities of the air, and if the

sound of the former body does not exceed the sound of the latter, the objection will cease.

"Once the velocity of sounds has been found, the intervals between the pulses can also be found.

Mersenne writes (Harmonics, book 1, prop. 4) that (by making certain experiments which he describes in

the same place) he found that a stretched musical string vibrates 104 times in the space of 1 second when

it makes a unison with an open four-foot organ pipe or a stopped two-foot pipe, which organists call C fa

ut. Accordingly, there are 104 pulses in a space of 968 feet, the distance which sound travels in the time

of 1 second, and thus one pulse occupies a space of roughly 91/4 feet, that is, roughly twice the length of

the pipe. Hence it is likely that the lengths of the pulses in the sounds of all open pipes are equal to twice
the lengths of the pipes."

9
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as the square root of the ratio of the total atmosphere of air and vapor to the

matter of the particles of air alone. For example, if the atmosphere consists

of 10 parts of true air and 1 part of vapors, the motion of sounds will be

swifter as the square root of the ratio of 11 to 10, or in roughly the ratio of

21 to 20, than if it were propagated through 11 parts of true air; and thus

the motion of sounds that was found above will have to be increased in this

ratio. Thus in the time of 1 second, sound will travel 1,142 feet.

These things ought to be so in the springtime and autumn, when the air

is rarefied by the temperate heat and its elastic force is somewhat intended

[i.e., increased]. But in winter, when the air is condensed by the cold, and

its elastic force is remitted [i.e., decreased], the motion of sounds should be

slower as the square root of the density; and alternately, in summer it should

be swifter.

It is established by experiments, moreover, that in the time of 1 second

sounds advance through more or less 1,142 London feet, or 1,070 Paris feet.

Once the velocity of sounds has been found, the intervals between the

pulses can also be found. Sauveur found by making experiments that an open

pipe, whose length is more or less 5 Paris feet, produces a sound with the

same pitch as the sound of a string that vibrates a hundred times in 1 second.

Accordingly, there are more or less 100 pulses in the space of 1,070 Paris feet,

the distance which sound travels in the time of 1 second, and thus 1 pulse

occupies a space of about 107/io Paris feet, that is, roughly twice the length

of the pipe. Hence it is likely that the lengths of the pulses in the sounds of

all open pipes are equal to twice the lengths of the pipes.3

Furthermore, it is evident from book 2, prop. 47, corol., why sounds

immediately cease when the motion of the sonorous body ceases, and why

they are not heard for a longer time when we are very far distant from the

sonorous bodies than when we are very close. Why sounds are very much

increased in megaphones is also manifest from the principles set forth. For

every reciprocal motion is increased at each reflection by the generating cause.

And the motion is lost more slowly and is reflected more strongly in tubes

that impede the expansion of sounds, and therefore is more increased by the

new motion impressed at each reflection. And these are the major phenomena

of sounds.
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The circular motion of fluids

The resistance that arises from the friction [lit. lac\ of lubricity or slipperiness] of Hypothesis

the parts of a fluid is, other things being equal, proportional to the velocity with

which the parts of the fluid are separated from one another.

If an infinitely long solid cylinder revolves with a uniform motion in a uniform Proposition 51

and infinite fluid about an axis given in position, and if the fluid is made to Theorem 39

revolve by only the impulse of the cylinder, and if each part of the fluid perseveres

uniformly in its motion, then I say that the periodic times of the parts of the fluid

are as their distances from the axis of the cylinder.

Let AFL be the cylinder made to revolve uniformly about the axis S,

and divide the fluid into innumerable concentric solid cylindrical orbs3 of

the same thickness by the concentric cir-

cles BGM, CHN, DIG, EKP, Then,

since the fluid is homogeneous, the impres-

sions that contiguous orbs make upon one

another will (by hypothesis) be as their rel-

ative displacements and the contiguous sur-

faces on which the impressions are made.

If the impression upon some orb is greater

or less on its concave side than on its con-

vex side, the stronger impression will pre-

vail and will either accelerate or retard the motion of the orb, according as it

is directed the same way as its motion or the opposite way. Consequently, so

that each orb may persevere uniformly in its motion, the impressions on each

of the two sides should be equal and be made in opposite directions. Hence,

a. In props. 51 and 52, Newton is using the word "orb" in two closely related senses. One is that of

a series of nested hollow spheres or orbs, much as in the older Aristotelian universe, where the orbits of

the planets were considered to be embedded in a set of nesting or concentric hollow spherical shells or

orbs. In prop. 52, Newton writes of a set of "innumerable concentric orbs of the same thickness." In prop.

51, a similar concept is introduced for a cylinder, which Newton says is to be divided into "innumerable

concentric solid cylindrical orbs of the same thickness." Today it would not be usual to call such cylindrical

shells "orbs" as Newton did; nevertheless, we have kept Newton's "orbs" in prop. 51 so as to keep it in
harmony with the language of prop. 52.



426 BOOK 2, S E C T I O N 9

since the impressions are as the contiguous surfaces and their relative veloci-

ties, the relative velocities will be inversely as the surfaces, that is, inversely as

the distances of the surfaces from the axis. And the differences between the

angular motions about the axis are as these relative velocities divided by the

distances, or as the relative velocities directly and the distances inversely—

that is, if the ratios are compounded, as the squares of the distances inversely.

Therefore, if the perpendiculars Aa, B£, Cc, Dd, Ee, . . . , inversely propor-

tional to the squares of SA, SB, SC, SD, SE, ... , are erected to each of

the parts of the infinite straight line SABCDEQ and if a hyperbolic curve

is understood to be drawn through the ends of the perpendiculars, then the

sums of the differences, that is, the whole angular motions, will be as the

corresponding sums of the lines Aa, B£, Cc, DJ, E^; that is, if, in order to

make the medium uniformly fluid, the number of orbs is increased and their

width decreased indefinitely, as the hyperbolic areas AaQ, B£Q, C^rQ, DJQ,

E^Q, . .. , corresponding to these sums. And the times, which are inversely

proportional to the angular motions, will also be inversely proportional to

these areas. The periodic time of any particle D, therefore, is inversely as

the area D^Q, that is (by the known quadratures of curves), directly as the

distance SD. Q.E.D.

COROLLARY 1. Hence the angular motions of the particles of the fluid

are inversely as the distances of the particles from the axis of the cylinder,

and the absolute velocities are equal.

COROLLARY 2. If the fluid is contained in a cylindrical vessel of an infi-

nite length and contains another inner cylinder, and if both cylinders revolve

about a common axis, and the times of the revolutions are as the semidiame-

ters of the cylinders, and each part of the fluid perseveres in its motion, then

the periodic times of the individual parts will be as their distances from the

axis of the cylinders.

COROLLARY 3. If any common angular motion is added to, or taken

away from, the cylinder and the fluid moving in this way, then, since the

mutual friction of the parts of the fluid is not changed by this new motion,

the motions of the parts with respect to one another will not be changed. For

the relative velocities of the parts depend upon the friction. Any part will

persevere in that motion which is not more accelerated than retarded by the

friction on opposite sides in opposite directions.
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COROLLARY 4. Hence, if all the angular motion of the outer cylinder is

taken away from the whole system of the cylinders and fluid, the result will

be the motion of the fluid in the cylinder at rest.

COROLLARY 5. Therefore, if, while the fluid and outer cylinder are at

rest, the inner cylinder revolves uniformly, a circular motion will be commu-

nicated to the fluid and will be propagated little by little through the whole

fluid, and it will not cease to be increased until the individual parts of the

fluid acquire the motion defined in corol. 4.

COROLLARY 6. And since the fluid endeavors to propagate its own mo-

tion even further, its force will make the outer cylinder also revolve, unless

that cylinder is forcibly held in place, and the motion of that cylinder will

be accelerated until the periodic times of both cylinders become equal. But

if the outer cylinder is forcibly held in place, it will endeavor to retard the

motion of the fluid, and unless the inner cylinder conserves that motion by

some force impressed from outside, the outer cylinder will cause the motion

to cease little by little.

All of this can be tested in deep stagnant water.

If a solid sphere revolves with a uniform motion in a uniform and infinite fluid Proposition 52

about an axis given in position, and if the fluid is made to revolve by only the Theorem 40

impulse of this sphere, and if each part of the fluid perseveres uniformly in its

motion, then I say that the periodic times of the parts of the fluid will be as the

squares of the distances from the center of the sphere.

CASE 1. Let AFL be a sphere made to

revolve uniformly about the axis S, and di-

vide the fluid into innumerable concentric

orbs3 of the same thickness by means of

the concentric circles BGM, CHN, DIO,

EKP, . . . . And imagine the orbs to be

solid; then, since the fluid is homogeneous,

the impressions that the contiguous orbs

make upon one another will (by the hy-

pothesis) be as their relative velocities and

a. On the use of "orbs" in prop. 52, and in the antecedent prop. 51, see the note to prop. 51.
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the contiguous surfaces on which the impressions are made. If the impression

upon some orb is greater or less on the concave side than on the convex side,

the stronger impression will prevail and will either accelerate or retard the

velocity of the orb, according as it is directed the same way as the motion of

the orb or the opposite way. Consequently, so that each orb may persevere

uniformly in its motion, the impressions on each of the two sides will have to

be equal and to be made in opposite directions. Hence, since the impressions

are as the contiguous surfaces and their relative velocities, the relative veloc-

ities will be inversely as the surfaces, that is, inversely as the squares of the

distances of the surfaces from the center. But the differences in the angular

motions about the axis are as these relative velocities divided by the distances,

or as the relative velocities directly and the distances inversely—that is, if the

ratios are compounded, as the cubes of the distances inversely. Therefore, if

to each of the parts of the infinite straight line SABCDEQ there are erected

the perpendiculars A#, B£, C<r, D^/, E^, . . ., inversely proportional to the

cubes of SA, SB, SC, SD, SE, . . . , then the sums of the differences, that is,

the whole angular motions, will be as the corresponding sums of the lines

A<2, B£, C<r, D<^, Ee—that is (if, to make the medium uniformly fluid, the

number of orbs is increased and their width decreased indefinitely), as the

hyperbolic areas A<zQ, B£Q, CrQ, D^Q, Ee'Q, . . . , corresponding to these

sums. And the periodic times, inversely proportional to the angular motions,

will also be inversely proportional to these areas. Therefore the periodic time

of any orb DIO is inversely as the area DJQ, that is (by the known methods

of quadratures of curves), directly as the square of the distance SD. And this

is what I wanted to prove in the first place.

CASE 2. From the center of the sphere draw as many infinite straight

lines as possible which with the axis contain given angles exceeding one

another by equal differences, and imagine the orbs to be cut into innumerable

rings by the revolution of these straight lines about the axis; then each ring

will have four rings contiguous to it, one inside, another outside, and two at

the sides. Each ring cannot be urged equally and in opposite directions by

the friction of the inner ring and of the outer ring, except in a motion made

according to the law of case 1. This is evident from the proof of case 1. And

therefore any series of rings proceeding straight from the sphere indefinitely

will be moved in accordance with the law of case 1, except insofar as it

is impeded by the friction of the rings at the sides. But in motion made
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according to this law the friction of the rings at the sides is nil, and thus it

will not impede the motion from being made according to this law. If rings

equally distant from the center revolved either more quickly or more slowly

near the poles than near the ecliptic, the slower rings would be accelerated

and the swifter would be retarded by mutual friction, and thus the periodic

times would always tend toward equality, in accordance with the law of

case 1. This friction, therefore, does not prevent the motion from being made

according to the law of case 1, and therefore that law will hold good; that

is, the periodic time of each of the rings will be as the square of its distance

from the center of the sphere. This is what I wanted to prove in the second

place.

CASE 3. Now let each ring be divided by transverse sections into in-

numerable particles constituting an absolutely and uniformly fluid substance;

then, since these sections have no relation to the law of circular motion but

contribute only to the constitution of the fluid, the circular motion will con-

tinue as before. As a result of this sectioning, all the minimally small rings

either will not change the unevenness and the force of their mutual friction

or will change them equally. Furthermore, since the proportion of the causes

remains the same, the proportion of the effects—that is, the proportion of

the motions and periodic times—will also remain the same. Q.E.D.

But since the circular motion, along with the centrifugal force arising

from it, is greater at the ecliptic than at the poles, there must be some cause

by which each of the particles is kept in its circle; otherwise the matter at

the ecliptic would always recede from the center and move on the outside of

the vortex to the poles, and return from there along the axis to the ecliptic

with a continual circulation.

COROLLARY 1. Hence the angular motions of the parts of the fluid about

the axis of the sphere are inversely as the squares of the distances from the

center of the sphere, and the absolute velocities are inversely as those same

squares divided by the distances from the axis.

COROLLARY 2. If a sphere, in a homogeneous and infinite fluid at rest,

revolves with a uniform motion about an axis given in position, it will com-

municate a motion to the fluid like that of a vortex, and this motion will be

propagated little by little without limit, and this motion will not cease to be

accelerated in each part of the fluid until the periodic time of each of the

parts is as the squares of the distances from the center of the sphere.
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COROLLARY 3. Since the inner parts of a vortex, because of their greater

velocity, rub and push the outer parts and continually communicate motion

to them by this action, and since those outer parts simultaneously transfer

the same quantity of motion to others still further out and by this action

conserve the quantity of their motion completely unaltered, it is evident that

the motion is continually transferred from the center to the circumference

of the vortex and is absorbed in that limitless circumference. The matter

between any two spherical surfaces concentric with the vortex will never be

accelerated, because all of the motion it receives from the inner matter is

continually transferred to the outer matter.

COROLLARY 4. Accordingly, for a vortex to conserve the same state of

motion constantly, some active principle is required from which the sphere

may always receive the same quantity of motion that it impresses on the

matter of the vortex. Without such a principle, it is necessary for the sphere

and the inner parts of the vortex, always propagating their motion to outer

parts and not receiving any new motion, to slow down little by little and

cease to be carried around.

COROLLARY 5. If a second sphere were to be immersed in this vortex

at a certain distance from the center, and meanwhile by some force were to

revolve constantly about an axis given in inclination, then the fluid would

be drawn into a vortex by the motion of this sphere; and first this new and

tiny vortex would revolve along with the sphere about the center of the first

vortex, and meanwhile its motion would spread more widely and little by

little would be propagated without limit, in the same way as the first vortex.

And for the same reason that the sphere of the new vortex was drawn into the

motion of the first vortex, the sphere of the first vortex would also be drawn

into the motion of this new vortex, in such a way that the two spheres would

revolve about some intermediate point and because of that circular motion

would recede from each other unless constrained by some force. Afterward,

if the continually impressed forces by which the spheres persevere in their

motions were to cease, and everything were left to the laws of mechanics, the

motion of the spheres would weaken little by little (for the reason assigned

in corols. 3 and 4), and the vortices would at last be completely at rest.

COROLLARY 6. If several spheres in given places revolved continually

with certain velocities around axes given in position, the same number of

vortices, going on without limit, would be made. For all of the spheres, for
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the same reason that any one of them propagates its motion without limit,

will also propagate their motions without limit, in such a way that each part

of the infinite fluid is agitated by that motion which results from the actions

of all the spheres. Hence the vortices will not be limited by fixed bounds but

will little by little run into one another, and the spheres will be continually

moved from their places by the actions of the vortices upon one another, as

was explained in corol. 5; nor will they keep any fixed position with respect to

one another, unless constrained by some force. And when those forces, which

conserve the motions by being continually impressed upon the spheres, cease,

the matter—for the reason assigned in corols. 3 and 4—will little by little

come to rest and will no longer be made to move in vortices.

COROLLARY 7. If a homogeneous fluid is enclosed in a spherical vessel

and is made to revolve in a vortex by the uniform rotation of a sphere placed

in the center, and if the sphere and the vessel revolve in the same direction

about the same axis, and if their periodic times are as the squares of the

semidiameters, then the parts of the fluid will not persevere in their motions

without acceleration and retardation until their periodic times are as the

squares of the distances from the center of the vortex. No other constitution

of a vortex can be stable.

COROLLARY 8. If the vessel, the enclosed fluid, and the sphere conserve

this motion and additionally revolve with a common angular motion about

any given axis, then, since the friction of the parts of the fluid upon one

another is not changed by this new motion, the motions of the parts with

respect to one another will not be changed. For the relative velocities of

the parts with respect to one another depend upon friction. Any part will

persevere in that motion by which the friction on one side does not retard it

more than the friction on the other accelerates it.

COROLLARY 9. Hence, if the vessel is at rest, and if the motion of the

sphere is given, the motion of the fluid will be given. For imagine that a plane

passes through the axis of the sphere and revolves with an opposite motion,

and suppose that the sum of the time of the revolution of the plane and the

revolution of the sphere is to the time of the revolution of the sphere as the

square of the semidiameter of the vessel to the square of the semidiameter

of the sphere; then the periodic times of the parts of the fluid with respect

to the plane will be as the squares of their distances from the center of the

sphere.

431
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COROLLARY 10. Accordingly, if the vessel moves with any velocity either

about the same axis as the sphere or about some different axis, the motion

of the fluid will be given. For if the angular motion of the vessel is taken

away from the whole system, all the motions with respect to one another will

remain the same as before, by corol. 8. And these motions will be given by

corol. 9.

COROLLARY 11. If the vessel and the fluid are at rest, and if the sphere

revolves with a uniform motion, then the motion will be propagated little

by little through the whole fluid to the vessel, and the vessel will be driven

around unless forcibly constrained, and the fluid and vessel will not cease to

be accelerated until their periodic times are equal to the periodic times of the

sphere. But if the vessel is constrained by some force or revolves with any

continual and uniform motion, the medium will little by little come to the

state of the motion defined in corols. 8, 9, and 10, nor will it ever persevere

in any other state. But then if, when those forces cease by which the vessel

and the sphere were revolving with fixed motions, the whole system is left to

the laws of mechanics, the vessel and the sphere will act upon each other by

means of the intervening fluid and will not cease to propagate their motions

to each other through the fluid until their periodic times are equal and the

whole system revolves together like one solid body.

Scholium In the preceding propositions, I have been supposing the fluid to consist of

matter which is uniform in density and fluidity. The fluid is such that a given

sphere, set anywhere in it, would with a given motion in a given interval of

time be able to propagate similar and equal motions, at distances always

equal from itself. Indeed, matter endeavors by its circular motion to recede

from the axis of a vortex and therefore presses all the further matter. From

this pressure the friction of the parts becomes stronger and their separation

from one another more difficult, and consequently the fluidity of the matter is

decreased. Again, if there is any place where the parts of the fluid are thicker

or larger, the fluidity will be less there, because the surfaces separating the

parts from one another are fewer. In cases of this sort, I suppose the deficiency

in fluidity to be supplied either by the slipperiness of the parts or by their

pliancy or by some other condition. If this does not happen, the matter will

cohere more and will be more sluggish where it is less fluid, and thus will

receive motion more slowly and will propagate it further than according
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to the ratio assigned above. If the shape of the vessel is not spherical, the

particles will move in paths which are not circular but correspond to the

shape of the vessel, and the periodic times will be very nearly as the squares

of the mean distances from the center. In the parts between the center and

the circumference where the spaces are wider, the motions will be slower,

and where the spaces are narrower the motions will be swifter, and yet the

swifter particles will not seek the circumference. For they will describe less-

curved arcs, and the endeavor to recede from the center will not be less

decreased by the decrement of this curvature than it will be increased by the

increment of the velocity. In going from the narrower spaces into the wider,

they will recede a little further from the center, but they will be retarded

by this receding, and afterward in approaching the narrower spaces from the

wider ones they will be accelerated, and thus each of the particles will forever

alternately be retarded and accelerated. All of this will be so in a rigid vessel.

For the constitution of vortices in an infinite fluid can be found by corol. 6

of this proposition.

Moreover, in this proposition I have tried to investigate the properties of

vortices in order to test whether the celestial phenomena could be explained

in any way by vortices. For it is a phenomenon that the periodic times of

the secondary planets that revolve about Jupiter are as the 3/2 powers of the

distances from the center of Jupiter; and the same rule applies to the planets

that revolve about the sun. Moreover, these rules apply to both the primary

and the secondary planets very exactly, as far as astronomical observations

have shown up to now. And thus if those planets are carried along by vortices

revolving about Jupiter and the sun, the vortices will also have to revolve

according to the same law. But the periodic times of the parts of a vortex

turned out to be in the squared ratio of the distances from the center of

motion, and that ratio cannot be decreased and reduced to the 3/2 power,

unless either the matter of the vortex is the more fluid the further it is from

the center, or the resistance arising from a deficiency in the slipperiness of

the parts of the fluid (as a result of the increased velocity by which the parts

of the fluid are separated from one another) is increased in a greater ratio

than the ratio in which the velocity is increased. Yet neither of these seems

reasonable. The thicker and less-fluid parts, if they are not heavy toward

the center, will seek the circumference; and although—for the sake of the

proofs—I proposed at the beginning of this section a hypothesis in which the
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resistance would be proportional to the velocity, it is nevertheless likely that

the resistance is in a lesser ratio than that of the velocity. If this is conceded,

then the periodic times of the parts of a vortex will be in a ratio greater than

the squared ratio of the distances from its center. But if vortices (as is the

opinion of some) move more quickly near the center, then more slowly up

to a certain limit, then again more quickly near the circumference, certainly

neither the 3/2 power nor any other fixed and determinate ratio can hold. It

is therefore up to philosophers to see how that phenomenon of the 3/2 power

can be explained by vortices.

Proposition 53 Bodies that are carried along in a vortex and return in the same orbit have the

Theorem 41 same density as the vortex and move according to the same law as the parts of the

vortex with respect to velocity and direction.

For if some tiny part of the vortex is composed of particles or physical

points which preserve a given situation with respect to one another and is

supposed to be frozen, then this part will move according to the same law

as before, since it is not changed with respect to its density, or its inherent

force or figure. And conversely, if a frozen and solid part of the vortex has

the same density as the rest of the vortex and is resolved into a fluid, this

part will move according to the same law as before, except insofar as its

particles, which have now become fluid, move with respect to one another.

Therefore, the motion of the particles with respect to one another may be

ignored as having no relevance to the progressive motion of the whole, and

the motion of the whole will be the same as before. But this motion will be

the same as the motion of other parts of the vortex that are equally distant

from the center, because the solid resolved into a fluid becomes a part of the

vortex similar in every way to the other parts. Therefore, if a solid is of the

same density as the matter of the vortex, it will move with the same motion

as the parts of the vortex and will be relatively at rest in the immediately

surrounding matter. But if the solid is denser, it will now endeavor to recede

from the center of the vortex more than before; and thus, overcoming that

force of the vortex by which it was formerly kept in its orbit as if set in

equilibrium, it will recede from the center and in revolving will describe

a spiral and will no longer return into the same orbit. And by the same

argument, if the solid is rarer, it will approach the center. Therefore, the

solid will not return into the same orbit unless it is of the same density as
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the fluid. And it has been shown that in this case the solid would revolve

according to the same law as the parts of the fluid that are equally distant

from the center of the vortex. Q.E.D.

COROLLARY 1. Therefore a solid that revolves in a vortex and always

returns into the same orbit is relatively at rest in the fluid in which it is

immersed.

COROLLARY 2. And if the vortex is of a uniform density, the same body

can revolve at any distance from the center of the vortex.

Hence it is clear that the planets are not carried along by corporeal vor- Scholium

tices. For the planets, which—according to the Copernican hypothesis—move

about the sun, revolve in ellipses hav-

ing a focus in the sun, and by radii

drawn to the sun describe areas pro-

portional to the times. But the parts

of a vortex cannot revolve with such

a motion. Let AD, BE, and CF des-

ignate three orbits described about the

sun S, of which let the outermost CF

be a circle concentric with the sun, and

let A and B be the aphelia of the two

inner ones, and D and E their perihelia. Therefore, a body that revolves in

the orbit CF, describing areas proportional to the times by a radius drawn

to the sun, will move with a uniform motion. And a body that revolves in

the orbit BE will, according to the laws of astronomy, move more slowly

in the aphelion B and more swiftly in the perihelion E, although according

to the laws of mechanics the matter of the vortex ought to move more swiftly

in the narrower space between A and C than in the wider space between

D and F, that is, more swiftly in the aphelion than in the perihelion. These

two statements are contradictory. Thus in the beginning of the sign of Virgo,

where the aphelion of Mars now is, the distance between the orbits of Mars

and Venus is to the distance between these orbits in the beginning of the sign

of Pisces as roughly 3 to 2, and therefore the matter of the vortex between

these orbits in the beginning of Pisces must move more swiftly than in the

beginning of Virgo in the ratio of 3 to 2. For the narrower the space through

which a given quantity of matter passes in the given time of one revolution,
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the greater the velocity with which it must pass. Therefore, if the earth, rel-

atively at rest in this celestial matter, were carried by it and revolved along

with it about the sun, its velocity in the beginning of Pisces would be to its

velocity in the beginning of Virgo as 3 to 2. Hence the apparent daily motion

of the sun in the beginning of Virgo would be greater than 70 minutes, and

in the beginning of Pisces less than 48 minutes, although (as experience bears

witness) the apparent motion of the sun is greater in the beginning of Pisces

than in the beginning of Virgo, and thus the earth is swifter in the beginning

of Virgo than in the beginning of Pisces. Therefore the hypothesis of vortices

can in no way be reconciled with astronomical phenomena and serves less

to clarify the celestial motions than to obscure them. But how those motions

are performed in free spaces without vortices can be understood from book

1 and will now be shown more fully in book 3 on the system of the world.



BOOK 3

THE SYSTEM OF THE W O R L D
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In the preceding books I have presented principles of philosophy3 that are

not, however, philosophical but strictly mathematical—that is, those on which

the study of philosophy can be based. These principles are the laws and con-

ditions of motions and of forces, which especially relate to philosophy. But

in order to prevent these principles from seeming sterile, I have illustrated

them with some philosophical scholiums [i.e., scholiums dealing with natural

philosophy], treating topics that are general and that seem to be the most fun-

damental for philosophy, such as the density and resistance of bodies, spaces

void of bodies, and the motion of light and sounds. It still remains for us to

exhibit the system of the world from these same principles. On this subject

I composed an earlier version of book 3 in popular form, so that it might be

more widely read. But those who have not sufficiently grasped the principles

set down here will certainly not perceive the force of the conclusions, nor will

they lay aside the preconceptions to which they have become accustomed over

many years; and therefore, to avoid lengthy disputations, I have translated

the substance of the earlier version into propositions in a mathematical style,

so that they may be read only by those who have first mastered the principles.

But since in books 1 and 2 a great number of propositions occur which might

be too time-consuming even for readers who are proficient in mathematics,

1 am unwilling to advise anyone to study every one of these propositions.

It will be sufficient to read with care the Definitions, the Laws of Motion,

and the first three sections of book 1, and then turn to this book 3 on the

system of the world, consulting at will the other propositions of books 1 and

2 which are referred to here.

a. In this introduction to book 3, Newton uses "philosophy" and its adjective "philosophical" to refer

to "natural philosophy." According to John Harris's Lexicon Technicum (London, 1704), natural philosophy

is that "Science which contemplates the Powers of Nature, the Properties of Natural Bodies, and their

mutual Action one upon another." The half title of the third edition of the Principia reads "Newtoni

Principia Philosophiae" ("Newton's Principles of Philosophy"). The dedication page of the Principia., in all

editions, refers to the Royal Society as founded "ad philosophiam promovendam" ("for the promotion of

philosophy").



"RULES FOR THE STUDY
OF N A T U R A L P H I L O S O P H Y

Rule 1 No more causes of natural things should be admitted than are both true and

sufficient to explain their phenomena.

As the philosophers say: Nature does nothing in vain, and more causes

are in vain when fewer suffice. For nature is simple and does not indulge in

the luxury of superfluous causes.

aa. Ed. 1 has nine numbered "Hypotheses," most of which ed. 2 converts into two categories, now

called "Rules for Natural Philosophy" and "Phenomena." Hyps. 1 and 2 become rules 1 and 2; hyp. 3 is

discarded, to be replaced by rule 3; hyp. 4 becomes hyp. 1 and is transferred to a location between prop.

10 and prop. 11; hyps. 5-9 become phen. 1, 3-6, while phen. 2 is new in ed. 2. Ed. 3 further introduces

rule 4. These changes may be tabulated as follows:

*between prop. 10 and prop. 11

Ed. 2 also has additions of explanatory phrases and sentences, alterations in wording, and, for the phe-

nomena, revisions of numerical data and references to observers. Ed. 3 further expands or adds some

explanatory sentences. For details see the Guide to the present translation, §8.2. Cf. also Alexandre Koyre,

"Newton's 'Regulae Philosophandi,'" in his Newtonian Studies (Cambridge, Mass.: Harvard University

Press, 1965), pp. 261-272; I. Bernard Cohen, "Hypotheses in Newton's Philosophy," Physis: Rivista inter-
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Ed. 1

hypothesis 1

hypothesis 2

hypothesis 3
—

—

hypothesis 4

hypothesis 5

—

hypothesis 6

hypothesis 7

hypothesis 8

hypothesis 9

Ed. 2

rule 1

rule 2

—

rule 3
—

hypothesis 1* .

phenomenon 1

phenomenon 2

phenomenon 3

phenomenon 4

phenomenon 5

phenomenon 6

Ed. 3

rule 1

rule 2

—

rule 3

rule 4

hypothesis 1*

phenomenon 1

phenomenon 2

phenomenon 3

phenomenon 4

phenomenon 5

phenomenon 6
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Therefore, the causes assigned to natural effects of the same %ind must be, so far Rule 2

as possible, the same.

Examples are the cause of respiration in man and beast, or of the falling

of stones in Europe and America, or of the light of a kitchen fire and the

sun, or of the reflection of light on our earth and the planets.

Those qualities of bodies that cannot be intended and remitted [i.e., qualities bRule 3

that cannot be increased and diminished] and that belong to all bodies on which

experiments can be made should be ta^en as qualities of all bodies universally.

For the qualities of bodies can be known only through experiments; and

therefore qualities that square with experiments universally are to be regarded

as universal qualities; and qualities that cannot be diminished cannot be taken

away from bodies. Certainly idle fancies ought not to be fabricated recklessly

against the evidence of experiments, nor should we depart from the analogy

of nature, since nature is always simple and ever consonant with itself. The

extension of bodies is known to us only through our senses, and yet there

are bodies beyond the range of these senses; but because extension is found

in all sensible bodies, it is ascribed to all bodies universally. We know by

experience that some bodies are hard. Moreover, because the hardness of the

whole arises from the hardness of its parts, we justly infer from this not

only the hardness of the undivided particles of bodies that are accessible to

our senses, but also of all other bodies. That all bodies are impenetrable we

gather not by reason but by our senses. We find those bodies that we handle

to be impenetrable, and hence we conclude that impenetrability is a property

of all bodies universally. That all bodies are movable and persevere in motion

or in rest by means of certain forces (which we call forces of inertia) we infer

from finding these properties in the bodies that we have seen. The extension,

hardness, impenetrability, mobility, and force of inertia of the whole arise

from the extension, hardness, impenetrability, mobility, and force of inertia

of each of the parts; and thus we conclude that every one of the least parts

nazionale di storia delta scienza 8 (1966): 163-184, reprinted in Proceedings of the Boston Colloquium for

the Philosophy of Science 1966/1968, ed. Robert S. Cohen and Marx W. Wartofsky, Boston Studies in the

Philosophy of Science, vol. 5 (Dordrecht: D. Reidel Publishing Co., 1969), pp. 304-326; I. Bernard Cohen,

Introduction to Newton's "Principia" (Cambridge, Mass.: Harvard University Press; Cambridge: Cambridge

University Press, 1971), pp. 23-26, 240-245.

bb. Ed. 1 has: "Hypothesis 3. Every body can be transformed into a body of any other kind and

successively take on all the intermediate degrees of qualities." Cf. prop. 6, corol. 2, below.
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of all bodies is extended, hard, impenetrable, movable, and endowed with a

force of inertia. And this is the foundation of all natural philosophy. Further,

from phenomena we know that the divided, contiguous parts of bodies can

be separated from one another, and from mathematics it is certain that the

undivided parts can be distinguished into smaller parts by our reason. But

it is uncertain whether those parts which have been distinguished in this

way and not yet divided can actually be divided and separated from one

another by the forces of nature. But if it were established by even a single

experiment that in the breaking of a hard and solid body, any undivided

particle underwent division, we should conclude by the force of this third

rule not only that divided parts are separable but also that undivided parts

can be divided indefinitely.

Finally, if it is universally established by experiments and astronomical

observations that all bodies on or near the earth gravitate [lit. are heavy] to-

ward the earth, and do so in proportion to the quantity of matter in each

body, and that the moon gravitates [is heavy] toward the earth in proportion

to the quantity of its matter, and that our sea in turn gravitates [is heavy] to-

ward the moon, and that all planets gravitate [are heavy] toward one another,

and that there is a similar gravity [heaviness] of comets toward the sun, it

will have to be concluded by this third rule that all bodies gravitate toward

one another. Indeed, the argument from phenomena will be even stronger

for universal gravity than for the impenetrability of bodies, for which, of

course, we have not a single experiment, and not even an observation, in the

case of the heavenly bodies. Yet I am by no means affirming that gravity is

essential to bodies. By inherent force I mean only the force of inertia. This

is immutable. Gravity is diminished as bodies recede from the earth.b

Rule 4 In experimental philosophy, propositions gathered from phenomena by induction

should be considered either exactly or very nearly true notwithstanding any con-

trary hypotheses, until yet other phenomena make such propositions either more

exact or liable to exceptions.

This rule should be followed so that arguments based on induction may

not be nullified by hypotheses.
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The circumjovial planets [or satellites of Jupiter], by radii drawn to the center Phenomenon 1

of Jupiter, describe areas proportional to the times, and their periodic times—the

fixed stars being at rest—are as the */2 powers of their distances from that center.

This is established from astronomical observations. The orbits of these

planets do not differ sensibly from circles concentric with Jupiter, and their

motions in these circles are found to be uniform. Astronomers agree that

their periodic times are as the 3/2 power of the semidiameters of their orbits,

and this is manifest from the following table.

Periodic times of the satellites of Jupiter

Id18h27m34s 3d13h13m42s 7d3h42m36s 16d16h32m9s

Distances of the satellites from the center of Jupiter, in semidiameters of Jupiter

From the observations of

Borelli

Townly, by a micrometer

Cassini, by a telescope

Cassini, by eclipses of the satellites

From the periodic times

1

52/3

5.52

5
52/3

5.667

2

82/3

8.78

8
9

9.017

3

14
13.47

13
1423/60

14.384

4

242/3

24.72

23

25Mo

25.299

Using the best micrometers, Mr. Pound has determined the elongations

of the satellites of Jupiter and the diameter of Jupiter in the following way.

443
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The greatest heliocentric elongation of the fourth satellite from the center

of Jupiter was obtained with a micrometer in a telescope 15 feet long and

came out roughly 8'16" at the mean distance of Jupiter from the earth. That

of the third satellite was obtained with a micrometer in a telescope 123 feet

long and came out 4'42" at the same distance of Jupiter from the earth. The

greatest elongations of the other satellites, at the same distance of Jupiter

from the earth, come out 2'56"47'" and 1'51"6'", on the basis of the periodic

times.

The diameter of Jupiter was obtained a number of times with a microm-

eter in a telescope 123 feet long and, when reduced to the mean distance of

Jupiter from the sun or the earth, always came out smaller than 40", never

smaller than 38", and quite often 39". In shorter telescopes this diameter is

40" or 41". For the light of Jupiter is somewhat dilated by its nonuniform

refrangibility, and this dilation has a smaller ratio to the diameter of Jupiter

in longer and more perfect telescopes than in shorter and less perfect ones.

The times in which two satellites, the first and the third, crossed the disk

of Jupiter, from the beginning of their entrance [i.e., from the moment of

their beginning to cross the disk] to the beginning of their exit and from the

completion of their entrance to the completion of their exit, were observed

with the aid of the same longer telescope. And from the transit of the first

satellite, the diameter of Jupiter at its mean distance from the earth came out

37 Vs" and, from the transit of the third satellite, 373/s". The time in which

the shadow of the first satellite passed across the body of Jupiter was also

observed, and from this observation the diameter of Jupiter at its mean dis-

tance from the earth came out roughly 37". Let us assume that this diameter

is very nearly 3714"; then the greatest elongations of the first, second, third,

and fourth satellites will be equal respectively to 5.965, 9.494, 15.141, and

26.63 semidiameters of Jupiter.

Phenomenon 2 The circumsaturnian planets [or satellites of Saturn], by radii drawn to the center

of Saturn, describe areas proportional to the times, and their periodic times—the

fixed stars being at rest—are as the */2 powers of their distances from that center.

Cassini, in fact, from his own observations has established their distances

from the center of Saturn and their periodic times as follows.
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Observations yield a value of the greatest elongation of the fourth satellite

from the center of Saturn that is very near eight semidiameters. But the

greatest elongation of this satellite from the center of Saturn, as determined

by an excellent micrometer in Huygens's 123-foot telescope, came out 87/io

semidiameters. And from this observation and the periodic times, the dis-

tances of the satellites from the center of Saturn are, in semidiameters of

the ring, 2.1, 2.69, 3.75, 8.7, and 25.35. The diameter of Saturn in the same

telescope was to the diameter of the ring as 3 to 7, and the diameter of the

ring on the 28th and 29th day of May 1719 came out 43". And from this

the diameter of the ring at the mean distance of Saturn from the earth is

42", and the diameter of Saturn is 18". These are the results obtained with

the longest and best telescopes, because the apparent magnitudes of heavenly

bodies, as seen in longer telescopes, have a greater proportion to the dilation

of light at the edges of these bodies than when seen in shorter telescopes. If

all erratic light [i.e., dilated light] is disregarded, the diameter of Saturn will

not be greater than 16".

The orbits of the five primary planets—Mercury, Venus, Mars, Jupiter, and Phenomenon 3

Saturn—encircle the sun.

That Mercury and Venus revolve about the sun is proved by their ex-

hibiting phases like the moon's. When these planets are shining with a full

face, they are situated beyond the sun; when half full, to one side of the sun;

when horned, on this side of the sun; and they sometimes pass across the sun's

disk like spots. Because Mars also shows a full face when near conjunction

with the sun, and appears gibbous in the quadratures, it is certain that Mars

goes around the sun. The same thing is proved also with respect to Jupiter

and Saturn from their phases being always full; and in these two planets, it

is manifest from the shadows that their satellites project upon them that they

shine with light borrowed from the sun.

Periodic times of the satellites of Saturn

Id21h18m27s 2d17h41m22

Distances of the satellites from

From

From

the observations

the periodic times

4d12h25m12s 15d22h41mHs 79d7h48mOOs

the center of Saturn, in semidiameters of the ring

119/20 2V2 31/2 *

1.93 2.47 3.45 i

3 24

* 23.35
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Phenomenon 4 The periodic times of the five primary planets and of either the sun about the earth

or the earth about the sun—the fixed stars being at rest—are as the 3/2 powers of

their mean distances from the sun.

This proportion, which was found by Kepler, is accepted by everyone.

In fact, the periodic times are the same, and the dimensions of the orbits

are the same, whether the sun revolves about the earth, or the earth about

the sun. There is universal agreement among astronomers concerning the

measure of the periodic times. But of all astronomers, Kepler and Boulliau

have determined the magnitudes of the orbits from observations with the

most diligence; and the mean distances that correspond to the periodic times

as computed from the above proportion do not differ sensibly from the dis-

tances that these two astronomers found [from observations], and for the

most part lie between their respective values, as may be seen in the following

table.

Periodic times of the planets and of earth about

in days and decimal parts of a day

n <4
10759.275 4332.514

Mean distances of the planets

Cf

686.9785

the sun with respect to the fixed stars,

6
365.2565

?

224.6176

9

87.9692

and of the earth from the sun

n
According to Kepler 951000

According to Boulliau 954198

According to the periodic times 954006

2i Cf

519650 152350
522520 152350
520096 152369

6 ?

100000 72400
100000 72398
100000 72333

9

38806
38585
38710

There is no ground for dispute about the distances of Mercury and Venus

from the sun, since these distances are determined by the elongations of the

planets from the sun. Furthermore, with respect to the distances of the supe-

rior planets from the sun, any ground for dispute is eliminated by the eclipses

of the satellites of Jupiter. For by these eclipses the position of the shadow

that Jupiter projects is determined, and this gives the heliocentric longitude of

Jupiter. And from a comparison of the heliocentric and geocentric longitudes,

the distance of Jupiter is determined.
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The primary planets, by radii drawn to the earth, describe areas in no way pro- Phenomenon 5

portional to the times but, by radii drawn to the sun, traverse areas proportional

to the times.

For with respect to the earth they sometimes have a progressive [direct

or forward] motion, they sometimes are stationary, and sometimes they even

have a retrograde motion; but with respect to the sun they move always

forward, and they do so with a motion that is almost uniform—but, nev-

ertheless, a little more swiftly in their perihelia and more slowly in their

aphelia, in such a way that the description of areas is uniform. This is a

proposition very well known to astronomers and is especially provable in the

case of Jupiter by the eclipses of its satellites; by means of these eclipses we

have said that the heliocentric longitudes of this planet and its distances from

the sun are determined.

The moon, by a radius drawn to the center of the earth, describes areas proportional Phenomenon 6

to the times.

This is evident from a comparison of the apparent motion of the moon

with its apparent diameter. Actually, the motion of the moon is somewhat

perturbed by the force of the sun, but in these phenomena I pay no attention

to minute errors that are negligible.3
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Proposition 1 The forces by which the circumjovial planets [or satellites of Jupiter] are contin-

Theorem 1 ually drawn away from rectilinear motions and are maintained in their respective

orbits are directed to the center of Jupiter and are inversely as the squares of the

distances of their places from that center.

The first part of the proposition is evident from phen. 1 and from prop. 2

or prop. 3 of book 1, and the second part from phen. 1 and from corol. 6 to

prop. 4 of book 1.

The same is to be understood for the planets that are Saturn's companions

[or satellites] by phen. 2.

Proposition 2 The forces by which the primary planets are continually drawn away from rec-

Theorem 2 tilinear motions and are maintained in their respective orbits are directed to the

sun and are inversely as the squares of their distances from its center.

The first part of the proposition is evident from phen. 5 and from prop. 2

of book 1, and the latter part from phen. 4 and from prop. 4 of the same book.

But this second part of the proposition is proved with the greatest exactness

from the fact that the aphelia are at rest. For the slightest departure from

the ratio of the square would (by book 1, prop. 45, corol. 1) necessarily result

in a noticeable motion of the apsides in a single revolution and an immense

such motion in many revolutions.

Proposition 3 The force by which the moon is maintained in its orbit is directed toward the

Theorem 3 earth and is inversely as the square of the distance of its places from the center of

the earth.

The first part of this statement is evident from phen. 6 and from prop. 2

or prop. 3 of book 1, and the second part from the very slow motion of

the moon's apogee. For that motion, which in each revolution is only three

448
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degrees and three minutes forward [or in consequentia, i.e., in an easterly

direction] can be ignored. For it is evident (by book 1, prop. 45, corol. 1) that

if the distance of the moon from the center of the earth is to the semidiameter

of the earth as D to 1, then the force from which such a motion may arise is

inversely as D2/243, that is, inversely as that power of D of which the index

is 24/243; that is, the proportion of the force to the distance is inversely as a

little greater than the second power of the distance, but is 593/4 times closer

to the square than to the cube. Now this motion of the apogee arises from

the action of the sun (as will be pointed out below) and accordingly is to be

ignored here. The action of the sun, insofar as it draws the moon away from

the earth, is very nearly as the distance of the moon from the earth, and so

(from what is said in book 1, prop. 45, corol. 2) is to the centripetal force of

the moon as roughly 2 to 357.45, or 1 to 17829/40. And if so small a force of

the sun is ignored, the remaining force by which the moon is maintained in

its orbit will be inversely as D2. And this will be even more fully established

by comparing this force with the force of gravity as is done in prop. 4 below.

COROLLARY. If the mean centripetal force by which the moon is main-

tained in its orbit is increased first in the ratio of 17729/40 to 17829/40, then also

in the squared ratio of the semidiameter of the earth to the mean distance

of the center of the moon from the center of the earth, the result will be the

lunar centripetal force at the surface of the earth, supposing that that force,

in descending to the surface of the earth, is continually increased in the ratio

of the inverse square of the height.

The moon gravitates toward the earth and by the force of gravity is always drawn

bacf^from rectilinear motion and %ept in its orbit.

The mean distance of the moon from the earth in the syzygies is, ac-

cording to Ptolemy and most astronomers, 59 terrestrial semidiameters, 60

according to Vendelin and Huygens, 601/3 according to Copernicus, 602/5 ac-

cording to Street, and 561/2 according to Tycho. But Tycho and all those who

follow his tables of refractions, by making the refractions of the sun and

moon (entirely contrary to the nature of light) be greater than those of the

fixed stars—in fact greater by about four or five minutes—have increased the

parallax of the moon by that many minutes, that is, by about a twelfth or

fifteenth of the whole parallax. Let that error be corrected, and the distance

will come to be roughly 601/2 terrestrial semidiameters, close to the value that

Proposition 4

Theorem 4
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has been assigned by others. Let us assume a mean distance of 60 semidiam-

eters in the syzygies; and also let us assume that a revolution of the moon

with respect to the fixed stars is completed in 27 days, 7 hours, 43 minutes, as

has been established by astronomers; and that the circumference of the earth

is 123,249,600 Paris feet, according to the measurements made by the French.

If now the moon is imagined to be deprived of all its motion and to be let

fall so that it will descend to the earth with all that force urging it by which

(by prop. 3, corol.) it is [normally] kept in its orbit, then in the space of one

minute, it will by falling describe 15 Vu Paris feet. This is determined by a

calculation carried out either by using prop. 36 of book 1 or (which comes

to the same thing) by using corol. 9 to prop. 4 of book 1. For the versed

sine of the arc which the moon would describe in one minute of time by its

mean motion at a distance of 60 semidiameters of the earth is roughly 15 Vu

Paris feet, or more exactly 15 feet, 1 inch, and !4/9 lines [or twelfths of an

inch]. Accordingly, since in approaching the earth that force is increased as

the inverse square of the distance, and so at the surface of the earth is 60 x 60

times greater than at the moon, it follows that a body falling with that force,

in our regions, ought in the space of one minute to describe 60 X 60 x 15 Vu

Paris feet, and in the space of one second 15 Vu feet, or more exactly 15 feet,

1 inch, and !4/9 lines. And heavy bodies do actually descend to the earth with

this very force. For a pendulum beating seconds in the latitude of Paris is

3 Paris feet and 81/2 lines in length, as Huygens observed. And the height

that a heavy body describes by falling in the time of one second is to half the

length of this pendulum as the square of the ratio of the circumference of a

circle to its diameter (as Huygens also showed), and so is 15 Paris feet, 1 inch,

!7/9 lines. And therefore that force by which the moon is kept in its orbit,

in descending from the moon's orbit to the surface of the earth, comes out

equal to the force of gravity here on earth, and so (by rules 1 and 2) is that

very force which we generally call gravity. For if gravity were different from

this force, then bodies making for the earth by both forces acting together

would descend twice as fast, and in the space of one second would by falling

describe 301/6 Paris feet, entirely contrary to experience.

This calculation is founded on the hypothesis that the earth is at rest.

For if the earth and the moon move around the sun and in the meanwhile

also revolve around their common center of gravity, then, the law of gravity

remaining the same, the distance of the centers of the moon and earth from

B O O K 3
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each other will be roughly 60 V2 terrestrial semidiameters, as will be evident to

anyone who computes it. And the computation can be undertaken by book 1,

prop. 60.

The proof of the proposition can be treated more fully as follows. If several Scholium

moons were to revolve around the earth, as happens in the system of Sat-

urn or of Jupiter, their periodic times (by the argument of induction) would

observe the law which Kepler discovered for the planets, and therefore their

centripetal forces would be inversely as the squares of the distances from the

center of the earth, by prop. 1 of this book 3. And if the lowest of them were

small and nearly touched the tops of the highest mountains, its centripetal

force, by which it would be kept in its orbit, would (by the preceding com-

putation) be very nearly equal to the gravities of bodies on the tops of those

mountains. And this centripetal force would cause this little moon, if it were

deprived of all the motion with which it proceeds in its orbit, to descend to

the earth—as a result of the absence of the centrifugal force with which it

had remained in its orbit—and to do so with the same velocity with which

heavy bodies fall on the tops of those mountains, because the forces with

which they descend are equal. And if the force by which the lowest little

moon descends were different from gravity and that little moon also were

heavy toward the earth in the manner of bodies on the tops of mountains,

this little moon would descend twice as fast by both forces acting together.

Therefore, since both forces—namely, those of heavy bodies and those of the

moons—are directed toward the center of the earth and are similar to each

other and equal, they will (by rules 1 and 2) have the same cause. And there-

fore that force by which the moon is kept in its orbit is the very one that we

generally call gravity. For if this were not so, the little moon at the top of a

mountain must either be lacking in gravity or else fall twice as fast as heavy

bodies generally do.

The circumjovial planets [or satellites of Jupiter] gravitate toward Jupiter, the Proposition 5

circumsaturnian planets [or satellites of Saturn] gravitate toward Saturn, and the Theorem 5

circumsolar [or primary] planets gravitate toward the sun, and by the force of

their gravity they are always drawn bac\ from rectilinear motions and fyept in

curvilinear orbits.
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For the revolutions of the circumjovial planets about Jupiter, of the cir-

cumsaturnian planets about Saturn, and of Mercury and Venus and the other

circumsolar planets about the sun are phenomena of the same kind as the

revolution of the moon about the earth, and therefore (by rule 2) depend on

causes of the same kind, especially since it has been proved that the forces on

which those revolutions depend are directed toward the centers of Jupiter,

Saturn, and the sun, and decrease according to the same ratio and law (in re-

ceding from Jupiter, Saturn, and the sun) as the force of gravity (in receding

from the earth).

COROLLARY 1. Therefore, there is gravity toward all planets universally.

For no one doubts that Venus, Mercury, and the rest [of the planets, primary

and secondary,] are bodies of the same kind as Jupiter and Saturn. And

since, by the third law of motion, every attraction is mutual, Jupiter will

gravitate toward all its satellites, Saturn toward its satellites, and the earth

will gravitate toward the moon, and the sun toward all the primary planets.

COROLLARY 2. The gravity that is directed toward every planet is in-

versely as the square of the distance of places from the center of the planet.

COROLLARY 3. All the planets are heavy toward one another by corols. 1

and 2. And hence Jupiter and Saturn near conjunction, by attracting each

other, sensibly perturb each other's motions, the sun perturbs the lunar mo-

tions, and the sun and moon perturb our sea, as will be explained in what

follows.

Scholium Hitherto we have called "centripetal" that force by which celestial bodies

are kept in their orbits. It is now established that this force is gravity, and

therefore we shall call it gravity from now on. For the cause of the centripetal

force by which the moon is kept in its orbit ought to be extended to all the

planets, by rules 1, 2, and 4.

Proposition 6 All bodies gravitate toward each of the planets, and at any given distance from

Theorem 6 the center of any one planet the weight of any body whatever toward that planet

is proportional to the quantity of matter which the body contains.

Others have long since observed that the falling of all heavy bodies to-

ward the earth (at least on making an adjustment for the inequality of the

retardation that arises from the very slight resistance of the air) takes place

in equal times, and it is possible to discern that equality of the times, to a
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very high degree of accuracy, by using pendulums. I have tested this with

gold, silver, lead, glass, sand, common salt, wood, water, and wheat. I got

two wooden boxes, round and equal. I filled one of them with wood, and

I suspended the same weight of gold (as exactly as I could) in the center

of oscillation of the other. The boxes, hanging by equal eleven-foot cords,

made pendulums exactly like each other with respect to their weight, shape,

and air resistance. Then, when placed close to each other [and set into vibra-

tion], they kept swinging back and forth together with equal oscillations for

a very long time. Accordingly, the amount of matter in the gold (by book 2,

prop. 24, corols. 1 and 6) was to the amount of matter in the wood as the

action of the motive force upon all the gold to the action of the motive force

upon all the [added] wood—that is, as the weight of one to the weight of

the other. And it was so for the rest of the materials. In these experiments,

in bodies of the same weight, a difference of matter that would be even less

than a thousandth part of the whole could have been clearly noticed. Now,

there is no doubt that the nature of gravity toward the planets is the same as

toward the earth. For imagine our terrestrial bodies to be raised as far as the

orbit of the moon and, together with the moon, deprived of all motion, to

be released so as to fall to the earth simultaneously; and by what has already

been shown, it is certain that in equal times these falling terrestrial bodies

will describe the same spaces as the moon, and therefore that they are to the

quantity of matter in the moon as their own weights are to its weight. Fur-

ther, since the satellites of Jupiter revolve in times that are as the 3/2 power

of their distances from the center of Jupiter, their accelerative gravities to-

ward Jupiter will be inversely as the squares of the distances from the center

of Jupiter, and, therefore, at equal distances from Jupiter their accelerative

gravities would come out equal. Accordingly, in equal times in falling from

equal heights [toward Jupiter] they would describe equal spaces, just as hap-

pens with heavy bodies on this earth of ours. And by the same argument

the circumsolar [or primary] planets, let fall from equal distances from the

sun, would describe equal spaces in equal times in their descent to the sun.

Moreover, the forces by which unequal bodies are equally accelerated are as

the bodies; that is, the weights [of the primary planets toward the sun] are as

the quantities of matter in the planets. Further, that the weights of Jupiter

and its satellites toward the sun are proportional to the quantities of their

matter is evident from the extremely regular motion of the satellites, accord-

ing to book 1, prop. 65, corol. 3. For if some of these were more strongly
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attracted toward the sun in proportion to the quantity of their matter than

the rest, the motions of the satellites (by book 1, prop. 65, corol. 2) would be

perturbed by that inequality of attraction. If, at equal distances from the sun,

some satellite were heavier [or gravitated more] toward the sun in proportion

to the quantity of its matter than Jupiter in proportion to the quantity of its

own matter, in any given ratio, say d to ^, then the distance between the

center of the sun and the center of the orbit of the satellite would always

be greater than the distance between the center of the sun and the center of

Jupiter and these distances would be to each other very nearly as the square

root of d to the square root of ^, as I found by making a certain calculation.

And if the satellite were less heavy [or gravitated less] toward the sun in

that ratio of d to ^, the distance of the center of the orbit of the satellite

from the sun would be less than the distance of the center of Jupiter from

the sun in that same ratio of the square root of d to the square root of e.

And so if, at equal distances from the sun, the accelerative gravity of any

satellite toward the sun were greater or smaller than the accelerative gravity

of Jupiter toward the sun, by only a thousandth of the whole gravity, the

distance of the center of the orbit of the satellite from the sun would be

greater or smaller than the distance of Jupiter from the sun by of
2,000

the total distance, that is, by a fifth of the distance of the outermost satellite

from the center of Jupiter; and this eccentricity of the orbit would be very

sensible indeed. But the orbits of the satellites are concentric with Jupiter,

and therefore the accelerative gravities of Jupiter and of the satellites toward

the sun are equal to one another. And by the same argument the weights [or

gravities] of Saturn and its companions toward the sun, at equal distances

from the sun, are as the quantities of matter in them; and the weights of the

moon and earth toward the sun are either nil or exactly proportional to their

masses. But they do have some weight, according to prop. 5, corols. 1 and 3.

But further, the weights [or gravities] of the individual parts of each

planet toward any other planet are to one another as the matter in the in-

dividual parts. For if some parts gravitated more, and others less, than in

proportion to their quantity of matter, the whole planet, according to the

kind of parts in which it most abounded, would gravitate more or gravitate

less than in proportion to the quantity of matter of the whole. But it does

not matter whether those parts are external or internal. For if, for example,

it is imagined that bodies on our earth are raised to the orbit of the moon

1
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and compared with the body of the moon, then, if their weights were to

the weights of the external parts of the moon as the quantities of matter in

them, but were to the weights of the internal parts in a greater or lesser ratio,

they would be to the weight of the whole moon in a greater or lesser ratio,

contrary to what has been shown above.

COROLLARY 1. Hence, the weights of bodies do not depend on their

forms and textures. For if the weights could be altered with the forms, they

would be, in equal matter, greater or less according to the variety of forms,

entirely contrary to experience.

COROLLARY 2. aAll bodies universally that are on or near the earth are

heavy [or gravitate] toward the earth, and the weights of all bodies that are

equally distant from the center of the earth are as the quantities of matter in

them. This is a quality of all bodies on which experiments can be performed

and therefore by rule 3 is to be affirmed of all bodies universally. If the

aether or any other body whatever either were entirely devoid of gravity

or gravitated less in proportion to the quantity of its matter, then, since

(according to the opinion of Aristotle, Descartes, and others) it does not differ

from other bodies except in the form of its matter, it could by a change of

its form be transmuted by degrees into a body of the same condition as those

that gravitate the most in proportion to the quantity of their matter; and, on

the other hand, the heaviest bodies, through taking on by degrees the form

of the other body, could by degrees lose their gravity. And accordingly the

weights would depend on the forms of bodies and could be altered with the

forms, contrary to what has been proved in corol. l.a

aa. Ed. 1 has: "Therefore all bodies universally that are on or near the earth are heavy [or gravitate]

toward the earth, and the weights of all bodies that are equally distant from the center of the earth are as

the quantities of matter in them. For if the aether or any other body whatever either were entirely devoid

of gravity or gravitated less in proportion to the quantity of its matter, then, since it does not differ from

other bodies except in the form of its matter, it could by a change of its form be changed by degrees into

a body of the same condition as those that gravitate the most in proportion to the quantity of their matter

(by hyp. 3), and, on the other hand, the heaviest bodies, through taking on by degrees the form of the

other body, could by degrees lose their gravity. And accordingly the weights would depend on the forms

of bodies and could be altered with the forms, contrary to what has been proved in corol. 1."

Some of the handwritten notes to Newton's copies of ed. 1 show various other alterations that never

appeared in printed editions at this point. In one, for example, everything after the first sentence is

replaced by "This is evident by hyp. 3, provided that this hypothesis holds here," while another has the

substitution "This follows from the preceding proposition by hyp. 3, provided that this hypothesis holds

here." See further the notes to the Rules and Phenomena above.
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bCoROLLARY 3. All spaces are not equally full. For if all spaces were

equally full, the specific gravity of the fluid with which the region of the air

would be filled, because of the extreme density of its matter, would not be

less than the specific gravity of quicksilver or of gold or of any other body

with the greatest density, and therefore neither gold nor any other body could

descend in air. For bodies do not ever descend in fluids unless they have a

greater specific gravity. But if the quantity of matter in a given space could

be diminished by any rarefaction, why should it not be capable of being

diminished indefinitely?

COROLLARY 4. If all the solid particles of all bodies have the same density

and cannot be rarefied without pores, there must be a vacuum. I say particles

have the same density when their respective forces of inertia [or masses] are

as their sizes.b

COROLLARY 5. The force of gravity is of a different kind from the mag-

netic force. For magnetic attraction is not proportional to the [quantity of]

matter attracted. Some bodies are attracted [by a magnet] more [than in pro-

portion to their quantity of matter], and others less, while most bodies are

not attracted [by a magnet at all]. And the magnetic force in one and the

same body can be intended and remitted [i.e., increased and decreased] and is

sometimes far greater in proportion to the quantity of matter than the force

of gravity; and this force, in receding from the magnet, decreases not as the

square but almost as the cube of the distance, as far as I have been able to

tell from certain rough observations.

Proposition 7 Gravity exists in all bodies universally and is proportional to the quantity of matter

Theorem 7 in each.

We have already proved that all planets are heavy [or gravitate] toward

one another and also that the gravity toward any one planet, taken by itself, is

inversely as the square of the distance of places from the center of the planet.

And it follows (by book 1, prop. 69 and its corollaries) that the gravity toward

all the planets is proportional to the matter in them.

Further, since all the parts of any planet A are heavy [or gravitate] toward

any planet B, and since the gravity of each part is to the gravity of the whole

bb. In place of corols. 3 and 4, ed. 1 has a single corol. 3: "And thus a vacuum is necessary. For if all

spaces were full, the specific gravity of the fluid with which the region of the air would be filled, because

of the extreme density of its matter, would not be less than the specific gravity of quicksilver or of gold or
of any other body with the greatest density, and therefore neither gold nor any other body could descend

in air. For bodies do not ever descend in fluids unless they have a greater specific gravity."
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as the matter of that part to the matter of the whole, and since to every action

(by the third law of motion) there is an equal reaction, it follows that planet

B will gravitate in turn toward all the parts of planet A, and its gravity

toward any one part will be to its gravity toward the whole of the planet as

the matter of that part to the matter of the whole. Q.E.D.

COROLLARY 1. Therefore the gravity toward the whole planet arises from

and is compounded of the gravity toward the individual parts. We have

examples of this in magnetic and electric attractions. For every attraction

toward a whole arises from the attractions toward the individual parts. This

will be understood in the case of gravity by thinking of several smaller planets

coming together into one globe and composing a larger planet. For the force

of the whole will have to arise from the forces of the component parts. If

anyone objects that by this law all bodies on our earth would have to gravitate

toward one another, even though gravity of this kind is by no means detected

by our senses, my answer is that gravity toward these bodies is far smaller

than what our senses could detect, since such gravity is to the gravity toward

the whole earth as [the quantity of matter in each of] these bodies to the

[quantity of matter in the] whole earth.

COROLLARY 2. The gravitation toward each of the individual equal par-

ticles of a body is inversely as the square of the distance of places from those

particles. This is evident by book 1, prop. 74, corol. 3.

If two globes gravitate toward each other, and their matter is homogeneous on all Proposition 8

sides in regions that are equally distant from their centers, then the weight of either Theorem 8

globe toward the other will be inversely as the square of the distance between the

centers.

After I had found that the gravity toward a whole planet arises from

and is compounded of the gravities toward the parts and that toward each of

the individual parts it is inversely proportional to the squares of the distances

from the parts, I was still not certain whether that proportion of the inverse

square obtained exactly in a total force compounded of a number of forces,

or only nearly so. For it could happen that a proportion which holds exactly

enough at very great distances might be markedly in error near the surface

of the planet, because there the distances of the particles may be unequal and

their situations dissimilar. But at length, by means of book 1, props. 75 and

76 and their corollaries, I discerned the truth of the proposition dealt with

here.
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3CoROLLARY 1. Hence the weights of bodies toward different planets can

be found and compared one with another. For the weights of equal bodies

revolving in circles around planets are (by book 1, prop. 4, corol. 2) as the di-

ameters of the circles directly and the squares of the periodic times inversely,

and weights at the surfaces of the planets or at any other distances from the

center are greater or smaller (by the same proposition) as the inverse squares

of the distances. I compared the periodic times of Venus around the sun (224

aa. The text of the first part of corol. 1 as it appears in the later editions—that is, the first two sen-

tences and part of the third sentence up to "of the moon around the earth (27 days, 7 hours, 43 minutes)"—

is almost the same as in the version in ed. 1, except that the later editions have a more complete reference

to prop. 4 (the addition of "corol. 2") and have more exact values for the periods of Venus (224 days and

163/4 hours) and of the outermost satellite of Jupiter (16 days and 168/i5 hours). In the remainder of the

text, however, the later versions are notably different from the earlier one. (For a gloss on this corollary,

see the Guide, §8.10.) In ed. 1, corol. 1 reads as follows:

"Corollary 1. Hence the weights of bodies toward different planets can be found and compared one

with another. For the weights of equal bodies [i.e., bodies with equal masses] revolving in circles around

planets are (by book 1, prop. 4) as the diameters of the circles directly and the squares of the periodic

times inversely, and weights at the surfaces of the planets or at any other distances from the center are

greater or smaller (by the same proposition) inversely as the squared ratio of the distances. I compared the

periodic times of Venus around the sun (2242/3 days), of the outermost circumjovial satellite around Jupiter

(163/4 days), of Huygens's satellite around Saturn (15 days and 222/s hours), and of the moon around the

earth (27 days, 7 hours, 43 minutes) respectively with the mean distance of Venus from the sun, with

the greatest heliocentric elongation of the outermost circumjovial satellite, which (at the mean distance of

Jupiter from the sun according to the observations of Flamsteed) is 8' 13", with the greatest heliocentric

elongation of the satellite of Saturn (3'20"), and with the distance of the moon from the earth, on the

hypothesis that the horizontal solar parallax or the semidiameter of the earth as seen from the sun is

about 20".

In this way I found by calculation that the weights of bodies which are equal and equally distant

from the sun, Jupiter, Saturn, and the earth as directed toward the sun, Jupiter, Saturn, and the earth,

were to one another as 1, , , and —. But the mean apparent semidiameter of the sun is

about 16'6". From the diameter of the shadow of Jupiter as found by eclipses of the satellites, Flamsteed

determined that the mean apparent diameter of Jupiter as seen from the sun is to the elongation of the

outermost satellite as 1 to 24.9, and since that elongation is 8'13", the semidiameter of Jupiter as seen from

the sun will be 193/4". The diameter of Saturn is to the diameter of its ring as 4 to 9, and the diameter of

the ring as seen from the sun (by Flamsteed's measurement) is 50", and thus the semidiameter of Saturn

as seen from the sun is 11". I would prefer to say 10" or 9", because the globe of Saturn is somewhat

dilated by a nonuniform refrangibility of light.

Thus, when the calculation is made, the true semidiameters of the sun, Jupiter, Saturn, and the earth

to one another come out as 10,000, 1,063, 889, and 208. Whence, because the weights of bodies which

are equal and equally distant from the centers of the sun, Jupiter, Saturn, and the earth are, respectively,

toward the sun, Jupiter, Saturn, and the earth as 1, , , , and because, when the distances

are increased or decreased, the weights are decreased or increased in the squared ratio, [it follows that]

the weights of the same equal bodies toward the sun, Jupiter, Saturn, and the earth at distances of 10,000,

1,063, 889, and 208 from their centers, and hence their weights at the surfaces, will be as 10,000, 804'/2,

536, and 805 Vi respectively. We shall show below that the weights of bodies on the surface of the moon

are almost two times less than the weights of bodies on the surface of the earth."

BOOK 3

1 1 1

1,100 2,360 28,700

1

1,100 2,360 28,700

1 1
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days and 163/4 hours), of the outermost circumjovial satellite around Jupiter

(16 days and 168/i5 hours), of Huygens's satellite around Saturn (15 days

and 222/3 hours), and of the moon around the earth (27 days, 7 hours, 43

minutes) respectively with the mean distance of Venus from the sun, and

with the greatest heliocentric elongations of the outermost circumjovial satel-

lite from the center of Jupiter (8'16"), of Huygens's satellite from the center

of Saturn (3'4"), and of the moon from the center of the earth (10'33").

In this way I found by computation that the weights of bodies which are

equal and equally distant from the center of the sun, of Jupiter, of Saturn,

and of the earth are respectively toward the sun, Jupiter, Saturn, and the

earth as 1, -, ———, and . And when the distances are increased
1,067 3,021 169,282

or decreased, the weights are decreased or increased as the squares of the dis-

tances. The weights of equal bodies toward the sun, Jupiter, Saturn, and the

earth at distances of 10,000, 997, 791, and 109 respectively from their centers

(and hence their weights on the surfaces) will be as 10,000, 943, 529, and 435.

What the weights of bodies are on the surface of the moon will be shown

below.3

bCoROLLARY 2. The quantity of matter in the individual planets can also

be found. For the quantities of matter in the planets are as their forces at

equal distances from their centers; that is, in the sun, Jupiter, Saturn, and the

earth, they are as 1, , , and respectively. If the parallax
l ,Uo /  . 5 ,0 /1  16y ,zoz

of the sun is taken as greater or less than 10"30'", the quantity of matter in

the earth will have to be increased or decreased in the cubed ratio.b

bb. In ed. 1, there was an additional corollary numbered 2, so that the corollaries numbered 2, 3, and

4 in the later editions were originally numbered 3, 4, and 5. (For a gloss on this corollary see the Guide,

§8.10.) The corol. 2 of the first edition reads as follows:

"Corollary 2. Therefore the weights of equal bodies [i.e., bodies with equal masses], on the surfaces

of the earth and of the planets, are almost proportional to the square roots of their apparent diameters

as seen from the sun. With respect to the diameter of the earth as seen from the sun there is as yet no

agreement. I have taken it to be 40", because the observations of Kepler, Riccioli, and Vendelin do not

permit it to be much greater; the observations of Horrocks and Flamsteed seem to make it a little smaller.

And I have preferred to err on the side of excess. But if perhaps that diameter and the gravity on the

surface of the earth are a mean among the diameters of the planets and the gravities on their surfaces,

then, since the diameters of Saturn, Jupiter, Mars, Venus, and Mercury are about 18", 391/2//, 8", 28", 20",

the diameter of the earth will be about 24" and therefore the parallax of the sun about 12", as Horrocks

and Flamsteed pretty nearly concluded. But a slightly larger diameter agrees better with the rule of this

corollary." That is, the larger diameter of the earth as seen from the sun, and hence the larger solar

parallax, agrees better with the rule about the weights of equal bodies on the surface of the earth and

planets being "almost proportional to the square roots of their apparent diameters as seen from the sun."

459
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COROLLARY 3. The densities of the planets can also be found. For the

weights of equal and homogeneous bodies toward homogeneous spheres are,

on the surfaces of the spheres, as the diameters of the spheres, by book 1,

prop. 72; and therefore the densities of heterogeneous spheres are as those

weights divided by the diameters of the spheres. Now, the true diameters of

the sun, Jupiter, Saturn, and the earth were found to be to one another as

10,000, 997, 791, and 109, and the weights toward them are as 10,000, 943,

529, and 435 respectively, and therefore the densities are as 100, 94 Vz, 67, and

400. The density of the earth that results from this computation does not

depend on the parallax of the sun but is determined by the parallax of the

moon and therefore is determined correctly here. Therefore the sun is a little

denser than Jupiter, and Jupiter denser than Saturn, and the earth four times

denser than the sun. For the sun is rarefied by its great heat. And the moon

is denser than the earth, as will be evident from what follows [i.e., prop. 37,

corol. 3].

COROLLARY 4. Therefore, other things being equal, the planets that are

smaller are denser. For thus the force of gravity on their surfaces approaches

closer to equality. But, other things being equal, the planets that are nearer to

the sun are also denser; for example, Jupiter is denser than Saturn, and the

earth is denser than Jupiter. The planets, of course, had to be set at different

distances from the sun so that each one might, according to the degree of its

density, enjoy a greater or smaller amount of heat from the sun.c If the earth

were located in the orbit of Saturn, our water would freeze; in the orbit of

Mercury, it would immediately go off in a vapor. For the light of the sun, to

which its heat is proportional, is seven times denser in the orbit of Mercury

than on earth, and I have found with a thermometer that water boils at seven

cc. In place of this portion of corol. 4, ed. 1 has:

"Corollary 5. The densities of the planets, moreover, are to one another nearly in a ratio compounded

of the ratio of the distance from the sun and the square roots of the diameters of the planets as seen from

the sun. For the densities of Saturn, Jupiter, the earth, and the moon (60, 76, 387, and 700) are almost as

the roots of the apparent diameters (18", 391/2/', 40", and 11") divided by the reciprocals of their distances

from the sun I —-—, , -, ——— ). We said, moreover [utique], in corol. 2, that the gravitiesy8,538 5,201 1,000 l,000y
at the surfaces of the planets are approximately as the square roots of their apparent diameters as seen

from the sun; and in lem. 4 [i.e., corol. 4] that the densities are as the gravities divided by the true

diameters; and so the densities are almost as the roots of the apparent diameters multiplied by the true

diameters—that is, inversely as the roots of the apparent diameters divided by the distances of the planets

from the sun. Therefore God placed the planets at different distances from the sun so that each one

might, according to the degree of its density, enjoy a greater or smaller amount of heat from the sun."
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times the heat of the summer sun. And there is no doubt that the matter of

the planet Mercury is adapted to its heat and therefore is denser than this

matter of our earth, since all denser matter requires a greater heat for the

performance of the operations of nature.

In going inward from the surfaces of the planets, gravity decreases very nearly in Proposition 9

the ratio of the distances from the center. Theorem 9

If the matter of the planets were of uniform density, this proposition

would hold true exactly, by book 1, prop. 73. Therefore the error is as great

as can arise from the nonuniformity of the density.

The motions of the planets can continue in the heavens for a very long time. Proposition 10

In the scholium to prop. 40, book 2, it was shown that a globe of frozen Theorem 10

water moving freely in our air would, as a result of the resistance of the air,

lose —-— of its motion in describing the length of its own semidiameter.
4,586

And the same proportion obtains very nearly in any globes, however large

they may be and however swift their motions. Now, I gather in the following

way that the globe of our earth is denser than if it consisted totally of water.

If this globe were wholly made of water, whatever things were rarer than

water would, because of their smaller specific gravity, emerge from the water

and float on the surface. And for this reason a globe made of earth that

was covered completely by water would emerge somewhere, if it were rarer

than water; and all the water flowing away from there would be gathered

on the opposite side. And this is the case for our earth, which is in great

part surrounded by seas. If the earth were not denser than the seas, it would

emerge from those seas and, according to the degree of its lightness, a part

of the earth would stand out from the water, while all those seas flowed to

the opposite side. By the same argument the spots on the sun are lighter than

the solar shining matter on top of which they float. And in whatever way the

planets were formed, at the time when the mass was fluid, all heavier matter

made for the center, away from the water. Accordingly, since the ordinary

matter of our earth at its surface is about twice as heavy as water, and a

little lower down, in mines, is found to be about three or four or even five

times heavier than water, it is likely that the total amount of matter in the

earth is about five or six times greater than it would be if the whole earth

consisted of water, especially since it has already been shown above that the

1
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earth is about four times denser than Jupiter. Therefore, if Jupiter is a little

denser than water, then in the space of thirty days (during which this planet

describes a length of 459 of its semidiameters) it would, in a medium of

the same density as our air, lose almost a tenth of its motion. But since the

resistance of mediums decreases in the ratio of their weight and density (so

that water, which is 133/5 times lighter than quicksilver, resists 133/5 times

less; and air, which is 860 times lighter than water, resists 860 times less), it

follows that up in the heavens, where the weight of the medium in which the

planets move is diminished beyond measure, the resistance will nearly cease.

We showed in the scholium to prop. 22, book 2, that at a height of two

hundred miles above the earth, the air would be rarer than on the surface

of the earth in a ratio of 30 to 0.0000000000003998, or 75,000,000,000,000 to

1, roughly. And hence the planet Jupiter, revolving in a medium with the

same density as that upper air, would not, in the time of a million years,

lose a millionth of its motion as a result of the resistance of the medium.

In the spaces nearest to the earth, of course, nothing is found that creates

resistance except air, exhalations, and vapors. If these are exhausted with very

great care from a hollow cylindrical glass vessel, heavy bodies fall within the

glass vessel very freely and without any sensible resistance; gold itself and

the lightest feather, dropped simultaneously, fall with equal velocity and, in

falling through a distance of four or six or eight feet, reach the bottom at the

same time, as has been found by experiment. And therefore in the heavens,

which are void of air and exhalations, the planets and comets, encountering

no sensible resistance, will move through those spaces for a very long time.

Hypothesis 1 The center of the system of the world is at rest.

No one doubts this, although some argue that the earth, others that the

sun, is at rest in the center of the system. Let us see what follows from this

hypothesis.

Proposition 11 The common center of gravity of the earth, the sun, and all the planets is at rest.

Theorem 11 For that center (by corol. 4 of the Laws) either will be at rest or will

move uniformly straight forward. But if that center always moves forward,

the center of the universe will also move, contrary to the hypothesis.

Proposition 12 The sun is engaged in continual motion but never recedes far from the common

Theorem 12 center of gravity of all the planets.
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For since (by prop. 8, corol. 2) the matter in the sun is to the matter

in Jupiter as 1,067 to 1, and the distance of Jupiter from the sun is to the

semidiameter of the sun in a slightly greater ratio, the common center of

gravity of Jupiter and the sun will fall upon a point a little outside the

surface of the sun. By the same argument, since the matter in the sun is to

the matter in Saturn as 3,021 to 1, and the distance of Saturn from the sun

is to the semidiameter of the sun in a slightly smaller ratio, the common

center of gravity of Saturn and the sun will fall upon a point a little within

the surface of the sun. And continuing the same kind of calculation, if the

earth and all the planets were to lie on one side of the sun, the distance of

the common center of gravity of them all from the center of the sun would

scarcely be a whole diameter of the sun. In other cases the distance between

those two centers is always less. And therefore, since that center of gravity is

continually at rest, the sun will move in one direction or another, according

to the various configurations of the planets, but will never recede far from

that center.

COROLLARY. Hence the common center of gravity of the earth, the sun,

and all the planets is to be considered the center of the universe. For since the

earth, sun, and all the planets gravitate toward one another and therefore, in

proportion to the force of the gravity of each of them, are constantly put in

motion according to the laws of motion, it is clear that their mobile centers

cannot be considered the center of the universe, which is at rest. If that body

toward which all bodies gravitate most had to be placed in the center (as

is the commonly held opinion), that privilege would have to be conceded to

the sun. But since the sun itself moves, an immobile point will have to be

chosen for that center from which the center of the sun moves away as little

as possible and from which it would move away still less, supposing that the

sun were denser and larger, in which case it would move less.

The planets move in ellipses that have a focus in the center of the sun, and by Proposition 13

radii drawn to that center they describe areas proportional to the times. Theorem 13

We have already discussed these motions from the phenomena. Now that

the principles of motions have been found, we deduce the celestial motions

from these principles a priori. Since the weights of the planets toward the

sun are inversely as the squares of the distances from the center of the sun, it

follows (from book 1, props. 1 and 11, and prop. 13, corol. 1) that if the sun
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were at rest and the remaining planets did not act upon one another, their

orbits would be elliptical, having the sun in their common focus, and they

would describe areas proportional to the times. The actions of the planets

upon one another, however, are so very small that they can be ignored, and

they perturb the motions of the planets in ellipses about the mobile sun less

(by book 1, prop. 66) than if those motions were being performed about the

sun at rest.

Yet the action of Jupiter upon Saturn is not to be ignored entirely. For the

gravity toward Jupiter is to the gravity toward the sun (at equal distances)

as 1 to 1,067; and so in the conjunction of Jupiter and Saturn, since the

distance of Saturn from Jupiter is to the distance of Saturn from the sun

almost as 4 to 9, the gravity of Saturn toward Jupiter will be to the gravity

of Saturn toward the sun as 81 to 16 x 1,067, or roughly as 1 to 211. And

hence arises a perturbation of the orbit of Saturn in every conjunction of

this planet with Jupiter so sensible that astronomers have been at a loss

concerning it. According to the different situations of the planet Saturn in

these conjunctions, its eccentricity is sometimes increased and at other times

diminished, the aphelion sometimes is moved forward and at other times

perchance drawn back, and the mean motion is alternately accelerated and

retarded. Nevertheless, all the error in its motion around the sun, an error

arising from so great a force, can almost be avoided (except in the mean

motion) by putting the lower focus of its orbit in the common center of

gravity of Jupiter and the sun (by book 1, prop. 67); in which case, when that

error is greatest, it hardly exceeds two minutes. And the greatest error in the

mean motion hardly exceeds two minutes per year. But in the conjunction

of Jupiter and Saturn the accelerative gravities of the sun toward Saturn,

of Jupiter toward Saturn, and of Jupiter toward the sun are almost as 16,

81, and ——l , or 156,609, and so the difference of the gravities

of the sun toward Saturn and of Jupiter toward Saturn is to the gravity of

Jupiter toward the sun as 65 to 156,609, or 1 to 2,409. But the greatest power

of Saturn to perturb the motion of Jupiter is proportional to this difference,

and therefore the perturbation of the orbit of Jupiter is far less than that of

Saturn's. The perturbations of the remaining orbits are still less by far, except

that the orbit of the earth is sensibly perturbed by the moon. The common

center of gravity of the earth and the moon traverses an ellipse about the sun,

an ellipse in which the sun is located at a focus, and this center of gravity,

25

16 x 81 x 3,021
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by a radius drawn to the sun, describes areas (in that ellipse) proportional to

the times; the earth, during this time, revolves around this common center

with a monthly motion.

The aphelia and nodes of the [planetary] orbits are at rest. Proposition 14

The aphelia are at rest, by book 1, prop. 11, as are also the planes of the Theorem 14

orbits, by prop. 1 of the same book; and if these planes are at rest, the nodes

are also at rest. But yet from the actions of the revolving planets and comets

upon one another some inequalities will arise, which, however, are so small

that they can be ignored here.

COROLLARY 1. The fixed stars also are at rest, because they maintain

given positions with respect to the aphelia and nodes.

COROLLARY 2. And so, since the fixed stars have no sensible parallax

arising from the annual motion of the earth, their forces will produce no

sensible effects in the region of our system, because of the immense distance

of these bodies from us. Indeed, the fixed stars, being equally dispersed in all

parts of the heavens, by their contrary attractions annul their mutual forces,

by book 1, prop. 70.

Since the planets nearer to the sun (namely, Mercury, Venus, the earth, and Scholium

Mars) act but slightly upon one another because of the smallness of their

bodies [i.e., because their masses are small], their aphelia and nodes will be

at rest, except insofar as they are disturbed by the forces of Jupiter, Saturn,

and any bodies further away. And by the theory of gravity it follows that

their aphelia move slightly forward [or in consequentia] with respect to the

fixed stars, and do this as the 3/2 powers of the distances of these planets

from the sun. For example, if in a hundred years the aphelion of Mars is

carried forward [or in consequentia] 33'20" with respect to the fixed stars,

then in a hundred years the aphelia of the earth, Venus, and Mercury will

be carried forward 17'40", IQ'53", and 4/16// respectively. And these motions

are ignored in this proposition because they are so small.

To find the principal diameters of the [planetary] orbits. Proposition 15

These diameters are to be taken as the 2/s powers of the periodic times Problem 1

by book 1, prop. 15; and then each one is to be increased in the ratio of the
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sum of the masses of the sun and each revolving planet to the first of two

mean proportionals between that sum and the sun, by book 1, prop. 60.

Proposition 16 To find the eccentricities and aphelia of the [planetary] orbits.

Problem 2 The problem is solved by book 1, prop. 18.

Proposition 17 The daily motions of the planets are uniform, and the libration of the moon arises

Theorem 15 from its daily motion.

This is clear from the first law of motion and book 1, prop. 66, corol. 22.

With respect to the fixed stars Jupiter revolves in 9h56m, Mars in 24h39m,

Venus in about 23 hours, the earth in 23h56m, the sun in 251/2 days, and the

moon in 27d7h43m. That these things are so is clear from phenomena. With

respect to the earth, the spots on the body of the sun return to the same

place on the sun's disc in about 271/2 days; and therefore with respect to the

fixed stars the sun revolves in about 251/2 days. Now, since a lunar day (the

moon revolving uniformly about its own axis) is a month long [i.e., is equal

to a lunar month, the periodic time of the moon's revolution in its orbit], the

same face of the moon will always very nearly look in the direction of the

further focus of its orbit, and therefore will deviate from the earth on one

side or the other according to the situation of that focus. This is the moon's

libration in longitude; for the libration in latitude arises from the latitude of

the moon and the inclination of its axis to the plane of the ecliptic. Mr. N.

Mercator, in his book on astronomy, published in the beginning of the year

1676, set forth this theory of the moon's libration more fully on the basis of

a letter from me.

The outermost satellite of Saturn seems to revolve about its own axis

with a motion similar to our moon's, constantly presenting the same aspect

toward Saturn. For in revolving about Saturn, whenever it approaches the

eastern part of its own orbit, it is just barely seen and for the most part

disappears from sight; and possibly this occurs because of certain spots in

that part of its body which is then turned toward the earth, as Cassini noted.

The outermost satellite of Jupiter also seems to revolve about its own axis

with a similar motion, because in the part of its body turned away from

Jupiter it has a spot which, whenever the satellite passes between Jupiter and

our eyes, appears as if it were on the body of Jupiter.
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The axes of the planets are smaller than the diameters that are drawn perpendic- Proposition 18

ularly to those axes. Theorem 16

If it were not for the daily circular motion of the planets, then, because

the gravity of their parts is equal on all sides, they would have to assume

a spherical figure. Because of that circular motion it comes about that those

parts, by receding from the axis, endeavor to ascend in the region of the

equator. And therefore if the matter is fluid, it will increase the diameters at

the equator by ascending, and will decrease the axis at the poles by descend-

ing. Thus the diameter of Jupiter is found by astronomical observations to

be shorter between the poles than from east to west. By the same argument,

if our earth were not a little higher around the equator than at the poles,

the seas would subside at the poles and, by ascending in the region of the

equator, would flood everything there.

To jind the proportion of a planet's axis to the diameters perpendicular to that Proposition 19a

axis. Problem 3
bcOur fellow countryman Norwood, in about the year 1635, measured a

distance of 905,751 London feet between London and York and observed the

a. For a gloss on this proposition see the Guide, §10.14.

bb. Ed. 1 has: "The solution of this problem requires a complex computation, which is shown more

easily by example than by precept. Through making the calculation, therefore, I find, by book 1, prop. 4,

that the centrifugal force of the parts of the earth at the equator, arising from the daily motion, is to the

force of gravity as 1 to 2904/5."

cc. Ed. 2 has: "Picard measured an arc of 1°22'55" between Amiens and Malvoisine and found an

arc of one degree to be 57,060 Paris toises. Hence the circumference of the earth is 123,249,600 Paris feet,

as above. But since an error of four hundredths of an inch, either in the construction of the instruments

or in their application to making observations, is imperceptible and, in the ten-foot sector by which the

French observed the latitudes of places, corresponds to four seconds and, in single observations, can fall

upon the center of the sector as well as on its circumference, and since errors in smaller arcs are of

greater significance, therefore Cassini by the king's order undertook the measurement of the earth by

means of greater intervals between the places (see the History of the Royal Academy of Sciences for the

year 1700) and in the process, by using the distance between the Royal Paris Observatory and the village

of Collioure in Roussillon and the difference of 6° 18' between the latitudes and supposing that the earth's

shape is spherical, found one degree to be 57,292 toises, nearly as our fellow countryman Norwood had

found earlier. For Norwood, in about the year 1635, measured a distance of 905,751 London feet between

London and York and observed the difference of latitudes between those places to be 2°28' and thereby

found the measure of one degree to be 367,196 London feet, that is, 57,300 Paris toises. Because of the

magnitude of the interval measured by Cassini, I shall use 57,292 toises for the measure of one degree in

the middle of that interval, that is, between the latitudes of 45° and 46°. Hence, if the earth is spherical,
its semidiameter will be 19,695,539 Paris feet.

"The length of a seconds pendulum oscillating in the latitude of Paris is three Paris feet and 85/9 lines.

And the length which a heavy body describes by falling in the time of one second is to half the length of
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difference of latitudes between those places to be 2°28/ and thereby found the

measure of one degree to be 367,196 London feet, that is, 57,300 Paris toises.

Picard measured an arc of 1°22'55" along the meridian between Amiens and

Malvoisine and found an arc of one degree to be 57,060 Paris toises. The

elder Cassini [Gian Domenico or Jean-Dominique] measured the distance

along the meridian from the town of Collioure in Roussillon to the Paris

observatory; and his son [Jacques] added the distance from the observatory to

the tower of the city of Dunkerque. The total distance was 486,156!/2 toises,

and the difference in latitudes between the town of Collioure and the city

of Dunkerque was 8°31/ll5/6//. Thus an arc of one degree comes out to be

57,061 Paris toises. And from these measures the circumference of the earth

is found to be 123,249,600 Paris feet, and its semidiameter 19,615,800 feet, on

the hypothesis that the earth is spherical.

At the latitude of Paris, a heavy body falling in the time of one second

describes 15 Paris feet 1 inch 1% lines as has been mentioned above, that

is, 2,173% lines. The weight of a body is diminished by the weight of the

surrounding air. Let us suppose that the weight lost in this way is an eleven-

thousandth part of the total weight; then such a heavy body falling in a

vacuum will describe a space of 2,174 lines in the time of one second.0

A body revolving uniformly in a circle at a distance of 19,615,800 feet

from the center, making a revolution in a single sidereal day of 23h56m4s,

will describe an arc of 1,433.46 feet in the time of one second, an arc whose

versed sine is 0.0523656 feet, or 7.54064 lines. And therefore the force by

which heavy bodies descend at the latitude of Paris is to the dcentrifugald

force of bodies on the equator (which arises from the daily motion of the

earth) as 2,174 to 7.54064.

The centrifugal force of bodies on the earth's equator is to the centrifugal

force by which bodies recede rectilinearly from the earth at the latitude of

Paris (48°50'10") as the square of the radius to the square of the cosine of

that latitude, that is, as 7.54064 to 3.267. Let this force be added to the force

by which heavy bodies descend at the latitude of Paris; then a body falling

at that latitude with the total force of gravity will, in the time of one second,

describe 2,177.267 lines, or 15 Paris feet 1 inch and 5.267 lines. And the total

this pendulum or as the square of the ratio of the circumference of the circle to its diameter (as Huygens

indicated) and thus is 15 Paris feet, 1 inch, 2'/is lines, or 2,1741/is lines."

dd. Ed. 2 has "centripetal."
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force of gravity at that latitude will be to the ecentrifugale force of bodies on

the earths equator as 2,177.267 to 7.54064 or 289 to l.b

Therefore, if APBQ represents the figure of the earth, which is now no

longer spherical but generated by the rotation of an ellipse about its minor

axis PQ; and if ACQqca is a channel full of water,

going from the pole Qq to the center Cc and from

that center out to the equator Aa; then the weight

of the water in the leg ACca will have to be to the

weight of the water in the other leg QCcq as 289 to

288, because the centrifugal force arising from the

circular motion will sustain and take away one of

the 289 parts of weight of the water in the leg ACca, and consequently the

288 parts of weight of the water in the leg QCcq will sustain the 288 parts

remaining in the leg ACca. Further, on making the computation (according

to book 1, prop. 91, corol. 2), I find that if the earth were composed of

uniform matter and were deprived of all its motion, and its axis PQ were

to its diameter AB as 100 to 101, then the gravity in place Q toward the

earth would be to the gravity in the same place Q toward a sphere described

about the center C with a radius PC or QC as 126 to 125. And by the same

argument, the gravity in place A toward a spheroid generated by the rotation

of the ellipse APBQ about the axis AB is to the gravity in the same place A

toward a sphere described about a center C with a radius AC as 125 to 126.

Moreover, the gravity in place A toward the earth is a mean proportional

between the gravity toward the spheroid and the gravity toward the sphere,

because the sphere, when its diameter PQ is diminished in the ratio of 101

to 100, is transformed into the figure of the earth; and this figure, when

a third diameter (perpendicular to the two given diameters AB and PQ)

is diminished in the same ratio, is transformed into the said spheroid; and

the gravity in A, in either case, is diminished in very nearly the same ratio.

Therefore the gravity in A toward a sphere described about the center C with

a radius AC is to the gravity in A toward the earth as 126 to 125 V^; and

the gravity in place Q, toward a sphere described about the center C with a

radius QC, is to the gravity in place A, toward a sphere described about the

center C with a radius AC, in the ratio of the diameters (by book 1, prop. 72),

ee. Ed. 2 has "centripetal."
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that is, as 100 to 101. Now let these three ratios (126 to 125, 126 to 1251/2,

and 100 to 101) be combined, and the gravity in place Q toward the earth

will become to the gravity in place A toward the earth as 126 x 126 x 100 to

125 x 1251/2 x 101, or as 501 to 500.

Now, since (by book 1, prop. 91, corol. 3) the gravity in either leg ACca

or QCcq of the channel is as the distance of places from the earth's center, if

those legs are separated by transverse, equidistant surfaces into parts propor-

tional to the wholes, the weights of any number of these individual parts in

the leg ACca will be to the weights of the same number of individual parts

in the other leg as their magnitudes and accelerative gravities jointly, that is,

as 101 to 100 and 500 to 501, which is as 505 to 501. And accordingly, if the

centrifugal force of each part of the leg ACca (which force arises from the

daily motion) had been to the weight of the same part as 4 to 505, so that

it would take away four parts from the weight of each part (supposing it

to be divided into 505 parts), the weights would remain equal in each leg,

and therefore the fluid would stay at rest in equilibrium. But the centrifugal

force of each part is to the weight of the same part as 1 to 289; that is, the
4 1fcentrifugalf force, which ought to have been —- of the weight, is only —-

of it. And therefore I say, according to the golden rule [or rule of three], that
4

if a centrifugal force of —— of the weight makes the height of the water in

the leg ACca exceed the height of the water in the leg QCcq by a hundredth

of its total height, the centrifugal force of of the weight will make the
289

excess of the height in the leg ACca be only —— of the height of the water

in the other leg QCcq. Therefore the diameter of the earth at the equator

is to its diameter through the poles as 230 to 229. And thus, since the mean

semidiameter of the earth, according to Picard's measurement, is 19,615,800

Paris feet, or 3,923.16 miles (supposing a mile to be 5,000 feet), the earth will

be 85,472 feet or 171/10 miles higher at the equator than at the poles. And its

height at the equator will be about 19,658,600 feet, and at the poles will be

about 19,573,000 feet.

If a planet is larger or smaller than the earth, while its density and peri-

odic time of daily revolution remain the same, the ratio of centrifugal force

ff. Ed. 1 has "centripetal."

505

505 289

1

1

229
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to gravity will remain the same, and therefore the ratio of the diameter be-

tween the poles to the diameter at the equator will also remain the same.

But if the daily motion is accelerated or retarded in any ratio, the centrifugal

force will be increased or decreased in that same ratio squared, and there-

fore the difference between the diameters will be increased or decreased very

nearly in the same squared ratio. And if the density of a planet is increased

or decreased in any ratio, the gravity tending toward the planet will also

be increased or decreased in the same ratio, and the difference between the

diameters in turn will be decreased in the ratio of the increase in the gravity

or will be increased in the ratio of the decrease in the gravity. Accordingly,

since the earth revolves [i.e., rotates] with respect to the fixed stars in 23h56m,

and Jupiter in 9h56m, and the squares of their periodic times are as 29 to

5, and the densities of these revolving bodies are as 400 to 941/2, the dif-

ference between the diameters of Jupiter will be to its smaller diameter as

— x x to 1, or very nearly as 1 to 9 Vs. Therefore Jupiter's diam-

eter taken from east to west is to its diameter between the poles very nearly

as 101/3 to 91/3. gThus, since its larger diameter is 37", its smaller diameter

(which lies between the poles) will be 33"25'". Because of the erratic light

let about 3" be added, and the apparent diameters of this planet will come

out to be 40" and 36"25"', which are to each other nearly as 111/6 to 10Ve.

This argument has been based on the hypothesis that the body of Jupiter is

uniformly dense. But if its body is denser toward the plane of the equator

than toward the poles, its diameters can be to each other as 12 to 11, or 13

to 12, or even 14 to 13. As a matter of fact, Cassini observed in the year

1691 that the diameter of Jupiter extending from east to west would exceed

its other diameter by about a fifteenth part of itself. Moreover, our fellow

countryman Pound, with a 123-foot-long telescope and the best microme-

ter, measured the diameters of Jupiter in the year 1719 with the following

results.

gg. Ed. 1 and ed. 2 have: "These things are so on the hypothesis that the matter of the planets is

uniform. For if the matter is denser at the center than at the circumference, the diameter which is drawn

from east to west will be still greater." In ed. 1 the proposition ends here, but in ed. 2 it continues:

"Indeed, Cassini observed long ago that the diameter of Jupiter which lies between its poles is smaller

than the other diameter, and it will be apparent from what is said in prop. 20 below that the diameter of
the earth between the poles is smaller than the other diameter."

2 9 4 4 0 1

5 9 4 1 / 2 2 2 9
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Times

January

March

March

April

Largest diameter

days

28
6
9
9

hours

6
7
7
9

parts

13.40

13.12

13.12

12.32

Smallest diameter

parts

12.28

12.20

12.08

11.48

Diameters to each other

as 12 to 11

133/4 tO 123/4

122/3 tO 11 2/3

W/2 tO 131/2

Therefore the theory agrees with the phenomena. Further, the planets

are more exposed to the heat of sunlight toward their equators and as a re-

sult hare somewhat more thoroughly heated thereh than toward the poles.

Even further, it will be apparent—from the experiments with pendulums

reported in prop. 20 below—that gravity is decreased at the equator by the

daily rotation of our earth, and therefore that the earth (supposing its matter

to be uniformly dense) rises higher there than at the poles.g

Proposition 20 To find and compare with one another the weights of bodies in different regions

Problem 4 of our earth.

Since the weights of the unequal legs of the water-channel ACQqca

are equal, and the weights of any parts that are proportional to the whole

legs and similarly situated in those legs are to one another as the weights

of the wholes, and thus are also equal to one another, the weights of parts

that are equal and similarly situated in the legs will be inversely as the

legs, that is, inversely as 230 to 229. This is likewise

the case for any homogeneous equal bodies that are

similarly situated in the legs of the channel. The

weights of these bodies are inversely as the legs,

that is, inversely as the distances of the bodies from

the earth's center. Accordingly, if the bodies are in

the topmost parts of the channels, or on the surface

of the earth, their weights will be to one another inversely as their distances

from the center. And by the same argument, weights that are in any other

regions whatever, anywhere on the whole surface of the earth, are inversely as

hh. The Latin text reads "paulo magis ibi decoquuntur," employing the verb "decoquo," which could

mean, literally, "boil down" or "cook" or "bake." The problems of interpretation are discussed in the

Guide to the present translation, §8.11.
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the distances of those places from the center; and therefore, on the hypothesis

that the earth is a spheroid, the proportion of those weights is given.

From this the following theorem is deduced:3 The increase of weight in

going from the equator to the poles is very nearly as the versed sine of twice

the latitude, or (which is the same) as the square of the sine of the latitude.
bAnd the arcs of degrees of latitude on a meridian are increased in about the

same ratio. Now, the latitude of Paris is 48°50', the latitude of places on the

equator 00°00/, and that of places at the poles 90°; the versed sines of twice

those arcs of latitude are 11,334 and 00,000 and 20,000 (the radius being taken

to be 10,000); the gravity at the pole is to the gravity at the equator as 230 to

229; and the excess of the gravity at the pole to the gravity at the equator is

a. See the Guide, §10.15.

bb. In place of the remaining part of this proposition, ed. 1 has: "For example, the latitude of Paris

is 48°45', that of the island of Goree near Cape Verde 14° 15', that of Cayenne off the coast of Guiana

about 50°, that of places at the pole 90°. If the arcs of latitude are doubled, they are 97.5°, 28.5°, 10°,

and 180°. The versed sines are 11,305, 1,211, 152, and 2,000. Furthermore, since the gravity at the pole

is to the gravity at the equator as 692 to 689 and the excess of gravity at the pole is to the gravity at

the equator as 3 to 689, the excess of gravity at Paris, on the island of Goree, and at Cayenne will be to
, • , 3x11,305 3 x 1 , 2 1 1 , 3 x 1 5 2 ,the gravity at the equator as , , and to 689, or as 33,915, 3,633, and 456 to

2,000 2,000 2,000
13,780,000, and therefore the total gravities in these places will be to one another as 13,813,915, 13,783,633,

13,780,456, and 13,780,000. Therefore, since the lengths of pendulums oscillating with equal periods are as

the gravities, and the length of a seconds pendulum at Paris is 3 Paris feet and 17/24 inches, the lengths of

seconds pendulums on the island of Goree, at Cayenne, and at the equator will be surpassed by the length
81 89 90

of a Paris pendulum by excesses of , , and ——— inches. All of these things will be so on the
1,000 1,000 1,000

hypothesis that the earth consists of uniform matter. For if the matter at the center is a little denser than

at the surface, those excesses will be a little greater. The reason is that if the superabundant matter at the

center, by which the density there is rendered greater, is taken away and considered separately, the gravity

toward the rest of the earth, which is uniformly dense, will be inversely as the distance of a weight from

the center, but toward the superabundant matter inversely as the square of the distance from that matter

very nearly. Therefore, gravity at the equator will be less toward that superabundant matter than as in

the above computation, and therefore the earth there, on account of the deficiency of gravity, will rise a

little higher than has been determined above. Indeed, the French by making experiments have already

found that the length of seconds pendulums at Paris is greater than on the island of Goree by Vw of an
01

inch and greater than at Cayenne by V?,. These differences are a little greater than the differences
GO 1> 000

and ——— which resulted from the above computation, and therefore (if one can have enough confidence
1,000

in these rough observations) the earth will be somewhat higher at the equator than according to the

above calculation and denser at the center than in mines near the surface. If the excess of gravity in these

northern places over the gravity at the equator is finally determined exactly by experiments conducted

with greater diligence, and then its excess is everywhere taken in the ratio of the versed sine of twice the

latitude, then there will be determined a universal measure, an equalizing of the time of equal pendulums

in the different places indicated, and also the proportion of the diameters of the earth and its density at

the center, on the hypothesis that that density, as one goes to the circumference, decreases uniformly. And

indeed this hypothesis, even though it is not exact, can be assumed for undertaking such a calculation."
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as 1 to 229. Hence the excess of the gravity at the latitude of Paris will be to

the gravity at the equator as 1 x \\9^ to 229, or 5,667 to 2,290,000. And
20,000

therefore the total gravities in these places will be to each other as 2,295,667

to 2,290,000. And thus, since the lengths of pendulums oscillating with equal

periods are as the gravities, and at the latitude of Paris the length of a seconds

pendulum is 3 Paris feet and 8!/2 lines (or rather, because of the weight of

the air, 85/9 lines), the length of a pendulum at the equator will be shorter

than the length of a pendulum with the same period at Paris in the amount

of 1.087 lines. And a similar computation yields the following table.

Latitude

of the

place

degrees

0

5
10
15
20
25
30
35
40

1
2
3
4

Length

of the

pendulum

feet lines

3 7.468

3 7.482

3 7.526

3 7.596

3 7.692

3 7.812

3 7.948

3 8.099

3 8.261

3 8.294

3 8.327

3 8.361

3 8.394

Measure of

one degree

on the meridian

toises

56637

56642

56659

56687

56724

56769

56823

56882

56945

56958

56971

56984

56997

Latitude

of the

place

degrees

45

6
7
8
9

50
55
60
65
70
75
80
85
90

Length

of the

pendulum

feet lines

3 8.428

3 8.461

3 8.494

3 8.528

3 8.561

3 8.594

3 8.756

3 8.907

3 9.044

3 9.162

3 9.258

3 9.329

3 9.372

3 9.387

Measure of

one degree

on the meridian

toises

57010

57022

57035

57048

57061

57074

57137

57196

57250

57295

57332

57360

57377

57382

c Moreover, it is established by this table that the inequality [in the length]

of degrees [at different latitudes] is so small that in geographical matters the

cc. Ed. 2 has: "and that the inequality of the diameters of the earth can be ascertained more easily

and more surely by experiments with pendulums or even by eclipses of the moon than by arcs measured

geographically on the meridian.
"These things are so on the hypothesis that the earth consists of uniform matter. For if the matter at

the center is a little denser than at the surface, the differences of pendulums and degrees on a meridian

will be a little greater than according to the preceding table. The reason is that if superabundant matter

at the center, by which the density there is rendered greater, is taken away and regarded separately, the
gravity toward the rest of the earth, which is uniformly dense, will be inversely as the distance of a weight
from the center; but toward the superabundant matter, it will be inversely as the square of the distance

from that matter very nearly. Therefore gravity at the equator is less toward that superabundant matter
than according to the above computation, and therefore the earth there, on account of the deficiency of
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shape of the earth can be considered to be spherical, especially if the earth is

a little denser toward the plane of the equator than toward the poles.0

Now some astronomers, sent to distant regions to make astronomical

observations, have observed that their pendulum clocks went more slowly

near the equator than in our regions. And indeed M. Richer first observed

this in the year 1672 on the island of Cayenne. For while he was observing

the transit of the fixed stars across the meridian in the month of August, he

found that his clock was going more slowly than in its proper proportion to

the mean motion of the sun, the difference being 2m28s every day. Then by

constructing a simple pendulum that would oscillate in seconds as measured

by the best clock, he noted the length of the simple pendulum, and he did

this frequently, every week for ten months. Then, when he had returned to

France, he compared the length of this pendulum with the length of a seconds

pendulum at Paris (which was 3 Paris feet and 83/5 lines long) and found that

it was shorter than the Paris pendulum, the difference being 11A lines.d

Afterward, our fellow countryman Halley, sailing in about the year 1677

to the island of St. Helena, found that his pendulum clock went more slowly

there than in London, but he did not record the difference. He made the

pendulum of his clock shorter by more than l/g of an inch, or 1 Vi lines. And

to effect this, since the length of the threaded part at the lower end of the

pendulum rod was not sufficient, he put a wooden ring between the nut (on

the threaded part) and the weight at the end of the pendulum.

Then in the year 1682 M. Varin and M. Des Hayes found that the

length of a seconds pendulum in the Royal Observatory at Paris was 3 feet

85/9 lines. And on the island of Goree they found by the same method that

the length of a pendulum with the same period was 3 feet 65/9 lines, the

difference in lengths being 2 lines. And sailing in the same year to the islands

of Guadeloupe and Martinique, they found that on these islands the length

of a pendulum with the same period was 3 feet 6Vi lines.

Afterward, in July 1697, M. Couplet the younger adjusted his pendulum

clock to the mean motion of the sun in the Royal Observatory at Paris in

such a way that for quite a long time the clock agreed with the motion of

gravity, will rise a little higher, and the excesses of the lengths of pendulums and of the degrees at the
poles will be a little greater than has been determined above."

d. Here ed. 2 has an additional sentence: "But from the slowness of the pendulum clock in Cayenne,

the difference of the pendulums is gathered to be 11/2 lines."
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the sun. Then sailing to Lisbon, he found that by the next November the

clock went more slowly than before, the difference being 2m13s in 24 hours.

And sailing to Paraiba in the following March, he found that his clock went

more slowly there than in Paris, the difference being 4m12s in 24 hours. And

he declares that a seconds pendulum was 21/2 lines shorter at Lisbon and

3 2/3 lines shorter at Paraiba than at Paris. He might more correctly have put

these differences as 11/3 and 25/9; these are the differences that correspond to

the differences in times of 2m13s and 4m12s. He is less trustworthy because of

the crudity of his observations.

In the next years (1699 and 1700) M. Des Hayes, again sailing to America,

determined that on the islands of Cayenne and Grenada the length of a

seconds pendulum was a little less than 3 feet 61/2 lines, that on the island

of St. Kitts that length was 3 feet 63/4 lines, and that on the island of Santo

Domingo it was 3 feet 7 lines.

And in the year 1704 Father Feuillee found that in Portobello in America

the length of a seconds pendulum was 3 Paris feet and only 57/n lines, that is,

about 3 lines shorter than at Paris, but he made an error in his observation.

For, sailing afterward to the island of Martinique, he found that the length

of a pendulum with the same period was 3 Paris feet and 510/i2 lines.

Moreover, the latitude of Paraiba is 6°38/ S, and that of Portobello is

9°33' N; and the latitudes of the islands of Cayenne, Goree, Guadeloupe,

Martinique, Grenada, St. Kitts, and Santo Domingo are respectively 4°55',

14°40', 14°00', 14°44', 12°6', 17°19/, and 19°48' N. And the excesses of the

length of the pendulum at Paris over the observed lengths of pendulums

with the same period in these latitudes are a little greater than they would be

according to the table of pendulum lengths computed above. And therefore

the earth is somewhat higher at the equator than according to the above

computation, and is denser toward the center than in mines near the surface,

unless perhaps the heat in the torrid zone somewhat increased the length of

the pendulums.

M. Picard, at any rate, observed that an iron rod, which in wintertime

when the weather was freezing was 1 foot long, came to be 1 foot and 1A of

a line long when heated by a fire. Later M. La Hire observed that an iron

rod, which in an exactly similar winter was 6 feet long, came to be 6 feet

and 2/3 of a line long when it was exposed to the summer sun. The heat [i.e.,

temperature] was greater in the first example than in the second, and in the
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second it was greater than that of the external parts of the human body. For

metals grow extremely hot in the summer sun. But the pendulum rod in a

pendulum clock is ordinarily never exposed to the heat of the summer sun,

and never acquires a heat equal to that of the external surface of the human

body. And, therefore, although a 3-foot-long pendulum rod in a clock will

indeed be a little longer in summertime than in wintertime, this increase will

scarcely surpass 1A of 1 line. Accordingly, all of the difference in the length

of pendulums with the same period in different regions cannot be attributed

to differences in heat. Nor can this difference be attributed to errors made

by the astronomers sent from France. For although their observations do

not agree perfectly with one another, the errors are so small that they can be

ignored. And in this they all agree: that at the equator, pendulums are shorter

than pendulums with the same period at the Royal Observatory in Paris, ethe

difference being neither less than 11A lines nor more than 22/3 lines. By the

observations of M. Richer made in Cayenne the difference was 11A lines. By

those of M. Des Hayes that difference when corrected became 11/2 or 13/4

lines. By the less accurate observations made by others, this difference came

out as more or less 2 lines. And this discrepancy could have arisen partly from

errors in observations, partly from the dissimilitude of the internal parts of

the earth and from the height of mountains, and partly from the differences

in heat [i.e., temperatures] of the air.

As far as I can tell, in England an iron rod 3 feet long is 14 of 1 line

shorter in the wintertime than in the summertime. Let this quantity be sub-

ee. Ed. 2 has: "... the difference being about 2 lines or '/6 of an inch. By the observations of M. Richer

made in Cayenne, the difference was 1 Vi lines. An error of half a line is easily committed. And M. Des

Hayes afterward, by his observations made on the same island, corrected the error, finding a difference

of 21/is lines. But also by observations made on the islands of Goree, Guadeloupe, Martinique, Grenada,

St. Kitts, and Santo Domingo and reduced to the equator, that difference came out to be scarcely smaller

than 119/20 of a line and scarcely greater than 2Vi lines. And the mean quantity between these limits is

2%o lines. Because of the heat of places in the torrid zone, let us ignore %o of a line, and a difference of

2 lines will remain.

"Therefore, since that difference, by the preceding table, on the hypothesis that the earth consists of
87

uniformly dense matter, is only 1 ——— of a line, the excess of the height of the earth at the equator over
1, UUU

its height at the poles, which was 17 Ve miles, being now increased in the ratio of the differences, will

become 317/i2 miles. For the slowness of a pendulum at the equator proves the deficiency of the gravity;

and the lighter the matter is, the greater its height must be in order that by its weight it may hold in
equilibrium the matter at the poles.

"Hence the shape of the earth's shadow, which is to be determined by eclipses of the moon, will not

be entirely circular, but its diameter drawn from east to west will be greater than its diameter drawn
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tracted (because of the heat at the equator) from the difference of 11A lines

observed by Richer, and there will remain \Vu lines, in excellent agreement
87

with the 1 lines already found from the theory. Moreover, Richer re-
1, UUU

peated his observations in Cayenne every week during a ten-month period,

and compared the lengths he found there for a pendulum consisting of an

iron rod with its lengths similarly found in France [i.e., with its lengths ad-

justed in Paris so as to have the same period]. This diligence and caution

seem to have been lacking in other observers. If his observations are to be

trusted, the earth will be higher at the equator than at the poles by an excess

of about seventeen miles, as came out above by the theory.b e

Proposition 21 The equinoctial points regress, and the earth's axis, by a nutation in every an-

Theorem 17 nual revolution, inclines twice toward the ecliptic and twice returns to its former

position.

This is clear by book 1, prop. 66, corol. 20. This motion of nutation,

however, must be very small—either scarcely or not at all perceptible.

Proposition 22 All the motions of the moon and all the inequalities in its motions follow from

Theorem 18 the principles that have been set forth.

from south to north by an excess of about 55". And the greatest longitudinal parallax of the moon will

be a little greater than its greatest latitudinal parallax. And the greatest semidiameter of the earth will be

19,767,630 Paris feet, the least, 19,609,820 feet, and the mean, 19,688,725 feet, very nearly.

"Since one degree by Picard's measurement is 57,060 toises but by Cassini's measurement is 57,292

toises, some suspect that each degree, as one goes southward through France, is greater than the preceding

degree by 72 toises more or less, or —— of one degree, the earth being an oblong spheroid whose parts
800

are highest at the poles. Under this supposition, all bodies at the earth's poles would be lighter than at the

equator, and the height of the earth at the poles would exceed its height at the equator by nearly 95 miles,

and isochronous pendulums would be longer at the equator than in the Royal Observatory at Paris by an

excess of about half an inch, as will be easily seen by anyone comparing the proportions set forth here with

the proportions set forth in the preceding table. But also the diameter of the earth's shadow drawn from
south to north would be greater than its diameter drawn from east to west by an excess of 2'46", or Vu of

the moon's diameter. Experience contradicts all this. Certainly Cassini, in determining that one degree is

57,292 toises, took a mean between all his measurements, on the hypothesis of the equality of degrees. And

although Picard on the northern border of France found a degree to be a little smaller, yet our compatriot

Norwood in more northern reigons, by measuring a greater interval, found a degree to be a little greater

than Cassini had found. And Cassini himself, when he attempted to determine the measurement of one

degree by using a far greater interval, judged Picard's measurement to be insufficiently certain and exact

because of the smallness of the interval measured. But the differences among the measurements of Cassini,

Picard, and Norwood are nearly imperceptible and could easily have arisen from imperceptible errors in

observations, not to mention the nutation of the earth's axis."

1
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That the major planets, while they are being carried about the sun, can

carry other or minor planets [or satellites], revolving around them, and that

those minor planets must revolve in ellipses having their foci in the centers of

the major planets, is evident from book 1, prop. 65. Moreover, their motions

will be perturbed in many ways by the sun's action, and they will be influ-

enced by those inequalities that are observed in our moon. Our moon, in any

case (by book 1, prop. 66, corols. 2, 3, 4, and 5), moves more swiftly, and by

a radius drawn to the earth describes an area greater for the time, and has a

less curved orbit, and therefore approaches closer to the earth, in the syzygies

than in the quadratures, except insofar as these effects are hindered by the

motion of eccentricity. For the eccentricity is greatest (by book 1, prop. 66,

corol. 9) when the moon's apogee is in the syzygies, and least when it stands

in the quadratures; and thus the moon in its perigee is swifter and closer to

us, while in its apogee it is slower and more remote, in the syzygies than in

the quadratures. Additionally, the apogee advances and the nodes regress, but

with a nonuniform motion. And indeed the apogee (by prop. 66, corols. 7

and 8) advances more swiftly in its syzygies, regresses more slowly in the

quadratures, and by the excess of the advance over the regression is annually

carried forward [or in consequentia, i.e., from east to west in the direction of

the signs]. But the nodes (by prop. 66, corol. 2) are at rest in their syzygies

and regress most swiftly in the quadratures. The moon's greatest latitude is

also greater in its quadratures (by prop. 66, corol. 10) than in its syzygies,

and (by prop. 66, corol. 6) the mean motion of the moon is slower in the

earth's perihelion than in its aphelion. And these are the more significant

inequalities [of the moon's motion] taken note of by astronomers.

There are also certain other inequalities not observed by previous as-

tronomers, by which the lunar motions are so perturbed that until now these

motions have not been reducible, by any law, to any definite rule. For the

velocities or hourly motions of the moon's apogee and nodes, and their equa-

tions, and also the difference between the greatest eccentricity in the syzygies

and the least in the quadratures, and that inequality which is called the

variation, are increased and decreased annually (by prop. 66, corol. 14) as

the cube of the sun's apparent diameter. And, additionally, the variation is

increased or decreased very nearly as the square of the time between the

quadratures (by book 1, lem. 10, corols. 1 and 2, and prop. 66, corol. 16),
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but in astronomical calculations this inequality is generally included un-

der the moon's prosthaphaeresis [or equation of the center] and confounded

with it.

Proposition 23 To derive the unequal motions [i.e., the inequalities in the motions] of the satellites

Problem 5 of Jupiter and of Saturn from the motions of our moon.

From the motions of our moon the analogous motions of the moons or

satellites of Jupiter are derived as follows. The mean motion of the nodes of

Jupiter's outermost satellite is (by book 1, prop. 66, corol. 16) to the mean

motion of the nodes of our moon in a ratio compounded of the square of

the ratio of the earth's periodic time about the sun to Jupiter's periodic time

about the sun, and of the simple ratio of the satellite's periodic time about

Jupiter to the moon's periodic time about the earth, and so in one hundred

years that node completes 8°24' backward [or in antecedentia, i.e., counter

to the order of the signs]. The mean motions of the nodes of the inner

satellites are (by the same corollary) to the motion of this outermost satellite

as the periodic times of those inner satellites are to the periodic time of the

outermost satellite and hence are given. Moreover (by the same corollary),

the forward [or direct] motion of the upper apsis of each satellite [or its

motion in consequentia] is to the backward [or retrograde] motion of its

nodes [or the motion in antecedentia] as the motion of the apogee of our moon

to the motion of its nodes, and hence is also given. However, the motion of

the upper apsis found in this way must be decreased in the ratio of 5 to 9,

or about 1 to 2, for a reason which would take too much time to explain

here. The greatest equations of the nodes and upper apsis of each satellite

are approximately to the greatest equations of the nodes and upper apsis of

our moon respectively as the motions of the nodes and upper apsis of the

satellites in the time of one revolution of the former equations are to the

motions of the nodes and apogee of our moon in the time of one revolution

of the latter equations. By the same corollary, the variation of a satellite as it

would be observed from Jupiter is to the variation of our moon in the same

proportion as the total motions of their nodes during the times in which

respectively the satellite and our moon revolve as reckoned in relation to

the sun; and therefore in the outermost satellite the variation does not ex-

ceed 5"12'".
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The ebb and flow of the sea arise from the actions of the sun and moon.

It is clear from book 1, prop. 66, corols. 19 and 20, that the sea should

twice rise and twice fall in every day, lunar as well as solar, and also that the

greatest height of the water, in deep and open seas, should occur less than

six hours after the appulse of the luminaries to the meridian of a place, as

happens in the whole eastern section of the Atlantic Ocean and the Ethiopic

[or South Atlantic] Sea between France and the Cape of Good Hope, and

also on the Chilean and Peruvian shore of the Pacific Ocean; on all these

shores the tide comes in at about the second, third, or fourth hour, except

in cases when the motion has been propagated from the deep ocean through

shallow places and is delayed until the fifth, sixth, or seventh hour, or later.

I number the hours from the appulse of either luminary to the meridian of

a place, below the horizon as well as above, and by hours of a lunar day I

mean twenty-fourths of that time in which the moon, by its apparent daily

motion, returns to the meridian of the place. The force of the sun or moon

to raise the sea is greatest in the very appulse of the luminary to the meridian

of the place. But the force impressed upon the sea at that time remains for a

while and is increased by a new force subsequently impressed, until the sea

has ascended to its greatest height, which will happen in one or two hours,

but more frequently at the shores in about three hours or even more if the

sea is shallow.

Moreover, the two motions which the two luminaries excite will not be

discerned separately but will cause what might be called a mixed motion.

In the conjunction or the opposition of the luminaries their effects will be

combined, and the result will be the greatest ebb and flow. In the quadratures

the sun will raise the water while the moon depresses it and will depress the

water while the moon raises it; and the lowest tide of all will arise from

the difference between these two effects. And since, as experience shows, the

effect of the moon is greater than that of the sun, the greatest height of the

water will occur at about the third lunar hour. Outside of the syzygies and

quadratures, the highest tide, which by the lunar force alone would always

have to occur at the third lunar hour, and by the solar force alone at the

third solar hour, will occur, as a result of the combining of the lunar and

solar forces, at some intermediate time which is closer to the third lunar hour

[than to the third solar hour]; and thus in the transit of the moon from the

syzygies to the quadratures, when the third solar hour precedes the third

Proposition 24

Theorem 19
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lunar hour, the greatest height of the water will also precede the third lunar

hour, and will do so by the greatest interval a little after the octants of the

moon; and the highest tide will follow the third lunar hour with the same

intervals in the transit of the moon from the quadratures to the syzygies.

This is what happens in the open sea. For in the mouths of rivers the higher

tides, other things being equal, will come to their peaks later.

Additionally, the effects of the luminaries depend on their distances from

the earth. For at smaller distances their effects are greater, and at greater

distances smaller, and this varies as the cubes of their apparent diameters.

Therefore the sun in wintertime, when it is in its perigee, produces greater

effects and makes the tides a little higher in the syzygies and a little lower

(other things being equal) in the quadratures than in summertime; and the

moon in its perigee every month produces higher tides than fifteen days

before or after, when it is in its apogee. Accordingly, it happens that the two

very highest tides do not follow each other in successive syzygies.

The effect of each luminary depends also on its declination, or distance

from the equator. For if the luminary should be at one of the poles, it would

constantly draw the individual parts of water, without intension and remis-

sion of action, and thus would produce no reciprocation of motion. Therefore

the luminaries, in receding from the equator toward a pole, will lose their

effects by degrees, and for this reason will produce lower tides in the sol-

stitial syzygies than in the equinoctial syzygies. In the solstitial quadratures,

however, they will produce higher tides than in the equinoctial quadratures,

because the effect of the moon, which is now at the equator, most exceeds

the effect of the sun. Therefore the highest tides occur at the syzygies of

the luminaries, and the lowest at their quadratures, at about the times of

either of the two equinoxes. And the highest tide in the syzygies is always

acompanied by the lowest tide in the quadratures, as has been learned by

experience. Moreover, as a result of the smaller distance of the sun from the

earth in winter than in summer, it comes about that the highest and lowest

tides more often precede the vernal equinox than follow it, and more often

follow the autumnal equinox than precede it.

The effects of the luminaries depend also on the latitude of places. Let

ApEP represent the earth covered everywhere with deep waters, C its center,

P and p the poles, AE the equator, F any place not on the equator, F/ the

parallel of that place, Dd the parallel corresponding to it on the other side of
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the equator, L the place that the

moon was occupying three hours

earlier, H the place on the earth

situated perpendicularly beneath L,

h the place opposite H, K and ^

places 90 degrees distant from H

and h, CH and Ch the greatest

heights of the sea (measured from

the center of the earth), and CK and C^ the least heights. If an ellipse is

described with axes HA, K^, and then if by the revolution of this ellipse

about the major axis HA a spheroid HPKA/?^ is described, this spheroid

will represent the figure of the sea very nearly, and CF, C/, CD, Cd will

be the heights of the sea at places F, /, D, d. Further, if in the aforesaid

revolution of the ellipse any point N describes a circle NM which cuts

parallels F/, Drf in any places R, T, and cuts the equator AE in S, CN

will be the height of the sea in all places R, S, T located on this circle.

Hence, in the daily revolution of any place F, the greatest flood tide will be

in F at the third hour after the appulse of the moon to the meridian above

the horizon; afterward, the greatest ebb tide will be in Q at the third hour

after the setting of the moon; then the greatest flood tide will be in f at the

third hour after the appulse of the moon to the meridian below the horizon;

finally, the greatest ebb tide will be in Q at the third hour after the rising

of the moon; and the latter flood tide in f will be smaller than the former

flood tide in F.

For the whole sea is divided into just two hemispherical flows [or flowing

bodies of water], one in the hemisphere KH^ verging to the north, the

other in the opposite hemisphere KA^; and these may therefore be called the

northern flow and the southern flow. These flowing bodies of waters, which

are always opposite to each other, come by turns to the meridian of every

single place, with an interval of twelve lunar hours between them. And since

the northern regions partake more of the northern flow, and the southern

regions more of the southern flow, higher and lower tides arise from them

alternately, in every single place not on the equator in which the luminaries

rise and set. Moreover, the higher tide, when the moon declines toward the

vertex of the place, will occur at about the third hour after the appulse of

the moon to the meridian above the horizon, and when the moon changes
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its declination3, this higher tide will be turned into a lower one. And the

greatest difference between these tides will occur at the times of the solstices,

especially if the ascending node of the moon is in the first of Aries. Thus it

has been found by experience that in winter, morning tides exceed evening

tides and that in summer, evening tides exceed morning tides, at Plymouth

by a height of about one foot, and at Bristol by a height of fifteen inches,

according to the observations of Colepress and Sturmy.

Moreover, the motions hitherto described are changed somewhat by the

force of reciprocation of the waters, by which a tide of the sea, even if the

actions of the luminaries were to cease, would be able to persevere for a

while. This conservation of impressed motion lessens the difference between

alternate tides; and it makes the tides immediately after the syzygies higher

and makes those immediately after the quadratures lower. Hence it happens

that alternate tides at Plymouth and Bristol do not differ from each other

by much more than a height of one foot or fifteen inches, and that the very

highest tides in those same harbors are not the first tides after the syzygies

but the third. All the motions are made slower also in their passing through

shallows, to such an extent that the very highest tides, in certain straits and

the mouths of rivers, are the fourth or even the fifth after the syzygies.

Further, it can happen that a tide is propagated from the ocean through

different channels to the same harbor and passes more quickly through some

channels than through others; in this case the same tide, divided into two

or more tides arriving successively, can compose new motions of different

kinds. Let us suppose that two equal tides come from different places to the

same harbor and that the first precedes the second by a space of six hours

and occurs at the third hour after the appulse of the moon to the meridian

of the harbor. If the moon is on the equator at the time of this appulse to the

meridian, then every six hours there will be equal flood tides coming upon

corresponding equal ebb tides and causing those ebb tides to be balanced by

the flood tides, and thus during the course of that day they will cause the

water to stay quiet and still. If at that time the moon is declining from the

equator, there will be alternately higher and lower tides in the ocean, as has

been said; and from the ocean, two higher and two lower tides will each be

alternately propagated toward this harbor. Moreover, the two greater flood

a. Motte adds, "to the other side of the equator."
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tides will produce the highest water in the middle time between them; the

greater and lesser flood tides will make the water ascend to its mean height

in the middle time between them; and between the two lesser flood tides

the water will ascend to its least height. Thus in the space of twenty-four

hours, the water will only once reach its greatest height, not twice as usually

happens, and will only once reach its least height; and the greatest height, if

the moon is declining toward the pole above the horizon of the place, will

occur at either the sixth or the thirtieth hour after the appulse of the moon to

the meridian; and when the moon changes its declination, this flood tide will

be changed into an ebb tide. An example of all these things has been given by

Halley, on the basis of sailors' observations, in Batsha harbor in the kingdom

of Tonkin at a latitude of 20°50' N. There the water stays still on the day

following the transit of the moon over the equator; then, when the moon

declines toward the north, the water begins to ebb and flow—not twice, as

in other harbors, but only once every day; and the flood tide occurs at the

setting of the moon, and the greatest ebb tide at its rising. This flood tide

increases with the declination of the moon until the seventh or eighth day;

then during the next seven days it decreases at the same rate at which it had

previously increased. And when the moon changes its declination, the flood

ceases and is then turned into an ebb. For thereafter the ebb tide occurs at

the setting of the moon and the flood tide at its rising, until the moon again

changes its declination. There are two different approaches from the ocean

into this harbor and the neighboring channels, the one from the China Sea

between the continent and the island of Leuconia, the other from the Indian

Ocean between the continent and the island of Borneo. But whether there are

tides coming through these channels in twelve hours from the Indian Ocean

and in six hours from the China Sea, which thus occurring at the third and

ninth lunar hours compound motions of this sort, or whether there is any

other condition of those seas, I leave to be determined by observations of the

neighboring shores.

Hitherto I have given the causes of the motions of the moon and seas. It

is now proper to subjoin some things about the quantity of those motions.

To find the forces of the sun that perturb the motions of the moon. Proposition 25

Let S designate the sun, T the earth, P the moon, CADB the orbit of the Problem 6

moon. On SP take SK equal to ST; and let SL be to SK as SK2 to SP2, and
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draw LM parallel to PT; and if the accelerative gravity of the earth toward

the sun is represented by the distance ST or SK, SL will be the accelerative

gravity of the moon toward the sun. This is compounded of the parts SM and

LM, of which LM and the part TM of SM perturb the motion of the moon,

as has been set forth in book 1, prop. 66 and its corollaries. Insofar as the

earth and moon revolve around their common center of gravity, the motion

of the earth about that center will also be perturbed by entirely similar forces;

but it is possible to refer the sums of the forces and the sums of the motions

to the moon, and to represent the sums of the forces by the lines TM and

ML that correspond to them. The force ML, in its mean quantity, is to the

centripetal force by which the moon could revolve in its orbit, about an earth

at rest at a distance PT, as the square of the ratio of the periodic time of the

moon about the earth to that of the earth about the sun (by book 1, prop. 66,

corol. 17), that is, as the square of the ratio of 27d7h43m to 365d6h9m, that is, as

1,000 to 178,725, or 1 to 17829/40. But we found in prop. 4 of this book 3 that if

the earth and moon revolve about their common center of gravity, their mean

distance from each other will be very nearly 60!/2 mean semidiameters of the

earth. And the force by which the moon could revolve in orbit about the

earth at rest at a distance PT of 60 ̂  terrestrial semidiameters is to the force

by which it could revolve in the same time at a distance of 60 semidiameters

as 601/2 to 60; and this force is to the force of gravity on the earth as 1 to

60 x 60 very nearly. And so the mean force ML is to the force of gravity

on the surface of the earth as 1 x 60 ̂  to 60 x 60 x 60 x 17829/4o, or as 1

to 638,092.6. From this and from the proportion of the lines TM and ML,

the force TM is also given; and these are the forces of the sun by which the

motions of the moon are perturbed. Q.E.I.

Proposition 26 To find the hourly increase of the area that the moon, by a radius drawn to the

Problem 7 earth, describes in a circular orbit.
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We have said that the area which the moon describes by a radius drawn

to the earth is proportional to the time, except insofar as the motion of the

moon is disturbed by the action of the sun. We propose to investigate here

the inequality of the moment, or of the hourly increase [under the foregoing

condition of disturbance]. To make the computation easier, let us imagine

that the orbit of the moon is circular, and let us ignore all inequalities with

the sole exception of the one under discussion here. Because of the enormous

distance of the sun, let us suppose also that the lines SP and ST are parallel

to each other. By this means the force LM will always be reduced to its mean

quantity TP, and so will the force TM be reduced to its mean quantity 3PK.

These forces (by corol. 2 of the laws of motion) compose the force TL; and

if a perpendicular LE is dropped to the radius TP, this force is resolved

into the forces TE and EL, of which TE, always acting along the radius

TP, neither accelerates nor retards the description of the area TPC made

by that radius TP; and EL, acting along the perpendicular to the radius,

accelerates or retards the description of the area, as much as it accelerates or

retards the moon. That acceleration of the moon, made in each individual

moment of time, in the transit of the moon from the quadrature C to the
3PK x TK

conjunction A, is as the accelerating force itself EL, that is, as .

Let the time be represented by the mean motion of the moon or (which

comes to about the same thing) by the angle CTP or by the arc CP. On CT

erect a normal CG (equal to CT). And when the quadrantal arc AC has

been divided into innumerable equal particles Pp, . . . , by which the same

T P
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innumerable quantity of equal particles of time can be represented, and when

a perpendicular pf^ has been drawn to CT, draw TG meeting KP and l^p

(produced) in F and /; and FK will be equal to TK, and K^ will be to

PK as P/? to T/?, that is, in a given ratio; and therefore FK X K^, or the
3PK x TK

area FK^/, will be as , that is, as EL; and, by compounding,

the total area GCKF will be as the sum of all the forces EL impressed on

the moon in the total time CP, and so also as the velocity generated by this

sum, that is, as the acceleration of the description of the area CTP, or the

increase of its moment. The force by which the moon could revolve in its

periodic time CADB of 27d7h43m about the earth at rest, at the distance TP,

would make a body, by falling in the time CT, describe the space ViCT,

and at the same time acquire a velocity equal to the velocity with which

the moon moves in its orbit. This is evident from book 1, prop. 4, corol. 9.

However, since the perpendicular Kd dropped to TP is a third of EL, and

is equal to a half of TP or ML in the octants, the force EL in the octants

(where it is greatest) will exceed the force ML in the ratio of 3 to 2, and

so will be to that force by which the moon could revolve in its periodic

time about the earth at rest as 100 to 2A x 17,8721/2, or 11,915, and should
100

in the time CT generate a velocity which would be of the moon's

velocity; but in the time CPA this force would generate a greater velocity in

the ratio of CA to CT or TP. Let the greatest force EL in the octants be

represented by the area FK x K^ equal to the rectangle 1/2TP x Pp. And

the velocity which that greatest force could generate in any time CP will be

to the velocity which any other lesser force EL generates, in the same time,

as the rectangle V^TP x CP to the area KCGF; but the velocities generated

in the whole time CPA will be to each other as the rectangle 1/2TP x CA

to the triangle TCG, or as the quadrantal arc CA to the radius TP. And so

(by book 5, prop. 9 of the Elements) the latter velocity generated in the whole

time will be of the velocity of the moon. Change this velocity of the

moon, which corresponds to the mean moment of the area, by adding and

subtracting half of the other velocity; and if the mean moment is represented

by the number 11,915, the sum 11,915 + 50 (or 11,965) will represent the

greatest moment of the area in the syzygy A, and the difference 11,915 — 50

(or 11,865) the least moment of the same area in the quadratures. Therefore

T P

1 1 ,  9 1 5

1 1 ,  9 1 5

1 0 0



the areas which are described in equal times in the syzygies and quadratures

are to each other as 11,965 to 11,865. To the least moment 11,865 add the

moment that is to the difference (100) of the two above-mentioned moments

as the quadrilateral FKCG is to the triangle TCG or, which comes to the

same thing, as the square of the sine PK to the square of the radius TP (that

is, as Pd to TP); then the sum will represent the moment of the area when

the moon is in any intermediate place P.

All these things are so on the hypothesis that the sun and earth are at

rest, and that the moon has a synodic period of revolution of 27d7h43m. But

since the moon's synodic period is actually 29d12h44m, the increments of the

moments should be increased in the ratio of the time, that is, in the ratio of
100

1,080,853 to 1,000,000. In this way the total increment, which was of

100the mean moment, will now become —— of it. And so the moment of the
11 , 'JZ.J

area in the quadrature of the moon will be to its moment in the syzygy as

11,023 - 50 to 11,023 + 50, or as 10,973 to 11,073; and to its moment, when

the moon is in any other intermediate place P, as 10,973 to 10,973 + Pd,

taking TP to be equal to 100.

Therefore the area that the moon, by a radius drawn to the earth, de-

scribes in every equal particle of time is very nearly as the sum of the number

219.46 and of the versed sine of twice the distance of the moon from the near-

est quadrature, with respect to a circle whose radius is unity. These things

are so when the variation in the octants is at its mean magnitude. But if

the variation there is greater or less, that versed sine should be increased or

decreased in the same ratio.

From the hourly motion of the moon, to find its distance from the earth. Proposition 27

The area that the moon, by a radius drawn to the earth, describes in Problem 8

every moment of time is as the hourly motion of the moon and the square of

the distance of the moon from the earth jointly. And therefore the distance of

the moon from the earth is directly proportional to the square root of the area

and inversely proportional to the square root of the hourly motion. Q.E.I.

COROLLARY 1. Hence the apparent diameter of the moon is given, since

it is inversely as the distance of the moon from the earth. Let astronomers

test how accurately this rule agrees with the phenomena.

P R O P O S I T I O N  2 7 4 8 9

11, 915
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COROLLARY 2. Hence also the lunar orbit can be defined more exactly

from the phenomena than could have been done before now.

Proposition 28 To find the diameters of the orbit in which the moon would have to move, if there

Problem 9 were no eccentricity.

The curvature of the trajectory that a moving body describes, if it is

attracted in a direction which is everywhere perpendicular to that trajectory,

is as the attraction directly and the square of the velocity inversely. I reckon

the curvatures of lines as being among themselves in the ultimate ratio of

the sines or of the tangents of the angles of contact, with respect to equal

radii, when those radii are diminished indefinitely. Now, the attraction of

the moon toward the earth in the syzygies is the excess of its gravity toward

the earth over the solar force 2PK (as in the figure to prop. 25), by which

force the accelerative gravity of the moon toward the sun exceeds the ac-

celerative gravity of the earth toward the sun or is exceeded by it. In the

quadratures that attraction is the sum of the gravity of the moon toward

the earth and the solar force KT (which draws the moon toward the earth).

And these attractions, it is called JNI, are very nearly as
L A i

— and '-— + — ,oras 178,725N x CT2 -2,OOOAT2 x CT
C T x N CT2 A T x N

and 178,725N x AT2 + 1,OOOCT2 x AT. For if the accelerative gravity of

the moon toward the earth is represented by the number 178,725, then the

mean force ML, which in the quadratures is PT or TK and draws the moon

toward the earth, will be 1,000, and the mean force TM in the syzygies will

be 3,000; if the mean force ML is subtracted from that, there will remain the

force 2,000 by which the moon in the syzygies is drawn apart from the earth

and which I have called 2PK above. Now, the velocity of the moon in the

syzygies (A and B) is to its velocity in the quadratures (C and D) jointly as

CT is to AT and as the moment of the area that the moon (by a radius drawn

to the earth) describes in the syzygies is to the moment of that same area as

described in the quadratures, that is, as 11,073CT to 10,973AT. Take this

ratio squared inversely and the above ratio directly, and the curvature of the

moon's orbit in the syzygies will become to its curvature in the quadratures

as 120,406,729 x 178,725AT2 x CT2 x N - 120,406,729 x 2,OOOAT4 x CT

to 122,611,329 x 178,725AT2 x CT2 x N + 122,611,329 x 1,OOOCT4 x AT,

AT + CT 178,725

2,000 178,725 1,000
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that is, as 2,151,969AT x CT x N - 24,081 AT3 to 2,191,371 AT x CT x

N + 12,261CT3.

Since the figure of the lunar orbit is unknown, in its place let us assume

an ellipse DBCA, in whose center T the earth is placed, and let its major

axis DC lie between the quadratures and its

minor axis AB between the syzygies. And

since the plane of this ellipse revolves about

the earth with an angular motion, and since

the trajectory whose curvature we are con-

sidering ought to be described in a plane

that is entirely devoid of any angular mo-

tion, we must consider the figure that the

moon, while revolving in that ellipse, de-

scribes in this place, that is, the figure Cpa,

whose individual points p are found by tak-

ing any point P on the ellipse to represent

the place of the moon, and by drawing Tp

equal to TP in such a way that the angle PTp is equal to the apparent mo-

tion of the sun since the time of quadrature C, or (which comes to almost

the same thing) in such a way that the angle CTp is to the angle CTP as

the time of a synodic revolution of the moon is to the time of a periodic

revolution, or as 29d12h44m to 27d7h43m. Therefore, take the angle CTa in

this same ratio to the right angle CTA, and let the length Ta be equal to

the length TA, then a will be the lower apsis and c the upper apsis of this

orbit Cpa. And by making calculations I find that the difference between

the curvature of the orbit Cpa at the vertex a and the curvature of the circle

described with center T and radius TA has a ratio to the difference between

the curvature of the ellipse at the vertex A and the curvature of that circle

which is equal to the ratio of the square of the angle CTP to the square of

the angle CTp and that the curvature of the ellipse at A is to the curvature

of that circle in the ratio of TA2 to TC2; and the curvature of that circle is

to the curvature of a circle described with center T and radius TC as TC

to TA; but this curvature is to the curvature of the ellipse at C in the ratio

of TA2 to TC2; and the difference between the curvature of the ellipse at

the vertex C and the curvature of this last circle is to the difference between

the curvature of the figure Tpa at the vertex C and the curvature of the
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same circle in the ratio of the square of the angle CTp to the square of the

angle CTP. And these ratios are easily gathered from the sines of the an-

gles of contact and of the differences of the angles. Moreover, by comparing

these, the curvature of the figure Cpa at a comes out to its curvature at C

— represents the difference of the squares of the angles CTP and CTp
100? 000

divided by the square of the smaller angle CTP, or (which is the same) the

difference of the squares of the times 27d7h43m and 29d12h44m divided by the

square of the time 27d7h43m.

Therefore, since a designates the syzygy of the moon and C its quadra-

ture, the proportion just found must be the same as the proportion of the

curvature of the orbit of the moon in the syzygies to its curvature in the

quadratures, which we found above. Accordingly, to find the proportion of

CT to AT, I multiply the extremes by the means. And the resulting terms

divided by ATxCT become 2,062.79CT4-2,151,969NxCT3+368,676Nx

AT x CT2 + 36,342AT2 x CT2 - 362,047N x AT2 x CT + 2,191,371N x

AT3 + 4,051.4AT4 = 0. When I take the half-sum N of the terms AT and

CT to be 1, and their half-difference to be x, there results CT = 1 + x

and AT = 1 — x\ and when these values are put into the equation and

the resulting equation is resolved, x is found equal to 0.00719, and hence

the semidiameter CT comes out 1.00719 and the semidiameter AT 0.99281.

These numbers are very nearly as 701/24 and 69V24. Therefore the distance of

the moon from the earth in the syzygies is to its distance in the quadratures

(setting aside, that is, any consideration of eccentricity) as 69!/24 to 701/24, or

in round numbers as 69 to 70.

Proposition 29 To find the variation of the moon.

Problem 10 This inequality arises partly from the elliptical form of the orbit of the

moon and partly from the inequality of the moments of the area that the

moon describes by a radius drawn to the earth. If the moon P moved in

the ellipse DBCA about the earth at rest in the center of the ellipse and, by

a radius TP drawn to the earth, described the area CTP proportional to the

time, and if furthermore the greatest semidiameter CT of the ellipse were to

the least semidiameter TA as 70 to 69, then the tangent of the angle CTP

would be to the tangent of the angle of the mean motion (reckoned from

16,824

as AT3 + ————CT2 X AT to CT3 + ————AT2 X CT: where the factor
100,000 100,000

16,824 16,824
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the quadrature C) as the semidiameter TA of the ellipse to its semidiameter

TC, or as 69 to 70. Moreover, the description of the area CTP ought, in the

progress of the moon from quadrature to syzygy, to be accelerated in such a

way that the moment of this area in the syzygy of the moon will be to its

moment in its quadrature as 11,073 to 10,973, and in such a way that the

excess of the moment in any intermediate place P over the moment in the

quadrature will be as the square of the sine of the angle CTP. And this

will occur exactly enough if the tangent of angle CTP is diminished in the

ratio of ^/l0,973 to 01,073, or in the ratio of 68.6877 to 69. In this way

the tangent of angle CTP will now be to the tangent of the mean motion as

68.6877 to 70; and the angle CTP in the octants, where the mean motion is

45°, will be found to be 44°27/28", which, when subtracted from the angle

of the mean motion of 45°, leaves the greatest variation 32'32". These things

would be so if the moon, in going from quadrature to syzygy, described an

angle CTA of only 90°. But because of the motion of the earth, by which the

sun is transferred forward [or in consequentia] in its apparent motion, the

moon, before it reaches the sun, describes an angle CTa greater than a right

angle, in the ratio of the time of a synodic revolution of the moon to the time

of its periodic revolution, that is, in the ratio of 29d12h44m to 27d7h43m. And

in this way all the angles about the center T are enlarged in the same ratio;

and the greatest variation, which would otherwise be 32'32", now increased

in the same ratio, becomes 35'10".

This is the magnitude of the greatest variation at the mean distance

of the sun from the earth, ignoring the differences that can arise from the

curvature of the earth's orbit and the greater action of the sun upon the

sickle-shaped and the new moon than upon the gibbous and the full moon.

At other distances of the sun from the earth, the greatest variation is directly

as the square of the time of synodic revolution and inversely as the cube of

the distance of the sun from the earth. And therefore in the apogee of the

sun the greatest variation is 33'14", and in its perigee 37'11", provided that

the eccentricity of the sun is to the transverse semidiameter of the great orbit

[i.e., the earth's orbit] as 1615/16 to 1,000.

Hitherto we have investigated the variation in a noneccentric orbit, in

which the moon in its octants is always at its mean distance from the earth.

If the moon, because of its eccentricity, is more distant or less distant from

the earth than if it were placed in this orbit, the variation can be a little
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greater or a little less than according to the rule asserted here; but I leave the

excess or deficiency for astronomers to determine from phenomena.

Proposition 30 To find the hourly motion of the nodes of the moon in a circular orbit.

Problem 11 Let S designate the sun, T the earth, P the moon, NPn the orbit of

the moon, Npn the projection of the orbit in the plane of the ecliptic; N

and n the nodes, nTNm the line of the nodes, indefinitely produced; PI and

PK perpendiculars dropped to the lines ST and Q#; Pp a perpendicular

dropped to the plane of the ecliptic; A and B the syzygies of the moon in

the plane of the ecliptic; AZ a perpendicular to the line of the nodes N#;

Q and q the quadratures of the moon in the plane of the ecliptic; and pK

a perpendicular to the line Q^, which lies between the quadratures. The

force of the sun to perturb the motion of the moon has (by prop. 25) two

components, one proportional to the line LM in the figure of that proposition,

the other proportional to the line MT in that same figure. And the moon

is attracted toward the earth by the first of these forces, and by the second

it is attracted toward the sun along a line parallel to the straight line ST

drawn from the earth to the sun. The first force LM acts in the plane of

the moon's orbit and therefore can make no change in the position of that
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plane. Therefore this force is to be ignored. The second force MT, by which

the plane of the lunar orbit is perturbed, is the same as the force 3PK or

SIT. And this force (by prop. 25) is to the force by which the moon could

revolve uniformly in a circle in its periodic time about the earth at rest as

3IT to the radius of the circle multiplied by the number 178.725, or as IT to

the radius multiplied by 59.575. But in this calculation and in what follows,

I consider all lines drawn from the moon to the sun to be parallel to the

line drawn from the earth to the sun, because the inclination diminishes all

effects in some cases nearly as much as it increases them in others; and we

are here seeking the mean motions of the nodes, ignoring those niceties of

detail which would make the calculation too cumbersome.

Now let PM represent the arc that the moon describes in a minimally

small given time, and ML the line-element one-half of which the moon could

describe in the same time by the impulse of the above-mentioned force SIT.

Draw PL and MP, and produce them to m and /, and let them cut the plane

of the ecliptic there, and upon Tm drop the perpendicular PH. Since the

straight line ML is parallel to the plane of the ecliptic and so cannot meet

with the straight line ml (which lies in that plane) and yet these straight

lines lie in a common plane LMPml, these straight lines will be parallel, and

therefore the triangles LMP and ImP will be similar. Now, since MPm is

in the plane of the orbit in which the moon was moving while in place P,

the point m will fall upon the line Nw drawn through the nodes N and n of

that orbit. The force by which half of the line-element LM is generated—if

all of it were impressed all at once in place P—would generate that whole

line and would cause the moon to move in an arc whose chord would be

LP, and so would transfer the moon from the plane MPmT into the plane

LP/T; therefore the angular motion of the nodes that is generated by that

force will be equal to the angle mTl. Moreover, ml is to mP as ML is to MP,

and so, since MP is given (because the time is given), ml is as the rectangle

MLxwP, that is, as the rectangle ITxraP. And, provided that the angle Tml

is a right angle, the angle mil is as , and therefore as ,
Tm Tm

IT x PH
that is (because Tm is to mP as TP is to PH), as ; and so, be-

cause TP is given, as IT x PH. But if the angle Tml or STN is oblique,

the angle mTl will be still smaller, in the ratio of the sine of the angle STN
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to the radius, or of AZ to AT. Therefore the velocity of the nodes is as

IT x PH x AZ, or as the solid contained by [or the product of] the sines of

the three angles TPI, PTN, and STN.

If those angles are right angles, as happens when the nodes are in the

quadratures and the moon is in the syzygy, the line-element ml will go off

indefinitely and the angle mTl will become equal to the angle raP/. But in

this case the angle mPl is to the angle PTM, which the moon describes about

the earth in the same time by its apparent motion, as 1 to 59.575. For the

angle mPl is equal to the angle LPM, that is, to the angle of the deflection

of the moon from the straight-line path that the aforesaid solar force SIT

could generate by itself in that given time, if the gravity of the moon were

then to cease; and the angle PTM is equal to the angle of the deflection of

the moon from the straight-line path that the force by which the moon is

kept in its orbit would generate in the same time, if the solar force 3IT were

then to cease. And these forces, as we have said above, are to each other

as 1 to 59.575. Therefore, since the mean hourly motion of the moon with

respect to the fixed stars is 32/56//27///12lvl/2, the hourly motion of the node

in this case will be 33//10///33lv12v. But in other cases this hourly motion will

be to 33"10'"33iv12v as the solid contained by [or the product of] the sines

of the three angles TPI, PTN, and STN (or the distance of the moon from

the quadrature, of the moon from the node, and of the node from the sun)

to the cube of the radius. And whenever the sign of any of the angles is

changed from positive to negative and from negative to positive, retrograde

motion will have to be changed into progressive motion, and progressive into

retrograde. Hence it happens that the nodes advance whenever the moon is

between either of the quadratures and the node nearest to that quadrature.

In other cases, the nodes are retrograde, and they are carried backward [or

in antecedentia] each month by the excess of the retrograde motion over the

progressive.

COROLLARY 1. Hence, if from the ends P and M of the minimally small

given arc PM, the perpendiculars PK and M^ are dropped to the line Qq

that joins the quadratures, and these perpendiculars are produced until they

cut the line of the nodes Nn in D and d, then the hourly motion of the nodes

will be as the area MPDd and the square of the line AZ jointly. For let PK,

PH, and AZ be the above-mentioned three sines—namely, PK the sine of

the distance of the moon from the quadrature, PH the sine of the distance

B O O K 3
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of the moon from the node, and AZ the sine of the distance of the node

from the sun—then the velocity of the node will be as the solid [or product]

PK x PH x AZ. But PT is to PK as PM to K^, and so, because PT and

PM are given, K^ is proportional to PK. Also, AT is to PD as AZ to PH,

and therefore PH is proportional to the rectangle PD x AZ; and, combining

these ratios, PK x PH is as the solid K^ x PD x AZ, and PK x PH x AZ

is as K^ x PD x'AZ2, that is, as the area PDdM and AZ2 jointly. Q.E.D.

COROLLARY 2. In any given position of the nodes, the mean hourly mo-

tion is half of their hourly motion in the moon's syzygies, and thus is to

16//55///16lv36v as the square of the sine of the distance of the nodes from the

syzygies is to the square of the radius, or as AZ2 to AT2. For if the moon

traverses the semicircle QA# with uniform motion, the sum of all the areas

PDdM during the time in which the moon goes from Q to M will be the

area QNWE, which is terminated at the tangent QE of the circle; and in

the time in which the moon reaches point «, that sum will be the total area

EQAw, which the line PD describes; then as the moon goes from n to ^,

the line PD will fall outside the circle and will describe the area nqe (which

is terminated at the tangent qe of the circle)—which, since the nodes were

previously retrograde but now are progressive, must be subtracted from the

former area, and (since it is equal to the area QEN) will leave the semicircle

NQA/z. Therefore, during the time in which the moon describes a semicir-

cle, the sum of all the areas PDdM is the area of that semicircle; and in

the time in which the moon describes a circle, the sum of all those areas

is the area of the whole circle. But the area PDdM, when the moon is in
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the syzygies, is the rectangle of the arc PM and the radius PT; and in the

time in which the moon describes a circle, the sum of all the areas that are

equal to this one is the rectangle of the whole circumference and the ra-

dius of the circle; and this rectangle, since it is equal to two circles, is twice

as large as the former rectangle. Accordingly, if the nodes moved with the

same velocity uniformly continued that they have in the lunar syzygies, they

would describe a space twice as large as the space which they really describe;

and therefore the mean motion—with which, if it were continued uniformly,

they would describe the space that they really cover with their nonuniform

motion—is one-half of the motion which they have in the moon's syzygies.

Hence, since the greatest hourly motion of the nodes, if the nodes are in the

quadratures, is 33//10///33lv12v, their mean hourly motion in this case will be

16//35///16lv36v. And since the hourly motion of the nodes is always as AZ2

and the area PD^M jointly, and therefore the hourly motion of the nodes in

the moon's syzygies is as AZ2 and the area PDdM jointly, that is (because

the area PDJM described in the syzygies is given), as AZ2, the mean motion

will also be as AZ2; and hence this motion, when the nodes are outside the

quadratures, will be to 16"35'"161V36V as AZ2 to AT2. Q.E.D.

Proposition 31 To find the hourly motion of the nodes of the moon in an elliptical orbit.

Problem 12 Let Qpmaq represent an ellipse described with a major axis Qq and a

minor axis ab, QA^B a circle circumscribed about this ellipse, T the earth in

the common center of both, S the sun, p the moon moving in the ellipse, and

pm the arc that the moon describes in a minimally small given particle of

time, N and n the nodes joined by the line N/w, pK and m\ perpendiculars

dropped to the axis Qq and produced on both sides until they meet the circle

at P and M and the line of the nodes at D and d. And if the moon, by

a radius drawn to the earth, describes an area proportional to the time, the

hourly motion of the node in the ellipse will be as the area pDdm and AZ2

jointly.

To demonstrate this, let PF touch the circle at P and, produced, meet

TN at F; let pf touch the ellipse at p and, produced, meet the same TN at

f\ and let these tangents come together on the axis TQ at Y. And let ML

designate the space that the moon, revolving in a circle, would describe by a

transverse motion under the action and impulse of the aforesaid force 3IT or
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3PK, while it describes the arc PM; and let ml designate the space that the

moon, revolving in an ellipse, could describe in the same time, also under

the action of the force 3IT or 3PK. Further, let Lp and Ip be produced

until they meet the plane of the ecliptic at G and g\ and let FG and fg

be drawn, of which let FG produced cut pf9 pg, and TQ at <:, e, and R

respectively; and let fg produced cut TQ at r. Then, since the force SIT

or 3PK in the circle is to the force 3IT or 3/>K in the ellipse as PK is to

/?K, or as AT to <zT, the space ML generated by the first force will be to

the space ml generated by the second force as PK to /?K, that is (because

the figures PYK/? and FYR<r are similar), as FR to cR. Moreover, ML is

to FG (because the triangles PLM and PGF are similar) as PL to PG, that

is (because L^, PK, and GR are parallel), as pi to pe, that is (because the

triangles plm and cpe are similar), as Im to ce\ and thus LM is to /ra, or

FR is to rR, as FG is to ce. And therefore if fg were to ce as /Y to rY,

that is, as fr to cR (that is, as fr to FR and FR to cR jointly, that is, as /T

4 9 9
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to FT and FG to ce jointly), then, since the ratio FG to ce taken away from

both sides leaves the ratios fg to FG and /T to FT, the ratio fg to FG

would be as fT to FT, and so the angles that FG and fg would subtend at

the earth T would be equal to each other. But these angles (by what we have

set forth in the preceding prop. 30) are the motions of the nodes in the time

in which the moon traverses the arc PM in the circle, and the arc pm in the

ellipse; and therefore the motions of the nodes in the circle and in the ellipse

would be equal to each other. These things would be so, if only fg were
ce x /"Y

to ce as /Y to cY 9 that is, if fg were equal to . But because the

triangles fgp and cep are similar, fg is to ce as fp to cp, and so fg is equal
ce x fp

to ; and therefore the angle that fg really subtends is to the former
cp

angle that FC subtends (that is, the motion of the nodes in the ellipse is to

the motion of the nodes in the circle) as this fg or to the former
cp

fg or , that is, as fp x cY to /Y x cp, or as fp to /Y and cY to

cf\ that is (if ph, parallel to TN, meets FP at A), as Fh to FY and FY to

FP; that is, as Fh to FP or D/? to DP, and so as the area Dpmd to the area

DPMd. And therefore, since (by prop. 30, corol. 1) the latter area and AZ2

jointly are proportional to the hourly motion of the nodes in the circle, the

former area and AZ2 jointly will be proportional to the hourly motion of the

nodes in the ellipse. Q.E.D.

COROLLARY. Therefore, since in any given position of the nodes, the sum

of all the areas pDdm, in the time in which the moon goes from the quadra-

ture to any place m, is the area mpQE,d, which is terminated at the tangent

QE of the ellipse, and the sum of all those areas in a complete revolution

is the area of the whole ellipse, the mean motion of the nodes in the el-

lipse will be to the mean motion of the nodes in the circle as the ellipse

to the circle, that is, as Ta to TA, or as 69 to 70. And therefore, since

(by prop. 30, corol. 2) the mean hourly motion of the nodes in the circle is

to 16"35'"161V36V as AZ2 to AT2 if the angle 16"21'"31V30V is taken to the

angle 16"35'"16iv36v as 69 to 70, the mean hourly motion of the nodes in

the ellipse will be to 16"21'"31V30V as AZ2 to AT2, that is, as the square

of the sine of the distance of the node from the sun to the square of the

radius.

cY

ce x fp

ce x fp

cp
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But the moon, by a radius drawn to the earth, describes an area more

swiftly in the syzygies than in the quadratures, and on that account the time

is shortened in the syzygies and lengthened in the quadratures, and along

with the time the motion of the nodes is increased and decreased. Now, the

moment of an area in the quadratures of the moon was to its moment in the

syzygies as 10,973 to 11,073; and therefore the mean motion in the octants is

to the excess in the syzygies and to the deficiency in the quadratures as the

half-sum 11,023 of the numbers is to their half-difference 50. Accordingly,

since the time of the moon in each equal particle of its orbit is inversely as

its velocity, the mean time in the octants will be to the excess of time in

the quadratures and its deficiency in the syzygies, arising from this cause, as

11,023 to 50 very nearly. With regard to positions of the moon between the

quadratures and the syzygies, I find that the excess of the moments of the

area in any one of these positions over the least moment in the quadratures

is very nearly as the square of the sine of the distance of the moon from

the quadratures; and therefore the difference between the moment in any

position and the mean moment in the octants is as the difference between

the square of the sine of the distance of the moon from the quadratures

and the square of the sine of 45°, or half of the square of the radius; and

the increase of the time in any one of the positions between the octants and

the quadratures, and its decrease between the octants and the syzygies, is

in the same ratio. But the motion of the nodes, in the time in which the

moon traverses each equal particle of its orbit, is accelerated or retarded as

the square of the time.

For that motion, while the moon traverses PM, is (other things being

equal) as ML, and ML is in the squared ratio of the time. Therefore, the

motion of the nodes in the syzygies, a motion completed in the time in which

the moon traverses given particles of its orbit, is diminished as the square of

the ratio of the number 11,073 to the number 11,023; and the decrement is

to the remaining motion as 100 to 10,973 and to the total motion as 100 to

11,073 very nearly. But the decrement in positions between the octants and

syzygies and the increment in positions between the octants and quadratures

are to this decrement very nearly as [/'] the total motion in those positions to

the total motion in the syzygies and as [it] the difference between the square

of the sine of the distance of the moon from the quadrature and half of the

square of the radius to half of the square of the radius, jointly. Hence, if



the nodes are in the quadratures and two positions are taken equally distant

from the octant, one on one side and one on the other, and another two

are taken at the same distance from the syzygy and from the quadrature,

and if from the decrements of the motions in the two positions between

the syzygy and octant are subtracted the increments of the motions in the

remaining two positions that are between the octant and quadrature, the

remaining decrement will be equal to the decrement in the syzygy, as will

be easily apparent upon examination. And accordingly the mean decrement,

which must be subtracted from the mean motion of the nodes, is a fourth

of the decrement in the syzygy. The total hourly motion of the nodes in the

syzygies (when it was supposed the moon described, by a radius drawn to

the earth, an area proportional to the time) was 32//42///7lv. And according to

what we have just said, the decrement of the motion of the nodes, in the time

when the moon—now moving more swiftly—describes the same space, is to

this motion as 100 to 11,073; and so the decrement is 17///431V11V, of which

a fourth (4r//25lv48v) subtracted from the mean hourly motion found above

(16"21"'3iv30v) leaves 16"16'"37iv42v, the corrected mean hourly motion.

If the nodes are beyond the quadratures and two places equally distant

from the syzygies are considered, one on one side and one on the other, the

sum of the motions of the nodes when the moon is in these positions will

be to the sum of their motions when the moon is in the same positions and

the nodes are in the quadratures as AZ2 to AT2. And the decrements of the

motions, arising from the causes just now set forth, will be to each other

as the motions themselves, and therefore the remaining motions will be to

each other as AZ2 to AT2, and the mean motions will be as the remaining

motions. Therefore the corrected mean hourly motion, in any given situation

of the nodes, is to 16"16'"371V42V as AZ2 to AT2, that is, as the square of

the sine of the distance of the nodes from the syzygies to the square of the

radius.

Proposition 32 To find the mean motion of the nodes of the moon.

Problem 13 The mean annual motion is the sum of all the mean hourly motions in

a year. Suppose that the node is in N and that as each hour is completed, it

is drawn back into its former place so that, notwithstanding its own proper

motion, it always maintains some given position with respect to the fixed stars.

502 BOOK 3
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And suppose that during this same time the sun S, as a result of the motion of

the earth, advances from the node and completes its apparent annual course

with a uniform apparent motion. Moreover, let Aa be the minimally small

given arc that the straight line TS, always drawn to the sun, describes in a

minimally small given time by its intersection with the circle NAw; then (by

what has already been shown) the mean hourly motion will be as AZ2, that is

(because AZ and ZY are proportional), as the rectangle of AZ and ZY, that

is, as the area AZYz. And the sum of all the mean hourly motions from the

beginning will be as the sum of all the areas <zYZA, that is, as the area NAZ.

Moreover, the greatest area AZY# is equal to the rectangle of the arc Aa and

the radius of the circle; and therefore the sum of all such rectangles in the

whole circle will be to the sum of the same number of greatest rectangles as

the area of the whole circle to the rectangle of the whole circumference and

the radius, that is, as 1 to 2. Now, the hourly motion corresponding to the

greatest rectangle was 16//16///37IV42V, and this motion, in a whole sidereal

year of 365d6h9m, adds up to 39038'7"50'". And so half of this, 19°49'3"55"',

is the mean motion of the nodes that corresponds to the whole circle. And

the motion of the nodes in the time during which the sun goes from N to

A is to 19°49'3"55'" as the area NAZ is to the whole circle.

These things are so on the hypothesis that each hour the node is drawn

back to its former place, in such a way that when a whole year is completed,

the sun returns to the same node from which it had initially departed. But

as a result of the motion of that node, it comes about that the sun returns

to the node more quickly; and now this shortening of the time must be

computed. Since in a total year the sun travels through 360°, and in the same
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time the node with its greatest motion would travel through 39°38/7//50///,

or 39.6355°, and the mean motion of the node in any place N is to its

mean motion in its quadratures as AZ2 to AT2, the motion of the sun will

be to the motion of the node in N as 360AT2 to 39.6355AZ2, that is, as

9.0827646AT2 to AZ2. Hence, if the circumference NA/z of the whole circle

is divided into equal particles Aa, then the time in which the sun traverses

the particle Aa (the circle being at rest) will be to the time in which it

traverses the same particle (if the circle revolves along with the nodes about

the center T) inversely as 9.0827646AT2 to 9.0827646AT2 + AZ2. For the

time is inversely as the velocity with which the particle [of arc] is traversed,

and this velocity is the sum of the velocities of the sun and of the node. Let

the sector NTA represent the time in which the sun, without the motion of

the node, would traverse the arc NA, and let the particle ATa of the sector

represent the particle of time in which it would traverse the minimally small

arc Aa', furthermore, drop a perpendicular aY to Nw and on AZ take dZ of

a length such that the rectangle of dZ and ZY is to the particle ATa of the

sector as AZ2 is to 9.0827646AT2 + AZ2 (that is, such that dZ is to V2AZ

as AT2 is to 9.0827646AT2 + AZ2); then the rectangle of dZ and ZY will

designate the decrement of time arising from the motion of the node during

the total time in which the arc Aa is traversed. And if the point d touches

the curve NdGn* the curvilinear area NJZ will be the total decrement

in the time in which the whole arc NA is traversed; and therefore the excess

of the sector NAT over the area NAZ will be that total time. And since the

motion of the node in a smaller time is smaller in proportion to the time,

the area AaYZ also will have to be diminished in the same proportion. And

this will happen if on AZ the length eZ is taken, which is to the length AZ

as AZ2 is to 9.0827646AT2 + AZ2. For thus the rectangle of eZ and ZY

will be to the area AZYa as the decrement of the time in which the arc Aa

is traversed is to the total time in which it would be traversed if the node

were at rest; and therefore that rectangle will correspond to the decrement

of the motion of the node. And if the point e touches the curve N<?F#,b

the total area N^Z, which is the sum of all the decrements of that motion,

will correspond to the total decrement in the time during which the arc AN

a. That is, if the point d traces out the curve NdGn, or if NdGn is the curve which is the locus of

the point d.

b. That is, if the curve NeFn is the locus of point e.
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is traversed, and the remaining area NA^ will correspond to the remaining

motion, which is the true motion of the node in the time in which the total

arc NA is traversed by the joint motions of the sun and the node. Now, the

area of the semicircle is to the area of the figure N<?F/z, found by the method

of infinite series, nearly as 793 to 60. And the motion that corresponds to

the whole circle was 19°49/3//55///, and therefore the motion that corresponds

to double the figure NePn is 1°29'58"2"'. Subtracting this from the former

motion leaves 18°19'5"53'", the total motion of the node with respect to the

fixed stars between its successive conjunctions with the sun; and this motion,

subtracted from the annual motion of the sun of 360°, leaves 341°40/54"7/",

the motion of the sun between the same conjunctions. And this motion is to

the annual motion of 360° as the motion of the node just found (18019'5"53'")

to its annual motion, which will therefore be 19°18/l//23///. This is the mean

motion of the nodes in a sidereal year. From the astronomical tables this is

19°21/21//50///. The difference is less than — of the total motion and seems

to arise from the eccentricity of the moon's orbit and its inclination to the

plane of the ecliptic. By the eccentricity of the orbit, the motion of the nodes

is too much accelerated; and on the other hand, by its inclination it is retarded

somewhat, and reduced to its correct velocity.

To find the true motion of the nodes of the moon. Proposition 33

In the time which is as the area NTA — NWZ (in the preceding figure), Problem 14

that motion is as the area NA^, and hence is given. But because the cal-

culation is too difficult, it is preferable to use the following construction of

the problem. With center C and any interval CD as radius, describe a circle

BEFD. Produce DC to A so that AB is to AC as the mean motion is to half

1

3 0 0
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of the true mean motion when the nodes are in the quadratures (that is, as

19°18'1"23'" to 19°49'3"55'"); and thus BC will be to AC as the difference of

the motions (0°31'2"32'") to the latter motion (19°49'3"55'"), that is, as 1 to

383/io. Next, through point D draw the indefinite line Gg, touching the circle

in D; and let the angle BCE or BCF be taken equal to twice the distance of

the sun from the place of the node, as found from the mean motion, and let

AE or AF be drawn cutting the perpendicular DG in G. The true motion

of the nodes will be found if now an angle is taken that is to the total motion

of the node between its syzygies (that is, to 9°11'3//) as the tangent DG is to

the total circumference of the circle BED, and if that angle (for which the

angle DAG can be used) is added to the mean motion of the nodes when

the nodes are passing from quadratures to syzygies and is subtracted from

the same mean motion when they are passing from syzygies to quadratures.

For the true motion thus found will agree very nearly with the true motion

which results from representing the time by the area NTA — NWZ and the

motion of the node by the area NA^, as will be evident to anyone consid-

ering the matter and performing the computations. This is the semimonthly

equation of the motion of the nodes. There is also a monthly equation, but it

is not at all needed in order to find the latitude of the moon. For, since the

variation of the inclination of the moon's orbit to the plane of the ecliptic is

subject to a double inequality, one semimonthly and the other monthly, the

monthly inequality of the variation and the monthly equation of the nodes

so moderate and correct each other that both can be ignored in determining

the latitude of the moon.

COROLLARY. From this and the preceding proposition it is clear that

the nodes are stationary in their syzygies; in the quadratures, however, they

regress by an hourly motion of 16"19"'26IV. It is also clear that the equation

of the motion of nodes in the octants is 1°30/. This all squares exactly with

celestial phenomena.

Scholium }. Machin, Gresham Professor of Astronomy, and Henry Pemberton, M.D.,

have independently found the motion of the nodes by yet another method.

Some mention of the latter's method has been made elsewhere. And the

papers (which I have seen) of both men contained two propositions, which

agreed with each other. Here I shall present Mr. Machin's paper, since it was

the first to come into my hands.
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ON THE MOTION OF THE NODES OF THE MOON

Proposition 1

The mean motion of the sun from the node is defined by a mean ge-
ometrical proportional between the mean motion of the sun and that
mean motion with which the sun recedes most swiftly from the node in
the quadratures.

Let T be the place where the earth is, N# the line of the nodes
of the moon at any given time, KTM a line drawn at right angles
to this line, and TA a straight line revolving around the center
with the angular velocity with which the sun and the node recede
from each other, in such a way that the angle between the straight
line Nra (which is at rest) and TA (which is revolving) is always
equal to the distance between the places of the sun and of the
node. Now, if any straight line TK is divided into parts TS and
SK, which are to each other as the hourly mean motion of the sun
is to the hourly mean motion of the nodes in the quadratures, and
if the straight line TH is taken so as to be a mean proportional be-
tween the part TS and the whole TK, this straight line among the
rest will be proportional to the mean motion of the sun from the
node.

For describe a circle NKwM with center T and radius TK,
and with the same center and the semiaxes TH and TN describe
an ellipse NH/zL, and in the time in which the sun recedes from
the node through the arc N<z, if the straight line Tba is drawn,
the area of the sector NT# will represent the sum of the motions
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of the node and sun in that same time. Therefore let Aa be the
minimally small arc that the straight line Tba—revolving accord-
ing to the aforesaid law—uniformly describes in a given particle of
time, and the minimally small sector TAa will be as the sum of the
velocities whereby the sun and the node are carried separately in
that time. The velocity of the sun, however, is nearly uniform, since
its small inequality introduces scarcely any variation in the mean
motion of the nodes. The other part of this sum, namely the ve-
locity of the node in its mean quantity, increases in receding from
the syzygies as the square of the sine of its distance from the sun
(by Principia, book 3, prop. 31, corol.) and, when it is greatest in
the quadratures to the sun at K, has the same ratio to the velocity
of the sun that SK has to TS; that is, it is as (the difference of the
squares of TK and TH or) the rectangle KH x HM is to TH2.
But the ellipse NBH divides the sector AT<z, which represents the
sum of these two velocities, into two parts ABba and BT£, which
are proportional to the velocities. For, produce BT to the circle
in j8, and, from point B to the major axis, drop a perpendicular
BG which, produced in both directions, meets the circle in points
F and f. Then, since the space ABba is to the sector TBb as the
rectangle AB x B/3 to BT2 (for that rectangle is equal to the dif-
ference of the squares of TA and TB because the straight line A/3
is cut equally at T and unequally at B), this ratio—when the space
ABba is greatest at K—will be the same as the ratio of the rect-
angle KH x HM to HT2; but the greatest mean velocity of the
node was [previously shown to be] in this ratio to the velocity of
the sun. Therefore, in the quadratures, the sector ATa is divided
into parts proportional to the velocities. And since the rectangle
KH x HM is to HT2 as FB x B/ to BG2 and since the rectan-
gle AB x B/3 is equal to the rectangle FB x B/, it follows that
the area-element ABba when it is greatest will be to the remaining
sector TBb as the rectangle AB x B/3 to BG2. But the ratio of the
area-elements was always as the rectangle AB x B/3 to BT2; and
therefore the area-element ABba in the place A is smaller than the
corresponding area-element in the quadratures, in the ratio of BG2

to BT2, that is, as the square of the sine of the distance of the sun
from the node. And accordingly the sum of all the area-elements
ABba (namely, the space ABN) will be as the motion of the node
in the time in which the sun departs from the node and passes
through the arc NA. And the remaining space (namely, the ellipti-
cal sector NTB) will be as the mean motion of the sun in the same
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time. And, therefore, since the mean annual motion of the node
is the motion that it makes in the time during which the sun has
completed its period, the mean motion of the node from the sun
will be to the mean motion of the sun itself as the area of the cir-
cle to the area of the ellipse, that is, as the straight line TK to the
straight line TH (which is the mean proportional between TK and
TS); or, which comes to the same thing, as the mean proportional
TH to the straight line TS.

Proposition 2

Given the mean motion of the nodes of the moon, to find the true
motion.

Let the angle A be the distance of the sun from the mean place
of the node, or the mean motion of the sun from the node. Then
if angle B is taken so that its tangent is to the tangent of angle A
as TH to TK—that is, as the square root of the ratio of the mean

hourly motion of the sun to the mean hourly motion of the sun
from the node when the node is in the quadratures—that same
angle B will be the distance of the sun from the true place of the
node. For draw FT, and (by the proof of the previous proposition)
the angle FTN will be the distance of the sun from the mean place
of the node, while the angle ATN will be the distance from the
true place, and the tangents of these angles are to each other as TK
to TH.

COROLLARY. Hence the angle FTA is the equation of the
moon's nodes, and the sine of this angle, when it is greatest in the
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octants, is to the radius as KH to TK + TH. And the sine of this
equation in any other place A is to the greatest sine as the sine of
the sum of the angles FTN + ATN is to the radius—that is, nearly
as the sine of 2FTN (that is, twice the distance of the sun from the
mean place of the node) is to the radius.

Scholium

If the mean hourly motion of the nodes in the quadratures
is 16"16'"37iv42v (that is, 39°38/7"50'// in a whole sidereal year),
then TH will be to TK as the square root of the ratio of the num-
ber 9.0827646 to the number 10.0827646, that is, as 18.6524761 to
19.6524761. And therefore TH is to HK as 18.6524761 to 1, that is,
as the motion of the sun in a sidereal year to the mean motion of

the node, which is 19°18'l"232/3'".
But if the mean motion of the nodes of the moon in twenty

Julian years is 386°50/15//, as is deduced from observations used in
the theory of the moon, the mean motion of the nodes in a side-
real year will be 19°20/31/'58///. And TH will be to HK as 360° to
19020'31"58'", that is, as 18.61214 to 1. Hence the mean hourly mo-
tion of the nodes in the quadratures will come out \6"\%mWv. And
the greatest equation of the nodes in the octants will be l°29/57//.

Proposition 34 To find the hourly variation of the inclination of the lunar orbit to the plane of

Problem 15 the ecliptic.

Let A and a represent the syzygies, Q and q the quadratures, N and

n the nodes, P the place of the moon in its orbit, p the projection of that

place on the plane of the ecliptic, and mTl the momentaneous motion of the

nodes as above. Drop the perpendicular PG to the line Tw, join pG and

produce it until it meets T/ in g, and also join Pg; then the angle PGp will

be the inclination of the moon's orbit to the plane of the ecliptic when the

moon is in P, and the angle Pgp will be the inclination of the same orbit

after a moment of time has been completed; and thus the angle GPg will be

the momentaneous variation of the inclination. But this angle GPg is to the

angle GTg as TG to PG and Pp to PG jointly. And therefore, if an hour is

substituted for the moment of time, then—since the angle GTg (by prop. 30)

is to the angle 33"10'"331V as IT x PG x AZ to AT3—the angle GPg (or
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the hourly variation of the inclination) will be to the angle 33"10/'/33IV as

IT x AZ x TG x — to AT3. Q.E.I.

These things are so on the hypothesis that the moon revolves uniformly

in a circular orbit. But if that orbit is elliptical, the mean motion of the nodes

will be diminished in the ratio of the minor axis to the major axis, as has been

set forth above. And the variation of the inclination will also be diminished

in the same ratio.

COROLLARY 1. If the perpendicular TF is erected on N/2, and pM is the

hourly motion of the moon in the plane of the ecliptic, and if the perpen-

diculars pK and M^ are dropped to QT and produced in both directions

to meet TF at H and h, then IT will be to AT as K^ to Mp, and TG to
K£ x Up x TZ

Hp as TZ to AT, and so IT x TG will be equal to — , that

TZ Up
is, equal to the area HpMh multiplied by the ratio ; and therefore the

Mp
hourly variation of the inclination will be to 33//10///33lv as HpMh multiplied

TZ Pp
by AZ x x — is to AT3.y Mp PG

P P

P G
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COROLLARY 2. And so, if the earth and the nodes, as each hour is com-

pleted, were drawn back from their new places and were always restored

instantly to their former places, so that their given position remained un-

changed throughout an entire periodic month, the total variation of the in-

clination during the time of that month would be to 33"10'"33lv as the sum

of all the areas HpMh which are generated during a revolution of the point

p (these areas being summed according to their proper signs + and —) mul-

tiplied by AZ x TZ x is to Mp x AT3, that is, as the whole circle QAqa

multiplied by AZ x TZ x is to Mp x AT3, that is, as the circumference

QAqa multiplied by AZ x TZ x — is to 2Mp x AT2.

COROLLARY 3. Accordingly, in a given position of the nodes, the mean

hourly variation, from which, continued uniformly for a month, that monthly

variation could be generated, is to 33"10"'33iv as AZ x TZ x — to 2AT2,
AZ x TZ PG

or as Pp x to PG x 4AT, that is (since Pp is to PG as the sine
1/2AT

of the above-mentioned inclination to the radius, and is to 4AT
ViAT

as the sine of twice the angle ATn to four times the radius), as the sine of

that same inclination multiplied by the sine of twice the distance of the nodes

from the sun to four times the square of the radius.

COROLLARY 4. Since the hourly variation of the inclination, when the

nodes are in the quadratures, is (by this proposition) to the angle 33//10///33lv

Pp   IT x TG Pp
as IT x AZ x TG x —=- to AT3, that is, as x —— to 2AT,

that is, as the sine of twice the distance of the moon from the quadratures
Pp

multiplied by is to twice the radius, it follows that the sum of all the

hourly variations, in the time in which the moon in this situation of the nodes

passes from quadrature to syzygy (that is, in the space of 1771/6 hours), will

be to the sum of the same number of angles 33//10/"33lv, or 5,878", as the

sum of all the sines of twice the distance of the moon from the quadratures
Pp

multiplied by is to the sum of the same number of diameters; that is,

as the diameter multiplied by is to the circumference; that is, if the
PG

874
inclination is 5°!', as 7 x —— to 22, or 278 to 10,000. And accordingly

1U,UUU

PG

PP

PG

PP

PP

PG

PG

AZ x TZ

PG ViAT PG

PG

PG
Pp
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the total variation, composed of the sum of all the hourly variations in the

aforesaid time, is 163", or 2'43X/.

To find the inclination of the moon's orbit to the plane of the ecliptic at a given Proposition 35

time. Problem 16

Let AD be the sine of the greatest inclination, and AB the sine of the

least inclination. Bisect BD in C, and with center C and radius BC describe

a circle BGD. On AC take CE in the ratio to EB that EB has to 2BA. Now

if, for the given time, the angle AEG is set equal to twice the distance of the

nodes from the quadratures, and the perpendicular GH is dropped to AD,

then AH will be the sine of the required inclination.

For GE2 is equal to GH2 + HE2 = BH x HD + HE2 = HB x BD +

HE2 - BH2 = HB x BD + BE2 - 2BH x BE = BE2 + 2EC x BH =

2EC x AB + 2EC x BH = 2EC x AH. And thus, since 2EC is given,

GE2 is as AH. Now let AEg represent twice the distance of the nodes from

the quadratures after some given moment of time has been completed, and

the arc Gg (because the angle GEg is given) will be as the distance GE.

Moreover, HA is to Gg as GH to GC, and therefore HA is as the solid [or
C^ T T (^T T

product] GH x Gg, or GH x GE; that is, as x GE2 or x AH,
GE GE

that is, as AH and the sine of the angle AEG jointly. Therefore, if AH,

in any given case, is the sine of the inclination, it will be increased by the

same increments as the sine of the inclination, by corol. 3 of the preceding

prop. 34, and therefore will always remain equal to that sine. But when the

point G falls upon either point B or D, AH is equal to this sine and therefore

remains always equal to it. Q.E.D.

In this demonstration, I have supposed that the angle BEG, which is

twice the distance of the nodes from the quadratures, increases uniformly.

For there is no time to consider all the minute details of inequalities. Now

suppose that the angle BEG is a right angle and that in this case Gg is the
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hourly increment of twice the distance of the nodes and sun from each other;

then (by corol. 3 of prop. 34) the hourly variation of the inclination in the

same case will be to 33//10///33lv as the solid [or product] of the sine AH

of the inclination and the sine of the right angle BEG (which is twice the

distance of the nodes from the sun) is to four times the square of the radius;

that is, as the sine AH of the mean inclination to four times the radius; that

is (since that mean inclination is about 5°81/2/), as its sine (896) to four times

the radius (40,000), or as 224 to 10,000. And the total variation, corresponding

to BD, the difference of the sines, is to that hourly variation as the diameter

BD to the arc Gg; that is, as the diameter BD to the semicircumference

BGD and the time of 2,0797/io hours (during which the node goes from the

quadratures to the syzygies) to 1 hour jointly; that is, as 7 to 11 and 2,0797/io

to 1. Therefore, if all the ratios are combined, the total variation BD will

become to 33"10"'331V as 224 x 7 x 2,0797/io to 110,000, that is, as 29,645 to

1,000, and hence that variation BD will come out 16/231/2//.

This is the greatest variation of the inclination insofar as the place of the

moon in its orbit is not considered. For if the nodes are in the syzygies, the

inclination is not at all changed by the various positions of the moon. But if

the nodes are in the quadratures, the inclination is less when the moon is in

the syzygies than when it is in the quadratures, by a difference of 2/43//, as

we have indicated in corol. 4 of prop. 34. And the total mean variation BD,

diminished when the moon is in its quadratures by \'2\l/2f (half of this ex-

cess), becomes 15'2"; while in the syzygies it is increased by the same amount

and becomes I7f45/f. Therefore, if the moon is in the syzygies, the total vari-

ation in the passage of the nodes from quadratures to syzygies will be 17'45";

and so if the inclination, when the nodes are in the syzygies, is 5°17/20//, it

will be 4°59/35// when the nodes are in the quadratures and the moon in the

syzygies. And that these things are so is confirmed by observations.

If now it is desired to find the inclination of the orbit when the moon is

in the syzygies and the nodes are in any position whatever, let AB become to

AD as the sine of 4°59'35" is to the sine of 5° 1/20", and take the angle ABG

equal to twice the distance of the nodes from the quadratures; then AH will

be the sine of the required inclination. The inclination of the orbit is equal

to this inclination when the moon is 90° distant from the nodes. In other

positions of the moon, the monthly inequality that occurs in the variation

of the inclination is compensated for in the calculation of the latitude of the
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moon (and, in a manner, canceled) by the monthly inequality in the motion

of the nodes (as we have said above) and thus can be neglected in calculating

that latitude.

al wished to show by these computations of the lunar motions that the lunar Scholium

motions can be computed from their causes by the theory of gravity. By

the same theory I found, in addition, that the annual equation of the mean

motion of the moon arises from the varying dilatation [and contraction] of

the orbit of the moon produced by the force of the sun, according to book 1,

prop. 66, corol. 6. When the sun is in perigee, this force is greater and dilates

the orbit of the moon; when the sun is in apogee, the force is smaller and

permits the orbit to be contracted. The moon revolves more slowly in the

dilated orbit, more swiftly in the contracted one; and the annual equation

which compensates for this inequality vanishes in the apogee and perigee of

the sun, rises to roughly 11'50" in the mean distance of the sun from the

earth, and in other places is proportional to the equation of the center of

the sun; and it is added to the mean motion of the moon when the earth is

going from its aphelion to its perihelion and is subtracted when the earth is

in the opposite part of the orbit. Assuming the radius of the earth's orbit to

be 1,000 and the eccentricity of the earth to be 167/s, this equation, when it

is greatest, came out 11'49" by the theory of gravity. But the eccentricity of

the earth seems to be a little greater; and if the eccentricity is increased, this

equation should be increased in the same ratio. If the eccentricity is taken at

16n/i2, the greatest equation will be 11'51".

aa. Ed. 1 has: "Up to now no consideration has been taken of the motions of the moon insofar as

the eccentricity of the orbit is concerned. By similar computations, I found that the apogee, when it is

in conjunction with or in opposition to the sun, moves forward 23' each day with respect to the fixed

stars but, when it is in the quadratures, regresses about \6Vi each day and that its mean annual motion

is about 40°. By the astronomical tables which the distinguished Flamsteed adapted to the hypothesis of

Horrocks, the apogee moves forward in its syzygies with a daily motion of 24'28" but regresses in the

quadratures with a daily motion of 20'12" and is carried forward [or in consequential with a mean annual

motion of 40°41'. The difference between the daily forward motion of the apogee in its syzygies and the

daily regressive motion in its quadratures is 4'16" by the tables but 62A' by our computation, which we

suspect ought to be attributed to a fault in the tables. But we do not think that our computation is exact

enough either. For by means of a certain calculation the daily forward motion of the apogee in its syzygies

and the daily regressive motion in its quadratures came out a little greater. But it seerns preferable not to

give the computations, since they are too complicated and encumbered by approximations and not exact

enough."
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I found also that the apogee and nodes of the moon move more swiftly in

the perihelion of the earth (because of the greater force of the sun) than in its

aphelion, [and this] inversely as the cube of the distance of the earth from the

sun. And from this there arise annual equations of these motions proportional

to the equation of the sun's center. Now, the motion of the sun is inversely as

the square of the distance of the earth from the sun, and the greatest equation

of the center that this inequality generates is 1°56/20//, corresponding to the

above-mentioned eccentricity of the sun of 16n/i2. But if the motion of the

sun were inversely as the cube of the distance, this inequality would generate

a greatest equation of 2°54/30//. And therefore the greatest equations that the

inequalities of the motions of the apogee and nodes of the moon generate

are to 2°54/30// as the daily mean motion of the apogee and the daily mean

motion of the nodes of the moon are to the daily mean motion of the sun.

Accordingly, the greatest equation of the mean motion of the apogee comes

out 19'43", and the greatest equation of the mean motion of the nodes 9'24".

And the first of these equations is added and the second subtracted when the

earth is going from its perihelion to its aphelion, and the opposite happens

in the opposite part of the orbit.

By the theory of gravity it was also established that the action of the sun

upon the moon is a little greater when the transverse diameter of the moon's

orbit is passing through the sun than when this diameter is at right angles

to the line joining the earth ancl the sun; and therefore the moon's orbit is

a little greater in the first case than in the second. And hence arises another

equation of the moon's mean motion, one that depends on the position of

the apogee of the moon with respect to the sun; this equation is greatest

when the apogee of the moon is in an octant with the sun, and vanishes

when the apogee reaches the quadratures or syzygies, and is added to the

mean motion in the passage of the apogee of the moon from quadrature

of the sun to syzygy, and is subtracted in the passage of the apogee from

syzygy to quadrature. This equation, which I shall call semiannual, rises in

the octants of the apogee (when it is greatest) to roughly 3'45", as far as I

could gather from phenomena. This is its quantity at the mean distance of

the sun from the earth. But it is increased and decreased inversely as the

cube of the distance from the sun, and so at the greatest distance of the sun

is 3'34" and at the least distance 3/56//—very nearly; and when the apogee

of the moon is situated outside the octants, it becomes less, and is to the
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greatest equation as the sine of twice the distance of the moon's apogee from

the nearest syzygy or quadrature is to the radius.

By the same theory of gravity, the action of the sun upon the moon is

a little greater when a straight line drawn through the nodes of the moon

passes through the sun than when that line is at right angles to the straight

line joining the sun and earth. And hence arises another equation of the

moon's mean motion, which I shall call the second semiannual and which

is greatest when the nodes are in the octants of the sun and vanishes when

they are in the syzygies or quadratures, and in other positions of the nodes

is proportional to the sine of twice the distance of either node from the next

syzygy or quadrature; and it is added to the mean motion of the moon if

the sun is ahead of [in antecedentia] the node nearest to it, and subtracted

if beyond [in consequential; and in the octants, where it is greatest, it rises

to 47" at the mean distance of the sun from the earth, as I conclude from

the theory of gravity. At other distances of the sun, this equation (which is

greatest in the octants of the nodes) is inversely as the cube of the distance

of the sun from the earth, and so in the perigee of the sun rises to about 49"

and in its apogee to about 45".

By the same theory of gravity the apogee of the moon advances as much

as possible when it is either in conjunction with the sun or in opposition,

and regresses when it is in quadrature with the sun. And the eccentricity

becomes greatest in the first case and least in the second, by book 1, prop. 66,

corols. 7, 8, and 9. And these inequalities, by the same corollaries, are very

great and generate the principal equation of the apogee, which I shall call the

semiannual. And the greatest semiannual equation is roughly 12° 18', as far as

I could gather from observations. Our fellow countryman Horrocks was the

first to propose that the moon revolves in an ellipse around the earth, which

is set in its lower focus. Halley placed the center of the ellipse in an epicycle,

whose center revolves uniformly around the earth. And from the motion in

this epicycle there arise the inequalities (mentioned above) in the advance

and retrogression of the apogee and in the magnitude of the eccentricity.

Suppose the mean distance of the moon from the earth to be divided into

100,000 parts, and let T represent the earth and TC the mean eccentricity

of the moon, of 5,505 parts. Let TC be produced to B, so that CB is the

sine of the greatest semiannual equation (12° 18') to the radius TC; then the

circle BDA, described with center C and radius CB, will be that epicycle in
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which the center of the moon's orbit is located and which revolves according

to the order of the letters BDA. Let the angle BCD be taken equal to twice

the annual argument, or twice the distance of the true place of the sun from

the moon's apogee equated one time [i.e., corrected by the equation applied

once], and CTD will be the semiannual equation of the moon's apogee and

TD the eccentricity of its orbit, tending to the apogee equated a second time.

And once the moon's mean motion and apogee and eccentricity have been"

found, as well as the orbit's major axis of 200,000 parts, then from these data

the true place of the moon in its orbit and its distance from the earth will be

found by very well known methods.

In the perihelion of the earth, because of the greater force of the sun,

the center of the moon's orbit moves more swiftly around the center C

than in its aphelion, and does so inversely

as the cube of the distance of the earth

from the sun. Because the equation of the

center of the sun is comprehended in the

annual argument, the center of the moon's

orbit moves more swiftly in the epicycle

BDA inversely as the square of the distance of the earth from the sun.

In order for the center of the moon's orbit to move still more swiftly,

inversely in ithe simple ratio of the distance, draw a straight line DE from

the center D of the orbit toward the apogee of the moon, or parallel to

the straight line TC, and take the angle EDF equal to the excess of the

above-mentioned annual argument over the distance of the apogee of the

moon from the perigee of the sun in a forward direction [or in consequential

or, which is the same, take the angle CDF equal to the complement of the

true anomaly of the sun to 360°. And let DF be to DC jointly as twice

the eccentricity of the earth's orbit is to the mean distance of the sun from

the earth and as the daily mean motion of the sun from the apogee of the

moon is to the daily mean motion of the sun from its own apogee, that is,

as 337/ to 1,000 and 52'27"16"' to 59'8"10"' jointly, or as 3 to 100. And

suppose that the center of the moon's orbit is located in point F and revolves

in an epicycle whose center is D and whose radius is DF, while the point

D advances in the circumference of the circle DABD. For in this manner

the velocity with which the center of the moon's orbit will move in a certain

BOOK 3
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curved line described about the center C will be very nearly inversely as the

cube of the distance of the sun from the earth, as it ought to be.

The computation of this motion is difficult, but it will be made easier

by the following approximation. If the mean distance of the moon from the

earth is 100,000 parts and the eccentricity TC is 5,505 parts as above, then

the straight line CB or CD will be found to consist of l,1723/4 parts and the

straight line DF of 351/5 parts. And this straight line, at the distance TC,

subtends at the earth the angle that the transfer of the center of the orbit

from place D to place F generates in the motion of this center; and the same

straight line DF doubled, in a position parallel to a line drawn from the earth

to the upper focus of the moon's orbit, subtends the same angle, which of

course that transfer generates in the motion of the focus; and at the distance

of the moon from the earth it subtends the angle that the same transfer

generates in the moon's motion and that therefore can be called the second

equation of the center. And this equation, at the mean distance of the moon

from the earth, is very nearly as the sine of the angle which that straight line

DF contains with the straight line drawn from point F to the moon, and

when it is greatest comes out 2'25". And the angle which the straight line

DF contains with the straight line drawn from point F to the moon is found

either by subtracting the angle EDF from the mean anomaly of the moon

or by adding the distance of the moon from the sun to the distance of the

apogee of the moon from the apogee of the sun. And as the radius is to the

sine of the angle thus found, so 2'25// is to the second equation of the center,

which should be added if that sum is less than a semicircle and subtracted

if it is greater. In this way the longitude of the moon in the very syzygies of

the luminaries will be found.

The atmosphere of the earth refracts the light of the sun up to a height

of thirty-five or forty miles and, by refracting it, scatters it into the shadow

of the earth, and by scattering the light at the edge of the shadow dilates

the shadow. Hence, in lunar eclipses I add 1 minute, or 11A minutes, to the

diameter of the shadow as found from the parallax.

The theory of the moon, furthermore, should be examined and estab-

lished by phenomena, first in the syzygies, then in the quadratures, and

finally in the octants. And anyone who is going to undertake this task will

not go wrong by using the following mean motions of the sun and moon

at noon at the Royal Greenwich Observatory, on the last day of Decem-
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her 1700 (O.S.): namely, the mean motion of the sun ^20°43/40//, and of

its apogee ©7°44'30"; and the mean motion of the moon ££15021'00", and

of its apogee X8020700", and of its ascending node £>27°24'20"; and the

difference between the meridians of this observatory and the Royal Paris

Observatory Oh9m20s; but the mean motions of the moon and of its apogee

have not as yet been determined with sufficient exactness.3

The sun's force ML or PT to perturb the motions of the moon, in the

moon's quadratures, was (by prop. 25 of this book 3) to the force of gravity

here on earth as 1 to 638,092.6. And the force TM —LN or 2PK in the moon's

syzygies is twice as great. Now these forces, in the descent to the surface of

the earth, are diminished in the ratio of the distances from the center of the

earth, that is, in the ratio 60L/2 to 1; and so the first force on the surface

of the earth is to the force of gravity as 1 to 38,604,600. By this force the

sea is depressed in places that are 90 degrees distant from the sun. By the

other force, which is twice as great, the sea is elevated both in the region

directly under the sun and in the region opposite to the sun. The sum of

these forces is to the force of gravity as 1 to 12,868,200. And since the same

force arouses the same motion, whether it depresses the water in the regions

that are 90 degrees distant from the sun or elevates the water in regions

under the sun and opposite to the sun, this sum will be the total force of the

sun to agitate the sea, and it will have the same effect as if all of it elevated

the sea in regions under the sun and opposite it and had no action at all in

regions that are 90 degrees distant from the sun.

This is the force of the sun to put the sea in motion in any given place

when the sun is in the Zenith of the place as well as at its mean distance from

the earth. In other positions of the sun, the force for raising the sea is directly

as the versed sine of twice the altitude of the sun above the horizon of the

place and inversely as the cube of the distance of the sun from the earth.

Proposition 36 To find the force of the sun to move the sea.

Problem 17
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COROLLARY. The centrifugal force of the parts of the earth, arising from

the daily motion of the earth (a force that is to the force of gravity as 1 to

289), causes the height of the water under the equator to exceed its height

under the poles by a measure of 85,472 Paris feet (as was seen above in

prop. 19); therefore, the solar force with which we have been dealing (since

it is to the force of gravity as 1 to 12,868,200 and so to that centrifugal force

as 289 to 12,868,200 or 1 to 44,527) will cause the height of the water in

regions directly under the sun and directly opposite to the sun to exceed its

height in places that are 90 degrees distant from the sun by a measure of only

1 Paris foot and IP/so inches. For this measure is to the measure of 85,472

feet as 1 to 44,527.

To find the force of the moon to move the sea. Proposition 37
aThe force of the moon to move the sea is to be reckoned from its pro- Problem 18

portion to the force of the sun, and this proportion is to be determined from

the proportion of the motions of the sea that arise from these forces. Before

the mouth of the river Avon, at the third milestone below Bristol, in spring

and autumn, the total ascent of the water in the conjunction and opposition

of these two luminaries is (according to the observations of Samuel Sturmy)

approximately 45 feet, but in the quadratures is only 25 feet. The first height

arises from the sum of these two forces, the second from their difference.

Therefore let the forces of the sun and the moon, when they are on the

equator and at their mean distance from the earth, be S and L, and L + S

will be to L — S as 45 to 25, or 9 to 5.

In Plymouth harbor, the tide of the sea (as observed by Samuel Colepress)

is raised to approximately 16 feet in its mean height, and in spring and

autumn the height of the tide in the syzygies can exceed its height in the

quadratures by more than 7 or 8 feet. If the greatest difference of these

heights is 9 feet, L + S will be to L - S as 20l/2 to 111/2 or 41 to 23.

And this proportion agrees well enough with the former one. Because of

the magnitude of the tide in Bristol harbor, Sturmy's observations seem to

be more trustworthy, and so, until something more certain is established, we

shall use the proportion 9 to 5.

aa. In this proposition and its corollaries there are numerical differences in ed. 1 and sometimes also

in ed. 2. The number 4.4815 at the end of the fifth paragraph, giving the ratio of the force of the sun to

the force of the moon, was 61/3 in ed. 1.
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But because of the reciprocating motions of the waters, the greatest tides

do not occur at the syzygies of the luminaries but (as has been said earlier)

are the third ones after the syzygies or follow next after the moon's third

appulse to the meridian of the place after the syzygies, or rather (as is noted

by Sturmy) are the third ones after the day of the new moon or full moon, or

after approximately the twelfth hour from the new moon or full moon, and

so occur at approximately the forty-third hour from the new moon or full

moon. Now, in this harbor they occur at roughly the seventh hour from the

appulse of the moon to the meridian of the place, and so they follow next

after the appulse of the moon to the meridian, when the moon is approxi-

mately 18 or 19 degrees distant from the sun, or from the opposition of the

sun, in a forward direction [or in consequential The summer and winter

reach their maximum, not in the solstices themselves, but when the sun has

advanced through roughly a tenth of its whole circuit, or is approximately

36 or 37 degrees distant from the solstices. And similarly the greatest tide

of the sea arises from the appulse of the moon to the meridian of the place,

when the moon is distant from the sun by roughly a tenth part of its whole

motion from one tide to the next. Let this distance be approximately 18!/2

degrees. Then the force of the sun at this distance of the moon from the

syzygies and quadratures will be less effective to augment and to diminish

that motion of the sea arising from the force of the moon than in the syzygies

and quadratures themselves, in the ratio of the radius to the sine of the com-

plement of twice this distance or the cosine of 37 degrees, that is, in the ratio

of 10,000,000 to 7,986,355. And so in the above analogy, 0.7986355S ought to

be written for S.

But additionally, the force of the moon must be diminished in the quadra-

tures, because of the declination of the moon from the equator. For the moon

in the quadratures, or rather at ISVi degrees beyond the quadratures, is in

a declination of approximately 22° 13'. And the force of either luminary to

move the sea is diminished when that luminary is declining from the equa-

tor, and diminished very nearly as the square of the cosine of the declination.

And therefore the force of the moon in these quadratures is only 0.8570327L.

Therefore L + 0.7986355S is to 0.8570327L - 0.7986355S as 9 to 5.

Besides, the diameters of the orbit in which the moon would have to

move (supposing no eccentricity) are to each other as 69 to 70; and thus

the distance of the moon from the earth in the syzygies is to its distance
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in the quadratures as 69 to 70, other things being equal. And its distances

when 181/2° beyond the syzygies (where the greatest tide is generated) and

then lSl/2° beyond the quadratures (where the least tide is generated) are to

its mean distance as 69.098747 and 69.897345 to 69Vi. But the forces of the

moon to move the sea are as the cubes of the distances inversely; and thus the

forces at the greatest and least of these distances are to the force at the mean

distance as 0.9830427 and 1.017522 to 1. Hence 1.017522L + 0.7986355S will

be to 0.9830427 x 0.8570327L - 0.7986355S as 9 to 5; and S will be to L as

1 to 4.4815. Therefore, since the force of the sun is to t.he force of gravity as

1 to 12,868,200, the force of the moon will be to the force of gravity as 1 to

2,871,400.

COROLLARY 1. Since the water acted on by the force of the sun ascends

to a height of 1 foot and 111/30 inches, by the force of the moon it will ascend

to a height of 8 feet and 75/22 inches, and by both forces to a height of WVi

feet, and when the moon is in its perigee the water will ascend to a height

of 12^2 feet and beyond, especially when the tide is made greater by winds.

And so great a force is more than sufficient to give rise to all the motions

of the sea and corresponds exactly to the quantity of the motions. For in

seas that extend widely from east to west, as in the Pacific Ocean and the

parts of the Atlantic Ocean and the Ethiopic [or South Atlantic] Sea, which

are outside the tropics, the water is generally raised to a height of 6, 9, 12,

or 15 feet. And in the Pacific Ocean, which is deeper and wider, the tides

are said to be greater than in the Atlantic Ocean and the Ethiopic Sea. For,

to have the tide be full, the width of the sea from east to west should be

no less than 90 degrees. In the Ethiopic Sea the ascent of the water within

the tropics is less than in the temperate zones, because of the narrowness of

the sea between Africa and the southern part of America. In the middle

of the sea the water cannot rise unless it simultaneously falls on both shores,

both the eastern and the western; nevertheless, in our narrow seas, the water

ought to rise alternately on the two shores, that is, rise on one shore while

it falls on the other. For this reason the ebb and flow are generally very

small in islands that are farthest from the shores. In certain harbors, where

the water is compelled to flow in and flow out with great impetus through

shallow places, so as to fill and empty bays alternately, the ebb and flow must

be greater than usual, as at Plymouth and Chepstow Bridge in England,

at Mont-Saint-Michel and the city of Avranches in Normandy, at Cambay

523
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and Pegu bin the East Indies.b In these places the sea, coming in and going

back out with great velocity, at times inundates the shores and at other times

leaves them dry for many miles. And the impetus of flowing in or going

back out cannot be broken before the water is raised or depressed to 30, 40,

or 50 feet and more. And the same is true of oblong and shallow straits, such

as the Straits of Magellan and that channel by which England is surrounded

[presumably, the channel and seas, but not the ocean, bordering England].

The tide in harbors and straits of this sort is increased beyond measure by

the impetus of running in and back. But on shores that face the deep and

open sea with a steep descent, where the water can be raised and can fall

without the impetus of flowing out and coming back, the magnitude of the

tide corresponds to the forces of the sun and moon.

COROLLARY 2. Since the force of the moon to move the sea is to the

force of gravity as 1 to 2,871,400, it is evident that this force is far smaller

than what can be perceived in experiments with pendulums or in any statical

or hydrostatical experiments. It is only in the tides of the sea that this force

produces a sensible effect.

COROLLARY 3.c Since the force of the moon to move the sea is to the

similar force of the sun as 4.4815 to 1, and since those forces (by book 1,

prop. 66, corol. 14) are as the densities of the bodies of the moon and sun

and the cubes of their apparent diameters jointly, the density of the moon

will be to the density of the sun as 4.4815 to 1 directly and as the cube of the

diameter of the moon to the cube of the diameter of the sun inversely, that

is (since the apparent mean diameters of the moon and the sun are 3l'l6l/2"

and 32'12"), as 4,891 to 1,000. Now, the density of the sun was to the density

of the earth as 1,000 to 4,000, and therefore the density of the moon is to the

density of the earth as 4,891 to 4,000, or 11 to 9. Therefore the body of the

moon is denser and more earthy than our earth.

bb. The Latin here is "in India orientali," lit. "in east India." In Newton's day the terms "East India"

and "East Indies" were collective names applied to the whole area consisting of India, Indochina, Malaya,

and the Malay Archipelago (see Oxford English Dictionary, s.vv. "East India" and "East Indies"; Webster's

New Geographical Dictionary, s.v. "East Indies"). Although that usage is now obsolete, modern English

provides no alternative collective name for that area, and so we have chosen the rendering "in the

East Indies" used by Motte. In modern geographical terms, Cambay is in western India, and Pegu in

Burma.

c. For a gloss on this corollary see the Guide, §10.16.
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COROLLARY 4. And since the true diameter of the moon, from astro-

nomical observations, is to the true diameter of the earth as 100 to 365, the

mass of the moon will be to the mass of the earth as 1 to 39.788.

COROLLARY 5. And the accelerative gravity on the surface of the moon

will be about three times smaller than the accelerative gravity on the surface

of the earth.
dCoROLLARY 6. And the distance of the center of the moon from the

center of the earth will be to the distance of the center of the moon from the

common center of gravity of the earth and the moon as 40.788 to 39.788.

COROLLARY 7. And the mean distance of the center of the moon from

the center of the earth (in the octants of the moon) will be nearly 602/5 great-

est semidiameters of the earth. For the greatest semidiameter of the earth

was 19,658,600 Paris feet, and the mean distance between the centers of the

earth and the moon, which consists of 602/5 such semidiameters, is equal to

1,187,379,440 feet. And this distance (by the preceding corollary) is to the

distance of the center of the moon from the common center of gravity of

the earth and the moon as 40.788 to 39.788; and hence the latter distance is

1,158,268,534 feet. And since the moon revolves with respect to the fixed stars

in 27d7h434/9m, the versed sine of the angle that the moon describes in the

time of one minute is 12,752,341, the radius being 1,000,000,000,000,000. And

the radius is to this versed sine as 1,158,268,534 feet to 14.7706353 feet. The

moon, therefore, falling toward the earth under the action of that force with

which it is kept in its orbit, will in the time of one minute describe 14.7706353

feet. And by increasing this force in the ratio of 17829/40 to 17729/40, the total

force of gravity in the orbit of the moon will be found by prop. 3, corol. [of

this book 3]. And falling toward the earth under the action of this force, the

moon will describe 14.8538067 feet in the time of one minute. And at 1/60 of

the distance of the moon from the center of the earth, that is, at a distance

of 197,896,573 feet from the center of the earth, a heavy body—falling in the

time of one second—will likewise describe 14.8538067 feet. eAnd so, at a dis-

tance of 19,615,800 feet (which is the mean semidiameter of the earth), a heavy

body in falling will describe—in the time of one second—15.11175 feet, or 15

feet 1 inch and 4l/n lines. This will be the descent of bodies at a latitude of 45

dd. Ed. 1 lacks this.

ee. This is considerably different in ed. 2.



526 B O O K 3

degrees. And by the foregoing table, presented in prop. 20, the descent will be

a little greater at the latitude of Paris by about 2/3 of a line. Therefore, by this

computation, heavy bodies falling in a vacuum at the latitude of Paris will—

in the time of one second—describe approximately 15 Paris feet 1 inch and

425/33 lines. And if gravity is diminished by taking away the centrifugal force

that arises from the daily motion of the earth at that latitude, heavy bodies

falling there will—in the time of one second—describe 15 feet 1 inch and \Vi

lines. And that heavy bodies do fall with this velocity at the latitude of Paris

has been shown above in props. 4 and 19 [of this book 3].e

COROLLARY 8. f The mean distance between the centers of the earth and

the moon in the syzygies of the moon is 60 greatest semidiameters of the

earth, taking away roughly Vw of a semidiameter. And in the moon's quadra-

tures, the mean distance between these centers is 605/6 semidiameters of the

earth. For these two distances are to the mean distance of the moon in the

octants as 69 and 70 to 691/2, by prop. 28.f

gCoROLLARY 9. The mean distance between the centers of the earth and

the moon in the syzygies of the moon is 601/io mean semidiameters of the

earth. And in the moon's quadratures, the mean distance of the same centers

is 61 mean semidiameters of the earth, taking away Vso of a semidiameter.

COROLLARY 10. In the moon's syzygies, its mean horizontal parallax at

latitudes of 0°, 30°, 38°, 45°, 52°, 60°, and 90° is 57'20", 5/16", 57'14",

5/12", 57'10", 57'8", and 57'4" respectively.*

In these computations I have not considered the magnetic attraction of

the earth, the magnitude of which is very small anyway and is unknown.

But if this attraction can ever be determined—and if the measures of de-

grees on the meridian, and the lengths of isochronous pendulums at various

parallels of latitude, and the laws of the motions of the sea, and the moon's

parallax, together with the apparent diameters of the sun and moon, are ever

determined more accurately from phenomena—it will then be possible to

undertake all this calculation over again with a higher degree of accuracy.3 d

Proposition 38 To find the figure of the body of the moon.

Problem 19 If the body of the moon were fluid like our sea, the force of the earth to

elevate that fluid in both the nearest and farthest parts would be to the force

ff. This is very different in ed. 2.

gg. Ed. 2 lacks this.
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of the moon by which our sea is raised in the regions both under the moon

and opposite to the moon as the accelerative gravity of the moon toward

the earth is to the accelerative gravity of the earth toward the moon and as

the diameter of the moon is to the diameter of the earth, jointly—that is, as

39.788 to 1 and 100 to 365 jointly, or as 1,081 to 100. Hence, since our sea

is raised by the force of the moon to 83/5 feet, the lunar fluid would have to

be raised by the force of the earth to 93 feet. And for this reason the figure

of the moon would be a spheroid, the greatest diameter of which, produced,

would pass through the center of the earth and would exceed by 186 feet the

diameters perpendicular to that one. Therefore, it is just such a figure that

the moon has and must have had from the beginning. Q.E.I.

COROLLARY. And hence it happens that the same face of the moon is

always turned toward the earth. For in any other position, the moon can-

not remain at rest, but by a motion of oscillation will always return to this

position. But those oscillations would nevertheless be extremely slow because

the forces producing them are small in magnitude; so that the face of the

moon that should always look toward the earth can (for the reason given in

prop. 17) be turned toward the other focus of the moon's orbit and not at

once be drawn back from there and turned toward the earth.

Let APE/» represent the earth, uniformly dense, with a center C and poles P and aLemma 1

p and equator AE, and suppose a sphere Papeb to be described with center C and

radius CP. Let QR be the plane on which a straight line drawn from the center

of the sun to the center of the earth stands perpendicularly. Then, if the individual

particles of the whole exterior earth PapAPepE, which is higher than the sphere

just described, endeavor to recede in both directions from the plane QR, and the

endeavor of each particle is as its distance from the plane, I say, first of all, that the

total force and efficacy of all the particles that lie in the circle of the equator AE

(disposed uniformly outside the globe, in the manner of a ring completely encir-

cling that globe) to rotate the earth around its center will be to the total force and

efficacy of the same number of particles standing at point A of the equator (which

is most distant from the plane QR) to move the earth with a similar circular

aa. In ed. 1, with certain variants, lems. 1-3 and hyp. 2 are simply three lemmas, of which the

first contains the statement of lem. 1 followed by the demonstration (which is, however, greatly altered

in ed. 2 and ed. 3) of lem. 2, the second corresponds to lem. 3, and the third corresponds to hyp. 1.

b. Strictly speaking, a sphere is defined as a solid body all of whose points are equidistant from

the center, but the context and the diagram leave no doubt that in lem. 1, Newton's "sphere Pape"

("sphaera Pape") is not truly spherical but of an ellipsoidal shape.
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motion around its center as I is to 2. And that circular motion will be performed

around an axis lying in the common section of the equator and the plane QR.

For let a semicircle INLK be described with center K and diameter IL.

Suppose the semicircumference INL to be divided into innumerable equal

parts, and from the individual parts N to the diameter IL drop the sines

NM. Then the sum of the squares of all the sines NM will be equal to the

sum of the squares of the sines KM, and both sums will be equal to the sum

of the squares of the same number of semidiameters KN; and so the sum of

the squares of all the sines NM will be one-half of the sum of the squares of

the same number of semidiameters KN.

Now let the perimeter of the circle AE be divided into the same number

of equal particles, and from each one of them F to the plane QR drop a

perpendicular FG, as well as a perpendicular AH from the point A. Then the

force by which the particle F recedes from the plane QR will (by hypothesis)

be as that perpendicular FG, and this force multiplied by the distance CG

will be the efficacy of the particle F to turn the earth around its center.

And thus the efficacy of a particle in the place F will be to the efficacy of a

particle in the place A as FG x GC to AH x HC, that is, as FC2 to AC2;

and therefore the total efficacy of all the particles in their places F will be to

the efficacy of the same number of particles in place A as the sum of all the

FC2 to the sum of the same number of AC2, that is (by what has already

been demonstrated), as 1 to 2. Q.E.D.

And since the particles act by receding perpendicularly from the plane

QR, and do so equally from each side of this plane, they will turn the

circumference of the circle of the equator, together with the earth adhering
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to it, around an axis lying in the plane QR as well as in the plane of the

equator.

Under the same conditions, I say, secondly, that the total force and efficacy of all Lemma 2

the particles situated everywhere outside the globe to rotate the earth around the

given axis is to the total force of the same number of particles, disposed uniformly

throughout all of the circle of the equator AE in the manner of a ring, to move

the earth with a similar circular motion, as 2 is to 5.

For let IK be any smaller circle parallel to the equator AE, and let

L and / be any two equal particles situated in this circle outside the globe

Pape.c And if perpendiculars LM and

Im are dropped to the plane QR,

which is perpendicular to a radius

drawn to the sun, the total forces with

which the particles recede from the

plane QR will be proportional to the

perpendiculars LM and Im. Now,

let the straight line L/ be parallel

to the plane Pape; bisect LI at X;

through the point X draw N/z parallel

to the plane QR and meeting the

perpendiculars LM and Im at N and n\ and drop a perpendicular XY to

the plane QR. Then the contrary forces of the particles L and / to rotate

the earth in opposite directions are as LM x MC and Im x raC, that is, as

LN x MC+NM x MC and In x mC-nm x wC, or LN x MC+NM x MC and

LN x mC - NM x raC; and their difference LN x Mm - NM x (MC + mC)

is the force of both particles taken together to rotate the earth. The positive

part of this difference, LN X Mm or 2LN x NX, is to the force 2 AH x HC

of two particles of the same magnitude located at A as LX2 to AC2. And the

negative part, NM x (MC + mC) or 2XY x CY is to the force 2AH x HC

of the same particles located at A as CX2 to AC2. And accordingly the

difference of the parts, that is, the force of the two particles L and / (taken

together) to rotate the earth, is to the force of two particles equal to those and

c. In moving ahead from lem. 1 to lem. 2, Newton has shifted his vocabulary from "sphere" to

"globe." He now writes of a circle "outside the globe Pape" ("extra globum Pape"), where again the

context and the diagram leave no doubt that the "globe Pape" is ellipsoidal.
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standing in the place A, likewise to rotate the earth, as LX2 — CX2 to AC2.

But if the circumference IK of the circle IK is divided into innumerable

equal particles L, all the LX2 will be to as many IX2 as 1 to 2 (by lem. 1),

and to this same number of AC2 as IX2 to 2AC2; and just as many CX2 will

be to the same number of AC2 as 2CX2 to 2AC2. Therefore the combined

forces of all the particles in the circumference of the circle IK are to the

combined forces of as many particles in the place A as IX2 — 2CX2 to 2AC2,

and therefore (by lem. 1) to the combined forces of as many particles in the

circumference of the circle AE as IX2 — 2CX2 to AC2.

Now, if the diameter Pp of the sphered is divided into innumerable

equal parts, on which the same number of circles IK stand, the matter in the

perimeter of each circle IK will be as IX2; and so the force of that matter

to rotate the earth will be as IX2 multiplied by IX2 — 2CX2. And the force

of the same matter, if it stood in the perimeter of the circle AE, would be

as IX2 multiplied by AC2. And therefore the force of all the particles of the

total matter standing outside the globe in the perimeters of all the circles is to

the force of as many particles standing in the perimeter of the greatest circle

AE as all the IX2 multiplied by IX2 — 2CX2 to as many IX2 multiplied by

AC2, that is, as all the AC2 - CX2 multiplied by AC2 - 3CX2 to as many

AC2 - CX2 multiplied by AC2, that is, as all the AC4 -4AC2 x CX2 +3CX4

to as many AC4 — AC2 x CX2, that is, as the total fluent quantity whose

fluxion6 is AC4 — 4AC2 x CX2 + 3CX4 to the total fluent quantity whose

fluxion is AC4 — AC2 x CX2; and accordingly, by the method of fluxions, as

AC4 x CX - 4/3AC2 x CX3 + 3/5CX5 to AC4 x CX - 1/3AC2 x CX3, that is,

if the whole of Cp or AC is written in place of CX, as 4/i5 AC5 to 2/3 AC5, or

as 2 to 5. Q.E.D.

Lemma 3 Under the same conditions, I say, thirdly, that the motion of the whole earth

around the axis described above, a motion that is composed of the motions of all

the particles, will be to the motion of the above-mentioned ring around the same

axis in a ratio that is compounded of the ratio of the matter in the earth to the

matter in the ring and the ratio of three times the square of the quadrantal arc

of any circle to two times the square of the diameter—that is, in the ratio of the

matter to the matter and of the number 925,275 to the number 1,000,000.

d. Newton has here changed his terminology, reverting to "sphere."
e. Note that here Newton makes explicit use of the "method" of fluxions, that is, the calculus.
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For the motion of a cylinder revolving around its axis at rest is to the

motion of an inscribed sphere revolving together with it as any four equal

squares to three of the circles inscribed in them; and the motion of the

cylinder is to the motion of a very thin ring surrounding the sphere and

cylinder at their common contact as twice the matter in the cylinder to three

times the matter in the ring; and this motion of the ring, continued uniformly

around the axis of the cylinder, is to the uniform motion of the ring about its

own diameter (in the same periodic time) as the circumference of the circle

to twice its diameter.

If the ring discussed above were to be carried alone in the orbit of the earth about Hypothesis 2

the sun with an annual motion (supposing that all the rest of the earth were

removed from it), and if this ring revolved at the same time with a daily motion

about its axis, inclined to the plane of the ecliptic at an angle of 23*/2 degrees,

then the motion of the equinoctial points would be the same whether that ring

were fluid or consisted of rigid and solid matter*

To find the precession of the equinoxes. Proposition 39

The mean hourly motion of the nodes of the moon in a circular or- Problem 20

bit was, for the nodes in the quadratures, 16"35'"161V36V, and half of this,

8//17/"38lv18v, is (for the reasons explained above [at the end of corol. 2 to

prop. 30]) the mean hourly motion of the nodes in such an orbit; and in a

whole sidereal year the mean motion adds up to 20°ll /46 / / [see beginning of

prop. 32]. Therefore, since in a year the nodes of the moon would, in such

an orbit, move backward [or in antecedentia] through 20°ll /46 / /; and since, if

there were more moons, the motion of the nodes of each (by book 1, prop. 66,

corol. 16) would be as the periodic times; it follows that if the moon revolved

near the surface of the earth in the space of a sidereal day, the annual motion

of the nodes would be to 20°11'46" as a sidereal day of 23h56m is to the peri-

odic time of the moon, 27d7h43m—that is, as 1,436 to 39,343. And the same

is true of the nodes of a ring of moons surrounding the earth, whether those

moons do not touch one another, or whether they become liquid and take

the form of a continuous ring, or finally whether that ring becomes rigid and

inflexible.
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Let us imagine therefore that this ring, as to its quantity of matter, is

equal to all of the earth PapAPepR that lies outside of the globe Pape* (as in

the figure to lem. 2). This globe is to the earth that lies outside of it as aC2

to AC2 — flC2, that is (since the earth's smaller semidiameter PC or aC is to

its greater semidiameter AC as 229 to 230), as 52,441 to 459. Hence, if this

ring girded the earth along the equator and both together revolved about the

diameter of the ring, the motion of the ring would be to the motion of the

interior globe (by lem. 3 of this third book) as 459 to 52,441 and 1,000,000

to 925,275 jointly, that is, as 4,590 to 485,223; and so the motion of the ring

would be to the sum of the motions of the ring and globe as 4,590 to 489,813.

Hence, if the ring adheres to the globe and communicates to the globe its

own motion with which its nodes or equinoctial points regress, the motion

that will remain in the ring will be to its former motion as 4,590 to 489,813,

and therefore the motion of the equinoctial points will be diminished in the

same ratio. Therefore the annual motion of the equinoctial points of a body

composed of the ring and the globe will be to the motion 20°ll/46" as 1,436

to 39,343 and 4,590 to 489,813 jointly, that is, as 100 to 292,369. But the forces

by which the nodes of the moons [i.e., a ring of moons] regress (as I have

explained above), and so by which the equinoctial points of the ring regress

(that is, the forces 3IT in the figure to prop. 30), are—in the individual

particles—as the distances of those particles from the plane QR, and it is

with these forces that the particles recede from the plane; and therefore (by

lem. 2), if the matter of the ring were scattered over the whole surface of

the globe, as in the configuration PapAPepE, so as to constitute that exterior

part of the earth, the total force and efficacy of all the particles to rotate the

earth about any diameter of the equator, and thus to move the equinoctial

points, would come out less than before in the ratio of 2 to 5. And hence

the annual regression of the equinoxes would now be to 20° 11'46" as 10 to

73,092, and accordingly would become 9"56'"501V.
bBut because of the inclination of the plane of the equator to the plane of

the ecliptic, this motion must be diminished in the ratio of the sine 91,706

a. See the notes to lem. 1 and lem. 2.

bb. Ed. 1 has: "This is the precession of the equinoxes that arises from the force of the sun. Now the

force of the moon to move the sea was to the force of the sun as 61/? to 1, and this force in proportion to

its quantity will also increase the precession of the equinoxes. And therefore the precession arising from

both causes will now become greater in the ratio of 7'/3 to 1 and thus will be 45"24111151V. This is the

motion of the equinoctial points arising from the actions of the sun and the moon on the parts of the
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(which is the sine of the complement of 231/2 degrees [or the cosine of 23 Vi de-

grees]) to the radius 100,000. And thus this motion will now become 9//7/"20lv.

This is the annual precession of the equinoxes that arises from the force of

the sun.

Now, the force of the moon to move the sea was to the force of the sun

as roughly 4.4815 to 1. And the force of the moon to move the equinoxes

is to the force of the sun in this same proportion. And so the annual pre-

cession of the equinoxes that arises from the force of the moon comes out

40"52///521V, and the total annual precession arising from both forces will be

50//00///121V. And this motion of precession agrees with the phenomena. For,

from astronomical observations, the precession of the equinoxes is more or

less 50 seconds annually.

If the height of the earth at the equator exceeds its height at the poles

by more than 17 Ve miles, its matter will be rarer at the circumference than

earth that lie on the globe Pape. For the earth cannot be inclined in any direction by those actions exerted

upon the globe itself. [On Newton's use of "globe," see the note to lem. 2.]

"Now let APEp represent the body of the earth, possessing an elliptical shape and consisting of uni-

form matter. And if this is divided into innumerable elliptical, concentric, and similar figures APEp,

BQ£g, CRcr, DSds, . . . , whose diameters are

in a geometric progression, then, since the fig-

ures are similar, the forces of the sun and the

moon under the action of which the equinoctial

points regress would cause those same equinoc-

tial points of the remaining figures regarded

separately to regress with the same velocity.

And the case is the same for the motion of

the single orbs AQE^, BR£r, CScs, . . . , which

are the differences between those figures. [New-

ton here uses the word "orb" ("orbits") for the

solid we would call an ellipsoid of revolution.]

The equinoctial points of each orb, if it were

alone, would have to regress with the same ve-

locity. And it does not matter whether any orb

is denser or rarer, provided that it is made up of uniformly dense matter. Hence also if the orbs are

denser at the center than at the circumference, the motion of the equinoxes of the whole earth will be

the same as before, provided that each orb regarded separately consists of uniformly dense matter and

that the shape of the orb is not changed. But if the shapes of the orbs are changed and if the earth now

ascends higher than before at the equator AE because of the density of the matter at the center, the

regression of the equinoxes will be increased as a result of the increase in the height, and will be increased

in single separate orbs in the ratio of the greater height of the matter near the equator of that orb, and in

the whole earth in the ratio of the greater height of the matter near the equator of an orb which is not

the outermost AQEq and not the innermost Gg but some mean orb CScs. Moreover, we have implied

above that the earth is denser at the center and therefore is higher at the equator than at the poles in a
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at the center; and the precession of the equinoxes has to be increased because

of that excess in height, and diminished because of the greater rarity.b

We have now described the system of the sun, the earth, the moon, and

the planets; something must still be said about comets.

Lemma 4 The comets are higher than the moon and move in the planetary regions.

Just as the lack of diurnal parallax requires that comets be located be-

yond the sublunar regions, so the fact that comets have an annual parallax

is convincing evidence that they descend into the regions of the planets. For

comets which move forward according to the order of the signs are all, to-

ward the end of their visibility, either slower than normal or retrograde if

the earth is between them and the sun, but swifter than they should be if

the earth is approaching opposition. And conversely those comets that move

greater ratio than 692 to 689. And the ratio of the greater height can be gathered approximately from the

greater diminution of gravity at the equator than that which ought to follow from a ratio of 692 to 689.

The deviations by which the length of a seconds pendulum oscillating on Goree Island and on Cayenne

exceeded the length of a pendulum oscillating at Paris in the same time were found by the French to be
81 89

Vio and V% of an inch, which, however, from the proportion of 692 to 689, came out and .
1,000 1,000

89Therefore the length of a pendulum on Cayenne is greater than it should be in the ratio of Vs to ,
ni 1,000

or 1,000 to 712, and on Goree Island, in the ratio of '/io to , or 1,000 to 810. If we take a mean
1,000

ratio of 1,000 to 760, the gravity of the earth will have to be diminished at the equator, and its height

increased in the same place, in the ratio of 1,000 to 760 very nearly. Hence the motion of the equinoxes

(as was said above), if increased in the ratio of the height of the earth, not at the outermost orb, not at

the innermost, but at some intermediate orb, that is, not in the greatest ratio of 1,000 to 760, not in the

least ratio of 1,000 to 1,000, but in some mean ratio, say 10 to 81A or 6 to 5, will come out to be 541'291I161V

annually.

"Again, because of the inclination of the plane of the equator to the plane of the ecliptic, this motion

must be diminished, and must be diminished in the ratio of the sine of the complement of the inclination

to the radius. For the distance of each terrestrial particle from the plane QR, when the particle is farthest

away from the plane of the ecliptic, being (so to speak) in its tropic, is diminished by the inclination of

the planes of the ecliptic and the equator to each other, in the ratio of the sine of the complement of the

inclination to the radius. And the force of the particle to move the equinoxes is also diminished in the

ratio of that distance. The sum of the forces of that same particle is also diminished in the same ratio in

places equally distant in both directions from the tropic, as could easily be shown from what has been

demonstrated earlier, and therefore the whole force of that particle to move the equinoxes in an entire

revolution, as well as the whole force of all the particles, and the motion of the equinoxes arising from

that force, is diminished in the same ratio. Therefore since that inclination is 231/2°, the motion of 54"291U

must be diminished in the ratio of the sine of 91,706 (which is the sine of the complement of 231/2°) to the

radius 100,000. In this way that motion will now become 49II58m. Therefore the points of the equinoxes

regress with an annual motion (according to our calculation) of 49"58"', nearly as the celestial phenomena
require. For that annual regression, from the observations of astronomers, is 50"."
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contrary to the order of the signs are swifter than they should be, at the end

of their visibility when the earth is between them and the sun, and slower

than they should be or retrograde if the earth is on the opposite side of the

sun. This happens principally as a result of the motion of the earth in its

different positions [with respect to the comets], just as is the case for the

planets, which, according as the motion of the earth is either in the same

direction or in an opposite one, are sometimes retrograde, and sometimes

seem to advance more slowly and at other times more swiftly. If the earth

goes in the same direction as the comet and by its angular motion is carried

about the sun so much more swiftly that a straight line continually drawn

through the earth and the comet converges toward the regions beyond the

comet, then the comet as seen from the earth will appear to be retrograde

because of its slower motion; but if the earth is going more slowly, the mo-

tion of the comet (taking away the motion of the earth) becomes at least

slower. But if the earth goes in a direction opposite to the comet's motion,

the motion of the comet will as a result appear speeded up. And from the

acceleration or retardation or retrograde motion, the distance of the comet

may be ascertained in the following way.

Let VQA, VQB, and VQC be three observed longitudes of a comet

at the beginning of its [visible] motion, and let VQF be its last observed

longitude, just as the comet ceases to be seen. Draw the straight line ABC,

whose parts AB and BC placed between the straight lines QA and QB,

and between the straight lines QB and QC, are to each other as the times

between the first three observations. Let AC be produced to G, so that AG

is to AB as the time between the first and the last observation is to the time

between the first and the second observation, and let QG be joined. Then,

if the comet moved uniformly in a straight line and the earth were either
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at rest or also moved forward in a straight line with uniform motion, the

angle VQG would be the longitude of the comet at the time of the last

observation. Therefore, the angle FQG, which is the difference between the

longitudes, arises from the inequality of the motions of the comet and of the

earth. And this angle, if the earth and comet move in opposite directions, is

added to the angle VQG, and thus makes the apparent motion of the comet

swifter; but if the comet is going in the same direction as the earth, this angle

is subtracted from that same angle VQG and makes the motion of the comet

either slower or possibly retrograde, as I have just explained. Therefore this

angle arises chiefly from the motion of the earth and on that account is rightly

regarded as the parallax of the comet, ignoring, of course, any increase or

decrease in it which could arise from the nonuniform motion of the comet

in its own orbit. And the distance of the comet may be ascertained from this

parallax in the following manner.

Let S represent the sun, acT the earth's orbit, a the place of the earth

in the first observation, c the place of the earth in the third observation,

T the place of the earth in the

last observation, and let TV be a

straight line drawn toward the be-

ginning of Aries. Let angle VTV

be taken equal to angle VQF,

that is, equal to the longitude of

the comet when the earth is in T.

Let ac be drawn and produced

to g, so that ag is to ac as AG

to AC; then g will be the place

which the earth would reach at

the time of the last observation,

with its motion uniformly continued in the straight line ac. And so if g~Y

is drawn parallel to T"Y~> and the angle ^TgV is taken equal to the angle

VQG, this angle "Y~g"V will be equal to the longitude of the comet as seen

from place g, and the angle TVg will be the parallax that arises from the

transfer of the earth from place g to place T; and accordingly V will be the

place of the comet in the plane of the ecliptic. And this place V is ordinarily

lower than the orbit of Jupiter.
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The same may be ascertained from the curvature of the path of comets.

These bodies go almost in great circles as long as they move more swiftly,

but at the end of their course, when that part of their apparent motion which

arises from parallax has a greater proportion to the total apparent motion,

they tend to deviate from such circles, and whenever the earth moves in one

direction, they tend to go off in the opposite direction. Because this deviation

corresponds to the motion of the earth, it arises chiefly from parallax, and its

extraordinary quantity, according to my computation, has placed disappearing

comets quite far below Jupiter. Hence it follows that when comets are closer

to us, in their perigees and perihelions, they very often descend below the

orbits of Mars and of the inferior planets.

The nearness of comets is confirmed also from the light of their heads.

For the brightness of a heavenly body illuminated by the sun and going off

into distant regions is diminished as the fourth power of the distance; that is,

it is diminished as the square because of the increased distance of the body

from the sun and diminished as the square again because of the diminished

apparent diameter. Thus, if both the quantity of light [i.e., brightness] and

the apparent diameter of the comet are given, its distance will be found by

taking its distance to the distance of some planet directly in the ratio of

diameter to diameter and inversely as the square root of the ratio of light

to light. Thus, as observed by Flamsteed through a sixteen-foot telescope

and measured with a micrometer, the least diameter of the comaa of the

comet of the year 1682 equaled 2/0//, while the nucleus or star in the middle

of the head occupied scarcely a tenth of this width and therefore was only

11" or 12" wide. But in the light and brilliance of its head it surpassed the

head of the comet of the year 1680 and rivaled stars of the first or second

magnitude. Let us suppose that Saturn with its ring was about four times

brighter; then, because the light of the ring almost equals the light of the

globe within it, and the apparent diameter of the globe is about 21", so that

the light of the globe and the ring together would equal the light of a globe

whose diameter was 30", it follows that the distance of the comet will be

to the distance of Saturn as 1 to ^/4 inversely and 12" to 30" directly, that

a. The Latin word "coma" means "head of hair" and is used today to designate the nebulous envelope

surrounding the nucleus or head of a comet. Another Latin word for "head of hair" is "capillitium." In

book 3, lem. 4, Newton uses "capillitium" for the "head of hair" of a comet, but in prop. 41 he uses

"coma." We have translated both as "coma," the term commonly used in English.
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is, as 24 to 30 or as 4 to 5. Again, on the authority of Hevelius, the comet

of April 1665 surpassed in its brilliance almost all the fixed stars, and even

Saturn itself (that is, by reason of its far more vivid color). Indeed, this comet

was brighter than the one which had appeared at the end of the preceding

year and was comparable to stars of the first magnitude. The width of the

comet's coma was about 6', but the nucleus, when compared with the planets

by the aid of a telescope, was clearly smaller than Jupiter and was judged to

be sometimes smaller than the central body of Saturn and sometimes equal to

it. Further, since the diameter of the coma of comets rarely exceeds 8' or 12',

and the diameter of the nucleus or central star is about a tenth or perhaps a

fifteenth of the diameter of the coma, it is evident that such stars generally

have the same apparent magnitude as the planets. Hence, since their light

can often be compared to the light of Saturn and sometimes surpasses it, it is

manifest that all the comets in their perihelions should be placed either below

Saturn or not far above. Those who banish the comets almost to the region

of the fixed stars are, therefore, entirely wrong; certainly in such a situation,

they would not be illuminated by our sun any more than the planets in our

solar system are illuminated by the fixed stars.

In treating these matters, we have not been considering the obscuring

of comets by that very copious and thick smoke by which the head is sur-

rounded, always gleaming dully as if through a cloud. For the darker the

body is rendered by this smoke, the closer it must approach to the sun for

the amount of light reflected from it to rival that of the planets. This makes

it likely that the comets descend far below the sphere of Saturn, as we have

proved from their parallax.

But this same result is, to the highest degree, confirmed from their tails.

These arise either from reflection by the smoke scattered through the aether

or from the light of the head. In the first case the distance of the comets

must be diminished, since otherwise the smoke always arising from the head

would be propagated through spaces far too great, with such a velocity and

expansion as to be unbelievable. In the second case, all the light of both the

tail and the coma must be ascribed to the nucleus of the head. Therefore, if

we suppose that all this light is united and condensed within the disc of the

nucleus, then certainly that nucleus, whenever it emits a very large and very

bright tail, will far surpass in its brilliance even Jupiter itself. Therefore, if it

has a smaller apparent diameter and is sending forth more light, it will be
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much more illuminated by the sun and thus will be much closer to the sun.

By the same argument, furthermore, the heads ought to be located below the

orbit of Venus, when they are hidden under the sun and emit tails both very

great and very bright like fiery beams, as they do sometimes. For if all of

that light were understood to be gathered together into a single star, it would

sometimes surpass Venus itself, not to say several Venuses combined.

Finally, the same thing may be ascertained from the light of the heads,

which increases as comets recede from the earth toward the sun and decreases

as they recede from the sun toward the earth. Thus the latter comet of 1665

(according to the observations of Hevelius), from the time when it began to be

seen, was always decreasing in its apparent motion and therefore had already

passed its perigee; but the splendor of its head nevertheless increased from

day to day until the comet, concealed by the sun's rays, ceased to be visible.

The comet of 1683 (also according to the observations of Hevelius) at the end

of July, when it was first sighted, was moving very slowly, advancing about

40' or 45' in its orbit each day. From that time its daily motion kept increasing

continually until 4 September, when it came to about 5°. Therefore, in all

this time the comet was approaching the earth. This is gathered also from the

diameter of the head, as measured with a micrometer, since Hevelius found

it to be on 6 August only 6/5// including the coma, but on 2 September 9/7//.

Therefore the head appeared far smaller at the beginning than at the end

of the motion; yet at the beginning the head showed itself far brighter in

the vicinity of the sun than toward the end of its motion, as Hevelius also

reports. Accordingly, in all this time, because of its receding from the sun, it

decreased with respect to its light, notwithstanding its approach to the earth.

The comet of 1618, about the middle of December, and that of 1680,

about the end of the same month, were moving very swiftly and therefore

were then in their perigees. Yet the greatest splendor of their heads occurred

about two weeks earlier, when they had just emerged from the sun's rays,

and the greatest splendor of their tails occurred a little before that, when they

were even nearer to the sun. The head of the first of these comets, according

to the observations of [Johann Baptist] Cysat, seemed on 1 December to be

greater than stars of the first magnitude, and on 16 December (being now in

its perigee) it had failed little in magnitude, but very much in the splendor

or clarity of its light. On 7 January Kepler, being uncertain about its head,

brought his observing to an end. On 12 December the head of the second
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of these comets was sighted, and was observed by Flamsteed at a distance of

9° from the sun, a thing which would scarcely have been possible in a star

of the third magnitude. On 15 and 17 December it appeared as a star of the

third magnitude, since it was diminished by the brightness of clouds near

the setting sun. On 26 December, moving with the greatest speed and being

almost in its perigee, it was less than the mouth of Pegasus, a star of the third

magnitude. On 3 January it appeared as a star of the fourth magnitude, on

9 January as a star of the fifth magnitude, and on 13 January it disappeared

from view, as a result of the splendor of the crescent moon. On 25 January

it scarcely equaled stars of the seventh magnitude. If equal times are taken

on both sides of the perigee (before and after), then the head, being placed

at those times in distant regions, ought to have shone with equal brilliance

because of its equal distances from the earth, but it appeared brightest in

the region [on the side of the perigee] toward the sun and disappeared on

the other side of the perigee. Therefore from the great difference of light

in these two situations, it is concluded that there is a great nearness of the

sun and the comet in the first of these situations. For the light of comets

tends to be regular and be greatest when the heads move most swiftly, and

accordingly are in their perigees, except insofar as this light becomes greater

in the vicinity of the sun.

COROLLARY 1. Therefore comets shine by the sun's light reflected from

them.

COROLLARY 2. From what has been said it will also be understood why

comets appear so frequently in the region of the sun. If they were visible

in the regions far beyond Saturn, they would have to appear more often in

the parts of the sky opposite to the sun. For those that were in these parts

would be nearer to the earth; and the sun, being in between, would obscure

the others. Yet in running through the histories of comets, I have found

that four or five times more have been detected in the hemisphere toward

the sun than in the opposite hemisphere, besides without doubt not a few

others which the sun's light hid from view. Certainly, in their descent to our

regions comets neither emit tails nor are so brightly illuminated by the sun

that they show themselves to the naked eye so as to be discovered before they

are closer to us than Jupiter itself. But by far the greater part of the space

described about the sun with so small a radius is situated on the side of the



P R O P O S I T I O N 40 541

earth that faces the sun, and comets are generally more brightly illuminated

in that greater part, since they are much closer to the sun.

COROLLARY 3. Hence also it is manifest that the heavens are lacking in

resistance. For the comets, following paths that are oblique and sometimes

contrary to the course of the planets, move in all directions very freely and

preserve their motions for a very long time even when these are contrary to

the course of the planets. Unless I am mistaken, comets are a kind of planet

and revolve in their orbits with a continual motion. For there seems to be

no foundation for the allegation of some writers, basing their argument on

the continual changes of the heads, that comets are meteors. The heads of

comets are encompassed with huge atmospheres, and the atmospheres must

be denser as one goes lower. Therefore, it is in these clouds, and not in the

very bodies of the comets, that those changes are seen. Thus, if the earth were

viewed from the planets, it would doubtless shine with the light of its own

clouds, and its solid body would be almost hidden beneath the clouds. Thus,

the belts of Jupiter are formed in the clouds of that planet, since they change

their situation relative to one another, and the solid body of Jupiter is seen

with greater difficulty through those clouds. And the bodies of comets must

be much more hidden beneath their atmospheres, which are both deeper and

thicker.

Cornets move in conies having their foci in the center of the sun, and by radii Proposition 40

drawn to the sun, they describe areas proportional to the times. Theorem 20

This is evident by corol. 1 to prop. 13 of the first book compared with

props. 8, 12, and 13 of the third book.

COROLLARY 1. Hence, if comets revolve in orbits, these orbits will be

ellipses, and the periodic times will be to the periodic times of the planets

as the 3/2 powers of their principal axes. And therefore comets, for the most

part being beyond the planets and on that account describing orbits with

greater axes, will revolve more slowly. For example, if the axis of the orbit

of a comet were four times greater than the axis of the orbit of Saturn, the

time of a revolution of the comet would be to the time of a revolution of

Saturn (that is, to 30 years) as 4^/4 (or 8) to 1, and accordingly would be 240

years.

COROLLARY 2. But these orbits will be so close to parabolas that parabolas

can be substituted for them without sensible errors.
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COROLLARY 3. And therefore (by book 1, prop. 16, corol. 7) the velocity

of every comet will always be to the velocity of any planet, [considered to

be] revolving in a circle about the sun, very nearly as the square root of

twice the distance of the planet from the center of the sun to the distance of

the comet from the center of the sun. Let us take the radius of the earth's

orbit (or the greatest semidiameter of the ellipse in which the earth revolves)

to be of 100,000,000 parts; then the earth will describe by its mean daily

motion 1,720,212 of these parts, and by its hourly motion 71,6751/2 parts.

And therefore the comet, at the same mean distance of the earth from the

sun, and having a velocity that is to the velocity of the earth as ^/2 to 1, will

describe by its daily motion 2,432,747 of these parts, and by its hourly motion

101,3641/2 parts. But at greater or smaller distances, both the daily and the

hourly motion will be to this daily and hourly motion as the square root of

the ratio of the distances inversely, and therefore is given.

COROLLARY 4. Hence, if the latus rectum of a parabola is four times

greater than the radius of the earth's orbit, and if the square of that radius is

taken to be 100,000,000 parts, the area that the comet describes each day by

a radius drawn to the sun will be l,216,3731/2 parts, and in each hour that

area will be 50,6821/4 parts. But if the latus rectum is greater or smaller in

any ratio, then the daily and hourly area will be greater or smaller, as the

square root of that ratio.

Lemma 5 To find a parabolic curve that will pass through any number of given points.

Let the points be A, B, C, D, E, F, ... , and from them to any straight

line HN, given in position, drop the perpendiculars AH, BI, CK, DL, EM,

FN, . . . .
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f
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CASE 1. If the intervals HI, IK, KL, ... between the points H, I, K,

L, M, N are equal, take the first differences b, b2, £3, £4, b5, . . . of the

perpendiculars AH, BI, CK, . . . ; the second differences c, c2, <r3, <r4? . . . ; the

third differences d, d2, d3, . . .; that is, in such a way that AH — BI = b,

BI - CK = b 2, CK - DL = £3, DL + EM = £4, -EM + FN = £5, ...,

then b — b2 = c,..., and go on in this way to the last difference, which here

is f. Then, if any perpendicular RS is erected, which is to be an ordinate to

the required curve, in order to find its length, suppose each of the intervals

HI, IK, KL, LM, . . . to be unity, and let AH be equal to a, —HS = /?,

1/2/7 X (-IS) = q, Viq X (+SK) = r, V*r X (+SL) = s, }As x (+SM) = *,

proceeding, that is, up to the penultimate perpendicular ME, and prefixing

negative signs to the terms HS, IS, . . . , which lie on the same side of the

point S as A, and positive signs to the terms SK, SL, . . . , which lie on the

other side of the point S. Then if the signs are observed exactly, RS will

be = a + bp + cq + dr + es + ft +

CASE 2. But if the intervals HI, IK, . . . between the points H, I, K,

L, . . . are unequal, take £, b2, £3, £4, b5, . .. , the first differences of the per-

pendiculars AH, BI, CK, . . . divided by the intervals between the perpen-

diculars; take c, c2, c3, c4, . . . , the second differences divided by each two in-

tervals; d, d2, d^ . . . , the third differences divided by each three intervals; e,

e2, . . . , the fourth differences divided by each four intervals, and so on—that

AH - BI BI - CK CK - DL
is, in such a way that b = — , b

and then c = , c7 = , c-> = , . .., and arterward a =

7 = .... When these differences have been found, let AH
HL IM

be equal to a, -HS = p, p x (-IS) = q, q x (+SK) = r, r x (+SL) = s,

s x (+SM) = /, proceeding, that is, up to the penultimate perpendicular

ME; then the ordinate RS will be = a + bp + cq + dr + es + ft + . . . .

COROLLARY. Hence the areas of all curves can be found very nearly.

For if several points are found of any curve which is to be squared [i.e.,

any curve whose area is desired] and a parabola is understood to be drawn

through them, the area of this parabola will be very nearly the same as the

area of that curve which is to be squared. Moreover, a parabola can always

be squared geometrically by methods which are very well known.

c  -  c 2 c 2  -  c 3

H I  H I H I
b - b 2  b - b 2 b - b 2

H K H K H K
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Lemma 6 From several observed places of a comet, to find its place at any given intermediate

time.

Let HI, IK, KL, LM represent the times between the observations (in

the figure to lem. 5), HA, IB, KG, LD, ME five observed longitudes of

the comet, and HS the given time between the first observation and the

required longitude. Then, if a regular curve ABCDE is understood to be

drawn through the points A, B, C, D, E, and if the ordinate RS is found by

the above lemma, RS will be the required longitude.

By the same method the latitude at a given time is found from five

observed latitudes.

If the differences of the observed longitudes are small, say only 4 or 5

degrees, three or four observations would suffice for finding the new longi-

tude and latitude. But if the differences are greater, say 10 or 20 degrees, five

observations must be used.

Lemma 7 To draw a straight line BC through a given point P, so that the parts PB and

PC of that line, cut off by two straight lines AB and AC, given in position, have

a given ratio to each other.

From that point P draw any straight line

PD to either of the straight lines, say AB, and

produce PD toward the other straight line AC

as far as E, so that PE is to PD in the given

ratio. Let EC be parallel to AD; and if CPB is

drawn, PC will be to PB as PE to PD. Q.E.F.

Lemma 8 Let ABC be a parabola with focus S. Let the segment ABCI be cut off by the

chord AC (which is bisected at \), let its diameter be I/i, and let its vertex be JJL.

On Ijit produced, ta\e jJiO equal to halfoflfJi. Join OS and produce it to £, so

that S£ is equal to 2SO. Then, if a comet B moves in the arc CBA, and if £B

is drawn cutting AC in E, / say that the point E will cut off from the chord AC

the segment AE very nearly proportional to the time.

For join EO, cutting the parabolic arc ABC in Y, and draw )LtX so as to

touch the same arc in the vertex /JL and meet EO in X; then the curvilinear

area AEX/xA will be to the curvilinear area ACYpiA as AE to AC. And

thus, since triangle ASE is in the same ratio to triangle ASC as the ratio

of those curvilinear areas, the total area ASEX^iA will be to the total area
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ASCY/^A as AE to AC. Moreover, since £O is to SO as 3 to 1, and EO

is in the same ratio to XO, SX will be parallel to EB; and therefore, if

BX is joined, the triangle SEB will be equal to the triangle XEB. Thus, if

the triangle EXB is added to the area ASEX/^A and from that sum the

triangle SEB is taken away, there will remain the area ASBX)LiA equal to

the area ASEX^tA, and thus it will be to the area ASCY/iA as AE to AC.

But the area ASBY/zA is very nearly equal to the area ASBX/iA, and the

area ASBY/xA is to the area ASCYjU,A as the time in which the arc AB is

described to the time of describing the total arc AC. And thus AE is to AC

very nearly in the ratio of the times. Q.E.D.

COROLLARY. When point B falls upon the vertex JJL of the parabola, AE

is to AC exactly in the ratio of the times.

If JULJ; is joined, cutting AC at 5, and if £/?, which is to £iB as 27MI to Scholium

16M/1, is taken in this line, then when En is drawn it will cut the chord

AC more nearly in the ratio of the lines than before. But the point n is to

be taken so as to lie beyond point £ if point B is more distant than point JJL

from the principal vertex of the parabola; and contrariwise if B is less distant

from that vertex.

AIC
The straight lines I/JL and /xM and the length are equal to one another. Lemma 9

4S^
For 4S/I is the latus rectum of a parabola, extending to the vertex ju,.

Let SJJL be produced to N and P, so that jJiN is one-third of pi, and so that Lemma 10

SP is to SN as SN to S/JL. Then, in the time in which a comet describes the arc

AjJbC, it would—if it moved forward always with the velocity that it has at a

height equal to SP—describe a length equal to the chord AC.
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For if the comet were to move forward in the same time uniformly

in the straight line that touches the parabola at //,, and with the veloc-

ity that it has in JJL, then the area that

it would describe by a radius drawn to

point S would be equal to the parabolic

area ASC/Ji. And hence the space deter-

mined by the length described along the

tangent and the length Sfji would be to

the space determined by the lengths AC

and SM as the area ASCjU, to the trian-

gle ASC, that is, as SN to SM. There-

fore, AC is to the length described along the tangent as SfJi to SN. But the

velocity of the comet at the height SP is (by book 1, prop. 16, corol. 6) to its

velocity at the height S^ as the square root of the ratio of SP to SJJL inversely,

that is, in the ratio of S/x to SN; hence the length described in the same time

with this velocity will be to the length described along the tangent as SJJL to

SN. Therefore, since AC and the length described with this new velocity are

in the same ratio to the length described along the tangent, they are equal to

each other. Q.E.D.

COROLLARY. Therefore, in that same time, the comet, with the velocity

that it has at the height SfJL + 2AIjJi, would describe the chord AC very nearly.

Lemma 11 Suppose a comet, deprived of all motion, to be let fall from the height SN or

S/JL + VilfJi, so as to fall toward the sun, and suppose this comet to be urged

toward the sun always by that force, uniformly continued, by which it is urged at

the beginning. Then in half of the time in which the comet describes the arc AC

in its orbit, it would—in this descent toward the sun—describe a space equal to

the length I/x.

For by lem. 10, in the same time in which the comet describes the

parabolic arc AC, it will—with the velocity that it has at the height SP—

describe the chord AC; and hence (by book 1, prop. 16, corol. 7), revolving

by the force of its own gravity, it would—in that same time, in a circle whose

semidiameter was SP—describe an arc whose length would be to the chord

AC of the parabolic arc in the ratio of 1 to <J2. And therefore, falling from

the height SP toward the sun with the weight that it has toward the sun at

that height, it would in half that time (by book 1, prop. 4, corol. 9) describe
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a space equal to the square of half of that chord, divided by four times the

AI2

height SP, that is, the space . Thus, since the weight of the comet toward
T^l.

the sun at the height SN is to its weight toward the sun at the height SP

as SP to S/A, the comet—falling toward the sun with the weight that it has

AI2

at the height SN—will in the same time describe the space , that is, a
ro^U/

space equal to the length I^JL or M^. Q.E.D.

To determine the trajectory of a comet moving in a parabola, from three given Proposition 41

observations. Problem 21

Having tried many approaches to this exceedingly difficult problem, I

devised certain problems [i.e., propositions] in book 1 which are intended for

its solution. But later on, I conceived the following slightly simpler solution.

Let three observations be chosen, distant from one another by nearly

equal intervals of time. But let that interval of time when the comet moves

more slowly be a little greater than the other, that is, so that the difference of

the times is to the sum of the times as the sum of the times to more or less

six hundred days, or so that the point E (in the figure to lem. 8) falls very

nearly on the point M and deviates from there toward I rather than toward

A. If such observations are not at hand, a new place of the comet must be

found by the method of lem. 6.

Let S represent the sun; T, /, and r three places of the earth in its orbit;

TA, /B, and rC three observed longitudes of the comet; V the time between

the first observation and the second; W the time between the second and the

third; X the length that the comet could describe in that total time [V + W]

with the velocity that it has in the mean distance of the earth from the sun

(which length is to be found by the method of book 3, prop. 40, corol. 3); and

let tV be a perpendicular to the chord Tr. In the mean observed longitude

/B, let the point B be taken anywhere at all for the place of the comet in

the plane of the ecliptic, and from there toward the sun S draw line BE so

as to be to the sagitta /V as the content3 of SB and S/2 to the cube of the

hypotenuse of the right-angled triangle whose sides are SB and the tangent

of the latitude of the comet in the second observation to the radius *B. And

a. Here "content" has the sense of Newton's "solid," that is, the result of multiplying SB by the
square of S/.
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through point E (by lem. 7 of this third book) draw the straight line AEC

so that its parts AE and EC, terminated in the straight lines TA and rC,

are to each other as the times V and W. Then A and C will be the places

of the comet in the plane of the ecliptic in the first and third observations

very nearly, provided that B is its correctly assumed place in the second

observation.

Upon AC, bisected in I, erect a perpendicular I t . Through point B let

a line B/ be imagined,b drawn parallel to AC. Let Si be a line imagined as

cutting AC at A, and complete the parallelogram /lAjU,. Take la equal to

3IA, and through the sun S draw the dotted line cri; equal to 3Scr + 3/A.

b. In prop. 41, Newton refers to the line Bz as "[lineam] occultam B/," directing that "Per punctum

B age occultam B//' literally, "Through point B draw the occult line B/." In the next sentence, the same

adjective, "occult," is applied to the line Si; in the following sentence, the line erg is said to be "occult."

(In the first and second editions, there is another "occult" line OD.) In the final paragraph, there is a

reference to the "occult" line AC.

In Newton's day, according to the Oxford English Dictionary, the adjective "occult" was used to denote

"a line drawn in the construction of a figure, but not forming part of the finished figure," and also to

denote a dotted line. The diagram for prop. 41 does not show any lines Bi, Si, OD, or AC, but erg does

appear as a dotted line. Accordingly, we have translated "occult" in the sense of "imagined" in the case

of lines Si, B/, and AC, and as "dotted" in the case of line cr£.

Perhaps the reason why Newton has referred to all these lines (both invisible and dotted) as "occult"

is that, in the original diagram that he drew for the cutter of the wood block, he did not show cr£ as a

dotted line. In this case, all of these lines would have been "occult" or hidden from view, invisible and

only imagined.
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And after deleting the letters A, B, C, and I, let a new imagined line BE

be drawn from the point B toward the point £ so that it is to the former

line BE as the square of the distance BS to the quantity SJJL + ViiX. And

through point E again draw the straight line AEC according to the same

rule as before, that is, so that its parts AE and EC are to each other as the

times V and W between observations. Then A and C will be the places of

the comet more exactly.

Upon AC, bisected in I, erect the perpendiculars AM, CN, and IO, so

that, of these perpendiculars, AM and CN are the tangents of the latitudes0

in the first and third observations (to the radii TA and rC). Join MN, cutting

IO in O. Construct the rectangle HXjJi as before. On IA produced, take ID

equal to S/JL + 2/3/A. Then on MN, toward N, take MP so that it is to the

length X found above as the square root of the ratio of the mean distance

of the earth from the sun (or of the semidiameter of the earth's orbit) to the

distance OD. If point P falls upon point N, then A, B, and C will be three

places of the comet, through which its orbit is to be described in the plane of

the ecliptic. But if point P does not fall upon point N, then on the straight

line AC take CG equal to NP, in such a way that points G and P lie on the

same side of the straight line NC.

Using the same method by which points E, A, C, and G were found from

the assumed point B, find from other points b and j8 (assumed in any way

whatever) the new points ^, <z, <r, g, and £, a, K, y. Then if the circumference

of circle Ggy is drawn through G, g, and y, cutting the straight line rC in

Z, Z will be a place of the comet in the plane of the ecliptic. And if on AC,

ac, and a/c, there are taken AF, af, and a<p, equal respectively to CG, eg,

and /cy, and if the circumference of a circle Ff<p is drawn through points

c. Basically, here Newton is determining a comet's distance from its latitude and longitude as deter-

mined by a terrestrial observer. He guesses a position B of the comet in the plane of the ecliptic and then

determines the altitude (or distance above the ecliptic), and so can construct a right triangle, of which one

side is SB (a line drawn from the sun to the point B on the ecliptic) and other is /B times the tangent of

the latitude of the comet (which Newton writes as: the tangent of the latitude of the comet in the second

observation to the radius /B).

For an extensive gloss on prop. 41 and on Newton's theory of comets, see A. N. Kriloff, "On Sir

Isaac Newton's Method of Determining the Parabolic Orbit of a Comet," Monthly Notices of the Royal

Astronomical Society 85 (1925): 640-656; see also the enlightening discussion by S. Chandrasekhar, Newton's

"Principia" for the Common Reader (Oxford: Clarendon Press, 1995), pp. 514-529, especially the diagram
on p. 514.



550 BOOK 3

F, /, and <p, cutting the straight line AT in X, then point X will be another

place of the comet in the plane of the ecliptic. At the points X and Z, erect

the tangents of the latitudes of the comet (to the radii TX and rZ), and two

places of the comet in its orbit will be found. Finally (by book 1, prop. 19), let

a parabola with focus S be described through those two places; this parabola

will be the trajectory of the comet. Q.E.I.

The demonstration of this construction follows from the lemmas, since

the straight line AC is cut in E in the ratio of the times, by lem. 7, as required

by lem. 8; and since BE, by lem. 11, is that part of the straight line BS or B£

which lies in the plane of the ecliptic between the arc ABC and the chord

AEC; and since MP (by lem. 10, corol.) is the length of the chord of the arc

that the comet must describe in its orbit between the first observation and

the third, and therefore would be equal to MN, provided that B is a true

place of the comet in the plane of the ecliptic.

But it is best not to choose the points B, b, and j8 any place whatever,

but to take them as close to true as possible. If the angle AQ/, at which the

projection of the orbit described in the plane of the ecliptic cuts the straight

line /B, is known approximately, imagine the straight line AC drawn at that

angle so that it is to VsTr as the square root of the ratio of SQ to St. And

by drawing the straight line SEB, so that its part EB is equal to the length

V/, point B will be determined, which may be used the first time around.

Then, after deleting the straight line AC and drawing AC anew according

to the preceding construction, and after additionally finding the length MP,

take point b on /B according to the rule that if TA and rC cut each other

in Y, the distance Y£ is to the distance YB in a ratio compounded of the

ratio of MP to MN and the square root of the ratio of SB to Sb. And the

third point /3 will have to be found by the same method, if it is desired to

repeat the operation for the third time. But by this method two operations

would, for the most part, be sufficient. For if the distance Eb happens to be

very small, then after the points F, / and G, g have been found, the straight

lines F/ and Gg (when drawn) will cut TA and rC in the required points

X and Z.

EXAMPLE. Let the comet of 1680 be proposed as the example. The fol-

lowing table shows its motion as observed by Flamsteed and as calculated

by him from these observations, and corrected by Halley on the basis of the

same observations.
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1680, Dec. 12

21
24

26

29

30

1681, Jan. 5
9

10

13

25

30

Feb. 2

5

Apparent

time

h m

4 46

6 321/2
6 12

5 14

7 55

8 2

5 51
6 49

5 54

6 56
7 44

8 7

6 20

6 50

True

time

h m s

4 46 0

6 36 59

6 17 52

5 20 44

8 3 2

8 10 26

6 1 38
7 0 53

6 6 10
7 8 55

7 58 42

8 21 53

6 34 51

7 4 41

Longitude

of the sun

0 / //

« 1 51 23
11 6 44

14 9 26

16 9 22

19 19 43

20 21 9

26 22 18

sz 0 29 2

1 27 43

4 33 20

16 45 36

21 49 58

24 46 59

27 49 51

Longitude

of the comet

0 / //

« 6 32 30
zz 5 8 12

18 49 23

28 24 13

X 13 10 41
17 38 20

Y 8 48 53
18 44 4

20 40 50
25 59 48

tf 9 35 0

13 19 51

15 13 53

16 59 6

North

latitude of

the comet

0 / //

8 28 0

21 42 13

25 23 5

27 0 52

28 9 58

28 11 53

26 15 7
24 11 56

23 43 52
22 17 28

17 56 30

16 42 18

16 4 1

15 27 3

To these add certain observations of my own.

1681, Feb. 25

27

Mar. 1

2

5
7

9

Apparent

time

h m

8 30

8 15

11 0

8 0

11 30

9 30

8 30

Longitude

of the comet

0 / //

tf 26 18 35

27 4 30

27 52 42

28 12 48
29 18 0

H 0 4 0
0 43 4

North latitude

of the comet

0 / //

12 46 46

12 36 12

12 23 40

12 19 38

12 3 16
11 57 0

11 45 52

These observations were made with a seven-foot telescope, and a mi-

crometer the threads of which were placed in the focus of the telescope; and

with these instruments we determined both the positions of the fixed stars

in relation to one another and the positions of the comet in relation to the

fixed stars. Let A represent the star of the fourth magnitude in the left heel

of Perseus (Bayer's o), B the following star of the third magnitude in the left

foot (Bayer's £), C the star of the sixth magnitude in the heel of the same
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foot (Bayer's n\ and D, E, F, G, H, I, K, L, M, N, O, Z, a, 0, y, and 8

other smaller stars in the same foot. And let p, P, Q, R, S, T, V, and X be

the places of the comet in the observations described above; and, the distance

AB being reckoned at 807/i

BD 826/n, CD 23%, AE 294/

367/i2, DI 535/n, AK 38%, BK 43, CK 315/

7, DH 507/8, BN 465/i2, CN 311/3, BL 45M2, NL 315/7. HO was to HI
as 7 to 6 and, when produced, passed between stars D and E in such a way

that the distance of star D from this straight line was VeCD. LM was to LN

as 2 to 9 and, when produced, passed through star H. Thus the positions of

the fixed stars in relation to one another were determined.

Finally our fellow countryman Pound again observed the positions of

these fixed stars in relation to one another and recorded their longitudes and

latitudes, as in the following table.

The fixed

stars

A
B
C
E
F
G
H
I
K

Longitudes

0 / //

tf 26 41 50

28 40 23

27 58 30

26 27 17

28 28 37

26 56 8

27 11 45

27 25 2

27 42 7

Latitudes

north

0 / //

12 8 36

11 17 54

12 40 25

12 52 7

11 52 22

12 4 58

12 2 1

11 53 11

11 53 26

The fixed

stars

L
M
N
Z
a

13
y
8

Longitudes

0 / //

W 29 33 34

29 18 54

28 48 29

29 44 48

29 52 3

H 0 8 23

0 40 10

1 3 20

Latitudes

north

0 f It

12 7 48

12 7 20

12 31 9

11 57 13

11 55 48

11 48 56

11 55 18

11 30 42
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I observed the positions of the comet in relation to these fixed stars as

follows.

On Friday, 25 February (O.S.), at 8h30m P.M., the distance of the comet,

which was at /?, from star E was less than MsAE, and greater than !/sAE, and

thus was approximately 3/nAE; and the angle A/?E was somewhat obtuse,

but almost a right angle. For if a perpendicular were dropped from A to /?E,

the distance of the comet from that perpendicular was l/5pE.

On the same night at 9h30m, the distance of the comet (which was at P)

from star E was greater than AE and less than AE, and thus was
41/2 5 {A

very nearly AE, or 8/39AE. And the distance of the comet from a per-
47/8

pendicular dropped from star A to the straight line PE was VsPE.

On Sunday, 27 February, at 8h15m P.M., the distance of the comet (which

was at Q) from star O equaled the distance between stars O and H; and

the straight line QO, produced, passed between stars K and B. Because of

intervening clouds, I could not determine the position of this straight line

more exactly.

On Tuesday, 1 March, at l lh P.M., the comet (which was at R) lay exactly

between stars K and C; and the part CR of the straight line CRK was a

little greater than 1/3 CK and a little smaller than 1/3 CK + VsCR, and thus

was equal to 1/3CK + VieCR, or 16/45CK.

On Wednesday, 2 March, at 8h P.M., the distance of the comet (which

was at S) from star C was very close to 1/9FC. The distance of star F from

the straight line CS, produced, was 1/24FC, and the distance of star B from

that same straight line was five times greater than the distance of star F.

Also, the straight line NS, produced, passed between stars H and I and was

five or six times nearer to star H than to star I.

On Saturday, 5 March, at Ilh30m P.M. (when the comet was at T), the

straight line MT was equal to l/zML, and the straight line LT, produced,

passed between B and F four or five times closer to F than to B, cutting

off from BF a fifth or sixth part of it toward F. And MT, produced,

passed outside the space BF on the side of star B and was four times closer

to star B than to star F. M was a very small star that could scarcely be

seen through the telescope, and L was a greater star, of about the eighth

magnitude.

1

1 1
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On Monday, 7 March, at 9h30m P.M. (when the comet was at V), the

straight line Va, produced, passed between B and F, cutting off MoBF from

BF on the side of F, and was to the straight line V/3 as 5 to 4. And the

distance of the comet from the straight line a/3 was ViVfi.

On Wednesday, 9 March, at 8h30m P.M. (when the comet was at X), the

straight line yX was equal to lAy8, and a perpendicular dropped from star

8 to the straight line yX was 2/5j8.

On the same night at 12h (when the comet was at Y), the straight line y Y

was equal to 1/3y8 or a little smaller, say 5/i6yS, and a perpendicular dropped

from star 8 to the straight line yY was equal to about Ve or VryS. But the

comet could scarcely be discerned because of its nearness to the horizon, nor

could its place be determined so surely as in the preceding observations.

From observations of this sort, by constructions of diagrams, and by

calculations, I found the longitudes and latitudes of the comet, and from the

corrected places of the fixed stars our fellow countryman Pound corrected

the places of the comet, and these corrected places are given above. I used

a crudely made micrometer, but nevertheless the errors of longitudes and

latitudes (insofar as they come from my observations) scarcely exceed one

minute. Moreover, the comet (according to my observations) at the end of its

motion began to decline noticeably toward the north from the parallel which

it had occupied at the end of February.

Now, in order to determine the orbit of the comet, I selected—from the

observations hitherto described—three that Flamsteed made, on 21 Decem-

ber, 5 January, and 25 January. From these observations I found St to be of

9,842.1 parts, and V/ to be of 455 parts (10,000 such parts being the semidi-

ameter of the earth's orbit). Then for the first operation, assuming tE to be

of 5,657 parts, I found SB to be of 9,747, BE the first time 412, Sju, 9,503, lA

413; BE the second time 421, OD 10,186, X 8,528.4, MP 8,450, MN 8,475,

NP 25. Hence for the second operation I reckoned the distance tb to be

5,640. And by this operation I found at last the distance TX to be 4,775 and

the distance rZ to be 11,322. In determining the orbit from these distances,

I found the descending node in ©1°53/ and the ascending node in ^5l°53',

and the inclination of its plane to the plane of the ecliptic to be 61°201/3/. I

found that its vertex (or the perihelion of the comet) was 8°38/ distant from

the node and was in /27°43/ with a latitude 7°34' S; and that its latus rec-

tum was 236.8, and that the area described each day by a radius drawn to the



P R O P O S I T I O N 41 555

sun was 93,585, supposing the square of the semidiameter of the earth's orbit

to be 100,000,000; and I found that the comet had advanced in this orbit in

the order of the signs, and was on 8 December Oh4m A.M. in the vertex of the

orbit or the perihelion. I made all these determinations graphically by a scale

of equal parts and by chords of angles, taken from the table of natural sines,

constructing a fairly large diagram, that is, one in which the semidiameter

of the earth's orbit (of 10,000 parts) was equal to 161/3 inches of an English

foot.

Finally, in order to establish whether the comet moved truly in the or-

bit thus found, I calculated—partly by arithmetical and partly by graphical

operations—the places of the comet in this orbit at the times of certain ob-

servations, as can be seen in the following table.

Dec. 12

29

Feb. 5

Mar. 5

Distance

of the

comet

from

the sun

2,792

8,403

16,669

21,737

Calculated

longitude

0 /

^ 6 32

X B 132/3
« 17 0

29 193/4

Calculated

latitude

0 /

8 181/2
28 0
15 292/3

12 4

Observed

longitude

0 /

/5 6 311/3
X 13 IP/4

« 16 597/8
29 206/7

Observed

latitude

0 /

8 26

28 101/12

15 272/5

12 31/2

Difference

in

longitude

+ 1
+2

+0
-1

Difference

in

latitude

- 71/2

-10M2
+ 2*/4

+ !/2

dLater, our fellow countryman Halley determined the orbit more exactly

by an arithmetical calculation than could be done graphically [lit. by the

descriptions of lines]; and while he kept the place of the nodes in @1°53/

and in /5l°53/ and the inclination of the plane of the orbit to the ecliptic

61°201/3/, and also the time of the perihelion of the comet 8 December Oh4m,

he found the distance of the perihelion from the ascending node (measured in

the orbit of the comet) to be 9°20/, and the latus rectum of the parabola to be

2,430 parts, the mean distance of the sun from the earth being 100,000 parts.

And by making the same kind of arithmetical calculation exactly (using these

data), he calculated the places of the comet at the times of the observations,

as follows.

dd. The next eight paragraphs (and the included tables) are not present in ed. 1. They were first
published in ed. 2 and considerably revised and expanded in ed. 3.
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True

time

d h m

Dec. 12 4 46

21 6 37

24 6 18

26 5 21

29 8 3

30 8 10

Jan. 5 6 IV2

9 7 0

10 6 6

13 7 9

25 7 59

30 8 22

Feb. 2 6 35

5 7 4'/2

25 8 41

Mar. 5 11 39

Distance

of the comet

from the sun

28,028

61,076

70,008

75,576

84,021

86,661

101,440

110,959

113,162

120,000

145,370

155,303

160,951

166,686

202,570

216,205

Calculated

longitude

0 / //

^ 6 29 25

££ 5 6 30

18 48 20

28 22 45

X 13 12 40

17 40 5

Y 8 49 49

18 44 36

20 41 0

26 0 21

« 9 33 40

13 17 41

15 11 11

16 58 25

26 15 46

29 18 35

Calculated

latitude

0 / //

8 26 ON

21 43 20

25 22 40

27 1 36

28 10 10

28 11 20

26 15 15

24 12 54

23 44 10

22 17 30

17 57 55

16 42 7

16 4 15

15 *29 13

12 48 0

12 5 40

Errors in

longitude

r n

-3 5

-1 42

-1 3

-1 28

+ 1 59

+1 45

+0 56

+0 32

+0 10

+0 33

-1 20

-2 10

-2 42

-0 41

-2 49

+0 35

Errors in

latitude

i ft

-2 0
+1 7
-0 25
+0 44
+0 12
-0 33
+0 8
+0 58
+0 18
+0 2
+1 25
-0 11
+0 14

'+2 10
+1 14
+2 24

This comet also appeared in the preceding November and was observed by

Mr. Gottfried Kirch at Coburg in Saxony on the fourth, sixth, and eleventh

days of this month (O.S.); and from its positions with respect to the nearest

fixed stars (observed with sufficient accuracy, sometimes through a two-foot

telescope and sometimes through a ten-foot telescope), from the difference of

the longitudes of Coburg and London, eleven degrees, and from the places

of the fixed stars observed by our fellow countryman Pound, our own Halley

has determined the places of the comet as follows.

On 3 November 17h2m, apparent time at London, the comet was in

Q29°51' with latitude 1°17'45" N.

On 5 November 15h58m, the comet was in 1tP3°23' with latitude 1°6' N.

On 10 November 16h31m, the comet was equally distant from the stars

(7 and T (Bayer) of Leo; it had not yet reached the straight line joining these

stars, but was not far from it. In Flamsteed's catalog of stars, a then was in

TCP14015' with latitude about 1°41' N, while r was in TCPl?^' with latitude

0°34/ S. And the midpoint between these stars was TlJ)150391/4/ with latitude

0°331/2/ N. Let the distance of the comet from that straight line be about 10'

or 12'; then the difference of the longitudes of the comet and that midpoint
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will be 7', and the difference of the latitudes roughly TVi . And thus the

comet was in HP15°32' with roughly latitude 26' N.

The first observation of the position of the comet in relation to certain

small fixed stars was more than exact enough. The second also was exact

enough. In the third observation, which was less exact, there could have been

an error of six or seven minutes, but hardly a greater one. And the longitude

of the comet in the first observation, which was more exact than the others,

being computed in the parabolic orbit mentioned above, was Q29°30'22", its

latitude l°25/7// N, and its distance from the sun 115,546.

Further, Halley noted that a remarkable comet had appeared four times

at intervals of 575 years—namely, in September after the murder of Julius

Caesar; in A.D. 531 in the consulship of Lampadius and Orestes; in February

A.D. 1106; and toward the end of 1680—and that this comet had a long and

remarkable tail (except that in the year of Caesar's death the tail was less

visible because of the inconvenient position of the earth); and he set out to

find an elliptical orbit whose major axis would be 1,382,957 parts, the mean

distance of the earth from the sun being 10,000 parts, that is, an orbit in

which a comet might revolve in 575 years. Then he computed the motion of

the comet in this elliptical orbit with the following conditions: the ascending

node in ©2°2/, the inclination of the plane of the orbit to the plane of the

ecliptic 61°6/48//, the perihelion of the comet in this plane in /22044'25",

the equated time of the perihelion 7 December 23h9m, the distance of the

perihelion from the ascending node in the plane of the ecliptic 9°17/35//,

and the conjugate axis 18,481.2. The places of this comet, as deduced from

observations as well as calculated for this orbit, are displayed in the following

table [page 912].

The observations of this comet from beginning to end agree no less with

the motion of a comet in the orbit just described than the motions of the

planets generally agree with planetary theories, and this agreement provides

proof that it was one and the same comet which appeared all this time and

that its orbit has been correctly determined here.d

eln this table we have omitted the observations made on 16, 18, 20, and

23 November as being less exact. Yet the comet was observed at these times

also.e In fact, [Giuseppe Dionigi] Ponteo and his associates, on 17 November

ee. These two sentences were added in ed. 3.
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True time

d h m

Nov. 3 16 47
5 15 37

10 16 18
16 17 0
18 21 34
20 17 0
23 17 5

Dec. 12 4 46
21 6 37
24 6 18
26 5 21
29 8 3
30 8 10

Jan. 5 6 11/2
9 7 1

10 6 6
13 7 9
25 7 59
30 8 22

Feb. 2 6 35
5 7 41/2

25 8 41
Mar. 1 11 10

5 11 39
9 8 38

Observed

longitude

0 / //

£>29 51 0

TIP 3 23 0
15 32 0

%> 6 32 30
xz 5 8 12

18 49 23
28 24 13

X13 10 41
17 38 0

Y 8 48 53
18 44 4
20 40 50
25 59 48

tf 9 35 0
13 19 51
15 13 53
16 59 6
26 18 35
27 52 42
29 18 0

I[ 0 43 4

Observed

north

latitude

Q 1 II

1 17 45
1 6 0
0 27 0

8 28 0
21 42 13
25 23 5
27 0 52
28 9 58
28 11 53
26 15 7
24 11 56
23 43 32
22 17 28
17 56 30
16 42 18
16 4 1
15 27 3
12 46 46
12 23 40
12 3 16
11 45 52

Calculated

longitude

0 / //

£229 51 22

TCP 3 24 32
15 33 2

^ 8 16 45
18 52 15
28 10 36

TTU3 22 42

% 6 31 20
zz 5 6 14

18 47 30
28 21 42

X13 11 14
17 38 27

Y 8 48 51
18 43 51
20 40 23
26 0 8

tf 9 34 11

13 18 28
15 11 59
16 59 17
26 16 59
27 51 47
29 20 11

H 0 42 43

Calculated

latitude

0 / //

1 17 32 N
1 6 9
0 25 7
0 53 7S
1 26 54
1 53 35
2 29 0
8 29 6N

21 44 42
25 23 35
27 2 1
28 10 38
28 11 37
26 14 57
24 12 17
23 43 25
22 16 32
17 56 6
16 40 5
16 2 7
15 27 0
12 45 22
12 22 28
12 2 50
11 45 35

Errors in

longitude

i H

+0 22
-hi 32
-hi 2

-1 10
-1 58
-1 53
-2 31
+0 33
+0 7
-0 2
-0 13
-0 27
+0 20
-0 49
-1 23
-1 54
+0 11
-1 36
-0 55
+2 11
-0 21

Errors in

latitude

i n

-0 13
+0 9
-1 53

+1 6
+2 29
+0 30
-hi 9
+0 40
-0 16
-0 10
+0 21
-0 7
-0 56
-0 24
-2 13
-1 54
-0 3
-1 24
-1 12
-0 26
-0 17

(O.S.) at 6h A.M. in Rome, that is, at 5h10m London time, using threads

applied to the fixed stars, observed the comet in £^8°30/ with latitude 0°40/ S.

Their observations may be found in the treatise which Ponteo published

about this comet. [Marco Antonio] Cellio, who was present and sent his own

observations in a letter to Mr. Cassini, saw the comet at the same hour in

zCh8030' with latitude 0°30' S. At the same hour Gallet in Avignon (that is, at

5h42m A.M. London time) saw the comet in £^8° with null latitude; at which

time, according to the theory, the comet was in £^8°16/45// with latitude

0°53'7" S.

On 18 November at 6h30m A.M. in Rome (that is, at 5h40m London time)

Ponteo saw the comet in £M3°30' with latitude 1°20/ S; Cellio saw it in
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£M3°30' with latitude 1°00' S. Moreover, Gallet at 5h30m A.M. in Avignon

saw the comet in ^13°00/ with latitude 1°00' S. And the Reverend Father

Ango at the College of La Fleche in France, at 5h A.M. (that is, at 5h9m

London time), saw the comet midway between two small stars, of which

one is the middle star of three in a straight line in the southern hand of

Virgo, Bayer's i/>, and the other is the outermost star of the wing, Bayer's $.

Thus the comet was then in £M2046' with latitude 50' S. On the same day

at Boston in New England, at a latitude of 421/2°, at 5h A.M. (that is, 9h44m

London time), the comet was seen near —14° with latitude 1°30/ S, as I was

informed by the distinguished Halley.

On 19 November at 4h30m A.M. in Cambridge, the comet (according to

the observation of a certain young man) was about 2 degrees distant from

Spica Virginis toward the northwest. And Spica was in £M9°23'47// with

latitude 2°l'59// S. On the same day at 5h A.M. at Boston in New England,

the comet was 1 degree distant from Spica Virginis, the difference of latitudes

being 40 minutes. On the same day on the island of Jamaica, the comet was

about 1 degree distant from Spica. On the same day Mr. Arthur Storer,

at the Patuxent River, near Hunting Creek in Maryland, which borders on

Virginia, at latitude 381/2°, at 5h A.M. (that is, 10h London time), saw the comet

above Spica Virginis and almost conjoined with Spica, the distance between

them being about 3/4 of a degree. And comparing these observations with

one another, I gather that at 9h44m in London the comet was in £M8050'

with latitude roughly l°25r S. And by the theory the comet was then in

^M8°52'15" with latitude 1°26'54" S.f

On 20 November, Mr. Geminiano Montanari, professor of astronomy in

Padua, at 6h A.M. in Venice (that is, 5h10m London time), saw the comet in

£123° with latitude 1°30' S. On the same day at Boston the comet was distant

from Spica by 4 degrees of longitude eastward and so was approximately in

^23°24'.

On 21 November, Ponteo and his associates at 7h15m A.M. observed the

comet in rCh27°50' with latitude 1°16' S, Cellio in £^28°, Ango at 5h A.M. in

£^27°45/, Montanari in £Zh27°51/. On the same day on the island of Jamaica

the comet was seen near the beginning of Scorpio and had roughly the same

f. Newton referred to the star a Virginis in the constellation Virgo as "spica HP" and simply as

"spica." We have rendered these as "Spica Virginis" and "Spica."
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latitude as Spica Virginis, that is, 2°2/. On the same day at 5h A.M. at Balasore

in the East Indies (that is, at Ilh20m the preceding night, London time) the

comet was distant 7°35/ eastward from Spica Virginis. It was in a straight line

between Spica and the scale [or pan of the Balance] and so was in £^26°58/

with latitude roughly I0!!7 S, and after 5 hours and 40 minutes (that is, at 5h

A.M. London time) was in £^28° 12' with latitutde 1°16' S. And by the theory

the comet was then in ^28°10'36" with latitude 1°53'35" S.

On 22 November, the comet was seen by Montanari in TTU2°33/, while at

Boston in New England it appeared in approximately 171*3°, with about the

same latitude as before, that is, 1°30'. On the same day at 5h A.M. at Balasore

the comet was observed in TTbl^O7, and so at 5h A.M. in London the comet

was approximately in TTL,3°5/. On the same day at London at 6h30m A.M.

our fellow countryman Hooke saw the comet in approximately TTL,3°30/, on

a straight line that passes between Spica Virginis and the heart of Leo, not

exactly indeed, but deviating a little from that line toward the north. Monta-

nari likewise noted that a line drawn from the comet through Spica passed,

on this day and the following days, through the southern side of the heart

of Leo, there being a very small interval between the heart of Leo and this

line. The straight line passing through the heart of Leo and Spica Virginis

cut the ecliptic in HP3°46/, at an angle of 2°51/. And if the comet had been

located in this line in TTU3°, its latitude would have been 2°26/. But since

the comet, by the agreement of Hooke and Montanari, was at some distance

from this line toward the north, its latitude was a little less. On the 20th,

according to the observation of Montanari, its latitude almost equaled the

latitude of Spica Virginis and was roughly 1°30/; and by the agreement of

Hooke, Montanari, and Ango, the latitude was continually increasing and

so now (on the 22d) was sensibly greater than 1°30/. And the mean latitude

between the limits now established, 2°26' and 1°30', will be roughly 1°58'.

The tail of the comet, by the agreement of Hooke and Montanari, was di-

rected toward Spica Virginis, declining somewhat from that star—southward

according to Hooke, northward according to Montanari; and so that declina-

tion was hardly perceptible, and the tail, being almost parallel to the equator,

was deflected somewhat northward from the opposition of the sun.

On 23 November (O.S.) at 5h A.M. at Nuremberg (that is, at 4h30m Lon-

don time) Mr. [Johann Jacob] Zimmermann saw the comet in TTL,8°8/ with

latitude 2°31/ S, determining its distances from the fixed stars.
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On 24 November before sunrise the comet was seen by Montanari in

TTL,12°52/ on the northern side of a straight line drawn through the heart of

Leo and Spica Virginis, and so had a latitude a little less than 2°38/. This

latitude (as we have said), according to the observations of Montanari, Ango,

and Hooke, was continually increasing, and so it was now (on the 24th) a little

greater than 1°58/, and at its mean magnitude can be taken as 2° 18' without

perceptible error. Ponteo and Gallet would have the latitude decreased now,

and Cellio and the observer in New England would have it retained at

about the same magnitude, namely 1 or 1 Vi degrees. The observations of

Ponteo and Cellio are rather crude, especially those that were made by taking

azimuths and altitudes, and so are those of Gallet; better are the ones that

were made by means of the positions of the comet in relation to fixed stars by

Montanari, Hooke, Ango, and the observer in New England, and sometimes

by Ponteo and Cellio. On the same day at 5h A.M. at Balasore, the comet was

observed in TTL,11°45/, and so at 5h A.M. at London it was nearly in 1TL,13°.

And by the theory the comet was at that time in TTLr13°22/42//.

On 25 November before sunrise Montanari observed the comet approx-

imately in TTLr173/4°. And Cellio observed at the same time that the comet

was in a straight line between the bright star in the right thigh of Virgo and

the southern scale of Libra, and this straight line cuts the path of the comet

in TTL,18°36/. And by the theory the comet was at that time approximately in

ITUS1^0.
Therefore these observations agree with the theory insofar as they agree

with one another, and by such agreement they prove that it was one and the

same comet that appeared in the whole time from the 4th of November to the

9th of March. The trajectory of this comet cut the plane of the ecliptic twice

and therefore was not rectilinear. It cut the ecliptic not in opposite parts of the

heavens, but at the end of Virgo and at the beginning of Capricorn, at points

separated by an interval of about 98 degrees; and thus the course of the comet

greatly deviated from a great circle. For in November its course declined

by at least 3 degrees from the ecliptic toward the south, and afterward in

December verged from the ecliptic 29 degrees toward the north: the two

parts of its orbit, in which the comet tended toward the sun and returned

from the sun, declining from each other by an apparent angle of more than

30 degrees, as Montanari observed. This comet moved through nine signs,

namely from the last degree of Leo to the beginning of Gemini, besides [that
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part of] the sign of Leo through which it moved before it began to be seen;

and there is no other theory according to which a comet may travel over so

great a part of the heaven with a motion according to some rule. Its motion

was extremely nonuniform. For about the 20th of November it described

approximately 5 degrees per day; then, with a retarded motion between 26

November and 12 December, that is, during l5l/2 days, it described only 40

degrees; and afterward, with its motion accelerated again, it described about

5 degrees per day until its motion began to be retarded again. And the theory

that corresponds exactly to so nonuniform a motion through the greatest part

of the heavens, and that observes the same laws as the theory of the planets,

and that agrees exactly with exact astronomical observations cannot fail to be

true.

Furthermore, it seemed appropriate to show the trajectory that the comet

described and the actual tail that it projected in different positions, as in

the accompanying figure, in the plane of the trajectory; in this figure, ABC

denotes the trajectory of the comet, D the sun, DE the axis of the trajectory,

DF the line of nodes, GH the intersection of the sphere of the earth's orbit

with the plane of the trajectory, I the place of the comet on 4 November

1680, K its place on 11 November, L its place on 19 November, M its place

on 12 December, N its place on 21 December, O its place on 29 December,

P its place on 5 January of the following year, Q its place on 25 January, R

its place on 5 February, S its place on 25 February, T its place on 5 March,

and V its place on 9 March. I used the following observations in determining

the tail.
On 4 and 6 November the tail was not yet visible. On 11 November

the tail, which had now begun to be seen, was observed through a ten-foot

telescope to be no more than half a degree long. On 17 November the tail
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was observed by Ponteo to be more than 15 degrees long. On 18 November

the tail was seen in New England to be 30 degrees long and directly opposite

to the sun, and it was extended out to the star O* [i.e., the planet Mars],

which was then in TtP9°54/. On 19 November, in Maryland, the tail was

seen to be 15 or 20 degrees long. On 10 December the tail (according to the

observations of Flamsteed) was passing through the middle of the distance

between the tail of Serpens (the Serpent of Ophiuchus) and the star d in the

southern wing of Aquila and terminated near the stars A, to, b in Bayer's

tables. Therefore the end of the comet's tail was in ^5191/2° with a latitude

of about 3414° N. On 11 December the tail was rising as far as the head of

Sagitta (Bayer's a, /3), terminating in /^26°43/, with a latitude of 38°34' N.

On 12 December the tail was passing through the middle of Sagitta and did

not extend very much further, terminating in £24°, with a latitude of about

421/2° N.
These things are to be understood of the length of the brighter part of

the tail. For when the light was fainter and the sky perhaps clearer, on 12

December at 5h40m in Rome, the tail was observed by Ponteo to extend to 10

degrees beyond the uropygium of Cygnus [i.e., the rump of the Swan], and its

side toward the northwest terminated 45 minutes from this star. Moreover, in

those days the tail was 3 degrees wide near its upper end, and so the middle

of it was 2° 15' distant from that star toward the south, and its upper end was

in X22° with a latitude of 61° N. And hence the tail was about 70 degrees

long.

On 21 December the tail rose almost to Cassiopeia's Chair, being equally

distant from j8 and Schedar [= a Cassiopeiae] and having a distance from

each of them equal to their distance from each other, and so terminating in

V24° with a latitude of 471/2°. On 29 December the tail was touching Scheat,

which was situated to the left of it, and exactly filled the space between

the two stars in the northern foot of Andromeda; it was 54 degrees long;

accordingly it terminated in ^19° with a latitude of 35°. On 5 January the

tail touched the star TT in the breast of Andromeda on the right side and

the star fJL in the girdle on the left side, and (according to our observations)

was 40 degrees long; but it was curved, and its convex side faced to the

south. Near the head of the comet, the tail made an angle of 4 degrees with

the circle passing through the sun and the head of the comet; but near the

other end, it was inclined to that circle at an angle of 10 or 11 degrees, and
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the chord of the tail contained an angle of 8 degrees with that circle. On

13 January the tail was visible enough between Alamech and Algol [= j8

Persei], but it ended in a very faint light toward the star K in Perseus's side.

The distance of the end of the tail from the circle joining the sun and the

comet was 3°50/, and the inclination of the chord of the tail to that circle

was Sl/2 degrees. On 25 and 26 January the tail shone with a faint light to a

length of 6 or 7 degrees; and, a night or so later, when the sky was extremely

clear, it attained a length of 12 degrees and a little more, with a light that

was very faint and scarcely to be perceived. But its axis was directed exactly

toward the bright star in the eastern shoulder of Auriga, and accordingly

declined from the opposition of the sun toward the north at an angle of 10

degrees. Finally on 10 February, my eyes armed [with a telescope], I saw

the tail to be 2 degrees long. For the fainter light mentioned above was not

visible through the glasses. But Ponteo writes that on 7 February he saw the

tail with a length of 12 degrees. On 25 February and thereafter, the comet

appeared without a tail.

Whoever considers the orbit just described and turns over in his mind the

other phenomena of this comet will without difficulty agree that the bodies

of comets are solid, compact, fixed, and durable, like the bodies of planets.

For if comets were nothing other than vapors or exhalations of the earth, the

sun, and the planets, this one ought to have been dissipated at once during

its passage through the vicinity of the sun. For the heat of the sun is as the

density of its rays, that is, inversely as the square of the distance of places

from the sun. And thus, since the distance of the comet from the center of

the sun on 8 December, when it was in its perihelion, was to the distance

of the earth from the center of the sun as approximately 6 to 1,000, the heat

of the sun on the comet at that time was to the heat of the summer sun here

on earth as 1,000,000 to 36, or as 28,000 to 1. But the heat of boiling water is

about three times greater than the heat that dry earth acquires in the summer

sun, as I have found [by experiment]; and the heat of incandescent iron (if

I conjecture correctly) is about three or four times greater than the heat of

boiling water; and hence the heat that dry earth on the comet would have

received from the sun's rays, when it was in its perihelion, would be about

two thousand times greater than the heat of incandescent iron. But with so

great a heat, vapors and exhalations, and all volatile matter, would have to

have been consumed and dissipated at once.
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Therefore the comet, in its perihelion, received an immense heat at [i.e.,

when near] the sun, and it can retain that heat for a very long time. For a

globe of incandescent iron, one inch wide, standing in the air would scarcely

lose all its heat in the space of one hour. But a larger globe would preserve

its heat for a longer time in the ratio of its diameter, because its surface

(which is the measure according to which it is cooled by contact with the

surrounding air) is smaller in that ratio with respect to the quantity of hot

matter it contains. And so a globe of incandescent iron equal to this earth of

ours—that is, more or less 40,000,000 feet wide—would scarcely cool off in

as many days, or about 50,000 years. Nevertheless, I suspect that the duration

of heat is increased in a smaller ratio than that of the diameter because of

some latent causes, and I wish that the true ratio might be investigated by

experiments.

Further, it should be noted that in December, when the comet had just

become hot at the sun, it was emitting a far larger and more splendid tail

than it had done earlier in November, when it had not yet reached its peri-

helion. And, universally, the greatest and brightest tails all arise from comets

immediately after their passage through the region of the sun. Therefore the

heating up of the comet is conducive to a great size of its tail, and from this

I believe it can be concluded that the tail is nothing other than extremely

thin vapor that the head or nucleus of the comet emits by its heat.

There are indeed three opinions about the tails of comets: that the tails

are the brightness of the sun's light propagated through the translucent heads

of comets; that the tails arise from the refraction of light in its progress from

the head of the comet to the earth; and finally that these tails are a cloud

or vapor continually rising from the head of the comet and going off in

a direction away from the sun. The first opinion is held by those who are

not yet instructed in the science of optics. For beams of sunlight are not

seen in a dark room except insofar as the light is reflected from particles of

dust and smoke always flying about through the air, and for this reason in

air darkened with thicker smoke the beams of sunlight appear brighter and

strike the eye more strongly, while in clearer air these beams are fainter and

are perceived with greater difficulty, but in the heavens, where there is no

matter to reflect these beams of sunlight, they cannot be seen at all. Light is

not seen insofar as it is in the beam, but only to the degree that it is reflected

to our eyes; for vision results only from rays that impinge upon the eyes.
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Therefore some reflecting matter must exist in the region of the tail, since

otherwise the whole sky, illuminated by the light of the sun, would shine

uniformly.

The second opinion is beset with many difficulties. The tails are never

variegated in color, and yet colors are generally the inseparable concomitants

of refractions. The light of the fixed stars and the planets which is transmit-

ted to us is distinct [i.e., clearly defined]; this demonstrates that the celestial

medium is empowered with no refractive force. It is said that the Egyptians

sometimes saw the fixed stars surrounded by a head of hair, but this happens

very rarely, and so it must be ascribed to some chance refraction by clouds.

The radiation and scintillation of the fixed stars also should be referred to

refractions both by the eyes and by the tremulous air, since they disappear

when these stars are viewed through telescopes. By the tremor of the air and

of the ascending vapors it happens that rays are easily turned aside alter-

nately from the narrow space of the pupil of the eye but not at all from the

wider aperture of the objective lens of a telescope. Thus it is that scintillation

is generated in the former case while it ceases in the latter; and the cessa-

tion of scintillation in the latter case demonstrates the regular transmission

of light through the heavens without any sensible refraction. And to counter

the argument that tails are not generally seen in comets when their light is

not strong enough, for the reason that the secondary rays do not then have

enough force to affect the eyes, and that this is why the tails of the fixed stars

are not seen, it should be pointed out that the light of the fixed stars can be

increased more than a hundred times by means of telescopes, and yet no tails

are seen. The planets also shine with more light, but they have no tails; and

often comets have the greatest tails when the light of their heads is faint and

exceedingly dull. For such was the case for the comet of 1680; in December,

at a time when the light from its head scarcely equaled stars of the second

magnitude, it was emitting a tail of notable splendor as great as 40, 50, 60, or

70 degrees in length and more. Afterward, on 27 and 28 January, the head

appeared as a star of only the seventh magnitude, but the tail extended to

6 or 7 degrees in length with a very faint light that was sensible enough;

and with a very dim light, which could scarcely be seen, it stretched out as

far as 12 degrees or a little further, as was said above. But even on 9 and

10 February, when the head had ceased to be seen by the naked eye, the

tail—when I viewed it through a telescope—was 2 degrees long. Further, if
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the tail arose from refraction by celestial matter, and if it deviated from the

opposition of the sun in accordance with the form of the heavens, then, in

the same regions of the heavens, that deviation ought always to take place

in the same direction. But the comet of 1680, on 28 December at 8h30m P.M.

London time, was in X8°41/ with a latitude of 28°6/ N, the sun being in

^18°26'. And the comet of 1577, on 29 December, was in X8°41/ with a

latitude of 28°40/ N, the sun again being in approximately /518°26/. In both

cases the earth was in the same place and the comet appeared in the same

part of the sky; yet in the former case the tail of the comet (according to

my observations and those made by others) was declining by an angle of 41/2

degrees from the opposition of the sun toward the north, but in the latter

case (according to the observations of Tycho) the declination was 21 degrees

toward the south. Therefore, since refraction by the heavens has been re-

jected, the remaining possibility is to derive the phenomena of comets' tails

from some matter that reflects light.

Moreover, the laws which the tails of comets observe prove that these

tails arise from the heads and ascend into regions turned away from the

sun. For example, if the tails lie in planes of the comets' orbits which pass

through the sun, they always deviate from being directly opposite the sun

and point toward the region which the heads, advancing in those orbits, have

left behind. Again, to a spectator placed in those planes, the tails appear in

regions directly turned away from the sun; while for observers not in those

planes, the deviation gradually begins to be perceived and appears greater

from day to day. Furthermore, other things being equal, the deviation is less

when the tail is more oblique to the orbit of the comet, and also when the

head of the comet approaches closer to the sun, especially if the angle of

deviation is taken near the head of the comet. And besides, the tails that do

not deviate appear straight, while those that do deviate are curved. Again, this

curvature is greater when the deviation is greater, and more sensible when

the tail, other things being equal, is longer; for in shorter tails the curvature

is scarcely noticed. Then, too, the angle of deviation is smaller near the head

of the comet and larger near the other extremity of the tail; and thus the

convex side of the tail faces the direction from which the deviation is made

and which is along a straight line drawn from the sun through the head of

the comet indefinitely. Finally, the tails that are more extended and wider

and that shine with a more vigorous light are a little more resplendent on
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their convex sides and are terminated by a less indistinct limit than on their

concave sides. For all these reasons, then, the phenomena of the tail depend

on the motion of the head and not on the region of the sky in which the

head is seen; and therefore these phenomena do not come about through

refraction by the heavens, but arise from the head supplying the matter. For

as in our air the smoke of any ignited body seeks to ascend and does so either

perpendicularly (if the body is at rest) or obliquely (if the body is moving

sideways), so in the heavens, where bodies gravitate toward the sun, smoke

and vapors must ascend with respect to the sun (as has already been said)

and move upward either directly, if the smoking body is at rest, or obliquely,

if the body by advancing always leaves the places from which the higher

parts of the vapor have previously ascended. And the swifter the ascent of

the vapor, the less the obliquity, namely in the vicinity of the sun and near

the smoking body. Moreover, as a result of this difference in obliquity, the

column of vapor will be curved; and since the vapor on that side of the

column in the direction of the comet's motion is a little more recent [i.e.,

more recently exhaled], so also the column will be somewhat more dense on

that same side, and therefore will reflect light more abundantly and will be

terminated by a less indistinct limit. I add nothing here concerning sudden

and uncertain agitations of the tails, nor concerning their irregular shapes

(which are sometimes described), because either these effects may arise from

changes in our air and the motions of the clouds that may obscure those tails

in one part or the other; or, perhaps, these effects may arise because some

parts of the Milky Way may be confused with the tails as they pass by and

may be considered as if they were parts of the tails.

Moreover, the rarity of our own air makes it understandable that va-

pors sufficient to fill such immense spaces can arise from the atmospheres of

comets. For the air near the surface of the earth occupies a space about 850

times greater than water of the same weight, and thus a cylindrical column of

air 850 feet high has the same weight as a foot-high column of water of the

same width. Further, a column of air rising to the top of our atmosphere is

equal in weight to a column of water about 33 feet high; and therefore if the

lower part, 850 feet high, of the whole air column is taken away, the remain-

ing upper part will be equal in weight to a column of water 32 feet high. And

hence (by a rule confirmed by many experiments, that the compression of air

is as the weight of the incumbent atmosphere and that gravity is inversely as
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the square of the distance of places from the center of the earth), by making

a computation using the corollary of prop. 22, book 2, I found that air, at a

height above the surface of the earth of one terrestrial semidiameter, is rarer

than here on earth in a far greater ratio than that of all space below the orbit

of Saturn to a globe described with a diameter of one inch. And thus a globe

of our air one inch wide, with the rarity that it would have at the height of

one terrestrial semidiameter, would fill all the regions of the planets as far

out as the sphere of Saturn and far beyond. Accordingly, since still higher

air becomes immensely rare and since the comag or atmosphere of a comet

is (as reckoned from the center) about ten times higher than the surface of

the nucleus is, and the tail then ascends even higher, the tail will have to

be exceedingly rare. And even if, because of the much thicker atmosphere of

comets and the great gravitation of bodies toward the sun and the gravitation

of the particles of air and vapors toward one another, it can happen that the

air in the celestial spaces and in the tails of comets is not so greatly rarefied,

it is nevertheless clear from this computation that a very slight quantity of

air and vapors is abundantly sufficient to produce all those phenomena of

the tails. For the extraordinary rarity of the tails is also evident from the fact

that stars shine through them. The terrestrial atmosphere, shining with the

light of the sun, by its thickness of only a few miles obscures and utterly

extinguishes the light not only of all the stars but also of the moon itself; yet

the smallest stars are known to shine, without any loss in their brightness,

through the immense thickness of the tails, which are likewise illuminated

by the light of the sun. Nor is the brightness of most cometary tails generally

greater than that of our air reflecting the light of the sun in a beam, one or

two inches wide, let into a dark room.

The space of time in which the vapor ascends from the head to the end

of the tail can more or less be found by drawing a straight line from the

end of the tail to the sun and noting the place where this straight line cuts

the trajectory. For if the vapor has been ascending in a straight line away

from the sun, then the vapor that is now in the end of the tail must have

begun to ascend from the head at the time when the head was in that place

of intersection. But the vapor does not ascend in a straight line away from

the sun, but rather ascends obliquely, since the vapor retains the motion of

g. See note a on p. 891 above.
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the comet which it had before its ascent and this motion is compounded

with the motion of its own ascent. And therefore the solution of the problem

will be nearer the true one if the straight line that cuts the orbit is drawn

parallel to the length of the tail, or rather (because of the curvilinear motion

of the comet) if it diverges from the line of the tail. In this way I found that

the vapor that was in the end of the tail on 25 January had begun to ascend

from the head before 11 December and thus had spent more than forty-five

days in its total ascent. But all of the tail that appeared on 10 December had

ascended in the space of those two days that had elapsed after the time of

the perihelion of the comet. The vapor, therefore, rose most swiftly at the

beginning of its ascent, in the vicinity of the sun, and afterward proceeded

to ascend with a motion always retarded by the vapor's own gravity; and as

the vapor ascended, it increased the length of the tail. The tail, however, as

long as it was visible, consisted of almost all the vapor which had ascended

from the comet's head since the time of the comet's perihelion; and that

vapor which was the first to ascend, and which composed the end of the

tail, did not disappear from view until its distance both from the sun which

illuminated it and from our eyes became too great for it to be seen any

longer. Hence it happens, also, that in other comets which have short tails,

those tails do not rise up with a swift and continual motion from the heads

of the comets and soon disappear, but are permanent columns of vapors and

exhalations (propagated from the heads by a very slow motion that lasts many

days) which, by sharing in the motion that the heads had at the beginning of

the exhalations of the vapors, continue to move along through the heavens

together with the heads. And hence again it may be concluded that the

celestial spaces are lacking in any force of resisting, since in them not only

the solid bodies of the planets and comets but also the rarest vapors of the

tails move very freely and preserve their extremely swift motions for a very

long time.

The ascent of the tails of comets from the atmospheres of the heads and

the movement of the tails in directions away from the sun are ascribed by

Kepler to the action of rays of light that carry the matter of the tail along

with them. And it is not altogether unreasonable to suppose that in very free

[or empty] spaces, the extremely thin upper air should yield to the action of

the rays, despite the fact that gross substances in the very obstructed regions

here on earth cannot be sensibly propelled by the rays of the sun. Someone
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else believes that there can be particles with the property of levity as well

as gravity and that the matter of the tails levitates and through its levitation

ascends away from the sun. But since the gravity of terrestrial bodies is as the

quantity of matter in the bodies and thus, if the quantity of matter remains

constant, cannot be intended and remitted [or increased and decreased], I

suspect that this ascent arises rather from the rarefaction of the matter of

the tails. Smoke ascends in a chimney by the impulse of the air in which

it floats. This air, rarefied by heat, ascends because of its diminished specific

gravity and carries along with it the entangled smoke. Why should the tail

of a comet not ascend away from the sun in the same manner? For the sun's

rays do not act on the mediums through which they pass except in reflection

and refraction. The reflecting particles, warmed by this action, will warm the

aethereal upper air in which they are entangled. This will become rarefied

on account of the heat communicated to it; and because its specific gravity,

with which it was formerly tending toward the sun, is diminished by this

rarefaction, it will ascend and will carry with it the reflecting particles of

which the tail is composed. This ascent of the vapors is also increased by the

fact that they revolve about the sun and endeavor by this action to recede

from the sun, while the atmosphere of the sun and the matter of the heavens

are either completely at rest or revolve more slowly only by the motion that

they have received from the rotation of the sun.

These are the causes of the ascent of tails of comets in the vicinity of the

sun, where the orbits are more curved, and the comets are within the denser

(and, on that account, heavier) atmosphere of the sun and soon emit extremely

long tails. For the tails which arise at that point, by conserving their motion

and meanwhile gravitating toward the sun, will move about the sun in ellipses

as the heads of the comets do; and by that motion they will always accompany

the heads and will very freely adhere to them. For the gravity of the vapors

toward the sun will no more cause the tails to fall afterward from the heads

toward the sun than the gravity of the heads can cause them to fall from

the tails. By their common gravity they will either fall simultaneously and

together toward the sun or will be simultaneously retarded in their ascent;

and therefore this gravity does not hinder the tails and heads of comets from

very easily acquiring (whether from the causes already described or any others

whatsoever), and afterward very freely preserving, any position in relation to

one another.
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The tails that are formed when comets are in their perihelia will therefore

go off into distant regions together with their heads, and either will return

to us from there together with the heads after a long series of years or rather,

having been rarefied there, will disappear by degrees. For afterward, in the

descent of the heads toward the sun, new little tails should be propagated

from the heads with a slow motion, and thereupon should be immeasurably

increased in the perihelia of those comets which descend as far as the atmo-

sphere of the sun. For vapor in those very free spaces becomes continually

rarefied and dilated. For this reason it happens that every tail at its upper

extremity is broader than near the head of the comet. Moreover, it seems

reasonable that by this rarefaction the vapor—continually dilated—is finally

diffused and scattered throughout the whole heavens, and then is by degrees

attracted toward the planets by its gravity and mixed with their atmospheres.

For just as the seas are absolutely necessary for the constitution of this earth,

so that vapors may be abundantly enough aroused from them by the heat of

the sun, which vapors either—being gathered into clouds—fall in rains and

irrigate and nourish the whole earth for the propagation of vegetables, or—

being condensed in the cold peaks of mountains (as some philosophize with

good reason)—run down into springs and rivers; so for the conservation of

the seas and fluids on the planets, comets seem to be required, so that from

the condensation of their exhalations and vapors, there can be a continual

supply and renewal of whatever liquid is consumed by vegetation and putre-

faction and converted into dry earth. For all vegetables grow entirely from

fluids and afterward, in great part, change into dry earth by putrefaction,

and slime is continually deposited from putrefied liquids. Hence the bulk of

dry earth is increased from day to day, and fluids—if they did not have an

outside source of increase—would have to decrease continually and finally to

fail. Further, I suspect that that spirit which is the smallest but most subtle

and most excellent part of our air, and which is required for the life of all

things, comes chiefly from comets.

In the descent of comets to the sun, their atmospheres are diminished by

running out into tails and (certainly in that part which faces toward the sun)

are made narrower; and, in turn, when comets are receding from the sun,

and when they are now running out less into tails, they become enlarged, if

Hevelius has correctly noted their phenomena. Moreover, these atmospheres

appear smallest when the heads, after having been heated by the sun, have
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gone off into the largest and brightest tails, and the nuclei are surrounded in

the lowest parts of their atmospheres by smoke possibly coarser and blacker.

For all smoke produced by great heat is generally coarser and blacker. Thus,

at equal distances from the sun and the earth, the head of the comet which

we have been discussing appeared darker after its perihelion than before. For

in December it was generally compared to stars of the third magnitude, but

in November to stars of the first magnitude and the second magnitude. And

those who saw both describe the earlier appearance as a greater comet. For

a certain young man of Cambridge, who saw this comet on 19 November,

found its light, however leaden and pale, to be equal to Spica Virginis and to

shine more brightly than afterward. And on 20 November (O.S.) the comet

appeared to Montanari greater than stars of the first magnitude, its tail being

2 degrees long. And Mr. Storer, in a letter that came into our hands, wrote

that in December, at a time when the largest and brightest tail was being

emitted, the head of the comet was small and in visible magnitude was far

inferior to the comet which had appeared in November before sunrise. And

he conjectured that the reason for this wras that in the beginning the matter

of the head was more copious and had been gradually consumed.

It seems to pertain to the same point that the heads of other comets

that emitted very large and very bright tails appeared rather dull and very

small. For on 5 March 1668 (N.S.) at 7h P.M., the Reverend Father Valentin

Stansel, in Brazil, saw a comet very close to the horizon toward the southwest

with a very small head that was scarcely visible, but with a tail so shining

beyond measure that those who were standing on the shore easily saw its

appearance reflected from the sea. In fact it had the appearance of a brilliantly

shining torch with a length of 23 degrees, verging from west to south and

almost parallel to the horizon. But so great a splendor lasted only three days,

decreasing noticeably immediately afterward; and meanwhile, as its splendor

was decreasing, the tail was increasing in size. Thus in Portugal the tail is

said to have occupied almost a quarter of the sky—that is, 45 degrees—

stretched out from west to east with remarkable splendor, and yet not all of

the tail was visible, since in those regions the head was always hidden below

the horizon. From the increase of the size of the tail and the decrease of the

splendor, it is manifest that the head was receding from the sun and had been

nearest to the sun at the beginning of its visibility, as was the case for the

comet of 1680. And in the Anglo-Saxon Chronicle•, one reads about a similar
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comet of 1106, "of which the star was small and dim h(as was that of 1680),h

but the splendor that came out of it stretched out extremely bright and like

a huge torch toward the northeast" as Hevelius also has it from Simeon the

Monk of Durham. This comet appeared at the beginning of February, and

thereafter was seen at about evening toward the southwest. And from this

and from the position of the tail it is concluded that the head was near

the sun. "Its distance from the sun," says Matthew of Paris, "was about one

cubit, as from the third hour (more correctly, the sixth) until the ninth hour

it emitted a long ray from itself." Such also was that fiery comet described

by Aristotle (Meteor. 1.6), "whose head, on the first day, was not seen because

it had set before the sun, or at least was hidden under the sun's rays; but on

the following day, it was seen as much as it could be. For it was distant from

the sun by the least possible distance, and soon set. Because of the excessive

burning (of the tail, that is), the scattered fire of the head did not yet appear,

but as time went on," says Aristotle, "since (the tail) was now flaming less,

the comet's own face came back to (the head). And it extended its splendor

as far as a third of the sky (that is, to 60 degrees). Moreover, it appeared

in the winter (in the 4th year of the 101st Olympiad) and, ascending up to

Orion's belt, vanished there."

The comet of 1618 which emerged out of the sun's rays with a very large

tail seemed to equal stars of the first magnitude, or even to surpass them a

little, but a number of greater comets have appeared which had shorter tails.

Some of these are said to have equaled Jupiter, others Venus or even the

moon.

We said that comets are a kind of planet revolving about the sun in

very eccentric orbits. And just as among the primary planets (which have

no tails) those which revolve in smaller orbits closer to the sun are generally

smaller, so it seems reasonable also that the comets which approach closer

to the sun in their perihelia are for the most part smaller, since otherwise

they would act on the sun too much by their attraction. I leave the transverse

diameters of the orbits and the periodic times of revolution of the comets to

be determined by comparing comets that return in the same orbits after long

hh. The clause in parentheses was added by Newton, as were the following expressions within

parentheses.
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intervals of time. Meanwhile the following proposition may shed some light

on this matter.

To correct a comet's trajectory that has been found [by the method of prop. 41]. Proposition 42

OPERATION 1. Assume the position of the plane of the trajectory, as Problem 22

found by prop. 41, and select three places of the comet which have been de-

termined by very accurate observations and which are as greatly distant from

one another as possible; let A be the time between the first and second ob-

servations, and B the time between the second and third. The comet should

be in its perigee in one of these places, or at least not far from perigee. From

these apparent places find, by trigonometric operations, three true places of

the comet in that assumed plane of the trajectory. Then through those places

thus found, describe a conic about the center of the sun as focus, by arith-

metical operations made along the lines of prop. 21, book 1; and let D and

E be areas of the conic which are bounded by radii drawn from the sun to

those places—namely, D the area between the first and second observations,

and E the area between the second and third. And let T be the total time

in which the total area D + E should be described by the comet, with the

velocity as found by prop. 16, book 1.

OPERATION 2. Let the longitude of the nodes of the plane of the trajec-

tory be increased by adding 20 or 30 minutes (which can be called P) to that

longitude; but keep constant the inclination of that plane to the plane of the

ecliptic. Then from the three aforesaid observed places of the comet, let three

true places of the comet be found in this new plane (as in open 1); and also

the orbit passing through those places, two of its areas (which can be called

d and e) described between observations, and the total time t in which the

total area d + e should be described.

OPERATION 3. Keep constant the longitude of the nodes in the first

operation, and let the inclination of the plane of the trajectory to the plane of

the ecliptic be increased by adding 20 or 30 minutes (which can be called Q)

to that inclination. Then from the aforesaid three observed apparent places

of the comet, let three true places be found in this new plane; and also the

orbit passing through those places, two of its areas (which can be called 8

and e) described between observations, and the total time r in which the

total area 5 + 6 should be described.
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Now take C so as to be to 1 as A to B, and take G to 1 as D to E, and

g to 1 as d to e, and y to 1 as 8 to 6, and let S be the true time between the

first and third observations; and carefully observing the signs + and —, seek

the numbers m and n, by the rule that 2G — 2C = mG — mg + nG — ny, and

2T — 2S = mT — mt + nT — nr. And if, in the first operation, I designates

the inclination of the plane of the trajectory to the plane of the ecliptic,

and K the longitude of either node, I + nQ will be the true inclination of

the plane of the trajectory to the plane of the ecliptic, and K + mP will

be the true longitude of the node. And finally if in the first, second, and

third operations, the quantities R, r, and p designate the latera recta of the

trajectory, and the quantities —, -, — the transverse diameters [or latera
L / A

transversa] respectively, R + mr — mR + np — nR will be the true latus

rectum, and will be the true transverse diameter
L + ml — mL + n\ — «L

of the trajectory that the comet describes. And given the transverse diameter,

the periodic time of the comet is also given. Q.E.I.

But the periodic times of revolving comets, and the transverse diameters

[latera transversa] of their orbits, will by no means be determined exactly

enough except by the comparison with one another of comets that appear at

diverse times. If several comets are found, after equal intervals of times, to

have described the same orbit, it will have to be concluded that all these are

one and the same comet revolving in the same orbit. And then finally from

the times of their revolutions the transverse diameters of the orbits will be

given, and from these diameters the elliptical orbits will be determined.

To this end, therefore, the trajectories of several comets should be cal-

culated on the hypothesis that they are parabolic. For such trajectories will

always agree very nearly with the phenomena. This is clear not only from

the parabolic trajectory of the comet of 1680, which I compared above with

the observations, but also from the trajectory of that remarkable comet which

appeared in 1664 and 1665 and was observed by Hevelius. He calculated the

longitudes and latitudes of this comet from his own observations, but not

very accurately. From the same observations our own Halley calculated the

places of this comet anew, and then finally he determined the trajectory of the

comet from the places thus calculated. And he found its ascending node in

H21°13'55", the inclination of its orbit to the plane of the ecliptic 21°18/40'/,

1

1 1 1
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the distance of its perihelion from the node in the orbit 49°27/30". The peri-

helion in £>8°40'30" with heliocentric latitude 16°1'45" S. The comet in its

perihelion on 24 November, Ilh52m P.M. mean time [//'/. equated time] at Lon-

don, or 13h8m (O.S.) at Gdansk, and the latus rectum of the parabola 410,286,

the mean distance of the earth from the sun being 100,000. How exactly the

calculated places of the comet in this orbit agree with the observations will

be evident from the following table calculated by Halley [p. 932].

In February, in the beginning of 1665, the first star of Aries, which I

shall from here on call y, was in Y28°30'15" with latitude 7°8'58" N. The

second star of Aries was in Y29°17/18// with latitude 8°28'16" N. And a

certain other star of the seventh magnitude, which I shall call A, was in

Y28°24'45" with latitude 8°28'33" N. And on 7 February at 7h30m Paris

time (that is, 7 February at 8h30m Gdansk time) (O.S.), the comet made a

right triangle with those stars y and A, with the right angle at y. And the

distance of the comet from the star y was equal to the distance between

the stars y and A, that is, l°19/46// along a great circle, and therefore it

was l°20/26// in the parallel of the latitude of the star y. Therefore, if the

longitude 1020'26" is taken away from the longitude of the star y, there will

remain the longitude of the comet Y27°9/49//. Auzout, who had made this

observation, put the comet in roughly Y27°0r. And from the diagram with

which Hooke delineated its motion, it was then in Y26°59'24". Taking the

mean, I have put it in Y27°4'46//. From the same observation, Auzout took

the latitude of the comet at that time to be 7° and 4' or 5' toward the north.

He would have put it more correctly at 7°3'29//, since the difference of the

latitudes of the comet and of the star y was equal to the difference of the

longitudes of the stars y and A.

On 22 February at 7h30m in London (that is, 22 February at 8h46m

Gdansk time), the distance of the comet from the star A, according to Hooke's

observation (which he himself delineated in a diagram) and also according to

Auzout's observations (delineated in a diagram by Petit), was a fifth of the

distance between the star A and the first star of Aries, or 15'57". And the

distance of the comet from the line joining the star A and the first star of

Aries was a fourth of that same fifth part, that is, 4'. And hence the comet

was in Y28°29/46// with latitude 8°12'36" N.

On 1 March at 7hOm at London (that is, 1 March at 8h16m Gdansk time),

the comet was observed near the second star of Aries, the distance between



Apparent

time at

Gdans^ °-s-

d h m

December

3 18 291/2

4 18 V/2

7 17 48

17 14 43

19 9 25

20 9 531/2

21 9 9V2

22 9 0

26 7 58

27 6 45

28 7 39

31 6 45

Jan. 1665

7 7 37^2

13 7 0

24 7 29

February

7 8 37

22 8 46

March

1 8 16

7 8 37

Observed distances of the comet

from the heart of Leo
from Spica Virginis

from the heart of Leo
from Spica Virginis

from the heart of Leo
from Spica Virginis

from the heart of Leo
from the right shoulder of Orion

from Procyon
from the bright star in the jaw of Cetus

from Procyon
from the bright star in the jaw of Cetus

from the right shoulder of Orion
from the bright star in the jaw of Cetus

from the right shoulder of Orion
from the bright star in the jaw of Cetus

from the bright star in Aries
from Aldebaran

from the bright star in Aries
from Aldebaran

from the bright star in Aries
from the Hyades

from the girdle of Andromeda
from the Hyades

from the girdle of Andromeda
from the Hyades

from the head of Andromeda
from the Hyades

from the girdle of Andromeda
from the Hyades

0 / //

46 24 20
22 52 10

46 2 45
23 52 40

44 48 0
27 56 40

53 15 15
45 43 30

35 13 50
52 56 0

40 49 0
40 4 0

26 21 25
29 28 0

29 47 0
20 29 30

23 20 0
26 44 0

20 45 0
28 10 0

18 29 0
29 37 0

30 48 10
32 53 30

25 11 0
37 12 25

28 7 10
38 55 20

20 32 15
40 5 0

Observed places

0 / //

Long. £ 1 7 1 0
Lat. S. 21 39 0

Long. £M6 15 0
Lat. S. 22 24 0

Long. £ 1 3 6 0
Lat. S. 25 22 0

Long. fi 2 56 0
Lat. S. 49 25 0

Long. H 28 40 30
Lat. S. 45 48 0

Long. 113 3 0
Lat. S. 39 54 0

Long. H 2 16 0
Lat. S. 33 41 0

Long. tf24 24 0
Lat. S. 27 45 0

Long, tf 9 0 0
Lat. S. 12 36 0

Long, tf 7 5 40
Lat. S. 10 23 0

Long. fc> 5 24 45
Lat. S. 8 22 50

Long, tf 2 7 40
Lat. S. 4 13 0

Long. Y28 24 47
Lat. N. 0 54 0

Long. Y27 6 54
Lat. N. 3 6 50

Long. Y 26 29 15
Lat. N. 5 25 50

Long. Y27 4 46
Lat. N. 7 3 29

Long. Y28 29 46
Lat. N. 8 12 36

Long. Y29 18 15
Lat. N. 8 36 26
Long, b" 0 2 48
Lat. N. 8 56 30

Calculated

places in

the orbit

0 f ff

^ 7 1 29
21 38 50

±± 6 16 5
22 24 0

£1 3 7 33
25 21 40

Q 2 56 0
49 25 0

K 28 43 0
45 46 0

It 13 5 0
39 53 0

IT 2 18 30
33 39 40

#24 27 0
27 46 0

t) 9 2 28
12 34 13

tf 7 8 45
10 23 13

« 5 27 52
8 23 37

tf 2 8 20
4 16 25

Y28 24 0
0 53 0

Y27 6 39
3 7 40

Y26 28 50
5 26 0

Y27 24 55
7 3 15

Y28 29 58
8 10 25

Y29 18 20
8 36 12

# 0 2 42
8 56 56
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them being to the distance between the first and second stars of Aries, that

is, to 1°33;, as 4 to 45 according to Hooke, or as 2 to 23 according to [Gilles

Francois] Gottigniez. Accordingly, the distance of the comet from the second

star of Aries was 8° 16" according to Hooke, or 8'5" according to Gottigniez;

or, taking the mean, was 8'10". And according to Gottigniez the comet had

now just gone beyond the second star of Aries by about a space of a fourth

or a fifth of the course completed in one day, that is, roughly 1'35" (and

Auzout agrees well enough with this), or a little less according to Hooke,

say 1'. Therefore, if \ f is added to the longitude of the first star of Aries, and

8'10" to its latitude, the longitude of the comet will be found to be ^29° 18',

and its latitude 8°36'26" N.

On 7 March at 7h30m in Paris (that is, 7 March at 8h37m Gdansk time),

the distance of the comet from the second star of Aries, according to Auzout's

observations, was equal to the distance of the second star of Aries from the

star A, that is, 52'29". And the difference between the longitudes of the comet

and of the second star of Aries was 45' or 46' or, taking the mean, 45/30//.

And therefore the comet was in ^0°2/48//. From the diagram of Auzout's

observations that Petit constructed, Hevelius determined the latitude of the

comet to be 8°54/. But the engraver curved the path of the comet irregularly

toward the end of its motion, and Hevelius corrected the irregular curving

in a diagram of Auzout's observations drawn by Hevelius himself, and thus

made the latitude of the comet 8°55/30". And by correcting the irregularity

a little more, the latitude can come out to be 8°56', or 8°57/.

This comet was also seen on 9 March and then must have been located

in tf 0°18' with latitude roughly 9°31/

This comet was visible for three months in all, during which time it

passed through about six signs, completing about 20 degrees in each day.

Its path deviated considerably from a great circle, being curved northward;

and toward the end, its motion changed from retrograde to direct. And

notwithstanding so unusual a path, the theory agrees with the observations

from beginning to end no less exactly than theories of the planets tend to

agree with observations of them, as will be clear upon examination of the

table. Nevertheless, roughly 2 minutes must be subtracted when the comet

was swiftest, and this will result by taking away 12 seconds from the angle

between the ascending node and the perihelion, or by making that angle

49027'18". The annual parallax of each of the two comets, (both this one and
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the previous one) was quite pronounced, and as a result it gave proof of the

annual motion of the earth in its orbit.

The theory is confirmed also by the motion of the comet that appeared

in 1683. It had a retrograde motion in an orbit whose plane contained almost

a right angle with the plane of the ecliptic. Its ascending node (by Halley's

calculation) was in 1TP23023/; the inclination of its orbit to the ecliptic 83° 11';

its perihelion in J[25029'30"; its perihelial distance from the sun 56,020, the

radius of the earth's orbit being taken at 100,000, and the time of its perihelion

2 July 3h50m. And the places of the comet in this orbit, as calculated by Halley

and compared with the places observed by Flamsteed, are displayed in the

following table.

1683 Mean /lit

equated] time

d h m

July 13 12 55

15 11 15

17 10 20

23 13 40
25 14 5

31 9 42

31 14 55

Aug. 2 14 56

4 10 49

6 10 9

9 10 26

15 14 1

16 15 10
18 15 44

22 14 44

23 15 52

26 16 2

Place of

the sun

0 / „

& 1 2 30

2 53 12

4 45 45
10 38 21

12 35 28

18 9 22

18 21 53

20 17 16

22 2 50

23 56 45

26 50 52

HP 2 47 13
3 48 2

5 45 33

9 35 49

10 36 48

13 31 10

Calculated

longitude

of the comet

0 / //

©13 5 42

11 37 48

10 7 6
5 10 27

3 27 53
1C 27 55 3

27 41 7

25 29 32

23 18 20

20 42 23

16 7 57

3 30 48
0 43 7

«24 52 53

11 7 14

7 2 18

Y24 45 31

Calculated

latitude

north

0 / //

29 28 13

29 34 0

29 33 30
28 51 42
24 24 47

26 22 52
26 16 57

25 16 19

24 10 49

22 47 5

20 6 37

11 37 33
9 34 16

5 11 15
South

5 16 53
8 17 9

16 38 0

Observed

longitude

of the comet

0 / //

©13 6 42

11 39 43

10 8 40
5 11 30

3 27 0

127 54 24

27 41 8

25 28 46

23 16 55

20 40 32

16 5 55

3 26 18
0 41 55

tf24 49 5

11 7 12

7 1 17

Y24 44 0

Observed

latitude

north

0 , /,

29 28 20

29 34 50

29 34 0

28 50 28
28 23 40

26 22 25

26 14 50

25 17 28

24 12 19

22 49 5

20 6 10

11 32 1

9 34 13
5 9 11

South

5 16 50

8 16 41

16 38 20

Difference

in longitude

i n

+1 0

+1 55
-hi 34

+1 3
-0 53

-0 39

+0 1

-0 46
-1 25

-1 51

-2 2

-4 30
-1 12

-3 48

-0 2

-1 1

-1 31

Difference

in latitude

i n

+0 7

+0 50

+0 30

-1 14
-1 7

-0 27
-2 7

+1 9

+1 30
+2 0

-0 27

-5 32

-0 3
-2 4

-0 3
-0 28
+0 20

The theory is confirmed also by the motion of the retrograde comet

that appeared in 1682. Its ascending node (by Halley's calculation) was in

tf 21°16'30". The inclination of the orbit to the plane of the ecliptic 17°56'0".

Its perihelion in 2£2°52/50//. Its perihelial distance from the sun 58,328, the

radius of the earth's orbit being 100,000, And the perihelion 4 September
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7h39m mean [lit. equated] time. And the places calculated from Flamsteed's

observations and compared with the places calculated by the theory are shown

in the following table.

1682

Apparent time

d h m

Aug. 19 16 38

20 15 38

21 8 21

22 8 8

29 8 20

30 7 45

Sept. 1 7 33

4 7 22

5 7 32

8 7 16

9 7 26

Place of

the sun

0 / //

rtp 7 o 7
7 55 52

8 36 14

9 33 55

16 22 40

17 19 41

19 16 9

22 11 28

23 10 29

26 5 58

27 5 9

Calculated

longitude

of the comet

0 / //

£218 14 28

24 46 23

29 37 15

HP 6 29 53

£M2 37 54

15 36 1

20 30 53

25 42 0

27 0 46

29 58 44

ITU 0 44 10

Calculated

latitude

north

0 / /'

25 50 7

26 14 42

26 20 3

26 8 42

18 37 47

17 26 43

15 13 0

12 23 48

11 33 8

9 26 46

8 49 10

Observed

longitude

of the comet

0 / //

£218 14 40

24 46 22

29 38 2

TCP 6 30 3

£M2 37 49

15 35 18

20 27 4

25 40 58

26 59 24

29 58 45

TTL 0 44 4

Observed

latitude

north

0 / //

25 49 55

26 12 52

26 17 37

26 7 12

18 34 5

17 27 17

15 9 49

12 22 0

11 33 51

9 26 43

8 48 25

Difference

in longitude

, „

-0 12
+0 1
-0 47
-0 10
+0 5
+0 43
+3 49
+1 2
-hi 22
-0 1
+0 6

Difference

in latitude

1 1!

+0 12
+ 1 50
+2 26
+ 1 30
+3 42
-0 34
+3 11
+1 48
-0 43
+0 3
+0 45

aThe theory is confirmed also by the retrograde motion of the comet

that appeared in 1723. Its ascending node (by the calculation of Mr. Bradley,

Savilian professor of astronomy at Oxford) was in "Y"14°16'. The inclination

of the orbit to the plane of the ecliptic 49°59/. Its perihelion in tf 12°15'20".

Its perihelial distance from the sun 998,651, the radius of the earth's orbit

being 1,000,000, and the mean [lit. equated] time of the perihelion being 16

September 16h10m. And the places of the comet in this orbit, as calculated

by Bradley and compared with the places observed by himself and his uncle

Mr. Pound, and by Mr. Halley, are shown in the following table.3

By these examples it is more than sufficiently evident that the motions

of comets are no less exactly represented by the theory that we have set forth

than the motions of planets are generally represented by planetary theories.

And therefore the orbits of comets can be calculated by this theory, and

the periodic time of a comet revolving in any orbit whatever can then be

determined, and finally the transverse diameters [lit. latera transversa] of

their elliptical orbits and their aphelian distances will become known.

The retrograde comet that appeared in 1607 described an orbit whose

ascending node (according to Halley's calculation) was in &20°21'; the in-

aa. This paragraph and the accompanying table (on p. 936) appeared for the first time in ed. 3.
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1723 Mean /lit.

equated] time

d h m

Oct. 9 8 5

10 6 21

12 7 22

14 8 57

15 6 35

21 6 22

22 6 24

24 8 2

29 8 56

30 6 20

Nov. 5 5 53

8 7 6

14 6 20

20 7 45

Dec. 7 6 45

Observed

longitude
of the comet

0 / //

^7 22 15

6 41 12

5 39 58

4 59 49

4 47 41

4 2 32

3 59 2

3 55 29

3 56 17

3 58 9

4 16 30

4 29 36

5 2 16

5 42 20

8 4 13

Observed

latitude

north

0 / //

5 2 0

7 44 13

11 55 0

14 43 50

15 40 51

19 41 49

20 8 12

20 55 18

22 20 27

22 32 28

23 38 33

24 4 30

24 48 46

25 24 45

26 54 18

Calculated

longitude

of the comet

0 / //

££7 21 26

6 41 42

5 40 19

5 0 37

4 47 45

4 2 21

3 59 10

3 55 11

3 56 42

3 58 17

4 16 23

4 29 54

5 2 51

5 43 13

8 3 55

Calculated

latitude
north

0 / //

5 2 47

7 43 18

11 54 55

14 44 1

15 40 55

19 42 3

20 8 17

20 55 9

22 20 10

22 32 12

23 38 7

24 4 40

24 48 16

25 25 17

26 53 42

Difference

in longitude

it

+49
-50
-21
-48
- 4

+ 11
- 8
+18
-25
- 8
+ 7
-18
-35
-53
+18

Difference

in latitude

H

-47
+55
+ 5
-11
- 4
-14
- 5
+ 9
+17
+16
+26
-10
+30
-32
+36

clination of the plane of its orbit to the plane of the ecliptic was 17°2'; its

perihelion was in Z£2°l6/m, and its perihelial distance from the sun was 58,680,

the radius of the earth's orbit being 100,000. And the comet was in its perihe-

lion on 16 October at 3h50m. This orbit agrees very closely with the orbit of

the comet that was seen in 1682. If these two comets should be one and the

same, this comet will revolve in a space of seventy-five years and the major

axis of its orbit will be to the major axis of the earth's orbit as ^/(75 x 75)

to 1, or roughly 1,778 to 100. And the aphelial distance of this comet from

the sun will be to the mean distance of the earth from the sun as roughly

35 to 1. And once these quantities are known, it will not be at all difficult

to determine the elliptical orbit of this comet. What has just been said will

be found to be true if the comet returns hereafter in this orbit in a space of

seventy-five years. The other comets seem to revolve in a greater time and

to ascend higher.

But because of the great number of comets, and the great distance of their

aphelia from the sun, and the long time that they spend in their aphelia, they

should be disturbed somewhat by their gravities toward one another, and

hence their eccentricities and times of revolutions ought sometimes to be

increased a little and sometimes decreased a little. Accordingly, it is not to
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be expected that the same comet will return exactly in the same orbit, and

with the same periodic times. It is sufficient if no greater changes are found

to occur than those that arise from the above-mentioned causes.

And hence a reason appears why comets are not restricted to the zodiac

as planets are, but depart from there and are carried with various motions

into all regions of the heavens—namely, for this purpose, that in their aphelia,

when they move most slowly, they may be as far distant from one another

as possible and may attract one another as little as possible. And this is the

reason why comets that descend the lowest, and so move most slowly in their

aphelia, should also ascend to the greatest heights.

The comet that appeared in 1680 was distant from the sun in its perihe-

lion by less than a sixth of the sun's diameter; and because its velocity was

greatest in that region and also because the atmosphere of the sun has some

density, the comet must have encountered some resistance and must have

been somewhat slowed down and must have approached closer to the sun;

and by approaching closer to the sun in every revolution, it will at length

fall into the body of the sun. But also, in its aphelion, when it moves most

slowly, the comet can sometimes be slowed down by the attraction of other

comets and as a result fall into the sun. So also fixed stars, which are ex-

hausted bit by bit in the exhalation of light and vapors, can be renewed by

comets falling into them and then, kindled by their new nourishment, can

be taken for new stars. Of this sort are those fixed stars that appear all of

a sudden, and that at first shine with maximum brilliance and subsequently

disappear little by little. Of such sort was the star that Cornelius Gemma

saw in Cassiopeia's Chair on 9 November 1572; it was shining brighter than

all the fixed stars, scarcely inferior to Venus in its brilliance. But he did not

see it at all on 8 November, when he was surveying that part of the sky on

a clear night. Tycho Brahe saw this same star on the llth of that month,

when it shone with the greatest splendor; and he observed it decreasing little

by little after that time, and he saw it disappearing after the space of sixteen

months. In November, when it first appeared, it equaled Venus in bright-

ness. In December, somewhat diminished, it equaled Jupiter. In January 1573

it was less than Jupiter and greater than Sirius, and it became equal to Sirius

at the end of February and the beginning of March. In April and May it was

equal to stars of the second magnitude; in June, July, and August, to stars

of the third magnitude; in September, October, and November, to stars of
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the fourth magnitude; in December and in January 1574, to stars of the fifth

magnitude; and in February, to stars of the sixth magnitude; and in March,

it vanished from sight. Its color at the start was clear, whitish, and bright;

afterward it became yellowish, and in March of 1573 reddish like Mars or

the star Aldebaran, while in May it took on a livid whiteness such as we

see in Saturn, and it maintained this color up to the end, yet all the while

becoming fainter. Such also was the star in the right foot of Serpentarius,

the beginning of whose visibility was observed by the pupils of Kepler in

1604, on 30 September (O.S.); they saw it exceeding Jupiter in its light, al-

though it had not been visible at all on the preceding night. And from that

time it decreased little by little and in the space of fifteen or sixteen months

vanished from sight. It was when such a new star appeared shining beyond

measure that Hipparchus is said to have been stimulated to observe the fixed

stars and to put them into a catalog. But fixed stars that alternately appear

and disappear, and increase little by little, and are hardly ever brighter than

fixed stars of the third magnitude, seem to be of another kind and, in revolv-

ing, seem to show alternately a bright side and a dark side. And the vapors

that arise from the sun and the fixed stars and the tails of comets can fall

by their gravity into the atmospheres of the planets and there be condensed

and converted into water and humid spirits, and then—by a slow heat—be

transformed gradually into salts, sulphurs, tinctures, slime, mud, clay, sand,

stones, corals, and other earthy substances.
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The hypothesis of vortices is beset with many difficulties. If, by a radius

drawn to the sun, each and every planet is to describe areas proportional

to the time, the periodic times of the parts of the vortex must be as the

squares of the distances from the sun. If the periodic times of the planets

are to be as the 3/2 powers of the distances from the sun, the periodic times

of the parts of the vortex must be as the 3/2 powers of the distances. If the

smaller vortices revolving about Saturn, Jupiter, and the other planets are

to be preserved and are to float without agitation in the vortex of the sun,

the periodic times of the parts of the solar vortex must be the same. The

axial revolutions [i.e., rotations] of the sun and planets, bwhich would have

to agree with the motions of their vortices,b differ from all these proportions.

The motions of comets are extremely regular, observe the same laws as the

motions of planets, and cannot be explained by vortices. Comets go with very

eccentric motions into all parts of the heavens, which cannot happen unless

vortices are eliminated.

The only resistance which projectiles encounter in our air is from the air.

With the air removed, as it is in Boyle's vacuum, resistance ceases, since a

tenuous feather and solid gold fall with equal velocity in such a vacuum. And

the case is the same for the celestial spaces, which are above the atmosphere

a. Ed. 1 lacks the General Scholium, which includes Newton's famous discussions of God and of

hypotheses. This scholium is first printed in ed. 2 but is documented further by its changing versions

in five extant earlier holograph drafts and is treated also in contemporaneous correspondence between

Newton and Roger Cotes, editor of ed. 2. For details see Unpublished Scientific Papers of Isaac Newton,

ed. A. Rupert Hall and Marie Boas Hall (Cambridge: Cambridge University Press, 1962), pp. 348-364;
I. Bernard Cohen, Introduction to Newton's "Principia" (Cambridge, Mass.: Harvard University Press;

Cambridge: Cambridge University Press, 1971), pp. 240-245.
bb. Ed. 2 lacks this.
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of the earth. All bodies must move very freely in these spaces, and therefore

planets and comets must revolve continually in orbits given in kind and in

position, according to the laws set forth above. They will indeed persevere

in their orbits by the laws of gravity, but they certainly could not originally

have acquired the regular position of the orbits by these laws.

The six primary planets revolve about the sun in circles concentric with

the sun, with the same direction of motion, and very nearly in the same

plane. Ten moons revolve about the earth, Jupiter, and Saturn in concentric

circles, with the same direction of motion, very nearly in the planes of the

orbits of the planets. And all these regular motions do not have their origin

in mechanical causes, since comets go freely in very eccentric orbits and into

all parts of the heavens. And with this kind of motion the comets pass very

swiftly and very easily through the orbits of the planets; and in their aphelia,

where they are slower and spend a longer time, they are at the greatest

possible distance from one another, so as to attract one another as little as

possible.

This most elegant system of the sun, planets, and comets could not have

arisen without the design and dominion of an intelligent and powerful being.

And if the fixed stars are the centers of similar systems, they will all be

constructed according to a similar design and subject to the dominion of

One, especially since the light of the fixed stars is of the same nature as the

light of the sun, and all the systems send light into all the others. cAnd so

that the systems of the fixed stars will not fall upon one another as a result

of their gravity, he has placed them at immense distances from one another.0

He rules all things, not as the world soul but as the lord of all. And

because of his dominion he is called Lord God Panto%ratord. For "god" is a

relative word and has reference to servants, and godhoode is the lordship of

God, not over his own body fas is supposed by those for whom God is the

world soulf, but over servants. The supreme God is an eternal, infinite, and

absolutely perfect being; but a being, however perfect, without dominion is

cc. Ed. 2 lacks this,

d. Newton's note a: "That is, universal ruler."

e. Newton here uses the word "deitas," a nonclassical term which signifies the essential nature of the

divinity or "god-ness." Although "Godhead" does fit, the term "godhood" (which is more abstract) may

more accurately convey the sense of Newton's "deitas."

ff. Ed. 2 lacks this.
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not the Lord God. For we do say my God, your God, the God of Israel,

the God of Gods, and Lord of Lords, but we do not say my eternal one,

your eternal one, the eternal one of Israel, the eternal one of the gods; we do

not say my infinite one, or my perfect one. These designations [i.e., eternal,

infinite, perfect] do not have reference to servants. The word "god" is used

far and wide to mean "lord,"g but every lord is not a god. The lordship of

a spiritual being constitutes a god, a true lordship constitutes a true god, a

supreme lordship a supreme god, an imaginary lordship an imaginary god.

And from true lordship it follows that the true God is living, intelligent,

and powerful; from the other perfections, that he is supreme, or supremely

perfect. He is eternal and infinite, omnipotent and omniscient, that is, he

endures from eternity to eternity, and he is present from infinity to infinity;

he rules all things, and he knows all things that happen or can happen.

He is not eternity and infinity, but eternal and infinite; he is not duration

and space, but he endures and is present. He endures always and is present

everywhere, and by existing always and everywhere he constitutes duration

and hspace.h Since each and every particle of space is always, and each and

every indivisible moment of duration is everywhere, certainly the maker and

lord of all things will not be never or nowhere.

'Every sentient soul, at different times and in different organs of senses

and motions, is the same indivisible person. There are parts that are successive

in duration and coexistent in space, but neither of these exist in the person

of man or in his thinking principle, and much less in the thinking substance

of God. Every man, insofar as he is a thing that has senses, is one and the

same man throughout his lifetime in each and every organ of his senses.

God is one and the same God always and everywhere.1 He is omnipresent

not only virtually but also substantially, for action requires substance [lit. for

active power [virtus] cannot subsist without substance]. In him all things are

contained and move,' but he does not act on them nor they on him. God

g. Newton's note b, which ed. 2 lacks: "Our fellow countryman Pocock derives the word 'deus' from

the Arabic word 'du' (and in the oblique case 'di'), which means lord. And in this sense princes are called

gods, Psalms 82.6 and John 10.35. And Moses is called a god of his brother Aaron and a god of king

Pharaoh (Exod. 4.16 and 7.1). And in the same sense the souls of dead princes were formerly called gods

by the heathen, but wrongly because of their lack of dominion."

hh. Ed. 2 has "space, eternity, and infinity."

ii. Ed. 2 lacks this.

j. Newton's note c: "This opinion was held by the ancients: for example, by Pythagoras as cited in

Cicero, On the Nature of the Gods, book 1; Thales; Anaxagoras; Virgil, Georgics, book 4, v. 221, and Aeneid,
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experiences nothing from the motions of bodies; the bodies feel no resistance

from God's omnipresence.

It is agreed that the supreme God necessarily exists, and by the same

necessity he is always and everywhere. It follows that all of him is like himself:

he is all eye, all ear, all brain, all arm, all force of sensing, of understanding,

and of acting, but in a way not at all human, in a way not at all corporeal,

in a way utterly unknown to us. As a blind man has no idea of colors,

so we have no idea of the ways in which the most wise God senses and

understands all things. He totally lacks any body and corporeal shape, and

so he cannot be seen or heard or touched, nor ought he to be worshiped

in the form of something corporeal. We have ideas of his attributes, but

we certainly do not know what is the substance of any thing. We see only

the shapes and colors of bodies, we hear only their sounds, we touch only

their external surfaces, we smell only their odors, and we taste their flavors.

But there is no direct sense and there are no indirect reflected actions by

which we know innermost substances; much less do we have an idea of the

substance of God. We know him only by his properties and attributes and

by the wisest and best construction of things and their final causes, kand we

admire him because of his perfections;14 but we venerate and worship him

because of his dominion. 'For we worship him as servants, and a god1 without

dominion, providence, and final causes is nothing other than fate and nature.
mNo variation in things arises from blind metaphysical necessity, which must

be the same always and everywhere. All the diversity of created things, each

in its place and time, could only have arisen from the ideas and the will of

a necessarily existing being. But God is said allegorically to see, hear, speak,

laugh, love, hate, desire, give, receive, rejoice, be angry, fight, build, form,

construct. For all discourse about God is derived through a certain similitude

book 6, v. 726; Philo, Allegorical Interpretation, book 1, near the beginning; Aratus in the Phenomena, near

the beginning. Also by the sacred writers: for example, Paul in Acts 17.27, 28; John in his Gospel 14.2;

Moses in Deuteronomy 4.39 and 10.14; David, Psalms 139.7, 8, 9; Solomon, 1 Kings 8.27; Job 22.12, 13,

14; Jeremiah 23.23, 24. Moreover idolaters imagined that the sun, moon, and stars, the souls of men, and

other parts of the world were parts of the supreme god and so were to be worshiped, but they were

mistaken." In ed. 2 this note reads: "This opinion was held by the ancients: Aratus in the Phenomena,

near the beginning; Paul in Acts 7.27, 28; Moses, Deuteronomy 4.39 and 10.14; David, Psalms 139.7, 8;

Solomon, Kings 8.27; Job 22.12; the prophet Jeremiah, 23.23, 24."

kk. Ed. 2 lacks this.

11. Ed. 2 has: "For a god."

mm. Ed. 2 lacks this.
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from things human, which while not perfect is nevertheless a similitude of

some kind.™ This concludes the discussion of God, and to treat of God from

phenomena is certainly a part of "natural" philosophy.

Thus far I have explained the phenomena of the heavens and of our

sea by the force of gravity, but I have not yet assigned a cause to gravity.

Indeed, this force arises from some cause that penetrates as far as the centers

of the sun and planets without any diminution of its power to act, and

that acts not in proportion to the quantity of the surfaces of the particles on

which it acts (as mechanical causes are wont to do) but in proportion to the

quantity of solid matter, and whose action is extended everywhere to immense

distances, always decreasing as the squares of the distances. Gravity toward

the sun is compounded of the gravities toward the individual particles of

the sun, and at increasing distances from the sun decreases exactly as the

squares of the distances as far out as the orbit of Saturn, as is manifest

from the fact that the aphelia of the planets are at rest, and even as far as

the farthest aphelia of the comets, provided that those aphelia are at rest. I

have not as yet been able to deduce from phenomena the reason for these

properties of gravity, and I do not °feign° hypotheses. For whatever is not

deduced from the phenomena must be called a hypothesis; and hypotheses,

whether metaphysical or physical, or based on occult qualities, or mechanical,

have no place in experimental philosophy. In this experimental philosophy,

propositions are deduced from the phenomena and are made general by

induction. The impenetrability, mobility, and impetus of bodies, and the laws

of motion and the law of gravity have been found by this method. And it is

enough that gravity really exists and acts according to the laws that we have

set forth and is sufficient to explain all the motions of the heavenly bodies

and of our sea.

PA few things could now be added concerning a certain very subtle spirit

pervading gross bodies and lying hidden in them; by its force and actions, the

particles of bodies attract one another at very small distances and cohere when

nn. Ed. 2 has "experimental."

oo. The word "fingo" in Newton's famous declaration, "Hypotheses non fingo," appears to be the

Latin equivalent of the English word "feign." Andrew Motte translated "fingo" by "frame," a verb which
at that time could have a pejorative sense. For details see the Guide, §9.1.

pp. The final paragraph of the General Scholium has attracted much scholarly attention, notably in

an effort to discern what Newton intended (in the opening and closing sentences) by a "spirit" which may
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they become contiguous; and electrical [i.e., electrified] bodies act at greater

distances, repelling as well as attracting neighboring corpuscles; and light is

emitted, reflected, refracted, inflected, and heats bodies; and all sensation is

excited, and the limbs of animals move at command of the will, namely,

by the vibrations of this spirit being propagated through the solid fibers of

the nerves from the external organs of the senses to the brain and from the

brain into the muscles. But these things cannot be explained in a few words;

furthermore, there is not a sufficient number of experiments to determine

and demonstrate accurately the laws governing the actions of this spirit.p

be operative in various types of phenomena. It might even appear that Newton was here introducing a

speculation—we dare not call it a hypothesis—although Newton's actual language indicates that for him

there was no question about whether this spirit "really" exists, only about the laws according to which

this spirit acts.

A puzzle relating to the interpretation of this "spirit" is the appearance of the qualifying adjectives

"electric and elastic," introduced in the original Motte translation and retained in the Motte-Cajori version.

Although these words are not found in either the second or the third Latin editions, they have a Newtonian

provenience since they occur in Newton's personal interleaved copy of the second edition as one of the

proposed emendations. Furthermore, thanks to the research of A. Rupert Hall and Marie Boas Hall, we

know that the spirit in question is indeed "electrical." In particular, as Newton worked toward the second

edition of the Principia, he composed various drafts of proposed conclusions which, together with other

manuscripts, provide evidence for the importance of electrical phenomena in his thinking about gravity

during the years 1711—1713. For details see the Guide to the present translation, §9.3.

One possible reason why Newton decided not to insert the qualifying phrase "electric and elastic"

into the text of the third edition (1726) is that in his interleaved copy of the second edition he has finally

drawn a line through the whole paragraph, showing his intention of deleting it in a third edition. The

reason for this decision seems to be that some time after 1713 Newton lost his enthusiasm for electricity

as a possible agent in gravitation.

We may readily understand why Newton omitted to carry out either the revision or the proposed

cancellation of the final paragraph. By the time that the third edition was fully printed, in about February

1726, Newton and Pemberton had spent several years revising the text and reading the proofs and Newton

was within a little more than a year of his death. When Newton reached the last paragraph he was

probably so weary that he overlooked his proposed alteration of the conclusion.

The third edition concludes with an "Index Rerum Alphabeticus" (pp. 531-536) and an advertisement of
books sold by William and John Innys (pp. 537-538).



Notes Added in Second Printing

1. In order to understand why Newton used the term "vis inertiae" rather than sim-

ply "inertia," we must keep in mind that Newton, as he says explicitly in Def. 3, was

giving a new and better name to the then-current concept of "vis insita." Thus he

merely changed one qualifier ("insita") to another ("inertiae").

2. On Newton's mathematical methods in the Principia and the history of the ways

in which his successors read and revised Newton's rational mechanics, see Niccolo

Guicciardini's masterful analysis, Reading the "Principia": The Debate on Newton's

Mathematical Methods for Natural Philosophy from 1687 to 1736 (Cambridge: Cam-

bridge University Press, 1999).

3. On Newton's concept of limit and on the methods of book 1, sec. 1, of the Prin-

cipia, see Bruce Pourciau, "Newton and the Notion of Limit," Historia Mathematica

28 (2001): 18-30, and "The Preliminary Mathematical Lemmas of Newton's Prin-

cipia? Archive for History of Exact Sciences 52 (1998): 279-295.

4. On Book 1, Lemma 28, see Bruce Pourciau, "The Integrability of Ovals," Archive

for History of Exact Sciences 55 (2001): 478-499.

5. On the solid of least resistance and Newton's thoughts concerning the design of

ships, see A. Rupert Hall, Ballistics in the Seventeenth Century (Cambridge: Cam-

bridge University Press, 1952), pp. 141-145.
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