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PREFACE TO THE SECOND EDITION
OF PART IL

THE present edition of this volume has been carefully
revised and corrected throughout. The principal alterations
will be found in the Theory of Series; which has been
developed a little in some places, with a view to rendering
1t more useful to students proceeding to study the Theory
of Functions. In the interest of the same class of readers,
I have added to the chapter on limits a sketch of the
modern theory of irrational quantity, one of the most
important parts of the purely Arithmetical Theory of
Algebraic Quantity, which forms, as the fashion of mathe-
matical thinking now runs, the most widely accepted basis
for the great structure of Pure Analysis reared by the
masters of our science.

I am indebted for proof-reading and for useful criticism
to my friends Prof. G. A. GissoN and Mr. C. TWEEDIE, B.Se.
It is but right, however, to add that the careful and
intelligent readers of the Pitt Press have rendered the
work of correcting the proofs of this volume more of a
sinecure than it often is when mathematical works are
in question.

G. CHRYSTAL

EpinsurcH, 3rd March, 1900.



PREFACE TO FIRST EDITION.

THE delay in the appearance of this volume finds an apology
partly in circumstances of a private character, partly in
public engagements that could not be declined, but most of
all in the growth of the work itself as it progressed in my
hands. T have not, as some one prophesied, reached ten
volumes; but the present concluding volume is somewhat
larger and has cost me infinitely more trouble than I
expected.

The main object of Part II. is to deal as thoroughly as
possible with those parts of Algebra which form, to use
Euler’s title, an Introductio in Analysin Infinitorum. A
practice has sprung up of late (encouraged by demands for
premature knowledge in certain examinations) of hurrying
young students into the manipulation of the machinery of
the Differential and Integral Calculus before they have
grasped the preliminary notions of a Lumit and of an
Infinite Series, on which all the meaning and all the uses
of the Infinitesimal Calculus are based. Besides being to
a large extent an educational sham, this course is a sin
against the spirit of mathematical progress. The methods
of the Differential and Integral Calculus which were once
an outwork in the progress of pure mathematics threatened

for a time to become its grave. Mathematicians had fallen
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into a habit of covering their inability to solve many
particular problems by a vague wave of the hand towards
some generality, like Taylor's Theorem, which was sup-
posed to give “an account of all such things,” subject only
to the awkwardness of practical irapplicability. Much
has happened to remove this danger and to reduce d/d«
and [dz to their proper place as servants of the pure
mathematician. In particular, the brilliant progress on the
continent of Function-Theory in the hands of Cauchy,
Riemann, Weierstrass, and their followers has opened for us
a prospect in which the symbolism of the Differential and
Integral Calculus is but a minor object. For the proper
understanding of this important branch of modern mathe-
matics a firm grasp of the Doctrine of Limits and of the
Convergence and Continuity of an Infinite Series is of much
greater moment than familiarity with the symbols in which
these ideas may be clothed. It is hoped that the chapters
on Inequalities, Limits, and Convergence of Series will help
to give the student all that is required both for entering
on the study of the Theory of Functions and for rapidly
acquiring intelligent command of the Infinitesimal Calculus.
In the chapters in question, I have avoided trenching on
the ground already occupied by standard treatises: the
subjects taken up, although they are all important, are
either not treated at all or else treated very perfunctorily
in other English text-books.

Chapters xx1X. and XXX. may be regarded as an
elementary illustration of the application of the modern

Theory of Functions. They are intended to pave the way
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for the study of the recent works of continental mathe-
maticians on the same subject. Incidentally they contain
all that is usually given in English works under the title of
Analytical Trigonometry. If any one should be scandalised
at this traversing of the boundaries of English examination
subjects, I must ask him to recollect that the boundaries in
question were never traced in accordance with the principles
of modern science, and sometimes break the canon of
common sense. One of the results of the old arrangement
has been that treatises on Trigonometry, which is a geometri-
cal application of Algebra, have been gradually growing into
fragments more or less extensive of Algebra itself: so that
Algebra has been disorganised to the detriment of Trigono-
metry ; and a consecutive theory of the elementary functions
has been impossible. The timid way, oscillating between ill-
founded trust and unreasonable fear, in which functions of a
complex variable have been treated in some of these manuals
is a little discreditable to our intellectual culture. Some
expounders of the theory of the exponential function of an
imaginary argument seem even to have forgotten the obvious
truism that one can prove no property of a function which
has not been defined. I have concluded chapter XXxX. with
a careful discussion of the Reversion of Series and of the
Expansion in Power-Series of an Algebraic Function—
subjects which have never been fully treated before in an
English text-book, although we have in Frost’s Curve Tracing
an admirable collection of examples of their use.

The other innovations call for little explanation, as they

aim merely at greater completeness on the old lines. In
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the chapter on Probability, for instance, I have omitted
certain matter of doubtful soundness and of questionable
utility ; and filled its place by what I hope will prove a
useful exposition of the principles of actuarial calculation.

I may here give a word of advice to young students
reading my second volume. The matter is arranged to
facilitate reference and to secure brevity and logical
sequence; but it by no means follows that the volume
should be read straight through at a first reading. Such
an attempt would probably sicken the reader both of
the author and of the subject. Every mathematical book
that is worth anything must be read “backwards and
forwards,” if I may use the expression. I would modify the
advice of a great French mathen: .ician* and say, “ Go on,
but often return to strengthen your faith.” When you come
on a hard or dreary passage, pass it over; and come back to
it after you have seen its importance or found the need for
it further on. To facilitate this skimming process, I have
given, after the table of contents, a suggestion for the course
of a first reading.

The index of proper names at the end of the work will
show at a glance the main sources from which I have drawn
my materials for Part II. Wherever I have consciously
borrowed the actual words or the ideas of another writer
I have given a reference. There are, however, several
works to which I am more indebted than appears in the

bond. Among these I may mention, besides Cauchy’s

* ¢¢Allez en avant, et la foi vous viendra.”
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Analyse Algébrique, Serret’s Algébre Supérieure, and Schlo-
milch’s Algebraische Analysis, which have become classical,
the more recent work of Stolz, to which I owe many indica-
tions of the sources of original information—a kind of help
that cannot be acknowledged in footnotes.

I am under personal obligations for useful criticism, for
proof-reading, and for help in working exercises, to my
assistant, Mr. R. E. ALLARDICE, to Mr. G. A. GIBSON, to
Mr. A. Y. FRASER, and to my present or former pupils—
Messrs. B. B. P. BRANDFORD, J. W. BUTTERS, J. CROCKETT,
J. GoopwiLLIE, C. TWEEDIE.

In taking leave of this work, which has occupied most
of the spare time of five somewhat busy years, I may be
allowed to express the "“ope that it will do a little in a
cause that I have much at heart, namely, the advancement
of mathematical learning among English-speaking students
of the rising generation. It is for them that I have worked,
remembering the scarcity of aids when I was myself a
student ; and it is in their profit that I shall look for my

reward.

G. CHRYSTAL.

EDINBURGH, 1st November 1889,
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CHAPTER XXIII.
Permutations and Combinations.

§ 1.] We have already seen the importance of the enume-
ration of combinations in the elementary theory of integral
functions. It was found, for example, that the problem of finding
the coefficients in the expansion of a binomial is identical with
the problem of enumerating the combinations of a certain
number of things taken 1, 2, 3, &c., at a time. Besides its
theoretical use, the theory of permutations and combinations
has important practical applications; for example, to economic
statistics, to the calculus of probabilities, to fire and life assur-
ance, and to the theory of voting.

Beginners usually find the subject somewhat difficult. This
arises in part from the fineness of the distinctions between the
different problems, distinctions which are not always easy to
express clearly in ordinary language. Close attention should
therefore be paid to the terminology we are now to introduce.

§ 2.] For our present purpose we may represent individual
things by letters.

By an r-permutation of n letters we mean r of those letters
arranged in a certain order, say in a straight line. An n-permu-
tation, which means all the letters in a certain order, is sometimes
called a permutation simply.

Example. The 2-permutations of the three letters a, b, ¢ are be, cb;
ac, ca; ab, ba. The permutations of the three letters are abe, ach; bac, bea;
cab, cha.

By an r-combination of n letters we mean » of those letters
considered without reference to order.

Example. The 2-combinations of a, b, ¢ are be, ac, ab.



2 MODES OF PROOF CH. XXIII

Unless the contrary is stated, the same letter is not supposed
to occur more than once in each combination or permutation.
In other words, if the n letters were printed on = separate
counters each permutation or combination could be actually
selected and set down before our eyes.

Another point to be attended to is that in some problems
certain sets of the given letters may be all alike or indifferent ;
that is to say, it may be supposed that no alteration in any
permutation or combination is produced by interchanging these
letters.

§ 3.] The fundamental part of every demonstration of a
theorem in the theory of permutations and combinations is an
enumeration. It is necessary that this enumeration be systematic
and exhaustive. If possible it should also be simplex, that is,
each permutation or combination should occur only once ; but it
may be multiplex, provided the degree of multiplicity be ascer-
tained (see § 8, below).

Along with the enumeration there often occurs the process
of reasoning step by step, called mathematical induction.

The results of the law of distribution, as applied both to
closed functions and to infinite series, are often used (after the
manner of chap. 1v., §§ 5, 11, and exercise vi. 30) to lighten the
labour of enumeration.

All these methods of proof will be found illustrated below.
We have called attention to them here, in order that the student
may know what tools are at his disposal.

PERMUTATIONS.
§ 4.1 The number of r-permutations of n letters (. P,) is
nn—-1)(n-2) ... (n—r+1).
1st Proof.—Suppose that we have  blank spaces, the problem

is to find in how many different ways we can fill these with »

letters all different.

We can fill the first blank in » different ways, namely, by
putting into it any one of the n letters. Having put any one
letter into the first blank, we have #—1 to choose from in filling
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the second blank. Hence we can fill the second blank in n-1
different ways for each way we can fill the first. Hence we can
fill the first two in 2 (r— 1) ways.

When any two particular letters have been put into the first
two blanks, there are n— 2 left to choose from in filling the third.
Hence we can fill the first three blanks in % (n— 1) times (n— 2)

ways.

Reasoning in this way, we see that we can fill the » blanks in
nn—1)(n—2) ... (n—r+1) ways.
Hence WPr=nn-1) ... (n-r+1).

2nd Proof.—We may enumerate, exhaustively and without
repetition, the ,P, r-permutations as follows :—

ist. All those in which the first letter @, stands first ;

2nd. All those in which @, stands first : and so on.

There are as many permutations in which @, stands first as
there are (r — 1)-permutations of the remaining # — 1 letters, that
is, there are ,-,P,_, permutations in the first class. The same
is true of each of the other # classes.

Hence wPr=n,_P,_,.

Now this relation is true for any positive integral values of
n and 7, so long, of course, as » >n. Hence we may write

successively
n-Pr = nn—IPr—l)

n—1L r-1= (n - l)n—z-Pr—zy

n—rsaP2= (n =7+ 2) i Pr.

If now we multiply all these equations together, and observe
that all the P’s cancel each other except ,P, and ,_.4,P;, and
observe further that the value of ..., is obviously n—r + 1,
we see that

Pr=n(n—-1) ... @-r+2)(n—r+1) (1).

The second proof is not so simple as the first, but it illustrates
a kind of reasoning which is very useful in questions regarding
permutations and combinations.
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Cor. 1. The number of different ways in which a set of n
letters can be arranged in linear order is

n(n-1)...3.2.1,

that 1s, the product of the first n integral numbers.

This follows at once from (1), for the number required is the
number of n-permutations of the n letters. Putting »=n in (1),
we have

wPo=n(n-1)...2.1 (2).

The product of the first # consecutive integers may be re-
garded as a function of the integral variable n. It is called
Jactorial-n, and is denoted by n!*,

Cor. 2. P,=n!/(n—7)l.

For WPr=n{n-1) ... (n—r+1),
nm-1)...@-r+)(n-7)...2.1
- (m—7r) ...2.1 ’
n!
CEIN

Cor. 3. The number of ways of arranging n letters in circular
order is (n—1)!, or (n—1)!/2, according as clock-order and
counter-clock-order are or are not distinguished.

Since the circular order merely, and not actual position, is
in question, we may select any one letter and keep it fixed. We
have thus as many different arrangements as there are (n-1)-
permutations of the remaining #» —1 letters, that is (»— 1)!.

If, however, the letters written in any circular order clock-
wise be not distinguished from the letters written in the same
order counter-clock-wise, it is clear that each arrangement will
be counted twice over. Hence the number in this case is
(n—1)Y/2.

§ 5.1 When each of the n letters may be repeated, the number
of r-permutations is 0"

* This is Kramp’s notation. Formerly |n was used in English works, but
this is now being abandoned on account of the difficulty in printing the | .

The value of 1! is of course 1. Strictly speaking, 0! has no meaning. It is
convenient, however, to use it, with the understanding that its valueis 1; by
so doing we avoid the exceptional treatment of initial terms in many series.
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Suppose that we have » bianks before us. We may fill the
first in # ways ; the second also in » ways, since there is now no
restriction on the choice of the letter. Hence the first two may
be filled in 7 x », that is, »° ways. With each of these »° ways
of filling the first two blanks we may combine any one of the »
ways of filling the third ; hence we may fill the first three blanks
in 7% x n, that is, »® ways, and so on. Hence we can fill the »
blanks in 2" ways.

§ 6.1 The number of permutations of n letters of which «
group of o are all alike, @ group of B all alike, & group of v all
alike, &ec., is

nifal Byl . ..

Let us suppose that # denotes the number in question. If
we take any one of the # permutations and keep all the rest of
the letters fixed in their places, but make the « letters unlike
and permutate them in every possible way among themselves,
we shall derive a! permutations in which the « letters are all
unlike. Hence the effect of making the a letters unlike is to
derive xa! permutations from the 2 permutations.

If we now make all the B letters unlike, we derive za!g!
permutations from the xa!.

Hence, if we make all the letters unlike, we derive za!B!y!. . .
permutations. But these must be exactly all possible permuta-
tions of » letters all unlike, that is, we must have

walBly! . .. =al.
Hence z=nllalBly! . . .

Cor.  The number of ways in which n things can be put into
r pigeon-holes, so that a shall go into the first, B into the second,
v wnto the third, and so on, is

nYfalBlyt . . .

N.B.—The order of the pigeon-holes is fixed, and must be at-
tended to, but the order of the things inside the holes is indifferent.
Putting the things into the holes is evidently the same as
allowing them to stand in a line and affixing to them labels
marked with the names of the holes. There will thus be a
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labels each marked 1, 8 each marked 2, y each marked 3, and
S0 on.

The problem is now to find in how many ways = labels, a of
which are alike, B alike, y alike, &c., can be distributed among
n things standing in a given order. The number in question is
nlfa!Bly! . . ., by the above proposition.

Example 1. In arranging the crew of an eight-oared boat the captain has
four men that can row only on the stroke-side and four that can row only on
the bow-side. In how many different ways can he arrange his boat—1st,
when the stroke is not fixed ; 2nd, when the stroke is fixed ?

In the first case, the captain may arrange his stroke-side in as many
ways as there are 4-permutations of 4 things, that is, in 4! ways, and he
may arrange the bow-side in just as many ways. Since the arrangements of
the two sides are independent, he has, therefore, 4!x4!(=576) different
ways of arranging the whole crew.

In the second case, since stroke is fixed, there are only 3! ways of
arranging the stroke-side. Hence, in this case, there are 3!x4!(=144)
different ways of arranging the crew.

Example 2. Find the number of permutations that can be made with the
letters of the word transalpine.

The letters are traannsipie, there being two sets, each containing
two like letters. The number required is therefore (by § 6) 11!/2!2!=
11.10.9.8.7.6.5.3.2=9979200.

Example 3. In how many different ways can = different beads be
formed into a bracelet?

Since merely turning the bracelet over changes a clock-arrangement of the
stones into the corresponding counter-clock-arrangement, it follows, by § 4,
that the number required is (n — 1)!/2.

COMBINATIONS.

§17.] The number of ways in which s things can be selected by
taking one out of a set of n,, one out of a set of ny, &c., is MmN, . . . My

The first thing can be selected in 7, ways; the second in n,
ways; and so on. Hence, since the selection of each of the
things does not depend in any way on the selection of the others,
the number of ways in which the s things can be selected is
XNy X o oo XM | ..

§ 8.] The number of r-combinations of n letters (,C,) is

nn-1)...#w-r+1)1.2... 7
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1s¢ Proof.—We may enumerate the combinations as follows: —

1st. All those that contain the letter a;;
2nd' ) » 2 a2 ;

nth. ” ,, ’ -

In each of these classes there is the same number of
combinations; namely, as many combinations as there are
(r — 1)-combinations of % —1 letters; for we obviously form all
the 7-combinations in which @, occurs by forming all possible
(r — 1)-combinations of a,, @, . . ., @, and adding @, to each
of them.

This enumeration, though exhaustive, is not simplex; for
each r-combination will be counted once for every letter it
contains, that is, » times. Hence

7‘»,,,0, = ’n,,,_lar_l (1).

This relation holds for all values of » and 7, so long as ria.
Hence we have successively—

n
nCr = ; n-1Vr-1,

C n—1
n—-1Yr-1 —m n—2Vr-2,
n—2
n-2Yr—-2 = 7___—2 n—-3%r-3,
n—r+2
n—r+202 = ——2— n—r+101-

If we multiply these »—1 equations together, and observe that
the C’s cancel, except ,C, and ,_.,,C,, and that the value of
n-r+iC1 18 obviously #—# + 1, we have

e

2nd Proof.—Since every r-combination of » letters, if permu-
tated in every possible way, would give 7! r-permutations, and
all the ~-permutations of the n letters can be got once and only
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once by dealing in this way with all the -combinations, it follows
that ,C.r!=,P,. Hence

WCr=nPyfrl=n(n-1) ... m-r+1)/1.2 ...
Cor. 1. If we multiply both numerator and denominator of
the expression for ,C, by (n—7) (n—r—1) . . . 2.1, we deduce
2Or=nllri(n—7r)! (8).
Cor. 2. 2Cr=,Ch .

This follows at once from (3). It may also be proved by
enumeration ; for it is obvious that for every r-combination of
the » things we select we leave behind an (n —7)-combination ;
there are, therefore, just as many of the latter as of the former.

Cor. 3. 2Cr=naCr+ n1Cry (4).

This can be proved by using the expressions for ,C;, »-,C;,
2-10r—1, and the remark is important, because it shows that the
property holds for functions of » having the form (2) irrespective
of any restriction on the value of ».

The theorem (when % is a positive integer) also follows at
once by classifying the r-combinations of » letters a,, a,, . . . , @,
into, 1st, those that contain @,, ,_.C,_; in number, and, 2nd,
those that do not contain a,, ,-,C, in number.

Cor. 4. 1, Ci+ nsCi+nsCi+. . . +:0:=0Cois (5).

Since the order of letters in any combination is indifferent,
we may arrange them in alphabetical order, and enumerate the
(s + 1)-combinations of = letters by counting, 1st, those in
which @, stands first ; 2nd, those in which a, stands first, &ec.
This enumeration is clearly both exhaustive and simplex ; and
we observe that @, cannot occur in any of the combinations of
the 2nd class, neither @, nor a, in any of the 3rd class, and so on.
Hence the number of combinations in the 1st class is ,_,C;; in
the 2nd, ,_,C;; in the 3rd, ,_;C;; and so on. Thus the theorem
follows.

Cor. 5.

205+ 5053 g0+ pCsg oo+ . o+ 50 01+ (O =11 eCs (B).

If we divide p+ ¢ letters into two groups of p and ¢ re-
spectively, the ,.,C; s-combinations of the p+ ¢ letters may be
classified exhaustively and simplexly as follows :—



§8 VANDERMONDE'S THEOREM 9

1st. All the s-combinations of the p letters. The number of
these is 2Cs.
ond. All the combinations found by taking every one of
the (s — 1)-combinations of the p things with every one of the
1-combinations of the ¢ things. The number of these is
pCs-1 % Ch.
3rd. All the combinations found by taking every one of
the (s —2)-combinations of the p things with every one of the
2-combinations of the ¢ things. The number of these is
2C5-2 % 4 Cs.
And so on. Thus the theorem follows.
It should be noticed that Cor. 4 and Cor. 5 furnish proposi-

tions in the summation of series. For example, we may write
Cor. 5 thus—

pp—-1) ... (p—s+1)+p(p~1) .. (p-s+2) ¢
1.2...5s 1.2...(6-1) "1 .
=1 ... (p-s+8) g(g—1)
1.2...(6-2) = 1.2
P g(g-1) ... (g—5+2) .
1" \1.2...(s=-1)
+q(q—l) ... (g—s+1)
1.2...5
_pr(p+g-1) ... (p+g-s+1) (1)
1.2...s ’

It is obvious that (7) is an algebraical identity which could
be proved by actually transforming the left-hand side into the
right (see chap. v., § 16). If we take this view, it is clear that
the only restriction upon p, g, s is that s shall be a positive integer.
Thus generalised, (7) becomes of importance in the establishment
of the Binomial Theorem for fractional and negative indices.

Cor. 6. If we multiply both sides of (7) by 1.2 ... s, and
denote p(p—1) . . . (p—s+1) by ps, we deduce

(P + @) =ps+ :Opsrqi + s OoPy—a@a ++ . .+ qs (8),

which is often called Vandermonde's theorem, although the result
was known before Vandermonde’s day.
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§ 9.1 To find the number of r-combinations of p+q letters
p of whick are alike.

1st. With the ¢ unlike letters we can form ,C, r-com-
binations.

ond. Taking one of the p letters, and »—1 of the ¢, we can
form ,C,_, r-combinations.

3rd. Taking two of the p, and » -2 of the ¢, we can form
40r—s r-combinations; and so on, till at last we take » of the
p (supposing p>7r), and form one r-combination.

We thus find for the number required

Ort Oyt qCrg +. . .+ ,01+ 1

=q! { 1 + ! + + _t + L } .
Nrllg—7) (o —-Dig-r+1) (g —-1)! ¢!
Cor.  The number of r-permutations of p + q things p of which
are alike is

1 1 1
17 . .
g {rl((]— r)! * U =D g—r+ 1) * 2 (r -2 (g—r+ 2)!+

1 1
s '+<7-—1)111(g—1)1+'}1—q!}'

For, with the ,C, combinations of the 1st class above we can form
¢C: 7! permutations ;

With the ,C,._, combinations of the 2nd class, ,C,._, ! per-
mutations ;

With the ,C,_, combinations of the 3rd class (in each of
which two letters are alike), ,C,-,7!/2! permutations: and
o on.

Hence the whole number of permutations is
GOl oy 1+ (Crprlf20 4+ L L+ Crrlf(r— 1)1+ 1,
whence the result follows.

A similar process will give the number of »-combinations,
or of r-permutations, when we have more than one group of
like letters ; but the general formula is very complicated.

§ 10.]  The number of r-combinations of n letters (,H,), when
each letter may be repeated any number of times up to r, is

nn+)(n+2) ... 0m+r-1)/1.2.3 .. .7 (1)
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In the first place, we remark that the number of (7 + 1)-com-
binations, in each of which the letter @, occurs at least once, is
the same as the number of r-combinations not subject to this
restriction. This is obvious if we reflect that every (r+1)-
combination of the kind described leaves an r-combination when
@, is removed, and, conversely, every r-combination of the =
letters gives, when «, is added to it, an (+ + 1)-combination of
the kind deseribed.

It follows, then, that if we add to each of the r-combinations
of the theorem all the » letters, we get all the (n + r)-combinations
of the n letters, in each of which each letter appears at least
once, and not more than 7+ 1 times. We may therefore
enumerate the latter instead of the former.

This new problem may be reduced to a question of permuta-
tions as follows. Instead of writing down all the repeated letters,
we may write down each letter once, and write after it the letter
s (initial of same) as often as the letter is repeated. Thus, we
write asssbsscs . . . instead of waaabbbec . .. With this notation
there will occur in each of the (n + r)-combinations the » letters
a, s, . . ., a, along with » s’s. The problem now is to find
in how many ways we can arrange these n +7 letters. It must
be remembered that there is no meaning in the occurrence of s at
the beginning of the series; hence, since the order of the letters
a, @, . . ., @&, is indifferent, we may fix a, in the first place.
We have now to consider the different arrangements of the n - 1
letters @, @, . . ., a, along with r &’s. In so doing we must
observe that nothing depends on the order of @, a;, . . ., a,
inter se; so that in counting the permutations they must be
regarded as all alike. We have, therefore, to find the number of
permutations of 2 — 1 + 7 things, 2 — 1 of which are alike, and »
of which are alike. Hence we have

_(n+r-1)!

ot =T ),

_nm+1) ... (n+r-1)
B 1.2...7r !
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Cor. 1. = nireiOh.
This follows at once from (2).
Cor. 2. oy =n i H + H,_.

For the r-combinations consist, 1st, of those in which @, occurs
at least once, the number of which we have seen to be ,H,_;;
2nd, of those in which @, does not occur at all, the number of
which is ,_,H,.

Cor. 8. Ho=piH + 4y iH s+ He o+, . .+, H +1.
This follows from the consideration that we may classify the
p-combinations into

1st. Those in which @, does not occur at all, , A, in
number ;

2nd. Those in which @, occurs once, ,_,H,_; in number ;

3rd. Those in which a, occurs twice, ,_,H,_, in number :
and so on.

Cor. 4. The number of different r-ary products that can be
made with n different lettersisn(n+1) . .. (n+r—-1)[1.2 ... 7r;
and the number of terms in a complete integral function of the rth
degree in n variables is (n+1)(n+2) . . . (n+7)/1.2 ... 1

The tirst part of the corollary is of course obvious. The
second follows from the consideration that the complete in-
tegral function is the sum of all possible terms of the degrees
0,1,2, ..., rrespectively. Hence the number of its terms is

14+ H + Ho+. . .+ H,.
But, by Cor. 8, this sum is 44, /..

We have thus obtained a general solution of the problems suggested in
chap. 1v., §§ 17, 19. As a verification, if we put n=2, we have for the
number of terms in the general integral function of the rth degree in two
variables 3.4 ... (r+2)/1.2 .. . r, which reduces to (r+1) (r+2)/2, in
agreement with our former result.

ExERcCISES I.
Combinations and Permutations.

(1.) How many differéent numbers can be made with the digits
111223334507

(2.) How many different permutations can be made of the letters of the
sentence Ut tensio sic vis?
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(3.) How many different numbers of 4 digits can be formed with 01234562

(4.) How many odd numbers can be formed with the digits 3694 ?

(5.) If 9,Cp1/on—2Crn=182/35, find n.

(6.) If m=,C,, show that ,,C,=38,,,C,.

(7.) In any set of n letters, if the number of r-permutations which con-
tain a be equal to the number of those that do not contain a, prove that the
same holds of r-combinations.

(8.) In how many ways can the major pieces of a set of chess-men be
arranged in a line on the board?

If the pawns be included, in how many ways can the pieces be arranged
in two lines?

(9.) Out of 13 men, in how many ways may a guard of 6 be formed in line,
the order of the men to be attended to?

(10.) In how many ways can 12 men be selected out of 17—1st, if there be
no restriction on the choice; 2nd, if 2 particular men be always included ;
3rd, if 2 particular men never be chosen together?

(11.) In how many ways can a bracelet be made by stringing together 5
like pearls, 6 like rubies, and 7 like diamonds?

How many different settings of 3 stones for a ring could be selected
from the above?

‘What modification of the solution of the first part of the above problem
is necessary when two, or all three, of the given numbers are even ?

(12.) In how many ways can an eight-oared boat be manned out of 31
men, 10 of whom can row on the stroke-side only, 12 on the bow-side only,
and the rest on either side ?

(18.) In a regiment there are 10 captains, 20 lieutenants, 30 sergeants,
and 60 corporals. In how many ways can a party be selected, consisting of
2 captains, 5 lientenants, 10 sergeants, and 20 corporals ?

(14.) Three persons have 4 coats, 5 vests, and 6 hats between them; in
how many different ways can they dress?

(15.) A man has 12 relations, 7 ladies and 5 gentlemen ; his wife has 12
relations, 5 ladies and 7 gentlemen. In how many ways can they invite a
dinner party of 6 ladies and 6 gentlemen so that there may be 6 of the man’s
relations and 6 of the wife’s?

(16.) In how many ways can 7 ladies and 7 gentlemen be seated at a
round table so that no 2 ladies sit together?

(17.) At a dinner-table the host and hostess sit opposite each other. In
how many ways can 2n guests be arranged so that 2 particular guests do
not sit together?

(18.) In how many ways can a team of 6 horses be selected out of a stud
of 16, so that there shall always be 3 out of the 6 ABCA'B’C’, but never 44’,
BB’, or CC’ together?

(19.) With 9 consonants and 7 vowels, how many words can be made,
each containing 4 consonants and 3 vowels—1st, when there is no restriction
on the arrangement of the letters; 2nd, when two consonants are never
allowed to come together?

(20.) In how many ways can 52 cards, all different, be dealt into 4 equal
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hands, the order of the hands, but not of the cards in the hands, to be
attended to?

In how many cases will 13 particular cards fall in one hand ?

(21.) In how many ways can a set of 12 black and 12 white draught-men
be placed on the black squares of a draught-board ?

(22.) Inhow many ways can a set of chess-men be placed on a chess-board ?

(23.) How many 3-combinations and how many 3-permutations can be
made with the letters of parabola?

(24.) With an unlimited number of red, white, blue, and black balls at
disposal, in how many ways can a bagful of 10 be selected ?

In how many of these selections will all the colours be represented ?

(25.) In an election under the cumulative system there were p candidates
for ¢ seats; (1) in how many ways can an elector give his votes; (2) if there
be r voters, how many different states of the poli are there?

If there be 15 candidates and 10 seats, and a voter give one minute to the
consideration of each way of giving his vote, how long would it take him to
make up his mind how to vote ?

BINOMIAL AND MULTINOMIAL THEOREMS.

§ 11.] It has already been shown, in chap. 1v., § 11, that
(@+b)"=a"+,0a" b +. . . +,Ca™"b"+. . . +b"

where ,0,, »Cs, . . «» xCr . . . denote the numbers of 1-, 2-,
., r-combinations of 7 things. Using the expressions just

found for ,Ci, .C., &c., we now have

n(n—1)

n—2 12
T o ¢ b+, ..

(@ +b)y"=a™ + na"'b +

nn-1)...m-r+1) ., .. N
+ AT a4+, . +b (1).
This is the Binomial Theorem as Newton discovered it,.proved,
of course, as yet for positive integral indices only.

§12.] We may establish the Binomial Theorem by a some-
what different process of reasoning, which has the advantage of
being applicable to the expansion of an integral power of any
multinomial.

Consider

(ay+ @+ . . . +an)" (2).
We have to distribute the product of = factors, namely,

(O +a+. o Han) @+t +am) ... (G +a+. . . +an) (3);



§ 10-12 MULTINOMIAL THEOREM 15

and the problem is to find the coefficient of any given term, say

A S (4),
where of course @, + 0, + . . . +a,=n. Inother words, we have to
find how often the partial product (4) occurs in the distribution

of (3).
We may write out (4) in a variety of ways, such as
QO Ao Ao A Oy Uy Oy« v . (5),
there being always o, a,’s, a, a,’s, &e.

Written as in (5) we may regard the partial product as
formed by taking @, from the 1st and 2nd brackets in (3); a,
from the 3rd, 4th, and 5th; @; from the 6th; and so on. It
appears, therefore, that the partial product (4) will occur just as
often as we can make different permutations of the » letters, such
as (5). Now, since a, of the letters are all alike, a, all alike, &e.,
the number of different permutations is, by § 6, =!/ala,! . . . ay,l.

Hence we have
n!

B+ A+, . A =ED W™ . . . @pOn :
( 1 2 m) al!u2! ... am! 1 2 m (6)
wherein a,, a,, . . . a, assume all positive integral values con-
sistent with the relation

a+ay+. . . ta,=n (7).

This is the Multinomial Theorem for a positive integral index.
The Binomial Theorem is merely the particular case where
m=2. We then have, since a, + a,=n, and therefore a, =7 —a,

n!
a! (n—a,)!
nin-1) ... m—a+1)

o

(@ +a)"=3 0 g,

=3
which agrees with (1).
Cor. T find the coefficient of " in the expansion of
b+ box+. . .+ bpa™ ) (8)

we have simply to pick out all the terms which contain 2". The
general term is
n!

ala) o ey

Hm® @,

blu, [)2“'1 L. bmam poatlet. . o+ n-Da,
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Hence we have to take all the terms which are such that

0+ 204, . .+ (m—1)a,=7r 9).
The coefficient of 2™ in the expansion of (8) is therefore
n!
e et b (10)

where a;, ay, . . ., a, have all positive integral values subject
to the restrictions (7) and (9).

Example 1. The coefficient of a®h? in the expansion of (a +b+c+d)° is
51

31310701~ 10.
Example 2. To find the coefficient of x5 in (1 + 2z + x%)4.
Here we must have o+ ag+ag=4,
ay+2a3=>5.
Hence a,=a3—1, a,=5-2a,.

Since a, and a, must both be positive, the only two admissible valuss of a,
are 1 and 2. We have therefore the following table of values:—

4 o, ay
0 3 1
1 1 9
The required coefficient is therefore
Ol—gl!—ﬁlo23]_l + 1!?!2] 119112 — 56.

The correctness of the result may be easily verified in the present case ;
for (14 2z + 2?)*=(1+ )8, the coefficient of #5 in which is ;C;=56.

Example 3. To find the greatest coefficient, or coefficients, in the
expansion of (a;+ay+. . . +a,)".

This amounts to determining z, v, 2, . . . so that n!/z!y!z! . .. shall be a
maximum, where z4+y+2z+. . .=n_This, again, amounts to determining
z,9, % . . . 80 that

u=zlylz! ... (1)
shall be a minimum, subject to the condition
z+y+z+...=n (2).

Let us first consider the case where there are only two variables, z and y.
We obtain all possible values of z!y! by giving y successively the values
0,1,2,...,n,z taking in consequence the valuesn,n-1,n-2, ...,0. The
consecutive value to x!y! is (z-1)!(y+1)!, and the ratio of the latter
to the former is (y+1)/xz; that is (since z+y=mn), (n+1-=z)/z, that is,
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(n+1)/z—1. This ratio is less than unity so long as (n+1)/x <2, that is, so
long as > (n+1)/2. Until z falls below this value the terms in the series
above mentioned will decrease; and after x falls below this limit they will
begin to increase.

If n be odd, =2k+1 say, then (n+1)/2=k+1. Hence, if we make
z=k+1, the ratio (n+1)/z -1=1, and two consecutive values of z!y!, viz,
(k+1)!%! and k! (k+1)!, are equal and less than any of the others.

If n be even, =2k say, then (n+1)/2=k+3. Hence, if we make z=k,
we obtain a single term of the series, viz. klk!, which is less than any of
the others.

Returning now to the general case, we see that, if ¥ be a minimum for all
values of z, ¥, #, . . . subject to the restriction (2), it will also be a minimum
for values such that x and y alone are variable, z, . . . being all constant.
In other words, the values of z and y for which zly!z! . . . is a minimum
must be such as render z!y! a minimum. Hence, by what has just been
proved, z and y must either be equal or differ only by unity. The like
follows for every pair of the variables x, y, 2, . . . Let us therefore suppose
that p of these are each equal to £ ; then the remaining m —p must each be
equal to £+1. Further, let ¢ be the quotient and r the remainder when n is
divided by m; so that n=mg+7r. We thus have

P+ (m—p) (E+1)=mg+r.
Hence mE+(m—p)=mq+r;
so that E+(m-p)fm=q+r/m.
Now (m — p)/m and r/m are proper fractions ; hence we must have
E =4, M-—-p=r,
It follows, therefore, that » of the variables are each equal to ¢ +1, and
the rest are each equal to ¢. The maximum coefficient is therefore
nf(g)ym"{(g + )1}
that is, nlf(g!)™ (g +1) @)
This coefficient is, of course, common to all terms of the type
;lagl o Ay Tl ey T L @ T

As a special case, consider (a,+a,+ag)*. Here 4=3x1+1; ¢=1, r=1.
Hence the terms that have the greatest coefficient are those of the type
a,a,a,? and the coefficient in questien is 4!/(1!)321=12. This is right; for
we find by distributing that

(a1 + @y + ag)t = Za,t + 4Za,3a, + 62a,%0,2 + 125a,2a,d;.

Example 4. Show that

1" 1+ +n(n—1) 1422 n(n-1)(n-2) 1+3z "
1l+nz 1.2 (T+nz)? 1.2.3 (1+nz)3 " " °
(Wolstenholme.)

. =0.

The left-hand side may be written
1" 1 +n(n—1) 1  2amr-1)(n-2) 1
11l+nx 1.2 (1+nz)? 1.2.3 (1 +nz)?
n_=z +n(n—1) 22 n(n-1)(n-2) 3z +
11l+ne 1.2 (1+na)? 1.2.3 (L+nz)3 ™ """

+ ...
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n 1 nn-1) 1 n(n-1)(n-2) 1
1Trmet 1.2 (+na)2 1.2.3  (Itna)?

_ nx 1_(n—l) 1 m-1)(n-2) 1

1+ne { 1 (—1+nx)+ 1.2 T+nx” " } ’

- 1 )" nr [y 1 n-1
- 1+4+nzx 1+nz | 1+nz ’
| nx ™ ne [ nx | *7?

T |l4+nx l4nz |1+nx ’

_ nr | " ne | "
T |1+nz 1l+nz| °’

=0.

138.] The Binomial Theorem can be used in its turn to
establish identities in the theory of combinations; as the two
following examples will show :—

Example 1. We have

1=(1+z-z)
=(1+2)"-,Cx(1+a) 1 +,Coz? (1+2)*- . .. (=) Cpa”.

On the right-hand side of this identity the coefficient of every power of z
must vanish. Hence, s being any positive integer less than r, we have
w0 x L= 510y X 0O 45900 X0y — o o 4 (=) gy Oy X, Cyy + (= )%C,=0.

Example 2. To find the sum of the squares of the binomial coefficients.
We have I+z)Pr=(l+z)*x (x+1)*

=(14,0z+,022+ . . . +,C,2")
X (@™ 4,012 1+, Cgz™ 2+ . o s +,C,)

If we imagine the product on the right to be distributed, we see that the
coefficient of 2™ is 12+,C2+,C2+ . . . +,C,2; the coefficient of 2™ on the
left is ,,C,. Hence

124,024,022+ . . . +,0,2=,,C,=2n!/nlnl,

Since
onl=2n(2n-1)(2n--2) . . . 4.3.2,1=£4",1.2...2x1.3...(2n-1),
we have 12+,0.2+,C%+ . .. +,C.2=2".1.83 . .. (2n-1)/nl.

A great variety of results can be obtained by the above process of equating
coefficients in identities derived from the binomial theorem; some specimens
are given among the exercises below.

Exercises II.

(1.) Find the third term in the expansion of (2 4 3z).

(2.) Find the coefficient of 5 in the expansion of (1+x+2?) (1 - z)!%.

(3.) Find the term which is independent of z in the expansion of
(z + 1),
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(4.) Find the coefficient of 2> in the expansion of (z —1/z)%".

(6.) Find the ratio of the coefficients of £** in (14 )% and (1+ ).

(6.) Find the middle term in the expansion of (2 +3}z)™.

(7.) The product of the coefficients in (1+z)"*1 : the product of the
coefficients in (1+x)%=(n+1)*

(8.) The coefficient of 27 in {(r —2) 22+ nz — 7} (x+1)* is n,C,_,.

(9.) If I denote the integral part and F' the proper fractional part of
(3+4/5)", and if p denote the rational part and ¢ the irrational part of the
same, show that

I=2{8%+,0,8"2.5+,C,8" 4. 5%+ . . .} -1,
F=1-(3-J5)"

p=%(I+1),

c=3%(I+2F-1).

(10.) If (/2+1) =TI+ F, where F is a positive proper fraction and I is
integral, show that F (I+F)=1.

(11.) Find the integral parts of (24/3 + 8)", and of (24/3 + 3)¥n+1,

(12.) Show that the greatest term in the expansion of (a+x)™ is the
(r+1)th, where r is the integral part of (n+1)/(a/x +1).

Exemplify with (2 + 3)1° and with (2 + })°.

(18.) Find the condition that the greatest term in (a+ ) shall have the
greatest coefficient. Find the limits for « in order that this may be so
in (1+ )1,

(14.) If the pth term be the greatest in (a + z)™, and the gth the greatest
in (a+z)", then either the (p+ q)th or the (p+g¢-- 1)th or the (p+¢—2)th is
the greatest in (a + z)m+n,

(15.) Sum the series

C C, C, C,
n’1 n-’2 n>3 n-n
e Al o R R e
1 nCl nC2 nYn—1
(16.) Sum the series
1+2,0,+3,0,+4,C3+

(17.) If p, denote the coefficient of z, in (1+z)*, prove the following
relations :—

1°% py-2p,+3ps— . . . +n(=-1)""1p,=0.
. Ap-ips ... +(;L1)Tl Po= g
8°. Z;‘+‘_j +...4;-n];"1 :E:i;—_l;l
(18.) If p, have the same meaning as in last question, show that
P3P tip— .. +(A 1)1:pn_1+_512 4»%-1— Ce +11?

(19.) Show that

1Csx 147001 X 190 X, 0ot + v gy Oy X Oy +1 %05 =,.C 2%
(20.) Show that
(1-3Co+0Cs— « ¢ )+ (01— 0Cs+ « o )2=1+,C,4+,C0+ . ..
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(21.) Show that
1x,004+ 0,01 %0 Cs+ « + o 4,0 % nCr=(2n)![/(n+2)! (n-2)!.

(22.) Show that1—n2+ (n (nQI 1)> <n fn - 1;'(n 2)) .. =0ifn

be odd, and =(-1)*%(n+2) (n+4) . . . 2n/2.4 . . . n if n be even.
(23.) Show that

n(n+1) n(n+1)(n+2)

(n—2)(n-1)+ 30 (n—-3) (n—-2)

+ ..o =20C@n+ 1)/ (n+2)!(n-1)!.
(24.) If u, stand for «"+1/27, show that

1.n(n+1)+%(n-1)n+

Uppy F o1 Cr Uy o Catleg+ o o o =0y (Ut Cr g+ Cotly g+« - 2 )

(25.) If a, denote the coefficient of «P in (1+ )27 (1 —x)?%, show that

- 20101+ ,C0a,— . . . =0 for all values of p except p=mn, in which case
the right-hand side of the equation is 4,

(26.) Show that

l_ »Cl 4 n02 _ (_1)nn0n_ nl
z z+1 z+2 " °° z+n  z(z+l) ... (z+n)’

(27.) Find the coefficient of 2" in (1+z+22+ . . . )%

(28.) Find the coefficient of 18 in (1+ °+ 26 + 29)4.

(29.) Find the coefficient of 2™ in (1+z+222+323+ . . . )%

(30.) If ay, a;, . . ., ay, be the coefficients of the powers of z in
(1+2x+2x%)" show that ays,— @8y, 1+ « « « +8ya,=0 if n be odd,
=2m![{(3n)!}? if n be even.

(81.) If a, be the coefficient of ™ in (1 +ac+x2+ .« . +zP)* show that
a,— 0103 +,C30,_o— . .. =0, unless n be a multiple of p+1. What
does the equation become in the latter case?

(82.) Find the coefficient of z1! in (1 + 2z + 3z + 4a%)12,

(33.) Write out the expansion of (a+b+c+d).

(34.) Show that

1798 . . . mk 1 [n(n+1)|P
sl . .. Kl pl 2 ’

where 7,8, . . ., k have all values between 0 and p, both inclusive, subject
to the restriction r+s+ . . . +k=p.
(85.) If ,H, have the meaning of § 10 above, prove that

1% i Hr=mHp+ pHooy X o Hy 4 He o Xy Ho+ o o o+ Hy x  Ho .
2°, 1,0,y X oHy+nCy X nHy = nCs X nHg+ « + « +(=1)%Cpp nH,=0.
(36.) Ifa,=x(z+1) ... (z+r-1), show that
(2+Y),=Tp+,C1 TpyY1 +1CoTpoglfa+ « « + +Ype
(87.) Find the largest coefficient in the expansion of (a+b+c+d+e)%.
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EXAMPLES OF THE APPLICATION OF THE LAW OF

DISTRIBUTION.

§14.] If we haver sets, consisting of ny, 0y, . . ., n, different
letters respectively, the whole number of different ways of making
combinations by taking 1, 2,3, . . . up to r of the letters at a
time, but never more than one from each set, is

(m+1) (na+1) . .. (2,+1)—1.
Consider the product
(I+a,+b+ . .. m letters)
x (14 ay+by+ . . . m, letters)
x (L+a,+b.+ . . .n, letters).

In the distributed product there will occur every possible com-
bination of the letters taken 1,2, 3,. . ., r at a time, with the
term 1 in addition. If we replace each letter by unity, each
term in the distributed product will become unity, and the sum
of these terms will exceed the whole number of combinations by
unity. Hence the number required is

AT+n)(l+n) ... 1+n)—1
=3+ 3N+ . . RN . . . Ny
This result might have been obtained by repeated use of § 7.

§ 15.] If we have r sets of counters, marked with the following
numbers—

a, Bl: ey Ky

ag, Be, . . ., K,
. .

) BT) e Kry

the number of counters not being necessarily the same for each set,
and the inscribed numbers not necessarily all different, then the
number of different ways in whick r counters can be drawn, one
Sfrom each set, so that the sum of the inscribed numbers shall be n,
is the coefficient of 2™ in the distribution of the product
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(@ + b+, . +an)
x (@ + 2B+, .+ )
X (@ + 2Br +. . .+ ).

This theorem is an obvious result of the principles laid down
in chap. 1v.

Cor. 1. If wn the first set there be a, counters marked with
the number o, b, marked with B,, &c., in the second a, marked
with ay, by, marked with B,, &c., the number of ways in which r
counters can be drawn so that the sum of the numbers on them is
n, 18 the coefficient of " in the distribution of

(@ + @b+ . . .+ kan)
X (azxuz + b2,7,'/32 +. ..+ ]ngxq)
x (@& + boxBr + . . . + kat).

Cor. 2. In a box there are a counters marked o, b marked S3,
&e. A counter is drawn r times, and each time replaced. The
number of ways in which the sum of the drawings can amount to
n s the coefficient of x™ in the distribution of

(@2 +baP + . . . ).

DISTRIBUTIONS AND DERANGEMENTS.

§16.] 'The variety of problems that arise in connection with
the subject of the present chapter is endless, and it would be
difficult within the limits of a text-book to indicate all the
methods that have been used in solving such of these problems
as mathematicians have already discussed. The following have
been selected as types of problems which are not, very readily at
least, reducible to the elementary cases above discussed.*

§ 17.] To find the number of ways in which n different letters
can be distributed among r pigeon-holes, attention being paid to
the order of the pigeon-holes, but not to the order of the letters in
any one pigeon-hole, and no kole to contain less than one letter.

Let D, denote the number in question.

* For further information see Whitworth’s Choice and Chance.
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If we leave s specified holes vacant and distribute the letters
among the remaining r—s holes under the conditions of the
question, we should thus get D,_, distributions. Hence, if ,.C,
have its usual meaning, the number of distributions when s of
the holes are blank is ,C; D, _,.

Again, the whole number of distributions when none, one,
two, &ec., of the holes may be blank is evidently »", for we can
distribute the # letters separately among the » holes in #™ ways.

Hence

D+,.C Dy +,C,Dps+ .. . +,0y Dy=1"  (A).
The equation (A) contains the solution of our problem, for, by
putting »=2, » =8, &ec., successively, we could calculate D,, D;,
&e., and D, is known, being simply 1.

We can, however, deduce an expression for D, in terms of »
and 7, as follows. Writing 7 — 1 in place of » we have

D+, 0D+ oo +,C D= (r—1)" (B).
From (A) and (B), by subtraction, remembering (§ 8, Cor. 3)
that
rOs T r-1 03—1 = r—lOs ’
we derive
D+ O D+ 0D+ o +,0,Cy Dy
=r"—(r—1)" (1).
From (1), putting »— 1 in place of 7, we derive
v Dy +r20CiDeco+ o oo +,C0 Dy
=(r-1)"—(r-2)" (1)
From (1) and (1'), by subtraction, we derive
D+, CiDp s+, 50, Do+ . . . +,,C., D,
=r"—2(r—1)"+ (r - 2)° (2).
Treating now (2) exactly as we treated (1) we derive
D+, 0D+, 3G Doy + . L +,50,, Dy
=r—3(r—1)"+8(r—-2)"—(r—3)* (3).
The law of formation of the right-hand side is obvious, the
coefficients being formed by the addition rule peculiar to the

binomial coefficients (see chap. 1v., § 14). We shall therefore
finally obtain
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Do=r"— Culr— 1)+, Golr =2 — . . . (= )G
-1
e R VA e T s L)

Cor. If the order of the pigeon-holes be indi(ferent, the number of
distributions is D.[r}. In other words, the number of partitions of
n different letters into r lots, no vacant lots being allowed, is D, [r!.

We shall discuss the closely-allied problem to find the
number of r-partitions of n—that is, to find the number of
ways in which n letters, all alike, may be distributed among
7 pigeon-holes, the order of the holes being indifferent, and no
hole to be empty—when we take up the Theory of the Partition
of Numbers.

§18.] Given a series of n letters, to find in how many ways
the order may be deranged so that no one out of r assigned letters
shall occupy its original position.

Let ,A, denote the number in question.

The number of different derangements in which the » assigned
letters do all occupy their original places is (n—7). Hence the
number of derangements in which the r assigned letters do not
all occupy their original places is n!—(n—r)!. Now, this last
number is made up of-—

1st. The number of derangements in which no one of the »
letters occupies its original place ; that is, ,A,.

2nd. The number of derangements in which any one of the »
letters occupies its original place, and no one of the remaining
r—1 does so; that is, ,C) .14, ;.

3rd. The number of derangements in which any two of
the » letters occupy their original places, and no one of the
remaining #—2 does so; that is, ,C,,-,A,,. And so on.

Hence
nl=(n—r)=p8 + ,Crp1B g+ ,.Conod s+ . .

+ 201 n-ri1y (A)

If we write in this equation #—1 for #, and » — 1 for », and
subtract the new equation thus derived from (A), we deduce
R (R U S Y ¢/ PV, W Y /Y. WP

+ T—lor—] n—7‘+1A1 (1 )'
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We can now treat this equation exactly as we treated
equation (1) of § 16. We thus deduce

17.'_21)(71—2)!—. (=)= (2).

If we remember that (n—7)!, above, stands for the number
of derangements in which the 7 letters all occupy their original
positions, we see that, when » =n, (n—r)! must be replaced by 1.
Hence

Cor. The number of derangements of a series of n letters in
which no one of the original n occupies its original position is

r

28y = n! ~€ (n—1)!+

1 1 (=1
n!{l—l!+a—...w— pr } (3).
The expression (3) may be written
n( ... d@RA-D+D-1+1)...—-(=1)M+(-1)~

Hence it may be formed as follows :—Set down 1, subtract 1;
multiply by 2 and add 1; multiply by 3 and subtract 1; and
so on. 'The function thus formed is of considerable importance
in the present branch of mathematics, and has been called by
Whitworth subfactorial n. He denotes it by [[z. A more con-
venient notation would be #;.

SUBSTITUTIONS.

§ 19.] Hitherto we have merely counted the permutations
of a group of letters. If we direct our attention to the actual
permutations, and in particular to the process by which these
permutations are derived from each other, we are led to an order
of ideas which forms the foundation of that important branch of
modern algebra which is called the Theory of Substitutions.

Consider any two permutations, becda, beade, of the five letters
@, b, ¢, d, e. 'The latter is derived from the former by replacing
a by ¢, b by b, ¢ by a, d by d, ¢ by ¢. This process may be
represented by the operator (ZIZZ(;) ; and we may write

<ebado

abe de> becda = beade :
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or, omitting the letters that are unaltered, and thus reducing the
operator to its simplest form,
(eaz> becda = beade.

ac
The operator (Z(Z) ,and the operation which it effects, are called

a Substitution ; and the operator is often denoted by a single
capital letter, S, T, &ec.

Since the number of different permutations of a group of »
letters is !, it is obvious that the number of different substitu-
tions is also »!, if we include among them the identical substi-
tution (Ziigj ) , (denoted by 8° or by 1), in which no letter
is altered.

We may effect two substitutions in succession upon the same
permutation, and represent the result by writing the two symbols
representing the substitutions before the permutation in order
from right to left. Thus, if S= <cab) , T'= <ea> ,

abe ue
STaebcd = ecabd.
We may also effect the same substitution twice or three times
over, and denote SS by 8%, SSS by 8% &c. Thus, S being as
before,
S*acbed = Sceabd = becad.

It should be observed that the multiplication of substitution
symbols is not in general commutative. For example, § and T
being as above, STaebcd = ecabd, but T'Saebed = caebd. 1f, when
reduced to their simplest form, the symbols § and 7 have no
letter in common, they are obviously commutative. This con-
dition, although sufficient, is not necessary; for we have

deaby, (badc bade\ (dcab
<abc d <abc d> abede = cdbae = (abc d) (abc d> abcde.

§ 20.] Since the number of permutations of » letters is
limited, it is obvious that if we repeat the same substitution, S,
sufficiently often we shall ultimately reproduce the permutation
that we started with. The smallest number, u, of repetitions
for which this happens is called the order of the substitution S.
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Hence we have S*=1, and 8§ =1, where p is afiy positive
integer.

We may define a negative index in the theory of substitu-
tions by means of the equation S-7=87*"9 u being the order of
S, and p such that pp>¢. From this definition we see that
828-1= Se87#-2= §P* =1, In other words, S¢ and S-? are inverse
to each other; in particular, if

dabc - abed beda
8 = (o) 1o 5= (Ge) = (aod):

A set of substitutions which are such that the product of
any number of them is always one of the set is called a group;
and the number of distinct substitutions in the group is called
the order of the group. The number of letters operated on is
called the degree of the group.

It is obvious from what has been shown that all the powers

of a single substitution, S, form a group whose order is the
order of 8.
o . bedefo
§21.] A substitution such as < >, where each letter
abedef,
is replaced by the one that follows it, and the last by the first, is
called a Cyclic Substitution, and is usually denoted by the symbol
(abedef ). *

The cyclic substitution (a), consisting of one letter, is an
identical substitution; it may be held to mean that a passes into
itself.

The cyclic substitution of two letters (ab), or what is the
same thing (be), is spoken of as a Transposition.

The effect of a cyclic substitution may be represented by
writing the n letters at equal intervals round the circumference
of a circle, and shifting each through 1/nth of the circumference.
Thus, or otherwise, it is obvious that the order of a cyclic sub-
stitution is equal to the number of the letters which it involves.

§ 22.] Every substitution either is cyclic or is the product of a
number of independent cyclic substitutions (cycles).

Consider, for example, the substitution

* Or, of course, by (bedefa), (cdefad), &e.
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s ()

This replaces @ by b, b by f. f by a; these together constitute
the cyclic substitution (abf). Next, ¢ is replaced by 4, and d by
¢; this is equivalent to the cycle (¢d). Again, ¢ is replaced by
9, and g by ¢; this gives the cycle (¢g9). Finally, 4 is unaltered.
Hence we have the following decomposition of the substitution
S into cycles—

8 = (abf)(cd)(eg)(h).

The décomposition is obvioﬁsly unique; and the reasoning
by which we have arrived at it is perfectly general. It should
be noticed that, since the cycles are independent, that is, have
no letters in common, they are commutative, and it is indifferent
in what order we write them.

§ 28.] Every cyclic substitution of n letters can be decomposed
into the product of n — 1 transpositions.

For example, we have (abcd) = (ab)(bc)(cd); and the process
is general.

Cor. Ewvery substitution can be decomposed into n —r transpo-
sitions, where n is the number of letters whick it displaces, and r
the number of its proper cycles.

Thus, (oo = e eq) ),

= (ab)(Bf)(cd)(eg).

This decomposition into transpositions is not unique, as will
be seen presently, but the above gives the minimum number.

§ 24.] The following properties of a product of two trans-
positions are of fundamental importance.

1. The product of two transpositions whick have two letters
in common s an identical substitution.

'I'his is obvious from the meaning of (ab).

II. In the product of two transpositions, TT', which have a
letter in common, T' may be placed first, provided we replace the
common letter in T by the other letter in T,
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For we have (ab)(be)= <bca> , (be)ace) = (bca) ,

abe abe
therefore (ab)(be) = (be)(ac).
Cor. 1. (¢f)(af) = (ae)(ef).
Cor. 2. (ae)(af) = (af)(ef).

III.  If two transpositions, T and T, have no letter in common,
they are commutative.

This is a mere particular case of a remark already made
regarding two independent substitutions.

§25.] The decomposition of a given substitution into transpo-
sitions ts not unique.

For we can always introduce a pair of factors (ab)(ab), and
then commutate one or both of them with the others, in accord-
ance with the rules of § 24.

In this way we always increase the number of transpositions
by an even number. In fact, we can prove the following im-
portant theorem—

The number of the transpositions which represent a given sub-
stitution is always odd or always even.

We may prove this by reducing the product of transpositions
to a standard form as follows—

Select any one of the letters involved, say «; take the last
transposition, 7', on the right that involves @, and proceed to
commutate this transposition successively with those to the left
of it. So long as we come across transpositions that have no
letter in common with 7", neither 7" nor the others are affected.
If we come to one that has a letter in common with 7" which is
not a, we see (§ 24, I1., Cor. 1) that the @ in 7" remains, the other
letter being altered, and the transposition passed over remains
unaltered. If we come to a transposition that has @, and a only,
in common with 7', by § 24, IL., Cor. 2, 7" passes to the left un-
altered, and the transposition passed over loses its . Lastly, if
we come to a transposition that has both @ and its other letter
in common with 7', then both it and 7' may be removed. If
this last happen, we must now take that remaining transposition
containing @ which is farthest to the right, and proceed- as
before.
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The result of this process, so far as @ is concerned, will be,
either that all the transpositions containing @ will have dis-
appeared, or that some even number (including 0) will have done
50, and one only, say (ab), will remain on the extreme left.

Consider now b. If among the remaining factors & does not
occur, then we have obtained a cycle (#b) of the substitution ;
and we now proceed to consider some other letter.

If, however, b does occur again, we take the factor farthest
to the right in which it occurs, and commutate as before; the
result being, either that all the transpositions (even in number)
containing b disappear, or that an even number of them do, and
we are left with, say (bc), in the second place. We now deal
with ¢ in like manner; and obtain in the third place, say (cd).
This goes on until all the letters are exhausted, or until we
come to a letter, say f, that disappears from the factors not yet
finally arranged. We thus arrive at a product (#b)(bc)(cd)(de)(ef
on the left. b

cdefa

Now (ab)(be)(cd)(de)ef) = (g f>

= (abcdef).
We have, in fact, arrived at one of the independent cycles of
the substitution. If we now take any other letter that occurs in
one of the remaining substitutions on the right, we shall in like
manner arrive at the cycle to which it belongs, after losing an
even number, if any, of the transpositions; and so on, until all
the letters are exhausted, and all the cycles arrived at. Since
the whole number of transpositions lost is even, the truth of the
theorem is now obvious; and our proof furnishes a method for

reducing to the minimum number of transpositions.

It appears, therefore, that we may divide all the substitutions
of a set of n letters into two classes—namely, even substitutions,
which are equivalent to an even number of transpositions, and
odd substitutions, which are equivalent to an odd number of
transpositions.

Cor, 1. If n be the number of letters altered by a substitution, r
the number of its cycles, and 2s an arbitrary even integer, the number
of factors in an equivalent product of transpositions ts n—1r + 2s.
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Cor. 2.  The number of the even is equal to the number of the
odd substitutions of a set of n letters.

For any one transposition, applied in succession to all the
different odd substitutions, will give as many even substitutions,
all different. Hence there are at least as many even as there
are odd substitutions. In like manner we see that there are at
least as many odd as there are even. Hence the number of the
even is equal to the number of the odd substitutions.

Cor. 8. A cyclic substitution is even or odd according as the
number of the letters which it involves is odd or even.

For example, (abc) = (ab) (be) is even.

Cor. 4. The product of any number of substitutions is even or
odd according as the number of odd factors is even or odd. In
particular, any power whatever of an even substitution, and any
even power of any substitution whatever, form even substitutions.

Cor. 5. All the even substitutions of a set of n letters jform o
group whose order is n!/2.

§ 26.] If we select arbitrarily any one, say P, of the n! per-
mutations of a set of n letters, and call it an even permutation,
then we can divide all the n! permutations into two classes—
1st, »!/2 even permutations, derived by applying to P the n!/2
even substitutions; 2nd, #n!/2 odd permutations, derived by
applying to P all the n!/2 odd substitutions.

The student who is familiar with the theory of determinants
will observe that the above is precisely the classification of the
permutations of the indices (or umbre) which is adopted in
defining the signs of the terms in a determinant.

It is farther obvious, from the definitions given in chap. 1v.,
§ 20, that symmetric functions of a set of n variables are un-
altered in value by any substitution whatever of the variables ; or,
as the phrase is, they are said to “ admit any substitution what-
ever.”  Alternating functions, on the other hand, admit only even
substitutions of their variables, the result of any odd substitution
being to alter their sign without otherwise affecting their value.

§ 27.] The limits of the present work will not permit us to
enter farther into the Theory of Substitutions, or to discuss its
applications to the Theory of Equations. The reader who desires
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to pursue this subject farther will find information in the follow-
ing works: Serret, Cours d’Algébre Supérieure (Paris, 1879);
Jordan, Traité des Substitutions (Paris, 1870); Netto, Substitu-
tionen-theorie (Leipzig, 1882); Burnside, Theory of Groups
(Cambridge, 1897).

ExErcises III.

(1.) There are 10 counters in a box marked 1, 2, . . ., 10 respectively.
Three drawings are made, the counter drawn being replaced each time. In
how many ways can the sum of the numbers drawn amount—I1st, to 9
exactly; 2nd, to 9 at least ?

(2.) Out of the integers 1, 2, 3, . . ., 10 how many pairs can be selected
so that their sum shall be even ?

(3.) How many different throws can be made with n dice?

(4.) In how many ways can 5 black, 5 white, 5 blue balls be equally
distributed among three bags, the order of the bags to be attended to ?

(5.) A selection of ¢ things is to be made partly from a group of a, the
rest from a group of b. Prove that the number of ways in which such a set
can be made will never be greater than when the number of things taken
from the group of « is next less than (a+1)(c+1)/(a+b+2).

(6.) Inhow many ways can p +’s and n —’s be placed in a row so that no
two —’s come together ?

(7.) In the Morse signalling system how many signals can be made
without exceeding 5 movements ?

(8.) In how many ways can 3 pairs of subscribers be set to talk in a
telephone exchange having n subscribers ?

(9.) There are 3 colours, and m balls of each. In how many ways can
they be arranged in 3 bags each containing m, the order of the bags to
be attended to?

(10.) If of p+q+r things p be alike, ¢ alike, and r different, the total
number of combinations will be (p+1) (g+1) 27— 1.

(11.) In how many ways can 2n things be divided into n pairs?

(12.) The number of combinations of 3n things (n of which are alike),
taken n at a time, is the coefficierit of 2™ in (1 +x)/(1 - ).

(18.) N boat clubs have a, b, ¢, 1, 1, . . ., 1 boats each. In how many
ways can the boats be arranged subject to the restriction that the 1st boat of
any club is to be always above its 2nd, its 2nd always above its 3rd, &ec.?

(14.) If there be p things of one sort, ¢ of another, r of another, &c., the
number of combinations of the p+g+7+ . . . things, taken k at a time, is
the coefficient of % in (1 —2Pt1) (1 -29t) . . . [1-2)(1-2) . . .

(15.) In how many ways can an arrangement of n things in a row be
deranged so that—1st, each thing is moved one place; 2nd, no thing more
than one place?

(16.) Given m things arranged in succession, the number of rets of 3
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which can be formed under the condition that no set shall contain two things
which were formerly contiguous is (n —2) (n-3) (n —4), the order inside the
sets to be attended to.
(17.) In how many ways can m white and n black balls be arranged in a
row so that there shall be 2r — 1 contacts between white and black balls?
(18.) In how many ways can an examiner give 30 marks to 8 questions
without giving less than 2 to any one question?

*(19.) The number of ways in which n letters can be arranged in 7 pigeon-
holes, the order of the holes and of the letters in each hole to be attended to
and empty holes admitted, is 7 (r+1) (r+2) . . . (r+n-1).

(20.) The same as last, no empty holes being admitted, n!(n—1)!/(n-r)!
(r-1)L

(21.) The same as last, the order of the holes not being attended to,
nl(n-1)l/(n-r)ri(r-1)L

(22.) The number of ways in which n letters, all alike, can be distributed
into 7 pigeon-holes, the order of the holes to be attended to, empty holes to
be excluded, i8 ,—,C,—;.

(28.) Same as last, empty holes being admitted, ,,,,C,_;.

(24.) Same as last, no hole to contain less than g letters, ,_;_.(q_1)Cr—;-

(25.) The number of ways of deranging a row of n letters so that no letter
may be followed by the letter which originally followed it is nj+ (= — 1);.

{26.) The number of ways of deranging m+n terms so that m are dis-
placed and n not displaced is (m+ n)!mj/m!n!.

(27.) The number of ways in which r different things can be distributed
among n-+p persons so that certain n of those persons may each have one at
least is

-1
S,=Mn+p)r-n(n+p- 1)’+7in2—'—l(n+p -2)r—-. ..
Hence prove that
Sy=8= 1+ v o =8y =0, Sp=n!, Spn= (g+p) @+1)L
(Wolstenholme.)

(28.) Fifteen school-girls walk out arranged in threes. How many times
can they go out so that no two are twice together? (See Cayley’s Works, vol.
1., p. 481.)

ExERcISES IV.

Topological.
(1.) The number of sides of a complete n-point is 4n(n-1), and the
number of vertices of a complete n-side is the same.
" (2.) The number of triangles that can be formed with 2n lines of lengths
1,2 ..., 2nisn(n-1)(4n-5)/6.
(8.) There are n points in a plane, no three of which are collinear, How

* Exercises 19-25 are solved in Whitworth's Choice and Chance; q.v.
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many closed r-sided figures can be formed by joining the points by straight
lines?

(4.) If m points in one straight line be joined to n points in another in
every possible way, show that, exclusive of the m+ n given points, there are
mn (m —1) (n - 1)/2 points of intersection.

(5.) On three straight lines, 4, B, C, are taken [, m, n points respectively,
no one of which is a point of intersection. Show that the number of triangles
which can be formed by taking three of the I+m+n points is § (m+n) (n+1)
(I+m)—mn-nl-lm.

(6.) There are n points in a plane, no three of which are collinear and no
four concyclic. Through every two of the points is drawn a straight line and
through every three a circle. Assuming each straight line to cut each circle
in two distinct points, find the number of the intersections of straight lines
with circles.

(7.) In a convex polygon of n sides the number of exterior intersections of
diagonals is 47 (n - 3) (n - 4) (n — 5), and the number of interior intersections
is ggn (n-1) (n - 2) (n - 3).

(8.) There are n points in space, no three of which are collinear, and no
four coplanar. A plane is drawn through every three. Find, 1st, the num-
ber of distinct lines of intersections of these planes; 2nd, the number of these
lines of intersection which pass through one of the given n points; 3rd, the
number of distinct points of intersection exclusive of the original n points.

(9.) Outof nstraightlines1,2, ..., ninches long respectively, four can be
chosen to form a pericyclic quadrilateral in {2n(n - 2)(2n—5) -8 +38(-1)*}/48
ways.

(10.) Show that n straight lines, no two of which are parallel and no three
concurrent, divide a plane into } (n2+n+2) regions. Hence, or otherwise,
show that n planes through the centre of a sphere, no three of which are
coaxial, divide its surface into 7% —n+ 2 regions.

(11.) Show that two pencils of straight lines lying in the same plane, one
containing m the other n, divide the plane into mn+2m+2n -1 regions, it
being supposed that no two of the lines are parallel or coincident.

(12.) If any number of closed curves be drawn in a plane each cutting all
the others, and if #n, be the number of points through which  curves pass,
the number of distinct closed areas formed by the plexus is

1+ng+2n5+. . o4y +. ..



CHAPTER XXIV.

General Theory of Inequalities.
Maxima and Minima.

§ 1.] The subject of the present chapter is of importance in
many branches of algebra. We have already met with special
cases of inequalities in the theory of Ratio and in the discussion
of the Variation of Quadratic Functions of a single variable ; and
much of what follows is essential as a foundation for the theory
of Limits, and for the closely allied theory of Infinite Series. In
fact, the theory of inequalities forms the best introduction to the
theory of infinite series, and, for that reason, ought to be set as
much as possible on an independent basis.

§2.] We are here concerned with real algebraical quantity
merely. As we have already explained, no comparison of com-
plex numbers as to relative magnitude in the ordinary sense can
be made, because any such number is expressed in terms of two
absolutely heterogeneous units. Strictly speaking, there is a
similar difficulty in comparing real algebraical quantities which
have not the same sign; but this difficulty is met (see chap.
X11L, § 1) by an extension of the notion of inequality. It will
be remembered that « is defined to be algebraically greater or
less than b according as the reduced value of @ — b is positive
or negative. An immediate consequence of this definition is
that a positive quantity increases algebraically as it increases
numerically, but a negative quantity decreases algebraically as
it increases numerically. The neglect of this consideration is a
fruitful source of mistakes in the theory of inequalities.

§38.] From one point of view the theory of inequalities runs
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parallel to the theory of conditional equations. In fact, the
approximate numerical solution of equations depends, as we have
seen, on ‘the establishment of a series of inequalities*.

The ollowing theorems will bring out the analogies between
the two theories, and at the same time indicate the nature of
the restrictions that arise owing to the fact that the two sides of
an inequality cannot, like the two sides of an equation, be inter-
changed without altering its nature. For the sake of brevity,
we shall, for the most part, write the inequalities so that the
greater quantity is on the left, and the sign > alone appears.
The modifications necessary when the other sign appears are in
all cases obvious.

I IfP>Q,Q>R, R>S, then P>8S.

Proof—(P — Q)+(Q—- R)+(R—8)=P -8 hence,since P — Q,
Q- R, R - 8 are all positive, P - § is positive, that is, P> 8.

II. IfP>Q,then P+R>Q+R.

For (P+ R)-(Q+ R)=P—Q; hence the sign of the former
quantity is the same as the sign of the latter.

Cor. 1. If P+Q>R+8, then

P+Q-R>8, -R-8§>-P-Q, -P-Q<-R-S.

It thus appears that we may transfer a term from one side of
an inequality to another, provided we change its sign; and we
may change the signs of all the terms on both sides of an inequality,
provided we reverse the symbol of inequality.

Cor. 2. Ewery inequality may be reduced to one or other of
the forms P>0 or P<0.

In other words, every problem of inequality may be reduced
to the determination of the sign of a certain quantity.
1II. If P.>Q,, P,>Qs, ..., P,>Q,,
then P+Po+. .. +P,> Qi+ @+ ... +8Q,;
for (Pr+Py+ .. +P)—(Qi+ @t ... +Q)
S(P-Q)+ (=) + . . . +(Po— Q)
whence the theorem follows.

It should be noticed that it does not follow that, if P> @,
P,>Q,, then P,— P,> @, - Q,.

* See, for example, the proof that every equation has a root.
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IV. If P>Q, then PR>QR, and P/[R>Q/R, provided R
be positive; but PR<QR, PIR<Q/R, if R be negative.

For (P-Q)R and (P - Q)/R have both the same sign as
P —@Q if R be positive, and both the opposite sign if B be
negative.

Cor. 1. If P>QR, and R>S, then P> @8, provided € be
positive.

Cor. 2. Ewery fractional inequality can be integralised.

For example, if P/Q> R[S, then, provided @S be positive,
we have, after multiplying by @S, PS>QR; but, if @S be
negative, PS<@QR.

If there be any doubt about the sign of @S, then we may
multiply by @82 which is certainly positive, and we have
QPS*>Q*RS.

V. If P>, P;>Q., . .., P,>Q,, and all the quantities
be positive, then

PP,... P> Q. ...Q,.

For PPP,... P.>QPP; ... P,
since P,>Q, and P.P; . . . P, is positive ;

>QP; ... P,

since P,> @), and Q,P; . . . P, is positive ; and so on. Hence,
finally, we have

PP,... P> QG ... Q.

Cor. 1. If P>Q, and both be positive, then P*> Q", n being
any positive integer.

Cor. 2. If P>0Q), and both be positive, then P'>@Q"™ n
being any positive integer, and the real positive value of the nth
root being taken on both sides.

For, if P¥»= @', then, since both are real and positive,
Pz (@), by Cor. 1; that is, P= €, which contradicts our
hypothesis.

Cor. 8. If P>Q, both being positive, and n be any positive
quantity, then P"<@Q", where, if the indices are fractional,
there is the usual understanding as to the root to be taken.

Remark.—The necessity for the restrictions regarding the
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sign of the members of the inequalities in the present theorem
will appear if we consider that, although —2> -3, and - 3> -4,
yet it is not true that (—2) (-38)>(-3) (—4).

These restrictions might be removed in certain cases; for
example, it follows from — 8 >—4 that (- 8)*>(-4)’, in other
words, that — 27 >—64 : but the importance of such particular
cases does not justify their statement at length.

Cor. 4. An inequality may be rationalised if due attention be
paid to the above-mentioned restrictions regarding sign.

§4.] By means of the theorems just stated and the help of
the fundamental principle that the product of two real quantities
is positive or negative according as these quantities have the
same or opposite sign, and, in particular, that the square of any
real quantity is positive, we can solve a great many questions
regarding inequalities.

The following are some examples of the direct investigation
of inequalities ; the first four are chosen to illustrate the paral-
lelism and mutual connection between inequalities and equa-
tions :—

Example 1. Under what circumstances is
(8z-1)/(x-2)+ (22 - 3)/(x — 5)> or <5?

1st. Let us suppose that x does not lie between 2 and 5, and is not equal
to either of these values. Then (z - 2) (z —5) is positive, and we may multiply
by this factor without reversing the signs of inequality.
Hence F=(3z-1)/(x-2)+ (22 - 3)/(z - 5)> <5,
according as

(Bz-1)(z-5)+(2x-3)(z-2)><b5(z-2)(z-5),

according as 52— 23z +11> <ba?- 35z + 50,
according as 122> <39,
according as > <3}.

Under our present supposition, z cannot have the value 3}; but we con-
clude from the above that if x>5, F'>5, and if z<2, F<5.

2nd. Suppose 2<z<5. In this case (z—2)(zr—5) is negative, and we
must reverse all the signs of inequality after multiplying by it.

We therefore infer that if 2<x<33;, F<5, and if 3}<x<5, then
F<b5.

The student should observe that, as = varies from — o to + o, the sign of
the inequality is thrice reversed, namely, when =2, when =3}, and when
x=>5; the first and last reversals occur because F changes sign by passage
through an infinite value; the second reversal occurs because F passes
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through the value 5. The student should draw the graph of the func-
tion F.*
Example 2. Under what circumstances is
F=(3r-4)/(z-2)><1?
Multiplying by the positive quantity (x - 2)?, we have
(3z-4)/(z-2)> <1,

according as (3z-4) (z-2)> <(z-2)%
according as {Bz-4)- (r-2)} (z-2)> =<0,
according as 2(z~1)(x-2)><0.
Hence F>1, if z<1 or >2;

F<1, if 1<xz<?2.
Example 3. Under what circumstances is 2%+ 25z > <822+ 26 ?
23 4+ 252> <8x%+ 26,

according as % - 822+ 25¢ — 26> <0,
according as (z~2) (2% -6z +138)> <0,
according as (x-2){(z - 3)*+4}> <0.

Now (x — 8)2+4 is positive for all real values of x ; hence
3+ 252> <8x2+26,
according as > <2.
Example 4. If the positive values of the square roots be taken in all

cases, is
N2z +1)+4/(z-1)> </(8x)?

Owing to the restriction as to sign, we may square without danger of

reversing the inequality. Hence
V(2 +1)+4/(z - 1)> <4/(3z),

according as 2r+1+z-1+2,/{(2r+1)(z-1)}> <3z,
according as 2V {2z +1) (z-1)} > <O.
Now, provided z is such that the value of \/{(2x+1) (z — 1)} is real, that is,
provided z>1,

2/{(2x+1) (x -1)} >0,
therefore V@z+1)+,/(x-1)>,/(3z), if z>1.

Negative values of z less than -3 would also make /{(2z+1)(z-1)}
real ; but such values would make \/(2z+1), \/(x - 1), and /(3z) imaginary,
and, in that case, the original inequality would be meaningless.

Example 5. If z,y, z . . . be n real quantities (n - 1) 22?4 22xy.

Since all the quantities are real, 2 (z - y)2<0.

Hence, since x will appear once along with each of the remaining n-1

letters, and the same is true of y, 2, . . ., we have
(n-1)2x%- 222y < 0,
that is, (n-1) =z < 23xy,

* The graphical study of inequalities involving only one variable will be
found to be a good exercise,
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In the case where z=y=2z2=.... we have Za?=na? 23zy=2,C,z?
=n(n-1)z?% so that the inequality just becomes an equality.

When n=2, we have the theorem

22+ y2 4 2zy;
or, if we put x=,/a, y=4/b, a and b being real and positive,
a+b<24/(ab),
a theorem already established, of which the preceding may be regarded as a
generalisation. A more important generalisation of another kind will be
given presently.

Example 6. If 2,9,z . . . be n real positive quantities, and p and ¢ any

two real quantities having the same sign, then
arta + yp"'q < a;T‘yq + zqyﬂ’
nZzPte 4 TaPZxl,

We have seen that z?-yP and z%-y? will both have the same sign as
x -y, or both opposite signs, according as p and g are both positive or both
negative. Hence, in either case, (zP-yP)(z?-y9) has the positive sign.
Therefore

(P - yP) (27 - y9) 40,
whence TPH 4 ypHa 4 gPYd 4 3lyP,

If we write down the ,C, inequalities like the last, obtained by taking
every possible pair of the n quantities z, ¥, 2, . . ., and add, we obtain the
following result—

(n—1) Sxrte4 SaPys,

If we now add Zx»*¢ to both sides, we deduce

n2xPta4 SrPrd.

N.B.—If p and q have opposite signs, then

n2xPtep TxPZxd,

These theorems contain a good many others as particular cases. For
example, if we put ¢= - p, we deduce

TaPTxP 4 nl,
which, when n=38, p=1, gives
(z+y+2) (1z+1fy+1[z)<9;
whence (z+y +2) (yz + 22 +2y) < 9zY2 3
and so on.

Example 7. If z, y, z be real and not all equal, then Zz®> <3zxyz,

according as =z > <O.
For 2xd - Bzyz=Zx (Za? - ZSxy),
=323 (v -y)%
Hence the theorem, since = (x - y)? is' essentially positive.
Example 8. To show that
1 1.3...@2n-1)_ /(n+1)
Jen+l) T 2.4...2n  gn+l’
where n is any positive integer.
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From the inequality a + 6> 24/(ab) we deduce
(ern-1)+@n+1)>2/{(2n-1) (20 +1)};

whence (2n-1)[2n<4/{(2n-1)/(2n+1)} 1);
similarly (2n 3)/2 (n 1) <J1(2n 3)/(2n-1)} 2);
5/2 3<J{5/7} (n-2);
3/2.2<4/{3/5} (n-1);
1/2.1<4/{1/3} (n).
Multiplying these inequalities together, we get
1.8.5...@2n-1) 1 A).
2.4.6 ... (20 _J@n+l)
Again, n+(n+1)>2/{n(n+1)},
that is, 2n+1>2/{n(n+1)}.
Hence we have the following inequalities—
(2n+1)/2n>  {(n+1)/n} @,
(2= D/2 (n=1)>{nl(n -1} 2y,
72.85 {43} (n-2),
§/2.2>y{3/2} (n-1Y,
3/2.1>,/{2/1} (ny.

Multiplying these n inequalities together, we get

1.3.5. . (2n+1)
R >\/(n+1).
1.3.5...(2n 1) _Wn+1)
Hence 2.4.6...09n on+1 (B)-

(A) and (B) together establish the theorem in question.
Since /(n+1)/(2n+1)>\/(n+1)/(2n+2)>1/2,/(n+1), we may state the
above theorem more succinetly thus,
1 1.3...(2n-1) 1
Jen+1)” T 2.4...% ogmn+l)

DERIVED THEOREMS.

§5.] We now proceed to prove several theorems regarding
inequality which are important for their own sake, and will be
of use to us in following chapters.

If by, by, . . ., by be all positive, the fraction (a,+ay +. . . +a,)/
(by+by+. . . +b,) is not less than the least, and not greater than
the greatest, of the n fractions a,fb,, as/by, . . ., @y/by.

Let f be the least, and f’ the greatest of the n fractions,

then
ai/by < f, w/b. < f .. an/bn < f.
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Hence, since by, b,, . . ., b, are all positive,

al{fbl’ a2‘tfb2, LRI an{fbn-
Adding, we have
(m+ag+. . o +an) LF(Br+b+. . .+by);

(G +as+. . . +a)/(bi+by+. . . +b) LS
In like manner, it may be shown that

(+ap+. . .+a)/(bi+by+. .. +b,) P S

Remark.—This theorem is only one among many of the same
kind*. The reader will find no difficulty in demonstrating the
following :—

If ay, @y, . . ., @y, by, by, . .., b, be as before,and 1, 1,, . . ., I,
be n positive quantities, then 3l,a,/31,b,is not less than the least,
and not greater than the greatest, among the n fractions a,/b,, a,/b,,

. vy Onfby.

Ifay,a,. . .., b0, b0e,. . . 00, 0,0, . . ., 1, be all positive,
then {Sha,"/SLb™™ and {aae . . . @/bib, . . . b} are,
each of them, not less than the least, and not greater than the
greatest, among the n fractions a,/b,, @fbs, . . ., @ufbs.

whence

Example, to prove that
1 n/1.83... (2n-1)
§<\/z 5.4... 2n_-2<1'
Since the fractions 1/2, 3/4, . . . (2n-1)/2n are obviously in ascending
order of magnitude, we have, in the second part of the last of the theorems

just stated,
1< n 51.3...(2n—1))<2n—1
Q\/( 2.4.. .20 § 2n

Now, (2n-1)/2n=1-1/2n<1, hence the theorem follows; and it holds, be it
observed, however great n may be.

§ 6.1 If z, p, q be all positive, and p and g be integers, then
(@® — 1)/p> < (27— 1)/q according as p> <q.
Since p and ¢ are positive,
(@ -1)fp><(a"-1)/g,
according as g@®-1)><p(a?-1),

* See the interesting remarks on Mean Values in Cauchy’s Analyse
Algébrique.
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according as
(z—1){g @ +aP+. ..+ 1)-p (22 + 2%+, . .+ 1)} > <0
If p>q, we have
X=(@z-—1){g@ +aP2+. .. +1)—p @@ +a22%+...+1)},
S@-1){g@+a+. . . +2)— (p—@) (@ +ar 7 +. ..+ 1)}
Now, if 2>1,

2P+ Pt L L+ 1> (p—q) 2t

2T+ 1< gzt

X>@-Dig(p-9a'-(p—9 ¢2* %},
>q(p-gq) @ (x— 1),
>0.
Again, if 2<1,
P+ APt L+ t<(p—q) 2t
22+ 2L L L+ 1 > qz'!;

but, since # — 1 is now negative, the rest of the above reasoning
remains as before.
Hence, in both cases,

(2 - 1)[p> (2" - 1)/g.
By the same reasoning, if ¢>p,

(2 - 1)/q> (2" - 1)/p,

(@ - Dfp<(at- 1.
§7.] If x be positive, and +1, then
ma™ N (z—1)>a™—1>m(z - 1),
unless m lie between 0 and + 1, in which case
ma" (- 1)<a™—1<m(z—1).
From § 6, we have

therefore,

that 1s, if p<q,

(&-1)><(p/g) (¢2-1) (1),
according as p> <¢, where £ is any positive quantity =# 1, and
p and ¢ positive integers. In (1) we may put 2" for ¢, where 2
is any positive quantity =1 (the real positive value of the gth
root to be taken), and we may put m for p/q, where m is any
positive commensurable quantity. (1) then becomes

2" —1><m (z—1) (2),
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according as m><1, which is part of the theorem to be
established.

In (2) we may replace # by 1/z, where # is any positive
quantity +1, and the inequality will still hold.
Hence 1/z)y"-1><m(1/z-1) 3),
according as m><l,

If we multiply (8) by — 2™, we deduce

" -1<>ma™* (x—1),

that is, ma™ (w—-1)><a™—1,
according as m> <1,

We have thus established the theorem for positive values
of m.
Next, let m=—n where n is any positive commensurable

quantity. Then
"= 1><(—n)(z-1),

according as 1-2"><—na"(z—-1),

according as " —1<>na"(x— 1),
na™*t —nat > <a™ - 1.

Add 2™+ — 2" to both sides, and we see that

z"—1><(-n)(z—1),
according as
r+1)a"(z-1)><a™—1.

Now, since = is positive, n+ 1>1, therefore, by what we
have already proved,
(n+1)a"(z-1)>2"1 -1,
Hence "= 1>(—n)(z-1) (4).
In (4) we may write 1/« for #; and then we have
(1/z)™—1>(—n) (1/z—1).
If we multiply by — 2", this last inequality becomes
z"-1<(-n)z " (z-1),
that is, (-n)z " (z-1)>z"-1.
Hence, if 7 be negative,
ma™ (@ —1)>a™-1>m(z - 1) ;
which completes the demonstration.
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Cor. If 2 and y be any two unequal positive quantities, we
may replace # in the above theorem by z/y. On multiplying
throughout by %™, we thus deduce the following—

If z and y be positive and unequal, then

ma" " (@ - y)>a" — Yy >my™ (z - y),
unless m lie between 0 and + 1, in which case
ma™ !t (z - y)<a™—y"<my™ ' (z — y).

We have been careful to state and prove the inequality of
the present section in its most general form because of its great
importance : much of what follows, and many theorems in the
following chapter, are in fact consequences of it*,

Example 1. Show that, if « be positive, (1+z)™ always lies between
1+mz and (1+4x)/{1+(1-m)=z}, provided mz<1+z.
Suppose, for example, that m is positive and <1. Then, by the theorem
of the present section,
m(l+z)mlr<(l+z)™-1<mz.
Hence l+z)m<l+4mz. ~
Also, 1+ z)m-1>mz (1+2)™/(1+x),
{1-mx/(1+z)} (1+2z)m>1.
If mx<1+z, 1- mz/(1+x) is positive, and we deduce
(1 +2)y=>1/{1 -mz|(1+2)},
>1+2)/{1l+ (1-m)z}.
The other cases may be established in like manner,
Remark.—1It should be observed that
(Lxz)"> <l+mz,
according as m does not or does lie between 0 and + 1.
Example 2. Show that, if u;, u, . . ., u, be all positive, then
(LT4w) T+uy) o oo (T4u)>Ttuj g+ o o o +uy,;
also that, if u,, u, . . ., u, be all positive and each less than 1, then
LT-u)(l-up) « o I-uy)>l-uy~—uy— . .. —u,.
The first part of the theorem is obvious from the identity
(T4u) (L4uy) « o o (L+u,) =1+ 2wy + Sugp+ Zutgy+ o o o +UUy o o .
The latter part may be proved, step by step, thus—
l-uy=1-u.
(1) (1 —ug) =1 -ty — 2ty + Uty
>1-u —u,.

* Several mathematical writers have noticed the unity introduced into
the elements of algebraical analysis by the use of this inequality. See
especially Schlomilch’s Handbuch der Algebraischen Analysis. The secret of
its power lies in the fact that it contains as a particular case the fundamental
limit theorem upon which depends the differentation of an algebraic function.
The use of the theorem has been considerably extended in the present volume.
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Hence, since 1 —u, is positive,
(1 =) (1 = ug) (1 - ug) > (1 - ug) (1 —uy —uy),
>1—uy =ty — Uy + g (U + ),

>1 -y —uy —ug.
And so on.

These inequalities are a generalisation of (1+z)*>1+nz (x<1 andn a
positive integer). They are useful in the theory of infinite products.

§8.] The arithmetic mean of n positive quantities is not less
than their geometric mean.
Let us suppose this theorem to hold for = quantities

@, b, ¢, ..., k and let / be one more positive quantity. By
hypothesis,

(@+b+c+. .. .+k)nL(abe. . . k"
that is,

a+b+c+. .. .+EL<n(abe. . . k)"

Therefore

a+b+c+. . . +k+Ild<n(abe. . k)" +1
Now,

n(abe . . . K" +1L(n+1) (abe . . . kle+)
provided
niabe . . . kI 1 (n+ 1) {abe . . . FLfIrH e,

L(n+1){abe . . . kjIHMet,
that is, provided
ngt+ 14 (n+ 1) &
where et —gbe ... K[
that is, provided
(n+1) " (§-1)é+ -1,
which is true by § 7.

Hence, if our theorem hold for » quantities, it will hold for
n+1. Now we have seen that (@ +b)/2<(abd)}, that is, the
theorem holds for 2 quantities ; therefore it holds for 3 ; there-
fore for 4; and so on. Hence we have in general

(@+b+c+...+k)/nd(abe . .. k"

It is, of course, obvious that the inequality becomes an
equality when a=b=c=...=4
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There is another proof of this theorem so interesting and
fundamental in its character that it deserves mention here*.

Consider the geometric mean (abc. . . k). If a, b, ¢, . . .
be not all equal, replace the greatest and least of them, say o
and £, by (@ + £)/2; then, since {(a+ £)/2}*>ak, the result has
been to increase the geometric mean, while the arithmetic mean
of the n quantities (¢ +£)/2, b, ¢, . . ., (a+ k)/2 is evidently the
same as the arithmetic mean of @, b, ¢, . . ., £ If the new set
of n quantities be not all equal, replace the greatest and least as
before; and so on.

By repeating this process sufficiently often, we can make all
the quantities as nearly equal as we please; and then the
geometric mean becomes equal to the arithmetic mean.

But, since the latter has remained unaltered throughout, and
the former has been increased at each step, it follows that the
first geometric mean, namely, (abc . . . k)" is less than the
arithmetic mean, namely, (@ +b+c+ . . . +k)/n

As an illustration of this reasoning, we have (1.3.5.9)%
<(5.83.5.50%<(5.4.4. 5 <(4'5.4°5. 4'5 . 45 i<d5<(1+3
+5+9)/4.

Cor. Ifa,b, ...,k ben positive quantities, and p, q, . . ., t be
n posttive commensurable quantities, then

pa+gb+. . . +tk

p+ q+ +t d;(apbq .« . e k‘)l/(P+q+. . --H)'

It is obvious that we are only concerned with the ratios

p:iq:...:t Hencewe may replace p, ¢, . . ., ¢ by positive
integral numbers proportional to them. It is, therefore, suffi-
cient to prove the theorem on the hypothesis that p, ¢, . . ., ¢

are positive integers. It then becomes a mere particular.case of
the theorem of the present paragraph, namely, that the arithmetic
mean of p+¢ +. . . + ¢ positive quantities, p of which are equal
toa, gtod,. . ., ttok, is not less than their geometric mean.

* See also the ingenious proof of the theorem given by Cauchy (4nalyse
Algébrique, p. 457), who seems to have been the first to state the theorem in
its most general form.
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Example 1. Show that, if @, b, . . ., k be n positive quantities,
2 2 2\ a+d+. . . +k
<£";;bb—:_+;kk) <aobd. . K

{(a+b+. .. +k)a+b+---+k
n

The first part of the proposition follows from the above corollary by taking
p=a, ¢=b, . .., k=c.
The second inequality is obviously equivalent to
(Za)“ (Ea)b (Za)"} 1
na nb) " \nk ’

which again is equivalent to

(Epa)P“ <2pa>P’) (Epa)l”‘
i o R e I
npa npb npk
where p is a positive integer which may be so chosen that pa, pb, . . ., pk are
all positive integers., We shall therefore lose no generality by supposing
a, b, ¢, . . ., k to be positive integers.

Consider now a positive quantities each equal to Za/na, b positive quantities

each equal to =b/nb, &c. The geometric mean of these is not greater than
their arithmetic mean. Hence

(G Y- G i s

Therefore (i—;)u <i~;—l>b [N (i—:)kbl.
Example 2. Provethat1.3 ... (2n-1)<n®
We have {143+ ... 4+@n-1)}n>{1.83 ... (2n-1)}/m,
that is, mn>{1.3 ... @2n-1)}/m,
Hence n*> 1.3 ... (2n-1).
§9.] Ifa, b, . . ., k'be n positive quantities, and p,q, . . ., ¢
be n positive quantities, then
a™ + gb™ + . . .+ k" a+qgb+. . . +tE\™
£ p+qq+. .o+t <t:’><pp+?1+. Y ) ),
according as m does not or does lie between 0 and + 1.
If we denote
plp+g+...+8), g/p+qg+...+0), &,
by A, p,. . ., 7, and
afAa+pb+ . . . +7k), E(Qa+pb+. . . +7k), &,
by z, 9, . . ., w, so that
A4+p 4+, 47 =1 2),
Ae+py+. . +Tw=1 3),
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then, dividing both sides of (1) by
{(pa+gb+ .. . +th)/(p+q+ .. .+8)"
we have to prove that
AZ™+ py™ +. . +Twm<L 1 (4),
according as m does not or does lie between 0 and + 1.
Now, by § 7, if m does not lie between 0 and +1, 2™ -1
dm(x-1), y"—1<m (y—1), &e. Therefore, since A, p, &ec., are

positive,
SA (2™ - 1)< 3 m (z— 1),

<m {Shx — 3},
$m(1-1),
by (2) and (3), that is,
SAz™ — SA<0.
Hence SAz™< 1.
In like manner, we show that, if m lies between 0 and + 1,
SAz" P 1.
Cor. If we make p = q = =t, we have
a™+ b +7; <1::}><oa+b+n. .+Ic> )%,

that is to say, the arithmetical mean of the mth powers of n positive
quantities is not less or not greater than the mth power of their arith-
metical mean, according as m does not or does lie between 0 and + 1.

Remark.—It is obvious that each of the inequalities (1), (4),
(5) becomes an equality if a=b=. . .=k if m=0, or if m=1.

Example. Show that ZAz™, considered as a function of m, increases as m
increases when m> +1, and decreases as m increases when m< -1,
N Ky V... Z, Y, 2 ... being as above.

1st. Let m>1. We have to show that Z\a™*">Z\z™, where r is very
small and positive, that is,

ZAz™ (27 - 1) >0,
Now, Zha™ (27 — 1) > Shemrer1 (2 - 1),
>rINz™t7-1(z - 1),

* The earliest notice of this theorem with which we are acquainted is in
Reynaud and Duhamel’s Problemes et Dévelopmens sur Diverses Parties des
Mathématiques (1823), p. 155. Its surroundings seem to indicate that it
was suggested by Cauchy’s theorem of § 8. The original proof rests on a
maximum or minimum theorem, established by means of the Differential
Calculus; and the elementary proofs hitherto given have usually involved
the use of infinite series.
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Since m=>1, m+7>1, therefore (m+r) 2™+ (z - 1) > (m+7) (x - 1), that
is, amtr-l(z - 1)>(z - 1).

Hence ZAa™ (a7 — 1) >7rZN (z - 1),
>7(2\z - ZN),
>0.

Therefore ShzmET > Inx™,

2nd. Let m< -1.
Zha™ (1" - 1) <rZNz™ (z - 1).
Now (m+1)a™(x—1)>(m+1)(x~1), since m+1 is negative. Hence,
dividing by the negative quantity m+1, we have
™ (z-1)<(z-1).

Hence INz™ (27 - 1) <72\ (x - 1),
<r(2\z - ZN),
<0.

Therefore, Szt < T,

ExERCISES V.*

(1.) For what values of [y is (a+b) xy/(az + by) + (ax + by)/(a+b) ?

(2.) If z, y, z be any real quantities, and x>y >z, then ziy +y% + 24z >
zyt+y2t+ 2zt

(8.) If =, y, z be any real quantities, then Z(y -2) (z-x)+0 and Zyz/
2zt 1.

(4.) If 2%+ y%+ 22+ 22yz=1, then will all or none of the quantities z, y, 2
lie between —1 and +1.

(5.) If x and m be positive integers, show that

g < (x+1) (2z+ 1) (322 + 3z + 1)™[2. 3™ < (x + 1)¥n+3,

(6.) (a2/0)t+ (0%a)t <t + 0k,

(7.) If &, 2, ..., 2, all have the same sign, and 1 +2;, 1+, ...,1+x,
be all positive, then

II(l+z)>1+2m.

(8.) Prove that 8zyz + II (y +2) » $33.

9) If z,y,2 ...,a b c...be two sets, each containing n real
quantities positive or negative, show that

Za?Za? <4 (Zax)?;
also that, if all the quantities be positive,
2 (z/a)|Zz <4 Zx[/Zax;
and, if 2r=1, PAVER S

(10.) If =«,, z, . .., x, and also ¥, Y5, . . ., Y, be positive and in
ascending or in descending order of magnitude, then
2z %y, | 2oy, > 2, 2, . (Laplace.)

* Unless the contrary is stated, all letters in this set of exercises stand
for real positive quantities.
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(11.) Ifa, d, . . ., I bein A, P., show that
a?? . .. B>aMh
(12.) For what values of z is (z - 38)/(2*+x+1)> (z - 4)/(z? -z +1)?
(13.) Find the limits of x and y in order that
c>ax+by>d,
a>cx +dy>b;

where ad - be +0.

(14.) «f — 25y + 4aty® — 2a3y> + 422yt — zy® +y°>0, for all real values of
x and y.

(15.) Is 102+ 5y2+1322> = <8yz + 2zy + 182z ?

(16.) If p<2—4/2, then /(22 +y2) +p/(Ty)>T+¥.

(17.) Is \/(a®+ab+02) — \/(a® - ab + V%) > = <2,/ (ab) ?

(18.) If z and a be positive, between what limits must « lie in order that
z+a>y/{3(@+za+a®)} +a/{4(a% - za+a?)}?

(19.) If z<1, then {z+4/(a?-1)}i+ {z - /(a2 -1)}¥ <2,

(20.) If all the three quantities \/{a (b+c¢ —a)}, \/{D (c+a D)}, N/ {c (a+
b-¢)} be real, then the sum of any two is greater than the third.

(21.) If the sum of any two of the three z, y, z be greater than the third,
then $2z322> Za + xyz.

(22.) 21z » Za8[zdy33.

(23.) If p, denote the sum of the products r at a time of a, b, ¢, d (each
positive and <1), then p,+ 2p,> 2p;.

(24.) ZatqayzZw.

(25.) If s=a+b+c+. . .n terms, then Zs/(s —a) < n*/(n-1).

(26.) Ifm>1, <1, and mr <14z, then 1/(lxmz)>(1+z)m>1+mz,

If m<l, z<1, mz<l+4z, then (1+2)/{lx(1-m)z}<(l=z)"<

1xmz.

(27.) If z=2a™+y", then 2™ > <z™+y™ according as m> <n.

(28.) If x and y be unequal, and z +y < 2a, then 2™+ y™>2a™, m being a
positive integer.

(29.) n{(n+1)/r -1} <14+1/2+. .. +1/n<n{l-1/(n+1)Y"+1/(n+1)}.

(Schlomilch, Zeitschr. f. Math., vol. m1. p. 25.)

(80.) Ifxyzy . . . 2=y I (1+z)<(1+y)™

(31.) If @, b, . . ., k be n positive quantities arranged in ascending order
of magnitude, and if M,={Za"[n}¥", N,={Za'/"}|7[n, then

(ab . .. k)r<DM,<M,<...<k,
(ab ... k)m<...<N3<N,<N,.
(Schlomileh, Zeitschr. f. Math., vol. 1. p..301.)
(32.) If p, g, r be all unequal, and z+1, then Zpxd—">Zp.
(33.) If n be integral, and z and n each >1, then
" - 1>n ()2 - g (-1)2),
(84.) Prove for z, y, z that (2Zyz ~ Z2%)2* ¢ ()31 (S — 22)%,
(85.) If s=a;+ay+. . .+a,, then Il (s/a, — 1) (n - 1)%
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(36.) 3m (3m+1)>4 (3ml)im,

(37.) If s,, be the sum of the nth powers of a,, a,, . . ., a,, and p,, the
sum of their products m at a time, then (n - 1)!s,, < (n — m)!m!p,,.

(88.) Ifa;>ay,>. . .>a,, then

(@r- a)" 1> (n=1)"" (@, - ay) (ag = ag) - - - (g~ )

Hence, or otherwise, show that {(n—1)!}2>nn-2,

(39.) Which is the greatest of the numbers /2, 3, ¥4, . . . ?

(40.) If there be m positive quantities z,, z,,. . ., z,, each>1, and if
&, £g, + « «, &, be the arithmetic means, or the geometric means, of all but
z,, all but @,, . . ., all but z,, then Mz % + 1155,

(41.) If a, b, ¢ be such that the sum of any two is greater than the third,
and z, y, z such that 2z is positive, then, if Za?/z=0, show that zyz is
negative.

(42.) If A=ay+ag+ ... +a,, B=b+by+ ... +b,, then =(a,/4d-
b,/B) (a,./b,)" has the same sign as n for all finite values of =.

(Math. Trip., 1870.)

APPLICATIONS TO THE THEORY OF MAXIMA AND MINIMA.

§ 10.] The general nature of the connection between the
theory of maxima and minima and the theory of inequalities
may be illustrated as follows :—Let ¢ (2, 9, 2), f(#, ¥, 2) be any
two functions of z, », 2, and suppose that for all values con-
sistent with the condition

ACE z)=A4 (1>1

we have the inequality

¢ (2, 9, 2)PS (2, 9, 2) (@)
If we can find values of , g, z say a, b, ¢, which satisfy the
equation (1) and at the same time make the 1nequa11ty (2) an
equality, then ¢ (@, b, ¢) is a maximum value of ¢ (2, ¥, z). For,
by hypothesis, ¢(a, b, ¢)=A4 and ¢(z, y, 2)PA; therefore
¢ (2, y, z) cannot, for the values of #, g, z considered, be greater
than A, that is, than ¢ (a, b, ¢).

Again, if we consider all values of #, ¥, z for which

¢($, Y, Z):A (1,):
if we have S @y 2L (2 9y, 2)
<4 (2

it follows in like manner that, if @, b, ¢ be such that ¢(a, b, ¢)=A4,
S(a, b, ¢)=A, then f(a, b, ¢) is a minimum value of £ (2, ¥, 2).
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The reasoning is, of course, not restricted to the case of three
variables, although for the sake of brevity we have spoken of
only three. The nature of this method for finding turning
values may be described by saying that such values arise from
exceptional or limiting cases of an inequality.

§11.] The reader cannot fail to be struck by the reciprocal
character of the two theorems deduced in last section from the
same inequality. The general character of this reciprocity will
be made clear by the following useful general theorem :—

If for all values of @, ¥y, z, consistent with the condition

f(x’ Y Z):A,

¢ (2, ¥, 2) have a mazimum value ¢ (@, b, c)=B say (where B depends,
of course, upon A), and if when A increases B also increases, and
vice versa, then for all values of , y, z, consistent with the condition

¢'('Z1 Y, z):B;

S (@, y, z) will have @ minimum value f (@, b, ¢)= A.

Proof.—Let 4’ < A, then, by hypothesis, when f(z, 3, 2) = A4,
¢ (2, y, 2) B where B’ < B.

Hence, if ¢ (2, v, 2) =B, f(2, y, )<< A ; for suppose if possible
that f(z, y, z2) = A" < A, then we should have ¢ (z, y, 2) 3 B, that
is, since B' < B, ¢ (2, y, z) could not be equal to B as required.
Hence, if a, b, ¢ be such that ¢ (a, b, ¢)=B and f(a, b, c)=A4,
Sf(a, b, ¢) is a minimum value of f(z, ¥, 2).

By means of the two general theorems just proved, we can
deduce the solution of a large number of maximum and minimum
problems from the inequalities established in the present chapter.

§12.] From the theorem of § 8 we deduce immediately the
two following :—

L Ifazy,z, . .. benpositive quantities subject to the condition
Sz=Fk,
then thelr product Tz has a mazimum value, (k/n)", when z=
y=...=k/n
II. Ifa vy, 2, ... ben positive quantities subject to the
condition

Mz =%k,
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then their sum 3z has a minimum value, nk'™, when z=y=. . .
= i,

The second of these might be deduced from the first by the
reciprocity-theorem.

From the corollary in § 8 we deduce the following :—

III. If a, y, 2, . . . be n positive quantities subject to the
condition
Spe=Fk,
where p, q, v, . . . are all positive constants, then Ta? has
mazimum value, {k/Zp}*P, when z=y=. . .=k/3p.

IV. If 2,9, z, ... be n positive quantities subject to the
condition

a? =,
where p, q, 7, . . . are all positive constants, then Spx has a
minimum value, (Sp) K%, when w=y=. . .=kV?»,

From the last pair we can deduce the following, which are
still more general :—

Vo Ifsuv,. o L hmn,. . p,q 7, . .. beall positive
constants, and x, y, z, . . . be all positive, then if
S\at=k,

Ia? is @ mazimum when
NG [p = mpy™[q=nv2"[r=. . .
VI. Andif Ia? =k,
SA\2t is @ minimum when
N [p = mpy™[q =nve"[r=. . .
Proof.—Denote p/l, g/m, r/n, . . . by o, By, . . .}

and let A\t =af, py"=Pn, vi'=vy, &e.
So that z=(aé/AVE, &e. 3 aP = (ab[N), &e.
We then have in the first case
Saf =k W,
Ta? = II (o/N)*TIE (@).
Hence, since (a/\)%, (B/w)8, . . . are all constant and all positive,

Iz® is a maximum when II¢* is a maximum. Now, under the
condition (1), IIé* is a maximum when é=9=. . .=4/3a.
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Hence I#? is a maximum when A\a'/a = py™/B=. . ., that is,

when L p=mpy™/g=. . .
The maximum value of Iz? is II(a/A)* (k/Sa)®®, and the
corresponding values of z, y, 7, . . . are given by

@ = (ahAZa)", . . .
Applying the reciprocity-theorem, we see that, if
Ia? = T (a/A)" (k/5a)™,
the minimum value of 3A2’ is %, corresponding to
z = (ak/AZa) . . .
Whence, putting j=II (a/A)* (k/3a)*, we see that, if Ma?=j,
the minimum value of 3Aa* is Sa {j/II (a/A)*}'** corresponding

to
@ =[a {J/IL (a/N)2}2e/A0 .

Cor. If we put I=m=n=...=1 p=g=r=...=1,
we obtain the following particular cases, which are of frequent
occurrence :—

If 3he =k, Oz is @ maximum when \e=py=. . .;

If o =k, Sha is @ minimum when \p=py=. . .

Example 1. The cube is the rectangular parallelopiped of maximum
volume for given surface, and of minimum surface for given volume.

If we denote the lengths of three adjacent edges of a regtangular parallelo-
piped by z, y, z, its surface is 2 (yz+2zx+zy) and its volume is zyz. If we
put {=yz, n=2x, {=zy, the surface is 2 (¢(+7+¢) and the volume ,/(¢n¢).
Hence, analytically considered, the problem is to make ¢7¢ a maximum when
£+n+ { is given, and to make £+7+ ¢ a minimum when £y¢ is given. This,
by Th. I, is done in either case by making {=5=¢, that is, yz=za=uay;
whence z=y =z,

Example 2. The equilateral triangle has maximum area for given peri-
meter, and minimum perimeter for given area.

The area is A=./s (s—a)(s-b)(s—c). Let x=s-a,y=s5-b, 2=5-¢;
then z+y+2=s; and the area is y/szyz. Since, in the first place, s is given,
we have merely to make zyz a maximum subject to the condition z +y +z=s.
This leads to =y =z (by Th. I.).

Next, let A be given.

Then (+y+2)zyz=A2? (1)
s=A%[zyz 2).

If we put §=a?z, n=xy%, {=xyz?, we have
E+n+=A2 1);

5= A (Eng ) ().
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Hence, to make s a minimum when A is given. we have to make {n¢ a
mazimum, subject to the condition (1’). This leads to {=%=¢, that is,
2?yz=zy’2 =zyz*; whence z=y=z.

Example 3. To construct a right circular cylinder of given volume and
minimum total surface.

Let « be the radius of the ends, and y the height of the cylinder. The
total surface is 27 (2% + xy), and the volume is 7.

We have, therefore, to make u=z2+2zy a minimum, subject to the
condition z%y=c. We have

u=a?+zy=cly+clz 1);
Ty =c (2).
Let 1/z=2¢ 1ly=n;
then u=c(2¢+7) (1)3
£y=1/4c (2.

‘We have now to make 2¢ + 7 (that is, £+ £+ %) a minimum, subject to the
condition #2jp=constant. This, by Th. II., leads to £=%=%, which gives
2c=y. Hence the height of the cylinder is equal to its diameter.

By the reciprocity-theorem (applied to the problem as originally stated in
terms of x and y), it is obvious that a cylinder of this shape also has maximum
volume for given total surface.

§ 13.] From the inequality of § 9 we infer the following :-—

VII. If m do not lie between O und + 1, and if p, q, 7, . . . be
all constant and positive, then, for all positive values of 2, vy, 2, . . .
such that

Spr="Fk,
Spa™ (m unchanged) has o minimum value when x=y=2z=. . .

If m lie between 0 and + 1, instead of o minimum we have a
maximum.

In stating the reciprocal theorem it is necessary to notice
that, in the inequality, Spzx occurs raised to the mth power; so’
that, if m be negative, a maximum of Spz corresponds to a mini-
mum of (Spz)™. Attending to this point, we see that—

VIII. If m>+1, and if p,q, 7, . . . be all constant and
positive, then, for all positive values of #, y, z, . . . such that

Spa™ =k (m unchanged),
Spa has a maximum value when x=y=2z=. . .

If m<+1, we have a minimum instead of & mazimum.

Theorem VIII. might also be deduced from Theorem VII. by
the substitution &= 2™, n=y™ {=2" &ec. . . .
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§ 14.] Theorem VII. may be generalised by a slight trans-
formation into the following :—
IX. If m/n do not lie between 0 and + 1, and if p, q, 7, . . .,
N p, v, ... be all constant and positive, then, for all positive
values of x, ¥y, %, . . . such that
SAz" =k (n unchanged),
Spaz™ (m unchanged) has a minimum value when pz"/Az"=

"yt =- -
If m/n lie between 0 and + 1, instead of a minimum we have a

mazimum.
The transformation in question is as follows:—

Let A" =p§  pyt=om, . .. (1),
pat=p¢, qyt=on’, . .. 2.

From the first two equations in (1) and (2) we deduce
1= pam\, p/ 1= Mg "/p, &c. Hence, if we take fn=m,

that is, f=m/n, p, o, . . . will be all constant and obviously all
positive ; we have, in fact,
E=(pa™ "MWV, = (gt ey, L (),
p=(N[p)-, o=([gn, ... 4);

and we have now to make Sp& a maximum or minimum, subject
to the condition
Spé=k.
Now, by Th. VII., 3p¢ is a minimum or maximum, according
as f does not or does lie between 0 and + 1, when é=9=. . .
Thus the conditions for a turning value are

(pxm—n/)\)l/(f—l) — (qym—n/,t)l/(f—l) =. ..
which lead at once to

P = qy"fpyt=. . .

Cor. A very common case is that where n=1, A=p=. . .
=1.

We then have, subject to the condition Sz=4k, Spa™ a
minimum or maximum when pa™'=g¢y™'=. . ., according as
m does not or does lie between 0 and + 1.

§15.] We have hitherto restricted p, ¢, r, . . . in the in-
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equality of §9 to be constant. This is unnecessary ; they may
be functions of the variables, provided they be such that they
remain positive for all positive values of @, 7, 2.

We therefore have the following theorem and its reciprocal
(the last omitted for brevity) :—

X. Ifp q r ... be functions of %, v, 2, . . . which are
real and positive jfor all real and positive values of x, ¥, z, . . .,
then, for all positive values of z, ¥, 2z, . . . which satisfy

Spx =F,

Epa™) Sp)™! (m unchanged) has @ mintmum or mazimum value
when x=y=. . ., according as m does not or does lie between
0 and +1.

For example, we may obviously put p=Az?% g=puy?, . . .

We thus deduce that if m> +1 or <O, then, for all positive values of
z, Y, 2, . . . consistent with Z\zetl=Fk, (SAg™mte) (ZAx®)™1is a minimum
when z=y= ...

Theorem X. may again be transformed into others in appear-
ance more general, by methods which the student will readily
divine after the illustrations already given.

Also the inequalities of § 8 may be used to deduce maxima
and minima theorems in the same way as those of § 9 were used
in the proof of Theorem X.

Example 1. To find the minimum value of w=x+y+z, subject to the
conditions a/z+bfy +¢/z=1,2>0,y >0, >0, a, b, ¢ being positive constants.
Let z=p¢, y=oy, z=1{;

alz=pt, bly=on, clz=1f
Hence pf~1=af[z/*1. If we take f= -1, we therefore get
z=pat, y=Yonl, z=ic

alr=nJat, by=iby, cz=4/ct.

The problem now is to make u=3,/af~! a minimum subject to the con-
dition Z/af=1. By Th. VIIL. this is accomplished by making é=%=¢
Hence ¢=n=¢=1/Z/a. The minimum value required is therefore
(ZA/a)?; the corresponding values of z, y, z are \/aZy/a, \/DZ\/a, \/cZ\ a
respectively.

Example 2. To find a point within a triangle such that the sum of the
mth powers of its distances from the sides shall be a minimum (m>1).

Let a, b, ¢ be the sides, =, y, z the three distances; then we have to make
u=2Zz™ a minimum, subject to the condition Zax=2A, where A is the area
of the triangle.
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If pgm=a™, pt =az, then pm-1=am, p=am™(m-1),
Hence, if we put az=a™(m-1)¢, by =bm(n-1)y, cz=c™(m1) ¢, we have
u=Zam/m-1)gm,
2A =Zam(m-1) ¢,

The solution is therefore given by & =7 ={=24/Za™(m-1).
Whence z=2Aa (MY [Sam(m-Y),  y=G&e., z=&e.

Example 8. Show that, if 23+y4+25=3, then (2+y5+2f) (x®+y>+2%)
has a minimum value for all positive values of z, y, 2 when z=y=2=1.

This follows from Th. X., if we put m=2, p=a2, ¢=y3, r=2% which is
legitimate since x, y, z are all positive.

Example 4. If 2, 9,2 . .. be n positive quantities, and m do not lie
between 0 and 1, show that the least possible value of (£z™1) (Z1/x)™~1 is n™.

This follows at once from the inequality of § 9, if we put p=1/z,
qg=1ly, ... .

§ 16.] The field of application of some of the foregoing
theorems can be greatly extended by the use of undetermined
multipliers in a manner indicated by Grillet*.

Suppose, for example, it were required to discuss the turning
values of the function

u = (az+p) (bz+q)" (cx+7)" (1),
where /, m, n are all positive.
We may write
u = (Aaz + Ap) (ubx + pg)™ (vex + vr)"[Nu™ 2),
where A, u, v are three arbitrary quantities, which we may sub-
ject to any three conditions we please.
Let the first condition be

INa + mpb + nve=0 3);
then we have

l(Aaz + A\p) +m (ubz + nq) + n (vex + vr)
=I\p +mug +nvr=Fk (4),
where £ is an arbitrary positive constant.

This being so, we see by Th. IIT. that II (Aaz + Ap) is a
maximum when

Aoz + Ap = pbz + pg =vex + vr
=k/31 (5).

* Nouvelles Annales de Math., ser. 1., tt. 9, 16.
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The four equations (3) and (5) are not more than sufficient
to exhaust the three conditions on A, g, v, and to determine 2.

We can easily determine @ by itself. In fact, from (3) and
(5) we deduce at once

laf(az + p) + mb/(bz + q) + nef(cz +7) =0 (6).

This quadratic gives two values for #, say @, and 2,; and the
equations (5) give two corresponding sets of values for A, g, v,
in terms of £ say Ay, m, v and Ay, p, v

If, then, Aj/u,™v,® be positive, #; will correspond to a maxi-
mum value of #; if Alw,™,™ be negative, #; will correspond to
a minimum value of »; and the like for z,.

Example 1. To discuss u= (z+3)%(x - 3).

We have u=(A\z + 3\)* (uz — 3u)/A2u.
Now 2 (A2 + 3N) + (ux — 3u) =k,
provided IA+u=0 1),
6N —Bu=Fk @).
Therefore (\z + 8\)?(ux — 3x) will be & maximum, provided
Az + 8\ = px — B 3).

Hence, by (1),

2/(x+3)+1/(z-38)=0;
which gives z=1. From (2) and (3) we deduce A=k/12, u= - k/6 ; so that
A% is negative.

We therefore conclude that % is a minimum when z=1.

The student should trace the graph of the function u; he will thus find
that it has also a maximum value, corresponding to z= — 3, of which this
method gives no account.

Example 2. For what values of z and y is

U= (@@ + by +¢1)2+ (a8 +bgy +09) . o L+ (anT + by +0,)°
a minimum ?

Let A;, Ay, + . +, A, be undetermined multipliers. Then we may write
u=3N\? {(ay @+ byy + 1)\ }2 (1);
and k=2N2 {(a,z + by + )N\ } 2),

where k is an arbitrary positive constant, that is, independent of z and y,
provided

Za\ =0, Zb\=0, Ze\ =k (3)-
This being so, by Th. VII., % is a minimum when
(ay+ by + )\ = (agz + Doy +eo) Ag=. . .=k[Z\? (4).

The n+2 equations, (3) and (4), just suffice for the determination of
A Ags e o or Apy T, 9
From the first two of (3), and from (4), we deduce
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Zay (@ +by +¢,) =0,
2by (ayz+byy +¢,)=0.
Hence the values of z and y corresponding to the minimum value of n are

given by the system
Za2r + Zabyy + Za e, =0,

Sa byx + Zb %y + Zbye, =0.
This is the solution of a well-known problem in the Theory of Errors of
Observation.

§ 17.] Method of Increments.—Following the method already
exemplified in the case of a function of one variable, we may
define

I=¢p(@+hy+k z+1)- (2, v, 2)
as the increment of ¢ (, y, 2). If, when #=a, y=b, z=¢, the
value of 7 be negative for all small values of %, £, I, then
¢ (a, b, ¢) is a maximum value of ¢ (2, y, 2); and if, under like
circumstances, I be positive, ¢ (a, b, ¢) is a minimum value of
é (2, ¥, 2).

Owing to the greater manifoldness of the variation, the ex-
amination of the sign of the increment when there are more
variables than one is often a matter of considerable difficulty ;
and any general theory of the subject can scarcely be established
without the use of the infinitesimal calculus.

We may, however, illustrate the method by establishing a
case of the following general theorem, which includes some of
those stated above as particular cases.

Purkiss’s Theorem*.—If ¢ (2, v, 2, . . .) f(2, 9, 2, . . .) be

symm’etn'c Sunctions of @, y, 2, ..., and if x, vy, z, . .. be
subject to an equation of the form

J@y 2 ...)=0 (1),
then ¢ (2, 9,2, . . .)has in general a turning value when =y =2

=. .., provided these conditions be not inconsistent with the
equation (1).

In our proof we shall suppose that there are only three
variables ; and so far as that is concerned it will be obvious that
there is no loss of generality. But we shall also suppose both

* Given with inadequate demonstration in the Oxford, Cambridge, and
Dublin Messenger of Mathematics, vol. 1. (1862).
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¢ (2, y, 2) and f(z, ¥, 2) to be integral functions, and this sup-
position, although it restricts the generality of the proof, renders
it amenable to elementary treatment.

We remark, in the first place, that the conditions

z=y=z and f(z, ¥, 2)=0
are in general just sufficient to determine a set of values for z, ¥, 2.
In fact, if the common value of z, ¥, z be @, then @ will be a root
of the equation f (a, @, @) =0.

Consider the functions

I=¢(@+h a+k a+l)-¢(a, a, a) and f(a+h a+k, a+l)
Each of them is evidently a symmetric function of %, £, /, and
can therefore be expanded as an integral function of the
elementary symmetric functions 34, 34k, kkl. We observe also
that, since each of the functions vanishes when 2=0, k=0, /=0,
there will be no term independent of 4, £, /.

Let us now suppose 4, £, ! to be finite multiples of the same
very small quantity #, say A=ar, k=8r, I=yr. Then Sh=r3a
=ru say, 3hk=r"3aB =1, hkl=r*w. Expanding as above in-
dicated, and remembering that by the conditions of our problem
S(@+h a+k a+l)=0, we have, if we arrange according to
powers of 7,

I=Aur + (Bw + Cv) 1* + &e. (1),
0 = Pur + (Qu? + Ro) 1* + &e. (2),
where the &c. stands for terms involving 7° and higher powers.

From (2) we have

ur =— (Qu* + Rv) r*/P + &c.,
u'r=0 + &e.,
230fr® = — So’r® + &c.,
&e. as before including powers of 7 not under the 3rd.

Hence, substituting in (1) and writing out only such terms

as contain no higher power of » than 7%, we have
I=(C~ AR/P) v+ &c.,
=—1r*(C— AR/P) So® + &ec.

Now (see chap. xv., § 10), by taking r sufficiently small, we
may cause the first term on the right to dominate the sign of I.
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Hence 7 will be negative or positive according as (CP — AR)/P
is positive or negative ; that is, ¢ (a, @, @) will be a maximum or
minimum according as (CP — A R)/P is positive or negative.

Example. Discuss the turning values of ¢ (z, ¥, 2) = zyz +b (y2 + 22 + zy),
subject to the condition 22+ y2+22=3a2
The system
z=y=2, x?+y%+22-3a2=0
has the two solutions r=y=z==*a.
If we take =y =2z= +a, we find, after expanding as above indicated,
I=(a2+ 2ab) ur + (a+b) v1?+ &e.,
0="2aur + (u? - 2v) r2
In this case, therefore, 4 =a%+ 2ab, C=a+b, P=2a, R= -2 ; and (CP — AR)/
P=2a+3b.
Hence, when z=y=z= +a, ¢ is & maximum or a minimum according as
2a + 3b is positive or negative.
In like manner, we see that, when t=y=2= —a, ¢ is & maximum or a
minimum according as — 2a + 3b is positive or negative.

ExErcises VI.¥

(1.) Find the minimum value of bcz + cay + abz when zyz=abe.

(2.) Find the maximum value of ayz when x2/a%+y2[02+ 22/c®=1.

(8.) If Za?=c, Zlz is a maximum whenz:y:z:...=l:m:n: ...

(4.) Find the turning values of Aa™@ + uy™® + vz™, subject to the condition
P+ qyb+r2¢=d.

(5.) Find the turning values of axP+by?+ cz” when xyz=d?

(6.) If zyz=a®(x+y +z), then yz+2c+ 2y is & minimum when r=y=2=
3a.

(7.) Find the turning values of (x+1) (y +m) (2 +n) where a*b¥c*=d.

(8.) Find the minimum value of az™+ b/z".

(9.) Find the turning values of (3z — 2) (z — 2)® (z - 3)2

(10.) If cx (b -y)=ay (c—2z)=bz (a-x), find the maximum value of each.

(11.) Find the turning values of z™/y" (m>n), subject to the condition
z—-y=c. (Bonnet, Nouv. dnn., ser. 1., t. 2.)

(12.) If 2Py9+ 2%P =a, then zPt74 yP*+¢ has a minimum value whenz =y =
(a/2)¥P+9); and, in general, if TxPy?=a, ZzP*? has a minimum value, a/(n - 1),
when z=y=2=. . .={af(n—-1)n}/P*+9), Discuss specially the case where
p and ¢ have opposite signs.

(18.) If aPy?+a7y®=c, then aty* is a maximum when z?-7/(ru — st) =y*~9/
(gt ~ pu), the denominators, ru—st and qt— pu, being assumed to have the
same sign. (Desboves, Questions d’Adlgebre, p. 455. Paris, 1878.)

* Here, unless the contrary is indicated, all letters denote positive
quantities.
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(14.) If p>gq, and aP+yP=qaP, then 29+y7 is & minimum when z=y =
a/2P,  State the reciprocal theorem.

(15.) Find the turning values of (az®+ by?)/s/(a%® + b%?) when 22 +y2=1.
(16.) If «;, x,, . . ., x, be each >a, and such that (z, —a) (z,~a) . .
(zp, —a)=10b", the least value of z;z, . . . x, is (a+b)" a and b being both

positive.

(17.) If f(m) denote the greatest product that can be formed with n
integers whose sum is m, show that f(m+1)/f(m)=1+1/g where q is the
integral part of m/n.

(18.) 4BCD is a rectangle, 4APQ meets BC in P, and DC produced in Q.
Find the position of 4PQ when the sum of the areas 4BP, PCQ is a
minimum.

(19.) O is a given point within a circle, and POQ and ROS are two per-
pendicular chords. Find the position of the chords when the area of the
quadrilateral PRQS is a maximum or a minimum.

(20.) Two given circles meet orthogonally at 4. PA4Q meets the circles
in P and @ respectively. Find the position of PAQ when P4.4Q is a
maximum or minimum,

(21.) To inscribe in a given sphere the right circular cone of maximum
volume.

(22.) To circumscribe about a given sphere the right circular cone of
minimum volume.

(23.) Given one of the parallel sides and also the non-parallel sides of an
isosceles trapezium, to find the fourth side in order that its area may be a
maximum.

(24.) To draw a line through the vertex of a given triangle, such that the
sum of the projections upon it of the two sides which meet in that vertex
shall be a maximum.



CHAPTER XXV.
Limits.

§ 1.] In laying down the fundamental principles of algebra,
it was necessary, at the very beginning, to admit certain limiting
cases-of the operations. Other cases of a similar kind appeared
in the development of the science; and several of them were
discussed in chap. xv. In most of these cases, however, there
was little difficulty in arriving at an appropriate interpretation ;
others, in which a difficulty did arise, were postponed for future
consideration. In the present chapter we propose to deal
specially with these critical cases of algebraical operation, to
which the generic name of ““Indeterminate Forms” has been
given. The subject is one of the highest importance, inasmuch
as it forms the basis of two of the most extensive branches of
modern mathematics—namely, the Differential Calculus and the
Theory of Infinite Series (including from one point of view the
Integral Calculus). It is too much the habit in English courses
to postpone the thorough discussion of indeterminate forms
until the student has mastered the notation of the differential
calculus. This, for several reasons, is a mistake. In the first
place, the definition of a differential coefficient involves the
evaluation of an indeterminate form; and no one can make
intelligent applications of the differential calculus who is not
familiar beforehand with the notion of a limit. Again, the
methods of the differential calculus for evaluating indeterminate
forms are often less effective than the more elementary methods
which we shall discuss below, and are always more powerful in
combination with them. Moreover the notion of a limiting value
can be applied to functions of an integral variable such as 7! and
to other functions besides, which cannot be differentiated, and
are therefore not amenable to the methods of the Differential
Calculus at all.
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§ 2.] The characteristic difficulty and the way of meeting it
will be best explained by discussing a simple example. If in
the function (2*—1)/(x—1) we put 2=2, there is no difficulty
in carrying out successively all the operations indicated by the
synthesis of the function ; the case is otherwise if we put #=1,
for we have 1°—1=0, 1-1=0, so that the last operation in-
dicated is 0/0—a case specially excluded from the fundamental
laws ; not included even under the case @/0 (@ +0) already dis-
cussed in chap. xv., § 6. The first impulse of the learner is to
assume that 0/0=1, in analogy with a/ea=1; but for this he
has no warrant in the laws of algebra.

Strictly speaking, the function (2®—1)/(z — 1) has no definite
value when z=1; that is to say, it has no value that can be
deduced from the principles hitherto laid down. This being so,
and it being obviously desirable to make as general as possible
the law that a function has a definite value corresponding to
every value of its argument, we proceed to define the value of
(#*=1)/(x—1) when #=1. In so doing we are naturally guided
by the principle of continuity, which leads us to define the
value of (2*—1)/(x—1) when =1, so that it shall differ in-
finitely little from values of (2®—1)/(x — 1), corresponding to
values of z that differ infinitely little from 1. Now, so long as
z+1, no matter how little it differs from 1, we can perform the
indicated division; and we have the identity (#*—1)/(z—1) =
2+ 1. The evaluation of #+ 1 presents no difficulty; and we
now see that for values of # differing infinitely little from 1, the
value of (2°—1)/(z— 1) differs infinitely little from 2. We there-
Jure define the value of (a2 —1)[(z—1) when =1 to be 2 ; and we
see that its value ¢s 2 in the useful and perfectly intelligible
sense that, by bringing x sufficiently newr to 1, we can cause
(#*— 1)/(z - 1) to difier from 2 by as little as we please®. The
value of (2® — 1)/(x — 1) thus specially defined is spoken of as the
limiting value, or vhe limit of (2* — 1)[/(w — 1) for £ =1; and it is
symbolised by writing

* The reader sh-uld observe that the definition of the critical value just
given has another alvantage, namely, it enables us to assert the truth of the
identity (z%-1)/(z - 1)=z+ 1 without exception in the case where z=1.



§2 FORMAL DEFINITION OF A LIMIT 67

-1
z=1 & — 1 =2
where L is the initial of the word ““limit.” The subscript =1
may be omitted when the value of the argument for which the
limiting value is to be taken is otherwise sufficiently indicated.

We are thus led to construct the following definition of the
value of a function, so as to cover the cases where the value
indicated by its synthesis is indeterminate :—

When, by causing  to difler sufficiently little from a, we can
make the value of f(x) approach as near as we please to o finite
definite quantity I, then 1 is said to be the limiting value, or limit,
of fx) when z=a ; and we write

L f(z)=1

Cor. 1. A function is in general continuous in the neighbour-
hood of a lLimiting value ; and, therefore, in obtaining that value
we may subject the function to any transformation which s
admissible on the hypothesis that the argument x has any value in
the neighbourhood of the critical value a.

We say ‘“in general,” because the statement will not be
strictly true unless the phrase ““differ infinitely little from” mean
“differ either in excess or in defect infinitely little from.” It may
happen that we can only approach the limit from one side; or
that we obtain two different limiting values according as we in-
crease z up to the critical value, or diminish it down to the critical
value. In this last case, the graph of the function in the neighbour-
hood of z=a would have the peculiarity figured in chap. xv.,
Fig. 5; and the function would be discontinuous. The latter
part of the corollary still applies, however, provided the proper
restriction on the variation of 2 be attended to.

When it is necessary to distinguish the process of taking a
limit by increasing # up to a from the process of taking a limit
by decreasing # down to @, we may use the symbol L for the

x=a-0

former, and the symbol L for the latter.

r=a+0

Cor. 2. If L f@)=1 then fla+h)=1+d, where d is a

Sunction of a and k, whose value may be made as small as we
please by sufficiently diminishing h.
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This is simply a re-statement of the definition of a limit from
another point of view.

Cor. 3. Any ordinary value of a function satisfies the
definition of a limiting value.

For example, sz (@#-1)/(z—1)=(22-1)/(2—1)=3. This re-

mark would be superfluous, were it not that attention to the
point enables us to abbreviate demonstrations of limit theorems,
by using the symhol L where there is no peculiarity in the
evaluation of the function to which it is prefixed.

§ 3.] It may happen that the critical value a, instead of
being a definite finite quantity, is merely a quantity greater than
any finite quantity, however great. We symbolise the process
of taking the limit in this case by writing L f(), or L f(z),

x=+® X=—00

according as the quantity in question is positive or negative.
For example,

Em(x+ 1)/ = fm(l +1/z)=1.

In this case, we can, strictly speaking, approach the limit from one side
only; and the question of continuity on both sides of the limit does not
arise. If, however, we, as it were, join the series of algebraical quantity
—®...=-1...0...41...+oc through infinity, by considering
+o and — o as consecutive values; then we say that f(z) is, or is not, con-
tinuous for the critical value z=w, according as L f(z)and L f(z) have,

Xx=—0

=0
or have not, the same value. For example, (z+ 1)/z is continuous for z=w,
for we have L (z+1)/z=1= L (z+1)/z; but (#2+1)/z is not continuous
X=wm XT=—o

forz=cw.

§4.] The value 0 may of course occur as a limiting value ;
for example, L z(x—1)}/(2*—1)=0. It may also happen, even
=1

for a finite value of @, that f(z) can be made greater than any
finite quantity, however great, by bringing  sufficiently near to a.
In this case we write L f(z) = . In thus admitting 0 and o«

as limiting values, the student must not forget that the general
rules for evaluating limits are, as will be shown presently, sub-
ject in certain cases to exception when these particular limits
oceur.
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ENUMERATION OF THE ELEMENTARY INDETERMINATE FORMS.

§ 5.] Let » and v be any two functions of z. We have
already seen, in chap. xv., that w+v becomes indeterminate
when % and o are infinite but of opposite sign; that u x o
becomes indeterminate if one of the factors become zero and
the other infinite; and that » + v becomes indeterminate if u
and v become both zero, or both infinite. We thus have
the indeterminate forms—(I.) o — o, (IL) 0 x w, (IIL) 0+0,
(IV.) ©+ oo,

) It is interesting to observe that all these really reduce to (IIL.). Take

o —o for example. Since u+v=(1+v/u)/(1/u), and Llju=1/o =0, this
function will not be really indeterminate unless Lvfu= —1. The evaluation
of the form o — c therefore reduces to a consideration of cases (IV.) and (IIL.)
at most. Now, since u+v=(1/v)+(1/u), case (IV.) can be reduced to (IIL);
and finally, since u x v =u--(1/v), case (IL.) can be reduced to (IIL).

To exhaust the category of elementary algebraical operations
we have to discuss the critical values of #*. This is. most simply
done by writing »®=a** where a is positive and >1. We
thus see that «” is determinate so long as vlog, » is determinate.
The only cases where v log, « ceases to be determinate are those
where—(V.) =0, log,u=+ o, that is v=0, u=w; (VL) »=0,
log,u=-o, that is v=0, u=0; (VIL.) o=+, log,u=0,
that is v=+ o, w=1. There thus arise the indeterminate
forms—(V.) «° (VL) 0°, (VIL) 1*=*

All these depend on a®%®; or, if we choose, upon a%; so that it may

be said that there is really only one fundamental case of indetermination,
namely, 0-+0.

EXTENSION OF THE FUNDAMENTAL OPERATIONS TO LIMITING
VALUES.

§6.] We now proceed to show that limiting values as above
defined may, under some restrictions, be dealt with in algebraical

* The reader is already aware that 1° gives 1; and he may easily convince
himself that 02, 0— , @ *®, ©~® give 0, =®, +w, 0 respectively, no
matter what their origin.
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operations exactly like ordinary operands. This is established
by means of the following theorems:—
1. The limit of a sum of functions of z is the sum of their limits,
provided the latter does not take the indeterminate form « — .
Consider the sum f(z)—¢(2) + x(«) for the critical value
z=a; and let Lf(z)=f", L¢(x)=¢', Lx(x)=x. Then, by §2,

Cor. 2,
f(@)=f"+a, $(@)=¢'+B, x(@) =X +7,

where a, 8, y can each be made as small as we please by
bringing # sufficiently near to a.
Now, J@-d@)+x@)=f"-¢'+xX +(a=-B+7).
But, obviously, a — B+ can be made as small as we please by
bringing # sufficiently near to @. Hence

Lif (@) - b (@) +x (@)} =/ - ¢ + X,
that is, = Lf(x) - Lé(x) + Lx(z) (1).

This reasoning supposes f', ¢', X' to be each finite ; but it is
obvious that if one or more of them, all having the same sign,
become infinite, then /' — ¢+ x’ and L {f(z) — ¢(2) + x(«)} are
both infinite, and the theorem will still be true in the peculiar
sense, at least, that both sides of the equality are infinite. If|
however, some of the infinities have one sign and some the
opposite, /' — ¢’ + x’ ceases to be interpretable in any definite
sense ; and the proposition becomes meaningless.

II.  Tke limit of @ product of functions of = is the product of
their limits, provided the latter does not take the indeterminate
Jorm 0 x o,

Using the same notation as before, we have

S(@) (@) x(2) = (f'+ o) (¢'+ B)(X'+ v)
=/ X'+ Sagx' + Jafx + oy,
Now, provided none of the limits /', ¢, x" be infinite, since a, 3,

vy can all be made as small as we please by bringing @ sufficiently
near to a, the same is true of Sa¢’x’, SaBx’, and aBy. Hence

Lf () ¢(2) x(2) =f"&'x" = Lf (z) L (2) Lx(z)  (2).
If one or more of the limits /', ¢', x" be infinite, provided none
of the rest be zero, the two sides of (2) will still be equal in the
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sense that both are infinite ; but, if there occur at the same time
a zero and an infinite value, then the right-hand side assumes
the indeterminate form O x o ; and the equation (2) ceases to
have any meaning.

III.  The limit of the quotient of two functions of x is the
quotient of their limits, provided the latter does not take one of the
indeterminate forms 0/0 or « [o. We have

J@) _fre J Sra ff b =R

6@ $+B & EB & & FEF B

From this equation, reasoning as above, we see at once that, if
neither /' nor ¢' be infinite, and ¢’ be not zero,

Sf(@) _f _Lf(@) (3)
() ¢ L)’ '

It is further obvious that if /"= o, ¢'+ o, both sides of (3)
will be infinite; if ¢’ =, /' o, both sides will be zero; and
if =0, /'+0, both sides will be infinite. In all these cases,
therefore, the theorem may be asserted in a definite sense. If,
however, we have simultaneously /'=0, ¢' =0, the right hand of
(8) takes the form 0/0; if f'= o, ¢'=, the form o /w; and
then the theorem becomes meaningless.

§7.] If the reader will compare the demonstrations of last
paragraph with those of § 8, chap. xv., he will see that (except
in the cases where infinities are involved) the conclusions rest
merely on the continuity of the sum, product, and quotient.
This remark immediately suggests the following general theorem,
which includes those of last paragraph as particular cases :—

If F(u, v, w, . . .) be any function of w, v, w, . . ., which is
determinate, and finite in value, and also continuous when

u=Lf(z), v=L¢(z), w= Lx(z), .

then

F{f(2), $(2), x(@), . . .}= F{Lf(2), L$(2), Lx(2), . . .}.

The reader will easily prove this theorem by combining § 2,
Cor. 2, with the definition of a continuous function given in
chap. xv., §5, 14.
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The most important case of this proposition which we shall have occasion
to use is that where we have a function of a single function. For example,

L {(=-Dia-1P={ L @-1)@-1p=4

L log {(a*~ 1)f(a - 1)} =log { L (s~ 1)/(a-1)}=log2.

ON THE FORMS 0/0 AND o /o0 IN CONNECTION WITH
RATIONAL FUNCTIONS.

§ 8.] The form 0/0 will occur with a rational function for
the value #=0 if the absolute terms in the numerator and
denominator vanish. The rule for evaluating in this case is to
arrange the terms in the numerator and denominator in order
of ascending degree, divide by the lowest power of  that occurs
in numerator or denominator, and then put #=0. The limit
will be finite, and +0, if the lowest terms in numerator and
denominator be of the same degree; O if the term of lowest
degree come from the denominator; oo if the term of lowest
degree come from the numerator. All this will be best seen
from the following examples :—

Example 1.
2%+ 323+ xt 248z+a 2
om0 Bzt +attad Ty 8+aitad 3]
Example 2.
28+ 8zt + a5 21+3z2+x3_0_0
a0 S22 Hxi4a8 T oy B4ai4axt T 83T
Example 3.

2zt + 28 2+z2 &
om0 BHTS g @tat 0

§9.] The form o /o can arise from a rational function when,
and only when, #=0o. The limit can be found by dividing
numerator and denominator by the highest power of z that
occurs in either. If this highest power occur in both, the limit
is finite ; if it come from the denominator alone, the limit is 0 ;

if from the numerator alone, the limit is oo.
Example 1.

K _Bz+1 _ 0+1 1
=222+ 33 +328 " 02z +1/z+3" 0+0+8 3°
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Example 2.
22 + 8a® + 4t 1/at +3a3 + 4«2 0

o 2T+ T3+ 625 pe 2/ +1[23+6 T 6

Example 3.
22+ 323 + 428 12+ 8[a?+4 4

e 2T+ B4 2P gm2fT+ B[TiF 1jz3 O

§10.] If the rational function f(z)/¢ (2) take the form 0/0 for
a finite value of z, # 0, say for # = a, then, since f(#) =0, ¢(a) =0,
it follows from the remainder-theorem that #—a is a common
factor in f(2) and ¢ (z). If we transform the function by re-
moving this factor, the result of putting # =@ in the transformed
function will in general be determinate; if not, it must be of
the form 0/0, and # — « will again be a common factor, and must
be removed. By proceeding in this way, we shall obviously in
the end arrive at a determinate value, which will be the limit of
S (2)/¢ (#) when z=a.

Example. Evaluate (3z!-10z3+ 322+ 12z —4)/(z!+ 223 — 2222+ 82z - 8)
when z=2. The value is, in the first instance, indeterminate, and of the
form 0/0 ; hence x — 2 is a common factor. If we divide out this factor, we
find that the value is still of the form 0/0; hence we must divide again. We

then have a determinate result. The work may be arranged thus (see chap.
V., §13):—

3-10 + 3 +12 -4 1+2 -22 +32 -8
210+ 6- 8-10+4 210+2+ 8-28+8
3- 4- 5+ 2(+0 1+4 —14 + 4[+0
0+ 6+ 4 - 2 0+2 +12 - 4
3+ 2- 1|+ 0 1+6 - 2+ 0
0+ 6 +16 0+2 +16
3+ 8[+15 f+s|+14

The process of division is to be continued until we have two remainders
which are not both zero. The quotient of these, 15/14 in the present case, is
the limit required.

The evaluation of the limit in the present case may also be
effected by changing the wariable, an artitice which is frequently
of use in the theory of limits. If we put # =a+2, then we have
to evaluate Lf(a + 2)/¢ (a + z) when z=0. Since f(a + 2) and
¢ (@ + 2) are obviously integral functions of 2, we can now apply
the rule of § 8. It will save trouble in applying this method if
it be remembered—1st, that in arranging f(a + 2) and ¢ (@ + 2)
according to powers of z we need not calculate the absolute
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terms, since they must, if the form to be evaluated be 0/0, be
zero in each case; 2nd, that we are only concerned with the
lowest powers of z that occur in the numerator and denominator
respectively.

824 -102°+822+12x -4 8(2+2)*-10(2+2)°+38(2+2)2+12(2+2) -4
smp T+ 220 — 20271325 — 8  ,50(2+42)°+2(2+2)3—22(2+2)°+382(2+2)-8
_ o 15224 P2+ &e.

om0 1422+ Q28 + &e.’
_ 15 + Pz + &e.
T om0 144+ Qz + &e.’
=15
=1
This method is of course at bottom identical with the former; for, since
2=2x — a, the division by 22 corresponds to the rejection of the factor (z — a)2.

§ 11.] The methods which are applicable to the quotient of
two integral functions apply to the quotient of two algebraic
sums of constant multiples of fractional powers of #. Each of
the two sums might, in fact, be transformed into an integral
function of y by putting #=19% where d is the L.C.M. of the
denominators of all the fractional indices. It is, however, in
general simpler to operate directly.

Example. Evaluate
a:% +:c?7+ 3.7:%
=L ———F—.
=0 ¥ 4 203 +z
If we divide by x’}T, the lowest power of z that occurs, we have
1 1 3
1= L$F+a:'f+3xﬂ
z=0 1+2:z1!f+.7::§r '
0

:I=0_

§ 12.] The following theorem, although partly a special case
under the present head, is of great importance, because it gives
the tundamental limit on which depends the “ differentiation” of
algebraic functions : —

If m be any real commensurable quantity, positive or negative,

zﬁ @ -1))(xz-1)=m (1).



§§ 10-12 L(zm—1)f(z—1)=m 75

First, let m be a positive integer. Then we have
(@ -1D)(x-1)=a™ +2"*+. . .+2+1.
Hence
L@ -1)/(z-1)=1+1+. . .+1+1 (m terms),
= =1m.
Next, let m be a positive fraction, say p/q, where p and ¢ are
positive integers. Then the limit to be evaluated is ,£1 (zP1-1)/

(@—1)*. If we put =27 and observe that to #=1 corresponds
z=1, the limit to be evaluated becomes L (2? —1)/(22—1). This
2=1

may be evaluated by removing the common factor z—1; or thus

El(z"—l)/(zq 1)= L

by § 6, 111,

z=1
—p/q =m.
Finally, suppose m to have any negative value, say —n, where
n is positive. Then
L@z "-1))(z-1)=L (1-a")|a"(@-1),
x=1 z=1
- L (@ Df@-1)a",
=1

~{ L (@~ Dl(e- 1} x L 1a"

z—l

Now, by the last two cases, since = is positive, L (2™ —1)/
x=1
(z—1)=n. Also L 1/z"=1. Hence
=1
L@ -1)/(x-1)=-n;
z=1
that is, in this case also,
L (z"-1)/(z—1)=m.
z=1

Second Demonstration.—The above theorem might also be deduced at once
from the inequality of chap. xx1v., § 7, as follows:—For all positive values of
z, and all positive or negative values of m, ™ —1 lies between ma™~1 (z — 1)
and m(z-1). Hence (#™ - 1)/(z - 1) lies between mz™~1 and m. Now, by

* There is here of course the usual understanding (see chap. x., § 2) as
to the meaning of zPA,
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bringing z sufficiently near to 1, ma™~1 can be made to differ as little from m
as we please. The same is therefore true of (z™—1)/(x— 1) ; that is to say,
L(@m-1)/(x-1)=m
for all real values of m.
Example 1. Find the limit of (2P — aP)/(z9- a%) when x=a. We have
L (zP- a?)/(z9-a%)= L aP~%{(z[a)P - 1}/{(x[a)?-1},

x=qa z=qa

~r(55)/ ()
=aP-9 1 s
1/=1( Y- 1 Y- 1
where y=z/a. Hence we have, by the theorem of the present paragraph
L (a7 - a?)(2 - a9) =aP~eplq.
xr=a

Example 2, Evaluate log (a:"} -1)-log (:1:5 —1) when z=1.
L {log (z} - 1)~ log (3 - 1)} = Llog {(o? - 1)j(z3 - 1)},

=10g{L(x%;1)/(xé_1)}, by § 7,
o f(251) e (250

=log{3/4},

=log 3.

Example 3. If Iz, l%%, . .. denote logz, log (logz), . . . respectively,
then, when z=w, LI" (z+1)/l'z=1.
In the first place, we have
Lz +1)/le={l(z+1) - lx+ L} [lz,
=1(1+1/z)flz +1.
Now, when z=w, I(1+1/z)=11=0 and lz=w. Hence Ll (z+1)/lz=1.
If we assume that Li"(z+1)/l"'z=1, we have
I+l (z+ 1)/lr+lx: {lr-f-l (.’l: +1)— IrHig + l"“‘lx}/l""lx,
=U{I" @+ 1)[Uz} [tz + 1.
Hence
Lirtl (z 4+ 1)[ir iz =11a +1,
=1;
that is, the theorem holds for »+ 1 if it holds for ». But it holds for r=1, as
we have seen, therefore for r=2, &c. It is obvious that this theorem holds
for any logarithmic base for which lo = .

Example 4. If ! have the same meaning as before, and \ have a similar
meaning for the base a, then
L \z[l'z=1[loga.
z=m
Let u=1/loga. Since Az =pulz, the theorem clearly holds when r=1. It is
therefore sufficient to show that, if it is true for r, it is true for r+1. Now
}\‘r+lxllr+lx =\ ()\"a:)/l""'lx,
=ul (\z)[lr g,
=u{l(\z) - I'tlg + IrHig} [Irtig,
—u{L (VrafUa) iriz+ 1.
Hence, if we assume that LN"z[lI"z = pu, we have
LN Hgfitig = p{lufo + 1},
=n
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EXPONENTIAL LIMITS.

§13.] The most important theorem in this part of the sub-
ject is the following, on which is founded the differentiation of
exponential functions generally :—

The limit of (1 + 1/2)* when z is increased without limit either
positively or negatively is a finite number (denoted by e) lying
between 2 and 3.

The following proof is due to Fort*.

We have seen (chap. xx1v., § 7) that, if @ and & be positive
quantities, and m any positive quantity numerically greater
than 1, then

ma™ ™ (¢ - b)>a™— b™>mb™ (a - b) (1).
In this inequality we may put a=(y+ 1)/y, b=1, m=y/z, where
y>z>1. We thus have

Ry
y Z

1\v=® 1
Hence <1 +—> >1+—,
Y z
. 1\Y 1\*
that is, <1 + —> ><1 + —) (2),
Y z
where y > a.

Again, if in (1) we put a=1, b=(y—1)/y, (m, y,  being as

before), we have
-— yx
l>1 - (_1/_ l) ' .

z y
Hence (1 - %)wm> 1- ‘,1;,
(1-y)=0-2)
and therefore <] - %>_y< <1 - %>_w (3),

where y>az.
We see from (2) and (3) that, if we give a series of in-

* Zeitschrift fiir Mathematik, vir., p. 46 (1862).
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creasing positive values to «, the function (1+1/2)” continually
increases, and the function (1-1/2)"* continually decreases.
Moreover, since 2*>a2*—1, we have

x rz+1
z-1 x ’
that is, (1—1) S1+l
x x
1\~ 1\
Hence (1 - —> >(1 + —) (4).
z z

The values of (1-1/2)® and (1 + 1/2)* cannot, therefore,
pass each other. Hence, when # is increased without limit,
(1 = 1/2)® must diminish down to a finite limit A, and
(1 + 1/2)* must increase up to a finite limit B. The two limits
A and B must be equal, for the difference (1 - 1/2)™"— (1 + 1/2)"
may be written {z/(z —1)}*—{(z + 1)/2}*; and by (1) we have

) G - s (B @

But, since, as has already been shown, {z/(z—1)}*
{(z + 1)/z}" remain finite when z=o, the upper and lower
limits in (5) approach zero when # is increased without limit ;
the same is therefore true of the middle term of the inequality.

It has therefore been shown that L (1 + 1/#)* and

L (1-1/2)~" have a common finite limit, which we may denote

by the letter e.

Since (1 +1/6)°=2521 ... and (1—1/6)"°=2985 . . .,
e lies between 2'5 and 2'9. A closer approximation might be
obtained by using a larger value of #; but a better method of
calculating this important constant will be given hereafter, by
which it is found that

e=2'7182818285 . . .

The constant ¢ is usually called Napier’s Base*; and it is the
logarithmic or exponential base used in most analytical calcula-
tions. In future, when no base is indicated, and mere arith-

* In honour of Napier, and not because he explicitly used this or indeed
any other base.
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metical computations are not in question, the base of a
logarithmic or exponential function is understood to be ¢; thus
logz and expa are in general understood to mean log,z and
exp.« (that is, ¢°) respectively.
Cor. 1. L(1+a)F=e
x=0
For L(1+1/z)*=e¢; and, if we put z=1/2, so that #=0
corresponds to 2=, we have L (1+z)¥=e.
x=0

Cor. 2. L log,{(1+1/a)*}= L log,{() + «)**}=log,e.
z=0o x=0

For, since log, v is a continuous function of y for finite values of
y, we have, by § 7,

L log, {(1 +1/z)"} =logs{ L (1 + 1/)%},
=log,e.

The other part of the corollary follows in like manner.
Cor. 3. L (1+y/z)®= L (1 +ay)'=¢".
T=® z=0

If we put 1/2=y/z, then to #= o corresponds 2= o ; hence
L (1 +y/a)y*= L (1 +1/2)*,

= L{(1+ 1),
(L1, by §7,
=

Cor. 4. 1=Jo (0® —1)/z=loga.

If we put y=a"—1, so that #=1og, (1 +y), and to #=0 corre-
sponds ¥ = 0, we have

L (a®—1)/z= L y[loga (1 +y),
=0 y=0
= L 1/log, (1 +y)'¥,
y=0
=1/loga{ L (1 +y)"},
y=0
=1/log,e=loga.

It will be an excellent exercise for the student to deduce directly from the
fundamental inequality (1) above, the important result that I (a*-1)/z is
ze=0
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finite; and thence, by transformation, to prove the leading theorem of this
paragraph*.
Cor. 5. If x be any positive quantity,
F>1+z, log(l+a)<z;
and, if x be positive and less than 1,
e >1-2, —log(l—2)>a.
Since ¢> (1 + 1/n)", when # may be as great as we please,
F-1>(1+1/n)*—1,
>nz{(l+1/n)—1}>a, by chap. xx1v., § 7,
for, however small 2, we can by sufficiently increasing n make
nz>1.
Hence F>1+a.
It follows at once that log ¢*>>log (1 + z), that is, z>log (1 + z).
Again, since e<(1—1/r)"" and ¢7'>(1—1/n)",
e—1>{(n—-1)/n}™-1,
>nz{(n—1)/n-1},
>—2a.
Hence ¢™*>1 -2, and therefore 1/(1 - 2)> ¢
It follows at once that log {1/(1 — )}, that is, —log (1 —z)>.
Cor. 6t. If iz, Pz, . . . denotelogz, log (logz), . . . respect-
wely, >y>1, and r be any positive integer, then
(@—y)ylyly . . . lry>imte -1y
>(z-y)|zlzl’z . . . 2.
This may be proved by induction as follows.
By Cor. 5,
lo—ly=1(zfy) =L{1 + (- y)ly}<(z-y)y,
which proves the first inequality when »=0.
Assume that it is true for 7, i.e. that
Iy ="y <(z—y)lylyl®y . . . Iy, then
lT+2lZ. _ lr+2‘?/ — l (lT+11‘/l7‘+].,I/)’
=1{1 + ("2 = Ty I7Hy),
<™ - Ity [Ty, by Cor. 5.
Hence the induction is complete.

* See Schlomilch, Zeitschrift fiir Mathematik, vol. 1., p. 387 (1858).
+ Malmsten, Grunert’s Archiv, virr. (1846).
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Again, we have by Cor. 5,
lo—ly=-1(y/2) =~ {1 - (z-y)/a}>(z-y)/a.
Using this result, and proceeding by induction exactly as before,
we establish the second inequality.
If we put £ +1 and « for # and y respectively we get the
important particular result
Valelle . . . Uz>0"" (2 + 1) -1
>+ 1)@+ 1) @+1) ... I"(z+1).
Cor. 7. From the inequality of Cor. 6, combined with the
result of Example 3, § 12, we deduce at once the following im-
portant limits:—
L{lr(x+1)—I"2}=0,

x=0m

LI (z+1)- I} wlale. . . I"2=1.

Example 1. Show that the limit when 7 is infinite of 1+1/24. . .
+1/n —logn is a finite quantity, usually denoted by v, lying between 0 and 1.
(Euler, Comm. Ac. Pet. (1734-5).)

Since, by Cor. 5,

~log (1-1/n)>1/n >log (1+1/n).

We have log {n/(n-1)}>1/n >log {(n+1)/n},
log {(n-1)/(n-2)}>1/(n-1)>log{n[(n—-1)},
log {3/2}>1/3 >log {4/3},
log{2/1}>1/2 >log {3/2},
1=1 >log{2/1}.
Hence 1+logn>Z1/n>log (n+1).
Therefore 1>Z1/n-logn>log (1+1/n).

Now, when n=w, log(1+1/r)=0. Thus, for all values of n, however
great, 21/n —log n lies between 0 and 1.

The important constant v was first introduced into analysis by Euler, and
is therefore usually called Euler’s Constant. Its value was given by Euler
himself to 16 places, namely, y='577215664901532(5). (See Inst. Calc. Diff.,
chap. vi.)*

* Euler’s Constant was calculated to 32 places by Mascheroni in his
Adnotationes ad Euleri Calculum Integralem. It is therefore sometimes
called Mascheroni’s Constant. His calculation, which was erroneous in the
20th place, was verified and corrected by Gauss and Nicolai. See Gauss,
Werke, Bd. 111, p. 154. For an interesting historical account of the whole
matter, see Glaisher, Mess. Math., vol. 1. (1872).
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Example 2. Show that L {1/1+1/2+. . . +1/u}/logn=1.
n=wo
This follows at once from the inequality of last example.
From this result, or from Example 1, we see that L {1/1+1/2+...+1/n}
n=w
=w ; and also that L {1/k+1/(k+1)+...+1/n} =, where k is any finite
n=w

positive integer.

GENERAL THEOREMS.

§ 14.] Before proceeding further with the theory of the limits
of exponential forms, it will be convenient to introduce a few
general theorems, chiefly due to Cauchy. Although these theorems
are not indispensable in an elementary treatment of limits, the
student will find that occasional reference to them will tend to
introduce brevity and coherence into the subject.

1. For any critical value of @, L{f (2)}*” = {Lf ()} pro-
vided the latter form be not indeterminate.

This is in reality a particular case of the general theorem of
§ 7. The only question that arises is as to the continuity of the
functions of the limits. We may write

b(z) $(z)log f ()
{f@)} " =e

Now w=1log % is a continuous function of %, so long, at least, as
u lies between + 1 and + o ; and ¢" is a continuous function
of v and w. Hence, so long as L¢ (z) and L log f (x) are neither
of them infinite, we have

L {f(;z)}d)(m) - LeMZ) IOSf(‘T)J

L(x) Llog f ()
=e ,

- el«b (x)log L f (x)

Hence L{f (@) = LS (@)= .
An examination of the special cases where either L¢ (z) or
Llogf(x), or both, become infinite, shows that, so long as

{Lf (z)}w(z) does not assume one of the indeterminate forms 00,

o’ 1% both sides of (1) become 0, or both o ; so that the

theorem may be stated as true for all cases where its sense is
determinate.
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IL Lif(@+1)-f (@)}t = L f(2)[z, provided L {f(2+1) - fla)}

be not indeterminate*. (Cauchy’s Theorem.)

Since # is ultimately to be made as large as we please, we
may put #=~%4+n, where 2 is a number not necessarily an
integer, but as large as we please, and » is an integer as large
as we please.

First, suppose that L {f(2 + 1) — f(2)} is not infinite, = £ say.

Since L{f(z + 1)—f(2)} =k, we can always choose for % a
definite value, so large that for #=4 and all greater values
Sz +1)-f(z)- k is numerically less than a given quantity a, no
matter how small a may be. Hence we have numerically

S 1) —f (B~ k<e,
JA+2)=f(h+1)-k<a,

Flhen)—flh+n—-1)-k<a;
and, by addition, f(k+ ) —f(k) - nk<na;

that is, JS@)—fh)—(e—h k<(z—F)a
Hence f_'_(g)_‘}%}b)_ (1 *§> ]g<<1 _§> a,
fix)_k<a+ﬂ@_ /z(/c+a).
z @ x

Since f(k), &, k, and « are, for the present, fixed, it results
that, by making 2 sufficiently large, we can make f(2)/z—#%
numerically less than a. Now a can be made as small as we
please by properly choosing 4 ; hence the theorem follows.

Next, suppose that L {f(z+1)—f(2)} =+ o ; then, by
taking % sufficiently large, we can assume that

Sh+1)—f(h)>1,
Jh+2)—f(h+1)>]

Sh+n)—fh+n—1)>1,
where [ is a definite quantity as large as we please.

* Theorems II. and III. are given by Cauchy in his dnalyse 4lgébrique
(which is Part I. of his Cours d’Analyse de UEcole Royale Polytechnique .
Paris, 1821,
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Hence S (h+n)—f(h)>nl,
that is S(@)=f(h)>(z-k)L
Hence f<7x)>l+J%ﬁ)—]l—;.

Since f(k), h, I are all definite, we can, by sufficiently in-
creasing , render f(h)/x — hijx as small as we please, therefore
S(@)/z>1. Now, by properly choosing 4,  can be made as large
as we please ; hence Lf (z)/z= .

The case where L {f(2+1)—f(2)} =— o can be included in
the last by observing that (—/(z+ 1)) — (—f(2)) has in this case
+ o for its limiting value.

IIL L f(z +1)/f(2)= L {f (@)} provided Lf(x+ 1)[f (z)

be not mdeterm'mate
This theorem can be deduced from the last by transformation,
as follows* :—

We have fm{‘r”(x"'])—‘/’(m)}:% '/’i‘_w)’

where ¢ (z) is any function such that L {y (z + 1) — ¢y (#)} is not

indeterminate. Let now ¢ (2) =log.f(2); so that y (& + 1) — ¢/ (2) =
log f (@ + 1) —log f (@) =log {f (z + 1)[f (z)}; and ¢ (2)/z =
{log f (2)}/z =log {f (z)}¥". 'Then we have

Zlog {ZEA0Y 1o 7@y

Hence log { I_Lf y(+)1)} =log [ E {f ()],

provided Lf (z + 1)[f (x) be not indeterminate. Hence, finally,

F@H)_p e
LR = L@

Cauchy makes the important remark that the demonstrations
of his two theorems evidently apply to functions of an integral
variable such as 2!, where only positive integral values of 2 are
admissible.

* The reader will find it a good exercise to establish this theorem directly
from first principles, as Cauchy does.
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For example, we have L (x+1)!/zx!=L (r+1)=». Hence L (z!)/*=w,
2= = x=m

and consequently L (1/z!)1/*=0.
=

EXPONENTIAL LIMITS RESUMED.

§15.] Ifa>1, then L o®jw =0 ; Llog,x/x=0; L xlog,x =0.
X=0w T=w x=40

The first of these follows at once from Cauchy’s Theorem
(§ 14, IL.) for we have

L (™' —a*) = La” (@ — 1) = .
Hence Lotz = .

As the theorem is fundamental, it may be well to give an
independent proof from first principles.

First, we observe that it is sufficient to prove it for integral
values of z alone, for, however large # may be, we can always
put z=/f+z where f is a positive proper fraction and 2z a
positive integer. Then we have

o” a’t?
Lo L
z a

=Lada. ~—.=
— JH2 2’

1
—of
¢ zfmf/z+1z£

/LY (1),

az
w2’

where we have to deal merely with La?/z, z being a positive
integer.

Let u,=a?/z, then wu./u.=az/(z+1)=a/(1+1/z). Now,
since L a/(1+1/z)=a>1, we can always assign an integral
value of 2, say z =7, such that, for that and all greater values of z,
Uzs1/u,>b, where b>1. We therefore have

Ur = Uy,
ur+1/ ur>ba
Upyof i1 >b,

Uy tyy > b,
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Hence, by multiplying all these inequalities together, we deduce
> 6w > bR, b7 '

Now u,/b" is finite, and, since b>1, b* can be made as great as

we please by sufficiently increasing z. Hence L u,= o, on the

supposition that z is always integral. But, since o’ is finite, it
follows at once from (1) that L a®/z = o, when « is unrestricted.

The latter parts of the theorem follow by transformation.
If we put a® =y, so that z =1log,y, and to # = o corresponds
y = oo, we have
o =L a*le=L y/log,y.
T=® Y=o

Hence L log.yly =1/ =0.

If we put a®=1/y, so that #=—log,y, and to # =« corre-
sponds y = 0, we have

» =L a*lv=— L 1/ylog,y.
= y=+0
Hence L ylogsy=—1/0 =0.
y=+0

Example 1. Show that, if ¢>1 and n be positive, then L a%*/z"=w ;
z=0 .

L log,z[a*=0; L «"log,x=0.
= =40
L a*[z*= L {a*|z}",

L= =
={ L (@nlzy,
X=®
=o"*=w ;
for, since a>1 and n is positive, we have al/*>1, so that L(a'*)*/z=w and
o"=0w,
The two remaining results can be established in like manner, if we put
y=log, z in the one case, and y= —log,  in the other.
It should be noticed that if n be negative we see at once that L a%[z"=o0 ;

X=w®
L log,zfz"=w ; L a™log,z= -.
z=® x=0

Example 2, If x be any fixed finite quantity, L z*/nl=0.
n=w

Since n is to be made infinite, and x is finite, we may select some finite
positive integer k such that z<k<mn. Then we have

zrn ozl oz z
al” -1k k+1" " " w

k-1 g\ "kt
<@_m<0

Now, since z <k, L (z/k)**+'=0, hence the theorem.
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Example 3. Lm(m-1) . .. {m-n+1)/n!=0 or o, according as m>
or < -1,

First, let m> -1, then m+1 is positive. We can always find a finite
positive integer k such that m+1<k<n. Therefore we may write

mcnzm(m—l) Ce (m_n+1)=(—)""“”m0k_l (1_m+1) (1. m+l) L.

nl k Tk+1
.. <1—"’+1>,
n
Now

=(=)n*+ C,_, P, say.
m+1 m+1 m+1
logl/P= —log(l - T) -log (1 —k—+1>_ ... —log (1 - —n—) s

>(m+1)[k+(m+1)[(k+1)+. . . +(m+1)/n,

by § 18, Cor. 5. Also, by § 13, Example 2, the limit of (m +1)/k + (m+1)/(k+1)
+. . .+(m+1)/nis infinite when n=0w . It follows, therefore, that LP=0,
and therefore that L,,C,=0.

Next, let m< -1, say m= ~ (1 +a), where a is a positive finite quantity.
We may now write

mC’n:(_)n

1 24a). . .
Gl B ep, .
Now

a a a
logP_—log(l —m>—log (1—m>—. . .—log<1—-m ,

>a/(l+a)+a/+a)+. . .+a/(n+a),
>a/(l+p)+a/(2+p)+. . . +af(n+p),
where p is the least integer which exceeds a. But the limit of a/(1+p)

+a/(2+p)+. .. +a/(n+p) is infinite. Hence LP=w.

When m= -1, ,0,=(-1)" and the question regarding the limiting
value does not arise.

§ 16.] The fundamental theorem for the form 0° is that
L =1
x=+0
This follows at once from last paragraph; for we have
La# = Le?'= = glovonz — o = |

Example 1. L (zn)*=1.
x=+0

For L(zh)*=Lam*=L (z*)n=(La*)r=17=1.
Example 2. L z¥"=1 (n positive).
x=40
For Lz*" = Lex"logz = pLa" g =0 =1, by § 15, Example 1.

N.B.—If n be negative, I, z="=0%=0.
+0

x=
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§17.] If u and v be functions of z, both of which vanish when
z=a, and are such that L Q)/u =1, where n is positive and neither 0

nor ©, and [ is not mﬁmte then L u® =1, provided the limit be so
approached that w is positive*.

For Lu® = L (u"y"" = (Lu*")2",
Now, by § 16, Example 2, since n is positive, L «*" =1. Hence

u=+0
Luw=1'=1.

If L v/u™ = o, this transformation leads to the form 1%

and therefore becomes illusory.

The above theorem includes a very large number of parti-
cular cases. We see, for example, that, 3 Lv/u be determinate and
not infinite, then Lu’=1. Again, since, as we shall prove in
chapter xxx., every algebraic function vanishes in a finite ratio
to a positive finite power of z—a, it follows that every such
function vanishes in a finite ratio to a positive finite power of
every other such function. Hence Lu’=1 whenever « and v
are algebraic functions of z*.

Example. Evaluate L {z-1+,/(z3- 1)}\8/‘:_” when z=1.
Here u=y/(z-1){N/(z-1)+/(2+z+1)}, v=F(z-1), wBlo={/(z-1)
+a/(@?+z+1)}.
_ 28\ 23 _ 1IN/3 _
Hence Lu?Afv=33. Therefore Lu*=L (u*")"=1"V"=1

§ 18.] In cases where the last theorem does not apply, the
evaluation of the limit can very often be effected by writing »”
in the form ¢"*#% and then seeking by transformation to deduce
the limit of v log » from some combination of standard cases}

Example. Evaluate z/=(€*~!) when £ =0.

It is obviously suggested to attempt to make this depend on
L {(e*-1)/r}=1. This may be effected as follows. We have
=0

2108 (€=1) = glogziog (¢°—1),

* See Franklin, dmerican Journal of Mathematics, 1878.

+ See Sprague, Proc. Edinb. Math. Soc., vol. 111., p. 71 (1885).

1 At one time an erroneous impression prevailed that the indeterminate
form 0° has always the value 1. See Crelle’s Jour., Bd. x11.
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logz logz

Now log (e*-1) “Tog {(e*-1)[x} +logz’
1

“Tog{(e*- 1)[z}logz+1°
Since L log {(e®*-1)/z} =0, by § 13, Cor. 4, and Llogz= - o, we see that
Llog z[log (e*—1)=1.
Hence Laxlfog€™=l =g,
§ 19.] Since #’=1/(1/u)’, indeterminates of the form oo°
can always be made to depend on others of the form 0° and
treated by the methods already explained.

Example. Evaluate (1+2)¥* when z=.
Let 1+x=1/y, so that y=0 when = ; then we have
L (1+a)e= L {1fyv/=n} =1/L (yv)1o-v),
=0 y=0

Now Ly¥=1 and L1/(1-y)=1; hence L (1 +z)'/==1.

2=

§20.] The fundamental case for the form 1% is L (1 + 1/2)*
=L (1 + 2)/ = ¢, already discussed in § 13. A great variety of
=0

other cases can be reduced to this by means of the following
theorem.

If w and v be functions of  such that w=1 and v= o when
@ = a, then Lu® = *~, provided Lv (v — 1) be determinate.

We have in fact _

u? = {(1 4+ U — 1)1/(u—1)}v(u—1).
Hence, by § 7, ___
Luv — L {(1 +u— l)ll(u—l)}Lv(u—l)’
= eL‘v(u—l)

provided Lw (u — 1) be determinate.

Example 1. L gV=V=L (1+ z- 1)Y= =g,

x=1 z=1
Example 2. Evaluate (1+1logx)'/*~1) when z=1.
We have
1=L (1+log o)== = L{(1 + log z)Nes=}los z/(z—1),
—=eLlogz/(x—-1),

Now L log z/(z — 1) = L log x'/*~)) =log Lz'/*~) =loge=1. Hence l=e.

TRIGONOMETRICAL LIMITS.

§ 21.] We deal with this part of the subject only in so far
as it is necessary for the analytical treatment of the Circular
Functions in the following chapters. We assume for the present
that these functions have been defined geometrically in the usual
manner.
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We shall require the following inequality theorems:—
If x be the number of radians (circulur units) in any positive
angle less than o right angle, then

I tan &> >sin z;
IL z>sina>z — 12
IIL 1>cosz>1- }a”

If P@ be the arc of a circle of radius », which subtends the
central angle 2z, and if PT QT be the tangents at P and @,
then we assume as an axiom that

PT + TQ>arc PQ>chord PQ.

Hence, as the reader will easily see from the geometric defini-
tion of the trigonometrical functions, we have

2r tan 2> 2rz>2r sin ;

that is, tanz> 2> sing,
which is I.

To prove II, we remark that sin &= 2 sin 42 cos }z
= 2 tan 3@ cos? & = 2 tan $« (1 —sin* 32). Hence, since, by I,
tan >4« and sin jz<iz, we have
sin z>2. 3z {1 - (3z)%,
>z — 32t
The first part of III. is obvious from the geometric
definition of cos2. To prove the latter part, we notice that
cosz=1-2sin*{z; hence, by L,
cosz>1--2 ($2)
>1-— 322
§ 22.] The fundamental theorem regarding trigonometrical
limits is as follows:—
If x be the radian measure* of an angle, then xéo (sin z/z) = 1.
This follows at once from the first inequality of last para-
graph. For, if <}, we have
tan 2>z >sin z;
therefore sec #>a/sin 2> 1.

* In all that follows, and, in fact, in all analytical treatment of the trigono-
metrical functions, the argument is assumed to denote radian measure.
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If we diminish « sufficiently, sec # can be made to differ from
1 by as little as we please. Hence, by making @ sufficiently
small, we can make 2/sin  lie between 1 and a quantity differing
from 1 as little as we please. Therefore

Lz/sing =1.
Hence also L sin zfz = 1.
Cor. 1. L tan z/z = 1.

x=0

For L tan w/w = L(sin z/z)/cosz = Lsinafz x L1j/cosz=1x1= 1.
Cor. 2. L sin% 2= L tan g/g =1 provided a is either a con-

z=2 L z=w

stant, or a function of x which does not become infinite when x = .
This is merely a transformation of the preceding theorems.
It should also be remarked that

B B
L(sin ‘}/E) -——L(tan E/E> =1,
r— 2] ®)  o=w z/

provided o and B are constants, or else functions of # which
do not become infinite when 2= .

If, however, a were constant, and B a function of 2 which
becomes infinite when 2= o, then each of the two limits would
take the form 1%, and would require further examination.

§28.] Many of the cases excepted at the end of last para-

graph can be dealt with by means of the following results, which
we shall have occasion to use later on:—

If a be constant, or a function of x which is not infinite when

x= o, then
L<sin§/g> =1;
L(cosi> =1;
x=n Z,
x
L(tang/g) =1.
= rl &

To prove the first of these, we observe that for all values of
o/ less than 4= we have, by § 21, IL,

(22> )
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x

Now
L (1~ atfaafy = L {(1 - a4z ")~
={L (1 - a*/da?) ™4y~ Lo,
=¢=1, by § 7 and 13.
Hence L <sin E/5> =1
——\ & @
In exactly the same way we can prove that % (cos %) =1.

Finally, since

x x x
L <tan 2/2) =L (sing/g) % Ll/(cos 5) ,
z/ & xr/ @ &
the third result follows as a combination of the first two.
Example. Evaluate (cos 2)¥%° when z=0. By § 20, we have L (cos @)y
=eLlcosz-1)2",  Now (cos z —1)/x? = — 2 sin?}z/e? = — }(sin 4z/4x)2. Hence
L(cosx -1)[z%= —}.
We therefore have L (cos z)Vx* =%,

SUM OF AN INFINITE NUMBER OF INFINITELY
SMALL TERMS.

§ 24.] If we consider the sum of n terms, say, w, +u+. . .
+ u,, each of which depends on » in such a way that it becomes
infinitely small when » becomes infinitely great, it is obvious
that we cannot predict beforehand whether the sum will be finite
or infinite. Such a sum partakes of the nature of the form
0 x o ; for we cannot tell a priori whether the smallness of the
individual terms, or the infiniteness of their number, will ulti-
mately predominate. We shall have more to do with such cases
in our next chapter; but the following instance is so famous in
the history of the Infinitesimal Calculus before Newton and
Leibnitz that it deserves a place here.

If r + 1 be positive, then

L@r+2r+. . .40+ =1/(r + 1).

In the case where » is an integer this theorem may be
deduced from the formula of chap. xx., § 9.
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The proofs usually given for the other cases are not very
rigorous ; but a satisfactory proof may be obtained by means of
the inequality

(r+1) @ (@-y)2a™ -y Z(r+ D)y (@-y) (1)
which we have already used so often.
If we put first #=p, y=p—1, and then z=p + 1, y=p, we
deduce
P+ 1y =pH 2+ )P Zpt—(p-1)*" (2
where the upper or the lower signs of inequality are to be taken
according as the positive number » + 1 is > or <1.
If in (2) we put for p in succession 1, 2,8, . . ., 7 and add
all the resulting inequalities we deduce

R+ =1Z@F+1)QA"+27+. . . +0")Zn™
Hence
{1+ 1/ny =1 (r+ 1)Z(A"+ 27+ . . . +0")/am+!
Z1/(r + 1).

That is to say, (1" + 27 +. . . + a")/n"+" always lies between 1/(r+1)
and {(1 + 1/m)™* — 1/n™}/(r + 1). But L L+ 1ny+t=1;
and L 1/12“rl 0, stnce r+ 1 is positive. Hence the second of
the two enclosing values ultimately coincides with the first, and
our theorem follows.

It may be observed that, if r+ 1 were negative, the proof

would fail, simply because in this case L 1/n™' = o.
Cor. 1. If s be any finite integer, and r + 1 be positive,

Li1+2m+. ..+ (- Yn+ =1/(r+1).

This is obvious, since L{1"+2"+. . . + (n —s)}/n"+ differs
from L(1"+2"+. . . +n")/n"** by a finite number of infinitely

small terms.
Cor. 2. If a be any constant, and r + 1 be positive,

]=J @+ 1) +(@+2)+. ..+ (@+n)}/n=1/(r+1).

This may be proved by a slight generalisation of the method
used in the proof of the original theorem.
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Cor. 3. If a and c be constants, and r + 1 +0,

L {(na+c)y+(na+2c) +. ..+ (na+nc)y}/n+
={(a + )t —a™/c (r + 1).

This also may be proved in the same way, the only fresh point
being the inclusion of cases where ~ + 1 is negative.

§ 25.] Closely connected with the results of the foregoing
paragraph is the following Limit Theorem, to which attention
has been drawn by the researches of Dirichlet:—

If a, b, p be all positive, the limit, when n = o, of the sum of n
terms of the series

1 1 1 1 1
it @r byt @rabye T @yt (W

is finite for all finite values of p, however small; and, if
> 1/(a + nb)'*e denote this limit, then
n=0

Lp S 1/(a+mnb)+e=1/b (@).
pP=0 n=0
By means of the inequality (1) of last paragraph, we readily
establish that
{a+(p—1)b}=r—{a+pbl=r>pb {a + pb}=r~'>{a + pb}~r
—f{a+(p+1)b}>  (3)

Putting, in (8), 0, 1, 2, . . ., = successively in place of p,
adding the resulting inequalities, and dividing by bp, we deduce

AT A RN e A R s e
bp Ua—blr {a+mnble) “po{a + pbi*e” bp lar {a+(n+1)b}°
(4).

Since L 1/{a+nblr=0, and L1/{a+(n+1)bjr=0, when

n=w, we deduce from (4),
1 s 1 1

b @0y e(arphy phar (®).

From (5) the first part of the above theorem follows at

once ; and we see that 1/pb (¢ — b)» and 1/pb**! are finite upper
and lower limits for the sum in question.
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We also have
1 _,3. L __ 1.
b(a—by P pmo(a+pb)+e” bar’

whence it follows, since L 1/b (@ - b)* = L 1/bar = 1/b, when p =0,
that

© 1 1
Le 2 oy 5
From the theorem thus proved it is not difficult to deduce
the following more general one, also given by Dirichlet:—
If by koy . . ., kn, . . . be @ series of positive quantities, no one
of which is less than any following one, and if they be such that
L T[t =a, where T is the number of the k's that do not exceed t,

t=w

then §1/k,,‘+9 is finite for all positive finite values of p, however
1
small ; and L pgl//c,.‘ﬂ =a¥,
p=0 1
Cor. It follows from (5) that

R SO SIS T T
p@— 1) wwlar*  (a+ 1) """ 7 (@ +n)te) 7 par ’

an inequality which we shall have occasion to use hereafter.

GEOMETRICAL APPLICATIONS OF THE THEORY OF LIMITS.

§26.] The reader will find that there is no better way of
strengthening his grasp of the Analytical Theory of Limits than
by applying it to the solution of geometrical problems. We may
point out that the problem of drawing a tangent at any point of
the graph of the function y = f(2) can be solved by evaluating the
limit when A=0 of {f(z+ %) —f(2)}/k; for, as will readily be
seen by drawing a figure, the expression just written is the
tangent of the inclination to the axis of # of the secant drawn
through the two points on the graph whose abscissae are # and
z+h; and the tangent at the former point is the limit of the

* See Dirichlet, Crelle’s Jour., Bd. 19 (1839) and 53 (1857); also Heine,
ibid., Bd. 31.
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secant when the latter point is made to approach infinitely close
to the former¥*.

Example. To find the inclination of the tangent to the graph of y=e®
at the point where this graph crosses the axis of y.

If 6 be the inclination of the tangent to the x-axis, we have
tan =1L (e%h - ¢0) /1,

=L (e;h-1)/h,
=loge=1.
Hence 0=3%m.

§27.] The limit investigated in § 24 enables us to solve a
problem in quadratures ; and thus to illustrate in an elementary
way the fundamental idea of the Calculus of Definite Integrals.
We may in fact deduce from it an expression for the area in-
cluded between the graph of the function y=a7/l", the axis of
x, and any two ordinates.

Let 4 and B be the feet of the two ordinates, a, b the corresponding
abscissae, and b-a=c+t. Divide 4B into n equal parts; draw the ordinates
through 4, B, and the n — 1 points of division; and construct—1st, the series
of rectangles whose bases are the n parts, and whose altitudes are the 1st,
2nd, . . ., nth ordinates respectively; 2nd, the series of rectangles whose
bases are as before, but whose altitudes are the 2nd, 3rd, . . ., (n+1)th
ordinates. If I,, and J,, be the sums of the areas of the first and second series
of rectangles, and 4 the area enclosed between the curve, the axis of 2 and
the ordinates through 4 and B, then obviously I, <4 <J,.

Now )

I=c{a"+(a+c/n)"+(a+2/n)"+ . . . +(a+n-1lc/n)}nir1;
Ja=c{(a+c/n) +(a+2/n) + . . . +(a+nc/n)} nirL,

Since J,, — I, = ¢ (b" - a”)/nl""1, which vanishes when n=w , LI,=LJ,, and
therefore 4 =LJ,, when n=w. Hence
¢ . (na+lc) +(na+2¢c)"+. . . +(na+mnc)

-1 L nrtl !

_ ¢ flate)rtt—art?
Tl e+

Hence A=t —artl)/(r+1) 171

This gives, when r=4}, and a=0, the Archimedian rule for the quadrature
of a parabolic segment.

A=

%, by § 24, Cor. 3.

* We would earnestly recommend the learner at this stage to begin (if
he has not already done so) the study of Frost’s Curve I'racing, a work which
should be in the hands of every one who aims at becoming a mathematician,
either practical or scientific.

+ The reader should draw the figure for himself,
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NOTION OF A LIMIT IN GENERAL. ABSTRACT
THEORY OF IRRATIONAL NUMBERS.

§ 28.] In the earlier part of this chapter limiting values have
been associated with the supply of values for a function in special
cases where its definition fails owing to the operations indicated
becoming algebraically illegitimate. This view naturally sug-
gested itself in the first instance, because we have been more
concerned with the laws of operation with algebraic quantity than
with the properties of quantity regarded as continuously variable.

It is possible to take a wider view of the notion of a limit;
and in so doing we shall be led to several considerations which
are interesting in themselves, and which will throw light on the
following chapter.

Although in what precedes we defined a limit, it will be
observed that no general criterion was given for the existence of
a finite definite limit. All that was done was to give a demon-
stration of the existence of a limit in certain particular cases.
When the limit is a rational number, the demonstrations present
no logical difficulty; but when this is not the case we are brought
face to face with a fundamental arithmetical difficulty, viz. the
question as to the definition of irrational number. For example,
in proving the existence of a finite definite limit for (1 + 1/z)®
when z is increased indefinitely, what we really proved was not
that there exists a quantity e such that |e— (1+ 1/2)®| can be
made smaller than any assignable quantity, but that two rational
numbers 4 and B can be found differing by as little as we please
such that (1 + 1/z)* will lie between them if only 2 be made
sufficiently large. From this we infer without farther proof that
a definite limit exists, whose value may be taken to be either
A or B. For practical purposes this is sufficient, because we can
make A and B agree to as many places of decimals as we choose :
but the theoretical difficulty remains that the limit e, of whose
definite existence we speak, is any one of an infinite number of
different rational numbers, the particular one to be differently
selected according to circumstances, there being in fact* no single

* See chap. xxvi, § 3.
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rational number which can claim to be the value of the limit.
The introduction of a definite quantity e as the value of the
limit under these circumstances is justified by the fact that we
thus cause no algebraic contradiction. Such quantities as /2,
4, &c. have already been admitted as algebraic operands on
similar grounds.

§29.] The greater refinement and rigour of modern mathe-
matics, especially in its latest development—the Theory of
Functions—have led mathematicians to meet directly the logical
difficulties above referred to by giving.a prior: an abstract defi-
nition of irrational real quantity and building thereon a purely
arithmetic theory. There are three distinct methods, commonly
spoken of as the theories of Weierstrass, Dedekind and Cantor*.
A mixture of the two last, although perhaps not the most elegant
method of exposition, appears to us best suited to bring the issues
clearly before the mind of a beginner. We shall omit demon-
strations, except where they are necessary to show the sequence
of ideas, the fact being that the initial difficulties in the Theory
lie not in framing demonstrations, but in seeing where new
definitions and where demonstrations are really necessary. For
a similar reason we shall at once assume the properties of the
onefold of Rational Numbers as known ; and also the theory of

* The theory of Weierstrass, earliest in point of time, was given in his
lectures, but not published by himself. An account of it will be found in
Biermann, T'heorie der Analytischen Functionen (Leipzig, 1887), pp. 19—33.

A brief but excellent account of Dedekind’s theory is given by Weber,
Lehrbuch der Algebra (Braunschweig, 1895, 1898), pp. 4—16: see also
Dedekind’s two tracts, Stetigkeit und irrationale Zahlen (Braunschweig,
1872, 1892); and Was sind und was sollen die Zahlen? (Braunschweig,
1888, 1893). For expositions of Cantor’'s theory see Math. dnn., Bd. &
(1872), p. 128, and Ib. Bd. 21 (1883), p. 565; also Heine, Crelle’s Jour.,
Bd. 74 (1872): and Stolz, Allgemeine Arithmetik, I. Th. (Leipzig, 1885),
pp. 97—124.

Meray, in his Nouveau Précis d’dnalyse Infinitésimale (Paris, 1872),
published independently a theory very similar to Cantor’s, which wiil be
found set forth in the first volume of his Legons Nouwvelles sur I'Analyse
Infinitésimale (Paris, 1894).

A good general sketch of the whole subject is given by Pringsheim in his
article on Irrationalzahlen, &e., Encyclopidie der Mathematischen Wissen-
schaften (Leipzig, 1898), Bd. 1., p. 47.
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terminating and repeating decimals, which depends merely on the
existence of rational limits.
§ 80.] Starting with 1 and confining our operations to the

four species +, —, x, +, we are led to the onefold of Rational
Quantity
o=mfn, ... =1, ...0,...+1 ...+m/n, ... (R)

in which every number is of the form + m/n, where m and » are
finite integral numbers.

The onefold R possesses the following properties.

(1) It is an ordered onefold, in the sense that each number
is either greater or less than every other. The onefold may
therefore be arranged in a line so that each number occupies a
definite place, all those that are less being to the left, all greater
to the right.

(1) R is an arithmetic onefold, in the sense that any con-
catenation of the operations +, —, x, + in which the operands are
rational numbers (excepting always division by 0) leads to a
number in A.

(i) @ and b being any two positive quantities in R, such
that 0<a<b, we can always find a positive integer # so that
na>b*; and consequently b/n<a.

(iv) Between any two unequal quantities in R, however
nearly equal, we can insert as many other quantities belonging
to R as we please. We express this property by saying that R is
a compact onefold. This follows at once from (iii), since the
rational numbers

a, a+(b—a)fn, a+20-a)n; ..., a+(n-1)b-a)n, b
are obviously in order of magnitude, and the integer » may be
chosen as large as we please.

§ 81.] Dedekind's Theory of Sections. Any arrangement of
all the rational numbers into two classes 4 and B, such that
every number in 4 is less than every number in B, we may call
a sectiont of B. We denote such a section by the symbol (4, B).

It is obvious that to every rational number a corresponds a

* This is sometimes spoken of as the Axiom of Archimedes.
+ Dedekind uses the word Schnitt.



100 THEORY OF SECTIONS CH. XXV

section of R; for we may take A to include all the rational
numbers which are not greater than «, and B to include the rest,
viz. all that are greater than a. Conversely, if in the class 4
there be a number a which is not exceeded by any of the others
in A4, then the section may be regarded as generated by a. 'The
same is true if in the class B there be a number a which is
not greater than any of the others in B ; for we might without
essential alteration transfer o to the class 4, in which it would
then be the greatest number. The case where there is a greatest
number a in A4 and a least number 8 in B is obviously impossible.
For « and B8 must be different, since the two classes 4 and B are
exhaustive and mutually exclusive; but, if « and B were different,
we could, since R is compact, insert numbers between them which
must belong either to 4 or to B; so that a and B could not be
greatest and least in their respective classes as supposed.

But it may happen that there is no greatest rational number
in A, and no least rational number in B. There is then no
rational number which can be said to generate the section. Such
a section is called an empty or irrational section. It is not
difficult to prove that, if m/n be any positive rational number
which is not the quotient of two integral square numbers, and A4
denote all the rational numbers whose squares are less than m/n,
and B all those whose squares are greater than m/r, then the
section (4, B) is empty.

§ 32.] An ordered onefold which has no empty sections is
said to be continuous. It will be observed that the onefold of
rational numbers is discontinuous although it is compact.

Starting with the discontinuous onefold of rational numbers
R, we construct another onefold S by assigning to every empty
or irrational section a symbol which we shall call by anticipation
a number, adding the adjective irrational to show that it is not a
number in B. As the section and the number are coordinated,
we may use the symbol (4, B) to denote the number as well as
the section. We can also without contradiction re-name all the
rational numbers by attaching to each the corresponding sectional
symbol.

Naturally we define the number (4, B) as being greater than
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the number (A4’, B') when A4 contains all the (rational) numbers
in A’ and more besides; and consequently B’ contains all the
numbers in B and more besides. The numbers (4, B) (4', B)
are equal when A’ contains all the numbers in A4, neither more
nor less, and the like is consequently true of B’ and B.

0 is the section in which A consists of all the negative and
B of all the positive rational numbers.

(4, B) is positive when some of the numbers in A4 are
positive ; negative when some of the numbers in B are negative.
Also, if we understand — A to mean all the numbers in 4 each
with its sign changed, then (- B, — 4) =— (4, B).

The new manifold § is therefore obviously an ordered mani-
fold ; and it is clearly compact, since R is compact. It is also
continuous, Z.e. every section in S is generated by a number in §';
for, if , B be a classification of all the numbers (or sections) of S
such that every number in « is less than every number in 3, then
(a, B) determines a section in § of the most general kind. But,
if A contain all the rational sections in a and B all the rational
sections in B, then (4, B) is a section in R, ¢.e. a number in §;
and it is obvious that every number in S< (4, B) is a number in
a, and every number in §>(4, B) a number in 8. Hence (a, B)
corresponds to the number (4, B), which is a number in S.

§ 83.] Systematic representation of a number, rational or
irrational. Consider any number defined by means of a section
(4, B) of the rational onefold B. We are supposed to have the
means, direct or indirect, of settling whether any rational number
belongs to the class 4 or to the class B. Suppose (4, B) positive.
Consider the succession of positive integers 0, 1, 2, . . .; and
select the greatest of these which belongs to A, say a,. 'I'hen
by=a,+1 belongs to B. 'I'he two rational numbers a,, b, de-
termine two sections in R between which there is a gap of
width 1. Within this gap the section (4, B) lies, i.e. ay<(4, B)
<b,.

Next divide the unit gap into ten parts by means of the
rational numbers @, + 1/10, @, + 2/10, . . ., @, +9/10, and select
the greatest of these numbers, say @, = @, + p,/10, which belongs
to 4 ; then b, = a, + 1/10 belongs to 8. We have now a gap in
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R of width 1/10, determined by the numbers @;, b, within which
(4, B) lies.

We next divide the gap of 1/10 into ten parts by means of
the numbers @, + 1/10% a; + 2/10°% . . ., a; + 9/10%; and so on.
Proceeding in this way, we can determine two rational numbers
(terminating decimals in fact),

W=+ P10 +. . . +p,/10% by=a,+1/10" (1)

between which (4, B) lies, the width of the gap between @, and b,
being 1/10™ It is obvious that a,, @y, . . ., @, are a non-decreas-
ing succession of positive rational numbers; and it can easily
be proved that by, by, . . ., b, are a non-increasing succession.

1°. At any stage of the process it may happen that @, is the
greatest possible number in A, in other words that p,4,, and all
successive p’s are zero. 'The section (4, B) is then determined
by the number @, ; and (4, B) is the rational number a,.

If the process does not stop in this way, two things may
happen.

2°,  The digits p1, P2y - « +, Pn, . . . may form an endless
succession but repeat, say in the cycle p,, pr,1, . . ., pr. In this
case there exists a rational number @ to which a,=a, +p,/10 +. . .
+ p,/10™ approximates more aud more closely as we increase 7 ;
and, since b,=a, + 1/10", b, also approaches the same limit. It
follows that the rational numbers of class 4 might be defined as
the numbers none of which exceeds every number of the succession
@y, @y, - . ., &y, however large n be taken. Hence, if we agree to
attach the number a to the class 4, it will be the greatest number
of that class, and the section (4, B) is generated by a.

8°. The digits p,, p., . . ., p, may form an endless non-
repeating succession. Since the gap b, — @, = 1/10™ can be made
as small as we please, it follows as before that the rational
numbers of class A may be defined as all the rational numbers
none of which exceeds every number in the endless succession
@y, Oy « « «y Ay, . . .. This statement does not as in last case
enable us to identify (A4, B) with any rational number; but, since
n may be as large as we please, we can by calculating a sufficient
number of the digits p,, p,, . . . separate (4, B) from every other
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number, rational or irrational, no matter how near that number
may be to (4, B).

Conversely, it is obvious from the above reasoning that every
terminating or repeating decimal determines a rational section in
R, and therefore a rational number ; and every non-terminating
non-repeating decimal an irrational section in R, 4.e. an irrational
number.

It is an obvious consequence of the foregoing discussion that
between any two distinct numbers, rational or irrational, we can
find as many other numbers, rational or irrational, as we please.

§ 84.] Cantor’s Theory. The rational numbers a,, @, . . .,
@y, . . .1n § 33 evidently possess the following property. Given
any positive rational number ¢, however small, we can always find
an integer v such-that |@,—d.i.|<e¢ when n<v, r being any
positive integer whatever. .

We are thus naturally led to consider an infinite sequence of
rational numbers

Uy, Ugy o o vy Up, « + . (2)

which has the property that for every positive rational value of e,
however small, there is an integer v such that | uy, — tyir | < € when
n<v, r being any positive integer whatever.

Such a sequence is called a convergent sequence ; and w,, u,,
&c. may be called its convergents. It should be observed that we
no longer, as in § 33, confine the convergents to be all (or even
ultimately all) of the same sign; nor do we suppose that they
form a non-décreasing or a non-increasing (monoclinic) sequence.

To every convergent sequence corresponds a definite section of
the onefold of rational numbers (R): so that every such sequence
defines a real number, rational or irrational.

We may prove this important theorem as follows.

Let ¢ be any positive rational number whatever; then we can
find » such that, when n<v;, | %, — us4r|<e. In particular, we
shall have, if m>w,, |4, —un|<e, whence

Uy, — € <Up<Uy, + € (2).

In other words, the two rational numbers @, =u, — ¢, b;=u, +¢
determine two sections in R such that all the numbers of the
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sequence 3 on and after »,, lie in the gap of width 2¢ between
those two sections.

Next choose any rational number ¢,<¢,. We can then es-
tablish a gap of width 2e,, whose bounding sections are given by
Uy =1y, — €&, by=1,,+ €. The number v, will in general be greater
than v, ; but it might be less. Also the gap @,b, might partly
overlap the gap @,b,. But, since all the convergents on and
after w,, lie within the gap ,b,, we can throw aside the part of
@by, if any, that lies outside @,b,, and determine a number v,< v,

such that
Ay <Upy<b,

when m<v,. Then, all the convergents on and after u,, lie
within the gap @.b,, whose width }>2¢,<2¢. This process may
be repeated as often as we please; and the numbers ¢, ¢, .
may be made to decrease according to any law we like to choose.
The numbers a,, @,, . . . form a non-decreasing and the numbers
by, b, . . . a non-increasing sequence : and each successive gap
lies within the preceding, although it may be conterminous with
the preceding at one of the two ends. Since ¢, €, . . . can be
made as small as we please, it is clear that by carrying the above
process sufficiently far we can assign any given rational number
to one or other of the two following classes :—(4) numbers which
do not exceed every one of the numbers w,, %ni1, . . . when m is
taken sufficiently large, (B) numbers which exceed any of the
numbers %y, Umi1, - . . when m is taken sufficiently large.

Hence every convergent sequence determines a section of K ;
and therefore defines a number, rational or irrational.

Conversely, as we have seen in § 33, every number, rational or
irrational, may be defined by means of a convergent sequence. If
the sequence i %, %3, . . ., U, . . . We shall often denote both
the sequence and the corresponding number by (w,). Since it is
only the ultimate convergents that determine the section, it is
clear that we may omit any finite number of terms from a con-
vergent sequence without affecting the number which it defines.
In particular, the sequences w,, ws, . . . %, . . ., #,, . . . and
Up, « « o, Un, . . . define the same number. It should be noticed
that in the case of rational numbers the convergents on and after
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a particular rank may be all equal : in fact we may define any
rational number & by the sequence @, @, . . ., @, . . ., and call
it (a).

Since each gap in the above process lies within all preceding
gaps, and the section in R which is finally determined within
them all, we have, if v be such that |u, —tpir|<e when n<dv,

u,— P (Up) Pu, + € (3),

an important inequality which enables us to obtain rational
approximations as close as we please to the number which is
defined by the sequence u,, w,, . . ., %, . . ..

§ 85.] DNull-sequence. If by taking n sufficiently great we
can make |u,| less than any given positive quantity e, however
small, it follows from (3) that (,) must be between 0 and a
rational number which is as small as we please. We therefore
conclude that in this case the sequence u;, %, . . ., %y, . . .
corresponds to 0; and we call it a nwll-sequence.

§$ 86.] Definition of the four species for the generalised onefold
of real numbers S.

If (u,) (vs) be any two numbers, rational or irrational, defined
by convergent sequences, it is easy to prove that the sequences
(tn +02), (Un—n), (Ua¥n), (us/vs), are convergent sequences*,
provided in the case of (u,/v,) that (v,) is not a null-sequence.
We may therefore define these to mean (u,) + (v,), (u,) — (vn),
(a) % (Vn), () =+ (vn) respectively. For it is easy to verify that,
if we give these meanings to the symbols +, —, x, + in connection
with the numbers (%,) and (v,), then the Fundamental Laws of
Algebra set forth in chap. 1. § 28 will all be satisfied.

For examplef,

(n) = (V) + (v3) = (0 — 2,) + (v,), by definitions
= ({ttg— 00} + v,), by def.

= (u,), by laws of operation for R.™

* The reasoning is much the same as in § 6 above.
+ The plain bracket () is appropriated to the definition of the number by
a sequence; the crooked bracket has reference to operations in R.
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Again,
() > {(00) + (02)} = () x (00 + 0,), by def.
= (un vy + wn}), by def.
= (tnn+ uyWy), by laws of operation for(R),
= (uay) + (Uqwy), by def.
= () (02) + () (wy), by def.
and so on.

In order that two numbers (#,) and (»,) may be equal it is
Jormally necessary and sufficient that (u,)—(v,) =0, in other
words, that (w,—v,) =0, that is, that w, —v,, uy—v,, . . ., Un—Vn,

. shall be a null-sequence. This from the point of view of
our exposition might also be deduced from the fact that (u,) and
(vs) must correspond to the same section in £. We can also
readily show that all null-sequences are equal, as they ought to
be, since they all correspond to 0.

We have now shown that the onefold of real quantity (S)
built upon R by the introduction of irrational numbers is an
arithmetic manifold. The proof that S has the property iii. of
§ 30 is so simple that it may be left to the reader. Henceforth,
then, we may operate with the numbers of S exactly as we do
with rational numbers.

§ 87.] It is worthy of remark that the properties of the
rational onefold R can, by means of appropriate abstract defini-
tions, be established on a purely arithmetical basis. It is not
even necessary to introduce the idea of measurement in terms of
a unit. The numbers may be regarded as ordinal ; and addition
and subtraction, greaterness and lessness, &c. interpreted merely
as progress backwards and forwards among objects in a row, which
are not necessarily placed at equal or at any determinate distances
apart¥.

Following the older mathematicians since Descartes, we have
in the earlier part of this work assumed that, if we choose any
point on a straight line as origin, every other point on it has for

* See, for example, Harkness and Morley, Introduction to the Theory of
Analytic Functions. (Macmillan, 1898.)
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its coordinate a definite real quantity: and conversely that every
real quantity, rational or irrational, can be represented in this way
by a definite point. The latter part of this statement, viz. that
to every irrational number én general* there corresponds a definite
point on a straight line, is regarded by the majority of recent
mathematicians who have studied the theory of irrationals as an
axiom regarding the straight line, or as an axiomatic definition
of what we mean by “points on a straight line.”

§88.] Generalisation of the notion of a Convergent Sequence.
It is now open to us to generalise our definition of a convergent
sequence by removing the restriction that ¢ and w, w,, . . .,
%y, . . . shall be rational numbers. Bearing in mind that we
can now operate with all the quantities in § just as if they were
rational, we can, exactly as in § 34, establish the theorem that
every convergent sequence of real numbers u;, u,, .
defines a real number (u,).

Also we can show that, if ¢ be any real positive quantity,
however small, we can always determine v so that

R

U — €< (Up) < Uy + € (4),
when m<v.
For we have merely, as in § 34, to determine v so that
| #m — thmir | <€ <€, when m<v.
Then we have

U — € 3 () Pt + € ;

U — € <(Up) <WUp + €,

and therefore

when m <.

§ 39.] General Definition of a Limit and Criterion for its
Exzistence.

Returning now to the point from which this discussion
started, we define the limit of the infinite sequence of real
quantities

Uiy Ugy o o oy Upy « o & (3),

as a quantity u such that, if € be any real quantity however small,

* We do not speak of special irrationalities, such as ,/2, which arise in
elementary geometrical constructions.
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then there exists always a positive integer v such that |u,—u|<e
when n<v. And we prove the following fundamental theorem.

The necessary and sufficient condition that the sequence, 3, have
a finite definite limit is that it be @ convergent sequence; and the
limat 1s the real number which is then defined by the sequence.

The condition is necessary ; for, if a limit » exist, then

|un_un+r|5|un _u'l'u_un-H'I’
Plun—w|+ | wnsr— .

Now, since « is the limit of the sequence, we can find v such
that |w,—u|<%te when n<v; and, a fortior:, |u,.—u|<}e
when n<v. Hence we can always find v so that | u, — wpir|<e,
where e is any positive quantity as small as we choose. Hence 3
is convergent.

Also the condition is sufficient. In fact, we can show that
(), the number defined by the sequence when it is convergent,
satisfies the definition of a limit. For, given ¢, we have seen that
we can find v so that

Uy, — €< (Up) < Uy, + €
when m<v: whence it follows that | u, — (u,) |<e when m<v.

Moreover there cannot be more than one finite limit ; for, if

there were two such, say « and », we should have
lu—o|=|v—uy+u,—v|,
Plug—w|+|up—0].

But, since both # and v are limits we could, by sufficiently
increasing 7, make |u,—u| and |u,~®»| each less than }e and
therefore |« —v|<¢, i.e. as small as we please. Hence » and v
cannot be unequal.

The reader will readily prove that, ¢f w,, %,, . . ., %y, . . . be
@ non- decreasmg (non-increasing) infinite sequence, no number of
which is greater than (less than) the finite number I, then this
sequence has @ finite limit not greater than (not less than) .

§40.] Let us now consider any function of , say f (), which
is well defined in the sense that, for all values of z that have to
be considered, with the possible exception of a finite number of
isolated critical values, the value of f(z) is determined when the
value of z is given. We define the limiting value, I, of f(x) when
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x 18 increased up to the value a, by the property that, when any
positive quantity € is given, there exists a finite quantity é<a such

that
|f () - 1]<e
when P x<a.

This obviously includes our former definition of a limiting
value ; and we may denote ! by L f(x).
z=a—0

Let @, @y, . . ., @, ... be any ascending convergent
sequence which defines the number a; and let us suppose, as
we obviously may, that there is no critical value of z in the
interval @, pa<a. Then, if we consider the sequence u, = f(a,),
Uy =f(as), . . -, =S (@), . . ., the results of last paragraph
lead us at once to the following theorem.

The necessary and sufficient condision that L f(z) bs finite

x=a-0

and definite is that it be possible to find o finite quantity ¢<a
such that, when ¢Pzx<a'<a,

|/ (@) -/ (@) |<e,

where € is any fintte positive quontity however small.

The reader will easily formulate the corresponding proposition
regarding L f(x).

x=a+0

§41.] There is one more point to which it may be well to
direct attention before we leave the theory of limits.

L f(x) is not necessarily equal to the value of f(x) when

x=ax0

#=a. For example, L (2*-1)/(z—1)=2; but (2*-1)/(x-1)

has no value when 2 =1.
A more striking case arises when f(2) is well defined when

z=a, but is discontinuous in the neighbourhood of z=a.
Thus, if

f(@)= L {sinzg/l-sin2z/2+. . .+(-1)""sinna/n},

then it is shown in chap. xxiIx., § 40, that L f(z)=+7/2,
2=m—0
L f(z)=-=/2; whereas f(x)=0.

x=T+40
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Exgercises VII.

Limats.

Find the limiting values of the following functions for the given values of
the variables :—

(1)
(2.)
(3.)
(4)

(5.)
(6.)
(7))
@)
o)
(10.)
(11.)
(12.)

(13.)
(14.)

(15.)
(16.)
(17.)
(18.)
(19.)
(21.)
(23.)
(25.)
(@17.)
(29.)
(31.)

(32.)
(33.)
(34.)
(35.)
(36.)

(37.)

(3xi+2x%+3x%)/(zi +z%+a:;~’), =0, and z=o.

(24— 23— 922 + 16 — 4)/(2® - 22° - 42 +8), x=2.

log (28 — 22% — 22 — 8) — log (23— 422+ 42 - 8), z=3.

{z - (n+1)amt) + nz™t2} /(1 - 2)?, «=1 (n a positive integer). (Euler,
Dif. Calc.)

IW@-1)=(z-)}{J(e-1)-N(e-1)}, ==~

(gmtn — gmgn)[(xPHe - aPrd), z=a.

{(a+2m - (@-2){(a+ 2~ (-2}, o=

{(a™ =17 - (- 10} /{(@- 1P~ (& - 1)3}, a=L1.

(@1 @ -1) (-t

@A) @D E@ -1

{a-\/(a?-2?)}/z?, z=0. (Euler, Diff. Calc.)

{Y(a+z) - Yla- D) {Ya+z) - Ya-2)}, 2=0.

{(a*+az + :c?)“f —(a%- a:t+x2)i’}/{(a +:c)§ —(a- x)i}, z=0. (Euler,
Diff. Cale.)

{(2a%z - a:“)'b -a (agz)g} /{a- (aa:3)i}, z=a. (Gregory, Ezamples in
Diff. Cale.)

{a+n/(2a2 - 2az) — o/ (2ax - 2))}[{a - z +A/(a? - 2?)}, z=a. (Euler,
Diff. Calc.)

z —a/(22 - y?), when z=0 , y =0, but y*/z finite =2p.

Zxn (y —2)[1l (y-2), z=y=2.

Zam (yn - 2%)[ZxP (y1-29), T=y=z=a.

nz™1/(z" - a®) - 1/(z - a), z=a.

2% (al¥-1), z=o. (20.) z%, z=w.
(1+1/z%)* =xz=o. (22.) =z*%/(1+2%* z=owo.
(1+1/z)%, =0. (24) (1+1/x)¥, z=o.
g1 p=1, (26.) a¥=*-v, g=1,

a*fx, T=o, (28.) (logz)1*, z=w.

(log /)%, z=oo, (30.) log™zfloghz, z=w.

a*f (r), z=w, where f(z) is a rational function of =, and a a
constant.

(az™+ bz 14 . . . )% z=oc. (Cauchy.)

z/0+2 logx)’ z=0.

{2+ z+1)/(z2 -z +1)}*, z=c.

{3 (a=+b%)}1%, z=0.

{1+2/J/(z+1)}Ve), z=w. (Longchamps.)

AgtA .
(ot 2ed PN s, (tath. Trip., 1596)
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(38) {1/(e*-1)}1, z=c.

(39.) {log (1+a)}180+") 2=0.

(40.) log(l+ax)flog(1+bx), z=0.

(41.) (e*—e®)[log(1+z), xz=0. (Euler, Diff. Calc.)
(42.) (37 -z)tanaz, x:g. (48.) tan-lzjz, z=0.

(44.) (1-sinz+cosz)/(sinz+cosz-1), x=3}w. (Buler, Diff. Cale.)

(45.) sinz/(1-a%n?), z=m. (46.) z {cos (a/z)-1}, xz=w.
(47.) (sinz-sina)/(z-a), xz=a. (48.) secr-tanz, r=3}m.
(49.) (sin*z - tan*z)/(1+cosx) (1 -cosz)?, z=0.

(50.)* sinhz/z, z=0. (61.) (coshz-1)/z%, xz=0.
(52.) tanh—lz/z, x=0. (53.) sin zflog (1+x), z=0.
(54.) sinzlogz, x=0. (55.) cosxzlogtanz, z=4%m.

(56.) logtan mz/logtannz, z=0.

(57.) (logsinma —log z)/(log sin nx -log ), x=0.

(58.) sinzsin®, z=0. (59.) sinatanz, z=0.

(60.) (sinhz)tnz, z=0.

(61.) {(z/a)sin (a/z)}*" (m<2), z=o.

(62.) (cosma)?, £=0. (63.) (cosmaz)cosec’nz =0,
(64.) (2-=z/a)tanmpe, g=aq,

(65.) log,(log, z)/cos 72r—: , T=e.

(66.) Show that sin z cot (a/z) log (1 + tan (a/z)) has no determinate limit
when z=w.

(67.) If 1,2x stand for log, (log, z), I,%¢ for log, (log, (log, z)), &c., show
that L [1 - {l,Pz[l,? (x+1)}™]al,zll’z . . . Pz =m(l,e)?. (Schlémilch,
z=c
Algebraische Analysis, chap. 11.)
(68.) Show that L ‘= (a+s)/mn=1.
n=owo g=1

(69.) Show that L B {(a+s)/n}" lies between e® and eatl,
n=w 8=1

(70.) Show that L = {(a+sc/n)/(a+ c)}isfinite if a + ¢ be numerically
8=1

n=cw

8=n
greater than a, and that L 2 {(a+sc/n)/a}™is finite if a + ¢ be numerically
less than a. n=w g=1

71.) Trace the graph of y=(a®*-1)/z, when a>1, and when a<1.
grap. Y

(72.) Trace the graph of y ==z for positive values of z; and find the
direction in which the graph approaches the origin.

* For the definition and elementary properties of the hyperbolic functions
cosh z, sinh z, tanh z, &c., see chap. xx1x. All that is really wanted here is
coshz=}%(e*+e7%), sinhz=}(e* - e72).
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(78.) Trace the graph of y=(1+1/z)*; and find the angle at which it
crosses the axis of y.

(74.) Find the orders of the zero and infinity values of y when determined
as a function of 2 by the following equations* :—

(a) z(2?-ay)*-y>=0. (Frost’s Curve Tracing, § 155, Ex. 8.)
(B) =%+ ady® - 2%y’ +azby — ab22=0. (Ib., Ex.7.)
() (-1 P+ -1y (- 22y+a (z - 2)=0.
(75.) If v and v be functions of the integral variable n determined by the
equations u, =, ,+vy_, V=1, show that L wu,fv,=(1+,/5)/2. How
n=cw

ought the ambiguous sign to be settled when u, and u; are both positive?
(76.) Show that

n\" /n-1\»"1 2 2 /1\1!
+1) 1 (2) (2 (==Y (3.
o= (B () () )

(77.) Show that L {MFN2+2). .. (nam) i,
’ n=w 1.2...n ¢

(78.) Llog(1-z)logx=0, when x=0.

* For a general method for dealing with such problems, see chap. xxx.



CHAPTER XXVL

Convergence of Infinite Series and of Infinite
Products,

§ 1.] The notion of the repetition of an algebraical operation
upon a series of operands formed according to a given law
presents two fundamental difficulties when the frequency of the
repetition may exceed any number, however great, or, as it is
shortly expressed, become infinite. Since the mind cannot over-
look the totality of an infinite series of operations, some defi-
nition must be given of what is to be understood as the result of
such a series of operations; and there also arises the further
question whether the series of operations, even when its meaning
is defined, can, consistently with its definition, be subjected to
the laws of algebra, which are in the first instance laid down for
chains of operations wherein the number of links is finite. That
the two difficulties thus raised are not imaginary the student
will presently see, by studying actual instances in the theory of
sums and products involving an infinite number of summands
and multiplicands.

§2.] One very simple case of an infinite series, namely, a
geometric series, has already been discussed in chap. xx., § 15.
The fact that the geometric series can be summed considerably
simplifies the first of the two difficulties just mentioned*; never-
theless the leading features of the problem of infinite series are
all present in the geometric series; and it will be found that
most questions regarding the convergence of infinite series are
ultimately referred to this standard case.

* The second was not considered,
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The consideration of the infinite geometric series suggests
the following definitions.

Consider a succession of finite real summands u,, w,, u;, . . .,
Uy, . . ., unlimited in number, formed according to a given law,
so that the nth term w, is a finite one-valued function of »; and
consider the successive sums

Si=wy, Se=uy+uy, Sy=uy+u+us,

Sp=t+Us+ . . . +Up,.

When 7 is increased more and more, one of three things must
happen :—

1st. S, may approuch « fized finite quantity S in such a way
that by increasing n sufficiently we car, make S, differ from S by as
little as we please; that is, in the notation of last chapter, L S,=8.

n=w
In this case the series
Uyt Uy + Ut o Ut ..

1s said to be CONVERGENT, and to converge to the value S, which is
spoken of as the sum to infinity.

271 o
ond. S, may increase with n in such o way that by increasing
n sufficiently we can make the numerical value of S, exceed any
quantity, however large ; that is, L S,=+ . In this case the

n=w

1.1 1
Example. 1+;+7 4+ ... +5-+ ... HereS= L §,=2.
n=«o

series 15 satd to be DIVERGENT.
Example. 1+2+3+ ... Here L S,=w.

=

3rd. S, may neither become infinite nor approack a definite
limit, but oscillate between a number of finite values the selection
among which is determined by the integral character of n, that is,
by such considerations us whether n is odd or even; of the form 3m,
3m+1, 3m+2, &e. In this case the series is said to OSCILLATE.

N.B. If all the terms of the series have the same sign, then S,
continually increases (or ot least never decreases) in numerical value
as n increases: and the series cannot oscillate.

Example, 3-1-2+3-1-243-1-24 ... Here L S,=0, 3,0r?2,
according as n is of the form 3m, 3m+1, or 3m + 2. n=w
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In cases 2 and 3 the series
U+ U+ U+ o o o F UL+ .

is also said to be mon-convergent*. In many important senses
non-convergent series cannot be said to have a sum; and it is
obvious that infinite series of this description canuot, except in
special cases, and under special precautions, be employed in
mathematical reasoning.

Series are said to be more or less rapidly convergent according
as the number of terms which it is necessary to take in order to
get a given degree of approximation to the sum is smaller or
larger. Thus a geometric series is more rapidly convergent the
smaller its common ratio. Rapid convergency is obviously a
valuable quality in a series from the arithmetical point of view.

It should be carefully noticed that the definition of the con-
vergency of the series

U+ g+ U+ o o F U L

involves the supposition that the terms are taken successively in
@ given order. In other words, the sum to infinity of a con-
vergent series may be, so far as the definition is concerned,
dependent upon the order in which the terms are written. As a
matter of fact there is a class of series which may converge to one
value, or to any other, or even become divergent, according to the
order in which the terms are written.

§38.] Two essential conditions are involved in the definition
of a convergent series—I1st, that S, shall not become infinite
for any value of », however great; 2nd, that, as » increases,
there shall be continual approach to a definite limit S. If we
introduce the symbol ./, to denote %,4; + Upse+ « .« + Upim,
that is, the sum of m terms following the nth, following Cauchy
we may state the following criterion :—

The necessary and sufficient condition for the convergence of «
series of real terms is that, by taking n sufficiently great, it be
possible to make the absolute value of R, as small as we please, no
matter what the value of m may be.

* Some writers use divergent as equivalent to mon-convergent. On the
whole, especially in elementary exposition, this practice is inconvénient.
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This condition may be amplified into the following form.
Given in advance any positive quantity ¢, however small, it must
be possible to assign an integer v such that for n=v and all
greater values |,R,|<e¢: or it may be contracted into the form
L, R, =0 when n= o, for all values of m.

The condition is necessary; for, by the definition of con-
vergency, we have L §, =S8, where § is a finite definite quantity;
therefore also, whatever m, L S,,n=48. Hence

n=w

L (Suin~S)=8-8=0:
that is, L By =0.

Also the condition is sufficient : for, if’ we assign any positive
quantity e, it is possible to find a finite integer v such that, when
n < v, |mBy|<e that is | Syim — Sy |<e In particular, therefore,
| Svsm—S,|<e. Since 8., being the sum of a finite number of
finite terms, is finite, and m may have any value we please, it
follows that for no value of n exceeding v can S, become infinite.
Hence L S, cannot be infinite.

Also the limit of S, cannot have one finite value when 7 has
any particular integral character, and another value when 2 has
a different integral character ; for any such result would involve
that for certain values of m L S, and L S,., should have

different values ; but this cannot be the case, since for all values
of m L (Sru-m - Sn) =1L mRn =0%*,

It should be noticed that, when all the terms of a series have
the same sign, there is no possibility of oscillation; and the
condition that 8, be finite for all values of n» however great
is sufficient. In case the subtlety of Cauchy’s single criterion
should puzzle the beginner, he should notice that the proof which
shows that L,R,=0 can usually be readily modified so as to
show that LS, is not infinite. In fact some of our earlier

* A more rigorous demonstration of the above criterion is obtained

by applying the result of § 389, chap. xxv. to the sequence S;, S,,. . .,
w» - - « We have given the above demonstration for the sake of readers

who have not mastered the Theory given in chap. xxv., §§ 28—40.
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demonstrations are purposely made redundant, by proving both
L,R,=0, and LS, not infinite.
Cor. 1. In any convergent series L u,=0.

For w,=8,—8,-1=1R.-1, and, by the criterion for con-
vergency, we must have L ,R,_,=0. This condition, although

necessary, is not of itself sufficient, as will presently appear in
many examples.
Cor. 2. If R,= L ,R,, and 8 and S, have the meanings

above assigned to ﬂwﬂ;, then S,=8-R,.
For S,4m==8,+ R, therefore I_/ Spim=8+ L nR,; and

L S,.n=8, hence the theorem. "

R, is usually called the residue of the series, and ,R, a
partial residue.

Obviously, the smaller R,/S, is for a given value of n, the
more convergent is the series; for R, is the difference between
S, and the limit of S, when # is infinitely great.

R, is, of course, the sum of the infinite series

Uptr T Uppo+ Unps+ o . o)
and it is an obvious remark that ¢he residue of @ convergent series
is itself @ comvergent series.

Cor. 8. The convergency or divergency of a series is not
affected by neglecting a finite number of its terms.

For the sum of a finite number of terms is finite and definite;
and the neglect of that sum alters L 8, merely by a finite

determinate quantity ; so that, if the series was originally con-
vergent, it will remain so; if originally oscillating or divergent,
it will remain so.

Example 1. Consider the series 1/1+1/2+1/3+ . . . +1/n+ . ..
Here ,R,=1/(n+1)+1/(n+2)+ . . . +1/(n*+m),
>1/(n+m)+1/(n+m)+ . . . +1/(n+m),
>mf(n+m),
>1/(nfm+1).

Now, however great » may be, we can always choose m so much greater that
n/m shall be less than any quantity, however small. Hence we cannot cause
mPBy to vanish for all values of m by sufticiently increasing n. We therefore
conclude that the series is not convergent; hence since all the terms are
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positive it must diverge, notwithstanding the fact that the terms ultimately
become infinitely small. We shall give below a direct proof that .S, = .

Example 2,

1, e 1. 8 1, (n+1)
ilogr3+§10g———2 T +;llog7—~L(n+2).
Since (n+1)%n (n+2)=(1+1/n)/{1+1/(n+1)}, we have

_ 1 1+1/(n+1) 1 14+1/(n+2)
mBn =T 18 T ) F a2 B T T/ B)
1 1+1/(n+m)

te et T 1)

1 141(r+1) . 1+1/n+2) 1+1/(n+m)
“n+l {1 i+ijn+2) 8 Txifnr3) " +1081+1/(n+m+1)} '
1 141/(n+1) .
< 18 T mam+]) @-

Now, whatever m may be, by making n large enough we can make 1/(n+1),

and, a fortiori, 1/(n+m+1), as small as we please, therefore L ,,R,=0 for
all values of . n=o

If in (1) we put 0 in place of n, and n in place of m, and observe that
S.=nR,, we see that

1+1/1
S, <log TF D)’

80 that S, can never exceed log 2 whatever n may be.
Both conditions of convergency are therefore satisfied.
Putting m=o in (1), we find for the residue of the series

R,<[log {1+1/(n+1)})/(n+1);
a result which would enable us to estimate the rapidity of the convergency,
and to settle how many terms of the series we ought to take to get an
approximation to its limit accurate to a given place of decimals.

§4.] The following theorems follow at once from the
criterion for convergency given in last paragraph. Some of
them will be found very useful in discussing questions regarding
convergence. We shall use 3w, as an abbreviation for w, +u,
+...4u,+. .., that is, * the series whose nth term is »,.”

L If w, and v, be positive, u,<w, jfor all values of n, and
3w, convergent, then Su, is convergent.

If w, and v, be positive, u,>wv, for all values of n, and v,
divergent, then Su, is divergent.

For, under the first set of conditions, the values of S, and
nt, belonging to Su, are less than the values of the correspond-
ing functions §’, and ,R', belonging to 3»,. Hence we have
0<8, <8, 0<ully<nmB'y. But, by hypothesis, 8, is finite for
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all values of n, and L ,R',=0; hence S, is finite for all values

n=x

of n, and L ,R,=0; that is, Su, is convergent.

n=wx

Under the second set of conditions, S,>8",. Hence,
since L 8’,=, we must also have L S,=; that is, Su, is

divergent.

IL  If, for all values of n, v,>0, and u,[v, ts finite, then
Su, s convergent if 3w, s convergent, and divergent if Sw, is
divergent.

By chap. xx1v., § 5, if A be the least, and B the greatest of
the fractions, %n41/Vnt1, Unts/Ontas - « =) Unim/Vnsm, then
Upy1+ Unyat o o o +Unym
Vg1 + Vpget+ - - o + Vpim
Now, since u,/v, is finite for all values of n, A and B are
finite. Hence we must have in all cases ,R,= CnR';, where C
is a finite quantity whatever values we assign to m and =.
Hence 8, (that is, ,R,) will be finite or infinite according as
S’, is finite or infinite; and if L ,R,=0, we must also
have L ,R,=0. o

n=w
III. If w, and v, be positive, and if, for all values of n,
Up i1/t < Vpr [V, A0A S, 15 cOnVErgent, then Su, s convergent; and
O Unia [ Un > Vyiy[Vn, amd S0, 15 divergent, then Su, is divergent.
We have, if w41/t <Vnia/0n,

U Us U
Snzul{1+—2+—3.i+. . .},

A< <B.

Uy Uy U
Vp V3
<ul{1+—2+—?.—’+...},
v, vy Y
U
<=28,.
v,

Now, by hypothesis, LS’, is finite : hence LS, must be finite.
Also, since all the terms of Swu, are positive, the series cannot
oscillate, therefore Su, must be convergent.

In like manner, we can show that, if #,.,/u,> v, /v, and
Sw, be divergent, then Su, is divergent.

N.B.—In Theorems I., II., III. we have, for simplicity,
‘stated that the conditions must hold for all values of n; but
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we see from § 3, Cor. 3, that it is sufficient if they hold for all
values of n exceeding a certain finite value r ; for all the terms up
to the 7th in both series may be neglected.

Also, when all the terms of a series have the same sign, we
suppose, for simplicity of statement, that they are all positive.
This, clearly, in no way affects the demonstration.

It is convenient to speak of w,.,/u, as the Ratio of Con-
vergence of Su,. Thus we might express Theorem III. as
follows :—Any series is convergent (divergent) if its ratio of
convergence is always less (greater) than the ratio of convergence
of a convergent (divergent) series.

IV.  IF a series which contains negative terms be convergent
when all the negative terms have their signs changed, it will be
convergent as it stood originally.

For the effect of restoring the negative signs will be to
diminish the numerical value both of S, and of ,Z,.

Definition.—A series which is convergent when all its terms are
taken positively is said to be ABSOLUTELY CONVERGENT.

It will be seen immediately that there are series whose
convergency depends on the presence of negative signs, and
which become divergent when all the terms are taken positively.
Such series are said to be semi-convergent. In § 5 and 6, unless
the contrary is indicated, we suppose any series of real terms to
consist of positive terms only, and convergence to mean absolute
convergence.

SPECIAL TESTS OF CONVERGENCY FOR SERIES WHOSE TERMS
ARE ULTIMATELY ALL POSITIVE.

§ 5.] If we take for standard series a geometric progression,
say 37" which will be convergent or divergent according as
r< or >1, and apply § 4, Th. L., we see that Swu, will be con-
vergent if, on and after a certain finite value of n, w,<7"
where r<1; divergent if, on and after a certain finite value of
n, u,>7" where »>1. Hence

I Su, is convergent or divergent according as u,'’™ is
ultimately less or greater than wunity.
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This test settles nothing in the case where u,'™ is ultimately

unity, or where L w,'™ fuctuates between limits whick include
=
unety.
Example. Z1/(1+ 1/n)"2 is a convergent series; for
L w,)"=1/L(1+1/n)*=1]e,
n=wo

by chap. xxv., § 13, where ¢>2, and therefore 1/e <1.

If, with the series S¢" for standard of comparison, we apply
§ 4, Th. III., we see that Su, is convergent or divergent according
a8 Un4a/tty 18, on and after a certain finite value of n, always <1
or always >1. Hence

II.  Su, is convergent or divergent according as its ratio of
convergency is ultimately < or >1.

Nothing is settled in the case where the ratio of convergency
s ultimately equal to 1, or where L wnyifu, fuctuates between

n=0o0n

limats whick include unity.

The examination of the ratio w,+,/, is the most useful of
all the tests of convergence*. It is sufficient for all the series
that occur in elementary mathematics, except in certain extreme
cases where these series are rarely used. In fact, this test, along
with the Condensation Test of § 6, will suffice for the reader
who is not concerned with more than the simpler applications of
infinite series.

Notwithstanding their outward difference, Tests I. and II. are
fundamentally the same when L w,.,/u, is not indeterminate.

This will be readily seen by recalling the theorem of Cauchy, given
in chap. xxv., § 14, which shows that L w,./u,= L w,'" It1is

n=wo

useful to have the two forms of test, because in certain cases I. is
more easily applied than II.

Example 1. To test the convergence of Zn"z™, where r and z are
constants. We have in this case

Uppa 16, = (n+ 1)7 2" mram,
=1+1/n) 2.

Hence Lu,4,/u,=x. The series is therefore convergent if <1, and divergent
ifx>1.

* We here use (as is often convenient) ‘“ convergence’ to mean “the quality
of the series as regards convergency or divergency.”
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If z=1, we cannot settle the question by means of the present test.

Example 2. If ¢ (n) be any algebraical function of n, Z¢ (n) z™ is con-
vergent if x<1, divergent if z>1.

This hardly needs proof if L ¢ (n) be finite. If L ¢ (n) be infinite, we
n=o n=x

know (see chap. xxx.) that we can always find a positive value of r, such
that L ¢ (n)/n" is finite, =4 say. We therefore have
n=w

Lu’n+l/un = ZL¢ (n+ 1)/4’ (n)’
s futl ) g ey

(n+1)r nr nr
=z {d/4d} x1,

=x.

>

This very general theorem includes, among other important cases, the
integro-geometric series

o()z+9(2)2+ ... +p(n)z™+. ..
where ¢ (n) is an integral function of n ; and the series
z " :
[rgt- ot 1),
which, as we shall see in chap. xxvi., represents (when it is convergent)
—log(l-=z). It follows, by § 4, Th. IV., that, since the series (1) is con-
vergent when z <1, the series
r "
T_Z _yw-1T
1 2+...( ) eI (2)
is also convergent when r<1.
When (2) is convergent, it represents log (1 +z).

Example 3. Zz"/n! (the Exponential Series) is convergent for all values
of x.

Uy ftt, = {&"H [ (n + 1)} [{z"[nl},
—af(n+1).

Hence, however great  may be, since it is independent of n, we may always
choose r 8o great that, for all values of n>r, z/(n+1)<1. Since the limit
of the ratio of convergence is zero in this case, we should expect the con-
vergency for moderate values of z to be very rapid; and this is so, as we
shall show by examining the residue in a later chapter. We have supposed
x to be positive; if x be negative the series is convergent a fortiori; the
convergence is in fact absolute, § 4, Th. IV,

Example 4. = (-)"m(m-1)...(m-n+1)2*/n! (x positive), where m
has any real value*, is convergent if x <1, divergent if z> 1.

* If m were a positive integer, the series would terminate, and the
question of convergency would not arise.
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m-n

For Lu,,[u,= —zL aFl
-z min—1
- 14+1/n’

=z.
Hence the theorem.

The series just examined is the expansion of (1-x)™ when x<1. It
follows, by § 4, Th. IV., that the series Zm(m—-1). .. (m-n+1)z"/nl,
whose terms are ultimately alternately positive and negative, is convergent

if z<1; this series is, as we shall see hereafter, the expansion of (1+z)™
when z<1.

§6.] Cauchy’s Condensation Test.—The general principle of
this method, upen which many of the more delicate tests of
convergence are founded, will be easily understood from the
following considerations :—

Let Su, be a series of positive terms which constantly
decrease in value from the first onwards. Without altering the
order of these, we may associate them in groups according to
some law. If vy, w5, ... vy, ... be the 1st, 2nd, . . . mth,. .. of
these groups, the series 2w, will contain all the terms of Su,;
and it is obvious from the definition of convergency that Su,
is convergent or divergent according as 3w, is convergent or
divergent ; we have in fact L Su,= L Sv,. Itis clear that the

n=w m—s
convergency or divergency of 3w, will be more apparent than
that of Su,, because in S, we proceed by longer steps towards
the limit, the sum of » terms of 3w, being nearer the common
limit than the sum of n terms of Su,. Finally, if o', be a new
convergent .

series such that v, Z v,, then obviously Su, is ;.
divergent

convergent
divergent

We shall first apply this process of reasoning to the following
case :—

f 3o,

Example. The series 1/1+1/2+ .. . +1/n+ . . . is divergent.
Arrange the given series in groups, the initial terms in which are of the
following orders, 1, 2, 22, . . . 2m 2m+l | The numbers of terms in the

successive groups will be 2-1,22-2,23 - 22 | |, 2m+l_9m om+2_gm+l |
respectively. Since the termms constantly decrease in value, if 2m+1 be the
greatest power of 2 which does not exceed n, then
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slll 1.1.1.1 1,1, 1
*1t\2 3)* etgteta)t ot \mtamprt e y)

1
>1+(22-2) 5,‘,+(23-22)2_3+ k(oo

>1 1 + 1+ +1
+otgt. . tg
m
>1+ 5
Hence, by making » sufficiently great, we can make S, as large as we please.
The series 1/1+1/2+1/3+ . . . is therefore divergent. This might also be

deduced from the inequality (8) of chap. xxv., § 25.

Cauchy’s Condensation Test, of which the example just
discussed is a particular case, is as follows :—

If f(n) be positive for all values of n, and constantly decrease
as n increases, then 3f(n) is convergent or divergent according
as Saf(a™) is convergent or divergent, where a is any positive
integer < 2.

The series 3f(n) may be arranged as follows :—
[fD)+...+f(a-Dj+ {fl@)+fl@+1)+...+f(a®*—1)}

+ {f@)+f(@*+1)+. .. +f(a3—1)}

+ {f(@™)+f@™+1)+. .. +f(w’"’r1 1)}

Hence, neglecting the finite number of terms in the square
brackets, we see that 3/ (n) is convergent or divergent accord-

ing a
He S{f(@)+f(@™+1)+...+f(a™*-1)} 1)
is convergent or divergent. Now, since f(a™)>f(a™+1)>. . .
> f(a™ — 1) > f(a™*'), we have

(@™t —a™) f(a™) >f(@™)+f(@™ + 1)+ . . . +f(a™**~1)

> (am+1 — am)f(am—}-l)’
that is,

(@ -1)a™f(@™)>f(a™) +f(@™+ 1) +. . . +f(a™—1)

> {(a = 1)fa} a7 (@),
Hence, by § 4, Th. I., the series (1) is convergent if 3 (a—1)
a”f(a™) is convergent, divergent if = {(a —1)/a}a™f (a™) is
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divergent. Now, by § 4, Th. IL,, 3 (¢ — 1) @™f(a¢™) is convergent
if Sa™f(a™ is convergent, and 3 {(a - 1)/a}a™f (™) is
divergent if Sa™f(a™*') is divergent; and for our present
purpose Za™f(a™) and Sa™f(a™*') are practically the same
series, say 30" (a™). Hence Cauchy’s Theorem is established.

N.B.—1t is obviously sufficient that the function f(n) be
positive and constantly decrease for all values of n greater than
a certain finite value r.

Cor. 1. The theorem will still hold if a have any positive
value not less than 2*.

Let @ lie between the positive integers & and b+ 1, (b < 2).
If Sa"f (a™) be convergent, then L a"f(a™)=0, that is, L «f(x)=0.

Hence, on and after some finite value of 2, the function /' (z) will
begin to decrease constantly t as # increases. We must therefore
have (b+1)"f{(b+1)"}<a™f(a"), on and after some finite value
of n. If, therefore, Sa"f(a™) is convergent, a fortiors, will 3 (b + 1)*
JS{®+1)" be convergent, and therefore, by Cauchy’s Theorem,
3/ (n) will be convergent.

If Sa™f (a™) be divergent, zf (#) 1° may, or 2° may not decrease
as # increases.

In case 1°, "f (™) > a"f (a™). Hence the divergence of Za*f (a™)
involves the divergence of 35"/ ("); and the divergence of 3/ (n)
follows by the main theorem.

In case 2°, the divergence of 3f(n) is at once obvious ; for,
if L af (#)=+0, then ultimately 2/ (2)> A4, where A>0. Hence

S(@)>A[x. Now 3A/n is divergent, since 31/n is divergent;
therefore 3/ (n) is divergent.

In what follows we shall use ez, €z, . . . to denote o
a%, . . ., o being any positive quantity < 2; and Az, N, . . .
lz, P2, . . . to denote log,z, log,(log,), . . . log,=, log.(log.2), . . .,
where ¢ is Napier’s Base.

* Also if 1<a<2, see Kohn, Grunert’s Archiv, Bd. 67 (1882) and Hill,
Mess. Math., N. 8., 307 (1896).

+ This assumes that zf (z) has not an infinite number of turning values;
so that we can take = so great that we are past the last turning value, which
must be a maximum.
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Cor. 2. 3f(n) s convergent or divergent according as
Senen . . . €nf(n) is convergent or divergent.

This follows, for integral values of the base @, by repeated
application of Cauchy’s Condensation Test ; and, for non-integral
values of @, by repeated applications of Cor. 1. Thus 3/ (n) is
convergent or divergent according as Senf(en) is convergent or
divergeut. Again, Senf(en) is convergent or divergent according
as Sene(en) f{e(en)}, that is Sene*nf(n), is convergent or divergent;
and so on.

Cor. 8. 3f(n) is convergent or divergent according as the first
of the functions

T [l )‘f (.’&)/ Z,
T, = Maraf (2)} [N,
T.= )\{x}\w)@ LAl .z'f (m) /)\’

which does not 'mmslz wlwn r=w, lms @ negatwe or a posttive limit.
By Cor. 2, 3f(n) is convergent or divergent according as
Sene'n . . . €nf(en) is convergent or divergent.
Now the latter series is (by § 5, Th. L) convergent or
divergent according as

L {enén . . . enf(en)f<or>1;

that is, according as
L log,{enén . . . enf(en)f"<>0;

that is, L log,{enén . . . enf(en)}fn< >0.

If we put z=¢n, so that Az=¢"n, No="n, ...
N-lg=en, Nz =n, and 2= o when n= o, the condition for
convergency or divergency becomes

L Maradz . . . N gf(2)}/Ne< >0 (1).

If, on the strength of Cor. 1, we take e for the exponential
base, the condition may be written

L Yalal’x . . . I"2f (2)}/lTe< >0 (2),

x=o

where all the logarithms involved are Napierian logarithms.
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We could establish the criterion (2) without the intervention
of Cor. 1 by first establishing (1) for integral values of @,
and then using the theorem of chap. xxv., § 12, Example 4,
that L Xzfl"e =1/la.

Cor. 4.  Each of the series

S1/n'te 1),
S1/n {in}'+ (2),
31/nln {{*n}1te (3),
S1/nlnln . . . T {ITnlte (r+1),

is convergent if a>0, and divergent if a=or<0.

As the function nlni®n . . . ["n frequently occurs in what
follows, we shall denote it by P, (n); so that Py(n)=n, P;(n)=
nin, &e.

1st Proof.—Apply the criterion that 3f(n) is convergent or
divergent according as LI{P,(z)f(z)}/i""'#<>0. In the pre-
sent case, f(z)=1/P,(z) ({"z)*. Hence

P () f (@)l 2 =1{1/(m2)*} /I,
=—a,

It follows that (r+1) is convergent if a>0, and divergent
if a<0. If a=0, the question is not decided. In this case,
we must use the test function one order higher, namely,
U{ Py (2) f(2)}/im+22.  Since f(z)=1/P.(x), we have

UP i @) @Yo =i afim+a,
=1>0.
Hence, when a =0, (r + 1) is divergent.

2nd Proof-—By the direct application of Cauchy’s Condensa-
tion Test, the convergence of (1) is the same as the convergence
of Sa"/(a™)**, that is, 2 (1/a*)". Now the last series is a geo-
metrical progression whose common ratio is 1/a®; it is therefore
convergent if >0, and divergent if a= or <0. Hence (1) is
convergent if >0, and divergent if a= or <0.

Again, the convergence of (2) is by Cauchy’s rule the same
as the convergence of Zu"/a™{la}+*, that is, 31/(la)*+*ni*e;
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and the convergence of this last the same as that of 31/n'*e
Hence our theorem is proved for (2).

Let us now assume that the theorem holds up to the series
(r). We can then show that it holds for (r+1). In fact, the
convergence of (r+1) is the same as that of Sa™/a™a™®a™ . . .
Img™{l"a e, that is, 31/(nla)l(nla) . . . ["2(nla){i" " (nla)}+".

First suppose a>0, and a>e¢. Then la>1, nla>n. Hence

1/(nda) I (nla) . . . I™2 (nla) {{7* (nla)}+e
<l/nln ... I n {7 np+e

But, since a>0, 31/P,_, (n) {{""*n}* is convergent, a fortiort,
31/P,(n) {I"n}* is convergent.

Next suppose a}0, and 2<a<e. Then nla<n; and, pro-
ceeding as before, we prove 21/P, (n) {{"n}* more divergent than
the divergent series S1/P,_, (n) {{"*n}~

Logarithmic Scale of Convergency.—The series just discussed
are of great importance, inasmuch as they form a scale with
which we can compare series whose ratio of convergence is
ultimately unity. The scale is a descending one; for the least
convergent of the convergent series of the rth order is more
convergent than the most convergent of the convergent series of
the (r+ 1)th order. This will be seen by comparing the nth
terms, u, and «',, of the 7th and (r + 1)th series. We have
Woftty = {0} {0}, where o is very small but >0, and
o' is very large.

If we put #=10""'n, we may write L w,/u,= L {a*+*)/

lzp+*. Hence, however small a, so long as it is greater than 0,
and however large o, Lo/ u,= 0.

If we suppose the character of the logarithmic scale estab-
lished by means of the second demonstration given above, we
may, by comparing Su, with the various series in the scale, and
using § 4, Th. L, obtain a fresh demonstration of the criterion
of Cor. 3. We leave the details as an exercise for the student.
This is perhaps the best demonstration, because, apart from the
criterion itself, nothing is presupposed regarding f(z), except
that it is positive when @ is greater than a certain finite value.
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By following the same course, and using § 4, Th. IIL., we
can establish a new criterion for series whose ratio of con-
vergence is ultimately unity, as follows, where p, =/ (2 + 1)/f ().

Cor. 5. If f(2) be always positive when & exceeds a certain
Sinite value, Sf (n) is convergent or divergent according as the first
of the following functions—

To=pz—1;
P (.Z'+ I)Pm PO(Z') )
72—P1 (z+1)p,—Pi(2);

Tr rl(x+1)Pa:"‘P—l('z),

which does not vamslz wken &= lzas @ negatwe or & positive limit.
Comparing 3f(n) with 21/P,(n){l'n}*, we see that 3f(n)
will be convergent if, for all values of # greater than a certain
finite value,
pe <Py (@) {I'2}*[ P, (z + ){I" (z + 1)}* (1),
where a>0.
Now (1) is equivalent to
P.(z+1)p,— P, (2)< P, () [{{"/l” (& + 1)} —1].
Also LP,(z)[{lr2)li" (2 + 1)}*— 1]
Iz Iafl"(z+1)1* -1
P (@) @+ 1) - Ve o il’w§1’2w+ 1))§ =
=—-1xlxa=—a,
by chap. xxv., § 12 and 13.
Hence a sufficient condition for the convergency of 3/ (n) is
L {P,(z+1)p,— P, (x)}<—a(a positive),
- <0. .
In like manner, the condition for divergency is shown to be
L {P,(z+1)p,— P, (2)}>—a (a negative),

>0.
Example 1. Discuss the convergence of Ze~1712=« - «=1n/pr,
Here To=1{f(n)}/n,
141/2+. . .+1/n+rin
n

Now, by chap. xxv., § 13, Example 1,
1+(r+1)In>14+1/24+. . .+1/n+rin>rln+1(n+1).
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Hence LT,=0. We must therefore examine T;. Now
T,=1{nf (n)}/ln,
=—{1+1/2+. . . +1/n+(r—1)In}/ln,
=—{1+1/2+. . .+1/n}[/ln—(r-1).
By chap. xxv., § 13, Example 2, L(1+1/2+. . .+1/n)/ln=1. Hence
LT,=-1-7r+1= —r. The given series is therefore convergent or divergent

according as r> or <0.
If r=0, LT,=0, and LT,=0. But we have
Ty=1{ninf (n)}/V*n,
=1-{1+1/2+. . .+1/n-In}/Pn.
Now, when n is very large, the value of 1+1/2+. . . +1/n— In approaches
Euler’s Constant. Hence LT,=1>0. In this case, therefore, the series
under discussion is divergent.

Example 2. To discuss the convergence of the hypergeometric series,

a.f afa+1).8(B+1)
I T 1) 5+ )
The general term of this series is
f(n):a(wl) <oc(atn-1).8(B+1) ... (B+n-1) ,
yy+l) ... (y+n-1).8(@+1) ... (6+n-1)""
The form of f(n) renders the application of the first form of criterion
somewhat troublesome. We shall therefore use the second. We have
_[atn)(B+n)
ST

24, ..

, (a+mn) (B+mn)
o= ‘y+n) [
Lry=z-1.

Hence the series is convergent if £ <1, divergent if z>1.
If =1, L7,=0, and we have
_(r+1)(at+n)(B+n)
T aAn )
(a+,3 y-93+1)n+4An+B
n2+Cn+D
Lry=a+B-y-06+1
If, therefore, =1, the hypergeometric series is convergent or divergent
according as a+B—y—-8+1< or >0.
Ifa+B-vy-0+1=0, L1,=0. But we have
o= (n+1)l(n+1) z“:’;;((’iizg
=n{l(n+1)-In}+(a+B+1){l(n+1)—in}+ {dl(n+1)+ Bln}/n
+Cl(n+1)/n?)/[1+ E[n+ F[n?.
Hence, since ILn{l(n+1)-in}=1, L{l(n+1)-in}=0, Ll(n+1)/n*=0,
Lin/n®=0 (s>0), &c., we have
L1,=1>0.
In this case, therefore, the series is divergent.

-n,

H

’
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Example 8. Consider the series

m  m(m-—1)
1-1+=13

This may be written

-m  (-m)(-m+1) (-m)(-m+1) ... (-m+n-1)
Tt 1ttt 1.2...n e
It is therefore a hypergeometric series, in which a= -m, 8=+, 6=1,
z=1. It follows from last article that the series in question is convergent or
divergent according as —-m< >0, that is, according as m is positive or
negative.
This series is the expansion of (1 - z)™, when z=1.
Example 4. Consider the series
m m(m-1) m(m-1) ... (m-n+1)
3+ 13 + 1.2...n e (D
In this series the terms are ultimately alternatively positive and negative
in sign. Hence the rules we have been using are not directly applicable.
1st. Letm be positive; and let m —r be the first negative quantity among
m, m—1, m-2, ... &c., then, neglecting all the terms of the series before
the (r+1)th, we have to consider
m(m-1) ... (m-r+1) m-r (m-7r)(m—r—-1)
1.2...r7 {1+'r+1+ T 1) (rr2 T } @)-
If we change the signs of the alternate terms of the series within brackets,
it becomes

-1) ... - 1
m—1) (m n+)+

oo k(-1 1.2...7

1+

+...

r-m  (r—-m)(r-m+1)
YTt e ey T (3)-
Now (3) is a hypergeometric series, in which a=r-m, 8=v, d=r+1,
z=1, Hence a+B-y-0+1=r-m-(r+1)+1=-m<0. Therefore (3) is
convergent. Hence (2), and therefore (1), is absolutely convergent.

2nd. Let m be negative, = — usay. The series (1) then becomes
ko mutl) _qkEtD) .. (utn-1)
1-1+=1g - -+(-1) 1.2...n teee @)

Since u is positive, the hypergeometric series

N
1+ i +
is divergent.

Hence (4) cannot be absolutely convergent in the present case.

Since p,= — (¢ +n)/(n+1), the terms will constantly increase in numerical
value if u>1. Hence the series cannot be even semi-convergent unless u<1.

If u be less than 1, p, <1, and the series will be semi-convergent provided
Lu,=0.

Now logunzzlog’%lzzlog {1+::T}}'

Since Llog {1+ (u—1)/(n+1)}/{(x—1)/(n+1)}=1 (see chap. xxv., § 13),
the series Zlog {1+ (u—1)/(n+1)} and = (x—1)/(n+1) both diverge to an
infinity of the same sign. But the latter series diverges to — o or +wo,
according as u< or >1. Hence Lu,=0 or o, according as u< or >1,
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Hence the series (1) is divergent if 4> 1, semi-convergent if u<1.
It obviously oscillates if x=1. Hence, to sum up, the series (1)

is absolutely convergent, if 0Zm<+mw;
semi-convergent, if -1<m<0;
oscillating, if —-1=m;
divergent, if —o<m< —1%,

SERIES WHOSE TERMS HAVE PERIODICALLY RECURRING NEGATIVE
SIGNS, OR CONTAIN A PERIODIC FACTOR SUCH AS SIN nf.

§ 7.] Series which contain an infipite number of negative
terms may or may not be absolutely convergent. The former
clags falls under the cases already discussed. We propose now
to give a few theorems regarding the latter class of series, whose
convergency depends on the distribution of negative signs
throughout the series.

The only cases of much practical importance are those—1st,
where the infinity of negative signs has a periodic arrangement ;

* Historical Note.—If we except a number of scattered theorems, given
chiefly by Waring in his Meditationes Analytice, and Gauss in his great
memoir on the Hypergeometric Series, it may be said that Cauchy was the
founder of the modern theory of convergent series; and most of the general
principles of the subject were given in his Résumés Analytiques and in
Analyse Algeébrique. In his Ezercices de Mathématiques, t. 11. (1827), he gave
the following integral criterion from which most of the higher criteria have
sprung :—If, for large values of n, f(n) be positive and decrease as n increases,

m+n
then Zf (n) is convergent if L |dzf (z)=0 (m arbitrary), otherwise divergent.
n=w |/ n

The second step of the 7-criteria was first given by Raabe, Crelle’s Jour.,
Bd. x111. (1835). De Morgan, in his Differential Calculus, p. 323 et seq. (1839),
first gave the Logarithmic Scale of Functional Dimension, established the
Logarithmic Scale of Convergency of Cor. 4, and stated criteria equivalent
to, but not identical in form with, those of Cor. 3 and Cor. 5. Continental
writers, nevertheless, almost invariably attribute the whole theory to Bertrand.
Bertrand, Liouv. Jour. (1842), quotes De Morgan, stating that he had obtained
independently part of De Morgan’s results. His Memoir is very important,
becauseit contains a discussion of various forms of the criteriaand a demonstra-
tion of their equivalence; we have therefore attached his name, along with De
Morgan’s, to the two logarithmic criteria. Bonnet, Liouv. Jour. (1843), gave
elementary demonstrations of Bertrand’s formuls ; and Malmsten, Grunert’s
Archiv (1846), gave an elegant elementary demonstration, depending essentially
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2nd, where the occurrence of negative signs is caused by the
presence in the nth term of a factor, such as sin 76, which is a
periodic function of 7.

In the former case (which might be regarded as a particular
instance of the latter) we can always associate into a single term
every succession of positive terms and every succession of negative
terms. Since the recurrence of the positive and negative terms
is periodic, we thus reduce all such series to the simpler case,
where the terms are alternately positive and negative.

We may carry the process of grouping a step farther, and
associate each negative with a preceding or following positive
term, and the result will in general be a series whose terms are
ultimately either all positive or all negative.

The process last indicated often enables us to settle the con-
vergence of the series, but it must be remembered that the series
derived by grouping is really a different series from the original
one, because the sum of » terms of the original series does not
always correspond to the sum of m terms of the derived series.
The difference between the two sums will, however, never exceed

on the inequality of chap. xxv., § 13, Cor. 6, that Z1/P, (m+ n) {I" (m+n)}*
(where I'm is positive) is convergent or divergent, according asa < or ¢ 0; and
thence deduces Cor. 8. Paucker, Crelle’s Jour., Bd. xui. (1851), deduces both
Cor. 3 and Cor. 5 from Cauchy’s Condensation Test, much as we have done,
except that the actual form in which we have stated the rule of Cor. 5 is
taken from Catalan, Traité El. d. Séries (1860). Du Bois-Reymond, Crelle’s
Jour., Bd. vxxvi. (1873), gives an elegant general theory embracing all the
above criteria, and also those of Kummer, Crelle’s Jour., xm1. (1835). Abel
had shown that, however slightly divergent Zu,, may be, it is always possible

to find v, ¥s, « + +y Yu, - » . such that Ly,=0 and yet Zv,u, shall be
divergent. Du Bois-Reymond shows that, however slowly Zu, converge, we
can always find v;,v9, - + +, Yn» - . .such that Ly,=wo and Zv,u, neverthe-

less shall be convergent. He shows that functions can be conceived whose
ultimate increase to infinity is slower than that of any step in the logarithmic
scale; and concludes definitely that there is a domain of convergency on
whose borders the logarithmic criteria entirely fail—a point left doubtful by
bis predecessors. Finally, Kohn, Grunert’s Archiv (1882), continuing Du Bois-
Reymond’s researches, gave a new criterion of a mixed character; and
Pringsheim (Math. Ann. 1890, 1891) has discussed the whole theory from a
general point of view. The whole matter, although not of great importance
as regards the ordinary applications of mathematics, illustrates an exceedingly
interesting phase in the development of mathematical thought,
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the sum of a finite number of terms of the original series; and
this difference must vanish for »= o, if the terms of the original
series ultimately become infinitely small.
Example. Consider the series
11 1 1 1 1 1 1 1
173°3%2 5 67 tsm-z sm_1 3t - @
Compare this with the series

1 /1 1\ 1 /1 1 11
I‘(§+3) 1 \5+6>+ ‘+3n—2‘(3n_1+%)+"'(2)’

that is, the series whose (2n — 1)th term is 1/(3n - 2), and whose (2n)th term
is — (1/(3n — 1) +1/3n).

If S, 8, denote the sums of n terms of (1) and (2) respectively, then
S.’;n 2"‘S2n -1 Sﬂn I_SQn -1 1/(37l - 1)! Ssn S2n Since Ll/(3n - 1) :0’ we
have in all cases LS,=LS,’. Hence (1) is convergent or divergent according
as (2) is convergent or divergent. That (1) is really divergent may be shown
by comparing it with the series

Z{1/(38n-2)-1/(8n—-1) -1/3n} (3).

If S, denote the sum of n terms of this last series, we can show as before
that LS,””=LS,. But the nth term of (3) can be written in the form
(-9+12/n - 2/n?)/(3 — 2/n) (3 — 1/n) 3n; and therefore bears to the nth term of
Z1/n a ratio which is never infinite. But Z1/n is divergent.

By § 4, I, (3) is therefore also divergent. Hence (1) is divergent.

It should be noticed that in the case of an oscillating series,
where Lu, + 0, the grouping of terms may convert a non-convergent
into & convergent series; so that we cannot in this case infer the
convergency of the original from the comvergency of the derived
series*.

Example.

2 2 2 2
(1+%) - (1+%) +.. .+(1+2in) - (1+2n11) +.o..

is obviously a non-convergent oscillating series. But
1\2 1\2 1\2 1\? 1\2
{(e) - (og)}+{(a) - (o)} oo {(va) -
1 2
(1+2;ﬁ)} + .00y

whose nth term is (8n2+8n +1)/(4n%+2n)2, i.e. (8+ 8/n+1/n?)[/16 (1 + 1/2n)2n2,
is convergent being comparable in the scale of convergency with 21/n2.

* This remark is all the more 1mportant because the converse process of
splitting up the nth term of a series into a group of terms with alternating
signs, and using the rules of § 8, often gives a simple means of deciding as to
its convergency. The series1/1.2+1/3.4+1/5.6+1/7.8+ . . . may be tested
in this way.
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§8.] The following rule is frequently of use in the discus-
sion of semi-converging series :—

Ifu>u>u>. . . >u,>. . . and all be positive, then
U= g+ Uy— o+ o (=) U+ (=) Upr +. . - 1)
converges or oscillates according as L u,= or 0.
P

Using the notation of § 3, we have
mlln=1% (un+1 —Upye+. . . X un+m);
=+ {tUps1 — (Un4o— Unas) — - - 4
=& {(Unt1 — Unto) + (Unss — Upgs) ¥ v o )
Hence we have
Un+1> mRn > Un+1— Unte (2),
numerical values being alone in question. If, therefore, Lu,=0,
we have Ly = Ltty.=0; and it follows that L ,R,=0 for all
values of m. Also
Uy >n—R0 = Sn> Uy — Ug,
so that S, is finite for all values of ». The series (1) is there-
fore convergent if Lu,=0.
If Lu,=0=+0, then é nBn=a or =0 according as m is odd

or even. Hence the series is not convergent. We have, in fact,
L (Sons1— Son) = Lttonsy =, which shows that the sum of the
series oscillates between S and S+ o, where 8= LS.

Cor. The series

(ul—u2)+(u3"u4)+- oo (Ugpey = Ugn) + .
where w,, Uy, . . . are as before, is convergent.

Example 1. The series I (-1)""1/n is convergent, notwithstanding the
fact, already proved, that Z1/n is divergent.

Example 2. Z(-1)*1(n+1)/n is an oscillating series; but (- 1)1
{(n+1)/n— (n+2)/(n+1)} is convergent.

§9.] The most important case of periodic series is Za, cos
(0 + ¢), where a, is a function of #, and ¢ is independent of n,
commonly spoken of as a Trigonometrical or Fourier's Series. The
question of the convergence of this kind of series is one of great
importance owing to their constant application in mathematical
physics.
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We observe in the first place that

1. If Sa, be an absolutely converging series then Sa,cos(nf+ )
1s convergent.

This follows from § 4, L.

II. If 6=0 or 2kn (k being an integer), Sa,cos (nf +¢) is
convergent or divergent according as 3a,, is convergent or divergent.

This is obvious, since the series reduces to 3a, cos ¢.

III.  If 60 or 2km, then 3a, cos (nf + ¢) is convergent if, for
all values of n greater than @ certain finite value, a, has the same
stgn and never increases as n increases, and if L a,=0.

This is a particular case of the following general theorem,
which is founded on an inequality given by Abel :—

IV. If3u, be convergent or oscillatory, and a,, a,, . . ., 0y, . . .
be a series of positive quantities, which never increase as n increases,
and if L a, =0, then Za,u, is convergent.

n=ow
Abel’'s Inequality is as follows :—If, for all values of n,
A>uy+uy+. . . +u,>B,

where w,, %, . . ., %, are any real quantities whatever, and
if @y, @, . . ., @, be a series of positive quantities which never
increase as m increases, then
A > o+ Qs + . .+ auu, >0 B,
This may be proved as follows:—Let Sp=wu;+wuy+. . . +u,,
S = + agy +. . .+ @, Then u, =8, u,=8,-8,, &ec.;
and
Sy =8 + @ (8= 8) +. .+ .+ @y (S —8isy),
=8 (@ — @) + S (@ —ag) +. . .+ Syey By — @) + Sps.
Hence, since 8, S;, . . ., S, are each <4 and > B, and (@, — a,),
(@—as), . . ., (@n_y— @), @, are all positive or zero,
{(ay =) + (@ —as) +. « o+ (Apey — @) + @y} A
>8> {(— @) +(@—ag) +. o o+ (A — ) + ) B

that is,
6n,4>8,>a,B (1).

Theorem IV. follows at once, for, since Su, is not divergent,
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S, is not infinite for any value of ». Hence, by (1), S, is not
infinite. Also, by Abel’s Inequality,

’
Uy 41 0> mRn = Opi1Unt1 T OptoUniet o o o+ OppmUnim

= Sn’+m - Sn' >an+1D (2),
where ¢ and D are the greatest and least of the values of
By (5 Unpr + Unpo ¥+« o+ Unim = Sppm—8,) for all different

positive values of m. Now, since Su, is convergent or oscillatory,
Spim—S, is either zero or finite, and L @4, =0, by hypo-
thesis. Therefore, it follows from (2), that L ,R, =0 for all

n=x

values of m. Hence Sa,u, is convergent.

We shall prove in a later chapter that, when
uy = cos (nf + ¢),
8, = sin {nb cos {} (n + 1) 6 + ¢p}/sin §6.
If, therefore, we exclude the cases where 6 =0 or 2&w, we see
that S, cannot be infinite. Theorem III. is thus seen to be a
particular case of Theorem IV.
Cor.  If a, be as above, 3(—1)""'a, cos (nf + @), 2a,, sin (nf+ ),
and 3 (- 1)"'a, sin (nf + ¢) are all convergent.

CONVERGENCE OF A SERIES OF COMPLEX TERMS.

§ 10.] If the nth term of a series be of the form =, + y.i,
where 7 is the imaginary unit, and @, and y, are functions of =,
we may write the sum of # terms in the form S, + 7,7, where

Sp=x1+x+. . .+ 2y,

To=y+9+. . . +Yn.
By the sum of the infinite series = (z, + y,¢) is meant the limit
when n = o of S, + T7; that is, (LS,) + (LT,) .

The necessary and sufficient condition for the convergency of
3 (@ + ynt) s therefore that 3z, and Sy, be both convergent.

For, if the series 3z, and Sy, converge to the values S and
T respectively, 3 (2, +y,7) will converge to the value S+ 7% ;
and, if either of the series 3,, 3y, diverge or oscillate, then
(LSy) + (LT,) ¢ will not have a finite definite value.
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§ 11.] Let 2, denote @, + y.?; and let |2,| be the modulus
of 2,%; so that |z,[°=|2.*+|y.|> We have the following
theoremst, which are sufficient for most elementary purposes :—

1. The complex series 3z, is convergent if the real series 3| z, |
s convergent.

For, since 3|z, | is convergent, and |z, | and |, | are each less
than |z,|, it follows from § 4, L., that 3|2,| and 3|y, | are both
convergent ; that is, Sz, and 3y, are both convergent. Hence,
by § 10, 3z, is convergent.

It should be noticed that the condition thus established,
although sufficient, is not necessary. For example, the series
(1-9)/1-(1-14)/2+(1-4)/8—-. .. is convergent since 1/1—1/2
+1/8—. .. and —1/1+1/2-1/8 +. . . are both convergent;
but the series of moduli, namely, /2/1+ J2/2+42/3 +. .
is divergent.

When 3z, is such that 3| z,| is convergent, 3z, is said to be
absolutely convergent. Since the modulus of a real quantity w, is
simply w, with its sign made positive, if need be, we see that
the present definition of absolute convergency includes that
formerly given, and that the theorem just proved includes
§4, IV., as a particular case.

Cor. 1. If wR, denote 2y + Zyis « - - + Znim, then the necessary
and sufficient condition that the complex series 3z, converge is that
it be possible, by taking n sufficiently great, to make |, R,| as small
as we please, whatever the value of m.

Cor. 2. If X, be real or complezx, and z, & complex number
whose modulus ts not infinite for any value of n, however great, then
3 (An2n) will be absolutely convergent if N, is absolutely convergent.

For |X,z,|=|M.|]2,]; and, since 2A, is absolutely con-
vergent, =|A,| is convergent. Hence, since |z,| is always
finite, 3| A, || 2, | is convergent by § 4, IL ; that is, 3| X,2,] is
convergent. Hence = (\,2,) is absolutely convergent.

*

Example 1. The series Zz%/n! is absolutely convergent for all finite
values of z.

Example 2. The series z"/n is absolutely convergent provided | z|<1.

* See chap. xi1., § 13.
t Cauchy, Résumés Analytiques, § x1v.
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Example 3. The series = (cos # +1 sin §)*/n is convergent if 6+0 or 2kw.
For the series 2 cosnffn and = sinnd/n are convergent by § 9, IIIL.

Example 4. The series (cos 6 + i sin 6)*/n? is absolutely convergent. For
the series of moduli is =1/n?, which is convergent.

II.  Let Q be the fized limit or the greatest of the limits* to
which |z, '™ tends when n is increased indefinitely, or o fized limit
to whick | zyi/z,| tends when n is increased indefinitely ; then the
series 2z, will be convergent if Q<1 and divergent if Q>1.

For, if Q<1, then, by § 5, I. and II., the series =|z,]| is
convergent; and therefore, by § 11, 1., 3z, is convergent.

If @>1, then either some or all of the terms of the series
3|z, | ultimately increase without limit. In any case, it will be
possible to find values of n for which |z,| exceeds any value
however great ; and, since |2, |= (| 2, [ + | v, [)"*, the same must
be true of one at least of |, | and |,|. Hence one at least of
the series 2,, 3y, must diverge; and consequently = (z, + y,2),
i.6. 3z,, must diverge.

APPLICATION OF THE FUNDAMENTAL LAWS OF ALGEBRA
TO INFINITE SERIES.

§12.] Law of Association.—We have already had occasion to
observe that the law of association cannot be applied without
limitation to an infinite series; see the remarks at the end of § 7.
It can, however, be applied without limitation provided the series
is convergent. For let S, denote the sum of m terms of the new
series obtained by associating the terms of the original series into
groups in any way whatever. Then, if S, denote the sum of »
terms of the original series, we can always assume 2 so great that
S, includes at least all the terms in S,. Hence S, — 8, =,R,,
where p is a certain positive integer. Now, since the original

* It will be noticed that this includes the case where L |z,|/* has
n=w

different values according to the integral character of m: but the corre-
sponding case where L |z,4,/2,| oscillates is not included. We have
n=w

retained Cauchy’s original enunciation; but it is easy to see that some
additions might be made to the theorem in the latter case.
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series is convergent, by taking n sufficiently large we can make ,R,
as small as we please. It follows therefore that L S,/ = L S,.

Hence the association of terms produces no effect on the sum of the
infinite convergent series.

§13.] Law of Commutation.—The law of commutation is even
more restricted in its application than the law of association.
We may however prove that the law of commutation can be
applied to absolutely convergent series.

We shall consider here merely the case where each term of
the series is displaced a finite number of steps*. Let Su, be
the original series, Su,’ the new series obtained by commuta-
tion of the terms of 3u,. Since each term is only displaced by
a finite number of steps, we can, whatever » may be, by taking
m sufficiently great always secure that 8, contains all the
terms of S, at least. Under these circumstances S, — S, con-
tains fewer terms than ,R,, where p is finite, since m is finite.
Now, since 3w, is absolutely convergent, even if we take the
most unfavourable case and suppose all the terms of the same
sign, we shall have L ,R,=0; and, a fortiori, L S, — L 8,=0.

n=cw m=w n=w
Hence L 8,'= L S,; which establishes our theorem.

The above reasoning would not apply to a semi-convergent series
because the vanishing of L ,R, does not depend solely on the
individual magnitude of the terms, but partially on the alterna-
tion of positive and negative signs.

Cauchy, in his Résumés Analytiques, § vir. (1833), seems to
have been the first to call explicit attention to the fact that the
convergence of a semi-convergent series is essentially dependent on
the order of its terms. Dirichlet and Ohm gave examples of the
effect of the order of the terms upon the sum.

Finally Riemann, in his famous memoir on Fourier’s Seriest,
showed that the series 3 (~1)"'w,, where Lu, =0, and Suy,, and
Su,, are both divergent, can, by proper commutation of its terms,

* See below, § 33, Cor. 2.
+ Written in 1854 and published in 1867. See his Gesammelte Math,

Werke, p. 211,
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be made to converge to any sum we please; and Dirichlet has
shown that commutation may render a semi-convergent series
divergent.

When the sum of an infinite series is independent of the order
of its terms it is said to converge unconditionally. It is obvious
from what has been said that wunconditional convergence and
absolute convergence are practically synonymous.

Example 1. The series
LIRS SN VR S (1)
A Bt ETAY Tt Imey T Jemt

is convergent by § 8 ; but the series
LN PSS SR DN
T R)T\BET )T

1 1 1
+ (,\/(4m+ )T J@m+3)  Jem+ 2)) Hee @),

which is evidently derivable from (1) by commutation (and an association
which is permissible since the terms ultimately vanish), is divergent. For,
if w,=1/J/(4m + 1)+ 1/J/(4m + 8) - 1/{/(2m +2), and v, =1//m, then
Lty [V =L {1/ (4 +1/m) + 1/a/(4 + 3/m) = 1/J(2 + 2fm)} = 1/2 + 1/2 - 1//2 =
1-3y2. Hence u,/v,, is always finite ; and 2v,, is divergent, by § 6, Cor. 4.
Hence Zu,, is divergent. (Dirichlet.)

Example 2. The series

1_l+1_1+}_ +—1,,__1_+ 1
1 273 475 """ T@m-1) (o) """ @

l 1 —1+ 1+_]L _1_*_ + ,_1_+,,_];__ _L*_ 2)
its) 2 7)1t T Gmri T ama3) Tomea T @
are both convergent; but they converge to different sums. For, by taking

successively three and four terms of each series, we see that the sum of (1) lies
between ‘583 and ‘833 ; whereas the sum of (2) lies between *926 and 1-176.

Addition of two wufinite series. If Zu, and Sw, be both con-
vergent, and converge to the values S and T respectively, then
3 (un + n) s convergent and converges to the value S+ T.

We may, to secure complete generality, suppose %, and v, to
be complex quantities. Let S,, T, U, represent the sums of
n terms of Su,, Sw,, 3 (u, + v,) respectively ; then we have, how-
ever great » may be, U,=8,+ 7, Hence, when n= o,
LU,=LS,+ LT,, which proves the proposition.
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§ 14.] Law of Distribution.—The application of the law of
distribution will be indicated by the following theorems :—

If o be any finite quantity, and Su, converge to the value S,
then Sau, converges to af.

The proof of this is so simple that it may be left to the
reader.

If S, and Sw, converge to the values S and T respectively, and
at least one of the two series be absolutely convergent, then the series
u, + (U + u) + . (U U+ . U) F o (1)
converges to the value ST*.

Let S,, T., U, denote the sums of n terms of Zw,, 3v,,

S, () + Ugp—y +. . . +u0) Tespectively; and let us suppose that
Su,, is absolutely convergent. We have

SnT'n = Un + Ln
where Ly = w0, + g0, +. . .+ U0,

Uy + . o+ UDs
+ UV,
=+ Us (Vg + Up_1) F o o U (Bt . ) (2)

If therefore »# be even, = 2m say,

Ly = [ + s (Vom + Vam—1) + .+« + U (Com+ . o < + V)]
+[Umr @am + -+ F Vi) Fo o F U (Ve +. .+ w)] (B).
If » be odd, = 2m + 1 say,
Ly, = [uomir + Us Womtr + Oom) ¥+« o+ U (Vamir -+« + Onas)]
+ (Ut omar ++ + - F Vnia) o o o F Usns @oma +. « .« +05)] (4).

Now, since 3w, is convergent, it is possible, by making m
sufficiently great, to make each of the quantities |van|, |Vem—1+Vam|,
.. .,lvm+2+. . .+’l)27"|,|’02m+1],l’l7ﬁm+vgm+1|, .« . .,l’l)m+2+. . .

* The original demonstration of this theorem given by Cauchy in his
Analyse Algébrique required that both the series Zu,,, Zv, be absolutely con-
vergent. Abel’s demonstration is subject to the same restriction. The more
general form was given by Mertens, Crelle’s Jour., Lxx1x. (1875). Abel had,
however, proved a more general theorem (see § 20, Cor.), which partly in-
cludes the result in question.
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+ Upmyy | & small as we please.  Also, since |14, | T%|, |75,
[Ty, . . . are all finite, and |7 — T4|<|T,| + | 7|, therefore

| Vmaa e v o FVamly o ooy [O2+. o+ O,
[Vmizt o o« FVamr]y « « o [VaF o o o+ Vanga s

are all finite. Hence, if €, be a quantity which can be made as
small as we please by sufficiently increasing m, and 3 a ceértain
finite quantity, we have, from (3) and (4), by chap. xir., § 11,
| Lo | <ew (%] + |tts| + . o o+ | tn|)
+ B (| wmaa | + | Umra| ++ « - + |0t )

If therefore, we make n infinite, and observe that, since
Sy 1s absolutely convergent, |u.| + |us] + . . . + |u,] is finite, and
L(|tbmsr] + |%mse] + -« . +|ua]) =0, we have (seeing that Le, =0)
L|L,|=0. Hence LS,T,=LU,, that is, LU, =8T.

Cauchy has shown that, if both the series involved be semi-
conwvergent, the multiplication rule does mot mecessarily apply.

Suppose, for example, u, =v,=(-1)*"1/,/n. Then both Zu, and v, are
semi-convergent series. The general term of (1) is

wn=i<;1—+——1—+. L 1 > ).
NVin} T NJ{(n-1)2} JEE-1} T

Now, since r (n ~7+1) =% (n+1)>— {} (n+ 1) — r}?, therefore, for all values
of r, r(n—7+1) <} (n+1)?% except in the case where r=4% (n+1), and then
there is equality. It follows that |w,|>n/} (n+1)>2/(1+1/n). The terms of

Sw,, are therefore ultimately numerically greater than a quantity which is
infinitely nearly equal to 2. Hence Zw, cannot be a convergent series.

UNIFORMITY AND NON-UNIFORMITY IN THE CONVERGENCE
OF SERIES WHOSE TERMS ARE FUNCTIONS OF A VARIABLE.

§15.] Let @ for the present denote a real variable. If the
nth term of an infinite series be f(», #), where f(», ) is a single
valued function of # and of 2, and also for all integral values of »
a continuous function of # within a certain interval, then the
infinite series 3f(n, #) will, if convergent, be a single valued
finite function of =, say ¢ (2). At first sight, it might be
supposed that ¢ (#) must necessarily be continuous, seeing that
each term of f(n, ) is so. Cauchy took this view; but, as
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Abel* first pointed out, ¢ () is not necessarily continuous.
No doubt 3/(n, z + %) and 3/ (n, =), being each convergent, have
each definite finite values, and therefore 3 {/(n, z + k) —f(n, z)}
is convergent, and has a definite finite value; but this value is
not necessarily zero when k=0 for all values of x. Suppose, for
example, following Du Bois-Reymond, that f(n, ) =2/(nz + 1)
(nw-2+1). Since f(n, 2) =nz/(nz+1)—(n-1)z/{n - 1o+ 1},
we have, in this case, S,=nz/(nz+1). Hence, provided 2+0,
LS, =1. 1If, however, =0 then §,=0, however great » may
be. The function ¢ () is, therefore, in this case, discontinuous
when 2=0.

The discontinuity of the above series is accompanied by
another peculiarity which is often, although not always, asso-
ciated with discontinuity. The Residue of the series, when
z+0, is given by

R,=1-8,=1/(nz +1).

Now, when « has any given positive value, we can by making »
large enough make 1/(nz+ 1) smaller than any given positive
quantity . But, on the other hand, the smaller # is, the larger
must we take # in order that 1/(nz+ 1) may fall under €; and,
in general, when @ is variable, there is no finite lower limit for »,
independent of z, say v, such that if n>v then R,<e. Owing
to this peculiarity of the residue, the series is said to be non-
uniformly convergent in any interval which includes 0; and,
since, when z approaches 0, the number of terms required to
secure a given degree of approximation to the limit becomes
infinite, the series is said to Converge Infinitely Slowly near 2 =0.

These considerations lead us to establish the following
important definition, where we no longer restrict ourselves
to functions of a real variable. If, for all values of z within
a given region R in Argand’'s Diagram, we can for every
positive value of €, however small, assign @ positive integer v
INDEPENDENT OF z, such that, when n>v, | R,|<e, then the series

m(m_l)x2+ e

b
5 Crelle’s Jour.

* Recherches sur la Série 1+?:¢+
Bd. 1. (1826).



§ 15 UNIFORM CONVERGENCE 145

3f(n, z) is said to be UNIFORMLY CONVERGENT within the region
in question.

Stokes*, who in his classical paper on the Critical Values of
the Sums of Periodic Series was the first to make clear the
fundamental principle underlying the matter now under dis-
cussion, has pointed out that the question of uniformity or
non-uniformity of convergence always arises when we consider
the limiting value of a function of more than one variable.
Consider, for example, the function f(2, y); and let us suppose
that, for all values of y in a given region R, f(z, y) approaches
a finite definite limit when « approaches the value @ ; and let us
call this limit £(a, ). Then if we assign in advance any positive
quantity ¢, however small, we can always find a positive quantity
A, such that, when |z-a|<X, |f(z, y)-f(a, y)|<e If it be
possible to determine A so that the inequality

|f (@, y)-S(a, y)|<e
shall hold for all values of y contained in R, then the approach
or convergence to the limit is said to be uniform within B. If,
on the other hand, A depends on 7, the convergence to the limit
is said to be non-uniform.

Example 1. Consider the series 1+z+22+...+2"+...; and let
|z|<p<1l. We have |R,|=|2"*1/(1-2)|<p"t!/(1-p). Hence, in order to
secure that R, <e, we have merely to choose n> —1+log (e - ep)/logp.
Since —1+log (e — ep)/log p is independent of z, we see that within any circle
whose centre is the origin in Argand’s Diagram, and whose radius is less
than unity by however little, the series 22" is uniformly convergent.

On the other hand, as p approaches unity log (e — ep)/log p becomes larger
and larger. Hence the convergence of Zz" becomes infinitely slow when |z |
approaches unity. We infer that the convergence of Zz" is not uniform
within and upon the circle of radius unity. And, in fact, when the upper
limit of | z| is 1, it is obviously impossible when ¢ is given to assign a finite
value of n such that | 2*+1/(1 - z) |<e shall be true for all values of 2.

* Trans. Camb. Phil. Soc., Vol. viir. (1847). Continental writers have
generally overlooked Stokes’ work; and quote Seidel, 4bhl. d. Bayerischen
Akad. d. Wiss. Bd. v. (1850). For exceptions, see Reiff, Geschichte der
unendlichen Reihen, p. 207 (1889); and Pringsheim, Enc. d. Math. Wiss.
Bd. 11. p. 95 (1899). In his first edition the writer, although well acquainted
with Stokes’ great paper, by an unfortunate lapse of memory, fell into the
same mistake. The question of uniformity of convergence is now a
fundamental point in the Theory of Functions,
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Example 2. Osgood* has shown that, if
¢, (T) =~/ (2¢) n sin’rzx . e=ntsintmz,

the infinite series which has ¢, (z)+¢, (2! 2)/2!+ . . . +¢, (n! z)/n! for the
sum of n terms converges non-uniformly in every interval.

From the definition of Uniform Convergence we can at once
draw the following conclusions.

Cor. 1. If the terms of 3| f(n, 2)| are ultimately less than
the terms of a converging series of positive terms whose values are
independent of z, then 2f(n, 2) converges uniformly.

Tor, if Su, be the series of positive terms in question, and R,
the residue of 3/ (n, z), then

|Ro | B | S+, 2)|+|f(n+2,2)|+. ..,
< Upt1+ Uptpe + . o

Since Su, is convergent, we can find an integer v so that, when
B>V, Unpy + Unga+ . . . <e€; and v will be independent of 2, since
Upt1, Unyo, - - - are independent of z. Hence we can find v
independent of z so that | B, |<e, when #n>v, € having the usual
meaning.

Cor. 2. If 2| f(n, 2)| is uniformly convergent, then 3f(n, 2)
is uniformly convergent.

§16.] We now proceed to establish a fundamental theorem
regarding the Continuity of a Uniformly Converging Series.

Let f(n, z) be @ finite single valued function of the complex
variable z and the integral variable n, which is continuous as
regards z for all values of n, however large, and for all values of
2 within a region R in Argand’s Diagram. Farther, let 3f(n, z)
converge untformly within R, say to ¢ (2). Then $(2) is a con-
tinuous function of z at all points within the region R.

Let the sum to » terms and the residue after » terms of
Sf(n, z) be S, and R,; and let S, and R, be the like for
3f(n, #), where z and 2’ are any two points within the region R.

Then we have
b (2)=8,+R,, ¢()=8,+R, (1).

* Bull. Am. Math. Soc., Ser. 2, m1. (1596). This paper is well worthy of
study on account of the interesting geometrical methods which the authar
uses,
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Since 3f(n, z) is uniformly convergent within R, given any
positive quantity e, however small, we can find a finite integer v,
independent of z, such that for all values of 2z within R, B,<e and
R, <e, when n>v. Let us suppose » in the equations (1) chosen
to satisfy this condition. Since the choice of z is unrestricted we
can by making |z —2'| sufficiently small cause the absolute value
of each of the differences f(1, 2) =/ (1, 2'), . . ., f(n, 2)—f(n, 2)
to become as small as we please, and, therefore, since » is finite
we can choose |2 — 2’| so small that | S, — 8, |, which is not greater

than 3 |f(n, 2) = f(n, 2)|, shall be less than e.
1

Now )
['#(z)_d’(z’)l:lsn—'gn +Rn_Rn'|
P8-S |+| B+ | R |
< 3¢,

which proves our theorem; for ¢, and therefore 3¢, can be made as
small as we please.

It follows from what has been proved that discontinuity of
3f(n, z) is necessarily accompanied by non-uniformity of con-
vergence ; but it does not follow that non-uniformity of con-
vergence is necessarily accompanied by discontinuity. In fact,
Du Bois-Reymond has shown by means of the example

S{a/n (nz+1) (ne — 2z + 1) - 2*/(na® + 1) (na® — x + 1)}

that infinitely slow convergence may not involve discontinuity.
The sum of this series is always zero even when #=0; and yet,
near z = 0, the convergence is infinitely slow.

It should also be noticed that the fact that a series converges
at a point of infinitely slow convergence, does not involve that
the sum is continuous at that point. Thus the series

Sz/(nx + 1) (ne — 2+ 1)

converges at 2 =0; but, owing to the infinite slowness of con-
vergency at #=0, the sum is discontinuous there, being in fact
0 at =0, and 1 for points infinitely near to #=0. In such
cases it is necessary to state the region of uniform convergence
with some care. The fact is that the series in question is
convergent in the real interval p}a3b, where b is any finite
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positive quantity and p is a positive quantity as small as we
please but not evanescent. This is usually expressed by saying
that the series is uniformly convergent in the interval 0<z$b.
Such an interval may be said to be ‘open’ at the lower and
‘closed’ at the upper end*.

Examplet. If u, be independent of z, and w, (2) be a single valued
function of n and z, finite for all values of n, however great, and finite and
continuous as regards z within a region R, then, if Zu, be absolutely con-
vergent, Su, w, (2) is a continuous function of z within R,

It will be sufficient to prove that the series Zu,w, (2) is uniformly
convergent within R.

Since w, (z) is finite for all points within R, we can assign a finite
positive quantity, g, independent of 2, such that, for all points within R,
[y, (2) | <g.

Consider R,,, the residue of 2, w, (2) after n terms, We have

Rn = Penty Wiy (Z) + BntoWnio (Z) +oe.n
Hence

anl>l/"n+1| |wn+l(z)|+|/‘n+2| l‘wn+2‘(z)|+ e
<g (| tpri+ | g+ o o 2.
Since Zu, is absolutely convergent, = |pu, | is convergent, and we can assign
an integer » such that, when n>v, |y |+|tnte|+ - . . <e€/g, Where ¢ is a
positive quantity as small as we please.

Both u, and g being independent of z, it is clear that » is inde-
pendent of z. Hence we have, when n>v, |R,|<¢, » being independent
of 2. The series is therefore uniformly convergent: and it follows from the
main theorem of this paragraph that its sum is a continuous function of z.

SPECIAL DISCUSSION OF THE POWER SERIES 2a,2".

§17.] As the series Sa,2" is of great importance in Algebraic
Analysis and in the Theory of Functions, we shall give a special
discussion of its properties as regards both convergence and
continuity. We may speak of it for shortness as the Power
Series; and we shall consider both @, and z to be complex
numbers, say @, =7, (cosa, + ¢sina,), z=p (cosd + 7sin 6), where
7, and a, are functions of the integral variable », but p and 6 are
independent of .

* Harkness and Morley use these convenient words in their Introduction
to the Theory of Analytic Functions, Macmillan (1898).
+ Du Bois-Reymond, Math. Ann. 1v. (1871).
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The leading property of the Power Series is that it has what
is called a Circle* of Convergence, whose centre is the origin in
Argand’s Diagram, and whose radius (Radius of Convergence) may
be zero, finite, or infinite. For all values of z within (but not
upon) this circle the series is absolutely and uniformly con-
vergent ; and (if the radius be finite) for all values of z without
divergent. On the circumference of the circle of convergence
the series may converge either absolutely or conditionally,
oscillate, or diverge; but on any other circle it must either
converge absolutely or else diverge.

The proof of these statements rests on the following theorem.

If the series 3a,z" be at least semi-convergent when z=z,,
then it is absolutely and wuniformly convergent at all points within
@ circle whose radius <|z,|.

Since Sa,z," 1s convergent, none of its terms can be infinite
in absolute value, hence it is possible to find a finite positive
quantity ¢ such that |@,2,"|<g, for all values of » however large.

Hence | @n2™| = | @nzy (2/20)",

=|anz"| [ (z/z)" ],
<g|(z/z)"].

Now, since 2 is within the circle |% |, |#/2,|<1. Hence the
series g3 (2/2,)" is absolutely convergent. Therefore (§ 4, I.)
3| @,2"| is absolutely convergent.

The convergence is uniform. For, since |z|<|z,|, we can
find 2’ such that |2z|<|2'|<|2|. Now, by the theorem just
established, 3| a,2™| will be convergent, and its terms are inde-
pendent of z. But, since |z|<|2'|, |@,2"|<|@,2™|. Hence, by
§ 15, Cor. 1, Sa,2" is uniformly convergent.

Circle of Convergence. Three cases are in general possible.

1st. It may not be possible to find any value z, of z for which
the series Sa,2" converges. We shall describe this case by saying
that the circle of convergence and the radius of convergence are
infinitely small. An example is the series Sn!a™

2nd. The series may converge for any finite value of z

* When in what follows we speak of a circle (R), we mean a circle of
radius R whose centre is the origin in Argand’s Diagram.
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however large. We shall then say that the circle and the radius
of convergence are infinite. An example of this very important
class of series is Sa"/n!.

3rd. There may be finite values of 2z for which 3a,2" con-
verges, and. other finite values for which it does not converge.
In this case there must be a definite upper limit to the value
of |z,| such that the series converges for all points within the
circle |z,| and diverges for all points without. For the series
converges when |z|<|z,|; and it must diverge when |z|>|z2,];
for, if it converged even conditionally for |2'|>]z|, then it
would converge when |z|<|2'|. We could, therefore, replace
the circle |2,| by the greater circle | 2’|, and proceed in this way
until we either arrive at a maximum circle of convergence,
beyond which there is ounly divergence, or else fall back upon
case 2, where the series converges within any circle however great.

We shall commonly denote the radius of the circle of con-
vergence, or as it is often called the Radius of Convergence, by R.
It must be carefully noticed that both as regards uniformity and
absoluteness of convergency the Circle of Convergence is (so far
as the above demonstration goes) an open region, that is to say,
the points on its circumference are not to be held as being within
it. Thus, for example, nothing is proved as regards the con-
vergence of the power series at points on the circumference of
the Circle of Convergence ; and what we have proved as regards
uniformity of convergence is that 3@,2" is uniformly convergent
within any circle whose radius is less than £ by however little.

§18.] Cauchy’s Rules for determining the Radius of Con-
vergence of o Power Series.

1. Let o be the fized limit or the greatest of the limits to
whick |a, '™ tends when n is increased indefinitely, then 1jo
is the radius of convergence of Za,z".

For, as we have seen in § 11, IL., 3@,2" is convergent or
divergent according as L|a,z"["*<or>1; that is, according as
o|z|<or>1; that is, according as | z|<or>1/w.

II. Let o be a fized limit to whick |a,./a,| tends when n is
increased indefinitely ; then /o is the radius of convergence of
San2".
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The proof is as before. The second of these rules is often
easier of application than the first ; but it is subject to failure in
the case where L |@,./a, | is not definite.

Example 1. 1+42z/1+2%2+. ..
Here, by the first rule, w= L (1/n)¥/*= L mm=1 (chap. xxv., § 16).
n=ow =0
Hence R=1. ' "

By the second rule, w= L {1/(n+1)}/{1/n}= L n/(n+1)=1. Hence

R=1, as before. i "

Example 2. 2z+4222+2342244 . . .
Here if n=2m, L |a,/*|= L 1¥n=1,
n=wo n=

ifn=2m+1, L |a,*|= L 2Vn=1,
n=wo

n=00

Hence w=1, and R=1. The second rule would fail.

§19.] Convergence of a Power Series on its Circle of Con-
vergence.

The general question as to whether a power series converges,
oscillates or diverges at points on its circle of convergence is
complicated. For series whose coefficients are real the following
rule covers many of the commoner cases.

L. Let a, be real, such that wltimately ., has the same sign
and never increases; also that La,=0, and Lany/a.=1, when
n=w. Then the radius of convergence of 3a,2" is unity ; and

1st. If Sa, ts convergent, Sa,z" converges absolutely at every
point on its circle of convergence.

ond. If Sa, is divergent, Sa,z" is semi-convergent at every
point on its circle of convergence, except z=1, where it is
divergent.

If we notice that on the circle of convergence Za,z" reduces
to Sa, (cos 76 + ¢ sin 1) = Sa, cos nb + (Sa, sin 6, we deduce the
above conclusions at once from § 9.

Cor. Obwiously the above conclusions hold equally jfor
3 (= 1)"anz", except that the point z=—1 takes the place of
the point z=1.

The following Rule, given by Weierstrass in his well-known
memoir Ueber die Theorie der Analytischen Facultdten*, applies

* Crelle’s Jour., Bd. 51 (1856).
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to the more general case where the coefficients of the power series
may be complex. By § 6, Cor. 5, it is easy to show that it
includes as a particular case the greater part of the rule already
given.

II. If on and after a certain value of n we can expand
W[y I the form

Untr 4, 9+ )
n

where g and h are real, then the behaviour of Sa,z" on its
circle of convergence, the radius of which is obviously wnity, is
as follows :—

1st. If g<<O0 the series diverges.

oand. If g< -1 the series converges absolutely.

3rd. If —13Pg<O0 the series is semi-convergent, except at the
point z=1, where it oscillates if g=—1 and h=0, and diverges
if g>—1.

For the somewhat lengthy demonstration we refer to the
original memoir.

a.
+ =+
n

§ 20.] Abel’s Theorems* regarding the continuity of a power
series.

Since (§ 18) Sa,2" converges uniformly at every point within
its circle of convergence, we infer at once that

1. The sum of the power series Sa,2" is a continuous function
of z, say ¢ (2), at all points within its circle of convergence.

This theorem tells us nothing as to what happens when we
pass from within to points on the circumference of the circle of
convergence, or when we pass from point to point on the circum-
ference. Much, although not all, of the remaining information
required is given by the following theorem.

II. If the power series Sa,z" be convergent at a point 2z, on
its circle of convergence, and z be any point within the circle, then
L %anz" = %anzon ;

o=z,
provided the order of the terms in Sa,z," be not deranged in cases
where it is only semi-convergent.

* Crelle’s Jour., Bd. 1. (1826).
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In the first place, we can show that in proving this theorem
we need only consider the case where z and z, lie on the same
radius of the circle of convergence. For, if z and z, be not on
the same radius, describe a circle through z, and let it meet the
radius Oz, in z. Then it is obvious that, by making |z—2z,|
sufficiently small, we can make |2z~ | and |2 — 2| each smaller
than any assigned positive quantity however small.

Since z and 2z, are both within the circle of convergence, we
can, by making |z2—2z| sufficiently small, make |¢(2)— ¢ (2)]
less than any assigned positive quantity ¢, however small. But

[¢(2) — b (20) [=] 9 (2) — $ () + b (21) — D ()],
Plo() - @)|+]d () - ¢ (=)l
<e+|d(n)- b (20)|-

If, therefore, we could prove that by making |z, — z,| sufficiently
small we could make |¢ (2) — ¢ (2,)| as small as we please, it
would follow that by making |2 — 2,| sufficiently small we could
make | ¢ (2) — ¢ (2,) | as small as we please.

Let us suppose then that z and z, have the same amplitude 6,
then we may put z=p (cos 6 +%sin ), z,=p,(cos 6 + % sin 6), and
we take @, =7, (cos a, + ¢sina,). Hence

@ 2" =1y (COS @y, + 4 8in a,) p" (cos 76 + 7 sin nb),

- (f)"rnpon {c0s (1 + ap) + i sin (26 + a)},
0

=" (U, +1iV,),
where 2 =p/p,, and becomes unity when z=2,; and U, and V,
are real and do not alter. when z is varied along the radius of the
circle of convergence.
It is now obvious that all that is required is to prove that if
the series of real terms 3z"U, remains convergent when z =1,

then L Sa» U.,= §Un, or, what is practically the same thing,
x=1-0 1 1
to prove that, if SU, be a convergent series, then
L S(1-a")U,=o.

x=1—0 1
Lt Su=(1-2) U+ (1= Uy+. . .+(1-2") Us,
==+ (1 =2 Upr+. . . +(1-2)U..
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Since 231, 1 —a™, 1 —a™, . . ., 1 —x satisfy the conditions
imposed on @, @s, . . ., @, in Abel’'s Inequality (§9). Also,
since 23U, is convergent, U,, U,_,, . . ., U, satisfy the con-
ditions imposed on u,, u,, . . ., u,. Hence, 4 and B being two
finite quantities, we have

(1-2)A4>8,>(1—-a") B.

This inequality will hold however large we may choose » ; and
we may cause 2 to approach the value 1 according to any law we
please. Let us put #=1-1/n2 Then we have, for all values
of n, however great,

{1-(1-1/n)tA>8,>{1-(1-1/2>)"} B.
But E (I-1/n%"= L {(1 - 1/712)‘“‘2}*1/" =¢0=1.

=n

Therefore, since A and B are finite, L S, =0; that is,
L S(1-a"U,=0.

x=1-01

It will be observed that, in the above proof, each term of
Sa" U, is coordinated with the term of the same order in 3U,.
Hence the order of the terms in 3 U, must not be deranged, if it
converges conditionally.

It follows from the above, by considering paths of variation
within the circle of convergence and along its circumference, that,
if a power series converge at all points of the circumference of its
circle of convergence, then as regards continuity of the sum the
circle of convergence may be regarded as a closed region. This
does not exclude the possibility of points of infinitely slow con-
vergence on the circumference of the circle of convergence,
because such points are not necessarily points of discontinuity.

On the other hand, if at any poiut P on the circumference
of the circle of convergence the series either ceases to converge
or is discontinuous, then the series cannot at such points be
continuous for paths of variation which come from within. If
however the series converge on hoth sides of P at points on the
circumference infinitely near to P, it must converge to the same
values.

It would thus appear to be impossible that a power series
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should converge infinitely near any point P of the circumference
of its circle of convergence to one finite value and to a different
finite value at P itself. It follows that, if a power series is
convergent, generally speaking, along the circumference of its
circle of convergence, it cannot become discontinuous at any
point on the circumference unless it cease to converge at that
point.

By considering the series Su, 2", 3v,z", and the series

S (Un®) + Upoy Vo + o o o W) 2T

which is their product when both of them are absolutely con-
vergent, and applying the second of the two theorems in the
present paragraph, we easily arfive at the following result, also
due to Abel.

Cor.  If each of the series Su, and Zv, converge, say to limits
u and v respectively, then, if the series 3 {u, vy + w1 Vo + . . . + Uy Vy)
be convergent, it will converge to wv ;iand this will hold even if
all the three series be only semi-convergent.

Example 1. The series 142+ . ..+2"+ . .. has for circle of con-
vergence the circle of radius unity. Within this circle the series converges
to 1/(1-z): On the circumference the series becomes X (cosn@ +isinnf),
wkich oscillates for all values of 6, except § =0 for which it diverges. At
points within and infinitely near to the circle of convergence the series

. —
converges to 4+icot.

Lxample 2. The radius of convergence for z/1+ .. .+z"n+ ... is
unity. Within the unit circle, as we shall prove later on, the series con-
verges to —Log(1-2). On the circumference of the unit circle the series
reduces to 3 (cosnf+isinnd)/n. This series (see § 9, III.) is convergent
when 6+0; but only semi-convergent, since Z1/n is divergent. When 6 =0,
the series diverges., The sum is therefore continuous everywhere at and on
the circle of convergence, except when 6=0. At points within the circle
infinitely near to z=1 the series converges to a definite limit, which is very
great; but at z=1 the series diverges to + ..

Example 8. =z"[n? converges absolutely at every point on the circum-
ference of its circle of convergence (R=1): and consequently represents a
function of z which is continuous everywhere within that circle and upon
its circumference.

Example 4. Znz" is divergent at every point on its circle of convergence
(R=1); and its sum is a continuous function at all points within its circle
of convergence, but not at points upon the circumference.
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Example 5. Pringsheim * has established the existence of a large class
of series which are semi-convergent at every point on the circumference of
their circle of convergence : a particular case is the series = (- 1)*z7/nlog n,
2
where A\, =1 when 22" $n <221 \ =0 when 22+l p n < 22m+2,

§ 21.] Principle of Indeterminate Coefficients.

If ay=*0, there is a circle of non-evanescent radius within
which the convergent power series Sa,z" cannot vanish.

Since the evanescence of the series implies @y = — a,2—a,2*—. . .,
it will be sufficient to show that there exists a finite positive
quantity A such that, if p=|z|<A, then
<|ap]l.

|—az-a?—. ..
Now, since the series Sa,2z" is absolutely convergent at any
point z, within its circle of convergence, there exists a finite
positive quantity ¢ such that for all values of #, | @,2," | = aps"<g.
Hence | @, |<g/ps"
Now
|-z — @2’ —. . .| P oz] +|@?|+. ..
Plalp+|alp®+. ..
<g{(plpo) + (p/po)* +. . .}
<gp/(po— p).
Hence, if we choose A so that gA\/(po—A) =] @, |, that is XA =|a,| po/
(g9 +| &), we shall have

|~z —a2"—. . [ <|a|

for all values of z within the circle A.

Cor. 1. If an=+0, there is a circle of non-evanescent radius
within which the convergent power series anz™ + Gy 2™ +. . .
vanishes only when z=0.

For A 2™ + U 2™+, L
=2 (W + A2+ . . )

Now, since a,+0, by the theorem just proved there is a circle
of non-evanescent radius within which @, + @p412 +. . . cannot
vanish : and 2™ cannot vanish unless z = 0.

* Math. Ann., Bd. xxv. (1885).
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Cor. 2. If @+ a2 + @x2® +. . . vanish at least once at some
point distinct from z =0 within every circle, however small, then
must a,=0, a,=0, a,=0, . . ., that s, the series vanishes
identically.

Cor. 8. If for one value of z at least, differing from 0, the
series Sa,2" and 3b,2" comverge to the same sum within every
circle, however small, then must a,=b,, @, =b,, . . ., that is, the
series must be identical.

INFINITE PRODUCTS.

§22.] The product of an infinite number of factors formed
in given order according to a definite law is called an Infinite
Product. Since, as we shall presently see, it is only when the
factors ultimately become unity that the most important case
arises, we shall write the nth factor in the form 1 + u,.

By the value of the infinite product is meant the limit of

AT+w) (1 +u). . . (1+u,),

(which may be denoted by i (1 + ), or simply by P,), when n
is increased without limit.

It is obvious that if Lu, were numerically greater than unity,
then LP, would be either zero or infinite. As neither of these
cases is of any importance, we shall, in what follows, suppose
|, | to be always less than unity. Any finite number of factors
at the commencement of the product for which this is not true,
may be left out of account in discussing the convergency. We
also suppose any factor that becomes zero to be set aside; the
question as to convergency then relates merely to the product of
all the remaining factors.

Four essentially distinct cases arise—

1st. LP, may be 0.

ond. LP, may be a finite definite quantity, which we may
denote by II (1 + u,), or simply by P.

3rd. LP, may be infinite.

4th. LP, may have no definite value; but assume one or
other of a series of values according to the integral character of n.
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In cases 1 and 2 the infinite product might be said to be
convergent ; it is, however, usual to confine the term convergent
to the 2nd case, and to this convenient usage we shall adhere ;
in case 8 divergent; in case 4 oscillatory.

§23.] If, instead of considering P,, we consider its logarithm,
we reduce the whole theory of infinite products (so far as real
positive factors are concerned®) to the theory of infinite series ;
for we have

log P, =log (1 +u)+log (1 +u)+. . .+ log(1+u,)

=3 log (1 + uy) ;
and we see at once that

1st. If Slog (1 + u,) is divergent, and L3 log (1 +uy)=— o,
then T (1 + »,) =0 ; and conversely.

2nd. If Zlog (1 + u,) be convergent, then II (1 + %,) converges
to a limit which is finite both ways ; and conversely.

3rd. If 3log (1 +w,)is divergent, and L3 log (1 + u,) =+ o,
then II(1 + w,) is divergent; and conversely.

4th. If Slog (1 +u,) oscillates, then II (1 +w,) oscillates;
and conversely.

§24.] If we confine ourselves to the case where w, has
ultimately always the same sign, it is easy to deduce a simple
criterion for the convergency of II (1 + ).

If Lu, <0, then Zlog (1 +wu,)=— o, and II (1 +u,)=0.

If Lu,>0, Slog (1 +wu,)=+ o, and 11 (1 +u,) is divergent.

It s therefore a mecessary condition for the convergency of
II (1 + wy,) that Lu,=0.

Since Lu, =0, L(1 +u,)"n»=¢; hence Llog (1 + u,)/u,=1.
It therefore follows from § 4 that 3 log (1 +w,) is convergent or
divergent according as 3u, is convergent or divergent. More-
over, if u, be ultimately negative, the last and infinite parts of
Su, and 3 log (1 + u,) will be negative; and if w, be ultimately

* The logarithm of a complex number has not yet been defined, much
less discussed. Given, however, the theory of the logarithm of a complex
variable there is nothing illogical in making it the basis of the theory of
infinite products, as the former does not presuppose the latter.
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positive, the last and infinite parts of Su, and = log (1 + u,) will
be positive. Hence the following conclusions—

If the terms of Su, become wltimately infinitely small, and
have ultimately the same sign, then

1st. II(1 +w,) ts convergent, if Su, be convergent ; and con-
versely.

ond. (1 +wu,) =0, ¢f Su, diverge to — o ; and conversely.

3rd. II(1+w,) diverges to + o, if Su, diverge to + © ; and
conversely.

Since in the case contemplated, where w, is ultimately of
invariable sign, the convergency of II (1 + u,) does not depend on
any arrangement of ;signs but merely on the ultimate magnitude
of the factors, the infinite product, if convergent, is said to be
absolutely convergent. It is obvious that any infinite product in
which the sign of w, is not wltimately invariable, but which is
convergent when the signs of w, are made all alike, will be,
@ fortiori, convergent in its original jform, and is therefove said
to be absolutely convergent; and we have in general, for infinite
products of real factors, the theorem that T (1 +u,) is absolutely
convergent when Zu, is absolutely convergent ; and conversely.

Cor.  Ifeither of the two infinite products 11 (1 + u,), IT (1 — u,,)
be absolutely convergent, the other is absolutely convergent.

For, if Su, is absolutely convergent, so is 3 (—w,); and
conversely.

Example 1. (1+1/1%)(1+1/2%) ... (1+1/n% . . .1is absolutely conver-
gent since Z1/n? is absolutely convergent.

Example 2. (1-1/2)(1-1/3) .. .(L-1/n). .. has zero for its value
since = (-1/n) diverges to — .

Example 3. (1+1/3/2) (14+1/y3) . .. (1+1/i/n) .. . diverges to + o
since = (1/y/n) diverges to +o.

Example 4. (1+1/3/1) (1-1/s/2) (1+1/s/3) (1-1/i/4) . . . Since the

sign of u,, is not ultimately invariable, and since the series 2 (-1)»~1//n is
not absolutely convergent, the rules of the present paragraph do not apply.
‘We must therefore examine the series 2log (14 (-1)»"1/s/n). The terms of
this series become ultimately infinitely small ; therefore we may (see § 12)
associate every odd term with the following even term. We thus replace the
series by the equivalent series

Zlog {1+1//(2n—-1) - 1/{/(2n) - 1/s/(4n2 - 2n)}.
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It is easy to show that
1/i/(2n - 1) - 1/i/(2n) - 1/s/(4n2% - 2n) <O,

for all values of n>1. Hence the terms of the series in question ultimately
become negative, Moreover, 1/5/(2n-1)-1/3/(2n) - 1//(4n?—2n) is ulti-
mately comparable with —1/2n. Hence Zlog (1+ (-1)*"1/{/n) diverges to
—o. The value of (1+1/5/1) (1-1/3/2) (1+1/4/3) (1 -1//4). . . is there-
fore 0. This is an example of a semi-convergent product.

Example 5. eltlg—1-4l+¥e~1-1_ | . The series Tlog(l+u,) in this
case becomes
A+ -1+ +A+3)-A+H+. . .

which oscillates. The infinite product therefore oscillates also.

Example 6. II (1-2z»!/n) is absolutely convergent if z <1, and has 0 for
its value when z=1.

§25.] We have deduced the theory of the convergence of
infinite products of real factors from the theory of infinite series
by means of logarithms ; and this is probably the best course for
the learner to follow, because the points in the new theory are
suggested by the points in the old. All that is necessary is to
be on the outlook for discrepancies that arise here and there,
mainly owing to the imperfectness of the analogy between the
properties of 0O (that is, +@—a) and 1 (that is, x @ +a).

It is quite easy, however, by means of a few simple inequality
theorems*, to deduce all the above results directly from the
definition of the value of II (1 + u,).

If P, have the meaning of § 22, then we see, by exactly the
same reasoning as we used in dealing with infinite series, that
the necessary and sufficient conditions for the convergency of
II (1 +u,) are that P, be not infinite for any value of », however
large, and that L (Ppim—Ps)=0; and that the latter condition

includes the former.
If we exclude the exceptional case where L P, =0, then,

n=ow

since P, is always finite, the condition {} (Poym—Pr)=0 is
equivalent t0 L (Ppim/Pn—1)=0, that is, LP,.n/Py=1.

* See Weierstrass, Abhandlungen aus d. Functionenlehre, p. 203; or
Crelle’s Jour., Bd. 51.
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If, therefore, we denote (1 + %ny1) (1 + ®nta) o « o (1 + Upim)
by =@, We may state the criterion in the following form, where
4, may be complex :—

The necessary and sufficient condition that I1(1 + u,) converge
to a finite limit differing from zero is that L |,Q.—1|=0, for
all values of m. nw

For, since L |nQ.—1|=0, given any quantity e however

small, we can determine a finite integer v such that, if n<v,
|m@n—1|<e. Therefore, since n@n=Pnyn/Pr, we have in
particular
1- €<P,,+m/P,,<1 + e
Since v is finite, P, is finite both ways by hypothesis. Therefore
(1-¢) P.<P,in<(l+¢)P,.

Since m may be as large as we please, the last inequality shows
that P, is finite for all values of » however large.

Again, since P, is not infinite, however large n, the con-
dition Z |n@»— 1|=0, which is equivalent to L ,,@,=1, leads

n=o

to L Puym= L P,. The possibility of oscillation is thus ex-

cluded. The sufficiency of the criterion is therefore established.
Its necessity is obvious.

We shall not stop to re-prove the results of § 24 by direct
deduction from this criterion, but proceed at once to complete
the theory by deducing conditions for the absolute convergence
of an infinite product of complex factors.

§26.] TI(1+wu,) is convergent if IL(1 +|u,|) is convergent.

Let p, =| 4|, so that p, is positive for all values of n, then,
since I (1 + p,) is convergent,

L{(1+pps1) (1 +pnta) o « - (L4 ppym)—1}=0  (1).

ow
m@n—1=(1+ 1) (1 + o) . « o (L + Upym) — 1,
=SUps1 + SUnt1Uno+ o« o F UnprUngoe o o Unpme
Hence, by chap. x11., § 9, 11, we have
0| m@n— 1] P Spnis + Zpnsrpusa+t + « - + Put1Prtz- - « Prtmy
P+ putr) (L+pavs) -+ o (L+ppym)— 1.
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Hence, by (1), L|.Q.—1|=0.

Remark.—The converse of this theorem is not true; as may
be seen at once by considering the product (1+1) (1-4%)(1+13)
(1-3). .., which converges to the finite limit 1; although
(1+1)(1+4)(1+%) 1+ ... is not convergent.

When TL(1+w,) is such that YL (1 +|u,|) ¢ convergent,
IL(1 + u,) s said to be absolutely convergent. If 11 (1 +wu,) be
convergent, but II (1 + |, |) non-convergent, 11 (1 + w,) s said to be
semi-convergent. The present use of these terms includes as a
particular case the use formerly made in § 24.

§27.] If 3|ua| be comvergent, then T (1 +u,) is absolutely
convergent ; and conversely.

For, if 3| u, | be convergent, it is absolutely convergent, seeing
that |u,| is by its nature positive. Hence, by § 24, II (1 +|u,])
is convergent. Therefore, by § 26, II (1 + u,) is absolutely con-
vergent.

Again, if II(1 +u,) be absolutely convergent, II (1 +|u,|)
is convergent; that is, since |w,|is positive, II(1 +|u,|) is
absolutely convergent. Therefore, by § 24, 3|u,| is absolutely
convergent.

Cor. If Su, be absolutely convergent, I (1 + w,z) is absolutely
convergent, where x is either independent of n or is such a function
of n that L|z|+ o when n=o.

Example 1. II(1-z%/n) is absolutely convergent for all complex values
such that | z| <1, but is not absolutely convergent when |z |=1.

Example 2. II(1-z[n?), where z is independent of n, is absolutely
convergent.

§28.] After what has been done for infinite series, it is not
necessary to discuss in full detail the application of the laws of
algebra to infinite products. We have the following results—

1. The law of association may be safely applied to the factors
of IL(1 + u,) provided Lu, =0 ; but not otherwise. .

11. The necessary and sufficient condition that II (1 + u,) shall
converge to the same limit ( finite both ways), whatever the order of
its factors, is that the series Su, be absolutely convergent.

When u,, is real, this result follows at once by considering the
series 3 log (1 + u,) ; and the same method of proof applies when
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u,, is complex, the theory of the logarithm of a complex variable
being presupposed *.

An infinite product which converges to the same limit what-
ever the order of its factors is said to be unconditionally convergent.
The theorem just stated shows that unconditional convergence and
absolute convergence may be taken as equivalent terms. A con-
ditionally convergent product has a property analogous to that of
a conditionally convergent series ; viz. that by properly arranging
the order of its terms it may be made to converge to any value
we please, or to diverge.

III. If both 11 (1 + u,) and I (1 +»,) be absolutely convergent,
then TL{(1 +u,) (1 +v,)} is absolutely convergent, and has jfor its
limit {TL(1 +w,)} x {TL(1 +v,)} 5 also TL{(1 + u,)/(1 + v,)} is abso-
lutely comvergent, and has for its limit {II (1 +u,)}/{IL (1 + v,)},
provided none of the factors of I (1 + v,) vanish.

If @, denote (1 +uy41) (1 +2%yys) - . ., the total residue of
the infinite product II (1 +u,) after » factors, then, if the product
converges to a finite limit which is not zero, given any positive
quantity ¢, however small, we can always assign an integer v such
that | @, — 1|<e, when n<v.

If u, be a function of any variable z, then, when ¢ is given,
v will in general depend on z.

If, however, for all values of z within a given region R in
Argand’s diagram an integer v INDEPENDENT OF 2 can be assigned
such that

| Qn -1 l< €
when n<v, then the infinite product is said to be UNIFORMLY
CONVERGENT within R.

IV. If f(n, 2) be a finite single valued function of the integral
variable n and of 2z, continuous as regards z within a region R,
and if {1 +f(n, 2)} converges uniformly for all values of z
within R to a finite limit ¢ (2), then ¢ (2) is a continuous function
of z within R.

Let z and 2z be any two points within R, then, since

* See Harkness and Morley, Treatise on the Theory of Functions (1893),
§ 79; or Stolz, Allgemeine Arithmetik, Thl. 11. (1886), p. 238.
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¢ (2) and ¢ (') are each finite both ways, it is sufficient to prove
that L | (2)/% (2)| = 1.

Let
¢ (z) =PnQn9 d’(z,) = PrnQ/m

where P, §,, &c. have the usual meanings.

Since the product is uniformly convergent, it is possible to
determine a finite integer v (independent of 2 or 2') such that,
when z<v, we have

|@n-1|<e and [@n—1]<g

where ¢ is any assigned positive quantity however small. Hence,
in particular, we must have

|@nl=1+0e, |Q,]=1+xe;
where 6 and x are real quantities each lying between —1 and + 1.

$@)| |P.||Q.
Now s |2l

Also, since L{IP’.,/P,,[:I, v being a finite integer, and, z

being at our disposal, we can without disturbing » choose |2 — 7 |
so small that [ P',/P,|=1 + ¢, where — 1<y <+1.

[2D]-1] |0ty
¢ (2) T 1+6e ’
_| W+ x—6) e+yxe
1+ 0¢ ’
3+e
<£1—€

Since €(3 +¢€)/(1 —€) can, by sufficiently diminishing €, be
made as small as we please, it follows that L |4 ()/$ (2)|=1.

Cor. 1. If m, and w, (%) satisfy the conditions of the example
in § 16, then IL{1 + p,w, (2)} is & continuous function of z within

the region R.
For, if we use dashes to denote absolute values, we have

l Q—-1|<(1+ Wt W 1) 1+ paWnya) . . . — 1
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Since w, (2) is finite for all values of » and 2, we can find a finite
upper limit, g, for w41, @W'pie, . . . Therefore

|Qn— 1 |<(1 + g}k’n_\\_]) (1 +g/-l,n+2) A

Since 3p/, is absolutely convergent, Sgu’, is absolutely con-
vergent. Hence II(1 + gu’y) is absolutely convergent; and we
can determine a finite integer v (evidently independent of z,
since g and u’, do not depend on z), such that, when n<v,
1+ gpns) (L +gp'nte) - - - —1<e. Hence we can determine v,
independent of z so that |@,—1[<e where € is a positive
quantity as small as we please. It follows that IT {1 + u,w, (2)}
is uniformly convergent, and therefore a continuous function of
z within R.

Cor. 2. If Sa,2" be comvergent when |z|= R, then I1 (1 + a,2")
converges to ¢ (z), where ¢ (z) is a finite continuous function of z
Jor all values of z such that | z|<R.

Cor. 8. If f(n, y) be finite and single-valued as regards n,
and finite, single-valued, and continuous as regards y within the,
region T, and if 3f (n, y) 2" be absolutely convergent when |z|= R,
then, so long as | z|< R, TL(1 + f(n, y) 2") converges to \ (y), where
¥ (y) is a finite continuous function of y within T.

Cor. 4. If Za, be absolutely convergent, then 11 (1 + a,z)
converges to Y (z), where Y (z) is a finite and continuous function
of z jfor all finite values of z.

We can also establish for infinite products the following
theorem, which is analogous to the principle of indeterminate
coefficients.

V. 1If, for a continuum of values of z including 0, II (1 + a,2")
and TI (1 + b,2") be both absolutely convergent, and II (1 + a,2") =
IL(1 + by2™), then @y =by, Go=by, . . ., @y=10y, . . .

For we have

S log (1 + @,2™) = S log (1 + by2™),
both the series being convergent.

Hence for any value of 2, however small, we have, after
dividing by z,

30,2 log (1 + @, 2") V" = 3b, 2" log (1 + b, 2") ",
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Since L log (1 + @,z")¥»<" =1, we have, for very small
2=0

values of z,
A+ @ Asz+ a3 AP+, . =0 B+ b, Bz + by B2t +. . . (1),
where 4,, A,, . . ., By, B, differ very little from unity, and all
have unity for their limit when 2z = 0.
Hence, since 3a,2"' and 3b,2"' are, by virtue of our
hypotheses, absolutely convergent, we have
L (@42 +a;432°+. . . )=0

2=0

L (byByz + b3 By2?+. . . )=0.

2=0
Hence, if in (1) we put 2 =0, we must have
a L A,=b L B,.
2=0

2=0

But LA,=LB,=1; therefore a,=5,. Removing now the
common factor 1+a,z from both products, and proceeding as
before, we can show that a,=5,; and so on.

§29.] The following theorem gives an extension of the
Factorisation Theorem of chap. v., § 15, to Infinite Products.

If ¢ (2) =TL(1 + an2) be convergent for all values of z, in the
sense that L|nQn—1|=0, when n =, no matter what value m
may kave, then  (z) will vanish if z have one of the values —1/ay,
~1aoy .« oy =1/, . . ., and, if ¥ (2) =0, then z must have one
of the values — 1ja,, —1/az, . . ., —1/a,, .

In the first place, we remark that, by our conditions, the
vanishing of L&, when n=cc is precluded. The exceptional
case, mentioned in § 23, where 3log (1 +a,%) diverges to — o,
and II (1 + a,2) converges to 0 for all values of 2, is thus excluded.

Now, whatever » may be, we have

l.['(‘z) :PnQn (1).

Suppose that we cause z to approach the value —1/a,. We
can always in the equation (1) take n greater than »; so that
1 + a,2 will occur among the factors ¢f the integral function P,.
Hence, when z=-1/a,, we have P,=0, and therefore, since
@+ o, ¥ (- 1/a,)=0.

Again, suppose that ¢ (2)=0. Then, by (1), P,Q,=0.
But, since # may be as large as we please, and L@, =1 when
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n=o, we can take n so large that @,+0. Hence, if only =
be large enough, the integral function P, will vanish. Hence 2z
must have a value which will make some one of the factors of
P, vanish ; that is to say, # must have some one of the values

-1y, = lay, . . ., —1/ar, . . .
It should be noticed that nothing in the above reasoning
prevents any finite number of the quantities a,, ., . . ., &, .

from being equal to one another ; and the equal members of the
series may, or may not, be contiguous. If there be p, contiguous
factors identical with 1 + @, 2, the product ¢ (z) will take the form
II (1 + @,2)*r ; and it can always be brought into this form if it be
absolutely convergent, for in that case the commutation of its
factors does not affect its value.

Cor. 1. If z lie within a continuwm (z) which includes all the
values

-1a, —1/ay, ..., —1lam, ... (4),
and =1/by, —1/byy, . .., —=1[by, . . . (B),
if TL(1 + @,2)r and II (1 +b,2)"™ be absolutely convergent jor all
values of z in (2), if f(z) and g (2) be definite functions of z whick
become neither zero nor infinite for any of the values (A) or (B),
and +f, for all values of z in (2),

S @ TI(1 + ayz)r =g (2) I (1 +by2) (1),
then must each factor in the one product occur in the other raised
to the sume power ; and, for all the values of z in (2),

S(2)=g(2) @).

For, since, by (1), each of the products must vanish for each
of the values (A) or (B), it follows that each of the quantities
(A) must be equal to one of the quantities (B); and vice versa.
The two series (A) and (B) are therefore identical.

Since the two infinite products are absolutely convergent, we
may now arrange them in sach an order that @,=b,, a,=b,, . .
&e., so that we now have

(@) A +az) (1+a2). .. =g (2) (1+a2) (1 +am2)=. . . (3).

Suppose that wu,+v,, but that w,, say, is the greater; then
we have, from (3),

JS@E A +az) (1 +az). . . =g@)(L+a2). .. (4)

b
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Now this is impossible, because the left-hand side tends to 0
as limit when z=-—1/a,, whereas the right-hand side does not
vanish when z=-1/a,. We must therefore have p,=v; and,
in like manner, p, = v,; and so on.

We may therefore clear the first » factors out of each of the
products in (1), and thus deduce the equation

S()@u=9(2) Q' (5),
where @, and @', have the usual meaning. The equation (5) will
hold, however large #» may be. Hence, since L@, = L@»=1, we

must have
f (@) =9)

Cor. 2.  F'rom this it follows that a given function of z which
vanishes for any of the values (A) and for no others within the
continuum (%), can be expressed within (2) as o convergent infinite
product of the form f(z) I (1 + a,2)n (where f(2) is finite and not
zero for all finite values of z within (2)), IF AT ALL, in one way only.

If the infinite product be only semi-convergent, the above
demonstration fails.

It may be remarked that it is not in general possible to
express a function, having given zero points, in the form described
in the corollary. On this subject the student should consult
Weierstrass, Abhandlungen aus der Functionenlehre, p. 14 et seq.

ESTIMATION OF THE RESIDUE OF A CONVERGING SERIES OR
INFINITE PRODUCT.

§ 30.] For many theoretical, and for some practical purposes,
it is often required o assign an upper limit to the residue of an
infinite series. This is easily done in what are by far the two
most important cases, namely :—(1) Where the ratio of converg-
ence (p,= Un41/%,) ultimately becomes less than unity, and the
terms are all ultimately of the same sign; (2) Where the terms
ultimately continually diminish in numerical value, and alternate
in sign.

Case (1). It is essential to distinguish two varieties of series



§ 29, 30 RESIDUE OF A SERIES 169

under this head, namely :—(a) That in which p, descends to its
limit p; (b) That in which p, ascends to its limit p.

In case (a), let » be taken so large that, on and after =, p, is
always numerically less than 1, and never increases in numerical
value. Then

anun+1+un+2+un+3+. . .y

Un+z | Unys Un+eo
=un+1{l+—ﬂ+ﬂ. ax I
Un+1 Unte Untr

= Upa {1 + Put1t Put1Pate T Prtr PrtaPrts o . 3
Therefore, if dashes be used to denote the numerical values,
or moduli, of the respective quantities, we have
Bobuwnn{l +ppp+ o+, .},
Punsf ( 1~ p'n41)s

}u,nﬂ/ (1 — u,n+2/ u’n+1) (1)
And also, for a lower limit,
R'adt/ns/(1 - p) ().

In case (b), let » be so large that, after =, p, is numerically
less than 1, and never decreases in numerical value. Then
B, = Up 41 {1 + Pr+1t Put2Pryr T . o -}'
RoPupna{l+p+p2+. ..}
Punn/(1—p) (3);
and we have also
-R,n¢ ’“'n+1/ (1 - P,n+1),
{u’n+l/(1 - uln+'2/uln+l) (4)-
Case (2). When the terms of the series ultimately decrease
and alternate in sign, the estimation of the residue is still
simpler. Let n be so large that, on and after n, the terms never
increase in numerical value, and always alternate in sign. Then
we have
.R',n = u'r,H.] - u’n+2 + u,n+3 . e e
}uln-ﬂ (5) 3
<tul‘n+1 — Wpyo (6)
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§ 31.] Restdue of an Infinite Product. Let us consider the
infinite products, II (1 + w,) and II (1 — w,), in whick w, becomes
ultimately positive and less than unity. If the series Su, converge
in such a way that the limit of the convergency-ratio p, is a
positive quantity p less than 1, then it is easy to obtain an
estimate of the residue. Let @,, @', denote the products of all
the factors after the nth in II (1 + »,) and II (1 —u,) respectively,
so that @,>1, and §,<1. We suppose » so great that, on
and after n, w, is positive, p, less than 1, and either (@) p, never
increases, or else (b) p, never decreases. In case (@), 3u, falls
under case (1) (a) of last paragraph ; in case (b), Su, falls under
case (1) (b) of last paragraph. We shall, as usual, denote the
residue of Su, by R,; and we shall suppose that n is so large
that | R,|<1.

Now (by chap. xx1v., § 7, Example 2),

Qr=(1+ tpp1) (1 + Unys) « « +,

>1+ Upsr T U2 T . .

s

>1+ R, (1).
Q,n = (1 — “n+1) (1 - un+2) LIS}
>1-R, (2)-

Also,
1/@n = {1 — thys/(1 + )} {1 — e/ (1 + waya)} .« + -,
>1 = /(1 + Uns1) — Ungof (L + Wppa) —o + +,
>1 — Upir— Upta—+ + -«
>1-R,.
Whence Qn—1<R,/(1 - R,) (3).
In like manner,
1/Q'n=1{1 + tnis/(1 — i)} {1 + gof (1 — Upi2)} -+ -,
>1 + Upaf/(1 — Unay) + Unyo/ (1 — Unso) ++ -+ -+,
>1 4+ Upyy + Upgo+o o o,
>1+ R,.
Whence 1-Q,>R,/1+R,) (4).
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From (1), (2), (3), and (4) we have
R,<@Qn— 1<Rn/(1 _Rn) (5);
R,/(1+ R)<1-Q,<R, (6).
Since upper and lower limits for £, can be calculated by
means of the inequalities of last paragraph, (5) and (6) enable us
to estimate the residues of the infinite products II (1 + »,) and
I (1 — ).

Example. Find an upper limit to the residue of II (1 - 2®/n), z<1.

Here u,=2"[n, p,=x/(1+1/n), p=2z. The series has an ascending con-
vergency-ratio; and we have R,<u,.,/(1-p)<a™*!/(n+1)(1-=z). There-
fore, 1-Q',<a™*/(n+1) (1 -x). Hence, if P’, be the nth approximation to
II (1-a™n), P’, differs from the value of the whole product by less than
1002+ (n+1) (1 - z) 9, of P’, itself.

CONVERGENCY OF DOUBLE SERIES.

§32.] It will be necessary in some of the following chapters
to refer to certain properties of series which have a doubly in-
finite number of terms. We proceed therefore to give a brief
sketch of the elementary properties of this class of series. The
theory originated with Cauchy, and the greater part of what
follows is taken with slight modifications from note vir. of the
Analyse Algébrique, and § 8 of the Résumés Analytiques.

Let us consider the doubly infinite series of terms repre-
sented in (1). We may take as the general, or specimen term,
WUm, n, Where the first index indicates the row, and the second the
column, to which the term belongs. The assemblage of such
terms we may denote by Su,,,; and we shall speak of this
assemblage as a Double Series*.

A great variety of definitions might obviously be given of
the sum to a finite number of terms of such a series; and,
corresponding to every such definition, there would arise a
definite question regarding the sum to infinity, that is, regarding
the convergency of the series.

There are, however, only four ways of taking the sum of the
double series which are of any importance for our purposes.

* Sometimes the term ¢ Series of Double Entry’’ is used.
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First Way,—We may define the finite sum to be the sum of
all the mn terms within the rectangular array OKMN. This
we denote by Sy, .. Ther we may take the limit of this by
first making 7 and finally # infinite, or by first making » in-
finite and finally m infinite. If the result of both these limit
operations is the same definite quantity S, then we say that
Sttm, n converges to S in the first way.

0 A B C D K
\
Uy | Yyg | Ung | Upyg | 0000 e e Upn | Yyntr | o oo
AI
Ugy | Ugyg | Uz | Ugy | ¢ 0 v v oo Ugn | Uznh1
BI
Ugyy | Usy | Ugg | Ugy | o000 o e Ugn | Usnt
c/
Ugy | Ugg | Ugz | Ugyq | o 0 v 0 o v Ugyn | Ugyn1
Dl
L Q).
Upnyy | Unyg | Upyz | Ung | o o o oo e Up,n | Unamt1
7|
K L
Uma1 U, 2 U, 3 Umyg |« 0 o0 0 ® U, n U a1
N M
Ume,1 | Ymds 2| Ym1,3| Ymid U1, n | Ym1,m+1
)

It may, however, happen—1st, that both these operations
lead to an infinite value; 2nd, that neither leads to a definite
value; 3rd, that one leads to a definite finite value, and the
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other not; 4th, that one leads to one definite finite value, and
the other to another definite finite value*. In all these cases
we say that the series is non-convergent for the first way of
summaing.

Second Way.—Sum to n terms each of the series formed by
taking the terms in the first m horizontal rows of (1); and call
the sums 7% 4, T, n, « + +» T n. Define

Smn=Tyn+Tont. . +Tnn (2)
as the finite sum.

Then, supposing each of the horizontal series to converge
to T\, T, . . ., Ty respectively, and 37, to be a convergent
series, define

8=T+To+.. . +Tp+...2d ® (3)
as the sum to infinity in the second way.

Third Way.—Sum to m terms each of the series in the first
n columns; and let these sums be Uym, Uym, - - -, Upym.
Define

S mn=U,m+ Upym+. « .+ Upm 4)
as the finite sum.

Then, supposing these vertical series to converge to U, U,,

..., U, respectively, and U, to be a convergent series,
define
S'=U,+Us+. . .+U,+...ad o (5)

as the sum to infinity in the third way.

So long as m and » are finite, it is obvious that we have
S’m,n:S"m,nZSm,n;

so that, for finite summation, the second and third ways of
summing are each equivalent to the first.

The case is not quite so simple when we sum to infinity. It
is clear, however, that

§'= L{ L S} ©);
&Ild S": I/ { L Sm, n} (7);

n=w Mm=wo

* Examples of some of these cases are given in § 35 below.
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so that 8" and 8" will be equal to each other and to S when the

two ways of taking the limit of S, , both lead to the same
definite finite result*.

Fourth Way.—Sum the terms which lie in the successive

diagonal lines of the array, namely, A4’, BB', CC', . . ., KK':
and let these sums be D,, D, . . ., Dy respectively ; that is,
D2=u1,1, D3=u1,2+'“2,1> ey Dn+1:ul,n+u2,n—1+- ot Uy,
Define
S”'1L:-D2+-D3+- . .+Dn (8)
as the finite sum ; and, supposing 3D, to be convergent, define
S"=Dy+Dy+. . . +D,+. .. ad o 9)

as the sum to infinity in the fourth way.

The finite sum according to this last definition includes all
the terms in the triangle OKK’; it can therefore never (except
for m=n=1) coincide with the finite sum according to the
former definitions. Whether the sum to infinity (S"’) according
to the fourth definition will coincide with S, S, or 8", depends
on the nature of the series. It may, in fact, happen that the
limits S, 8, 8" exist and are all equal, and that the limit S is
infinitet.

§ 83.] Double series in which the terms are all wltimately of
the same sign. By far the most important kind of double series
is that in which, for all values of m and n greater than certain
fixed limits, u,, , has always the same sign, say always the
positive sign. Since, by adding or subtracting a finite quantity
to the sum (however defined), we can always make any finite
number of terms have the same sign as the ultimate terms of
the series, we may, so far as questions regarding convergency
are concerned, suppose all the terms of 3u,,, to have the same
(say positive) sign from the beginning. Suppose now (1) to
represent the array of terms under this last supposition ; and let
us farther suppose that Su,, , is convergent in the first way.

Then, since L (Syip, nitq—Sm,a)=8—8=0, when m=co,
n= o whatever p and ¢ may be, it follows that the sum of all

* For an illustration of the case when this is not so, see below, § 35.
+ See below, § 35.
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the terms in the gnomon between NMK and two parallels to
NM and MK below and to the right of these lines respectively,
must become as small as we please when we remove N suffi-
ciently far down and MK sufficiently far to the right.

From this it follows, a fortiori, seeing that all the terms of
the array are positive, that, if only m and » be sufficiently great,
the sum of any group of terms taken in any way from the residual
terms lying outside OK MN will be as small as we please.

Hence, in particular,

1st. The total or partial residue of each of the horizontal
series vanishes when 7=,

2nd. The same is true for each of the vertical series.

3rd. The same is true for the series 3.D,,.

The last inference holds, since 8, obviously lies between
Sg.n-q and Sy, 1.

Hence

Theorem 1. If all the terms of Suy, . be positive, and if the
series be convergent in the first sense, then each of the horizontal
series, each of the vertical series, and the diagonal series will be
convergent, and the double series will be convergent in the re-
maining three ways, always to the same limait.

If we commutate the terms of a double series so that the
term wpm, , becomes the term w,y, -, where m’ = f(m, n), n’ = g (m, n),
S (m, n) and g (m, n) being functions of m and n, eack of which has
a distinct value for every distinct pair of values of m and n (say
non-repeating functions), and eack of whick is finite jor all finite
zalues of m and n (Restriction A*), then we shall obviously leave
the convergency of the series unaffected. Hence

Cor. 1. If Sum,n be a series of positive terms convergent in
the first way, then any commutation of its terms (under Re-
striction A) will leave its convergency unaffected ; that is to say, it
will converge in all the four ways to the same limit S as before.

* No such restriction is usually mentioned by writers on this subject ;
but some such restriction is obviously implied when it is said that the terms
of an absolutely convergent series are commutative; otherwise the character-
istic property of a convergent series, namely, that it has a vanishing residue,
would not be conserved.
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Cor. 2. If the terms (all positive) of a convergent single series
Su, be arranged into o double series Sy, », where m' and n' are
JSunctions of n subject to Restriction A, then Sum,. will converge
in all four ways to the same limit as Su,.

It should be noticed that this last corollary gives a further
extension of the laws of commutation and association to a series
of positive terms; and therefore, as we shall see presently, to
any absolutely convergent series.

Let us next assume that the series Suy, , is convergent in the
second way. Then, since 377, is convergent, we can, by suffi-
ciently increasing m, make the residue of this series, that is, the
sum of as many as we choose of the terms below the infinite
horizontal line N, less than }e, where ¢ is as small as we
please. Also, since each of the horizontal series is, by our
hypothesis, convergent, we can, by sufficiently increasing », make
the residue of each of them, less than ¢/2m ; and therefore the
sum of their residues, that is, as many as we please of the terms
above NM produced and right of MK, less than }e. Hence, by
sufficiently increasing both m and #», we can make the sum of
the terms outside OKM N, less than ¢, that is, as small as we
please. From this it follows that Sup,, is convergent in the
first way, and, therefore, by Theorem I., in all the four ways.

In exactly the same way, we can show that, if 3w, , is con-
vergent in the third way, it is convergent in all four ways.

Finally, let us assume that 3w, . is convergent in the fourth
way. It follows that the residue of the diagonal series 3D, can,
by making p large enough, be made as small as we please.
Now, if only m and » be each large enough, the residue of Sp,n,
that is, the sum of as many as we please of the terms outside
OKMN, will contain only terms outside OKK", all of which are
terms in the residue of 8"/, Hence, since all the terms in the
array (1) are positive, we can make the sum of as many as we
please of the terms outside OKMN as small as we please, by
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sufficiently increasing both 7 and n. Therefore Su,, , is con-
vergent in the first way, and consequently in all four ways.

Combining these results with Theorem I., we now arrive at
the following :—

Theorem II. If a double series of positive terms converge in
any one of the four ways to the limit S, it also converges in all the
other three ways to the same limit S; and the subsidiary single
sertes, horizontal, vertical, and diagonal, are all convergent.

Cor. Any single series Zu, consisting of terms selected from
S, (under Restriction A) will be a convergent series, if Sy,
be convergent.

Restriction A will here take the form that »' must be a
function of m and n whose values do not repeat, and which is
finite for finite values of m and n.

Example. The double series Zz™y" is convergent for all values of z
and y, such that 0<z<+1, O<y<+1.

For the (m + 1)th horizontal series is 2™Zy®, which converges to 2™](1 - y)
since 0 <y < +1. Also Zz™/(1 - y) converges to 1/(1 — z)(1 - y)since 0 <z < +1.

§ 84.] Absolutely Convergent Double Series.—When a double
series is such that it remains convergent when all its terms are
taken positively, it is said to be Absolutely Convergent.

Any convergent series whose terms are all ultimately of the
same sign is of course an absolutely convergent series according
to this definition.

It is also obvious that all the propositions which we have
proved regarding the convergency of double series consisting
solely of positive terms are, @ fortiori, true of absolutely con-
vergent double series, for restoring the negative signs will, if it
affect the residues at all, merely render them less than before.

In particular, from Theorem II. we deduce the following,
which we may call Cauchy’s test for the absolute convergency of a
double series.

Theorem III. If . be the numerical or positive value of
Um,n, and if all the horizontal series of Su'y, n be comvergent, and
the sum of their sums to infinity also convergent, then

1st. The Horizontal Series of Sum,, are all absolutely con-
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vergent, and the sum of their sums to infinity converges to o
definite finite limit S.

2nd. 3w, converges to S in the first way.

8rd. AUl the Vertical Series are absolutely convergent, and
the sum of their sums to infinity converges to S.

4th.  The Diagonal Series is absolutely conveirgent, and con-
verges to S.

5th.  Any series formed by taking terms from Suy, . (under
Restriction A) is absolutely convergent.

The like conclusions also jfollow, if all the vertical series, or if
the diagonal series of Su'y,, be convergent.

Cor. If Su, and 3w, be each absolutely convergent, and con-
verge to u and v respectively, then 3 (w,) + Uy Vs +. . .+ uv;) 98
absolutely convergent, and converges to uv.

For the series in question is the diagonal series of the double
series Su,®,, which, as may be easily shown, satisfies Cauchy’s
conditions.

This is, in a more special form, the theorem already proved
in § 14.

Examplel. Find the condition that the double series = ( - )™,C,, an—mym

(n<¢m, (Cy=1) be absolutely convergent; and find its sum,
The series may be arranged thus :—

1+ T+ 2. .. +att. ..

-y - 2yx - Bya?-. .. —(n+1)yan—. ..
+y2+ 3yr + 6/%2 +3 (n+1)(n+2 ‘x"+ .
(- )”"_l/m‘i-( ) +1C ymx+( ) m+202ym‘7”2 (=) m_*_nC"y""x“+. ..

If ' and y' be the moduh or posmve va.lues, of T and Y, then the series
corresponding to the above will he
1+ 2+ a%+. .. +am+. ..
+y'+ 22 +3y'a?+. . A+ (n+l)yar+. L

z mn

In order that the horizontal series in this last may be convergent, it is
necessary and sufficient that ' <1.

Also T4, =y™/(1—a')™*'; hence the necessary and sufficient condition
that =T",, be convergent is that y’'<1-2z', which implies, of course, that

'<1.

y The given series will therefore satisfy Cauchy’s conditions of absolute
convergency if |z|<1, |@|+|y|<1, and consequently also |y|<1.

These being fulfilled, we have T, ;= (- )"™y™/(1 - 2)™*1;
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S’:r1 gl—l—?j—m+. . .(-)m<1%x>m. . §

-z
— 1 .
Tl-z+y’
and the sum of the series, in whatever order we take its terms, is 1/(1 -z +y).
Example 2. If u,_=a:2'+x?'+1+x2'+2+ . . ., where x <1, show that
20 ol 22
Uy | Uy | Uy _ ar 2%
—2~g+§+§_,+. . "‘2"0“5?_?_?_' ..

Let S denote the series on the left. Then S may be written as a double
series thus,

1 an
@(szo+x2'+x22+. B A R |
1 o, o2 2
+§(0 +2 ¥+, a2t L)
1 22 01
+2—2(0 +0+a+. . . +2¥+. . )

Now each of the vertical series is absolutely convergent, and we have
U,=2"(1-1/2%)[(1 - })=2" (2~-1/2"). ZU,is of the same order of con-
vergence as 22", hence it is absolutely convergent. Also all the terms of the
double series are positive. The double series therefore satisfies Cauchy’s
conditions; and its sum is the same as that of U, or of ZT,. Now

2T, =ug[20 +uy [21 + up 22+ . . 5
and U, =3 (2 -1/2v),
=23z - Zg?"[2",
=2u, - 22°[20 -zl - . . .

Hence the theorem.

§ 35.] Ewxamples of the exceptional cases that arise when
a double series is not absolutely convergent. It may help to
accentuate the points of the foregoing theory if we give an
example or two of the anomalies that arise when the conditions
of absolute convergency are not fulfilled.

Example 1. It is easy to construct double series whose horizontal and
vertical series are absolutely convergent, and which nevertheless have not a
definite sum of the first kind ; but, on the other hand, have one definite sum
of the second kind and another of the third kind.

If the finite sum of the first kind, S,,,,, of a double series be 4 +f (m, n),
where 4 is independent of m and n, then it is easy to see that
U, n=f (M, n) = f(m -1, nj—f(m,n-1)+f(m-1,n-1).
Hence we have only to give f(m, n) such a form that
L{Lf(mn}+ L{L f(mn)},
m=w® nN=o0 N=20 PL=0
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and we shall have a series whose sums of the second and third kind are not
alike, and which consequently has no definite sum of the first kind.

Suppose, for example, that f(m, n)=(m+1)/(m+n+2), then

Uy =M+ 1)[(m+n+2) —m[(m+n+1) - (m+1)/(m+n+1)+m/(m+mn),

=(m-n)/(m+n) (m+n+1) (m+n+2).

It is at once obvious that the sums of the second, third, and fourth kind
for this series are all different, For in the first place we observe that
Upy, == —Up, . Hence there is a ‘‘skew” arrangement of the terms in the
array (1), such that the terms equidistant from the dexter diagonal of the
array and on the same perpendicular to this diagonal are equal and of opposite
sign, those on the diagonal itself being zero. Each term of the diagonal series
3D, is therefore zero; and the sum of the fourth kind is 0.

Also, owing to the arrangement of signs, we have T, ,= — Up,,; and,
since each of the horizontal and each of the vertical series in this case is
convergent, T,,= - U,,, and therefore §'= - S",

Now

= %1[("“"1){]/(7""'"'*'2)—1/(m+n+1)}—m{ll(m+n+1)—1/(m+n)}],

=(m+1){1/(m+n+2)--1/(m+2)} —m {1/(m+n+1) -1/(m+1)}.
Hence
T,= - (m+1)/(m+2)+m[(m+1)= -1/(m+1) (m+2).

The series =T, is therefore absolutely convergent ; and its sum to infinity
is obviously —1+1/2= -1/2. Hence the double series has for its sum
—-1/2, +1/2, or 0, according as we sum it in the second, third, or fourth way.

At first sight, the reader might suppose (seeing that the horizontal series
are all absolutely convergent, and that the sum of their actual sums is also
absolutely convergent) that this case is a violation of Cauchy’s criterion.
But it is not so. For, if we take all the terms in the mth horizontal series
positively, and notice that the terms begin to be negative after m=n, then
we see that 17, the sum of the positive values of the terms in the mth series
is given by

T,

mn

m @©
4 —
Tm— %1 Uy n _n—fﬂ. Uy mr

n

=(m+1){1/(2m+2) - 1/(m+2)} -m{1/(2m +1) - 1/(m+1)}

- (m+1){0-1/(2m+2)} +m{0-1/(2m+1)},
=1-2m[(2m+1) — (m+1)[(m+2) +m[(m +1),

=(m2+m+1)/(m+1) (m+2) 2m+1).

Now the convergence of Z1",, is of the same order as that of Z1/m, that is
to say, 271", is divergent. Hence Cauchy’s conditions are not fully satisfied;
and the anomaly pointed out above ceases to be surprising. The present case
is an excellent example of the care required in dealing with double series
which are wont to be used somewhat recklessly by beginners in mathematics*.

* Before Cauchy the reckless use of double series and consequent
perplexity was not confined to beginners. See a curious paper by Babbage,
Phil. Trans. R.S.L. (1819).
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Example 2. The double series = (- )"*t*1/mn, whose horizontal and
vertical series are each semi-convergent, converges to the sum (log 2)? in the
second, third, or fourth way (see chap. xxvnr., § 9, and Exercises xr. 14).
But alteration in the order of the terms in the array would alter the sum
(see chap. xxvm., § 4, Example 3).

Example 3. If thetwo series Za,, and Zb, converge to a and b respectively,
and at least one of them be absolutely convergent, then it follows from § 14
that the double series Za,b, converges to the same sum, namely ab, in all
the four ways, although it is not absolutely convergent, and its sum is not
independent of the order of its terms.

The same also follows by § 20, Cor., provided Za,, =b,, Z (2,0, +a,_,b,
+. . .+4ab,) be all convergent, even if no one of the three be absolutely
convergent*.

If, however, both Za, and =b, be semi-convergent, then the diagonal series
may be divergent, although the series converges to the same limit in the
second and third way. This happens with the series =( - )m+21/(mn)* where
o is a quantity lying between 0 and 4. This series obviously converges to the
finite limit (1 -1/2¢+1/3%—. . .)? in the second and third ways. For the
diagonal series we have

n
D,= Z 1/r*(n-1r)
r=1

Now, since 0<a<}, we have, by chap. xxiv., § 9, %4 (n—r)*< 2=y
+(n-1)}*<2-2n%

Therefore
1 21-ana 1 %4 (n—1)*
Dn— 2l—ana re (n — 7.)u. 9l-apa ra (n — r)a. ’
2 n1 2 n
Yoimapa 2 ¥ glane e
< 2¢pl—2,

Hence, if a=%, LD, <2%; and, if a<}, LD,=wo, when n=w. Therefore
2D, diverges if 0<a $ 3.

IMAGINARY DOUBLE SERIES.

36.] After what has been laid down in § 10, it will be
obvious that, in the first instance, the convergency of a double
series of imaginary terms involves simply the convergency of
two double series, each consisting of real terms only.

It is at once obvious that each of the two double series,
S,y 2ZBmn, Will be absolutely convergent if the double series

* See Stolz, 4llgemeine drithmetik, Th. 1., p. 248,
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3% 0 + B%n,n) 1s convergent. Hence, if «',,, denote the
modulus of wm,n = tp,y + 4Bnn We see that Su,,, will converge
to the same limit in all four ways if Su’,,. be convergent.
In this case we say that the imaginary series is absolutely
convergent.

Since all the terms ', , are positive, we deduce from
Theorem II. the following :—

Theorem IV. If all the horizontal series in the double series
Jormed by the moduli of the terms of Sy, . be convergent, and the
sum of their sums to infinity be also convergent, then the series
Sty 15 absolutely convergent, and all its subsidiary series are also
absolutely convergent.

Here subsidiary series may mean any series formed by
selecting terms from Su,, , under Restriction A. Theorem IV.,
of course, includes Theorem III. as a particular case.

§37.] The following simple general theorem regarding the
convergency of the double series Sa,,2™y" will be of use in a
later chapter.

If the moduli of the coefficients of the series Sa,, .a™y" have a
Jinite upper limit N, then Sa,, .a™y" is absolutely convergent for
all values of x and y such that |z|<1, |y|<1.

For, if dashes be used to indicate moduli, we have, by
hypothesis, &'n,»>A. Hence the series Sa',,.&™y™ is, a fortiori,
convergent if the series SAa™y™ is convergent; that is, if
Sa™y™ is convergent. Now, as we have already seen (§ 33),
this last series is convergent provided 2'<1 and y'<1. Hence
the theorem in question.

Exercises VIII.

Examine the convergency of the series whose nth terms are the
following : —

1) (L+n)/1+n?). (2.) nP[(n?+a).

(8.) e, (4.) 1/(n2=1).

(5.) 1(n2-n){Jn-n(n-1)} (6.) ar/(am+an).

(7.) (nl)2z™/(2n)!. (8.) mifn!.

9.) {(y+am)/(z — ™)}, (10.) nlog{(2n+1)/(2n-1)}-1.

(1L) 1.8.5...(2n—1)/2.4.6...2n
(12.) {1/1%+1/2%+. . . +1/n3} /02,
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(18.) 1/(an+b). (14.) n/(an®+0),
(15.) m(m-1)...(m-n+1)/n" (16.) {(n+1)/(n+2)}"n.

m m(m+1) m(m+1)(m+2)

(17.) Show that =+ Ty * s D) 4 2)
divergent according as n —m> or 1.

(18.) Show that al/m 4 qUm+l/m+l) . glim+lm+Ilm+2) L | is conver-
gent or divergent according as a< or <1/e. (Bourguet, Nouv. Ann., ser.
., t. 18.)

(19.) Examine the convergency of Z1/n(+li/n,

(20.) Show that Zn®/(n+1)¥+® i¢ convergent or divergent according as
a>or +1. (Bertrand.)

(21.) Show that =1/n logn{loglogn}* is convergent or divergent aceord-
ing as a>or <1.

(22.) Show that 21/(n+1+ cos nr)? is convergent. (Catalan, Traité £l
d. Séries, p. 28.)

+ . . . i8 convergent or

Examine the convergency of the following infinite products :—
(23.) II{1+f(n)r™}, where f(n) is an integral function of n.
(24.) I {(z*+z)/(z>+1)}. 25.) II{n**l/(n-1)*(n+2)}.

(26.) If =f(n) be convergent, show that, when n=o,
LATE (o+f () i =,
1

(27.) If p denote one of the series of primes 2, 3, 5,7, 11,. . ., then
2f (p) is convergent if =f(p)/log p is convergent. (Bonnet, Liouville’s Jour.,
viir. (1843), and Tchebichef, ib., xvir. (1852).)

(28.) If z<1, show that the remainder after n terfns of the series

Irx+ 272+ 3723+ . . .
is <(m+1)rat {1~ (1+1/n)"z}.

(29.) If u,, uy, .. ., u, be all positive, and Zu, z” be convergent for all
values of 22 <a?, then

(n+1) (n+2)
1.2
will be convergent between the same limits of x.
(80.) Point out the fallacy of the following reasoning :—

Zgn {un - (n+1)at, 4, + My y g - &c.}

Let Z2=1+3}+3%+...ad o,

then loge2=1-%+3-%+.. .
=(1+3+3+. . )-2@F+1+5+. . .)
=2-23/2=0.

(81.) If pand p’ be the ratios of convergence of =1/P,_, (n) {I"-1n}!*+ and
21/P, (n) {I'n}1** (see § 6), then L (o', — p,) P,y (W) =a, when n=c. What
conclusion follows regarding the convergence of the two series ?

(82.) If Zu, is divergent, then Zu,[S,_,* is divergent if a1 (where
Sp=u+uy+. . . +u,), and Zu,[S,** is convergent if o >0. Hence show
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that there can be no function ¢ (n) such that every series Zu,, is convergent
or divergent, according a8 L ¢ (n) u,=or +0. (Abel, Buvres, 11., p. 197.)
N=x

(33.) If Zu, be any convergent series whose terms are ultimately positive,
we can always find another convergent series, Zv,,, whose terms are ultimately
positive, and such that Lv,[u,=w.

If Zu, be any divergent series whose terms are ultimately positive, we
can always find another divergent series whose terms are ultimately positive,
and such that Lu,/v,=wo.

(These theorems are due to Du Bois-Reymond and Abel respectively; for
concise demonstrations, see Thomae, Elementare Theorie der Analytischen
Functionen. Halle, 1880.)

(34.) If uppfu,=(n*+4n*1+. . .)/(n*+4A'n® 1+ . . .), then Zu, will
be convergent or divergent according as 4—4'> or »1. (Gauss, Werke,
Bd. 1., p. 139.)

(85.) If u,q fu,=a-Bn+y/n2+8n3+. . ., then Zu, is convergent or
divergent according as a< or >1. If a=1, 3u, is convergent only if g>1.
(Schlomileh, Zeitschr. f. Math., %., p. 74.)

(86.) =1/u, is convergent if w,,,- 2, ;+u, is constant or ultimately
increases with n. (Laurent, Nouv. Adnn., ser. 11., t. 8.)

(37.) If the terms of Zu, are ultimately positive, then—

(I.) If ¢ (n) can be found such that y (n)is positive, Ly (n)u,=0, and
L {y (n) upfusptq — ¢ (n+1)} >0, Zu, is convergent.

(I1.) If y(n) be such that Ly (n)u,=0, L {y (n)u,fup, -y (n+1)}=0,
and Ly (n) w,[{y (1) w1ty 41 — ¢ (n+1)} +0, Zu,, is divergent.

(IIL) If w,fu,y, can be expanded in descending powers of n, Zu, is
convergent or divergent according as L {nu,[u,; — (n+1)}>or +0.

(IV.) If w,fu,,, can be expanded in descending powers of n, Zu, is
convergent or divergent according as Lnu,= or 0. (Kummer's Criteria,
Crelle’s Jour., x11. (1835) and xvI.)

(88.) If the terms of Zu, be ultimately positive, and if, on and after a
certain value of 7, @,Up/Uyt; —Bpyy > K, Where a, is a function of n which
is always positive for values of n in question, and u is a positive constant,
then Zu, is convergent.

From this rule can be deduced the rules of Cauchy, De Morgan, and
Bertrand. (Jensen, Comptes Rendus, c. vi., p. 729. 1888.)

Discuss the convergence of the following double series : —

(39.) = (-)*11/n. (40.) Z(-1)»"19m/nl.
(41.) ={(n-—1)ymfnmtl —gmf(n 4 1)mH1},

(42.) Zamyr/(m+n). (43.) =1/(m+mn)%
(44.) Z1/(m+mn). (45.) =1/(m®—n?).

(46.) Under what restrictions can 1/(1+x+y) be expanded in a double
series of the form 1424, ,z™my"?

(47.) If Zu,,, converge to S in the first way, and if its diagonal series be
convergent, show that the diagonal series converges to S also.
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Deduce Abel's Theorem regarding the product of two semi-convergent
series. (See Stolz, Math. Ann., xx1v.)

(48.) If u,/u,_, can be expanded in a series of the form 1+a,/n+ ag/n®+. . .,
show that

1°, If a,=0, a,=0, . . ., au_;=0, au+0, then u,=u+v,/n, where u is a
definite constant +0 and # o, and L, is finite when n=0c0.

2°, If a,+0, and the real part of a, be positive, then Lu,=wo when
n=ow.

8% If a,+0, and the real part of a,=0, then Lu, is not infinite, but is
not definite.

4°, If a; # 0, and the real part of a, be negative, then Lu,=0.

Apply these results to the discussion of the convergency of Zu,x™, and,
in particular, to the Hypergeometric Series, and to the following series :—

2:I’~+w.‘ Cn (‘T + yi)n: zxn/n#-'-"ir Emcn/(m"'n)p’ P2 ( - )”an/(m+ '”’)D'
(See Weierstrass, Ueber die Theorie der Analytischen Facultdt.—Crelle’s
Jour., L1.)

(49.) Discuss the convergence of Z,,C,, (a —n8)*~ (z + ng)™.

(50.) If u, and v, be positive for all values of n, never increase when n
increases, and be such that Lu,=0, Lv,=0, when n =, find the necessary
and sufficient condition that = (w0, +u, ve+. . . +u0,)=Zu, x Zv,. (See
Pringsheim, Math. dnn., Bd. xx1.)

(61.) If 0<M,<M,,, and LM,=0 when n=cw, show that every diver-
gent series of real positive terms can be expressed in the form = (M, , - M,);
and every convergent series of real positive terms in the form 2 (M, - M,)/
M. M,,,.

Also that the successions of series

2:(]”n+1_ n)/Pr (Mn)) r=0,1,2, ...
z (n1n+l - J‘In)/Pr (]”n+l) (lrﬂln-{-l)p! ’l‘=0, 17 2’ RS

where 0<p<1, and P, (z) has the meaning of § 6 above, form two scales, the
first of slower and slower divergency; the second of slower and slower
convergency. (Pringsheim, Math, 4Ann., Bdd. xxxv., XXXIX.)



CHAPTER XXVII.
Binomial and Multinomial Series for any Index.

BINOMIAL SERIES.

§ 1.] We have already shown that, when m is a positive
integer,
1+ 2)"=1+,02+,00%+. . .+ 02" +. . . +,0n2™ (1),
where wCn=m(m-1) . . . (m—n+1)/n (2).
When m is not a positive integer, ,,C,, although it has still a
definite analytical meaning, can no longer be taken to denote
the number of n-combinations of m things; hence our former
demonstration is no longer applicable. Moreover, the right-hand
side of (1) then becomes an infinite series, and has, according
to the principles of last chapter, no definite meaning unless the
series be convergent. In cases where the series is divergent
there cannot be any question, in the ordinary sense at least,
regarding the equivalence of the two sides of (1).

As has already been shown (pp. 122, 131), the series

14,02+ .02+, . . +,C2"+. .. (8)

is convergent when x has any real value between —1 and +1;
also when 2#=+1, provided m>-1; and when 2=-1, pro-
vided m>0. We propose now to inquire, whether in these cases
the series (3) still represents (1 + #)™ in any legitimate sense.

In what follows, we suppose the numerical value of m to be
a commensurable number* ; also, for the present, we consider

* If m be incommensurable we must suppose it replaced by a commensur-
able approximation of sufficient accuracy.
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only real values of #, and understand (1+ )™ to be real and
positive.

§2.] If we assume that (1 + )™ can be expanded in a con-
vergent series of ascending powers of #, then it is easily shown
that the coefficient of 2” must be m (m-1) . . . (m—n+1)/nl.

For, let

(L+2)"=a+ @@+ A2 +. . . +@ 2"+, . . 1)
where U+ QT+ WP+ . . W F. . 2)

is convergent so long as |#|< R (it will ultimately appear that
R=1). Then, if 2 be so small that |z+%|<R, we have

L+ z+h)"=ap+ oy (@ + k) + ay (@ + B)*+. . .+ a,(@+R)"+. .. (8),

the series in (3) being convergent by hypothesis.
Hence by the principles of last chapter, we have

I+a+h)"—Q+2)"  (z+h)-a (z+h)—a*
Arz+ih)-(1+2) “@ib)y-z “ @ih)-z
(2 + h)*— 2™
anm“'. . (4),

the series in (4) being still convergent. Hence, if we take
the limit when 4=0, and observe that

(I+z+h) -1 +az)"

Trashy—(1+a) ~mEra LG = =™

by chap. xxv., § 12, we have

m(l+a)" =+ 2mx+. . L Fnag2 7+ (5),
where the series on the right must still be convergent, since

L (n+1) app/nay, = Layy/a, when n=oo* Hence, multiplying
by 1+, we deduce

ml+a)" =+ (0 +2a) 2 +. . .+ {na,+(m+ 1) a2+, .
that is,
My + MG T+, o+ MU+, . =+ (0 +20) T+, . .
+{n@,+ (n+ 1) @pp 2" +. . . (6).

* We here make the farther assumption that the limit of the sum of the

infinite number of terms on the right of (4) is the sum of the limits of these
terms.
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By chap. xxvr., § 21, the coefficients of the powers of # on
both sides of (6) must be equal. Hence

G =may, 20,=(m—1)t, . . ., W+ 1)@yp=(m—n)ay, ... (7).
From (7) we deduce at once
@ = ma,, a=m(m-1)a/2!,. ..
ap=m(m—1) ... (m-n+1)a/n!, ..

To determine @, we may put 2=0. We then get from (1),
@,=1"=1 (if we suppose, as usual, the real positive value of
any root involved to be alone in question). We therefore have

1+z)"=1+3,C,a" (8).

The theorem is therefore established ; and we see that the
hypothesis under which we started is not contradicted provided
|#|<1, this being a sufficient condition for the convergency of
SOz

§3.] Although the assumption that (1 + 2)™ can be expanded
in a series of ascending powers of z leads to no contradiction in
the process of determining the coefficients, so long as |z|<1;
this fact can scarcely be regarded as sufficient evidence for the
validity of a theorem so fundamentally important. We proceed,
therefore, to establish the following theorem, in which we start
from the series in the first instance.

Whenever the series 1 + 32,,C,a™ is convergent, its sum 1is the
real positive value of (1 + z)™

The fundamental idea of the following demonstration is due
to Euler*; but it involves important additions, due mainly to
Cauchy, which were necessary to make it accurate according to
the modern view of the nature of infinite series.

Let us denote the series

1+ nCi2+ 00 +. . o+ 002" +. .. (1)
by the symbol f'(m).
So long as —1<z<+1, f(m) is an absolutely convergent
series, and (by chap. xxvI., § 20) is a continuous function both
of m and of a.

* Nov. Comm. Petrop., t. x1x. (1775).
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Hence, m, and m, being any real values of s, we have
S(my) f(my) = {1 + 2, Co@™} {1 + 3, O™},
=1+3 (0,00 + mCimOucs + m,Com Coca + . < +mC) 2" (2),
where the last written series is convergent (by chap. xxvr., § 14),
since the two series, 1 + 3,,,Cp2" and 1 + 3,0, 2", are absolutely

convergent.
Now, by chap. xx111., § 8, Cor. 5, ,98

m,o'n + m201 m.On—l + m202 m,Cn—ﬂ L 'm,,,On: ml+m20n N
hence S () f(ms) =1 + 2 10, Cu @™,
=f(my + m,) (3).

In like manner, we can show that
S (my + ms) f(ms) = f(my + my + mg).
Hence J(my) f(ms) S (mg) = f (my + my + mg) ;
and, in general, » being any positive integer,
Fm)f(ms) . . . fmy)=f(my+me+. . .+m,) (4).

This result may be called the Addition Theorem for the
Binomial Series.

If in (4) we put my,=m,=. . .=m,=1, then we deduce
{Fy =S@) (5),-
where » is any positive integer.
If in (4) we put my=m,=. . .=m,=p/q, where p and ¢
are any positive integers, and also put v=¢, we deduce
{/ (plo)}=s () (6).
Hence, by (5), {f (wlot={r)}* ().
Again, if in (3) we put m, = m, m,=—m, we deduce
S (m).f(—m) =f(m —m)=,(0) (8).
Hence /(= m) =f(0)/f (m) (9)-

These properties of the series (1) hold so long as —1<z<+1,
and they are sufficient to determine its sum for all real com-
mensurable values of .
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For, since ;01 =1, ,0,=0, . . ., ,C,=0, . . 001=0, ,C,=0,
. 0C,=0,. . . we have

S)=1+a2 f(0)=1.
Suppose, now, m to be a positive integer. Then, by (5),
A +2)"=f(m)=1+ 02+ nCo®+. . .+ pCpa™ (10),
where the series terminates, since ;,Cp11=0, nCns2=0, . . .,

when m is a positive integer. This is another demonstration of
that part of the theorem with which we are already familiar.

Next, let m be any positive commensursble quantity, say
P/q, where p and ¢ are positive integers. Then, by (7),

(/) =1 +a2) (11).

Hence f{p/q) is one of the gth roots of the positive* quantity
(1 +2)». But f(p/q) is necessarily real; hence, if (1 + )P4
denote, as usual, the real positive gth root of (1 +)?, we must
have

S(plg) =+ (1 + )" (12).
The only remaining question is the sign of the right-hand side
of (12).

Since f(p/q) is a continuous function both of p/q and of z, its
equivalent + (1 + £)? must be a continuous function both of
/g and of . Now (1 + 2)?? does not vanish (or become in-
finite) for any values of p/q or of 2 admissible under our present
hypothesis ; and being the equivalent of a continuous function it
cannot change sign without passing through 0. Hence only one
of the two possible signs is admissible ; and we can settle which
by considering any particular case. Now, when 2=0, f(p/9)=+1.
Hence the positive sign must be taken ; and we establish finally

that
. S(plg) =+ (1+ )7
that is,

QA+ =14 ,02+ 02 +. . .+,C2"+. . . (13),

when m is any positive commensurable quantity.

* Positive, since — 1<z <1, by hypothesis,
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Finally, let m be any negative commensurable quantity, say
m =— m', where m’ is a real positive commensurable quantity.
By (9) we have

S (=m) =f(0)[f (m) = 1[f (m).
Hence, by (13),
f=m)=1/(1 + 2)",

=(1+ )™,
that is,

(1 +2)" =1+ 012+ n 0o +. . .+ ,Cog"+. . . (14),

where m is any commensurable negative quantity.

The results of (10), (18), and (14) establish the Binomial
Theorem for all values of 2 such that -1<z<+1. It remains
to consider the extreme cases.

When z =+ 1, the series (1) reduces to

14,00+ 00+, . . +,Ch+. ..
This series is semi-convergent if — 1<m<0, absolutely con-
vergent if m>0. Hence, by Abel’s Second Theorem, chap. xxvr,,
§ 20,

¢! +ﬁ)m: L {1+,02+,02+. . . +,02"+. ..},

that is, =

2 =140+ nCot+. o c+nCrt+. .. (15),
provided m>— 1, with the condition that, when —1<m <0, the
order of the terms in the series of (15) must not be altered.

If 0<z<1, we have, by the general case already established,

A-2)"=1-nCz+,C2*—. . . (=)wCra"+. . .
Hence, since the series
1- 00 +0Co—. o (=) %Ch+. . .

is convergent if m >0, we have, by Abel’s Theorem,

(1-1-0"= L (1-n0@+,02"—. . . (=)'uCoa™+. . .),
that is, =

0=1-pnCi+nCo—. . . (=)WCpr+. .. (16),

provided 7 be positive.

The results of (15) and (16) complete the demonstration of
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the Binomial Theorem in all cases where its validity is in
question.

Cor. If =y, it follows from the above result that we can
always expand (#+y)™ in an absolutely convergent series. We
have in fact, if |z|>|y|, that is, | y/z|<1,

(@ +y)" =a™ (1 +yla)",
=2™{1 + nC, (y/@) + nCe (y/z) +. . . +,.C,(ylz)*+. . .},
=2"+ nC12" Y + O™ Y+ L Gy L L (7))
and if |z|<|y|, that is, |2/y | <1,

(@+y)" =y (1 +afy)",
=y {1 + 0 (@/y) + nCo @[yl +. . .+ 1Colz/y)"+. . .},
=y + Oy + n Oy P+ L+ Oy . .. (18).

If m be a positive integer, both the formulae (17) and (18) will
be admissible because both series terminate. But, if 7 be not a
positive integer, only one of the two series will be convergent.

§4.] The general formule of last paragraph contain a vast
number of particular cases. To help the student to detect these
particular cases under the various disguises which they assume,
we proceed to draw his attention to several of the more com-
monly occurring. The difficulties of identification are in reality
in most cases much smaller than they at first sight appear. We
assume in all cases that the values of the variables are such that
the series are convergent.

Example 1.
A+x)=1l-z+22—. . . +(-)2"+. . .3
(l-z)'=1+z+22+. . .+2"+. ..
For l+z)1=1+Z_,C,2";
and 4C=-1(-1-1)(-1-2) . .. (-1-n+1)/al,

=(-)1.2.3 ... n/nl,
—(-pL
(L-2)1=1+3,0, (~2;

and O R C G
=x",
Example 2.
l+z)2=1-2zx+32%—. . .+ (- )*(n+1)a*+. . .;
(1-2)2=1+22+382+. . .+(n+1)z"+. ..
For 0= -2(-2-1) ... (-2-n+1l)nl,

=(=)* (n+1).
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Example 3.
(L+2)3=1-3z+62%— . .. +(- )"} (n+1) (n+2)a™+ .. .3
(1-z)3=143z+622+ ... +3(m+1)(n+2) 2+ . ..
Example 4.

. 1.8.5...(2n-38
(L+ap=lepe—gairdpat= . . (- mp e oy
1.8.5...(2n-3)
(1-2)i=1-42- 32"~ {52’ - 5.46...9n ° "
Exzampld 5. 135 @n1)
> .. n—
(e =l gt et P g
1.3.5...(2n-1
(1-z)t=1+3z+§a2+ 2%+ . . . + 546 .(. o )x”+
Example 6.

Ly omz m(m-2) (z\?
(1+z)M/2_1+T§+———— (§> + ..

! m(m 2) (m - 4) . (m— 2n+2)(>

_1+11, m(2m42) +.“+'m(m 2)2(rr‘z1 :)...(mn 2n+2)zn+“.

m(m+2) (m+4) . (m+2n 2)
2.4.6 . 2n

(14+z)"mP=14+3(-)"
Example 7.
(1+x),,,q_1+zp(p 9) (p—2qg) . (p "+49) o
9.29.3¢ .. .mng
(1-a)phi=14+ 3P R+ (420 . . (p+nq 9 o0
q.29.3q .. .mnq

Example 8.
(l—x)‘m=1+2m(m+1) e (m+n—1)xn

nl

It will be observed that the coefficient of #™ in this last expansion, when
m is integral, is (see chap. xx1v., § 10) the number (,,H,) of n-combinations
of m things when repetition is allowed. It is therefore usual to denote this
coefficient by the symbol ,,H,, m being now unrestricted in value. We
shall return to this function later on.

Example 9.
HA+z)m+ (A -2)™} =1+4,,C,0%+,,C2%+ . . . +,Cpn2™+ . . .3
H{A+z)m - (1-2)"} =02+ ,032%+ . . . +,,Cop 214 . L

Ultimate Sign of the Terms.—Infinite Binomial Series belong
to one or other of two classes as regards the ultimate sign of
the terms—1st, those in which the signs of the terms are
ultimately alternately positive and negative; 2nd, those in
which all the terms are ultimately of the same sign.
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If x and m denote positive quantities (m of course not a positive integer),

1st. The expansions of (1+x)™ and (1+4z)~™ both belong to the first
class. In (1+x)™ the first negative term will be that containing z7t!, where
n is the least integer which exceeds m. In (1+4z)~™ the first negative term
is of course the second.

2nd. The expansions of (1-=z)™, (1-z)-™, both belong to the second
class. In (1-z)™ the terms will have the same sign on and after the term
in z™ n being the least integer which exceeds m, and this sign will be + or
— according as m is even or odd. In (1-=z) ™ all the terms are positive
after the first.

§5.] A great variety of series suitable for various purposes
can be readily deduced from the Binomial Series; and, conversely,
many series can be summed by identifying them with particular
cases of the Binomial Series itself, or with some series deducible
from it.

The following cases deserve special attention, because they
include so many of the series usually treated in elementary text-
books as particular cases, and because the methods by which the
summation is effected are typical.

Consider the series 3¢, (n),Cr2", where ¢, (n) is any integral
function of 7 of the 7th degree. Such a series stands in the
same relation to the simple Binomial Series as does the Integro-
(Geometric to the simple Geometric Series. We may therefore
speak of it as an Integro-Binomial Series.

We may always, by the process of chap. v., § 22, establish
an identity of the following kind,

¢(n)= A+ Ayn+Adn(n-1)+. . .+4,n(n-1)...(n-r+1) (1),

where 4,, 4., 4., . . ., A, are constants, that is, are independent

of n.
We can therefore write the general term of the Integro-

Binomial Series in the following form :—

G (M) Cr2” = Ao mCrt™ + AinpnCr™ + . . .
+A,n(n-1)...@0-r+1),Ca"

= Ao mCrd™ + mA1& 1 Cpy 2™}

+m(m—1) A2y oCrpa™ 2+ . . . +m{m—1). ..
(m —r+ l)Arxrm—rOn-r'z'n—r (2)
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Hence, if the summation proceed from 0 to «, we evidently
have

§¢T(n)m0'nx" = A0§ mCn® + mAl.z% ma1COpr ™1+, ..
0 0

+m(m—1) ... (m-r+ l)A,af% m-rCr—r ™" (3),
=4,1+2)"+md,z(L+2)™ +. ..
+mm—-1). .. (m-r+1)4d,2"(1 +2)™,
since all the Binomial Series are evidently complete*. Hence
§¢or R) Oz ={do+mA z/(1 +2)+m (m—1) A2 /(L +2)* +. ..
' +mm—-1)...(m—-r+1) 4,271+ 2)} (1 +2)" (4);

and the summation to infinity of the Integro-Binomial Series is
effectedt.

The formula will still apply when m is a positive integer,
although in that case the series on the left of (4) has not an
infinite number of terms. The only peculiarity is that a number
of the terms within the crocked bracket on the right-hand side
of (4) may become zero.

Cor. Wecan in general sum the series §¢, (W) Cr2™/(n+a) (n+b)

e .. (n+k), where @, b, . . ., k are unequal positive iniegers,
i ascending order of magnitude.
For, by introducing the factors n+1, n+2, ... n+a-1,

n+a+l,n+a+2,...,n+b-1, &c., we can reduce the general
term to the form

¥ () marCrsra™*[(m + 1) (m +2) . . . (m+k)2* (5);

where y () is an integral function of », namely, ¢, (z) multiplied
by all the factors introduced which are not absorbed by ;4xCps-

* If the lower limit of summation be not 0, then the Binomial Series on
the right-hand side of (3) will not all be complete, and the sum will not be
quite so simple as in (4).

+ It may be remarked that the series is evidently convergent when <1,
The examination of the convergence when x=1 will form a good exercise on
chap. xxvI.
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Hence
3¢ W) mCra™/(n+a) (n+b) . . . (m+ )

=3¢ (0) mixCnirxd™ ™} (m+ 1) (m+2) . . . (m+k)2* (B).

The summation of the series inside the crooked bracket may
be effected ; for it is an Integro-Binomial Series. Hence the
summation originally proposed is always possible.

We have not indicated the lower limit of the summation,
and it is immaterial what it is. Even if the lower limit of
summation be 0, the Binomial Series into which the right-
hand side of (6) is decomposed will not all be complete (see
Example 6, below).

It should also be noticed that this method will not apply if
m be such that any of the factors m +1, m+2, ..., m+#%
vanish. In such cases the right-hand side of (6) would become
indeterminate, and the evaluation of its limit would be trouble-
some.

The above method can be varied in several ways, which
need not be specified in detail. It is sufficient to add that by
virtue of Abel's Second Theorem (chap. xxvi, § 20) all the
above summations hold when #=+1, provided the series in-
volved remain convergent.

Example 1. To expand (z+y)™ in a highly convergent series when x
and y are nearly equal. From the obvious identities

{(z+y)20}"={2/(z+y)} " ={1+(z - y)/(z +y) } ™,
{@+y)2y}m={2y/(z+y)} "= {1~ (z-y)/(x+y)}™,
(@ +y)™ {1/ @z =1/ 2y)™} ={1+ (& - y)/(@+y)} ™= {1 - (@ -y)/(z+y)} ™,
we deduce at once

(@+y)m=2mgm { 142 (=) H, (%;—Z)"} ,

z-y\"

where ,H,=m(m+1). .. (m+n-1)/nl,
amtigmym m(m+1) (x-y\? m(m+1)(m+2) (m+3) (z-y\*
=—0— 11+ + —
™+ y 2! z+y 4! z+y

+... |
_omtigmym Im (z-y + m(m+1) (m+2) z—y)" +
TTam—ym | U\z+y 3! z+y R A
All these series are highly convergent, since (z —y)/(z +¥) is small.
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Example 2. To sum the series

2 2 /2\2 2.5 2)3 2.5.»8(24
gtailg) Tar\s) Yo 5)

If we denote this series by u, +ug+us+ . . ., we see that
_2.5...{2+(n-2)8} 2"

- nl gen’

3.3.%5...(-3+n-1) (g)"

n

n! 3

_ =P (3ED(-3+2) . . -(—%+n—1)(g>”
= 2y,

n!

A3-1)E-2)...(3-n+]) (2)1&.

-()

n! 3
Hence
1-(u+up+ug+ . o . )=(1-§)'5
=1/¥3.
Therefore, U +Uuptug+ . .. =1-1/%8.

Example 3. To sum the series
m(m-1) m(m-1)(m-2)
m+ 1 + 1.2 + ...,
whenever it is convergent.
Here we have

m(m-1)(m-2)...(m-n)
Uny1 = P ’
_m(m-1)(m-1-1)...m-1-n+1)
= n! b
:mm_l(}'n.

Hence
utugtugt+ o oo =m{l4, 0+, 0+ . . L}
=m{l+1}pr1=m2m-1
provided m — 1> -1, that is m>0.

It should be observed that we have at once from § 2 (5) the equation
m(l+z)m1=1,0C+2,Cz+ ... +n,Cz? 1+ .. 1),
from which the above result follows by putting z=1.
By repeating the process of § 2, we should deduce the equation
mm=1). .. (m-k+1)(1+2)™*=1.2. .. k,Cp+2.3. .. (k+1)
mCen®+ « o +(n-k+1)(n-k+2). . .n,Cham*+ . .. ),
whence it follows that
m(m-1)...(m-k+1)2m*=1.2...k,C,
+2.8. .. (k+1),,Crn+ . . . 3),
provided m>%k -1. These results might also be easily established by the
method first used.
Example 4. To sum the series
1 mC1Z

+ mCa®
1.2...k 2.3...(k+1)

57... .kt

+
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Here we have
w mCOnT™
" ) (n+2) . (n+k)’
m+k0 +E zn+k
Tmr) m+2). .. (m+ k) zk*

Hence
(1+$)m+k 1
(m+1)(m+2). .. (m—i—k)x" (m+1) (m+2). m+k)a:"{1+"""kclz
FomgkCo®2+ o . . +,,,+,,C’,,_1 1 {uytugtug+ ... b

Therefore
Uy + U+ U+ o
_(A4ayrt -1 G2 — ik Cot® — o o o — g Crg @ ! @)
(m+1) (m+2) ... (m+k)ak ’
If m> - k-1, this gives as a particular case
Cpln+1) (n+2). . . (n+k)=

{omtk_1 - F;é:_ll m+xCe/(m+1) (m+2) . . . (m+k) (5).

The formule (1), (2), (3), (4), and (5) contain of course a considerable
variety of particular cases.

Example 5. Evaluate §n3 7CnZ™

Let nd=4dy+4n+4m (n 1) + dyn (n - 1)(n — 2), then we have the follow-
ing calculation to determine 4, 4,, 4,, 4, (see chap. v., § 22).

1 +0 +0|+0 4,=0,
110 +1 +1
T +1+1 4,=1,
210 +2
1]+3 4,=38, 4;=1.
Hence
n3 . Cr 2" =0. Em(}’nm"+ lnlem_IC’n 127714 3m (m— 1) zzzm_20n_2x"—2

+m (m—1) (m-2) $3Zm;30“_3z"*3,
3
=mz (1+z)"1+8m (m—1) 2 (1+ 2y 2+ m (m - 1) (m - 2) 23 (1 4 z)m~3,
={miazd+m (3m - 1) a2+ ma} (14 z)m3,
Example 6. Evaluate 3,,C,2"/(n +2) (n+4).
0
mCnT" (n+1) (0 +38) 4 Oy gz
(n+ 2) (n+4) .1:4 (m+1) (m+2) (m+3) (m+4)’
(n+1) (n+3)=n>+4n+3,
=4+ 4, (n+4)+4,(n+4) (n+3).

1 +4 +3
~-410 -4 +0

1 +0]+3 A,=8,
-3/0 -3

11-3 4,=-3, 4,=1.
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‘We therefore have
N ©
20 = o o e {82 i Crpy
(n+2) (n+4) xt(m+1)(m+2) (m+3)(m+4)"

$ g4 -8 (m+4)x
0
§m+30n+3 2™+ (m+4) (m+3) 22 §m+20n+2 v,
0 0
_ 1
Tatm+l). . . (mt+4)
~mtaCs2%) —3(mA+ ) {(1+2)™8 —1 - C % — 45 Cp 22}
e+ 4) (n8) 28 {(L+a)™ -1, G},

B{(L+a)mti-1— 02—, 4Coa®

[{(m+1) (m+3) 2* - 8 (m+2) x + 8} (1 +z)m+?
+{3(m+3) (m+4)22-3}].

T (m+1) (m+2) (n+3) (m+4)

ExErcises IX.

Expand each of the following in ascending powers of z to 5 terms; and in
each case write down and simplify the coefficient of 2.

(L) (1+ape. @) (1-2)7n, (8) (1-z)-,
() (2- %x)m (5) (a-+32)%, (6) (e -a).
(7)) (1 -nx). (8.) 1/(1-3x?A. (9) (z-1/z) ™

(10.) Write down the first four terms in the expansion of {(a + z)/(a - z)}1
in ascending powers of z.

Determine the numerically greatest term in
(11.) (8+x)*3, z<3. (12.) (2-3/2)ur, (18.) (1-5/7)"13m,

(14.) Find the greatest term in (1+x)™", when z=§, n=4,

(15.) If n be a positive integer, find the greatest term in (n — 1/n)%n+1,

(16.) The sum of the middle terms of (1+z)™ for all even values of m
(including 0) is (1 — 4x)~1/2,

(17.) :c""=1+n(1—l>+ L(n+1) 1_£>~+
x z

ar
(18.) Show that, if m exceed a certain value, then
(m+L)m  (m4+1)m(m-1)(m-2)
T 7 4l

om—1

(19.) Sum the series
- (m—1)(m - 2)
- (a+d)m+(a+2b) - ~ (a+3b) —3‘~ +o. .,
for such values of m as render the series convergent.
5 5. 7
. 2
(20.) N2T= 2453+ 3t
23 2, 1 1.3 1.8.5

21 o= 2= - -5 -
(1) 21 3V2 =g Ty T T
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(22.) Sum to infinity
1 1.4 1.4.7
(AN TN I A
(23.) Sum the series
m(m_1)+m(nz i)' (m 2)+. . '+m(m 1) (:r.—é)l(m—'r+1)+ .
for such values of m as render the series convergent.
(24.) If n be even, show that
nn+2) ... (20-2)1.3 ... (n-1)=27"1
(25.) In the expansion of (1 - z)~™ no coefficient can be equal to the next
following unless all the coefficients are equal.
(26.) Prove by induction that

Lma D D). (ntr-1) ()

2! te 7! T omlel
where 7 is a positive integer. Hence show that, if z <1,
- (m+r-1)lar
- m_y\ T T
-2 =2 =

(27.) The sum of the first 7 coefficients in 1/7/(1 - z) : the coefficient of
the 7th term=1+n(r-1): 1.

(28) If F(a)=1+7;+ "(“2;’ ") oy “(“";l(“”")z%.

being absolutely convergent, then
F(a) F(b)=F (a+Db).
‘What is the condition for the convergency of the series?
(29.) Show that
22
_2" —n

. ., the series

3 4
G FaCa g o == {(n+ Do+ 1} (L-2)* ) (n+1) (n+2).

Sum the following series, so far as they are convergent:—

(30.) =(n-1)?m(m-1) ... (m-n+1)z"nl, fromn=1ton=0c.

(81.) Z(-)Yn+1)(n+2)1.3.5.. . (2n-5)z"n!, fromn=0ton=c.

(32,) ZEm(m+1) ... (m+n-1)z*/(n+3)n!, from n=0to n=c.

(83) Z(n-1)21.4.7 ... (3n-2)/(n+2) (n+3)n!, fromn=1ton=cw.

(34.) Why does the method of summation given in § 5 not apply to
Sanj(n+1)?

SERIES DEDUCED BY EXPANSION OF RATIONAL FUNCTIONS OF 2.

§6.] Since every rational function of & can be expressed in
the form 7+ F where [ is an integral function of #, and # a
proper rational fraction, and since F' can, by chap. viiL, § 7, be
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expressed in the form 34 (2 — «)~", where 4 is constant, it follows
that for certain values of 2 a rational function of 2 can be ex-
panded in a series of ascending powers of z, and for certain
other values of  in a series of descending powers of z*. We
shall have occasion to dwell more on the general consequences of
this result in a later chapter, where we deal with the theory of
Recurring Series. There are, however, certain particular cases
which may with advantage be studied here.

§7.] Series for expressing o™+ B* and (a"** — ™) /(a — B) in
terms of af3 and a + B, n being o positive integer.

If we denote the elementary symmetric functions a + 8 and
af3 by p and ¢ respectively, it follows from chap. xviL, § 2, that
we can express the symmetric functions a”+ 87 (a™!— B/
(e —PB) as follows :—

o+ Bh=apt + PV . L AP L (1),

(0™ = B (0 = B) =byp™ + bip" g+ . . +bp" TG+ L (2),
where both series terminate.
By the methods of chap. viir, § 8, or by direct verification
we can establish the identity
_2opr _ 2-(xfe 1 1 g
1-pr+92* " (1—az)(1-Bz)  1l-az 1-PBz ’
Now if # be (as it obviously always may be) taken so small
that pz —ga*< 1, we have by the Binomial Theorem

ot = (2~ pa) {1 (pa= g} = 2 -pa) 1 + (g - &)
+(pr—qa?)+. .. +(pr—qz®+. ..} (4).

Now (by chap. xxv1., § 34) if 2 be taken between —a and + a,
o being such that the numerical value of + paz+ga®<1, that
arrangement of signs being taken which makes + pa + ¢a® greatest,
then each of the terms on the right-hand side may be expanded
in powers of # and the whole rearranged as a convergent series
proceeding by ascending powers of z.

* Strictly speaking, this is as yet established only for cases where a
is real. The cases where a is imaginary will, however, be covered by the
extension of the Binomial Theorem given in chap. xxIx.
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We thus find that

2 — px
rpx]:-—qﬂ= (2 _p-ﬂ) {1 + 2(p"_n_101pn—2q +ns ngn_4q2—
+ (_)Tn_rorpn—zr ... )Z’n} (5)’
=2{1+3 &c.} -pz{l + 3 &ec.} ).

The coefficient of 2™ on the right-hand side of (6) is
2 {pn_n—l lpn—2q + n_202pn—4q2 +. .+ (_ )rn_rorpn—zrqr
o =" e O P g s Cop" iR

F (= )pera Cop™ g+ L
Now

2 Cr—praCo=n(n—r-1)(n—7r-2)...@m-2r+1)/rl
Hence

= 2_17'77 _ n_ﬁ n—2 ’”’(” 3) n—4 2
1—-px+qz2_2+2{p T Y 7-
Jon—r—-1)(n-r—2)...(n-2r+1) . "
+ (=) ( It r!) -——)p ‘-’q+...}x (7).
Again
1 N o
T T 1o ,3 ={l+az+a®2P+. . . +a"2"+. .. }+{1+ Bz
+B22+. .+ B+, L L
=2+ 3(a"+ fM)a" (8).

All the series involved in (8) will be absolutely convergent,
provided # be taken so small that |az| and | Bz| are each <1.
Now, by (8), the series in (7) and (8) must be identical. Hence,
comparing the coefficients of 2", we must have (by chap. xxvr.,

§21)
a’n_l_ﬁnzpn p q_'_ ( )pn 4q2
+(_1)r'n(n—r—1) (n—r—r!2) e (m=-2r+ l)p"""’q’+. .
(9).

As we have indicated (by using =), the equation (9) is an
algebraical identity, on the understanding that p stands for a + 8
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and ¢ for aB. The last term will or will not contain p according
as 7 is odd or even.

In like manner, from the identity

s _ = { 11 1
1—pz+qt 1-(a+B)z+afr? \I-—az I—Bz}a—ﬁ
we deduce

(am+1 — Bn+1)/(a -B=p— _ql:!lpn—2q + (n— 2;$” -3) P —

n—ry(n—-r-1). . .m-2r+1
+ (- 1)’< ) ( 3.! ( )p""”qr+ ... (10),
subject to the same remarks as (9).

If we write the series (9) in the reverse order, and observe

that, when # is even, = 2m say, only even powers of p occur, and
that the term which contains p* is

(=yns 2m(m+s—1)(m+s—2). . .(2s+ l)p”q"‘“

(m — s)!
that is,
( )m_82m(m+s—1)(m +5-2)...(m+)m@m—-1)...(m—s+1)
(2s)!
p‘zaqm—s
that is,

(=ym-s2 m? (m?— 1%) (28)1( —§— 1‘2)11 mgms

then we have

Mmoo, ME(mE—1%) ,
a21n+ﬁzm5(_)m2{qm*mp2q 14 (4! )p-zq 2 _

_\s m? (m 12) ( ? — STI-Q) 28 M—8 __ 4
+(-) (2s)! pEq } (9).
Similarly, we have

a4 = () (am + 1) {pq’"— e

(m+2)m(m -1%) |

51 "
+s—1 2-1%). . . (mP-s—2° mes
+(_)s—1(m S )m(”2<2s_?1)! ( )pﬂs—lq 1 }

9").
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_Bﬁm m— m—1_ M m?—1° m
() l{1|p -1 __ (3' )paq'2+.

Mt = 1) - (=5 s -} ao.

+(-) (23_ 1)1 q

o2+ B‘”’”H—( )m{ m (m';!l)mpgqm_ MVZ'(J_-_—]_Q
Py — L+ (—)a(m+3)m(m2—t;)sjl- . (m?—s-17)
PR } (10").

Since « and B are the roots of the quadratic function
2*—pz + g, we may replace « and B in the above identities by
3{p+J@*-4g)}, and §{p— J(p*-4g)} respectively. If
this be done, and we at the same time put p =z and — 49=2%
we deduce the following :—

@+ @+ + fe— V(@ + 9}
=2 {a:"+ mx"”yﬂ— (27?;43)x”—‘y4+ Ce
n(n r—1)(n- :‘123) (n_2r+1)w"‘2’y”+. . .}’
=2 {_7/‘+712'w _1/"‘2+——~2(n4!~ 2)wy" .

"~(n_22)(n _42) (”_2 - 2) n—28 L (9.
(25)' s «Z‘% +. } (9 )

if # be even ;

B Wy n(n?—12 . 2 _ 12) (p2— 32

22{my - (3! )wzy s, n(n 5)!(" )

PP+ +n(n2—12) n?-38%)...#*—-2s—-1%
e (2s +1)!

aynBEly } , if » be odd.
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{+J @+ )" — {2 —J (@ + )"

+ = "1)(“-T 2). .. (n—2r)

F7d Vo o

'Z.n—21'—1y27‘ +.. . } R

=2./(2 +j"){ zy"t + (—nd_—Q—)w’y" e

(10™).
L) (P25 [
(28—1)' wz +. . '})

if » be even ;

Ew(zw?){nw‘ = 1) gayres 0221 (2225
T L)@ _32()2:9)-1 (P -2s-17)

Fad st } , if  be odd.

These series are important in connection with the theory of
the circular and hyperbolic functions.

§ 8.] A slight extension of the method of last paragraph
enables us to find expressions for the sum and for the number of
r-ary products of n letters (repetition of each letter being allowed).

The inverse method of partial fractions gives us the identity

1/1-az)(1-0z). .. (1-a,2)=34,(1-a2)? (1),
where As=aY(ay—ay) (as—ay) . . . (25— ay).

Also, since (1 —a,2)"=1 + 3a; 2", we have (by chap. xxvI,
§ 14), provided # be taken small enough to secure the absolute
convergency of all the series involved,

1/1l-auz)(1-a2) . . . (1 —a,2z)
=(1+3a2")(1+3a72"). .. (1+3a,2") (2),
=1+3,K,.2" (8),
where ,K, is obviously the sum of all the r-ary products of
a;, 0y . . .0, Since the coefficients of 2" on the right-hand
sides of (1) and (8) must be equal, we have

nKr =30 (0 = 0y) (a5 —a) . . . (5= an) ()
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If, for example, there be three letters, a;, a,, a5, we have
K — ay T2 a‘2r+2 a3‘i'+

T (4 — ag) (@ — °3) (25— ;) (a5 — az) (% a) (o — ay)

a,"+? (ay — ag) + a+? (a5 — a;) + o+ (01— ap)

=_ 5).
(a0 — ) (ap— an) (02— 0g) ®)
If we put ay=ay=. . .=a,=1, then each of the terms in
K reduces to 1, and , &, becomes ,H,. Hence, from (3),
(1-2)"=1+3,H.a" (6).

Equating coefficients of 2" on both sides of (6), we have
Hy=nm+1)...(m+r-1)r,
a result already found by another method in chap. xx11r., § 10.

§9.] Some interesting results can be obtained by expanding

1/(y+z) (y+ax+1). .. (y+a+mn)in descending, and in ascend-
ing powers of .
If we write

Yy+a)(y+xz+1). .. (y+x+n)=:§:A, (y+z+r)Y
then we find, by the method of chap. vir., § 6, that
1=4,(-n)(-r+1). .. (-1)1.2...(n-1r)
Hence A,.=(=)7C/nl
Therefore
wf(y+a)(y+a+1)...(y+z+n)=2(-)aC(y+z+r)7" (1).
Hence, if P,, P, P, ... denote respectively the sum of

2z, &#+1,..., @+n, and of their products taken 2, 3,. . . at a
time (without repetition), we have

:I{1+}—;+l—;f+ } =3 (- )O(1+w+r) ’

(BB Yo (Be By

—s(ne s (50} (@),
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where we suppose y to have a value so large that all the series
involved are convergent.

Since there is no power of 1/y less than the nth on the left
of (2), the coefficient of any such power on the right must
vanish. Therefore

(Z+n)y—yCi(z+n—-1y+,C(z+n—-2)—...(—)2*=0 (8),
where s is any positive integer <.
Equating coefficients of 1/y", 1/y"*, and 1/y"+% we find
@+n) = Ci(w+n—-1)"+,Co(z+n-2)"—-. ..
(=) =nl (4);
(@+n)" =0 (x+n—1)"" + ,C(z+n-2)" -
(=) =n! P,
=(n+1)! (z+in) 4);
(+n)y+—,C(w+n—-1)"*"+,0(z+n—2)"+2 -
(—yar =nl (P2~ Py),

=} (n+2)! {&* + nw + &n 3n + 1)} (6);
and so on.

Again from (1) we have’

'
z(z+1). - (x+n){1+Q1y+Q2‘7/2+' o
— r N y -
2( ) x+r{ +w+r} @,
where @, @,, @s, . . . are respectively the sum of 1/z, 1/(z + 1),

., 1/(z + n), and the sums of their products taken 2, 3, . . .
at a time. From (7), by expanding and equating cogfficients of

Y, we get
n!

1 1 1
z(@+1). .. (x+n){5+.z+1+' T +(.:v+n)}
1 201 2Ch
—?—m+(z‘+2)2 e (.4'r',+n)2 (8)-
If we put 2=1, we get the following curious relation between

the sum of the reciprocals of 1,2, . . ., n+1, and the reciprocals
of their squares :—
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_1_{1+1+ +L}~l_n_01+n_0z_
n+l1ll 2 "7 p+lf 12 22 3
1
—_yr
()(n+1)2 (9)‘

§ 10.] We have now exemplified most of the elementary
processes used in the transformation of Binomial Series. The
following additional examples may be useful in helping the
student to thread the intricacies of this favourite field of exercise
for the tyro in Mathematics.

Example 1. Find the coefficient of 2™ in the expansion of (1 —x)2/(1 + z)3?
in ascending powers of z.

If (1+2)"%2=1+Za,z", then (1-2z)*/(1+2)%?=(1-2z+2? (1+Za,2").
Hence the coefficient required is a,-2a, ,+a, ,. If we substitute the
actual values of a,, a,,, a,_,, we find that
(2n 3

a,—2a,_ 1+ 0, o=(-)"(16n%-8n — 1) 2 4 6 o™

Example 2. If f(z)=a,+a,x+a,22+ . . ., then the coefficient of z" in
the expansion of f ()/(1 - z)™ in ascending powers of z is ag ,,H, + a; pH,—
+ay H,o+. . .+a,. This follows at once from the equation

F @1 -z = (ag+ Za,a") (1 + 3, H,a").
In particular, if we put f(z)=(1-z)~" and m =1, we deduce that
n+1Hr:nHr+ JLHr—1+nH —t .t 1;
and, if we put f(z) = (1 - x)™, we deduce that
mﬂHr:er"' mH v g o Hopt o o 4+ Hy,
results which have already appeared, in the particular case where m and n are
integral (see chap. xxim., § 10).

Example 3, Show that
Cnl2+ mi1Onl 2+ g Cuf2+ .+ o 8d @ =140+ 1,00+« o +5,C, (1),
The left-hand side of (1) is obviously the coefficient of z* in
X=(142)™2+ (14+z)"H[22 4+ (1+2)m+t2B+. . . ad .
Now X=3(1+2)"[1+{(1+2)2}+{(1+x)/2}>+. .. adw],
=(1+z)™/2{1 - (1+x)/2}, if we suppose z<1.
=(L+az)m(1- ),
=142 (14,0 +pnCo+. . . +,Cp) 2"
by last example. Hence the theorem follows.
Example 4. Sum the series
n—4)(n-5 n—>5)(n-6)(n-
§o1 123, 0008 @-H0-0@-D,
n being a positive integer.
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The equations (9'”) of § 7 being algebraical identities, we may substitute
therein any values of z and y we choose, s0o long as no ambiguity arises in
the determination of the functions involved. We may, for example, put
z=-1 and y=2i. We thus find

{_1—;\/31';”_'_ {—1;\/31'}"5(_)1»{1_"3},

Hence, if w and »? denote, as usual, the two imaginary cube roots of +1,
we have

S= {1+(__ )n—l (w"-!-w"")}/n.

If we evaluate w"+ w?* for the four cases where n has the forms 6m, 6m=1,
6m=2, 6m+3 (remembering that =1, wl=w? w2?=w), we find that
S has the values -1/n, 0, 2/n, and 3/n respectively.

Example 5. Sum the series
S=1 nn-1) nmr-1)(n-2)(n-3) nm-1)(n-2) (n-3) (n-4)(n-5)
T 2@r+1) 0 2.4(2r+1)(2r+3) 2.4.6(2r+1)(2r+38)(2r+5)
+eoe

n being a positive integer.
If we denote the series by 1+ u; +u,+ug+. . ., then
v = nn-1) ... (n-2s+1)
T4 ... 2(2r+1)(2r+38) ... (2r+25-1)’
@) (r+1)(r+2) . .. (r+3)
- (n—2s)! (2r +2s)! sl ’

restricting r for the present to be a positive integer. We may therefore write
n! (2r)!
u:le ntarCartas + r45Cs-

Now ,.4,C, is the coefficient of 2% in the expansion of 22+28 (1 + 1/22)™+8; that

is, in the expansion of z?+2{,/(1+1/2?%)}2+%, Hence 2u, is one part of the
coefficient of 2" in the expansion of

N L (L a4 {1 = (L 1,
Hence 28 is the whole coefficient of #?" in the expansion of

- 4(_2272)1 [{1+N(L+22) e 4 {1 - /(L 4a?)}ntor],

Now, by § 7,
{14/ (L4920 4 {1 /(L4 a2)prbor

— on+ar 1_l_z(n+2'r) (n+2r-s-1)(n+2r-s-2)...(n+2r—25+1) 2%
- (s)! 2%)°

the coefficient of 22" in which is

(n+2r)(n+r-1)(n+7-2) . .. (n+1)
71 Q2r ‘
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Hence
nl (2r) (n+27) (n +7-1)!
(n+2r)! rinl 220 !
(n+r-1)(n+r-2) ... (r+1)

(n+2r-1)(n+2r-2) . .. (2r+1)°

The summation is thus effected for all integral values of r. So far, how-
ever, as r is concerned, the formula arrived at might be reduced to an
identity between two integral functions of r of finite degree. Since we have
shown that this identity holds for an infinite number of particular values of
r, it must (chap. v., § 16) hold for all values of . The summation is there-
fore general so far as r is concerned.

S= on+2r-1

=9n-1

ExErcises X.

Find the coefficient of z™ in the expansion of the following in ascending
powers of z.

(L) z/(x-a)(x-D)(r-c). (2.) am3)(x-a)(x-b) (x—-c).
(8.) z™t3/(z - a) (x — b) (x—c), where m is a positive integer <r-3.
4.) 8-x)/(2-2)(1-2)% (6.) 2z?(x—1)2(x+1).

(6) (1-pa)m(1-ga)™.

(7.) If (1-38z)*/(1-2z)® be expanded in ascending powers of x, the co-
efficient of x"*"—1is (—1)*(r—2n) 27!, » and r being positive integers.

(8.) Find the numerically greatest term in the expansion of (a — z)/(b+ x)?
in ascending powers of z.

(9.) Show that

(z+pB) (x+2B8) . . . (x+np)
@A) E=2) - - - (5-np)
=1 +:§:"( —yper

n(ntr) (n2-12) (n2-2%) . .. (n2-r—19) B .
() z-rB’

and hence show that
r=n 2-1%) (n2-2%) ... (n2-r-12
3 (_)nﬂr'm(n+r) (n ) (n 2 ) (n 7'4):”(1“_1).
r=1 (r!
(10.) If » be a positive integer, show that
1- 00 +mCe=- « o (=)"mCn=(=)"n-1Cn.
(11.) If n be an even positive integer,
an - mc’n—l . mcl +m0n—2 . mC2 —e oot m.C'n: ( - )nﬂmoﬂh'
(12.) If m and n be positive integers, show that
mCo+ m2Cn+ mCa+ m-22Cn—1+mCs- (m—4)/20_n—2 +o o+ mCan - m—2n2Co
_m(mi-2%) ... (m-2n—-27)
- (2n)! ’
mC1 + m-12Cn + mCs + m—3/2Cn—1+mCs - m-s)2Cn-2t+ + ++mCont1+ m-en-12Co
~m(m?-1Y) (m?2-38%) ... (m2-2n-12)
- 2n+1)!
(See Schlomilch, Handb. d. 4lg. Anal,, § 38.)
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(18.) Show, by equating coefficients in the expansion of (1 — z71)™(1 — x)~™,
where m is a positive integer, that

m2(m? - 1) m2(m2-12%) . .. (m*-m-13
L 2 R S — ~1\ym —
1-m?+ @ +. . .+(-1) g
(14.) If n be a positive multiple of 6, then
201~ 0038+ ,0532—. . . =0;
1 1
ﬂCl—,,(J3§+,,C’53—2—. . =0.

5. +x)3=1+a,x+a,z%®+. .., sum the series 1 —a,+a,—as+...
(15.) If 1+a)3=1+aq 2 %° h ies 1-a,+a;-ay
to n terms,

16.) If (1+z)™=1+a,x+ayz®+..., then l-a2+a?-...=

(16) It (1+z)° hen 1-a%+ag
(-1)"2rn(2n-1) . . . (n+1)/nl.

r! 22 (r+1)! (-1)r2%r 2! (-1)"
W) ot o@D ol

(18.) '2:1/# (r1)? (2n — 2r)! = (4n)![47{(2n)! }3.

(19.) Sum to n terms = (2n - 2)!/22"1n {(n - 1)1 }2
(20.) Sum the series
1.4 1.4.7 1.4...(8n-5)
n+(n-1)3 +(n 2)3—D+(n 3)3 .9t Y3 B Bu-3)’
(21.) Find for what values of n the following series are convergent; and
show that when they are convergent their sums are as given below.

1 »n 1 nn-1) 1 _ (m—1)! .

m Um+1' 21 m+2 " T m+l)(n+2) ... (ntm)’
1+_7i 1 n(n-1) 1 _ (m-1)! { g1
m* lm+l" 2l m+2 T ¥ n+2) ... (n+m) mtnCm—1

~ mnCm—2 2"+ -+( yrriemimg (- ymi},
m in both cases being a positive integer.
= ! r—s—
(22.) Bzﬂ(r+s).(m+n r—s-1) (m+mn)

am0 Tlsl(m—r-1)I(n-s)! = mlnl °
rmech (r+s) (m+n—r-3s)!  (m+n+1)!
(23) ,Eo am0 Tis!(m-r)I(n-s)l =  mlnl °

(24.) The number of the r-ary products of three letters, none of which is
to be raised to a power greater than the nth, where n<r<2n, is
r(Bn-7)+1-3n(n-
(25.) Prove, for a, b, ¢, that =a"/(a-d) (a-¢c)=0, if r=0, or r=1; =1,
if r=2; and generalise the theorem.
(26.) Show that
a(b-c)(bc— aa') (a™ — a”") b (¢ —a) (ca - bb') (b™ - b'™)
a-a b=V
+8 c(a-1)(ab-cc) (c™—c™)
c—¢
=(b-c¢)(c-a) (a-0b) (bc - ad’) (ca - bb’) (ab - cc') Sp,—s/abe,
where aa’=0bb'=cc’, and §,,_3 is the sum of the (m-38)-ary products of
a, b c a, bV, c. (Math. Trip., 1886.)
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(27.) If S, be the sum of the r-ary products of the roots of the equation
v+ a6 M a a4, . .+ a,=0, then
0==_8,+a,,
0=_S8,+8,a,+a,,
0=8,+8,14,+ S, qa,+. . .+a,,

0=S8,+8,30;+ 8,385+ . +8,_,a,.
(Wronski.)
(28.) If S, be the sum of the r-ary products of « letters, P, the sum of the
products 7 at a time, 2, the sum of their 7th powers, then

Z.=n8S,—-(n-1)P,S, 1+...+(-1)"(n-r)P,, if r<n-1.
=n8,—(n-1) PySpy+. . .4+ (-1)"'P, 8, 4y, if r>n—1.
(Math. Trip., 1882.)
(29.) Ifv=(1-azx)"}(1-Bz)~1. . ., the number of ways of distributing n
things, A of which are of one sort, 4 of another sort, . .., into p boxes
placed in a row is the coefficient of z"a*g* . . . in the expansion of (v-1)P
in ascending powers of x, namely,
Uy — pChttg +pCotig— . .« «,
where Ug=(p+N=8)l(p+p-s) ... [(p-8)IN(p-s)tul ...
(Math. Trip., 1888.)
(30.) With the same data as in last question, show that the whole number

of ways of distributing the things when the order in which they are arranged
inside each box is attended to is

al(n-1)(n-p)! (p-1)!I\ pto! . ..
(Math. Trip., 1888.)
Show that
(8l.) 1+1/2+. . .+1jx=,0,-%,Co+3,C5—. . .

(m+1)m (m+2) (m+1)m (m~1) _(-1m
(82) 1- 3!) 2+ 51 L TP |
(33 1_7;_722+m2(1,;2!_ 12) 24_m2(m2_12) (m? — 22) h. . =(-1m

(34.) If m and n are both positive integers, and m>n, then
2;"+ (m-n)(m-n-1) g-n-2 4 (m—n)(m—n—-1)(m—n—2)(m—n—3)2_
nl 1 (n+1)! 2l (n+2)!

_1.3.5...(2m-1)
T (m+mn)!
(85.) If r be a positive integer,
T2 ~12 (/’3 _ 12) (72 —_ 22) 2 (T2 _ 12) (,'-2 —_ 22) (7'2 —_ 32) 3
31 x+ 51 T4+ 71 T+, . %

=(@+2)"7 - g0y (T4 2) P g Oy (24 2)70 -y Oy (@ +2)7 T4, . L

'IL—4+

r%1+
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MULTINOMIAL THEOREM FOR ANY INDEX.

§ 11.] Consider the integral function @,z + @,2®+ . . . + a,2",
whose absolute term vanishes, the rest of the coefficients being
real quantities positive or negative. Confining ourselves in the
meantime to real values of z, we see, since the function vanishes
when z =0, that it will in all cases be possible to assign a posi-
tive quantity p such that for all values of # between —p and +p
we shall have

oz + a2+ . . . +a.27|<1 (1).
In fact, it will be sufficient if p be such that
ap+ap*+. . . +ap"<l1

where o is the numerical value of the numerically greatest
among @, s, . . ., &. That is, it will be sufficient if

ap (1-p")/(1-p)<1;
a fortiori (supposing p<1) it will be sufficient if
ap/(1—p)<1;
that is, if p<l/(@+1)* (2).

p is, in fact, the numerically least among the roots of the
two equations

r+ ... +axtl1=0,
as may be seen by considering the graph of a.2"+. . . + a2,
Therefore, whether m be integral or mnot, provided
—p<z<+p we can always expand (1 + @@+ @2®+. . . +a,2)"
in the form
1+ 3,0 (mz+ a2+ . . . +a,2")° 3);

and the series (3) will be absolutely convergent whether m be
positive or negative. Hence, since @,z + a,2®+. . . + @, 2" is a
terminating series and therefore has a finite value for all values
of z positive or negative, it follows from the principle established
in chap. XxvL, § 34, that we may arrange (8) according to powers

* This is merely a lower limit for p; in any individual case it would in
general be much greater,
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of @, and the result will be a power series which will converge to
the sum (1 + 2+ @2® + . . . +a,2")™ so0 long as —p<a<+p.

Since s is a positive integer, we can expand ,,C; (a2 + a,2* +

. .+ a,a2")° by the formula of chap. xx111., § 12. The coefficient
of " in this expansion will be

SaOsla™a™ . . . e ele) . L L el

H

that is,
Sa . . am(m=1). . . (m-s+1)jalel. . . al (4),

where the summation extends over all positive integral values of
a;, ay, . . ., o, including 0, which are such that

(5).

In order, therefore, to find the coefficient of 2™ in (3) we have
merely to extend the summation in (4) so as to include all
values of s; in other words, to drop the first of the two restric-
tions in (5).

Hence, whether m be integral or not, provided x be small
enough, we have

o t+ayt ., ., .+a,:s}
a+ 20+, . +T0.=0

(L+mz+ma®+. . . +a.a")"
m(m—1). . .(m—3a;+1)
olayl. . . al

=1+3 ata” . . a2 (6),
the summation to be extended over all positive integral values of
0y, g, « . ., Gy, tncluding 0, such that

o, + 20+ . . .+ re.=n.

The details of the evaluation of the coefficient in any parti-
cular case are much the same as in chap. xxi11., § 12, Example 2,
and need not be farther illustrated. It need scarcely be added
that when # is very large the calculation is tedious. In some
cases it can be avoided by transforming 1 + ¢,z + a,2®+. . . + a,2"
before applying the Binomial Expansion, but in most cases the
application of the above formula is in the end both quickest and
most conducive to accuracy.



§§ 11-13 CONDITIONS FOR GOOD APPROXIMATION 215

Example. To find the coefficient of 2™ in (1+z+ 22+ . . . +a")™.
We have
L+z+22+. . . +an)m={(1-a™)/(1-z)}™,

=(1-zr)m(1-z)-m,
=(1-zr)m(1+ 32, H,z").

Hence, if n<r+1, the coefficient of z* is simply

mHp=m(m+1) . . . (m+n-1)nl;
but, if n<r+1, the coefficient of 2™ is

mHn_mCI'mHn—r—1+m02"mHn—2’r—2_ ce

NUMERICAL APPROXIMATION BY MEANS OF THE BINOMIAL
THEOREM.

§12.] The Binomial Expansion may be used for the purpose
of approximating to the numerical value of (1 + )™ According
as we retain the first two, the first three, . . ., the first n+1
terms of the series 1 +,0iz+ ,C:2%+ . . ., we may be said to
take a first, a second, . . . an nth approximation to (1+ &)™

The principal points to be attended to are—

1st, To include in our approximation the terms of greatest
numerical value; in other words, to take # so great that the
numerically greatest term, at least, is included.

ond, To take m so great that the residue of the series is
certainly less than half a unit in the decimal place next after
that to which absolute accuracy is required.

8rd, To calculate each of the terms retained to such a degree
of accuracy that the accumulated error from the neglected digits
in all the terms retained is less than a unit in the place next after
that to which absolute accuracy is required.

The last condition is easily secured by a little attention in
each particular case. We proceed to discuss the other two.

§18.] The order of the numerically greatest term.

In the case of the Binomial Series (1+ )™, if ¢ denote the
numerical value of z, so that 0 <£< 1, we have for the numerical
value of the convergency-ratio w,,./u,
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_m—nf op LT
n+17 n+1

Ty

£, (1),

according as m —n is positive or negative.

Hence it is obvious, in the first place, that, if —1=m<+ 1,
that is, if 7 be a positive or negative proper fraction, the condi-
tion o, <1 is satisfied from the very beginning, and the first
term will be the greatest.

If m>+1, the condition o, <1 is obviously satisfied for any
value of # which exceeds m; in fact, the condition will be
satisfied as soon as

(m-n)é<n+1,

that is, n>(mé—1)/(1+§) (2),

the right-hand side of which is obviously less than m. This
condition is satisfied from the beginning if é<2/(m —1).

If m be <—1=—-p, say, where u>1, the condition o,<1
will be satisfied as soon as

(n+n)é<n+1,
that is, n>(pé—1)/(1-¢§) (3).
This condition is satisfied from the beginning if £<2/(u + 1).

§ 14.] Upper limit of the residue. We have seen that,
ultimately, the terms of a Binomial Series either (1) alternate in
sign or (2) are of constant sign.

To the first of these classes belong the expansions of (1 +a)™
and (1 +2)™™, where z and m are positive.

If »n be greater than the order of the numerically greatest

term, and in the case of (1 +)™ (see § 4) also >m, then the
residue may be written in the form

R,=+ (u‘n-H —Upyo t Upyz— . ) (1)’

where %n41, Wny2, Unss, - - - are the numerical values of the
various terms, and we have %,43>Uppo>Upis>. . .

Hence, in the present case, the error committed by taking an
nth approximation is numerically less than e,.,. In other words,
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if we stop at the term of the nth order, the following term is an
upper limit for the error of the approximation.
Cor. A lower limit for the error is obviously wniy — Unis-

The expansions of (1-2)™ and (1-2)™™ belong to the
second class of series, in which the terms are all ultimately of
the same sign. It will be convenient to consider these two
expansions separately.

In the case of (1-2)", if we take n>m, then we shall
certainly include the numerically greatest term; and o,, the
numerical value of the convergency-ratio, will be (n — m) z/(n + 1),
that is, {1—(m+1)/(n+1)} 2. This continually increases as »
increases, and has for its limit #, when n=o. Hence

O 1 <Opie<. . <&x<l.

Therefore, %11, %n4s, . . . having the same meaning as before,
By =+ (Upgr + Unts +\un+3 +...),
=t Unpa (1 tOp41 T Op 10042 t OntaOnieOniz+ . o )
Therefore

| Ry | <tpa (L+Z+ P+ 2P+ . ),
<Up/(1—2) (2).
Hence the error in this case s numerically less than ., /(1 - ),
and it is in excess or in defect according as the least integer
which exceeds m is even or odd (see § 4).

Cor. A lower limit for the error is obviously wy4/(1 — opyy),
that 18, nCrn@™ /{1 - (n + 1 —m) z/(n + 2)}.

In the expansion of (1-z)~™, all the terms are positive ;
and, in order to include the greatest term, we have merely
to take n>(mzx—1)/(1 —z).

We have, in this case,

gn=(m+m)z/(n+1)={1-(1-m)/(n+1)}z,

Hence, if m<1 ={1+(m-1)/(n+1)} 2.

O 1 < Oppa<. . .<x<1,
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and an upper limit of R, will be Un,/(1—2) as in last case, &
lower limit being Uni /(1= 0py1), that @8, mHypa™ {1 —(n+1+
m) zf(n + 2)}.
If m>1,
1>0,41>0,4>. o >,

and an upper limit of R, will be /(1 — onyy), that s,
mHp@ {1 - (n+1+m)z/(n+2)}, o lower limit being wni./
(1-a2).
The error for (1 - &)™ is, of course, always in defect.
Example 1. To calculate the cube root of 29 to 6 places of decimals.
The nearest cube to 29 is 27. We therefore write
29 (3942)8=3 (14 2/3%)15,
=Upt Uy~ UgF U3~ Ug o o &
The first term is here the greatest; and the terms alternate in sign after u,.
Also u,., written in the most convenient form for calculating successive terms, is

1, =3 () (ré) (%) (39%) (&%) - . .« (61?1_,;) .

Therefore
+

Uy= 3+000,000,00

uy=u,2[8l= 74,074,07
u,=u,4/162= *001,828,99

Uy =u,10/243 = 75,27
U, =u,16/324= 3,72
3+074,149,34 +001,832,71

+001,832,71

3-072,316,63

us=u,22/405 20

Hence the error in defect, due to neglect of the residue, amounts to less
than 2 in the seventh place. The error for neglect of digits does not exceed
1 in the seventh place. Therefore, the best 6-place approximation to
/29 is 3:072,317. In Barlow’s Tables we find 3-072,316,8 given as the
value to 7 places.

Example 2. To calculate (1 — z)™/(1 +x + 2™ to a second approximation,
z being small,

1-zy"(l+z+2%)™
= {1—mx+"l(";—_1).z2} X {1—m(x+x2)+m(mT+l)x2} ,
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where we have already neglected all powers of x above the second in each of
the two series;

- {l_mﬂm_(m_—l_)za} {l_mﬂw—_l)zz} ,
2 2
-1 -
=1+(-m-m)z+ {1&;_7)+m2+m(mTl)} x?

where higher powers of z than z? have again been neglected in distributing
the product;

9y

=1-2mz+m (2m-1) z%

Exercises XI.

(1.) The general term in the expansion of (1+z+y+ay)/(l+z+y) is
(=)™ (m+n—2) zmy™[(m-1)! (n— 1)L

Determine limits for z within which the following multinomials can be

expanded in convergent series of ascending powers of z; and find the
coefficients of

(2)) atin (1 -2z + 22— 32%)~V4 (8.) 2%in (1 -3z - Ta?+a%)~32
(4.) zfand a7 in (z+3234+ 5254+ 72"+ . . . )72
(5.) «7in (1-3x+a3- 2%)%2, (6.) 27 in (2+3zx+2?)~2

(7.) Show that in (9a%+ 6az + 42%)~ the coefficient of g is 237 (3a)—3r-2;
and that the coefficient of every third term vanishes.
(8.) The coefficient of 2™ in (14 +2%)™ (m a positive integer) is
1 m(m—-1) m(m-1)(m-2)(m- 3)
(. @
(9.) The coefficient of z3+! in (1+2)/(1+ 2+ 2?)?is — (r+1).
(10.) Evaluate %/(100/99), and 3/(1002/998), each to 10 places of deci-
mals; and demonstrate in each case the accuracy of your approximation.

Find a first approximation to each of the following, z being small:—

(11) {x+a/(22+ 1)} - {z - /(22 +1)}2m
. {x+'\/(’32+1 }21n+1 {.'1: ~/ I-’+1)}'2m+1 *
(12.) (1+4x) (1+rz)(1 +r~x) [(1-z) (1 z) (1-z)” .
(13.) N(2-N(2-V(2- . —J(1+x) .))); where ,\/ is repeated
n times.

(14.) If z be small compared with N2, then /(N2+z)=N+z[4N +
Nz/2 (2N2+ z), the error being of the order 24/N7. Tor example, show that
(101) =104, to 8 places of decimals.

(15.) If p differ from N® by less than 1 per cent. of either, then J/p differs
from § N+ 3p/N? by less than N/90000. (Math. Trip., 1882,
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(16.) If p=N*+x where z is small, then approximately
51 5 27
4 —_ — 34 4) o
R/p=25 N+ 55 pIN>+ T2 Nao|(Tp + 5NY);

show that when N=10, z=1, this approximation is accurate to 16 places of
decimals. (Math. Trip., 1886.)
(17.) Show that L {1J/r?+1/Jn2+1)+ . . . +1/J/(n?+2n)} =2,
n=wo
(Catalan, Nouv. 4nn., sec. 1., t. 17.)
(18.) Find an upper limit for the residue in the expansion of (1+ z)™
when m is & positive integer,



CHAPTER XXVIIIL
Exponential and Logarithmic Series.

EXPONENTIAL SERIES.

§1.] We have already attached a definite meaning to the
symbol o” when o is a positive real quantity, and # any positive
or negative commensurable quantity. We propose now to discuss
the possibility of expanding a® in a series of ascending powers
of .

If we assume that a convergent expansion of a® in ascending
powers of x exists, then we can easily determine its cogfficients.

For, let

C=Ay+ A+ A2+, . .+ A"+, .. (1),
then, proceeding exactly as in chap. xxvIL., § 2, we have
L{ag—a®)[h=A,+24x+. . .+nd 2" +. .
and the series on the right will be convergent so long as # lies
within limits for which (1) is convergent. Now (by chap. xxv.,§13)
L (0" — a®)[h = a" L (™ — 1)[\h,
=Aa”%,
where A =log,@, and ¢ is Napier’s Base, namely, the finite quantity
L(1+1/n)*. Hence
o NaP=14,+ 24 +. . . +ndga i+, . . (@).
Therefore, by (1),
ANAo+ A+, . A+ Ap @+ L)
=14,+24x+. . .+nd 2" ... (3)

Since both the series in (8) are convergent, we must have

14,=24,, 24,=)A4,, . mAp=M,_,.

)
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Using these equations, we find, successively,
Ay=AMN1l, A,=ANY2!, ..., A,=AMN/n! (4).
Also, since, by the meaning attached to a% a°=+1, putting
=0 on both sides of (1), we have
+1=4, (5).
Hence, finally,
a®=1+Mzfll+ (z)/2l+. . .+(A2)"/nl+. . . (6).
We see, @ posteriori, that the expansion found is really con-
vergent for all values of # (chap. xxv1, § 5), and also that the
series in (2) is convergent for all values of #. Our hypotheses
are therefore justified.

This demonstration is subject to the same objection as the
corresponding one for the Binomial Series: it is, however, interest-
ing, because it shows what the expansion of a® must be, provided
it exist at all. We shall next give two other demonstrations,
each of which supplies the deficiency of that just given, and each
of which has an interest of its own.

§2.] Deduction of the Exponential from the Binomial Ezpansion.

By the binomial theorem*, we have, provided z be numeric-
ally greater than 1,

(14_1) =1 +z$l+ml+
z Z

21 2
+zx(zx~1) C (zm—n+1)l+
n! A
=1+x+w“(1—1/zx)+ +w”(1—1/zx)...(1—m/zw)
21 e n!

R, (1),
where ¥ @
R _a" (1-1/z2) . .. (1-n/zz) . 2 (1—1/zz). .. (1—n+1/z2)

" (n+1)! (n+2)!
oo (2).

* In what follows we have restricted the value of the index zz. Since
z is to be ultimately made infinite, there is no objection to our supposing it
always so chosen that zz is a positive integer. We then depend merely
on the binomial expansion for positive integral indices. This will not affect
the value of L (1+1/z)%%, for it has been shown (chap. xxv., § 13) that this
has the same value when z becomes + or — o, and whether z increases by
integral or by fractional increments.
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Suppose now @ to be a given quantity ; and give to n any fixed
integral value whatever. Then, no matter what positive or
negative commensurable value 2 may have, we can always choose
z as large as we please, and at the same time such that zz is a
positive integer, p say, where p>n. The series (2) will then
terminate ; and we shall have 1l/zz<2/zz<...<nfzz ...
<(p-1)/zz<1. With this understanding, it follows that

R Er A 2
wn+l x w2

<(n+1)! {1+n+2+(n+2)2+' .. ad °°},

<z"(n+ 1)1 - z/(n+ 2)} 3);
and we have
(1+1)m=1+z+M+_ . .+“"n(1—1/p). . -(l—n—l/p)

z 21 o
+Rn (4);

where R, satisfies the condition (3).
Now let 2z, and therefore also p, increase without limit (»
remaining fixed as before). Then, since

La-1p) ... 0A-n-1/p)=1,
we have
1\* 2* z"
z£m<1+;) =1+w+2—!+...+77!+R,, (5),

R, being still subject to (3).

We may now, if we choose, consider the effect of increasing
n.  When this is done, #"*/(n+1)/{1-=/(n+2)} (see chap.
XXV., § 15) continually diminishes, having zero for its limit when
n=oo; we may therefore write
1\* 2° "
me 1+2> =1 TGt ad © (6).
Thus the value of L (1 + 1/2)* is obtained in the form of an
infinite series, which converges for all values of #. For most
purposes the form (5) is, however, more convenient, since it gives
an upper limit for the residue of the series.
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§ 38.] The conditions of the demonstration of last paragraph
will not be violated if we put #=1. Hence, using ¢, as in chap.
XXV., to denote L (1 +1/z)%, we have

e:L(1+i>z:1+1l!+%+...+%!+Rn 7),
where R,<(m+2)/(n+1)(n+1)! (8).
This formula enables us to calculate ¢ with comparative rapidity
to a large number of decimal places. We have merely to divide

1 by 2, then the quotient by 3; and so on. Proceeding as far
as n =12, we have

2=wm

1 +1 =2:000000000
1/2! = "500000000
1/3! = 166666667
1/41 = 41666667
1/50 = 8333333
1/6! = 1388889
/7! = 198413
1/8! = 24802
1/9! = 2756
1/10! = 276
1/111= 25
1/12!= 2

2'718281830

Here the error in the last figure owing to figures neglected in the
arithmetical calculation could not exceed the carriage from 10x 5,
that is, 5. Also the residue R;,,<1%(1/13!)<1%-0000000002
<°0000000003, so that the neglect of R, would certainly not
affect the eighth place. Hence we have as the nearest 7-place
approximation for e
e=2'7182818.

It is usual to give a demonstration that the numerical constant e
is incommensurable. The ordinary demonstration is as follows :—

Let us suppose that e is commensurable, say =p/q, where p and ¢ are
finite positive integers. Then we have by (7)

plg=2+1/21+. . . +1/q!+ Ry,

where Ro<(g+2)/(g+1)*q!.
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Hence, multiplying by q!, we get
p-(g-1)!=I+q!R,,

where p (¢ —1)! and I are obviously integral numbers. Hence q! R, must be
integral.

Now q!By<(q+2)/(q +1)%

<(g+2)/{a (g +2)+1},

that is, ¢! R is a positive proper fraction.

The assumption that e is commensurable therefore leads to an arithmetical
absurdity, and is inadmissible.

Another demonstration which gives more insight into the
nature of this and some other similar cases of incommensurability
in the value of an infinite series is as follows :—

If ry, 7y « « -y Ty, . . . be an infinite series of integers given in magnitude
and in order, then it can be shown (see chap. 1x., § 2) that any commen-

surable number p/q (where p and q are prime to each other, and p<gq) can
be expanded, and that in one way only, in the form

P_ D P P3P0 L 9),
g 7y Ty 17T TiTg e o o Ty
where p, <7y, Pp<Tg, + « oy Pp<Tpn, . . .; and that the series will always
terminate when either ¢ or all its factors occur among the factors of the

integers 7, 7y, . + ., 7y, . . . Hence no infinite series of the form (9) can
represent any vulgar fraction whose denominator consists of factors which
0CCUT AMONG Ty, Ty o « oy Ty o « »

In particular, if r{, 79y« « o, Ty . . . contain all the natural primes,
and, a fortiori, if they be the succession of natural numbers (excepting 1),
namely, 2,8,4,5, .. .,n+1,. .., then the series in (9) cannot represent

any commensurable number at all*.
The incommensurability of e is a mere particular case of the last con-
clusion; for we have in the series representing ¢ — 2

=2, 7,=8, ..., 7,=n+l,...;
p=1, p,=1, ..., p,=1 ...
Hence ¢ - 2 is incommensurable, and therefore e also.

§4.] Returning to equation (5) of § 2, since L (1 + 1/2)? has
a finite value ¢, we have L (1 + 1/2)*™ ={L (1 + 1/2)*}® = &%, there-
fore

* It should be noticed that an infinite series of the form (9) may
represent a fraction whose denominator contains a factor not occurring

among 7y, Te, « « «5 ¥y, - - +, fOr example,
L PN SR S Y. P
2°8373.5 8.5.7 3.5.7.9 """ :

This point seems to have been overlooked by some mathematical writers.
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n

= 1+1—!+ +...+7x2—!+R,, (10),

where R, is subject to the inequality (8).

Finally, since a”= ¢, where A =log.a, we have

a’“:1+(1' +()‘2'2;)2+. . +0;2w)n+R (11),
where Ro<(Az)y™/(n + 1)H{1 - Aay/(n + 2)} (12).

Since LR,=0 when n=oo, the series (10) and (11) may of
course each be continued to infinity.

This completes our second demonstration of the exponential
theorem.

§5.] Summation of the Exponential Series for real values of .

A third demonstration was given by Cauchy in his Analyse
Algébrique. 1t follows closely the lines of the second demonstra-
tion of the binomial theorem ; and no doubt it was suggested
by the elegant process, due to Euler, on which that demonstra-
tion is founded. This third demonstration is of great import-
ance, because we shall (in chdp. xx1x.) use the process involved in
it to settle the more general question regarding the summation
of the Exponential Series when # is a complex number.

Denote the infinite series

l1+z+ z +. . +'£n +.
2! n!

by the symbol /(2). Then, since the series is convergent for all
values of z, f(2) is a single valued, finite, continuous function
of # (chap. xxvr., §19).

Also, since f(«) and f(y) are both absolutely convergent
series, we have, by the rule for the multiplication of series
(chap. xxvL, § 14),

f<m>f<y>=1+<w+3,>+(;_f+%+g_j>+

x’n wn ly .Z'IL 2y2 y_ﬂ/\)
+( (n—l)'l' (n— 2)'2' eyt
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Now

wn wn—l xn—2 2 M
al t (n—1)y111 - 2?!21 ot
=(@" + ,CL 2" Y+, +. . . +y")/nl,
“=(z+y)/nl,
by the binomial theorem for positive integral exponents.
Hence J@)f(y)=1+3(z+y)"/a!,
=f (2 +y) 1)
Hence S @) @) (2)=S (@ +y)f(2),
=f(z +y+2);
and, in general, z, 4, 7, . . . being any real quantities positive or
negative,

J@SSf(z). . . =f@e+y+z+...) 2).
This last result is called the Addition Theorem for the
Ezxponential Series.

From (2), putting #=y=2 ..., =1, and supposing the
number of letters to be n, we deduce
{f (=S () 3
Also, taking the number of the letters to be ¢, and each to
be p/q, we deduce
{f (@l =7 (p) (4),
where p and ¢ are any positive integers. From (4), by means of
(3), we deduce
{/ (@lpy ={r ()} (8).
Finally, from (1), putting y = — 2, we deduce
S (@) f(—2)=/(0) ().

The equations (5) and (6) enable us to sum the series f(z)
for all commensurable values of .

From (5) we see that f(p/q) is a gth root of {#(1)}>. Now,
since p/q is positive, the value of f(p/q) is obviously real and
positive. Also f(1), that is, 1+1/1!+1/2!+. . ., is a finite
positive quantity, which we may call e. Therefore {/(1)}?, or ¢?,
is real and positive. Hence f(p/g) must be the real positive
gth root of ¢?, that is, ¢#4 Hence
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2

p and ¢ being any positive integers.
Finally, since /(0)=1, we see from (6) that

S (-ple)=1/f(p/g),
=1/ePn,
=Pl
Hence (— /o) .
~p/9) , (-P/9)* -
1+——1'—+T+...=e1’/‘1 (8),
where p/q is any positive commensurable number.

By combining (7) and (8) we complete the demonstration of
the theorem, that
© xz 2 "
e:1+1_!+ﬁ+"'+n‘!+""

for all commensurable values of #, ¢ being given by

1 1 1
e=1+1—!-+2—!+. . .+77!+. .

The student will not fail to observe that ¢ is introduced and
defined in the course of the demonstration.

The extension of the theorem to the case where the base is
any positive quantity « is at once effected by the transformation
a®=¢", as in last demonstration.

§ 6.] From the Exponential Series we may derive a large
number of others; and, conversely, by means of it a variety of
series can be summed.

Bernoulli’s Numbers.—One of the most important among the
series which can be deduced from the exponential theorem is
the expansion of #/(1-¢®), the coefficients in the even terms
of which are closely connected with the famous numbers of
Bernoulli.

We shall first give Cauchy’s demonstration, which shows, a
priort, that /(1 — e™®) can be expanded in an ascending series of
powers of z, provided x lie within certain limits.
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We have
z 1 1
1-¢® (1-e9z 1-y @,
where y=1-(1-¢")/a (2).
Now, from (1), we have
z/(l1—e®)=1+y+y*+...ad o 3);

and this series will be absolutely convergent provided — 1<y <+1.
Also, from (2), using the exponential theorem, we have

y=af2! - 2?8l + 2[4l —. . . ad o (4);

and this series is absolutely convergent for all values of #, and
therefore remains convergent when all the signs are taken alike.
If, therefore, we can find a value of p such that

p/2! + p*/3V+ p¥4l+. . L ad o <1 (A),

then, for all values of 2 between —p and +p, Cauchy’s condi-
tions of absolute convergency (chap. xxvi., § 34) will be fulfilled
for the double series which results, when we substitute in (3) the
value of y given by (4). This double series may therefore be
arranged according to powers of z, and the result will be a
convergent expansion for /(1 —e¢®).

It is easy to show that a value of p can be found to satisfy
the condition (A); for we have

pf2!+p%8!+. . .=(ef—1)[p-1.
We have, therefore, merely to choose p so that
e —1<2p (5).

If the graphs of ¢®—1 and of 22 be drawn, it will be seen
that both pass through the origin, the former being inclined to
the z-axis at an angle whose tangent is 1, the latter at an angle
whose tangent is 2, that is to say, at a greater angle. There-
fore, since ¢°— 1 increases as « increases, and that ultimately
much faster than 2z, the graph of ¢®—1 will cross the graph of
2 just once. Therefore the inequality (5) will be satisfied pro-
vided p be less than the unique positive root of the equation
¢ —1=2x Since ¢-1<2x 1, and ¢~ 1>2 x 2, this root lies
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between 1 and 2.* It will, therefore, certainly be possible to

expand 2/(1—-¢™®) in a convergent series of powers of z if
-l<z<+1.

If we make the substitution for %, and calculate the co-
efficients of the first few terms, we find that

z .1 12 12 + 1a )
1-¢% 2 62! 304! 426! °°° )
Knowing, a priori, that the expansion exists, we can easily

find a recurrence formula for calculating the successive co-
efficients. Let

zf(l-e®)=Ad,+ Az + A2 + A2 +. . . ).
Then, putting —2 in place of 2, we must have, since
—2/(1-¢)=e"z/(1-¢),
exf(l-e®)=Ay— A+ A 2> — A2 +. . . (8).
Since both the series are convergent, we have, by sub-

tracting,
x=24,20+24;28+. . . 9).

Hence 4,=1%; and all the other coefficients of odd order
must vanish.
Therefore, from (7), we have

z=(A,+3z+ 4,22+ A, a*+. . .)(1-e7%),

=(do+t3x+A,22+ At +. . o+ Ay2™+. L)
X(ﬁ_ﬂﬁ’,,i_ A )
ST TR 7 TR 7§ | R
The product of these two convergent series will be another
convergent series, all of whose coefficients, except the coefficient

of #, must vanish. Hence, equating coefficients of odd powers of
2, we deduce 4,=1, and

A - 1 1
m Ams, A + =0,
1! 3! 2n-1)! 2(2n)! (27 +1)!
* More nearly, the root is 1:250 . . .; but the actual value, as will be

seen presently, is not of much importance.
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Apy | Ao A 2n —1
TR TR o T Ry oy RO
In like manner, if we equate the coefficients of even powers
of 2, we deduce
Aoy Aon- A 2n
T?Ur Z R (2722)‘ 2 (2n + 2)! ().
If, as is usual, we put Ag,=(— )" B,/(2n)!, our expansion
becomes

that is,

'z_ =1+—1—x+}i B2m4 B“’af‘
1-¢* 2
and the equations (10) and (1 1) may be wrltten

a1 Oon Bo = ant1 Con—e B+ o (= )" onn Ce By=(= )" (n— %)

(12);

(10')
and
42 O Bo—onts Oon—s By ++ o (=) ong2Co Bi=(—= )"0 (11)
respectively.

If we put n=1, n=2, n=38, . . ., successively, either in
(10") or in (11'), we can calculate, one after the other, the
numbers B, B,, . . ., By, . .., which are called Bernoulli’s

numbers*. Since we know, @ priors, that the expansion exists,
the two equations (10') and (11°) must of necessity be con-
sistent. Neither of them furnishes the most convenient method
for calculating the numbers rapidly to a large number of decimal
places; but it is easy to deduce from them exact values for a
few of the earlier in the series, namely,

1 1
B 2 = 30; Ba—E, B4“§6,
5 691 3617
Bi=55 Bo=gr300 Br=g Bs= 510
B9:43867 _1222277’ &e.

798 * T 2310

* There is considerable divergence among mathematical writers as to the
notation for Bernoulli’s numbers. What we have denoted by B, is often
denoted by B,,, or by B,,_,. For further properties of these numbers, and
for tables of their values, see Euler, Inst. Diff. Calc. Cap. 5, § 122; Ohm,
Crelle’s Jour., Bd. xx. p. 11; J. C. Adams, Brit. dssoc. Rep., 1877, p. 8,
also Cambridge Observations, 1890, App. 1.; Staudt, Crelle’s Jour., Bd. xx1.;
Boole’s Finite Differences (ed. by Moulton); and, for a useful bibliography
of the relative literature, Ely, 4m. Jour. Math. (1882).
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We shall return to the properties of these numbers in
chap. xxx.

Remark regarding the limits within which the expansion of z|(1-e™%) is
valid.—If we denote the series
B,

B,
2 _ 2 4
1+ :c+2! 4lx+...

by ¢ (z), we may state the problem we have just solved as follows :—To find
a convergent series ¢ (x) such that (1 —e~*) ¢ (x) ==, that is, such that (z — x?/2!
+a3f38l- .. .) ¢ (z)=2.

Now, since z — 222!+ 273! - is absolutely convergent for all values of z,
and the coefficients of ¢ (z) satisfy (10’) and (11’), ¢ (z) will satisfy the con-
dition (z — 2?/2! +28/3! - . . .) ¢ (z)== so long as ¢ (z) is convergent. Hence,
50 long as ¢ () is convergent, it will be the expansion of z/(1-¢7%). As a
matter of fact, it follows from an expression for Bernoulli’s numbers given in
chap. xxx. that ¢ (z) is convergent so long as —2r <z < +27. The actual
limits of the validity of the expansion are therefore much wider than those
originally assigned in the a priori proof of its existence.

Cor. 1. Since z (¢ +e®)/(¢" — e ) =2/(1 — e*) — 2/(1 - ¢©),
we deduce from (12)
c+e” B1 9747 _ B, P Bs 90,6

.Z'e—,z_—e_; 1+ 4‘ 6’ . (13)
Cor. 2. Since 2/(1 + e—’) =22/(1 —e™*) — /(1 —e7®),
2 _1 B, 5,
m—§(21—1)$+2!(22—1)x2—4! (24—1).2:'4+. .. (14).

§ 7.1 Bernoulli’s Theorem.—We have already seen that the
sum of the rth powers of the first » integers (,S;) is an integral
function of n of the » + 1th degree (see chap. xx., § 9).

We shall now show that the coefficients of this function can
be expressed by means of Bernoulli’s numbers.

From the identity

(e -1)/(E-1)=1+f+e®+. . .+l 0%
that is,
(-1)/(1-e™)="+*+&*+. . . +6™
we deduce at once
nx niat n'x" 1 B, B,
{ﬁ+?!-+. R p +. . } {1+-2-w+ ﬂ——x +. . }

S 22 n;S’,x“‘
—1‘! S -k T (1),

H
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wherein all the series are absolutely convergent, so long as »
is finite, provided 2 do not exceed the limits within which
1+ 32+ Ba*/2! — B,a*/4! +. . . is convergent. The coefficient
of 2™+* on the right of (1) must therefore be equal to the co-
efficient of 2’+* in the convergent series which is the product of
the factors on the left. Hence

&_ nr+1 N nr . Blnr—l _ B2nr—3 + Bsn'r—ﬁ
D) 2.7 2 r—1) 4l(r—3)l 6l(r—5)" "

Therefore

e WY | L p
WSy = g+ gy Bun T - = By
+,~_(r_1)(r—i>'<r—3)<r—4>33nr~s_. c. (@)

the last term being ( - )}~ By,n, or 1 (— )43 By_yyn? accord-
ing as 7 is even or odd.

This formula was first given by James Bernoulli (drs Conjectandi, p. 97,
published posthumously at Basel in 1713). He gave no general demonstra-
tion ; but was quite aware of the importance of his theorem, for he boasts
that by means of it he calculated intra semi-quadrantem hore! the sum of
the 10th powers of the first thousand integers, and found it to be

91,409,924,241,424,243,424,241,924, 242, 500.

It will be a good exercise for the reader to check Bernoulli’s result.

SUMMATION OF SERIES BY MEANS OF THE EXPONENTIAL
THEOREM.

§ 8.] Among the series which can be summed by means of
the Exponential Series, two, related to it in the same way as the
series of chap. xxviL, § 5, are related to the Binomial Series,
deserve special mention.

We can alwoys sum the series 3¢, (n) 2" [n!, where ¢, (n) is an

integral function of n of the rth degree. (Integro-Exponential
Series.)
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For, as in chap. XXvIL, § 5, we can always establish an identity

of the form

¢(n)=dy+ An+Am(n-1)+. . .+4dn(n-1) ... (n—r+1).
Then we have, taking, for simplicity of illustration, the lower

limit of summation to be 0,

¢T (n)'z. z" n—l ’IL 2
2 e =4, 2 +A1x2( i +A2w22 = 2)' ..
+ A" 2(n it

=(do+ A1z + Ay2®+. . .+ 4,07) &

Cor. We can in general sum the series §¢, (m) 2™/n! (n+ @)
(m+d)...(n+k), wherea,b, . . ., k are unequal positive integers.

The process is the same as that used in the corollary of
chap. xxviL, § 5, only the details are a little simpler. (See
Example 5, below.)

Example 1. To deduce the formule (3), (4), (5) of chap. xxvir, § 9, by
means of the exponential theorem.

(x+n) -, Coz+n—-1)%+. . . (=) Cr(z+n—-7)4. .. (=)"*
is evidently the coefficient of 2% in
s! {e(x+'n)z — 'n,ol elrtn—1z 4 = | ( — )rnCr elxtn-rzy o | ( - )n exz}
=sle** (&% - 1)7,

:sl{1+zz+-§‘—+ }{1+ !+3!+ .}"z",
=s!z”‘§1+zz+m?f2+ .. } §1+g z +1_—1(3121:-1) 22+, .. % .
The lowest power of z in the product last written is 2%, and the coefficients
of 28, 2t 2712 are sl, sl (z+3n), 4s!{z?+nz + &5 n (3n+ 1)} respectively.
Hence
(+n)f -, C(x+n=13+. . . (=) Cr(x+n—-1)3+. . . (- )"2®
=0, ifs<n;
=nl, if s=n
=(n+1)(z+4n), if s=n+1;
=3 (n+2){r2+nx+Hn(Bn+1)}, if s=n+2.
Example 2. If n and r be positive integers, show that

1 n nn-1)...m-s+1) nn-1)...1 }
L2 g e —— .. . o
¢ {1‘!+1! (r+1)! Fheot sl(r+s)! o+ nl (r+n)! o
1 n4r+l (n+r+1)(n+74+2) . . . (n+T+5) |

— 1!(r+1)lz+' .ot ST+ )] 4. . .ad .
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The right-hand side is the coefficient of 2#*" in

n+1 n+r n+r-8
(z+:c)"+(z+1xl) +. .+(z+:l) oo %
=(z+a:)"e'*’-',
n
=6 {z"+,C 2" 1+ . . . +,C,2"} x {1+ +2!+ +:ﬁ+' . }

Now the coefficient of 2#*" in this product is
1 n nn-1)...1 }
£ Snl A At Tl
¢ {rl T S ) A |
Hence the theorem.
If we put =0, and z=1, we have

n+l (n+1)(n+2)

1'*-(1!)2 ———(2'f)-r—+-..&dw
L n(n—1)+ +’n(n—1) . 1}
{ TaEtTeE @y

Example 3. Sum the series
13 13498 134234, . . 4nd
e+t 2+, . R
We have (by chap. xx., § 7)
B2+, . L +nd=(n+2n+n?) /4,
=}{dy+4din+dyn(n-1)+43n(n-1)(n-2)+4,n (n-1) (n-2) (n-3)},

"+, .. ad o,

where 4, 4,, . . ., A, may be calculated as follows:—
1+ 24+ 1+ 0+]0 4,= 0,
+1 | 0+ 1+ 3+ 4
1+ 3+ 4+4 4,= 4,
+2 | 0+ 2+ 10
14+ 54|14 A,=14,
+3 | 0+ 3
1+(8 A;= 8, 4,=1.
Hence
1849234, tnd " 1 7 2 3 1 gn—4
= 2 3 oy YRl
z po z xZ(n )I+ a:Z(n 2)!+ xz(n_3)1+4:c Z(n_4)!
=(z+fx2+ 223+ }24)e”.

If we put z=1, we have
Z(13+23+. . . +nd)/nl=27¢/4.

Example 4. Show that "z n3n!=
n=1

Since n*=n+3n(n-1)+n (n-1) (n-2),
Zndfnl=21/(n - 1)1 +3Z1/(n - 2)! + =1/(n - 3)!,
=be.
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Example 5. Evaluate T (n-1) ™/ (n+2) nl.
1

(n-1)a2" 1 _(n2-1)z"2
m+2ynl 227 (m+2)l

Now n2-1=8-3(n+2)+(n+2) (n+1).
Therefore
Y L Y S £
A R A ?(n+1)1+ 2T

={3(e*—1-z—}a?) -8z (¥ - 1 - x) + 2% (e* - 1)} /27,
={(2?- 8z +3) %+ (322~ 3)} /2%

Exercises XII.

(1.) Evaluate 1/e to six places of decimals.
(2.) Calculate z to & second approximation from the equation
50 log, (1+z)=49z.
(8.) If e*=1+=eh%, and x* be negligible, show that
h=1/2!+ z[4! - 23[415],
(4.) Show that, if n be any positive integer,
(1-1n)>1+1/11+1/21+. . .+1/n!>(141/n)"
(5.) Sum from 0 to @ = (1-3n+n2?) a®/nl.

Sum to infinity
(6.) 1%/2!+22/3!+ 324l +. . .
(7.) 13/21+23/8!+383/41+. .. .
(8.) 1-23114+3%21-43/814. .. .
(9.) 1442421 4+384/3l+. . .
Show that
(10.) 1/(2n)!-1/1!1(2n—1)1+1/21(2n - 2)! . . . - 1/1!(2n - 1)1 +1/(2n)! =0.
(11) Ifn>3, 23+ ,C,(n—2B3+,Cs(n—4P3+. . .=n? (n+3) 2774
(12.) nm—,C (n—-2)*+,Cy(n—4)"—. . .=2%nl,
(13.) By expanding e/=%), or otherwise, show that, if
4,="% (n+r—1)lfnl(n-1)}, then dyyy - (2r+1) A +7 (r—1) 4,,=0.
n=1 (Math. Trip., 1882.)
(14.) Prove that

(z-a38l+ 255! - . . .)(1—z?2l+atfdl—. . . )=3(-)2%z¥+1)(2r + 1)L
(15.) Solve the equation 22— z - 1/n=0; and show that the nth power of
its greater root has e for its limit when n=w.
(16.) For all positive integral values of n

—1\n2/p— 2\n—3
nn-1<"—2—1>" (’—L3—2)" . (ﬁi) <entr-m,
117.) If
ar=Ady+ (a: 1)+ (:v 1) (z-2)+. .+%(z-l)(w—2) v e (z=m),
show that 4,= (s+ 1)” —BCI Lt 302 (8 - 1)"L Tes ( - )Bsca 1,
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(18 Show that 3 (n?+2n2+n - 1)[nl=9¢+1.
1

(19.) Sum =(n+a)(n+b)(n+c)a"/n! from n=0to n=0c0.

(20.) Show that e cannot be a root of a quadratic equation having finite
rational coefficients.

(21.) Sum the series Zz"/(n+3) n! from n=0 to n=c0.

(22.) Sum to infinity the series 13/3.1!+3%/4. 21 +5%/5.81+. . . .

If By, By, . . ., B, denote Bernoulli’s numbers, show that
(23.) 2n1102n—1 B~ 2nt1Can-sBa1t. « « (=) lopnCy By=(-1)""L

Cop—o By C, B, 2n
(24) puirCon By - 2iOma ooty (it B (g 20
(25.) 3,01 B;—%1,C3By+%4,C5B;—. . .=(n—-1)/2 (n+1), the last.term on

the left being (- )¥"—2 B, s, or (- )¥"~3) nB(,_y,, according as n is even or
odd.
(26.) By comparing Bernoulli’s expression for 17427+, . . +n" with the
expressions deducible from Lagrange’s Interpolation Formula, show that
t=2p+1
2

S,
- (=) apnCe t_%rgz(_)p_pr;

t=2p+2 S.
? (-)? 2p+10!t’—2;£1:0-
Also that

t=2p S,
—)t-1 20— (_)p-1B :
? ( ) 2P02t(t+1) ( ) Bp’

t=2p+1 S,
)1 tD2p+1 _
> ( ) 2p+lCtt(t+1) 0.
(Kronecker, Crelle’s Jour., Bd. Lxxxiv.; 1887.)

B. B B
(27.) (e* - e~%) [(e* + e~%) = ?;(22 -1)2222+ ﬁ(Q“ - 1) 244+ 373(26 —-1)26z6 ...

LOGARITHMIC SERIES.

§9.1 Ezpansion of log (1 +2).—It is obvious that no function
of  which becomes infinite in value when =0 can be expanded
in a convergent series of ascending powers of 2. For, if we
suppose

J@)=A4,+ Ayz+ A, 22+. . .,

then on putting =0 we have w=A4,; and the attempt to
determine even the first coefficient fails.

There can therefore be no expansion of logz of the kind
mentioned.
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We can, however, expand log (1+ ) in o series of ascending
powers of x, provided x be numerically less than unity.
The base in the first instance is understood to be ¢ as usual.

By § 4, we have

(I+aF=1+z{log(1 +a2)} + 22 {log (1 + )21 +. . . (1);
and this series is convergent for all values of z.

Again, by the biromial theorem, we have, provided the
numerical value of # be less than 1,
(l+ap=1+zz+2(z—1)2*21 +2(2—-1)(z—2) 23! +. . .,

=l+ze—-2(1-2/1)2*/2+2(1-2/1)(1-2/2) 2*/3 +... (2).

If we arrange this as a double series, we have

(1 + w) =1+za— {z.z"’/z z2.z3/2} + {z.z"’/S (1 + 7)z”.z3/3 +3 zaz3/3} +

(=) {zw”/n — P17 m"/n + n_lP, zs.z'“/n -

( )n—-l n-1Pn—-1 znxn 721}
. . . . . . . . . . . (3),
where ,-,P, stands for the sum of all the r-products of 1/1,
1/2, . . ., 1/(n—1), without repetition.

In order that Cauchy’s criterion for the absolute convergency
of the double series (3) may be satisfied, it will be sufficient if
the series

28%n + g Py 222"+ . L+ ai P 220 4)
and

l+zz+2(1+2/1)a?2+2(1+2/1)(1+2/2)2*3+. .. (5)
be both convergent when z and # are positive.

Now the sum of (4) isalways 2 (¢+1) . . . (2+n—1)a"/n!;
and this has 0 for its limit when # =, provided #<1. Also,
the series (5) is absolutely convergent when < 1.

Hence, by chap. xxvi, § 84, we may rearrange the series (3)
according to powers of z, and it will still converge to (1 + z)?

Confining our attention to the first power of 2z, for the
present, we thus find

Q+ayP=1+{z/l-2*2+2*83—. . Jz+. .. (5).
Now, since there can only be one convergent expansion of
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(1 +2)* in powers of z the series in (1) and (5) must be
identical. Therefore
log(l+a)=a/l-2*2+2*3—. . . (- 2"n+... (6).
The series on the right of (6) is usually called the logarithmic
series. It is absolutely convergent so long as —1<#<1, and it
is precisely under this restriction that the above demonstration
is valid.

If we put =1 on the right of (6), we get the series
1/1-1/2+1/8—. . . (=1)**m+. .., which is semi-conver-
gent. Hence, by Abel's Theorem (chap. xxvri, § 20), equation
(6) will still hold in this case; and we have

log2=1/1-1/2+1/83—-. . .+(=1)"Ya+. .. (7),
provided the order of the terms as written be adhered to.

If we put z=—1 in (6), the series becomes divergent. It
diverges, however, to — oc; so that, since log0=-— oo, the
theorem still holds in a certain sense.

Cor. If we arrange the coefficients of the remaining powers
of z in (5), and compare with (1), we find
{log (1 +2)}2 =2 {{P, 2?2 — P, &*[8 + ;P x4 —. . .},

{log (1 + 2)}" = n! {4-1Lnr &[0 — o LPry "/(n + 1)
+ P @(n+2)—. . .} (8).
These formule and the above demonstration are given by
Cauchy in his Analyse Algébrique.
§ 10.] A variety of expansions can be deduced from the
logarithmic theorem. The following are some of those that
are most commonly met with :—

We have
log(l+@)=a/1- 222+ 28—, . . (=) 'a"n+. . .;
also
log(l-2)=-2/1-2*2-2*/83—. . .—a"n—. ..

Hence, by subtraction, since log (1 + 2)—log (1 —.w) =log
{(1+2)/(1-2)}, we deduce
log {(1+2)/(1-2)}=2{x/1+2%/3+. . . +a™ Y (2n-1)+...} (9).
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Putting in (9) y=(1+2)/(1-2), and therefore #=(y —1)/
(y + 1), we get

DG o 5
logy—2{1<y+l +3 yi1 oty y—+—1> +}
(10),
an expansion for logy (but not, be it observed, in powers of y)

which will be convergent if y be positive—the only case at
present in question.

Again, since 1+2=2(1+1/z), and log(1+z)=logz+log
(1+1/z), putting in (10) y=1+1/z, so that (y—1)/(y+1)=
1/(2z + 1), we have
log(1+2)=logz+2{1/1(22+1)+1/3 (22 +1)*+. . .} (11).

Finally, since z+1=2*(1—-1/2)/(z— 1),
log (z+1)=2logz—log (z—1)

—2{1/1(222—1)+1/3(22°— 1) +. . .} (12).

If, in any of the above formule, we wish to use a base @
different from ¢, we have simply to multiply by the “modulus”
1/log.a (see chap. xx1., § 9). Thus, for example, from (10) we

derive
__ 2 z/~1> l(y,,—,,l_ ’
IOg“y_logea{<y+1 +3 ,7/+1> +.. } (13).

ON THE CALCULATION OF LOGARITHMS.

§ 11.] The early calculators of logarithms largely used
methods depending on the repeated extraction of the square
root. This process was combined with the Method of Differences,
which seems to have arisen out of the practical necessities of the
Logarithmic Calculator*.

* See Glaisher, Art. ¢ Logarithms,” Encyclopedia Britannica, 9th ed.,
from which much of what follows is taken.
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Thus, Briggs used the approximate formula
logy, 2 = (272" —1) 27/101l0g, 10,
depending on the accurate formula
:;LO (#® - 1)/z=log. 2,

which we have already established in the chapter on Limits,
and which might readily be deduced from the exponential
theorem. The calculation of log, 2 in this way, therefore, in-
volved the raising of 2 to the tenth power and the subsequent
extraction of the square root 47 times!

Calculations of this kind were infinitely laborious, and nothing
but the enthusiasm of pioneers could have sustained the calcu-
lators. If it were necessary nowadays to calculate a logarithmic
table afresh, or to calculate the logarithm of a single number to
a large number of places, some method involving the use of
logarithmic series would probably be adopted.

The series in § 10 enable us to calculate fairly rapidly the
Napierian Logarithms of the small primes, 2, 3, 5, 7.
Thus, putting ¥ =2 in (10) we have

log2=2{1/1.3+1/3.8°+1/5.8%+. . .}

The calculation to nine places may be arranged thus :—

1/3 | 333,333,333 | 1/1 .3 | ‘333,333,333
1/3° 37,037,037 | 1/3 .3 12,345,679
1/3° 4115226 | 1/5 .3 823,045
1/37 457,247 | 11 . ¥ 65,321
1/3° 50,805 | 1/9 .3° 5,645
1/3" 5,645 | 1/11.3% 513
1/3% 627 | 1/13. 3 48
1/3% 70 | 1/15. 3% 5
1/37 8 | 1/17.37 0
346,573,589 |+4
2

693,147,178 |+8
By the principle of chap. xxv1., § 30, the residue of the series

is less than
{1/19.38%}/(1 - ),
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that is, less than "000,000,000,06 ; and the utmost error from
the carriage to the last line is +4. The utmost error in our
calculation is +8. Hence, subject to an error of 1 at the utmost
in the last place, we have

log 2 =693,147,18.
Having thus calculated log2, we can obtain log3 more
rapidly by putting =2 in (11). Thus
log8=log2+2{1/1.5+1/3.5°+1/5.5°+. ..}
Knowing log2 and log3, we can deduce log4=21log2, and
log 6 =log 3 + log 2. Then, putting =4 in (12), we have
log5=2log4—log3-2{1/31+1/3.31°+. ..}
Also, putting =6 in (12), we have
log7=2log 6—log5—-2{1/71+1/3.713+. . .}.
It will be a good exercise in computation for the student to
calculate by means of these formule the Napierian Logarithms

of the first 10 integers. The following table of the results to
ten places will serve for verification :—

No. Logarithm,
1 0°000,000,000,0
2 0'693,147,180,6*
3 1'098,612,288,7
4 1-386,294,361,1
5 1°609,437,912,4
6 1'791,759,469,2
7 1'945,910,149,1
8 2'079,441,541,7
9 2:197,224,577,3

10 2'302,585,093,0

From the value of log,10 we deduce the value of its re-
ciprocal, namely, M = 434,294,481,903,251; and, by multiplying
by this number, we can convert the Napierian Logarithm of

* 6 means that the 10th digit has been increased by a unit, because the
11th exceeds 4.
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any number into the ordinary or Briggian Logarithm, whose base
is 10.

Much more powerful methods than the above can be found
for calculating log 2, log 3, log 5, log 7, and M.

By one of these (see Exercises xm1, 2, below) Professor
J. C. Adams has calculated these numbers to 260 places of
decimals.

§12.] The Factor Method of calculating Logarithms* is one
of the most powerful, and at the same time one of the most
instructive, from an arithmetical point of view, of all the methods
that have been proposed for readily finding the logarithm of a
given number to a large number of decimals.

This method depends on the fact that every number may, to
any desired degree of accuracy, be expressed in the form

10"p,/(1 = p,/10) (1 = pof 10°) (1 = ps/10°) . . . (1),
where p,, p,, ps, . . . each denote one of the 10 digits, 0, 1,
2, ..., 9, p, being of course not 0.

Take, for example, 314159 as the given number. First
divide by 10°. 8, and we have

314159=10°. 3.1°047,196,666,666 . . .

Next multiply 1°047,196,666,666 by 1 —4/10% that is, cut
off two digits from the end of the number, then multiply by 4
and subtract the result from the number itself. The effect of
this will be to destroy the first significant figure after the
decimal point. We have in fact

1°047,196,666,666 x (1 — 4/10%) = 1005,308,800,000.

Next multiply 1:005,308,800,000 by 1-5/10°, and so on
till the twelve figures after the point are all reduced to zero. The
actual calculation can be performed very quickly, as follows :—

* For a full history of this method see Glaisher’s article above quoted ;
or the Introduction to Gray’s Tables for the Formation of Logarithms and
Anti-Logarithms to Twenty-four Places (1876).
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1'047,196,666,6/66 | 4/10
41,887,866,666
5,308,800,000 | 5/10°
5,026,544,000
282,256,000 | 2/10°

200,056,451
82,199,549 | 8/10°
80,006,576
2,192,973 | 2/10°
2,000,004
192,969 | 1/107
100,000
92,969 | 9/10° 2/10°, 9/10%, 6/10", 9/10".

The remaining factors being obvious without farther calcula-
tion. Hence we have
314159 x (1 —4/10%)(1-5/10°) . . . (1-9/10%)

=10°. 3 (1 +/10), 2 9.

Therefore

814159 =10°. 3 (1 +2/10%)/(1 - 4/10°) (1 — 5/10%) . . . (1—9/10)
(2)-

Since log (1 + 2/10%)<2/10%, it follows from (2) that, as far
as the twelfth place of decimals,
log 314159 =5 log 10 + log 3 —log (1 — 4/10%) —log (1 - 5/10°)

—log (1 —2/10%) - log (1 — 8/10°) —log (1 — 2/10°)
—log (1—-1/107) - log (1 — 9/10°) — log (1 — 2/10°)
—log (1 -9/10%) —log (1 — 6/10™) —log (1 - 9/10™).

All, therefore, that is required to enable us to calculate
log 314159 to twelve places is an auxiliary table containing the
logarithms of the first 10 integers, and the logarithms of 1-»/10
for all integral values of p from 1 to 9, and for all integral values
of r from 1 to 12. To make quite sure of the last figure this
auxiliary table should go to at least thirteen places.

§13.] It should be noticed that a method like the above is
suitable when only solitary logarithms are required. If a com-
plete table were required, the Method of Differences would be
employed to find the great majority of the numbers to be entered.



§§ 12-14 FIRST DIFFERENCE OF LOG % 245

A full discussion of this method would be out of place here*;
but we may, before leaving this part of the subject, give an
analytical view of the method of interpolation by First Differ-
ences, already discussed graphically in chap. xx1.

We have

logy, (@ + h) —logy @ =logy, (1 + k/x)
=M{hjz-% (/2 + 5 (Rjzy—. . .} ().
Hence, if A<z, we have approximately
logye (# + %) —logy z = Mhjz (2),

the error being less than $M (/)%

The equation (2) shows that, if $M (k/x)* do not affect the
nth place of decimals, then, so long as A3 £, the differences of
the values of the function are proportional to the differences of
the values of the argument, provided we do not tabulate beyond
the nth place of decimals.

Take, for example, the table sampled in chap. xx1., where the numbers
are entered to five and the logarithms to seven places. Suppose z=30000;

and let us inquire within what limits it would certainly be safe to apply the
rule of proportional parts. We must have

4 x -4343 (h/30000)2 < 5/108,
if the interpolated logarithm is to be correct to the last figure, that is,
h<3,/2304,
<14,

It would therefore certainly be safe to apply the rule and interpolate to
seven places the logarithms of all numbers lying between 30000 and 30014,
This agrees with the fact that in the table the tabular difference has the
constant value 144 within, and indeed beyond, the limits mentioned.

SUMMATION OF SERIES BY MEANS OF THE LOGARITHMIC
SERIES.

§14.] A great variety of series may, of course, be summed
by means of the Logarithmic Series. Of the simple power series
that can be so summed many are included directly or indirectly
under the following theorem, which stands in the same relation

* For sources of information, see Glaisher, l.c.
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to the logarithmic theorem as do the theorems of chap. xxvir, §5,
and chap. xxviL, §8, to the binomial and exponential theorems:—

The series whose general term is ¢ (n)z"/(n+a)(n+b) . . .
(n + k), where ¢ (n) is an integral function of n, and a, b, . . .,
k are positive or negative® unequal integers, can dlways be
summed to infinity provided the series is comvergent.

It can easily be shown that the series is convergent provided
2 be numerically less than unity, and divergent if # be
numerically greater than unity.

If the degree of ¢ (n) be greater than the degree of (n + @)
(n+b) . .. (n+k), the general term can be split into

y@m)az"+xm)a/(n +a)y(n+bd) ... (n+k) (1),

where ¢ () and x (1) are integral functions of 7, the degree of
the latter being less than the degree of (n+a)(n+d). .. (n+k).
Now 3y (n) 2™ is an integro-geometric series, and can be
summed by the method of chap. xx., §13.
By the method of Partial Fractions (chap. vir) we can
express x (n)/(n +a)(n+b) . .. (n+ k) in the form

Aln+a)+ Bl(n+b)+. ..+ K/(n+k),

where A, B,. . ., K are independent of ». Hence the second
part of (1) can be split up into

Az"/(n + @)+ Ba/(n+b)+. . .+ Ka"/(n+ k) (2);
and we have merely to sum the series
A32(n+a), B3a"/(n+b), ..., K32"(n+k) (8).

Now, supposing, for simplicity of illustration, that the sum-
mation extends from n =1 to n= o, we have

A %ﬂ/(n +a)= Ax‘“%x"*‘”/(n +a),
=—Az*{@/l1+2%2+. ... +2%a+log(1-x)} (4).

Each of the other series (3) may be summed in like manner.
Hence the summation can be completely effected.

* When any of the integers a, b, . . ., k are negative, the method
requires the evaluation of limits in certain cases.
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If # =1, the series under consideration will not be convergent
unless the degree of ¢ (n) be less than the degree of (n+a)

(n+b) ... @m+k). It will be absolutely convergent if the
degree of ¢ (r) be less than that of (n +a)(n+b) . . . (n+Fk) by
two units. If the degree of ¢ (n) be less than that of (n+a)
(n+b) ... (n+k) by only one unit, then the series is semi-

convergent if the terms ultimately alternate in sign, and divergent
if they have ultimately all the same sign.

In all cases, however, where the series is convergent we can,
by Abel’s Theorem, find the sum for #=1 by first summing for
#<1, and then taking the limit of this sum when z=1.

In the special case where ¢ (n) is lower in degree by two
units than (n+a)(n+d) . .. (n+k), and @, b,. . ., k are all
positive, an elegant general form can be given for §¢ (n)/(n + @)

1
(m+d) ... (n+k).

From the identity

d()/(n+a)(n+b) ... (n+k)

=A/n+a)+Bln+b)+. . .+ K[/(n+k),
we have

dm)=An+b)(n+c) ... (n+k)+Bn+a)(n+c) ... (n+k)
...+ Kmn+a)n+b) ... (n+j) (5),
and, bearing in mind the degree of ¢ (n), we have
A+B+...+K=0 (6).
Also, putting in succession n=-a, n=—-5, . .., n=-F, we
have
A=¢(-a)(b-a)(c—a) . . . (k—a)]
B=¢(-b)/(a—b)(c-b) ... (k-b)

K=¢(-B)a—k) G-k ... -k
Reverting to the general result, we see from (4) that
§¢o () 2*/(n+a)(n+b) ... (n+k)
=—SAx(z/l+a*2+. . .+a%a)—log(1-2). 342" (8),

where the 3 on the right hand indicates summation with respect
toa, b, ...,k

().
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Now, since A+B+...+K =0, S42® is an algebraical
function of z which vanishes when 2 =1. Also 1-z is an
algebraical function of # having the same property. Therefore,
by chap. xxv., § 17, we have

;L1 log(1-2).3 40 %= zL1 log {(1 — &)34=™},
=log 1,
=0.
Hence, taking the limit on both sides of (8), we have, by Abel’s
Theorem,
%¢00Kn+aﬂn+b)...(n+k):—EA(Ul+lﬂ4n .+ 1a),

= d(—a)(1/1+1/2+. . . +1/a)
=-3 b-a)(c—a). .. (c—/c)ﬁf (9),

the = on the right denoting summation with respect to
a, b c ... k

Example 1. Evaluate En%"/(n -1) (n+2).
2

We have ndz7/(n—1)(n+2)=(n-1) 2"+ fa"/(n - 1)+ §2*/(n+2).

Now Sn-1)zn=1a2+223+ 324 +. . .,
2

(1 —x)“’g(n— 1) zn=122+4223+ 324 +. . .
2

-2, 123 -2.2z4—, . .
+lzt4. ..,
=2,
Hence Z(n-1)ar=gx2(1-x)%
2
Also 3 Ex"/(n -1)=4zZzn(n - 1),
2 2

= -jazlog(l-2);
$ ;)m"/(n +2)=§z~2 Ez’“‘?/(‘n +2),
2 2

= - 822 {w/l+ 2?2+ 23/3 +log (1 -x)}.
Hence the whole sum is

22(1-2)2-fa -4 - o -} (z+822%log (1 -2).
Example 2. Evaluate 21/(n-1) (n+2).
2
By the same process as before, we find

Sarj(n-1) (n+2) =41+ 4+ 4z + (22— 2) log (1~ 2).
2
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Now, since L (l—x)fﬂ—zzl {chap. xxv., § 17), L (z2-1x)log (1 -=z)=0.
x=1 x=1
Therefore uZil/(n— 1) (n+2)=%+1+3=1
This result might be obtained in quite another way.
It happens that =1/(n—1) (n+2) can be summed to n terms. In fact,
we have

1(n-1) (n+2)=3{1/(n - 1) - 1/(n+2)}.

Hence, since the series is now finite and commutation of terms therefore
permissible,

n 1 1 1 1 1 1 1
S2Um-N) (+2)=7+5+5+. - T g3 et r1
1 i1 1 1
1 Tisi ns3 a—3 n-i
1 1 1
TaTadl a2
1111 1 1
=+

Hence, taking the limit for n=cw , we have

g_1¢1,1 1\ 11
=3\1t3%3)" 18"

To sum the series

ek b (Bel-D) s (bri-t "

itz 3) \5t7 1) \gtim—5)t 24>
(Lionnet, Nouv. Ann., ser. 1., t. 18.)

Let the (n+1)th term be u,, then, since u,, =0, association is permitted
(see chapter xxvr., § 7), and we may write

Example 3.

w = 1 + 1 _ 1
" 4n+l " 4n+3  2n+42°
1 1 1 1 1 1
Eém_4n+2+4n+3_4n+4+4n+2_4n+4’
1 1 1 1 1 1 1
= (4n+1 T2t s s _417,+4) *3 <2n+1 - 2n+2>’
= v, +w,, say.

Now, as may be easily verified, v, and w, are rational functions of =, in
which the denominator is higher in degree than the numerator by two units
at least. Hence (chap. xxvr, § 6) Zv, and Zw, are absolutely convergent

series. Therefore (chap. xxvr., § 13)
Zu,=2 (vn + wn)v
0 0
=2v,+ Zw,.
0 0
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Hence, again dissociating v, and w, (as is evidently permissible) we have

u—l 11,1111
+345678

flfp i1 1111
a\""gts atset7 st

=log,2+}log, 2, by § 9 above,
=3log,2.

This example is an interesting specimen of the somewhat delicate opera-
tion of evaluating a semi-convergent series. The process may be deseribed
as consisting in tHe conversion of the semi-convergent into one or more
absolutely convergent series, whose terms can be commutated with safety.
It should be observed that the terms in the given series are merely those of
the series 1-1/2+1/3-1/4+1/5—- . . . written in a different order. We
have thus a striking instance of the truth of Abel’s remark that the sum of
a semi-convergent series may be altered by commutating its terms.

+...

APPLICATIONS TO INEQUALITY AND LIMIT THEOREMS.

§ 15.] The Exponential and Logarithmic Series may be
applied with effect in establishing theorems regarding inequality.
Thus, for example, the reader will find it a good exercise to
deduce from the logarithmic expansion the theorem, already
proved in chapter xxv., that, if # be positive, then

z—1>logz>1-1/z 1).

It will also be found that the use of the three funda-
mental series—Binomial, Exponential, and Logarithmic—greatly
facilitates the evaluation of limits. Both these remarks will be
best brought home to the reader by means of examples.

Example 1. Show that
1 n+ 1

1
m-— 1 71+m+1+m+2
If we put 1-1/x=1/m, that,is, z=m[(m - 1), in the second part of (1) above,
and then replace m by m+1, m+2, . . ., n successively, we get

log

log m —log (m —1)>1/m,
log(m+1) 10gm>1/(m+1),

logn log (n 1) >1/n
Hence, by addition,

logn-log(m-1)>1/m+1/(m+1)+ .. .+1/n (2).



§15 LIMIT THEOREMS, EXERCISES XIII 251

Next, if we put # - 1=1/m in the first part of (1), and proceed as before,
we get
log (m+1) —log m<1[m,

]og (m + 2) -log (m+ 1) < 1/(m+ 1),
log (n+1) - logn<l/n
Hence
log (n+1)-logm<1/m+1fm+1)+. .. +1/n (3).
From (2) and (3),
log {n/(m~-1)} >1/m+1/(m+1)+ . . . +1/n>log{(n+1)/m}.
Example 2. If p and q be constant integers, show that
L {1fm+1/(m+1)+ . . . +1/(pm+q)}=logp.
" (Catalan, Traité Elémentaire des Séries, p. 58.)
Put n=pm + q in last example, and we find that
log{(pm+q)/(m-1)} >1/m+1/(m+1)+ -+1/(pm+q)>log{(pm +q+1)/m}.
Now L log{ (pm+q)/(m -1)} =logp,

and L log {(pm+q+1)/m} =log p.
m=ow
Hence the theorem.

Example 3. Evaluate L (¢* - 1)?/ {x —log (1 +z)} when z=0.
Since (€=~ 1)2=(z +322+ .. 2= (1+de+ .. L)%
z-log(l+z)=%a%-32%+...=322(1-%2+...)
Therefore
(e*-12{z-log(1+=)}=2(1+3z+.. . )% (l-Fz+...)
Since the series with the brackets are both convergent, it follows at once
that L(e*-1)/{z -log(l+z)} =2,

Exercisgs XIII.

(1) If P=1/31+1/3.313+1/5,315+. . .,
Q=1/49+1/3.493+1/5.49%+. . .,
R=1/161+1/3.1613+1/5.1615+ . . .,

then log2=2(7P+5Q+3R),
log3=2(11P+8Q +5R),
log 5=2(16P +12Q +7R).
(See Glaisher, Art. ¢ Logarithms,” Ency. Brit., 9th ed.)

(2.) If a=-log(1-1/10), b= -log(1-4/100), c=log (1+1/80), d=

—log (1 - 2/100), e =1og (1+8/1000), then lo:2="Ta - 2b+3c, log3=11la-3d
+5¢, log5=16a—4b+7c, log T=3%(39a - 10b+17¢c —d)=19a — 4D +8c +e.
(Prof. J. C. Adams, Proc. R.S.L. ; 1878.)

(8.) Calculate the logarithms of 2, 3, 5, 7 to ten places, by means of the
formule of Example 1, or of Example 2.

(4.) Find the smallest integral value of x for which (1:01)*> 10z.
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Sum the series : —
(5.) 2Y1(«® - 3z)! + 23/3 (2 - 3z)°

() 1+(%+%>1+<1 5) < 7>4J

(7.) «Y1.2-2%2.3+2%8.4-. . .(-)1an(n+1). .
(8.) z¥3+a4/15+. . . +a%/(4n? - )+ e
9.) w/12+:c2/(1'2+22)+:::3/ (12422438 +. ..+ 2(124+ 22+, . .+ +.. .3

also 1/12+4+1/(12+2%)+1/(12+22+8%) +. . .+1/(12+22+. . .+n)+ ...
(10.) 4/1.2.3+6/2.3.4+8/3.4.5+. ..

(11.) If x>100, then, to seven places of decimals at least, log (z+8)=
2 log (z + 7) — log (z+5) - log (z + 3) + 2 log = —log (z - 3) - log (x - 5) + 2 log
(z-17)-log (z - 8).
(12.) Expand log (1+ z+2?) in ascending powers of x.
(13.) From log (z3+1)=log (x+1)+log (z%~ x+1), show that, if m be a
positive integer, then
6m -2 + (6m ~3) (6m —4)  (6m —4) (6m—5) (6m— 6)

! 2! 3! 41

.=0.
(Math. Trip., 1882.)

(14) {log, (1 +2)}?=22%2-2(1/L+1/2)a%3+. . . (-)*2{L/L+1/2+...

1/(n-1)}z*n . . . Does this formula hold when z=1?
(15.) log (1+z)'el—2= — Q2?1 - Quzi/2—. . . — Qgpy2™n~. . .;
where Qon=1/1-1/2+1/3—. . . +1/2n-1).

(16.) If z<1, show that
o +32%+ Fat + 152’8, . =10g{1/(1 - 2)} - 4P — P+ 4P — 1Py — §Pg+ T5Prg- -5
where P, ="+ 22 + x4 + o874 2187 + . . ., and the general term is (- ) P,/n,
unless 7 is a power of 2, in which case there is no term.

(Trin. Coll., Camb., 1878.)

(17.) It e“’xe’%x s =dg+Az+. .., then 45, =Apy;=1.8.5.
(2r-1)/2.4.6.

(18.) If x+a3w3+a5w5 Ay +agagy . . ={(e+y)/(L-ay)} +
az {(z+y)/(1- xy)}3+a5{(z+y)l L-zy)}o+ .. for all values of z and y
which render the various series convergent, ﬁnd as, ag, . . .

Show that

(19.) log(4/e)=1/1.2-1/2.83+1/8.4-1/4.5+. ..

(20.) log2=4(1/1.2.83+1/5.6.7+1/9.10.11+1/18.14.15+...) (Euler.)

(21.) (1-1/2-1/4)+(1/3--1/6-1/8)+(1/5-1/10-1/12)+. . .=4%log2.

(See Lionnet, Nouv. 4nn., ser. 11., t. 18.)

(22.) o/l —noy/2!+n(n—1)oyf8! - . . . to n+1 terms =1/(n+1)? where
o,=1/1+1/2+1/3+. . . +1/r. (Math. Trip., 1888.)

(28.) e~(1+1/m)™ lies between e¢/(2m+1) and e/(2m+2), whatever m
may be. (Nouv. 4nn., ser. 1L, t. 11.)

(24.) L{z/(x-1)-1[logz} =3, when z=1. (Euler, Inst. Calc. Diff.)

(25.) L{e*—1=log(l+x)}/z®=1, when z=0. (Euler, Lc.)

(26.) L (z*-z)/(1-z+logz)= -2, when z=1. (Euler, lLc.)
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(27.) LA+l 1+2/n)r. . . (14+n/n)t=4le, when n=o.

(28.) L{(2n-1)!/n?~1}1in=4/e?, when n=co.

(29.) e*>1+uz, for all real values of z.

(30.) z-1>logz>1-1/x, for all positive values of z; to be deduced
from the logarithmic expansion.

(31.) e*>(L+mn)*/n!, n being any integer.

(32.) If nbe an integer >e, then n"H>(n41)n

(88.) If 4, B, a, b be all positive, then (a-0D)/(4 - B) + (4a - BD)
log (B/4)/(4 — B)? is negative. (Tait.)

(84.) If z>y=>a, then {(z+a)/(z - a)}*<{(y +a)/(y - a)}".

(85.) L{1l/(n+1)+1/(n+2)+...4+1/2n}=log2, when n=0w. (Catalan.)

(86.) log{(n+3)/(m-3)}>1m+1/(m+1)+. . .+1/n>log{(n+1)/m}.

(Bourguet, Nouv. Ann., ser. 11, t. 18.)
(87.) log8=5/1.2.3+14/4.5.6+. . .+ (9n—-4)/(3n-2) (3n—1)3n+. . .

(38.) If E(-—)"‘1¢(n)/(n+a) (n+d). .. (n+k), where a, b, . . ., k are
1

all positive integers and ¢(n) is an integral function of n, be absolutely
convergent, its sum is
S= . bZ . ¢(-a){lja-1/(a-1). .. (=) 111}/(b-a)(c-a). . . (k-a);
and, if it be semi-convergent, its sum is
S+log2 = (-)*¢(-a)/b-a)(c—-a)...(k-a).
by ..k
(89.) Show that the residue in the expansion of log{l/(1-x)} lies
between
{1+ (n+1)z[/(n+2)}/(n+1)
and {1+ (n+1)z[(1-2)(n+2)}/(n+1).
(40.) In a table of Briggian Logarithms the numbers are entered to
5 significant figures, and the mantisse of the logarithms to 7 figures.
Calculate the tabular difference of the logarithms when the number is near
30000 ; and find through what extent of the table it will remain constant.
(41.) Show that (1+1/z)**} continually decreases as x increases.

(42.) Show that Z1/n (4n2—1)2=3 — 2log 2.
1



CHAPTER XXIX.

Summation of the Fundamental Power Series for
Complex Values of the Variable.

GENERALISATION OF THE ELEMENTARY TRANSCENDENTAL
FUNCTIONS.

§ 1.] One of the objects of the present chapter is to generalise
certain expansion theorems established in the two chapters which
precede. In doing this, we are led to extend the definitions of
certain functions such as o?, log, #, cos 2, &c., already introduced,
but hitherto defined only for real values of the variable 2 ; and
to introduce certain new functions analogous to the circular
functions.

Seeing that the circular functions play an important part in
what follows, it will be convenient here to recapitulate their
leading properties. This is the more necessary, because it is
not uncommon in English elementary courses so to define and
discuss these functions that their general functional character is
lost or greatly obscured.

§2.] Definition and Properties of the Direct Circular Functions.
Taking, as in chap. x11., Fig. 1, a system of rectangular axes, we
can represent any real algebraical quantity 6, by causing a radius
vector OP of length r to rotate from OX through an angle con-
taining 6 radians, counter-clockwise if 6 be a positive, clockwise
if it be a negative quantity. If (2, ) be the algebraical values of
the coordinates of P, any point on the radius vector of 6, then
zfr, y/r, y/z, xly, r/z, r[y are obviously all functions of 6, and
of 6 alone. The functions thus geometrically defined are called
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cos 8, sin 6, tan 6, cot 6, sec 6, cosec 6 respectively, and are spoken
of collectively as the circular functions.

All the circular functions of one and the same argument, 6,
are algebraically expressible in terms of one another, for their
definition leads immediately to the equations

tan 6 = sin 6/cos 0, cot 6 =cosf/sind;
sec 6 =1/cos8, cosecd=1/sinb; (1);
cos®f+sin*0=1, sec’d—tan’6=1;

from which it is easy to deduce an expression for any one of the
six, cos 6, sin 6, tan 6, cot 6, sec 6, cosec 0, in terms of any other.

When F(6) is such a function of 8 that F'(—6)= F(6), it is
said to be an even function of 6; and, when it is such that
F(—0)=-F(0), it is said to be an odd function of 6. For
example, 1 + 6% is an even, and 6 —16° is an odd function of 6.

It is easily seen from the definition of the circular functions
that cos 6 and sec @ are even, and sin 6, tan 6, cot 6, and cosec 8
odd functions of 6.

When F(6) is such that for all values of 6, F'(6 + n))=F(0),
where X is constant, and » any integer positive or negative, then
F(6) is said to be a periodic function of 6 having the period A.

It is obvious that the graph of such a function would consist
of a number of parallel strips identical with one another, like the
sections of a wall paper; so that, if we knew a portion of the
graph corresponding to all values of 6 between a and a + X, we
could get all the rest by simply placing side by side with this an
infinite number of repetitions of the same.

Since the addition of + 27 to 8 corresponds to the addition
or subtraction of a whole revolution to or from the rotation of
the radius vector, it is obvious that all the circular functions are
periodic and have the period 2x. This is the smallest period,
that is, ¢ke period par exzcellence, in the case of cos 6, sin 6, sec 6,
cosec 8. It is easily seen, by studying the defining diagram, that
tan 0 and cot 6 have the smaller period =. Thus we have
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cos (6 + 2nm) = cos 0, sin (0 + 2n7) =sin 6,
sec (0 + 2nm) =sec, cosec (6 + 2nw) = cosec 6, (2).
tan (6 + nr) = tan 6, cot (0 + nw) =cot 6.

Besides these relations for whole periods, we have also the
following for half and quarter periods:—

cos(m+0) =—cosf, sin(r+6) =Fsind;

cos(3m+6)=Fsinf, sin(yw+6)=+cosb; (3)

tan (7 + 6) =Fcot 6, cot (37 +6)=TFtané; '
&e.,

all easily deducible from the definition.

We have the following table of zero, infinite, and turning
values :—

) 0 imr T 3 2r &e.
cosf | +1 0 |—1 0 | +1
smé| O | +1| O [—=11]| 0
tanf | O ® 0 ® 0 | &ec. f (4),
cot6 | 0 © 0 ®
secd | +1 | o | —1 o | +1
cosecl | o | +1| o | —1] o

which might of course be continued forwards and backwards
by adding and subtracting whole periods.

Hence cos 6 has an infinite number of zero values correspond-
ing to 6 =%(2n+ 1) =, where # is any positive or negative integer;
no infinite values; an infinite number of maxima and of minima
values corresponding to 6=2n7 and 6= (2n + 1) = respectively ;
and is susceptible of all real algebraical values lying between
-1 and + 1.

Sin 6 is of like character.

But tan 6 is of quite a different character. It has an infinite
number of zero values corresponding to 6 =nw; an infinite
number of infinite values corresponding to 6=4(2n+1)7; no
turning values; and is susceptible of all real algebraical values
between — o and + .

Cot 6 is of like character.
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Sec 6 and cosec & have again a distinct character. Each of
them has infinite and turning values, and is susceptible of all
real algebraical values not lying between —1 and +1. The
graphs of the functions y=sina, y=cosx, &c., are given in
Fig. 1. The curves lying wholly between the parallels KL,
K'L, belong to cos # and sin 2, the cosine graph being dotted ;
all that lies wholly outside the parallels KL, K'L’, belongs either
to sec & or to cosec , the graph of the former being dotted. The
curves that lie partly between and partly outside the parallels
KL, K'L', belong either to tan# or to cot#, the graph of the
latter being dotted. '

Again, from the geometrical definition combined with
elementary considerations regarding orthogonal projection are
deduced the following Addition Formule :—

sin (6 + ¢) = sin 6 cos ¢ + cos 0 sin ¢ ;

cos (0 +¢)=cosfcosd Fsinfsing; }
(5)
tan (6 + ¢) = (tan 0 + tan ¢)/(1 F tan 6 tan ¢).

As consequences of these, we have the following :—

cos 0+ cos p=2cos }(0+ ¢) cos £(6 — ) ;
cos ¢ —cos 0= 2sin (0 + ¢)sin $(6—¢); } (6)
sinf+singp=2sin%(0 +¢)cos3(0 F ).

cos 0 cos ¢ = $cos (0 + @) + Lcos (60— ) ;
sin 6 sin ¢ = 4cos (6 — ¢) — $cos (0+¢);I> (7
sin 6 cos ¢ = 4sin (6 + ¢) + sin (6 — ¢).

cos 20 =cos? 6 —sin?0 =2 cos?’f —1=1—2sin%0

= (1 —tan?®6)/(1 + tan®9).
sin 20 =2 sin 6 cos 6 = 2 tan 6/(1 + tan®6). f
tan 20 = 2 tan 6/(1 — tan?6). s

(8).

§8.] Inverse Circular Functions. When, for a continuum
(continuous stretch) of values of y, denoted by (y), we have a

relation
z=F(y) (1),
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which enables us to calculate a single value of 2 for each value
of y, and the resulting values of # form a continuum (2), then
the graph of F'(y) is continuous; and we can use it either to
find # when y is given, or ¥ when # is given. We thus see that
(1) not only determines @ as a continuous function of %, but also
y as a continuous function of #. The two functions are said to
be inverse to each other; and it is usual to denote the latter
function by F-'(x). So that the equation

y=F"(2) @)

is identically equivalent to (1).

It must be noticed, however, that, although F-*(z) is con-
tinuous, it will not in general be single-valued, unless the values
in the continuum (2) do not recur. This condition, as the
student is already aware, is not fulfilled even in some of the
simplest cases. Thus, for example, if =17 for —w <y< + o,
the continuum (2) is given by 02 <+ ; and each value of 2
occurs twice over. We have, in fact, y =+a%; that is, the
inverse function is two-valued.

It is also important to notice that, even when the direct
function, F'(y), is completely defined for all real values of v, the
inverse function, /'~* (), may not be completely defined for all
values of . F~'(2) is, in fact, defined by (1) solely for the
values in the continuum (z). Take, for example, the relation
z=9* for —w<y< +oo. The continuum (z) is given by
Oba<+oo; hence y is defined, by the above relation, as a
function of # for values of # between 0 and + oo and for no
others.

The application of the above ideas to the circular functions
leads to some important remarks. It is obvious from the
geometrical definition of siny that the equation

z=siny 3)

completely defines # as a single-valued continuous function of
y, for —w <y<+ . Hence, we may write

y=sin"'z (4),
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where the inverse function, sin~'2*, is continuous, but neither
single-valued, nor completely defined for all real values of .
Since, by the properties of sin g, z lies

N between —1 and +1 for all real values
C\\ of y, sin”'z is, in fact, defined by (8)

/ only for values of # lying between —1
P, and +1. For other values of z the
. meaning of sin~' z is at present arbitrary.

By looking graphically at the problem
“to determine y for any value of # lying
between —1 and +1,” we see at once
that sin*z is multiple-valued to an

. infinite extent.

.
\§

> /
HRay

0 X If, however, we confine ourselves to

A values of sin-'# lying between — 2= and

\ +1m, we see at once from the graph
NP (Fig. 2) that for any value of z lying

5 1 between —1 and +1 there is one, and

// only one, value of sin~'z. If we draw

i parallels to the axis of # through the

Fie. 2. points A4, B, C, ..., A, B, ...,

whose ordinates are + 4w, +§m, + S, . ., 1w, —3m, . . ., then

between every pair of consecutive parallels we find, for a given
value of 2 (— 132+ 1), one, and only one, value of y =sin' .

The values of » corresponding to points between the parallels
A’ and A constitute what we may call the Principal Branch of
the function. Similarly, the part of the graph between 4 and B
represents the 1st positive branch; the part between B and C
the 2nd positive branch; the part between A’ and B’ the 1st
negative branch; and so on.

If, as is usual, we understand the symbol sin~'2 to give the
value of ¥ corresponding to , for the principal branch only, and
use ¥, or ,sin~' 2 for the nth branch, then it is easy to see that

Yn=nsin'@=n7+(—1)"sin"' (5),

* This may be read “angle whose sine is z” or ‘“arc-sinez.” In
Continental works the latter name is contracted into arc-sin« ; and this is
used instead of sin~!x.
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where 7 is a positive or negative integer according as the branch
in question is positive or negative.

It is obviously to some extent arbitrary what portion of the
graph shall be marked off as corresponding to the principal
branch of the function; in other words, what part of the function
shall be called the principal branch. But it is clearly necessary,
if we are to avoid ambiguity—and this is the sole object of the
present procedure—that no value of y should recur within the
part selected ; and, to secure completeness, all the ditferent values
of y should, if possible, be represented. Attending to these con-
siderations, and drawing the corresponding figures, the reader
will easily understand the reasons for the following conventions
regarding cos™'z, tan~'z, cot™'z, sec™'a, cosec~'z, wherein ¥
and the inverse functional symbols cos™z, &c., relate to the
principal branch only, and g, to the nth branch, positive or
negative.

y =cos'z, y between 0 and + = ;

o=+ 3+ (=) m+ (=) cos™ . } (®)
y =tan"'z, y between — 17 and + 17 } )
Yy =0 + tan~' .
y =cot™'a, y between 0 and = ; } (8)
Yy = 0T + cot~! 2.
y =secla, y between 0 and = ; } )
Yo=@+ 5+ (=) 7+ (=) sec” 2.
y =cosec @, ¥ between —iw and +31m;

° Lo
Yn =nm+ (— )" cosec™ z.

Since every function must, in practice, be unambiguously
defined, it is necessary, in any particular case, to specify what
branch of an inverse function is in question. If nothing is
specified, it is understood that the principal branch alone is in
question.

It is obvious that all the formule relating to direct circular
functions could be translated into the notation of inverse circular
functions. In this translation, however, close attention must be
paid to the points just discussed. Thus
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If # be positive, the formula cos 6 = +,/(1 — sin® §) becomes
sinT'@ = cos™! /(1 —2%);
but, if # be negative, it becomes
sin~'2 = — cos™! /(1 — 2?).
If 0<2<1/J/2, 0<y<1/J2, we deduce from the addition
formule for the direct functions
sin“'z+sin'y=cos [ J{(1 - 2*) (1 - ?)} — xy] ;
ifo<a<l, 0<y<l,
tan~'z + tan~'y =tan' [(z + 9)/(1 — 2y)].
If 2 and y be both positive, but such that zy>1, then
tan"'z +tan~ly == + tan! [(z + y)/(1 —2y)] *;
and, in general, it is easy to show that
ntan 'z +,tan"'y = (m+n+p) v + tan~! {(z + y)/(1 — ay)},
= mansp tanH{(@ +y)/(1 —a2y)} (1),
where p=1, 0, or — 1, according as tan~'z + tan'y is greater
than 1w, lies between 3= and — 1w, or is less than —1m.

ON THE INVERSION OF w = 2"

§ 4.] When the argument, and, consequently, in general,
the value of the function are not restricted to be real, the
discussion of the inverse function becomes more complicated,
but the fundamental notions are the same.

For the present it will be sufficient to confine ourselves to
the case of a binomial algebraical equation. Let us first consider
the case

w=2" 1),
where n is a positive integer, z is a complex number, say
z=x +yi, and, consequently, w also in general a complex
number, say w = u + vi.

To attain absolute clearness in our discussion it will be

* In English Text-Books equations of this kind are often loosely
stated ; and the result has been some confusion in the higher branches
of mathematics, such as the integral calculus, where these inverse functions
play an important part.
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necessary to pursue a little farther the graphical method of
chap. xv., § 17.

It follows from what has there been laid down, and from the
fact that any integral function of 2 and y is continuous for all
finite values of # and g, that, if we form two Argand Diagrams,
one for z +yi (the z-plane), and one for u + vi (the w-plane), then,
whenever the graphic point of 2* describes a continuous curve, the
graphie point of w also describes a continuous curve. In this sense,
therefore, the equation (1) defines w as a continuous function of
z for all values, real or complex, of the latter. For simplicity in
what follows we shall suppose the curve described by z to be the
whole or part of a circle described about the origin of the z-plane.
We shall also represent z by the standard form r(cos 6 -7 sin 6),
and w by the standard form s(cos ¢+ ¢sin ¢) ; but we shall, con-
trary to the practice followed in chap. xi1., allow the amplitudes
6 and ¢ to assume negative values. Thus, for example, if we
wish to give 2z all values corresponding to a given modulus 7,
without repetition of the same value, we shall, in general, cause
6 to vary continuously from — = to + =, and not from 0 to 2,
as heretofore. In either way we get a complete single revolution
of the graphic radius ; and it happens that the plan now adopted
is more convenient for our present purpose.

It is obvious that by varying the amplitude in this way, and
then giving all different values to r from 0 to + oo, we shall get
every possible complex value of z, once over; and thus effect a
complete exploration of any one-valued function of z.

Substituting in (1) the standard forms for w and 2z, and
taking, for simplicity, n» =3, we have

s(cos ¢ +isin¢) = r*(cos 6 + 2 sin 6)°
=73 (cos 36 + ¢ sin 36) (2)
by Demoivre’s Theorem. Hence we deduce

s=7, ¢=230+2nmT;

* For shortness, in future, instead of *graphic point of z” we shall say
“2” simply.
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or, if (as will be sufficient for our purpose) we confine ourselves
to a single complete revolution of the graphic radius of 2,
s=7r%, ¢$=30 (3).

If, therefore, we give to r any particular value, s has the
fixed value #°; that is to say, w describes a circle about the
origin of the w-plane (Fig. 4). Also, if we suppose z to describe
its circle (Fig. 8) with uniform velocity, since ¢ =36, w will
describe the corresponding circle with a uniform velocity three
times as great. To one complete revolution of z will therefore

Y

(=)
o

Fic. 3. Fie. 4.

correspond three complete revolutions of w. In other words, the
values in the (w)-continuum which correspond to those in the
(2)-continuum are each repeated three times over*.

Tne actual course of w is the circle cf radius »* taken
three times over. We may represent this multiple course
of w by drawing round its actual circular course the spiral
0,1, 1,0 1,1, 0, which re-enters into itself at 0' and 0’
The actual course may then be imagined to be what this spiral
becomes when it is shrunk tight upon the circle.

* To indicate this peculiarity of w we shall occasionally use the term
‘‘Repeating Function.” A repeating function need not, however, be periodic
as w=27>is.
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If we now letter the corresponding points on the z-circle with
the same symbols we have the circle 0'I1" in the w-plane, cor-
responding to the circular arc 0'I1’ in the z-plane, and so on, in
this sense that, when 2 describes the arc 0'11', then w describes
the complete circle 0’11, and so on.

It follows from this graphical discussion that the equation
w = 2°, which defines w as a one-valued continuous function of z
Jor all values of z, defines z as a three-valued continuous function
of w for all values of w.

In other words, since, in accordance with a notation already
defined, (1) may be written

z=yw (1,)7
we have shown that the cube root of w is a three-valued continuous
Junction of w for all values of .,y

It is obvious that there is nothing in the above reasoning
peculiar to the case n =3, except the fact that we have a triple
spiral in the w-plane, and a trisected circumference in the z-plane.
Hence, if we consider the equation

w=2" (),
and its equivalent inverse form
z=w 4),

all the alteration necessary is to replace the triple by an n-ple
spiral, returning into itself on the negative or positive part of
the u-axis, according as # is odd or even; and the trisected
circumference by a circumference divided into n equal parts.

Thus we see that the equation (4), whick defines w as a
continuous one-valued jfunction of z for all values of 2z, defines z
(that is, the nth root of w) as a continuous n-valued function of w
Jor all values of w.

§ 5.] Riemann’s Surface. It may be useful for those who are to pursue
their mathematical studies beyond the elements, to illustrate, by means of
the simple case w=23, a beautiful method for representing the continuous
variation of a repeating function which was devised by the German mathema-
tician Riemann, who ranks, along with Cauchy, as a founder of that branch
of modern algebra whose fundamental conceptions we are now explaining.
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Instead of supposing all the spires of the w-path in Fig. 4 to lie in one
plane, we may conceive each complete spire to lie in a separate plaue super-
posed on the w-plane. Instead of the single w-plane, we have thus three

separate planes, P, P, P,, superposed upon each other. To secure continuity
between the planes, each of them is supposed to be slit along the w-axis from
0 to — o ; and the three joined together, so that the upper edge of the slit in
P, is joined to the lower edge of the slit in P, ; the lower edge of the slit in
P, to the upper edge of the slit in P, ; the lower edge of the slit in P, to the
upper edge of the slit in P,, this last junction taking place across the two
intervening, now continuous, leaves. We have thus clothed the whole of the
w-plane with a three-leaved continuous flat helicoidal * surface, any continu-
ous path on which must, if it circulates about the origin at all, do so three
times before it can return into itself. This surface is called a Riemann’s
Surface. The origin, about which the surface winds three times before
returning into itself, is called a Winding Point, or Branch Point, of the
Third Order. Upon this three-leaved surface w will describe a continuous
single path corresponding to any continuous single path of z, provided we
suppose that there is no continuity between the leaves except at the junctions
above described.

§ 6.] If we confine 6 to that part 101’ of its circle which
is bisected by OX, and ¢ to the corresponding spire 1°01" of its
path, so that ¢ lies between —m and + =, and 6 between —m/n
and + w/n, then z becomes a one-valued function of w for all
values of w. We call this the principal branch of the n-valued
function »/w; and, as we have the distinet notation %"" at our
disposal, we may restrict it to denote this particular branch of
the function 2. In other words, if

w=s(cos P +ising), —r<P<+m,
we define w"" by the equation
w'™ =g (cos. p/n +isin. ¢/n);
and we also restrict (cos ¢ + ¢ sin ¢)"" to mean cos . ¢/n + < sin . ¢/n.

Just as in § 4, we take the next spire after 101 in the
positive direction (counter-clock) to represent the first positive
branch of %/w; the next in the negative direction to represent the
first negative branch of 2/w; and so on, the last positive and the
last negative being full spires, or only half spires, according as »
is odd or even.

If, as is usual, we represent the actual analytical value of w

* Like a spiral staircase.
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by the form s(cos ¢ + isin ¢), where ¢ is always taken between
—m and + , then it is easy to find expressions for the values of 2,
belonging to the »— 1 positive and negative branches of Z/w and
corresponding to any given value of w, in terms of the value
belonging to the principal branch. We have, obviously, merely
to add or subtract multiples of 27 to represent the successive
positive and negative whole revolutions of the graphic radius of
w. Thus, if 2, 2, z_, relate to the principal, ¢th positive, and
tth negative branches of z = %/w respectively, we have

z=8""{cos. ¢/n +17sin. ¢/n};
zy=8"{cos. (¢ + 2¢m)/n+isin. (¢ + 2tw)/n}; (5).
z_y=8"{cos . (¢ — 2¢m)/n + i sin. (¢ — 2¢w)/n}.

We have thus been led back by a purely graphical process to
results equivalent to those already found in chap. xi1., § 18.

Cor. 1. Hence, if z denote the principal value of the nth root
of w, and w,=cos. 2m[n + 1 sin. 2m/n, then

(6).

Cor. 2. The principal value of the nth root of @ positive real
number 1 is the real positive nth root, that is, what has already
been denoted by r™ (see chap. x., § 2).

For, in this case, we have w = 7 (cos 0 + 7 sin 0), that is, ¢ =0.
Hence /w =r'",

Cor. 8. There is continuity between the last values of any
branch of “Jw and the first values of the next in succession, and
between the last, values of the last positive branch and the first
values of the last negative branch; but elsewhere two values of
Yw belonging to different branches, and corresponding to the
same value of w, differ by a finite amount.

— t — ~t.
= 2wy, Zg=2wy
that is, z= w0, 2_ = w e,

It should be noticed as a consequence of the above that the principal
value of the nth root of a real negative number, such as — 1, is not definite
until its amplitude is assigned. For we may write —1=cosw+isinm or
=cos(-m)+isin(—m); and the principal value in the former case is
cos.w/n+isin.w/n, in the latter cos(— m/n)+isin(-m/n). This ambiguity
does not exist for complex numbers differing from - 1, even when they differ
infinitely little, as will be at once seen by referring to Figs. 3 and 4.
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§17.] It should be observed that if, instead of restricting ¢
in the expression z=s"{cos. ¢/n+isin.$/n} to lie between
—m and +m, we cause it to vary continuously from —nm to
+nm, then s"{cos.¢/n+isin.¢/n} varies continuously and
passes once through every possible value of w, where |w]| is
given =s.

It follows also that, if w describe any continuous path
starting from P and returning thereto, the value of Yw will
vary continuously ; and will return to its original value, if w
have circulated round the origin of the w-plane pn times, where
p 1s 0 or any integer ; and, in general, will return to its original
value multiplied by o, where ¢ is the algebraical value of
+p—v, p and v being the number of times that w has circu-
lated round the origin in the positive and negative directions
respectively. On account of this property, the origin is called a
Branch Point of Y w.

§8.] Let us now consider briefly the equation

w? =24 (1),
where p and ¢ are positive integers. We shall suppose p and ¢
to be prime to each other, because that is the .only case with
which we shall hereafter be concerned*.

Our symbols having the same meanings as before, we
derive from (1)

P (cos p + % sin pep) =77 (cos ¢b + 7 sin gb) (2).
Hence, taking the simplest correspondence that will give a
complete view of the variation of both sides of the equation
last written, we have
s?=rl pp=qb (3).

If, then, we fix , and therefore s, the paths of z and w will
be circles about the origins of the 2- and w-planes respectively ;
and, since p is prime to ¢, if 2z and w start from the positive part

* If p and ¢ had the G.C.M. k, so that p="7%p’, ¢ =Fkq’, where p’ and ¢’ are
mutually prime, then the equation (1) could be written (wP’)¥=(2%)¥, which
is equivalent to the k equations, w?’ =29, w?’ =w,2?, wP' =w,22?, . . ., w¥’
=wi¥"129, where wy, is a primitive kth root of +1. Each of these k equations
falls under the case above discussed.
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of the z- and w-axes simultaneously, they will not again be
simultaneously at the starting place before z has made p, and
w has made ¢ revolutions.

To get a complete representation of the variation we must
therefore cause 6 to vary from — p7 to +pm, and ¢ from — g to
+gm. The graphs of z and w will therefore be spirals having
p and ¢ spires respectively. To each whole spire of the g-spiral
will correspond the p/gth part of the p-spiral. The case where
p =38 and ¢ =4 is illustrated by Figs. 5 and 6.

Fic. 5. Fi1a. 6.

It follows, therefore, that tke equation (1) determines w as a
continuous p-valued function of z, and z as a continuous q-valued
Junction of w. Taking the latter view, and writing (1) in the
form’

2= Yw? ),

r=s", 0=pdlq 3
we see that, if we cause ¢ to vary continuously from —gmr to

and (3) in the form

+ ¢, then 7/ (cosg ¢+ ising ¢~> will vary continuously through

all the values which Yw? can assume so long as |w|=s, and
will return to the same value from which it started. In fact, we

Y
/
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see in general that, if w start from any point and return to the
same point again after circulating u times round the origin in
the positive direction, and v times in the negative direction,
then &/w® returns to its original value multiplied by cos . 2ptw/q +
isin. 2ptr/q where ¢ =+pu—v; that is, by o, where w, denotes
a primitive ¢th root of + 1.

If, as usual, we divide up the circular graph of w into whole
spires, counting forwards and backwards as before, and consider
the separate branches of the function 2/w? corresponding to these,
then each of these branches is a single-valued function of 6.

The spire corresponding to —wr<¢<+w is taken as the
principal spire, and corresponding thereto we have the principal
branch of the function z = Jw?, namely,

z=2sP1 {cos‘;z ¢+ isin‘g ¢>} , —w<p<+m

For the (+ £)th and (- £)th branches respectively, we have
2,=5%%{cos. p (¢ + 2tr)/q + i sin. p (¢ + 2¢7)/q},

—y Pl
= 0qg %5

2_;=5P{cos. p (¢ —2tm)/q +isin. p (d — 2¢m)/q},

— Dt
=0, 2,

As before, we may use w?? to stand for the principal branch
of Yw?, and we observe, as before, that the principal value
of Yw? when w is a real positive quantity is the real positive
value of the ¢th root, that is, what we have, in chap. x.,
denoted by w?A,

§ 9.] It must be observed that, when p is not prime to ¢, the expressions
sPla{cos.p (¢ +2tm)/q+isin.p (¢ =2tr)/q} no longer furnish all the g values
of Jwp, but (as may be easily verified) only g/k of them, where k is the
G.C.M. of p and q. The appropriate expression in this case would be
sPIa {cos. (pp = 2tm)[q +isin. (pp = 2tm)/q}.

This last expression gives in all cases the g different values of J/wP; but
it has this great inconvenience, that, if we arrange the branches by taking
successively t=0, t=1, t=2, . . ., the end value of each branch is equal,
not to the initial value of the succeeding branch, but to the initial value of
a branch several orders farther on. There will therefore be more than one
crossing in the graphic spiral. The investigation from this point of view will
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be a good exercise for the student. When p is prime to ¢, the two expres.
sions for Jw? are equivalent; and we have preferred to use the one which
leads to the simpler graphic spiral.

If we adopt Riemann’s method for the graphical representation of the
equation wP=29, then we shall have to cover the z-plane with a p-leaved
Riemann’s surface, having at the origin a winding point of the pth order;
and the w-plane with a g-leaved surface, having at the origin a winding
point of the qth order.

Exgrcises XIV.

(1.) Solve the equation
tan~{(z+1)/(z - 1)} + tan" 1 {(z +2)/(z - 2)} =},
and examine whether the solutions obtained really satisfy the equation when
tan—! denotes the principal branch of the inverse function.

(2.) If 2712<4q3 show that the roots of the equation x%— gz —r=0 are
2(q/8)'2 cosa, 2(q[3)'2cos (3w +a), 2(q/3)/*cos (37 —a), where o is deter-
mined by the equation cos3a=4r(3/q)*2.

Show that the solution of any cubic equation, whose roots are all real,
can be effected in this way; and work out the roots of 23 -5z +3=0 to six
places of decimals. (See Lock’s Higher Trigonometry, § 185, or Todhunter’s
Trigonometry, 7th ed., § 260.)

Trace the graphs of the following, = being a real argument :—

(8.) y=sinz+sin 2. (4.) y=sinz+cos2z.
(5.) y=sinzsin2z. (6.) y=tanz+tan2z.
(7.) y=wmsinz. (8.) y=sinz/z.
(9.) y=sin3z/cosz. (10.) y=sin"1g2

(11.) y%=sin"la. (12.) siny=tanuz.

Discuss graphically the following functional equations connecting the
complex variables w and z. In particular, trace in each case the w-paths
when the z-paths are circles about the origin of the z-plane, or parallels to
the real and to the imaginary axis.

(13.) w?=23. (

(15.) w=1/z3. (

(17) w?=(2-a) (2-D). (

‘.Z' (
(

4) w=1/a

6.) w?2=1/z23

8.) w?=(z-a)?(z-10).
(19.) wd=(z-a) 0.)
(21.) w=(az+Db)/(cz+d). 2.)

w?=(z - a).

§10.] We can now extend to their utmost generality some
of the theorems regarding the summation of series already
established in previous chapters.

It is important to remark that the peculiar difficulties of this
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part of the subject do not arise where we have to deal merely
with a finite summation ; that is to say, the summation of a
series to » terms. For any such summation involves merely a
statement of the identity of two chains of operations, each con-
taining a finite number of links, and any such identity rests
directly on the fundamental laws of algebra, which apply alike
to real and to complex quantities.

Even when the series is infinite, provided it be convergent,
and its sum be a one-valued function, the difficulty is merely one
that has already been fully settled in chap. xxvI.

The fresh difficulty arises when the sum depends upon a
multiple-valued function. We have then to determine which
branch of the function represents the series; for the series, by
its nature, is always one-valued.

We commence with some cases where the last-mentioned
point does not arise.’

GEOMETRIC AND INTEGRO-GEOMETRIC SERIES.

§ 11.] The summation
1+z+22+. .. +2"=(1~-2"")/(1-2) (1),

since it depends merely on a finite identity, holds for all values
of z. We may therefore suppose that z=2+ ¢ =7 (cos 0 +17sin6),
and the equatlon (1) will still hold.

Also, since L 2"'=Lr** (cosn + 10+ i sinn + 16) = 0,

when <1, we have, provided | z|<1, the infinite summation
l+z+2°+...adw=1/(1-2) (2)

for complex as well as for real values of z.

In like manner, the finite summation of the integro-geometric
series 3¢ (n) 2", which we have seen can always be effected for
real values of z (see chap. xx., § 14), holds good for all values
of z; and, since 3¢ (n)2z" is convergent provided |z|<1, the
infinite summation deducible from the finite one will hold good
for all complex values of z such that |z|<1.
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By substituting in (1) or (2), and in the corresponding
equations for 3¢ (n) 2", the value 7 (cos 6 + ¢ sin 6) for 2, and then
equating the real and imaginary parts on both sides, we can
deduce a large number of summations of series involving circular
functions of multiples of 6.

Example 1. To sum the series
S,=1+rcos@+r2cos20+. . .+1"cosnb,
T,=7sin 0 +r2sin20+. . .+7r"sinnd,
U,=cosa+7rcos(a+8)+r2cos(a+260)+. . .+ 1" cos (a+nb),
V,=sina+7sin (a+6)+7*sin (@ +26) +. . . +7"sin (a +n6),
to n terms ; and to o when r<1.
Starting with equation (1), let us put z=r(cos 6 + sin ), and equate real
and imaginary parts on both sides. We find
1+7 (cos 6+ sin @)+ 172 (cos 20 +isin 20) +. . .+7™ (cosnf +1sin nf)
={l-r*l(cos(n+1)f+isin (n+1)0)}/{1—-7r(cosf+isind)} (3);
whence *

Sp={l-rcosf—1"*lcos (n+1) 6 +1*2cosnb}/{1l - 2rcos 6+72} (4);
T,={rsin 6 —r**sin (n+1) 6 +r"*2sinnd}/{1 - 2r cos 6 + 1%} (5)-
Again, since U,=cos aS, —sinaT,, '

V,=sinaS,+cos aT,,,
we deduce from (4) and (5) the following:—

U,=1{cos a7 cos (a— 68) -+ cos (n+ 10 +a) +77+2 cos (nf+a)}/
{1 -2rcos 6+72} (6),
V,={sin a -7 sin (a — 6) — ™ sin (n+160 +a) +7"+2 sin (nf + a)}/
{1-2rcos0+7% (7).
From these results, b); putting r=+1, or r= -1, we deduce several
important particular cases. For example, (6) and (7) give
cos a + cos (a+ 6) +cos (a+20)+. . .+cos (a +nb)
=cos }{a+(a+nb)}sin } (n+1)f/sin}6 (6);
sin a +sin (a+6) +sin (e +26) +. . .+sin (a+n6)
=sin }{a+(a+nb)}sin} (n+1)8/sin}d (7).

Finally, if r<1, we may make n infinite in (4), (5), (6), (7); and we thus
find

S =(1~7cos8)/(1-2rcosb+r?) 4)3
T, =rsin /(1 - 2r cos 6 +12) (5");
U, ={cos o —7cos (a—0)}/{l-2rcos § +72} (6”);
Ve={sina-rsin (a-6)}/{1 - 2rcos 6 +12} 7).

* For brevity, and in order to keep the attention of the reader as closely

as possible to the essentials of the matter, we leave it to him, or to his teacher,
to supply the details of the analysis.
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Example 2. Sum to infinity the series
S=1-2rcosf+3r2cos20—4r*cos36+. . . (r<1).
If z=r (cos 6 +1isin 6), then S is the real part of the sum of the series
T‘:1—2z+32"’—4z"+. .
Now, by chap. xx., § 14, Example 2,
T=1/(1+2z)2
Hence S=R{1/(1+7cosf+risin6)?},*
=R {(1+7cos g~ i sin 6)%/(1+7r cos 0% + r?sin2 6)?},
=(1+42rcos 6 +1r%cos 26)/(1+ 2r cos 6 +12)2%
Example 3. Exemplify the fact that every algebraical identity leads to
two trigonometrical identities in the particular case of the identity
—(b-c)(c-a)(a-b)=be(b—c)+ca(c-a)+ab(a-1D).
In the given identity put a=cosa+isina, b=cosB+isinB, c=cosy+
isin+y, and observe that
cosB+isinB—cosy—isiny=2isin} (8—+v){cos} (B+7)+isin(8+7)}.
We thus get
41l sin} (8-v){cos} (B+7v)+ising (B+7)}
=Zsin} (B—v){cos B+isin B} {cosy+isiny}{cos}(B+7)
+ising (8+7)},

4cos(a+B+v) Msing (B-v)=Zsin} (B-7)cos§ (B+7);
4sin (@ +B8+v) Isin} (B-vy)==sin} (B-7) sin § (8+7).

whence

FORMULA CONNECTED WITH DEMOIVRE'S THEOREM AND
THE BINOMIAL THEOREM FOR AN INTEGRAL INDEX.

§ 12.] By chap. x11., § 15 (3), we have
cos (bh+6;+. . . +0,)+isin(6,+0,+. . .+6,)
=(cos 0, +isin ;) (cos O, + 28in 6;) . . . (cos 6, +7sinb,).
If we expand the right-hand side, and use P, to denote
S cosb,co86,. . .cosb,.sinb,,, ... sinb,, that is, the sum of all
the partial products that can be formed by taking the cosines
of r of the angles 6,, 6,, . . ., 6, and the sines of the rest, then
we find that
cos(Or+0,+. .. +0,)+%sin (6, +6,+. .. +86,)
=Pu+tPyy—Poy— Py s+ Py +iPps—. . ..

* We use Rf (z+yt) and If (z + yi) to denote the real and imaginary parts
of f(x+yi) respectively.
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Hence
cos(0y+6,+. . . +6,)=Py—Py o+ Ppy— Py o+. .. (1);
sin(by+0,+. . .+0,)=Py =Py y+Pys—Pups+... (2.
From these, or, more directly, from
cos (6, +0,+. . . +0,)+¢sin (6, +6,+ . . . +0,)=cos b cos b,
..co80,(L+itan ) (1+4tandy) . . . (1 +4¢tan6,),
we derive
tan (0, + 0, +. . . +0,)=(Ty—Ts+T5—. . ) (A-To+T,—...) (8),
where T.=3tan6,tané,. . . tané,.

The formula (1), (2), (3) are generalisations of the familiar
addition formula for the cosine, sine, and tangent.
From the usual form of Demoivre’s Theorem, namely,

cos n8 + 7 sin n6 = (cos 6 + ¢ sin 6)",
we derive, by expansion of the right-hand side,
cosnb + ¢ sin nd =cos™ 6 + ¢ ,C, cos” 1 6sin 0 — ,,0, cos™ 20 sin? 6

—2,05c08" 205’6 +,0, cos" 4 fsin*6+. . ..
Hence

cosnf = cos™ 0 — ,C, cos" 20 sin? 0 + ,C; cos™ 4 Gsin* 6 —. . . (4)%;
sin nd =,C, cos" ' O sin 6 — ,,C, cos™2 6 sin® 0

+,05c08" % 0sin®0—. . . (5);
_aCitan6—,Citan® 0 + ,Citan®6—. . .
tan nf= 1-,0tan?6 +,C, tan* 6— . . . (6)-

These are generalisations of the formula (8) of § 2.

The formule (4) and (5) above at once suggest that cosn6
can always be expanded in a series of descending powers of cos ;
that, when n is even, cos 76 can be expanded in a series of even
powers of sin 6 or of cos 6; sinn6/sin 6 in a series of odd powers
of cos§; and sinnf/cos 6 in a series of odd powers of sin 6:
and, when n is odd, cos 26 in a series of odd powers of cos 8 ;
cos nf/cos 8 in a series of even powers of sin; sinz6 in a series
of odd powers of sin 6; sinnf/sin 6 in a series of even powers
of cosé.

* The formule (4), (5), (6), (8) were first given by John Bernoulli in 1701
(see Op., t. 1., p. 387).
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Knowing, a priori, that these series exist, we could in various
ways determine their coefficients; or we could obtain certain
of them from (1) and (2) by direct transformation; and then
deduce the.rest by writing 3= — 6 in place of 6. (See Todhunter’s
Trigonometry, §§ 286-288.)

We may, however, deduce the expansions in question from
the results of chap. xxvir,§7. If in the equations (9), (10), (9'),
(9"), (10'), (10”) there given we put a=cosf+4sin 6, B=cosfd—
¢ sin 0, and therefore p =2 cos 6, ¢= 1, we deduce
n(n-3)

20 3) (2 cos 6)** —

2 cosnb = (2 cos )" — 1_7'! (2 cos )2 + 22— 2)
(-r
sin 729/sin 0= (2 cos 0)n—1 _ E;_2 (2 cos 0),1_3 + (n — 3>2$7z )
(m-r-1)(n=-r-2)...(n-2r
r!
Qasty-is. L. ©);
—9?)

2 2 (2
cosnG:(—)"/?{l —%cos2€+%(%

nn-r-1)(n-r—2)...
7!

(n=2r+1) (2cos8)" 7 +...(1)*;

(2cosO)y"*—. . . (=)

cos*f —

(_)s’i’l2(722—22) C (n2—2s—22)coszse+ . } (n even) (9);

(2s)!
2 _ 12 2 _12) (2 — 82
cosmf = (— )" {% cos 6 — n(n3_'_1) cos 9+ 2% 5)! (= 37

nO (). 00T g

(2s+1)!
(n odd) (10);
2 _
sin n6/sin 6 = (— )2~ {% cosd " =) g

co®f—...(-)

3!

(- .0 (1 —2:)231#1)(7@ —23) 050 4 . . } (n even)  (11);

* The series (7), (9’), (10") were first given by James Bernoulli in 1702
(see Op., t. 11., p. 926). He deduced them from the formula

n2 (n? - 12) (n? - 37)
6!

n? . 2) o s e
2sin2nf =, (2sin )% - (2 sin 6)% + (2sind)s-...,

21
which he established by an induction based on the previous results of Vieta
regarding the multisection of an angle.

n?(n?-1
4!
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2__12\/,,2_ 92
(n 1?1(’72 3)cos4t9~

. . w1 nf—-1
sin n6/sin 6 = ()12 {1 — —5p o8 6+

(w*=1%) (w*-3%). . (= 2s—1?%) }
] 28
(- ) (2s)! cos®0+. . .r (nodd) (12).

If in the above six formulae we put = — 6 in place of 6, we
derive six more in which all the series contain sines instead of
cosines. In this way we get, inter alia, the following :—

cosnf=1—_ sm 26+ (= 2) sinf—. . . (n even) (9

2' 4!

n(m*—1% . 394" 0 (0~ 1%) (- 8° 32)
sin nO—I' sin 9———3!— sin 5
(n odd) (10%);

n(n* - 2% 22) (n -4%) .

sin®6 + sin®6 —

. n(n-2°) .
smn&/cos()_Fm né- 3

(n even) (11');

(n?-1%) (n® - 32)

n?-1% .
cosnb/cosf=1 - Tsm20+ T

(n Odd) (12).
The formule of this paragraph are generalisations of the

familiar expressions for cos 26, sin 26, cos 86, and sin 36, in terms
of cos 8 and sin 6.

§ 18.] The converse problem to express cos” 6, sin” 6, and,
generally, sin™ 6 cos™ 6 in a series of sines or cosines of multiples
of 6, can also be readily solved by means of Demoivre’s Theorem.

If, for shortness, we denote cos 6 + 7 sin @ by z, then we have,
by Demoivre’s Theorem, the following results:—

x=cosf+isinf, 1/z=cosf—1isiné;

2" =cosnd+isinnf, 1/2"=cosnd—7sinnb:

cos0=%(x+ 1/z), sin 0:%(@— 1/z); (1).

cos nf = % (2" + 1/2™), sinnf= —( -1/
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Hence

cos?™ 6 = 1 (@ + /)™,

{(@®™ + 1/2™) + Oy (2772 + 1/2P™%)

+ O (@™ + 1™ N+ . L L+ 5Oy
= 22,%&_1{cos 2m0 + 5, C; cos (2m — 2)0 + 4,0, cos (2m — 4)6 +
3O} (2).

22m

Similarly,
cosTmH § = 27}1'70, {COS <2m + 1)6 + om+1C) COs (2m - 1)0
+om1Cacos (@m —3)0 + . . . +op1Crcos 6} (3);

sin®" § = (22,,% —{cos 2mb — ,,C, cos (2m —2)6
+omChcos (2m —4)0+ . . . (=)™t mCu} (4);

sin?™+ @ = (;21,2 {sin (2m + 1)0 — 442 C; sin (2m — 1)6

+omnCesin (@m—=3)0+ . . . (—)™gm1Cnsin 6}  (5).
These formulz are generalisations of the ordinary trigonometrical
formulze sin?6 =— 4 (cos 20 — 1), cos® 6 = } (cos 36 + 3 cos 0), &e.
In any particular case, especially when products, such as
sin™ @ cos™ 0, have to be expanded, the use of detached coefficients
after the manner of the following example will be found to con-
duce both to rapidity and to accuracy.

Example 1. To expand sin® 6 cos® § in a series of sines of multiples of 6.
y 1
sin® @ cos® 9 =555 (x - 1/z)5 (z + 1/z)3.

Starting with the coefficients of the highest power which happens to be
remembered, say the 4th, we proceed thus—

Coefficients of Multiplier. Coefficients of Product.

1-44 6- 4+1
1-1|1-5+10-10+5-1
1+1(1-44+ 54+ 0-5+4-1
141 | 1-83+4+ 1+ 5-5-1+3-1
141 {1-2- 2+ 6+0-6+2+2-1
The coefficients in the last line are those in the expansion of (z ~ 1/x)5 (z + 1/z)3.
Hence, arranging together the terms at the beginning and end, and replacing




§13 EXERCISES XV 279

2%. (x8 - 1/28) by sin 86, %(ax6 - 1/2%) by sin 66, and so on, we find
sin50<:os30=21—7{sin80— 2 5in 66 - 2 sin 46 + 6 sin 260 + %. 0},
1

:1—2—8{sinS()—25in60—23in40+6sin20}.

The student will see that sin™6cos™ 0 can be expanded in a

series of sines or of cosines of multiples of 6, according as m is
odd or even. The highest multiple occurring will be (m + n) 6.
Example 2. If 6=2x/n, and a any angle whatever, and
mUn=008"a+cos™ (a+0) +. . .+cos™(a+n—16),
mVa=s8ID"a+sin™ (a+60) +. . . +sin™(a+n-16),
where m is any positive integer which is not of the form 7+ sn/2, then
omUn=emVa=n.1.3. . .(2m-1)/2.4. . .2m;

’
2m+1U’n:2m+an=0'
This will be found to follow from a combination of the formule of the
present paragraph with the summatifon formula of § 11.

Exercises XV.

Sum the following series to n terms, and also, where admissible, to
infinity :—
(1.) cosa —cos (a+6)+cos(a+20)—.. .
(2.) sina-sin(a+6)+sin(a+26)-. . .
(8.) Zsin3né. (4.) mcosf+(n—-1)cos20+(n—2)cos30+. .. .
(56.) Zsinnbcos(n+1)0. (6.) = sinndsin 2n sin 3n6.
(7.) sina—cosasin (a+6)+cos?asin(a+20)~. .. .
(8.) 1+-cos@fcos @ +cos20/cos?d+cos30/cos?f+. . . to n terms, where
6 =nm.
(9.) 1-2rcos@+3r?cos20—4r3cos30+. . .
(10.) sinf+3sin20+5sin36+7sin46+. .. .
(11.) =n?cos (n6+a). (12.) Zn (n+1)sin (2n+1) 4.
(13.) sin 2n6 —,,C, sin (2n - 2) 0 +,,Cysin (2n—-4) 6. . . (n a positive
integer).
(14.) sin (2n+1) 0+ 4,41C; 8in 2n—1) O+4,,C,8in 2n-3) 6+. . . (n a
positive integer).
(1) Zm (m+1). .. (m+n-1)r"cos (a+nf)/n! to infinity, m being a
positive integer.

(16.) Does the function
(sin% @ +sin?26 +. . .4 sin?nf)/(cos? ¥ +¢0s?260 +. . .+ cos?nb)
approach a definite limit when n=o?

(17.) Expand 1/(1-2cos 8.z +2?) in a series of ascending powers of x.
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(18.) Expand 1/(1-2cosf.z+ %2 in a series of ascending powers of x.
(19.) Expand (1+2x)/(1-2%) in a series of ascending powers of z; and
show that

1-3n+ (Bn-1)(8n-2) (3n- 2) (3n - 3) (3n - 4)

o7 o7 Lo=(=1)m
(20.) Show that 1/(1+z+2Y)=1-z+2%-2i+28-a74+2% 2104 ..

and that, if the sumn of the even terms of this expansion be ¢ (z), and the
sum of the odd terms y (x), then {¢ (z)}*- {¢(2)}2=¢ (¢?) + ¥ (2?).

Prove the following identities by means of Demoivre’s Theorem, or
otherwise. = and II refer to the letters a, 8, y:—

(21.) Zsina/(l1+Zcosa)= —Iltan}a, where a+B+y=0.

(22.) =sin (- B) sin (6 —v)/sin (a — B) sin (a - y) =1.

(23.) Z=sin}(a+p)sin}(a+7y)cosafsing(a-B)sing(a-v)=cos(a+pB+7)-

(24.) cos o cos (o — 2a) cos (o = 2B) cos (¢ — 2v) + sin ¢ sin (o — 2a) sin (¢ - 28)
sin (o — 2y) =cos 2a cos 283 cos 2y, where c=a +f8+7.

Expand in series of cosines or sines of multiples of 6 :—

(25.) cosl®g. (26.) sin7 6. (27.) sin® 6.
(28.) cos® g sind 4. (29.) cosfésin?é.
Expand in series of powers of sines or cosines:—

(30.) cos 108. (31.) sin 76.

(32.) sin 36 cos 66. (33.) cosm#@ cos nf.

EXPANSION OF COS € AND SIN @ IN POWERS OF 6.

§ 14.] We propose next to show that, for all finite real
values of 6,
cosf=1-62/2!+ 6441 —6°/6! + . . . ad o (1);
sinf=60-63!+6/5!-6/1'+. .. ad (2).
These expansions* are of fundamental importance in the
part of algebraical analysis with which we are now concerned.
They may be derived by the method of limits either from the
formule of § 12, or from two or more of the equivalent formulee
of § 13. We shall here choose the former course. It will appear,
however, afterwards that this is by no means the only way in
which these important expa.ns10ns might be introduced into
algebra.

* First given by Newton in his tract dnalysis per @quationes mumero
terminorum infinitas, which was shown to Barrow in 1669. The leading idea
of the above demonstration was given by Euler (Introd. in 4Anal. Inf., t. 1.,
§ 132), but his demonstration was not rigorous in its details.
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From (4) and (5) of § 12, writing, as is obviously permissible,
6/m in place of 6, and taking n=m, we deduce, after a little
rearrangement,

cosG:cos’”g{l - l/m 0/
—1/m) (1 - *3m 6 /6\*
L a-yma 4:»’/m><1 (1 12V~ .} @)
:cos’"‘%{l—u2+u4—. . .}, say, 3);
and
sin 6 = cos™ f 0/
—1/m 6 /6\*
_a 1/ )3f1 2/'”)03(1; nm/m>+. . } (3),
=cos’"§n{ul—u3+. . .}, say, #).

Here, from the nature of the original formula, 7 must be a
positive integer ; but nothing hinders our giving it as large a
value as we please, and we propose in fact ultimately to increase
it without limit. On the other hand, we take 6 to be a fixed
finite real quantity, positive or negative.

The series (3), as it stands, terminates ; and its terms alter-
nate in sign.

We have
Usnta| _ (1—2n/m) (1-2n+ l/m) o g/g 2
Uz (2n+1) (2n +2) 6 (t{n m m>

Hence, so long as n is finite,
— 02
T (2n+1)(2n+2)
If, therefore, we take 2n + 1>0%*, wé can always, by taking
m large enough, secure that, on and after the term w,,, the

numerical value of the convergency-ratio of the series (3) shall
be less than unity.

Usn+2
Uop

L

m=wo

* Strictly speaking, it is sufficient if 6<,/{(2n+1) (2n+2)}.
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From this it follows that, if 2%+ 1>6, and m be only taken
large enough, cos 6 will be intermediate in value between

0
cos"‘;z{l—uﬁu‘,—. e (=) g} (5),
and

0
cos””%{l—u2+u4—. c o (=) g+ (=) Ugpra} ().

Therefore cos§ will always lie between the limits of (5) and
(6) for m=oo.

Now (see chap. xxv., § 23)

Lcos™(6/m)=1, Lu,=6*2!, Lu,=64!, ...
Ly, =6™/(20)!,  Lttgyys = 60*"+%/(20 + 2)!.
Hence cos 6 lies between
1— 622 6441 —. . . (=)"6™/(2m)!

and

1— 6320+ 644l — . . (= )" 0™/(2n)} + (= Y“+1 022+2/(2m + 2)!.

In other words, provided 2n+1>6,

cosf0=1-6%/21+ 044! —. . . (=)"6™/(2n)! + (= )" Ry, (7)),

where Ro <6+ (20 + 2)1.

Here 27 may be made as large as we please, therefore since
L 6™+*/(2n +2)! =0 (chap. xxv., § 15, Example 2), we may

write
cosf=1-6%21+ 64! —. . .ad o )

By an identical process of reasoning, we may show that,
provided 2n + 2> 6%, then

sinf=60-631+. . .(=)"0™/(2n + 1)} + (= )"** Rypyn  (8),
where Royp < 6t3)(20 + 3)!,
and therefore
sinf=6-6/3!+6°5!—. . .ad = (8).

It has already been shown, in chap. xxvr., that the series (7°)
and (8 are convergent for all real finite values of 6; they are

* More closely, if 8 </{(2n+2) (2rn+3)}.
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therefore legitimately equivalent to the one-valued functions
cosd and sin @ for all real values of 6, that is, for all values of
the argument for which these functions are as yet defined. From
this it follows that the two series must be periodic functions of
¢ having the period 2. This conclusion may at first sight
startle the reader; but he can readily verify it by arithmetical
calculation through a couple of periods at least.

When 6 is not very large, say 33w, which is the utmost
value of the argument we need use for the purposes of calcula-
tion*, the series converge with great rapidity, five or six terms
being amply sufficient to secure accuracy to the 7th decimal
place.

We shall not interrupt our exposition to dwell on the many
uses of these fundamental expansions. A few examples will be
sufficient, for the present, on that head.

Example 1. To calculate to seven places the cosine and sine of the

radian.
‘We have

cos1=1-1/2!+1/4! — 1/6!+1/8! - 1/10! + Ry,
Ry,<1/12!,
=1--500,000,0 +-041,666,7 — -001,388,9 -+ *000,024,8 — <000,000,3 + R,

Ry, <+000,000,003.
=+540,302,3.

Similarly,
sin1=1-1/3!+1/5!-1/71+1/9! - Ry,
Ry<1/11!<-000,000,03,
=-841,471,0.
The error in each case does not exceed a unit in the 7th place.
Example 2. If <38, then §>sin0>6-36%; 1-362<cos <1 - 362+ 764
These inequalities follow at once from (7) and (8) above. They are

extensions of those previously deduced, in chap. xxv., § 21, from geometrical
considerations.

Example 3. Expand cos (a+6) in powers of 6.
Result. cos(a+6)=cosacos 6 —sinasiné,

=cosa—sinaf —cosa6?2! +sina 6%/3! +cosa 4/4! —. ..

* Seeing that the cosine or sine of every angle between }= and 4 is
the sine or cosine of an angle between 0 and }w.
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Example 4. Find the limit of
6 (1 —cos §)/(tan 6 — §) when §=0.

L6 (1 - cos6)/(tan § — §) =L sec § L6 (1 - cos 8)/(sin 8 — 6 cos 6),
=1xLO(6%/2- 644! +. . )/(6-6%8!+. . .- 0+6%2—. . .),
=L (632 - 6541 +. . .)[(6*/3+. . .),
=L(1/2+P6+. . .)[(1/3+Q6%+. . ),
=3/2. )

ExEercises XVI.

(1.) Expand sin (a+6) sin (8+ 6) in powers of 4.

(2.) Calculate sin 45° 32" 80" to five places of decimals,

(3.) Given tan 6/6=1001/1000, calculate 6.

(4.) Expand cos?#8, sin? 6, and sin3 6 cos § in powers of 6; and find the
general term in each case.

(5.) Show that cos™ 6 (m a positive integer) can be expanded in a con-
vergent series of even powers of 6; and that the coefficient of 62" in this
expansion is

(=) {m* +,,0; (m—2)"+,.C, (m—4) 4. . .}[2m1(2n)!,

(6.) Show that, if m and n be positive integers, and 1<n<m, then

mt — 0y (m=2)"+,,Co(m-4)"-. . .=0,
Examine how this result is modified when n=1, or n=m.

Evaluate the following limits:—

(7.) (sin®m@ — sin®nd)[(cos p6 — cos qf), 6=0.
(8.) {sinp(a+6)-sinpa}/s, 6=0.
9.) {sin®p (a+6) —sin®pa}/d, 6=0.

(10.) {sin®p (a+ 6) cos (a +6) — sin® pa cosa}/6, 6=0.

(11.) (a®sin af - b9 sin b6)/(b% tan ad — a® tan bg), 6=0.

(12.) 1/222-nw[2ztanwz-1/(1-2%), =z=1 (Euler).

(18.) {sinz/z}V=", z=0.

(14.) {(z/a)sin (a/z)}*", z=w, (m=>2).

(15.) Show, by employing the process used in chap. xxvrr., § 2, that the
series for sinn@/cos 6 in powers of sin @ can be derived from the series for
cosnd in powers of sinf; and so on.

(16.) Show, by using the process of chap. xxvir., § 2, twice over, that, if

cosnf=1+4,sin20+4,sin?0+. . .+ 4,8in?6+. . .,
then
—n2cosnf=24,+(3.44,—224,)sin20+. . .
+{(2r+1) (2r+2) 4y, — (2r)24,} sin2 0 4. . .

Hence determine the coefficients 4,, 4,, &e.; and, by combining Exercise
15 with Exercise 16, deduce all the series (7) . . . (12') of § 12.

(17.) Show (from § 13) that cos™ # and sin™ 6 can each be expanded in a
convergent series of powers of §; and find an expression for the coefficient of
the general term in each case.

In particular, show that
sind z/8! =28/3! — (1 +8%)25/5! + (1 + 32+ 34) 27[T! - (1 4+ 32+ 34+ 35) 2%/ +. . . .
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BINOMIAL THEOREM FOR ANY COMMENSURABLE INDEX.

§15.] If asin chap. xxvi., § 3, we write
S(m)=1+ 3,C,z" (10),

where m is any commensurable number as before, but z is now
a complex variable, then, so long as |2z|<1, =,,C,2" will (chap.
XXVL, § 3) be an absolutely convergent series; and f(m) will be
a one-valued continuous function both of m and of 2. Hence
the reasoning of chap. xxvir, § 3, which established the addition
theorem f(m,) f(m,) = f (m, + m,) will still hold good; and all the
immediate consequences of this theorem—for example, the
equations (4), (5), (6), (7), (8), (9) in the paragraph referred to—
will hold for the more general case now under consideration.

In particular, if p and ¢ be any positive integers (which for
simplicity, we suppose prime to each other), then

-AS @Ik ={f (1)},
=(1+2)? (11).
It follows that 7 (p/q) represents part of the ¢-valued function
J(1+2)?; and it remains to determine what part.
Let z=17 (cos 6 + 7 sin 6), then, since we have merely to ex-
plore the variation of the one-valued function f(p/g), it will be
sufficient to cause 6 to vary between — = and + .

Also, let
w=1+z=1+z+yi l
=1+7rcosf+irsiné, (@),
=p (cos ¢ +isin @), J
so that

p={(1+ap+y%”=(1+ 2rcos¢9+r2)”2;} o)

tan ¢ = y/(1 +2) =7 sin 6/(1 + 7 cos 0),

If we draw the Argand diagram for w=1+2+ yi, we see
that when 7 is given w describes a circle of radius 7, whose centre
is the point (1, 0). Since r<1, this circle falls short of the
origin. Hence ¢, the inclination to the z-axis of the vector
drawn from the origin to the point w, is never greater than
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tan™ {r/(1 — #%**}, and never less than —tan~{r/(1— r%)¥3}.
Hence ¢ lies in all cases between — 3n and + 3w Therefore,
since f(p/g) is continuous, only one branch of the function
J(1+2)? is in question. Now, if we denote the principal
branch by (1 +2)?4, so that

(L+2)?=p?(cos. pd/q +isin. pd/q),
we have, by § 8,

Y1+ 2P = (14 2)0 (12),
where ¢=0, +1, +2, . .., according to the branch of the
function which is in question. Hence we have

S (plg)=(1+ )Mo,
where ¢ has to be determined.

Now, when z=0, we have f(p/q) =1, hence we must have
1= ot
Hence ¢ =0, and we have
S(p/g) = (1 +2)?2 = p?2 (cos. pd[q + isin. pd/q),
where —ir<p<im

Next counsider any negative commensurable quantity, say
—p/g. Then (by chap. xxvir, § 3 (9)),
S (=ple) =/ 0)f (p/2),
=1//(p/9).

If, therefore, we define (1+ 2)™#2 to mean the reciprocal of
the principal value of (1 +2)?4, we have
S(=plg) = (1 +2)1=1/(1 + z)*"
=p P {cos (—pd/q) +isin (-po/g)} (13).

To sum up : We kave now established the following expansion
jor the principal value of (1 +2)", in all cases where m is any
commensurable number, and |z|<1:—

1+2)"=1+3,0,2" (14).

The theorem may also be written in the following forms :—
1+ 3,0.(z + yi)* = {(1 + 2)* + y*}™* [cos . m tan~ {y/(1 + z)}

+isin . mtan~ {y/(1 +2)}] (15);



§§15-17 GENERAL STATEMENT OF BINOMIAL THEOREM 287

1+ 3,0, (cos nf + ¢ sin n0)
= (1 + 27 cos 0 + 7%)™? (cos me + © sin me),
where —ir<p=tan" {rsin /(1 +rcos O)}<+ 3w (16).
§ 16.] The results of last paragraph were first definitely

established by Cauchy*. In a classical memoir on the present
subjectt, Abel demonstrated the still more general theorem
1+ 2m+k50n<x + yi)n
=[(1 + 2)* + y*]™*[cos {m tan~" {y/(1 + &)} + 3k log {(1 + ) + y?}}
+isin {mtan~ {y/(1 + @)} + 3k log {(1 + 2)* + ¥*}}]
Exp [ — ktan~ {y/(1 + 2)}].

Into the proof of this theorem we shall not enter, as the
theorem itself is not necessary for our present purpose.

§ 17.] The demonstration of § 15 fails when |2|=1. Here,
however, the second theorem of Abel, given in chap. xxv1., § 20,
comes to our aid. From it we see that the summation of, say,
(16) will hold, provided the series on the left hand remain con-
vergent when = 1.

Now the series 1 + 3,0, (cos 26 + 7 sin n8) will be convergent
if, and will not be convergent unless, each of the series

S=1+%,0C, cosnb,
T=3,0C,sinnb
be convergent.

In the first place, we remark that, if m<—1, L,C,=+ »
when 7= o, so that neither of the series S, 7" can be convergent.

If m=-1, then ,C,=(-1)" S=1+3(-1)"cos nd,
T=3(-1)"sinnf, neither of which is convergent (see chap.
XxvL, §9).

If —-1<m<0, then L,C,=0; and the coefficients ulti-
mately alternate in sign. Hence, by chap. xxvrL, § 9, both the
series § and 7' are convergent, provided 6++=. When 6 has
one or other of these excepted values, then S=1+3(-1)",C,,
which is divergent when m lies between —1 and 0 (see chap.
XXVL, § 6, Example 3).

* See his Analyse Algébrique.
t Guvres Completes (ed. by Sylow & Lie), t. 1., p. 238.
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If m>0, then, as we have already proved (see chap. xxvI.,
§ 6, Example 4), 3,,C, is absolutely convergent, and, o fortior:,
1+3,,C, cosnf and 3,0, sin nf are both absolutely convergent.

It follows, therefore, that the equation
(1+2)"=1+3,C,z2"

will hold when |z | =1, in all cases where m>0 ; and also when m
lies between —1 and 0, provided that in this lust case the imaginary
part of z do not vanish, that is, provided the amplitude of = is not +.

In other cases where |z|=1, the theorem is not in question,
owing to the non-convergency of 3,,C,2" _

In all cases where | 2|>1, the series =,,C,2" is divergent, and
the validity of the theorem is of course out of the question.

EXPONENTIAL AND LOGARITHMIC SERIES—GENERALISATION
OF THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS.

§ 18.] The series
1+z+2220+ 2831+ . . .
is absolutely convergent for all complex values of z having a
finite modulus (see chap. xxv1., § 10). Hence it defines a single-
valued continuous function of z for all values of 2. We may
call this function the Exponential of 2, or shortly Expz*; so
that Exp z is defined by the equation
Expz=1+z+2%21+2°/3!+. . . (1).

The reasoning of chap. xxvIIL, § 5, presupposes nothing -but the
absolute convergence of the Exponential Series, and is therefore
applicable when the variable is complex. We have therefore
the following addition theorem for the function Exp z:—

* When it is necessary to distinguish between the general function of a
complex variable z and the ordinary exponential function of a real variable z,
we shall use Exp (with a capital letter) for the former, and either ¢* or exp =
for the latter. After the student fully understands the theory, he may of
course drop this distinction. It seems to be forgotten by some writers that
the e in ¢ is a mere nominis umbra—a contraction for the name of a function,
and not 2:71828 . . . Oblivion of this fact has led to some strange pieces of
mathematical logic.
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. Bxpz Bxpz, . .. Expzn=Exp (zi+2+. . . +2n) (2),
where 2, 2,, . . ., 2, are any values of z whatever.
In particular, we have, if m be any positive integer,
(Exp 2)™ = Exp (mz) (8).
Also _ .
Exp z Exp (- 2) =Exp 0,
=1 5

and therefore
Exp(—2)=1/Expz . (4).

We have, further,
Expl=1+1+1/2!+1/3!+.

=e¢ (5);
and, if # be any real commensurable number,
Expo=1+a+a*2!+2°/3! +. .
=& (6),
by chap. xxviir., where ¢° denotes, of course, the principal value
of any root involved if # be not integral.

It appears, therefore, that Exp # ¢oincides in meaning with
¢, so far as ¢ is yet defined)

We may, therefore, for real values of # and for the corre-
sponding values of y, take the graph of y=Exp 2 to be identical
with the graph of y=¢, already discussed in chap. xx1. Hence
the equation

y=Expa - (M
defines « as a continuous one-valued function of g, for all positive

real values of y greater than 0., We might, in fact, write (7) in
the form 7, P

a=Expiy ®;
and it is obvious that Eap~y may, for real values of y greater
than 0, be taken to be identical with logy as previously defined.

If we consider the purely imaginary arguments + ¢y and — ¢y,
we have, by the definition of Exp z,
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Exp (+4y)=1+dy — /2! —i9*/81 + /4! + /51— . . .,

=(1-g¥21+yi/4l-. . )
+e(y—?81+ 3781 —. . L),
=cosy +isiny 9);
Exp(—-dy)=(1-9¥21+9'f4!~. . .)
—i(y— 9381 +4°/51—. . .),
=cosy—isiny 9,

by § 14.

Finally, by the addition theorem,

Exp (# +yi) = Exp (z) Exp (1),
=¢"(cosy +17sin y) (10).
The General Exponeatial Function is therefore always expressible
by means of the Elementary Transcendental Functions ¢, cos g,
sin g, already defined.

Inasmuch as the function Expz possesses all the character-
istics which ¢® has when % is real, and is identical with ¢* in all
cases where ¢° is already defined, it is usual to employ the nota-
tion ¢* for Expz in all cases. This simply amounts to defining
¢ in all cases by means of the equation

F=1+z+2%21+ 281 +. .
which, as we now see, will lead to no contradiction.

§19.]1 Graphic Discussion of the General Ezpowential Function
— Definition of the General Logarithmic Function. Let w be
defined as a function of z by the equation

‘)

w=Expz 1);
and let z=2+yi, and w=w+vi=s(cos ¢ +¢sin¢). Then, since
Exp (w +y¢) =€ (cos y + ¢ sin y), we have

s(cos ¢ + ¢ sin ¢) =¢(cos y +7sin y) (2).

s=¢, b=y ®),
where we take the simplest relation between the amplitudes that
will suit our purpose.
Suppose now that in the z-plane (Fig. 7) we draw a straight
line 2'1'1'2" parallel to the y-axis, and at a distance # from it.

Hence
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Then, if we cause z to describe this line, 2 will remain constant, and
therefore ¢® will remain constant; that is to say, the point w will
describe a circle (K) (Fig. 8).whose radius is ¢® about the origin
in the w-plane. If we draw parallels to the 2-axis in the z-plane,
at distances 0'1'=m, 0'2'=3m, . . ., above, and 0'1' ==, 02’ = 3=,
. . ., below, then, as y varies from — = to + =, z travels from 1’
to 1'; as y varies from + = to + 3w, z travels from 1’ to 2, and
so on ; and each of these pieces of the straight line corresponds
to the circumference of the circle K taken once over. To make
the correspondence clearer, we may, as heretofore, replace the
repeated circle K by a spiral supposed ultimately to coincide
with it. Then to the infinite number of pieces, each equal to
2m, on the line K corresponds an infinite number of spires of the
spiral K. .

In like manner, to every parallel to the y-axis in the z-plane
corresponds a spiral circle in the w-plane concentric with the
circle K. To the axis of y itself corresponds the spiral circle
BAOAB of radius unity; to the parallel DO"D to the left of
the y-axis the spiral circle DO”D ; and so on.

To the whole strip between the infinite parallels DB and
DB corresponds the whole of the w-plane taken once over;
namely, to the right half of the infinite strip corresponds the
part of the w-plane outside the circle BAOARB; to the left
half of the strip the part of the w-plane inside the circle
BAOAB.

To each such parallel strip of the z-plane corresponds the
whole of the w-plane taken once over.

Hence the values of w are repeated infinitely often, and we
see that the equation (1) defines w as a continuous periodic
Junction of z having the period 2w

Conversely, the above graphic discussion shows that the equation
(1) defines z as & continuous = -ple valued function of w.

Taking the latter view, we might write the equation in the
form

z=Exp~tw ().
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Instead of Exp~'w we shall, for the most part, employ the
more usual notation Logw, using, however, for the present at
least, a capital letter to distinguish from the one-valued function
log y, which arises from the inversion of y =¢*, when # and y are
both restricted to be real.

In accordance with the view we are now taking, we may
write (8) in the form

z=logs, y=4¢.
Hence z=Logw
gives 2+ yi =Log {s(cos ¢ + ¢ sin ¢)},
where 2 =logs, and y = ¢.
In other words, we have
Logw=1log|w| + 7 amp (w) 2);

and, if we cause ¢ (that is, amp (w)) to vary continuously through
all values between — o and + o, then the left-hand side of the
" equation (2') will vary continuously through all values which
Logw can assume for a given value of |w].

If we confine ¢ to lie between —= and +m, then Logw
becomes one-valued ; and we have

Log w=1log s+ i¢p (4),

where s =|w|=./(u*+v%), and cos ¢ =u//(4*+v°), sinp=v//(w*+77),
—rhéP+m

This is called the principal branch of Logw; and we may
denote it by z.

y It is obvious from the graphic discussion that, if z; or Log w
denote the value of Logw in its t-th branch, z being the value in
the principal branch corresponding to the same value of w (that
1s, a value of w whose amplitude differs by an integral multiple -
of 2m), then

: JLiog w = 2, = z + 2twi,
=logs+7 (¢ + 2m) o (5),
where ¢ is the amplitude (confined between the limits — = and + )
of w, and t is any integer positive or negative.

If w be a real positive quantity, =« say, then s=|w|=1,
¢=ampw =0 ; and we have, for the principal value of Log s,
Log u = log w.
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Hence, for real positive values of the argument, logu is the
principal value of Logu. The other values are of course given
by Logu=1logu+2tni, t being the order of the branch.

We have also the following particular principal values :—

Log ( +1¢) = 4w,

Log (—1) =— 4,

Log(—1)=+mi:
the principal value in the last case is not determinate until we
know the amplitude; and the same applies to all purely real
negative arguments.

§20.] Definition of Exp 2. The meaning of o7 or, as it is
sometimes written, Exp 42, has not as yet been defined for values
of z which are not real and commensurable.

We now define it to mean Exp (z.,Loga), where JLoga is
the ¢-th branch of the inverse function Log a, and ¢ may have
any positive or negative integral value including 0.

Thus defined, ¢* is in general multiple-valued to an infinite
extent. In fact, since [JLoga=logs+¢ (¢ +2¢m), where s=|a|,
and ¢=ampa (—r<¢<+w), we have, if z=2+yi,
a*tV =Exp [(z + yi) {log s + © (¢ + 2¢m)}],

=Exp [{wlogs - (¢ + 2tm) y} + i {ylog s + (¢ + 2¢m) 2}],
=exp {w log s— (¢ + 2tm) y}. [cos {ylog s + (b + 2¢m) z}
+isin{ylogs+ (¢ +2¢m) 2}] (1).

If we put ¢ =0, that is, take the principal branch of Loga,
in the defining equation, then we get what may be called the
principal branch of &*+¥, namely,

a®+¥' = Exp (2 Log @),
=exp{z log s — ¢y}.[cos{ylog s+ paz}+isin{ylogs+Pa}] (2).
The value given in (1) would then be called the #-th branch,
and might for distinction be denoted by ¥ or by ,Exp (= + ¥i).
It is important to notice that the above definition of & agrees

with that already given for real commensurable values of z provided
we take the corresponding bramches. In fact, when y =0, (1) gives

a® = exp (z log s) . [cos (¢ + 2¢m) @ + % sin (b + 2¢7) 2] ;
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that is, if z=p/q,
[s (cos ¢ + i sin )]

=57 [cos. (¢ + 2tw) p/g+isin. (¢ + 2¢tw) p/g] (8);

the right-hand side of which is the #-th branch of the left as
ordinarily defined.

Cor. It follows from the above that when x is an incommen-
surable number the function a® has an infinite number of values
even when both a ¢nd & are real.

The principal value of @® however, when both ¢ and 2 are
real and a is positive, is exp (#log a), which differs infinitely
little from the principal value of &, if #' be a commensurable
quantity differing infinitely little from a.

§ 21.] The Addition Theorem for Log z.

By the result of § 19 we have

mli0g w; + ,Liog w,
=log |w, | +log | w,| + ¢ amp w, + ¢ amp w, + 2 (m + n) .

Now (chap. x11., § 15) |'w, || w, |=|w, wy|, and, if amp (w, w,)
were not restricted in any way, we should have ampw, + ampw,
=amp (w, w,). Since, however, amp (w, w,) is restricted in the
definition of Log (w, w,) to lie between — = and =, we have

amp w, + amp w, = amp (w, w,) + 2pm,

where p=+1, 0, or —1 according as amp w, + amp w,>+ , lies
between + = and —m, or <—m. Hence we have

wliog wy + o Liog wy = pynipliog (w;, wy) (1),

where p is as defined.
In like manner, it may be shown that

wliog wy =y Liog ws = m_nipLiog (wi/w,) (2),
where p=+1, 0, or —1 according as amp w, —amp w,>+ =,

between +7 and —m, or <—.

Taking the definition of a®*¥ given in § 20, and making use
of equation (1) of that paragraph, we have
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wliog Y =log | @™+ | + (amp @™+Y + 2km) 4,
=z logs— (P +2m)y+{ylogs+ (¢ +2n) 2} ¢+ 2 (k+1)wi,
where / is an integer, positive or negative, chosen so that

—m<ylogs+ (¢ +2m) & + 2Ar <+
Hence

pLiog 0™tV = (z + yi) {log s + (¢ + 2¢m) i} + 2 (k + ) i,
=(@+yi) Loga+2(k+10)mi (3).
The equations (1), (2), (3) are generalisations of formule for
log # with which the reader is already familiar.
If we confine each of the multiple-valued functions ,Log and
Exp, to its principal branch, we have
Log a®+¥ = (z + yi) Log & + 2lwi (8),
where [ is so chosen that

—w<ylogs+;j>x+ 2r <+

§22.] Expansion of Log (1 + z) in powers of z.

Consider first the principal branch of the function Log (1 + 2).
By the definition and discussion of § 20, we see that, when 2 is
any real quantity, the principal branch of (1+2)® has for its
value Exp{#Log (1 +2)}. Hence we have

(1+2)*=1+{aLog (1+2)} + {zLog (1L +2)*/2! +. .
and, since the series 1 + 3,C,2" represents the principal branch
of (1 + 2)*, we have

1+3,0,2"=1+{zLog(1+2)} +
Now all the conditions involved in the reasoning of chap.
xxviL, § 9, will be fulfilled here, provided the complex varlable

2z be so restricted that | z|<1.
Hence, if | 2| <1, we must have, as before,

Log (1 +2)=2—2%/2+2°/8—24+. . . (1).
In other words, so long as |z|<1, the series z—2°[2 +2°[3—. . .

represents the principal branch of Exp™ (1+2).
Cor. Since Log (1+z)=Log (1 + z) + 2¢tmi, we have

JLog(l+z)=2mi+2-222+2°8-2[4+. .. (2),

*)
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which gives us an expansion for the ¢-th branch of Exp~(1 +2)
within the region of the z-plane for which |z |<1.

It follows readily, from the principles of chap. xxvr., § 9, that
when |2z|=1 the series 2—-2?/2+2%/3~. . . is convergent, pro-
vided amp z+=+= (other odd multiples of = are not in question
here). Hence, by the theorem of Abel so often quoted already,
the expansion-formul® (1) and (2) will still held when |z|=1,
- provided ampz++.

GENERALISATION OF THE CIRCULAR FUNCTIONS
DUCTION OF THE HYPERBOLIC FUNCTIONS.

INTRO-

§ 23.] General definition of Cosz, Sinz, Tanz, Cotz, Secz,
Cosecz. Since the series 1—2%/2!+24/4! —. . ., z—2%/3! + 2%/5!
—-. . . are convergent for all values of 2z having a finite modulus,
however large, they are each single-valued continuous functions
of z throughout the z-plane. Let us call the functions thus
defined Cosz and Sinz, using capital initial letters, for the pre-
sent, to distinguish from the geometrically defined real functions
cosz and sin #. We thus have

Cosz=1—2%21+2441—. . . (1),
Sinz=2—2%/3!+2°/5!-. .. (2).
We also define Tanz Cotz, Secz Cosecz by the following
equations :—
Tan 2z =8in2/Cosz; Cotz=Cosz/Sinz ;} @)
Secz=1/Cosz; Cosecz=1/Sinz. )

In the first place, we observe that when z is real, =2 say,

we have, by § 14,
Cosz=1—a?2! + 2#/4!=. . . =cos 2,
Sinz=2z—2°8!+2°/5!—. . .=sinz;
so that, when the argument is real, the more general functions
Cos., Sin., Tan., Cot., See., Cosec. coincide with the functions
cos., sin., tan., cot., sec., cosec. already geometrically defined
for real values of the argument.
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Since
12220+ 244! —. . .=%{Exp (iz) + Exp (- iz)},
2= 2[31+ 2951~ . .= {Bxp(iz) - Bxp (~i2)}

it follows from (1) and (2) that we have for all values of z

Cosz = % {Exp (iz) + Exp ( —2)},
1 (1
Sinz= % {Exp (72) — Exp (- 22)};

with corresponding expressions for Tanz Cotz, Secz and
Cosec 2.

By (4) we have
Cos?z + Sin? z
=3 [{Exp (¢2)}* + {Exp (—42)}* + 2 Exp (i2) Exp ( - 12)
— {Exp (¢2)}* — {Exp (- 12)}* + 2 Exp (¢2) Exp (- i2)].
Hence, bearing in mind that we have, by the exponential
addition theorem,

Exp (iz) Exp (- iz) = Exp (iz—iz) = Exp 0 =1,
we see that
Cos?z + Sin?z=1 5),
from which we deduce at once, for the generalised functions, all
the algebraical relations which were formerly established for the
circular functions properly so called.

We also see, from (4), that Cos (—2)= Cosz and Sin (- 2)
=—Sinz; that is to say, Cosz is an even, and Sinz an odd
function of z.

Since, by (4), we have
Cos 2z + ¢ Sin z = Exp (z),
Cos z - 7 Sin z = Exp (—42),

* These formule were first given by Euler. See Int. in 4nal. Inf., t. L,
§ 138. He gave, however, no sufficient justification for their usage, resting
merely on a bold analogy, as Bernoulli and Demoivre had done before him.
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it follows from the exponential addition theorem, namely,

Exp (72, + 12,) = Exp (iz1) Exp (iz,),
that

Cos (2, + #5) + 1 Sin (2, + 2,) = (Cos 2, + ¢ Sin 2;) (Cos z, + 7 Sin 2,)
= (Cos #, Cos 2, — Sin 2, Sin 2,) + ¢ (Sin 2y Cos 2, + Cos z, Sin z,)*.
Hence, changing the signs of 2, and #,, and remembering that
Cos. is even and Sin. odd, we have
Cos (2, + 2,) — 2 Sin (2, + 2,) = (Cos #, Cos 2, — Sin 2, Sin 2y)
— 1 (Sin #, Cos 2, + Cos 2, Sin 2,).
Therefore, by addition and subtraction, we deduce
Cgs (% + 29) = Cps 2, Cos z,— Sin z, Siu 2y ;} (6).
Sin (2, + 2,) = Sin 2, Cos 2, + Cos 2, Sin 2.
In other words, the addition theorem for Cos. and Sin. in
general is identical with that for cos. and sin.

By (6) we have

Cos (2 + 2nw) = Cos z Cos 2nm — Sin z Sin 2nm,
that is, if = be any positive or negative integer, so that
Cos 2nm = cos 2nm =1, and Sin 2n7 =sin 2nr =0, then

Cos (z + 2nm) = Cos 2.

In like manner, Sin (z2+ 2n7)=Sinz; Tan(z+nr)=Tanz; &ec.
That is to say, the Generalised Circular Functions have the same
real periods as the Circular Functions proper.

Just in the same way, we can establish all the relations for
kalf and quarter periods given in equations (3) of §2. Thus, for
example,

Cos (7 + 2) = Cos = Cos 2z — Sin 7 Sin 2,
= cos m Cos 2z — sin 7 Sin z,

=— Cos 2.

Also all the equations (5), (6), (1) of § 2 will hold for the
generalised functions; for they are merely deductions from the
addition theorem.

* We cannot here equate the coefficient of ¢, &ec., on both sides, because
Sin (2, +2,), &ec., are no longer necessarily real.
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§ 24.] We proceed next to discuss briefly the variation of
the generalised circular functions.

Consider first the case where the argument is wholly
imaginary, say z=¢y. In this case we have

Cos (iy) =3 {Exp (iiy) + Exp (~ iiy)},

e OF

Sin (i9) = g5 (677 - &),

=L@ -e) @.

We are thus naturally led to introduce and discuss two new
functions, namely, % (¢ +¢7¥) and % (¢ — ¢¥), which are called
the Hyperbolic Cosine and the Hyperbolic Sine. These functions
are usually denoted by coshy and sinhy ; so that, for real values
of g, coshy and sinhy are defined by the equations _

coshy=3%(e¥+¢7Y), sinhy=%(e¥—e7v) 3).

In general, when % is complex, we define the more general

functions Cosh z and Sinh z by the equations
Cosh z =% {Exp (2) + Exp (—2)},
Sinh z=4 {Exp (2) - Exp (—2)}, - 3.

We also introduce tanh g, coth g, sech ¥, and cosech y by the
definitions

tanh y = sinh y/coshy, cothy=coshy/sinhy;

sech y = 1/cosh , cosechy =1/sinhy ;
and the more general functions Tanh z, Coth 2, &c., in precisely
the same way.

From the equations (1) and (2) we have
Cos(tzy) =coshy,  Sin(2y)=isinhy;
Tan (iy)=<¢tanhy, Cot(iy)=—1icothy; } (4),
Sec (i) =sechy, Cosec (iy) =—1cosechy ;)

and, of course, in general, Cos 7z = Cosh 2, &e.
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The discussion of the variation of the circular functions for
purely imaginary arguments reduces, therefore, to the discussion
of the hyperbolic functions for purely real arguments.

§ 25.] Variation of the Hyperbolic Functions for real argu-
ments. 'The graphs of y=coshz, y=sinha, &c., are given in
Fig. 9 as follows :—

cosha, CC; sinhaz, SOS;
cothz, T'"T'T'T'; tanhaz, TTOTT;
secha, C'C’; cosechz, S'S'S'S'.

By studying these curves the reader will at once see the truth
of the following remarks regarding the direct and inverse hyper-
bolic functions of a real argument.

(1) cosha is an even function of 2, having two positive
infinite values corresponding to #==+ ©, no zero value, and a
minimum value 1 corresponding to # = 0.

cosh™'y is a two-valued function of y, defined for the con-
tinuum 13y}, having a zero value corresponding to y=1,
and infinite values corresponding to ¥ = o, but no turning value.

(2) sinh# is an odd function of #, having a zero value when
=0, and positive and negative infinite values when =+ o« and
x=- o respectively.

sinh~'y is one-valued, and defined for all values of ¥ ; it has
a zero value for ¥ =0, and positive and negative infinite values
when =+ o and y=— o respectively.

(8) tanhz is an odd function, has a zero value for =0,
positive maximum + 1, and negative minimum — 1, corresponding
to 2=+ o and & =— » respectively.

tanh~'y is a one-valued odd function, defined for -1py>+1;
has zero value for y=0, positive and negative infinite values
corresponding to y=+1 and y=—1.

(4) cotha is an odd function, having no zero value, but an
infinite value for =0, and minimum + 1, and maximum — 1, for
2=+ o and 2 =— o respectively.

coth~'y is a one-valued odd function, defined, except for the
continuum - 13y} +1, having positive and negative infinite
values corresponding to y=+1 and y=-1 respectively, and
a zero value for y= .
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(5) secha is an even function, having a maximum +1 for
=0, and a zero value for 2=+ .

sech™'y is a two-valued function, defined for 0331, having
a zero value for y =1, and infinite values for y = 0.

(6) cosechz is an odd function, having zero values for
2=+, and an infinite value for z=0.

cosech'y is one-valued and defined for all values of ¥, having
zero values for y =+ o, and infinite values for y=0.

§ 26.] Logarithmic expressions for cosh™y, sink™'y, de.

If 2 =cosh~'y, we have

y=cosha=14 (¢ +e®) (1).

V@ -1 =4(-e7) (2).
From (1) and (2),

Therefore

E=y+ (Y -1).

z=logly+ J(y'- 1)};
that is, cosh~'y=log {y + J(3* - 1)} (3),
the upper sign corresponding to the positive or principal branch
of cosh', the lower sign to the negative branch.
In like manner we can show that

Hence

sinh~'y =log {y + /(3" + 1)} (4);
tanh~'y =4 log {(1 +»)/(1 )} (4);
coth™y=4log {(y + 1)/(y - 1)} (6);
sech~y =log [{1 + J/(1-%}/y] (7);
cosech™'y =log [{1 + /(1 + ¥*)}/y] (8).

§ 21.] Properties of the General Hyperbolic Functions ana-
logous to those of the Circular Functions.

We have already seen that the properties of the circular
functions, both for real and for complex values of the argument,
might be deduced from the equations of Euler, namely,

Cos z=% {Exp (+142) + Exp (- 12)};
. (A).
Sin z= % {Exp (+ ¢z) - Exp (- i2)}

In like manner, the properties of the general hyperbolic
functions spring from the defining equations
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Coshz=%{Exp(+z)+Exp(—z)};} (B)
Sinh z =} {Exp (+2) — Exp (- 2)} ’
We should therefore expect a close analogy between the
functional relations in the two cases. In what follows we state
those properties of the hyperbolic functions which are analogous
to the properties of the circular functions tabulated in § 2. The
demonstrations are for the most part omitted ; they all depend
on the use of the equations (B), combined with the properties of
the general exponential function, already fully discussed.

The demonstrations might also be made to depend on the
relations connecting the general circular functions with the
general hyperbolic functions given in § 24%, namely,

+¢Tanhz=Tanéz, —%Cothz=Cotiz;

Cosh z = Cos ¢z, ¢Sinh 2=S8inz; -
} (©)
Sech z=8eciz, —1Cosechz=Coseciz;

Algebraic Relations.
Cosh?z — Sinh*2z=1, Sech?z+ Tanh*z=1 (1),
&e.
Periodicity.—All the hyperbolic functions have the period
2ri; and Tanhz and Coth z have the smaller period .

Thus
Cosh (z + 2nré) = Cosh z; &e. } D)

Tanh (z + n7i) = Tanh z; &c.
Also, _
Cosh (wi + z) == Coshz,  Sinh (wi +2) =% Sinh z;
Cosh (}7i + z) = + £ Sinh 2z, Sinh (47 +2)=1¢ Coshz; } (8).
Tanh (7% + 2) = + Cothz, Coth (3¢ + 2) =+ Tanh z;

Addition Formule.

Cosh (2, + 2,) = Cosh z, Cosh 2, + Sinh 2, Sinh 2, ;
Sinh (z, + 2,) = Sinh # Cosh 2, + Cosh 2, Sinh 2, ; } (5).
Tanh (2 *+ 2,) = (Tanh 2, + Tanh 2,)/(1 + Tanh 2, Tanh z,).

* This connection furnishes the simplest memoria technica for the hyper-
bolic formulse. :
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Cosh z, + Cosh 2, = 2 Cosh § (2, + 2,) Cosh § (2, — 22) ;}
Cosh 2, — Cosh 2, = 2 Sinh 4 (2, + 2,) Sinh 4 (2, — 25) ;+ (6).

b

Sinh 2, + Sinh 2, = 2 Sinh } (2, + 2,) Cosh } (2 F 2).

Cosh 2, Cosh 2, =} Cosh (2, + 2,) + 4 Cosh (2, — 2,) ;
Sinh #, Sinh 2, = % Cosh (2, + 2,) — 4 Cosh (z, — 25) ;1 (7).
Sinh 2, Cosh 2, = 4 Sinh (2, + 2;) + 4 Sinh (2, — 2,).

Cosh 22 = Cosh? 2z + Sinh? z= 2 Cosh?z — 1,

=1 + 2 Sinh? 2 = (1 + Tanh? 2)/(1 — Tanh? 2).
Sinh 2z = 2 Sinh 2 Cosh z = 2 Tanh z/(1 — Tanh? 2). (8).
Tanh 2z = 2 Tanh z/(1 + Tanh®2).

Inverse Functions.—Regarding the inverse functions Cosh™?,
Sinh~?, &e., it is sufficient to remark that we can always express
them by means of the functions Cos™’, Sin~!, &ec. Thus, for
example, if we have Cosh~'z=w, say, then

z = Cosh w = Cos tw.

Hence sw = Cos™'2;
that is, w=—1 Cos™'2.
So that Cosh='z=—1¢ Cos™'z;
and so on.

In the practical use of such formule, however, we must
attend to the multiple-valuedness of Cosh~! and Cos~%. If, for
example, in the above equation, the two branches are taken at
random in the two inverse functions, then the equation will take
the form

Cosh™1z = 2mmi + ¢ Cos™'z,

'
\

where m is some positive or negative integer, whose value and
the choice of sign in the ambiguity + both depend on circum-
stances.

§ 28.] Formule for the Hyperbolic Functions analogous to
Demoivre's Theorem and its consequences.

We have at once, from the definition of Cosh z and Sinh 7,
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Cosh (z1+2zo+. . . +2,)+S8inh (21 + 20 +. . . +2,)

=Expt(zr+z+...+2),

=Exp+2z Exp+z ... Exptz,

= (Cosh z, + Sinh z,) (Cosh 2, + Sinh z,)

.. . (Coshz,+Sinh z,) (A);

and, in particular, if # be any positive integer,

Cosh nz + Sinh nz = (Cosh 2 + Sinh 2)" (B).
These correspond to the Demoivre-formule, with which the
reader is already familiar*.

We can deduce from (A) and (B) a series of formulee for the
hyperbolic functions analogous to those established in § 12 for
the circular functions.

Thus, in particular, we have

Cosh (z1+2e+. . c+2)=Pu+ Py s+ Ppy+. .. (1)
where P, =3Coshz Coshz, . .. Coshz,Sinhz,, . . . Sinhz,.
Tanh (2 + 2, +. . .+ 2,)

=(T+Ts+Ts+..)A+To+Ti+...) (3),
where T,.=3Tanhz Tanhz, . . . Tanhz,.
Cosh nz = Cosh™z + ,C, Cosh™ 22z Sinh?z
+a.0;Cosh**z8inh'z+. . . (4).

Sinh 7z = ,C, Cosh” 'z Sinh z + ,,C; Cosh™ %2 Sinh?® 2
+40; Cosh"=z Sinh’z+. . . ().

. n? n*(n*— 22
Cosh nz = (—)** {1 — 3 cosh?z + -% coshiz—. ..

(- )sﬁ(# —2) . (25) !(71'2 —25—27) cosh®z +. . } 9,

(n even);

* As a matter of history, Demoivre first found (B) in the form
y=3[1/J/{N (1 +v2) —v} - J{J (1 +v%) - v}], where y is the ordinate of P in
Fig. 10 below, and v the ordinate of @, @ corresponding to a vector OQ such
that the area 40Q is n times AOP, and 04 is taken to be 1. He then
deduced the corresponding formula for the circle by an imaginary trans-
formation. (See Miscellanea Analytica, Lib. II., cap. 1.)
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) 2 o2
Sinh nz/sinh z = (- -2 {% coshz~n-(%'i)cosh"z+. .
(- )sn (n 2()23+ 1)’(71 S )cosh"’s“z+- ) } (11,
. (n even);
and so on.

We may also deduce formulx analogous to those of § 13,
such as

Sinh*+! 2 = QL," {sinh (2m + 1) 2 — g1, Cysinh Cm— 1)z +. . .
(= )"ym4+1Cr sinh 2}
§29.] Fundamental Inequality and Limit Theorems jor the
Hyperbolic Functions of a real argument.
If u be any positive real quantity, then
tanh # <w<sinh < cosh (1).
By the definitions of § 24 we have
sinh =1 {exp (v) —exp (—u)};
=u+u /3l +u’/B!+. . . (2);
coshw=1+u?2! +u'/a!+. . . (3);
whence it appears at once that sinh «>uw.

Again, cosh w=+,/(1 + sinh*«), so that cosh %> sinh «.
Finally, since

tanh « = sinh w/cosh »
=u(l+u/3!+u'/5!+. . )/(1+u¥2!+u'f4l. . ),
and w?/3l<u?2!, wi5l<ut/4!, &e.,
we see that tanh » <.
Cor. When u=0, Lsinhw/u=1, and Ltanhw/u=1. This

may either be deduced from (1) or established directly by means
of the series (2) and (3).

If a be a quantity which is either finite and independent of n
or else has a finite limit when n= o, then, when n= o,

L<cosh g>n: 1, L(sinh E/E)L: 1, L(tanh E/EY: 1.
n n/n n/ n
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We have
} a\” eu/n+e—¢/n n 1 +g—2a/n n
(cos1ﬁ> = <72 ) =¢ <_T >

Hence, if we put 1+e¢*"=2- 2z, so that 2=0 corresponds
to m=o, then we have

L (cosh ;L)n = g0 ZEO {( 1-— z)—l/z} a2z/log (1-22)

Now, L(1—2)""=¢, and L2z/log (1-22z)=—1. Hence, by
chap. xxv., § 13, ‘

L <cosh E) =¢*¢%=1.
n

~ We leave the demonstration of the second limit as an exer-
cise for the reader. The third is obviously deducible from the
other two.

A very simple proof of these theorems may also be obtained
by using the convergent series for cosh .-a/n and sinh. a/n.

§ 80.] Geometrical Analogies between the Circular and Hyper-
bolic Functions.

If 6 be continuously varied from —= to + =, and we connect
2z and y with 6 by the equations

x=acosd, y=asinb (1),
then we have
2 + y* = a? (cos? 6 + sin® 6) = a? (2).
Hence, if (2, y) be the co-ordinates of a point P, as 6 varies con-
tinuously from — = to +m, P will describe continuously the
circle 4'AA" (of radius @) in the direction indicated by the
arrow-heads (Fig. 10).

Let P be the point corresponding to 6 ; and let ® denote the
area AOP, to be taken with the sign + or — according as 0 is
positive or negative. Then ® is obviously a function of 8. We
can determine the form of this function as follows :—

Divide 6 into # equal parts, and let P, P,,. . ., Pp,. . . P
be the points corresponding to 6/n, 20/, . . ., ré/n, . . . nb/n
respectively. Then we have, by the lemmas of Newton,

r=n-1"

Area AOP= L 3 P.OP,,,.

n=c 7r=0
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Fia. 10.
Now
PTOPr+1

=O0M, s, Pryy+ Myy Prn P M, — OM, P,
=3 {@r¥rir + Grir + Yr) (@ — Tra) — T Y},
=} (@ Yr11 — Zrnayr),
=}a?{cos. rf/nsin. (r + 1)8/n —sin. r6/n cos. (r + 1)6/n},
=1a?sin. 6/n.
Hence
®=1a?Lnsin. 6/n,
=21a?0L (sin. 6/n)/(6/n),
v 3).

Hence, if 6 =20/a? we have cos 0 = z/a, sin 6 = y/a, tanb=y/z,
cot 6 =a/y, &ec.

Next, let # be continuously varied from — o to + o; and
let

z=acoshu, y=asinhu ).
Then

2*— y* = a® (cosh® » — sinh® u) = a* ().
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Hence, if (z, ) be the co-ordinates of P, as «* varies con-
tinuously from — o to + o, P will describe continuously the
right-hand branch A’4A A" of the rectangular hyperbola, whose

Y
74
P

Prs1
P

| X

o) A MrMr+7 M
A
l ~

Fie. 11.

semi-axis-major is OA4 =a, in the direction indicated by the
arrow-heads in Fig. 11.

If P be the point corresponding to , P,, P,,; the points
corresponding to ru/n and (r+1)u/n, and U the area AOP
agreeing in sign with w, then, exactly as before,

* Adopting an astronomical term, we may call u the hyperbolic excentric
anomaly of P. The quantity w plays in the theory of the hyperbola, in
general, the same part as the excentric angle in the theory of the ellipse.
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=n—1
E (xry'r+l - w'r-Hy'r);

n=0o r=0

r

U=

(S

and
ZrYr+1 — ZraYr
=a?{cosh.ru/nsinh. (r + 1) u/n —sinh . ru/n cosh. (r + 1) u/n},
=g*sinh. u/n.
Therefore U=%1a*Lnsinh. u/n,
=Lo*ul (sinh. u/n)/(u/n),
=1a%u, by § 29, 8).
Hence, if the area AOP=U, and w=2U/a’ then, # and
y being the co-ordinates of P, we might give the following
geometric definitions of coshw, sinhu, &ec.:—
coshu=z/a, sinhw=y/a,
tanhu=y/2, cothu=a/y, &ec.

It will now be apparent that the hyperbolic functions are
connected in the same way with one half of a rectangular
hyperbola, as the circular functions are with the circle. It is
from this relation that they get their name.

We know, from elementary geometrical considerations, that the area © is
the product 0f }a? into the number of radians in the angle 4OP. It there-
fore follows from (3) that the variable 6 introduced above is simply the
number of radians in the angle AOP. Our demonstration did not, however,
rest upon this fact, but merely on the functional equation cos2+sin26=1.
This is an interesting point, because it shows us that we might have intro-
duced the functions cosd and sin# by the definitions cosf=3 {Exp (i6)

. 1 . .
+Exp (- 16)}, sin 0:2—?: {Exp (i§) - Exp (—i6)}; and then, by means of the

above reasoning, have deduced the property which is made the basis for their
geometrical definition. When this point of view is taken, the theory of the
circular and hyperbolic functions attains great analytical symmetry ; for it
becomes merely a branch of the general theory of the exponential function as
defined in § 18.

When we attempt to get for u a connection with the arc 4P, like that
which subsists in the case of the circle, the parallel ceases to run on the same
elementary line. To understand its nature in this respect we must resort to
the theory of Elliptic Integrals.

§ 31.] Eawpression of Real Hyperbolic Functions in terms of
Real Circular Functions.
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Since the range of the variation of cosh # when « varies from
— o to +x is the same as the range of sec® when 6 varies
from — 3w to + i, it follows that, if we restrict 8 and » to have
the same sign, there is always one and only one value of #
between — 0 and + o and of 6 between — 37 and + 1« such that
cosh v =sec 6 (1).
If we determine 6 in this way, we have
sinh % =+ ,/(cosh® % — 1),
=+./(sec®6—-1);
hence, bearing in mind the understanding as to sign, we have
sinh % = tan 0 (2).
From these we deduce
¢* = cosh u + sinh #,
=secO+tan6;
w=1log (sec 6 + tan 6),

=log tan (3= + 10) (3).
Also, as may be easily verified,
tanh 1% =tan 10 (4).

When 6 is connected with % by any of the four equivalent
equations just given, it is called the Gudermannian* of u, and we
write 0 =gd u.

* This name was invented by Cayley in honour of the German mathe-
matician Gudermann (1798-1852), to whom the introduction of the hyperbolie
functions into modern analytical practice is largely due. The origin of the
functions goes back to Mercator’s discovery of the logarithmic quadrature of
the hyperbola, and Demoivre’s deduction therefrom (see p. 306). According
to Houel, F. C, Mayer, a contemporary of Demoivre’s, was the first to give
shape to the analogy between the hyperbolic and the circular functions. The
notation cosh. sinh. seems to be a contraction of coshyp. and sinhyp., pro-
posed by Lambert, who worked out the hyperbolic trigonometry in consider-
able detail, and gave a short numerical table. Many of the hyperbolic
formule were independently deduced by William Wallace (Professor of
Mathematics in Edinburgh from 1819 to.1838) from the geometrical pro-
perties of the rectangular hyperbola, in a little-known memoir entitled New
Series for the Quadrature-of Conic Sections and the Computation of Logarithms
(Trans. R.S.E., vol. vi, 1812), For further historical information, see
Giinther, Die Lehre von den gewdhnlichen und verallgemeinerten Hyperbel-
Junktionen (Halle, 1881) ; also, Beitrdge zur Geschichte der Neueren Mathematik
(Programmschrift, Ansbach, 1881).
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It is easy to give a geometrical form to the relation between 6 and u. If,
in Fig. 11, a circle be desecribed about O with a as radius, and from M a
tangent be drawn to touch this eircle in @ (above or below OX according as u
is positive or negative), then, since MQ?=0M?- 0Q*=2?—a?=y? we have
acoshu=x=asec QOM. Therefore QOM =0, and we have y=1Q=atané,
From this relation many interesting geometrical results arise which it would
be out of place to pursue here. We may refer the reader who desires further
information regarding this and other parts of the theory of the hyperbolic
functions to the following authorities :—Greenhill, Differential and Integral
Calculus (Macmillan, 1886), and also an important tract entitled 4 Chapter
in the Integral Calculus (Hodgson, London, 1888); Laisant, ‘‘Essai sur les
Fonctions hyperboliques,” Mém. de la Soc. Phys. et Nat. de Bordeauz, 1875
Heis, Die Hyperbolischen Functionen (Halle, 1875). Tables of the functions
have been calculated by Gudermann, Theorie der Potential- oder Cyclisch-
hyperbolischen Functionen (Berlin, 1833); and by Gronau (Dantzig, 1863).
See also Cayley, Quarterly Journal of Mathematics, vol. xx.; and Glaisher,
Art. Tables, Encyclopedia Britannica, 9th Ed.

Exercises XVII.

(1.) Write down the values of the six hyperbolic functions corresponding
to the arguments i, w4, 2mi. |

Draw the graphs of the following, « and y being real:—
(2.) y=sinhax/z. (3.) y=wcothz.
4.) y=gdz. (5.) y=sinh~1{1/(z-1)}.

(6.) Express Sinh—1z, Tanh—!2, Sech~12, Cosech~1z, by means of Sin~1z,
Cos™1z, &e.

(7.) Show that coshSu — sinhu =1+ 3 sinh?u cosh?u.

~ (8.) Show that

4 cosh3u —38coshu—cosh3u=0;
4 sinh3u + 3 sinh u — sinh 3u=0.

(9.) Show that any cubic equation which has only one real root can be
numerically solved by means of the equations of last exercise. In particular,
show that the roots of x®-qx—r=0 are /(g/3)coshu, 2,/(q/3) (cos m
cosh u=1sin §r sinh u), u being determined by cosh 3u=3r\/3/2./¢3.

(10.) Solve by the method of last exercise the equation #®+ 6x+7=0.

Express

(11.) tanh~lz+tanh—!y in the form tanh~1z.
(12.) cosh~!z+cosh™ly in the form cosh~!z.
(13.) sinh™!z —sinh—!y in the form cosh!z.

Expand in a series of hyperbolic sines or cosines of multiples of u:—
(14.) Cosh!0u. (15.) sinh7u. (16.) cosh®u sinh3u.
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Expand in a series of powers of hyperbolic sines or cosines of u:—
(17.) Cosh 10u. (18.) sinh 7u.
(19.) cosh 6 sinh 3u. (20.) sinh mu cosh nu.

Establish the following identities :—
(21.) tanh$ (u+v)-tanh 4 (u —v)=2sinhv/(cosh u + coshv).
sinh (v — v) +sinh  + sinh (v +v
(22) cosh Eu — ) +coshu+cosh(u+ v; =tanhu.
(23.) tanhu+tanh (3wi+u)+ tanh (37¢+u)=3tanh 3u,
cosh 2u + cosh 2v 4 cosh 2w + cosh 2 (u + v +w) =411 cosh (v + w).
(24.) Tan % (u+1iv) = (sin u+ i sinh v)/(cos u + cosh ).

(25.) Express Cosh?(u+ iv) + Sinh? (v + iv) in terms of functions of u and ».

Eliminate u and v from the following equations:—
(26.) x=acosh (u+1\), y=0bsinh (u+u).
(27.) ycoshu -« sinh u=a cosh 2u,
y sinh u + 2 cosh v =a sinh 2u.
(28.) r=tanhu+tanhv, y=cothu+cothv, u+v=c.

(29.) Expand sinh (u+ %) in powers of h.

(30.) Expand tanh—'z in powers of x; and deduce the expansions of
cosh~lz and sinh~!x. Discuss the limits within which your expansions are
valid.

(31.) Given sinhu/u=1001/1000, calculate .
I e
(32.) Show that the series = (T
R i |

sum is (22+1)/(z%-1) - 1/log x (Wallace, l.c.).

(33.) Prove that the infinite product cosh%cosh%cosh% ... is con-

> is convergent, and that its

vergent, and that its value is sinh w/u.
(34.) Show that
x—x71 2 2 2

logz= PRty ey e T I ad .
(Wallace, l.c.)
1 z-a 2 2 .
(35.) IfE_T e e PR m"’ show that P, differs

from 1/log « (in defect) by less than
{143 @2 g g1 3 gnhip,

Evaluate the following limits:—

(36.) (sinhx - sinx)/z?, £=0.

(87.) (sinh?mx — sinh®nx)/(cosh px — cosh qz), £=0.
(38.) (tan?z —tanh?z)/(cos x — cosh ), z=0.
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Show that, when r=0,

(39.) L{cosha(x+h)—coshaz}/h=asinhaz.

(40.) L{sinha (z+h)-sinhaz}/h=acoshaz.
(41.) L {tanha (z+ h) - tanh az}/h=a sech?ax.
(42.) L {cotha (z+h) - coth ax}/h= — acosech? azx.

(43.) Show that

1 u n1 u
ﬁcoth2—n _cothu—?@tanhgn,
1 21 u
ﬁ—coth u—21)2—ntanh2—n,

and state the corresponding formule for the circular functions (Wallace,
Trams. R.S.E., vol. vi.).

(44.) From the formuls of last exercise, derive, by the process of chap.
XXVIL, § 2, the following : —

1 , U n 1 u
G coth? o= coth?u — 212 o tanh? gn?

1 1 u
— = 2y—3 — 2 __ .,
2 coth?u )ll % tanh' an

(Wallace, l.c.)

In the following, O is the centre of the hyperbola x%/a?—y%/b%=1; 4 one
of its vertices; F the corresponding focus; P and P’ any two points on the
curve, whose excentric anomalies are v and %, and whose co-ordinates are
(z, y) (@, ¥'), so that z=acoshu, y=0sinhu, &c.; and N is the projection
of P on the axis a. Show that

(45.) Area ANP=}ab (sinh 2u — 2u).

(46.) Area of the right segment cut off by the double ordinate of P

b T
2 2 _ q2) — 1%
_a:c,\/(a: a?) — ab cosh 2

= ‘-Lz\/(zz—a”) —ablog

b z+a/(x% - a?)
a

(47.) Area of the segment cut off by PP’ =}ab {sinh (v’ —u) - (v’ - u)}.

Express this in terms of z, y, /, y'.

(48.) If R be the middle point of PP’, and OR meet the hyperbola in S,
the co-ordinates of S are {a cosh } (u+u’), bsinh § (u+u')}.

(49.) OS bisects the hyperbolic area POP'.

(50.) If PP"move parallel to itself, the locus of R is a straight line passing
through O.

(51.) If PP’ cut off a segment of constant area, the locus of R is a
hyperbola.
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GRAPHICAL DISCUSSION OF THE GENERALISED CIRCULAR
FUNCTIONS.

§32.] Let us now consider the general functional equation
w=Cosz or, as we may write it,
w + v = Cos (z + y7) (1),
where u, v, @, y are all real.
Since  Cos (# + z) = Cos z Cos yz — Sin 2 Sin 7 = cos # cosh y —
¢sin 2 sinh y, we have

u=coszcoshy, v=-sinzsinhy @);
and therefore
w?/cos® z — v*fsin®x = 1 3);
u?/cosh®y + ¢*/sinh?y =1 (4).

U0 N M L KK [T M NUju N (™ thK
-1 "] eR. PRIN.| BR. (+7"| BR.
cflc s b |R Bl IR b s cic s b (R Bls

1

Clc s Ip R BE [R b [Clc Is Ip |r B[E
olu IN Ivm IL kK IT M INOGlu IN Im L kIR
Fre. 12.

In order to avoid repetition of the values % and v, arising
from the periodicity of cos and sina, we confine z, in the first
instance, to lie between the axis of y and a parallel UCGeU to
this axis at a distance from it equal to = (Fig. 12).

If we draw a series of parallels to the y-axis within this strip,
we see, from equation (3), that to each of these will belong hau
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of a hyperbola in the w-plane (Fig. 18), having its foci at the
fixed points F and G, which are such that OF=0G=1. Thus,
for example, if in the z-plane F'P =}r and FQ =4, then to the
parallels LPL, NQN correspond the two halves LPL, NQN of
a hyperbola whose transverse axis is P =./2.
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To the paraliel MAM, which bisects the strip, corresponds
the axis of v (which may be regarded as that hyperbola of the
confocal system which has its transverse axis equal to 0); and
to the parallels KFK and UG U, which bound the strip, corre-
spond the parts KFK and UGU of the u-axis, each regarded as
a double line (flat hyperbola).

Again, if we draw parallels to the 2-axis across the strip, to
each of these will correspond one of the halves of an ellipse
belonging to a confocal system having # and G for common foci.
Thus to BRDSC and BRDSC equidistant from the 2-axis corre-
whose semi-axes are coshy and sinhy. In particular, to FPAQG
on the @-axis itself corresponds the double line (flat ellipse)
FPAQG.

Thus, to the whole of the first parallel strip between KOK
and U U corresponds uniquely the whole of the w-plane. Hence,
if we confine ourselves to this strip, (1) defines w and # each as
a continuous one-valued function of the other. To each succeed-
ing or preceding strip corresponds the w-plane again taken once
over, alternately one way or the opposite, as indicated by the
lettering in Fig. 12. w is therefore a periodic function of z,
having the real period 27 ; and z is a multiple-valued function
of w of infinite multiplicity, having two branches for each period
of w.

The value of z corresponding to the first strip on the right
of the y-axis is called the principal branch of Cos™w, and the
others are numbered as usual. We therefore have for the z-th
branch

Oos 1 w=2=(t+}+ (=) 3 m+ (=) Cos™w (5),

where Cos™'w is the principal value as heretofore ; and Cos™w
=z +vi, # and y being determined by (3) and (4), when » and v
are given.

It should be noticed that for the same branch of z there is
continuity from B to B not directly across the u-axis, but only
by the route BFB; whereas there is continuity from B to B
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directly, if we pass from one branch to the next. This may be
represented to the eye by slitting the u-axis from # to + o and
from G' to — 0, as indicated in Fig. 13. If we were to con-
struct a Riemann’s surface for the w-plane, so as to secure unique
correspondence between every w-point and its z-point, then the
Jjunctions of the leaves of this surface would be along these slits.
The reader will find no difficulty in constructing t.he’model.

Since to the line KFPAQGU (the whole of the u-axis) corre-
sponds in the z-plane the three lines KF, FPAQG, GU taken
in succession, we see that as w varies first from + oo to 1, then
from 1 to —1, and finally from —1 to — o, Cos™ w varies first
from o ¢ to 0, then from 0 to =, and finally from = to =+ 7
so that an angle whose cosine is greater than 1 is either wholly
or partly imaginary.

§33.] If w=S8inz, say

w + = "N8in (& + yi) (1),

then, as in last paragraph,
u=sinzcoshy, v=cosasinhy (2);
w?/sin® @ - v*/cos?z =1 3);
w?f/cosh?y + v*/sinh?y =1 (4).

The graphical representation is, as the student may easily
verify, obtained by taking Fig. 13 for the w-plane and Fig. 14
for the z-plane.

We have also, for the ¢-th branch of the inverse function,

Sin'w=z,=tr+ (- ) Sin~tw,
where Sin"'w =2 +yi,  and y being determined by equations
(3) and (4), under the restrictions proper to the principal branch
of the function.

§34.] If w="Tanz, say

w+ % ="Tan (z + yi) (1),
then (w + ) Cos (x + yi) = Sin (2 + y1),
that is,
(u cos  cosh y + wsin 2 sinh y) + ¢ (- wsin 2 sinh 7 + v cos  cosh ¥)
=sin & cosh y + ¢ cos z sinh ¥.
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Therefore
u cos  cosh y + v sin # sinh y = sin  cosh ¥,
—usin 2 sinh y + v cos # cosh y = cos @ sinh 3.
From the last pair of equations it is easy, if we bear in mind
the formula of § 27, to deduce the following :—
u=sin 22/(cos 22 + cosh 2y), v=sinh 2y/(cos 2z + cosh 2y) (2);
W+ +2ucot 22 -1=0 3);
W+ " —2vcoth2y+1=0 (4).
The graphical representation of these results is given by:
Figs. 15 and 16.
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When 2 is kept constant, the equation to the path of w is
given by (8), which evidently represents a series of circles passing
through the points (0, + 1) and (0, —1).

When y is constant, the equation to the path of w is (4),
which represents a circle having its centre on the vw-axis; and it
is easy to-verify that the square of the distance between the
centres of the circles (3) and (4) is equal to the sum of the
squares of their radii, from which it appears that they are
orthotomic.

If we consider a parallel strip of the z-plane bounded by
x=—1}m, &=+ 4w, we find that to this corresponds the whole
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w-plane taken once over. The corresponding values of z are
said to belong to the principal branch of the function Tan="w.

To the vertical parallels in the z-plane correspond the circles
passing through 7 and I in the w-plane, and to the horizontal
parallels correspond the circles in the w-plane which cut the
former orthogonally.

It should be noticed that 7 and I in the w-plane correspond
to + o and — o in the direction of the y-axis in the z-plane, and

-

that to 4 and J in the z-plane correspond the points at « on
the u- and v-axes in the w-plane ; also that there is no continuity
directly across /Ko or IK « in the w-plane, except in passing
from one branch of Tan~'w to the next.

For the ¢-th branch of the inverse function we have
Janw=z=¢r+Tan'w (5),
where the principal value Tan—'w is given by Tan~'w ==z + ¥,
2 and y being determined, under the restrictions proper to the
principal branch, by means of (3) and (4).
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§ 35.] It will be a useful exercise for the student to discuss
directly the graphical represertation of w =Secz, w = Cosecz,
and w=Cotz The figures in the w-plane for these functions
may, however, be derived from those already given, by means of
the following interesting general principle.

If Z be any z-path, W and W’ the corresponding w-paths for
w=j(z+yi) and w' = 1[f(x + yi), then W' is the image with respect
to the u-azis of the inverse of W, the centre of inversion being the
origin of the w-plane and the radius of inversion being unity.

This is easily proved; for, if (o, ¢), (o', ¢') be the polar
co-ordinates of points on W and W' ecorresponding to the point
(%, y) on Z, then we have

p(cos ¢ + 2 sin ) =f (2 + i),
p' (cos ¢’ +isin @) =1/f (z + yi).
Hence p (cos ¢ + 7 sin ) =1/p'(cos ¢’ + 7 sin ¢),
=(1/p") (cos (= ¢) + i sin (— ).

Therefore p=1/p', =—¢'+ 2km, which is the analytical ex-
pression of the principle just stated.

From this it appears at once that, if we choose for our standard z-paths
a double system of orthotomic parallels to the z- and y-axes, then the w-paths

for w=Cotz will be a double system of orthotomic circles, and the w-paths
for w = Secz and w=Cosecz a double system of orthotomic Bicircular Quartics.

Example 1. If u+vi=Sec (z+yi), show that
u=2 cos x cosh y/(cos 2z + cosh 2y);
v=2 sin z sinh y/(cos 2z + cosh 2y);
(u?+v2)2=u?lcos® x — v¥sin®x;
(u2+v2)2=u?[cosh? y + v?[sinh?y.
Discuss the graphical representation of the functional equation, and show
how to deduce the ¢-th branch from the principal branch of the function.
The curves represented by the last two equations are most easily traced
from their polar equations, which are
p2=2 (cos 2¢ — cos 2z)/sin? 2z,
p?>=2 (cosh 2y — cos 2¢)/sinh? 2y,
respectively.
Example 2. The same problem for u +vi=Cosec (x +y1).

Example 8. The same problem for u+vi=Cot (z + yi).
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§ 86.] Before leaving the present part of our subject, it will
be well to point out the general theorem which underlies the
fact that to the orthogonal parallels in the z-plane in the six
cases just discussed correspond a system of orthogonal paths in
the w-plane.

Let us suppose that f(z) is a continuous function of the
complex variable z such that for a finite area round every
point z=a within a certain region in the z-plane f(z) can
always be expanded in a convergent series of powers of z—a,
so that we have

J@)=f(a)+A,(z—a)+ A, (z—a)*+. . . (1),
where A4,, 4,,. . . are functions of @ and not of z.

Then we have the following general theorem, which is funda-
mental in the present subject.

If A, % C, the angle between any two z-paths emanating from
@ is the same as the angle between the corresponding w-paths

emanating from the point in the w-plane which corresponds
o a.

Progf.—Let z be any point on any path emanating from o,
(r, 6) the polar co-ordinates of z with respect to @ as origin, the
prime radius being parallel to the 2-axis. Let w and b be the
w-points corresponding to z and @, (p, ¢) the polar co-ordinates
of w with respect to b. Then we have

p(cos ¢ +2sin @)
—w-b=f(2) (),
=A,(z—a)+ A4, (z-a)+. . ., by (1),
=A,7(cos 0 +2sin 0) + Axr*(cos O +¢sin 0 +. . . (2).

I

Let now A, = (cosa, +2sina,), Ay=r,(cosa, + ¢sinay), . . .
then (2) may be written
p(cos ¢ + ¢ sin ¢) =7 {cos (a, + 6) + ¢ sin (o, + 6)}
+ 777 {208 (ag + 20) + 7 sin (ap+ 20)} +. . . (8).
Whence
pcos ¢ =77 cos (a; + 0) + ryricos (a,+20) +. . . (4);
psin ¢ =77 sin (o + 0) + 772 sin (a, + 20) +. . . (5).



324 ORTHOMORPHIC TRANSFORMATION CH. XXIX

In the limit, when 7 and consequently p are made infinitely
small, (4) and (5) reduce to
(p/r) cos p =7, cos (o, +6), (p/r)sin =7 sin(a, +6) (6).
Since p and » are both positive, these equations lead to
p/r=ry, and b=2kr+a, + 6 (7).
Hence, if we take any two paths emanating from o in directions
determined by 6 and ¢, we should have ¢ - ¢"=6—¢', which
proves our theorem.

We see also, from the first of the equatlons in (7 ), that if we
construct any infinitely small triangle in the z-plane, having its
vertex at @, to it will correspond an infinitely small similar
triangle in the w-plane having its vertex at b.

Hence, if we establish a unique correspondence between points
(u, v) and (z, y) in any two planes by means of the relation

u+vi=f(@+yi)=x(z y)+ iy (2, 9),
then to any diagram D in the one plane corresponds a diagram
D' in the other which is similar to D in its infinitesimal detail.

The propositions just stated show that, if we kave in the *
z-plane any two families of curves A and B such that each curve
of A cuts each curve of B at a constant angle o, then to these
correspond respectively in the w-plane families A' and B’ such
that each curve of A’ cuts each curve of B’ at an angle a.
Since the six circular functions satisfy the preliminary condition
regarding the function f(2+yi), the theorem regarding the
u-v-curves for these functions which correspond to = const.,
y=const. follows at once.

Ifd4,=0, 4,=0,. .., A,,=0, A,+0, then the above con-
clusions fail. In fact, the equations (7) then become
plrt=rn, ¢=2kr + o, +nb (7);

and we have ¢ —¢'=n (0-6').

In this case, as the point 2 circulates once round @, the point
w circulates # times round 4. That is to say, b is a winding
point of the nth order for z; and the Riemann’s surface for the
w-plane has an n-fold winding point at 6. We have a simple
example of this in the case of w= 2% already discussed, for which
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w =0 is a winding point of the third order. The points w=+1
and z=+0 are corresponding points of a similar character for
W = COS 2.

The theorem of the present paragraph is of great importance in many parts
of mathematics. From one point of view it may be regarded as the geomet-
rical condition that ¢ (z, y) + ix (z, y) may be, according to a certain definition,
a function of 2 +yi. In this way it first made its appearance in the famous
memoir entitled Grundlagen fiir eine allgemeine Theorie der Functionen einer
verdnderlichen complexen Grosse, in which Riemann laid the foundations of
the modern theory of functions, which has borne fruit in so many of the
higher branches of mathemadtics.

From another point of view the theorem is of great importance in
geometry., When the points in one plane are connected with those in
another in the manner above described, so that corresponding figures have
infinitesimal similarity, the one plane is said by German mathematicians to
be conform abgebildet, that is, conformably represented (Cayley has used the
phrase ¢ orthomorphically transformed”) upon the other; and there is a cor-
responding theory for surfaces in general. Many of the ordinary geometrical
transformations are particular cases of this; for example, the student will
readily verify that the equation w=a?/z corresponds to inversion.

Lastly, the theory of conjugate functions, as expounded by Clerk-
Maxwell in his work on electricity (vol. 1. chap. x11.), depends entirely on the
theorem which we have just established. In fact, the curves in Figs. 12,
13, 15, and 16 may be taken to represent lines of force and lines of equal
potential; so that every particular case of the equation u+vi=f (x +yi) gives
the solution of one or more physical problems.

ExEgrcises XVIII.

(1) Discuss the variation of sin~'u and sin—!iv, where u and v are real,
and vary from — o to +o.

Draw the Argand diagrams for the following, giving in each case, where
they have not been given above, the w-paths when the z-paths are circles
about the origin and parallels to the real and imaginary axes:—

(2.)) w=logz. (3.) w=expa.

(4.) w=coshz. . (5.) w=tanhz.

(6.) Show that cos™! (u+1iv)=cos~!U-icosh™1V;
sin~! (u+iv) =sin~! U+ cosh™1 ¥,
where 2U = /{(u+1)2+v2} —\/{(u-1)2+ 0%},
2V =a/{(u+1)2+ 02} + 4/ {(u— 1)+ 0%},
the principal branch of each funciion being alone in question.
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(7.) Show that the principal branch of tan=! (u +1v) is given by z +yi,
where y=4%tanh™1{2u/(x® + v%+ 1)};
and rz=%tan 1 {2u/(1l —u?-v?)}, if u?+0v2<1;

= *ir+}tan1{2u/(1 - u?-v?)}, if ul+02>1,

the upper or lower sign being taken according as  is positive or negative.

(8.) If u+vi=cot(z+yi), show that

w=sin 2x/(cosh 2y — cos 2z), v= - sinh 2y/(cosh 2y — cos 2z);
u?+v?-2ucot 22 -1=0, u%+v2+2vcoth2y+1=0.

(9.) If u+wi=cosec(z+yi), show that
u=2sin x cosh y/(cosh 2y — cos 2x), v= -2 cosz sinhy/(cosh 2y — cos 2z);
(u?+v?)? =u?[cos?x — v¥sin%y, (u?+v?)2=u?[cosh?y +v*[sinh?y.

Express the following in the form u + vi, giving both the principal branch
and the general branch when the function is multiple-valued :(—

(10.) Cosh™1(z+yi). (11.) Tanh™(z+ysi).
(12.) ;—iLog{(x+yi)/(z—yi)} (18.) Log Sin (z +y¢).
(14.) (cos 6+ sin 6)%. (15.) Log a8 ( +yi).

(16.) Show that the general value of Sin=!(cosec §) is (t+3) r+1ilog
cot} (tw+6), where t is any integer.

(17.) Show that the real part of Exp, {Log (1+1)} is e~™B cos (37 log 2).

(18.) Prove, by means of the series for Cos 8 and Sin6, that Sin26=2 Sin ¢
Cos 6.

(19.) Deduce Abel’s generalised form of the binomial theorem from
§§ 20, 22.

(20.) Show that

14 i C1 %+ g Co2?+ . . . ad
=(1+xz)™[cos{nlog (1+x)}+isin{nlog (1 +=)}].

(21.) Show that the families of curves represented by

sinzcoshy=X\, coszsinhy=u

are orthotomic.

(22.) Find the equation to the family of curves orthogonal to
cosnf=N\.

(28.) Find the condition that the two families

Az?+2Bxy+ Cy?=\, A'z?+2B'zy+ Cy?=p

be orthotomic.

(24.) If tan (x + iy)=sin (u+iv), prove that coth v sinh 2y = cot u sin 2.

SPECIAL APPLICATIONS OF THE FOREGOING THEORY TO
THE CIRCULAR FUNCTIONS.

§ 37.] In order to avoid breaking our exposition of the
general theory of the elementary transcendents, we did not stop
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to deduce consequences from the various fundamental theorems.
To this part of the subject we now proceed ; and we shall find
that many of the ordinary theorems regarding series involving
the circular functions are simple corollaries from what has gone
before.

Let us take, in the first place, the generalised form of the
binomial theorem given in § 15. So long as 1+3,0,7" is
convergent, we have seen that it represents the principal value
of (1+2)™ Hence, if z=7(cos §+¢sin6), where » is positive,
and —73H0PF +m, we have
1+ 32,C,7" (cos n + ¢ sin nb)

= (1 + 2r cos 0+ 7*)™2 (cos me + % sin ma),
where —3rPp=tan"?{rsin 6/(1 + r cos 6)} } + i
Hence, equating real and imaginary parts, we must have
1+ 3,Cpr"cosnd = (1 +2rcos 0 +7%)™ cos m¢p (1) ;
SpCpr™sin n6 = (1 + 27 cos 0 + 7*)™2sin m¢p  (2).

These formule will hold for all real commensurable values of
m, provided r<1.

When =1, we have

¢ = tan~* {sin 6/(1 + cos 9)} = 16,
and (1) and (2) become
1+ 3,0, cos n0 = 2™ cos™ 10 cos 1mb (1),
3Oy sin 26 = 2™ cos™ 10 sin 1mb (2).

These formulée hold for all values of 6 between — 7 and + =*,
when m>—1; and also for the limiting values — = and + =
themselves, when m>0.

§ 38.] Series for cos mp and sin m, when m is not integral.

If in (1) and (2) of last paragraph we put 6=}, and
r=tan ¢, so that ¢ must lie between — 3w and + }=, then
(1 + 27 cos 8 + 7*)™2 = sec™¢p ; and we find

cos mep =cos™ ¢ (1 — Oy tan’¢ +,Cs tantdp—. . . ) (8),
sin me = cos” ¢ (,C, tan ¢ — ,,Cy tan®p +. . .) (4).

* Since the left-hand sides of (1’) and (2') are periodic, it is easy to
see that, for 2pm — w6 2pm +m, the right-hand sides will be 2™ cos™ 46
cos 3m (6 - 2pw) and 2™ cos™ $6 sin ym (6 - 2pm) respectively, where 2™ cos™ 36,
being the value of a modulus, must be made real and positive.
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Whence 4
O tan ¢ — 0 tan®ep +. . . (5)
1-nCytan’ + ,Citan‘d—. . . ’
These formulee are the generalisations of formule (4), (5), (6)
of § 12. They will hold even when ¢ has either of the limiting
values + }, provided m>—1; so that we have
2m2 cog fmmw =1— 0o + nCa—. . .

2"2 gin ymr =50 —nCs+. . . .

tan m¢ =

Since
cos™ ¥ = (1— S0 )" = 1 + 3 (=)' (n_anCosin®s,

and the terms of this series are ultimately all positive, it follows
that the double series deducible from (8), that is to say, from
3 (= ) mChr cOS™ 7 ¢ sin* ¢ . by substituting expansions for the

~ cosines, satisfies Cauchy’s conditions (chap. xxvL, § 34), for
there is obviously absolute convergency everywhere under our
present restriction that — }r}¢d + in

Hence we may arrange this double series according to powers
of sin ¢.

The coefficient of (— )" sin* ¢ is

a=r
zo(m—zs)lz 01- -8 m023 ’
o=l

mm—2)...(m—2r+2
- 1.3). .. (ér—l) )E""“”“‘O"‘“"‘“’?O""

Now, by chap. xx1r., § 8, Cor. 5,

2(m—l)/208 (2r—1)/20r—s = (m+2r—2)/20 .
Hence the coefficient of (—)"sin™ ¢ is

mm—2) ... (m=-2r+2)(m+2r-2) ... (m+2)m
1.3...(@r-12...(2r-2)2r
_mr(m*-2% . . . (m? - 2r — 2%)
(27)! ’
Hence ;
cos m¢=1—ﬁzsin2¢+wsin4qs—. .. (8).

2! 4!
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In like manner, we can show that

sin m¢ = — smdz—ﬂn;]_—P)smgb
+m(m —lég(m 3)s1n5<i> e (D).
Also
mi—1 .
cosm¢=cos¢{1— a1 sin?¢
gm__]-l#n—_g).sul“(# R _} (8);
sin me = cos ¢ { sm¢—ﬂ”;'—22)sm3¢
+m(m 25)!(m ch)sm Sp—. . } 9).

The demonstration above given establishes these formule
under the restriction — }rP¢Pim. It can, however, be shown
that they hold so long as —ir}¢ 34w ; that is to say, so long
as the series involved are convergent.

Cauchy, from whom the above is taken, shows that by
expanding both sides in powers of m and equating coefficients
we obtain expansions for ¢, ¢, ¢°, &c., in powers of sin ¢.

Thus, for example, we deduce

lsmqb 1.3sin°¢ 1.3.
945 Y24

If we put 2 =sin ¢, this gives

122 1.82° 1.83.5a

sin”¢
7

¢= smqs+

-1 —T il
sin~* g = t33tsastaaer " (10).
In particular, if we put # =1, we obtain
1 1 1.3
”‘6{§+2‘3.23+2.4.5.25+' : } (11),

from which the value of = might be calculated with tolerable
rapidity to a moderate number of places. The result to 10
places is = =3'1415926536 . . .
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The important series (10) for expanding sin—!z is here demonstrated for
values of z lying between —1/4/2 and +1/4/2. It can be shown that it is
valid between the limits z= -1 and 2= +1.

The series was discovered by Newton, who gives it along with the series
for sinz and cosz in powers of z in a small tract entitled dnalysis per
Zquationes Numero Terminorum Infinitas. Since this tract was shown by
Newton to Barrow in 1669, the series (10) is one of the oldest examples of an
infinite series applicable to the quadrature of the circle.

Example 1. If m>0, and

c=2—m %0 mCpcos (m —2n) z,
n=

S= 2—mn§0 mChn 8in (m — 2n) x,

¢'=2-m 3 (-)*1,0C,cos (m-2n)x,
n=0
§'=2-m s (-)*1,,C, sin (m — 2n) z,
n=0
then, p being any integer,
1°.  C=(cos z)™cos 2mpmw, S=(cos )™ sin 2mpm,
from z=(2p-3%) w to x=(2p+ %) m.
2°, C=(-cosz)™cosm(2p+1)m, S=(-cosz)™sinm(2p+1)m,
from z=(2p+4%) 7 to x=(2p+ §) m.
3°. C'=(sinz)™cosm (2p0+%)m, S’ =(sinz)msinm (2p+3})m,
from z=2pm to x=(2p+1) 7.
4°, C'=(-sinx)mcosm(2p+3)m, S’ =(-sinz)™sinm (2p+3)m,
from z=(2p+1)w to 2=(2p+2)m.

These formule will also hold when m lies between —1 and 0, only that
the extreme values of x in the various stretches must be excluded. (Abel,
Euwres, t. 1., p. 249.)

If we multiply (1) and (2') above by cos a and sin a respectively, and add,
we obtain the formulae

cos a + Z,,C,, cos (a — nd) = 2™ cos™ 30 cos (a — ymb +mpr),
wherein it must be observed that cos™36 is the modulus of (14 27cos @ +7r2)m?
when r=1, and must therefore be always so adjusted as to have a real positive

value.
From the equation just written, Abel’s formule can at once be deduced

by a series of substitutions.
Example 2. Show, by taking the limit when m=0 on both sides of
(1) and (2) above, that the series (1) and (2) of § 40 can be deduced from the
generalised form of the binomial theorem.
Example 3. Sum to infinity the series =n3,,C,, sin™ 0 cosnd. This series
is the real part of Zn?,,C, sin™ 0 (cosnf+isinnb). Hence
S=R[Zn?,C,sinf (cos 6 + 1 sin §)*],
=R [{m?sin36 (cos 6+ sin 6)>+ m (3m — 1) 8in? 0 (cos 0+ sin 6)?
+m sin 0 (cos 6 +i sin 6)} {1+ sin 0 (cos 6 + 1 sin §) } 3],
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by Example 5 of chap. xxvir., § 5,
=[m? sin3 @ cos {30 + (m — 3) ¢} +m (3m - 1) ein? 6 cos {26 + (m - 3) ¢}
+msin 6 cos {6+ (m ~3) ¢}] (1+2 sin 6 cos 6+ sin2 g)m—312,
where ¢ =tan—1{sin?0/(1+sin 6 cos 6)}.

§ 39.] Formulw deduced from the Exponential Series.
From the equation

& (cosy +isiny)=1+3 (2 +yi)"/n!,
putting =7 cos 6, y =7 sin 6, we deduce
€r 058 {cos (rsin 6) + ¢ sin (r sin 6)} = 1 + 3™ (cos 6 + 7 sin nb)/nl.
Hence .
7080 cog (r sin ) =1 + 37" cos nb/n! (1)
er ¢80 sin (7 sin 6) = 3 7" sin nf/n! (2);
which hold for all values of  and 6.
In like manner, many summations of series involving cosines
and sines of multiples of # may be deduced from series related
to the exponential series in the way explained in chap. xxvrir,

§8.

Thus, for instance, from the result of Example 3, in the paragraph just
quoted, we deduce '

S(B3+23+. . . +n) a?nl =" {3 cos (6 + 7 sin 6) +§r2 cos (26 +7 sin 6)
! +273 cos (36 +7sin ) + % cos (40 + 7 sin 6) }.

§40.] Formule deduced from the Logarithmic Series. Since
the principal value of Log(l+2) is given by Log (1 +2)=Ilog
|1+2z|+7amp (1 +2), and since the series z—2%/2+2%/8—. . .
represents the principal value of Log (1 + 2), if we put z=7 (cos 6
+¢sin 6), we have

log (1 + 27 cos 6 + 72)2 + ¢ tan~* {r sin 6/(1 + r cos 6)}
=3 (=)"'r" (cosnl + ¢ sin nb)/n,
where — iw}tan=! {rsin 6/(1 + 7 cos 6)} 4=, that is, the prin-
cipal value of the function tan~' is to be taken.
Hence we have the following :—
Llog (1 +27cos b +7%) =3 (- )'r"cos nb/n (1);
tan~ {r sin 6/(1 + 7 cos 0)} = 3 (= )*~'+" sin nb/n (2).
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Although, strictly speaking, we have established these results
for values of 6 between —7 and += both inclusive, yet, since
both sides are periodic functions of 6, they will obviously hold
for all values of 6, provided r<1.

If r=1, (1) and (2) will still hold, provided 6+ ; for the
series in (1) and (2) are both convergent, and we have, by
Abel’s Theorem,

cos 0 —%cos 26 + L cos80—. . .= L Llog(1+2rcosf+r%,
r=1

=log (2 cos 16) 3);
sin @ —3sin20+1sin36—. . . =tan"!{sin 6/(1 + cos 6)},

=tan~! {tan 1 (0 + 2%x)},

=30+ km (4),

where £ must be so chosen that 16 + kr lies between — }r
and + 4w Thus, if 6 lie between — = and +m, £=0, and we
have simply

sinf—4sin20+3%sin30—...=16 4).

In particular, if we put 6 = 4=, we get
Ir=1-3+3-3+3-Trtds+. .. (5),

which is Gregory’s quadrature ; see § 41.

When 6=+ (2p+1)r, the series in (3) diverges to — o, and the right-
hand side becomes log0, that is —w, so that (3) still holds in a certain
sense.

The behaviour of the series in (4) when 6= % (2p+1) = is very curious.
Let us take, for simplicity, the case 6= +m. With this value of § we have
for values of 7 as near unity as we please tan—! {rsin/(1+ cos 6)}=0.
Hence, by Abel’'s Theorem, when f==+m, sinf-4sin20+. . .=0, as is
otherwise sufficiently obvious.

On the other hand, for any value of 8 differing from + = by however little,
we have L1 tan=! {rsin 6/(1+rcos 6)} =46. Hence, again, by Abel’s Theorem,

r—

for § = =7 ¢, where ¢ is infinitely small, we have
sinf—-4sin20+. . .=x}r=x1¢.

The series y =sin 6 —3sin 20 +. . . is therefore discontinuous in the neigh-
bourhood of #= %= ; for, when §= £, y=0, and when ¢ differs infinitely
little from =+, y differs infinitely little from /2. This discontinuity is
accompanied by the phenomenon of infinitely slow convergence in the
neighbourhood of r=1, #=%m; and the sudden alteration of the value of
the sum is associated with the fact that the values of the double limits
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L L tan!{rsing/(l+rcos@)} and L L tan~!{rsin 8/(1+7 cos6)}
r=10=xm f=xm r=1
are not alike.
When 6 lies between 7 and 3w, we may put 6=2mr+6’, where 6’ lies
between —m and +m, then, for such values of 4, we have
y=sing —4%sin26'+ . . .,
=36, as we have already shown,
=30 -

Hence, however small ¢ may be, we have, for =7+ ¢, y=3%¢ - 3w. But,
as we have just seen, for §=m — ¢ we have y= - 3¢+ 3w. Hence, as 0 varies
from 7 — ¢ to m+ ¢, y varies abruptly from -4¢+34m to $¢p—4m. In other
words, as @ passes through the value m, y suffers an abrupt decrease
amounting to m*,

We have discussed this case so fully because it is probably the first
instance that the student has met with of a function having the kind of
discontinuity figured in chap. xv., Fig. 5. It ought to be a good lesson
regarding the necessity for care in handling limiting cases in the theory of
infinite series.

§ 41.] Gregory's Series. If in equation (2) of last paragraph
we put 6= 4=, we deduce the expansion
tan~tr=r—3r+ 15—, . . (6),
where tan~'s» represents, as usual, the principal value of the
inverse function, and —13r}1.
In particular, if =1, we have

r=4(1-3+1-...)

The series (6), which is famous in the history of the quadrature of the
circle, was first published by James Gregory in 1670; and independently,
a few years later, by Leibnitz. About the beginning of the 18th century, two
English calculators, Abraham Sharp and John Machin (Professor of Astronomy
at Gresham College), used the series to calculate = to a large number of places.
Sharp, using the formule §r=tan-11//8=(1/s/3){1-1/3.83+1/5.32—. ..},
suggested by Halley, carried the calculation to 71 places; that is, about
twice as far as Ludolph van Ceulen had gone. Machin, using a formula
of his own, for long the best that was known, namely, }r =4 tan"11/5
—tan—11/239, went to 100 places. Euler, apparently unaware of what
the English calculators had done, used the far less effective formula
}r=tan-!}+tan—14. Gauss (Werke, Bd. 11, p. 501) found, by means
of the theory of numbers, two remarkable formule of this kind, namely :—

3}r=12tan"11/18 + 8 tan—11/57 — 5 tan—11/239,
=12tan"11/38 +20 tan~1 1/57 + 7 tan—1 1/239 + 24 tan—1 1/268,

* The reader should now draw the graph of the function y, for all real
values of 6.
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by means of which m could be calculated with great rapidity should its value
ever be required beyond the 707th place, which was reached by Mr Shanks
in 1873 !*

Exgrcises XIX.

Sum the following series to infinity, pointing out in each case the limits
within which the summation is valid:—

.

2) =

(3)

)
(6.
(7)
8
(9)
(11.)
(12.)
(13.)
(14.)
(15.)

(16.)
7)

(18.)

(19.)

(20.)

1—1c080+—icos20— 22
oo 1 godt LS 080,
&sa_'_lcﬂ_l_l 3cos50+. s
1 2 38 2.4 5 !
result 3 cos™1 (1 -2 sin 6).
3 (2n - 1) (2n - 3) cos nd[n! (5.) Zsinnf/(n+2)n!

e~%gin 6 - je 32 sin 894 2e~5%8in 50 -,

cos 36 + .

1 1
1s1n0—2—551112(9+3 4811130—. .

8in? 6 — § sin%? 20 + 3 8in230 —. . .;
result % log sec 6.

S cos2nb/n(n-1). (10.) Zsinnb|(n? -
}sin 68in - 1 sin 20 sin29 + 3 8in 39 sin®6~. . . .
cos (a+ B) — cos (a+3p)/3! +cos (a+58)/5! - . . . .
cosf—3cos20+3%cos30—. . .;

result % log (2+2 cos 6), except when 6=(2p+1) .
cos @+3cos20+3cos30+. . .3

result —}log (2 —2cos 6), except when 6 =2pm.

8in f+3sin20+3sin36+. . .;

result =0, if §=0; =,},(1r—0), if0<0pm; &e.
sinf -3 s8in 36+ 3} sin 56 — . .
z cos 6 — 3% cos 36+ taxPcos 56— . . .

result 4 tan—! {2x cos 0/(1 %)},
cosfcos¢p—% cos20cos2¢p+4cosd3fcosdp—. . .
result } log {4 cos } (0+¢) cos } (0 - ¢)}.

x cos 0 cos ¢ — 3x3 cos 36 cos 3¢ + 35 cos 56 cos 5¢p —

result } tan—1[4x (1 — 2?) cos 6 cos ¢/{(1 + x?)2 — 4a? (cos“’ﬁ cos2 )}

Show that log (1+2 + 22) =23 (- )*1 cos }nm z*[n, provided |z|<1,

and examine whether the result holds when |x|=1.

* For the history of this subject see Ency. Brit., art. ‘‘Squaring the
Circle,” by Muir.
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(21.) Show that, under certain restrictions upon 6,
log (1+ 2 cos §) = — 2Z cos nm cos nbfn;
0= — = cos ynmr sin nf/n.
(22.) Show that

(Newton, Second Letter to Oldenburg, 1676.)

ExEercises XX,

(1.) Caleulate 7 to 10 places by means of Machin’s formula.

(2.) Show that, if z<1,
(tan—1z)?

=22~ (1+1/3)z42+. . (=) {1+1/3+. . .+1/2n-1)}an. .. .

Does the formula hold when z=1?

(3.) Expand tan~!(z+cota) in powers of .

(4.) Deduce the series for sin~!z from Gregory’s series by means of the
addition theorem for the binomial coefficients.

(5.) If z lie between 1/4/2 and 1, show that
J(1-a2) {1 11-22 1 (1-a2?)? }

-a + N
T 3

sin~lz=mw—
z? 5 x4

(6.) Show that § 38 (10) is merely a particular case of (7).
(7.) Show that

[} 2 2.4 2.4.6
= = 30+~ sin’ 70+. . .
ey sm0+3sm 0+3 5sm l.‘?+3 5 7sm 6+
(Pfaff.)
1 sin26 2 sin%d 2.4 sinf9 -
—e=""42 = Ce 5
6) 6=—5 +3 = t35 6 T (Stainville.)
9.) 03=sm30+~ —(1+ )sin50+. .
8.5...(2n-1) 3 1 1 I
Y46 2n+1(1+32+ +(2n-1)2)"’"1 0+. ..

(10.) 04=sin40+§.§(1+2—12)sin60+. ..

4.6...(2n-2) 1 1 . on
5 7 (2n 1) (1+ “+. +(T_T)2)Blﬂ 0+. .. .
(11.) Deduce from § 38 (6) and (7) an expression for §™[sin™@ in powers
of sin 6.

(12.) 1If sin §=x sin (0 +a), show that 6 +rr =Za™sin na/n.
(18.) If c2=a?%-2abcos C +1? then
logc=log a — (b/a) cos C -} (bla)?cos 2C — % (b/a)®cos8C—. . . .
(14.) Show that
-n-3 (n 4) (n-5). (n-5)(n-6) n—7) _1+(-)"*2cos fnr

1 T2 2.3 2.3.4 ! n
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Show that

. . 40 .40 i
(15.)* 62=sin%0 + 22 sm4§+24 sm“2—2+26 sm‘§,+. .
(16.)* u?=sinh?u - 22sinh* 1,‘ -2 sinh“g2 —26 sinh“g—3 -.

(17.)* 20 sm0+3sm’3+32sm ﬂ

32
18.)* 3 —sinf= ! sin 3™ 0+E—i sin3 3m-14,
( * 4 - 4 gm— -1 3m —1
(19.)* % s 0= Z 3 31) cos33m-1¢,

* See Laisant, ¢ Essai sur les Fonctions hyperboliques,” Mém. de la Soc.
de Bordeaux, 1875,



CHAPTER XXX.

General Theorems regarding the Expansion of
Functions in Infinite Forms.

EXPANSION IN INFINITE SERIES.

§1.] Cauchy's Theorem regarding the Expansion of & Function
of & Function.

17
Y=+ 2, 2" (1),
the series being convergent so long as |z|< R, and if
2 =by + Zb,y" (2),

this series being comvergent so long as |y |<8, then from (1) and
(2) we can derive the expansion
z=0,+3C,2",
provided z be such that |z|< R, and also
||+ 2| an]|2*<8S.

This theorem follows readily from chap. xxvr., § 14 and 34.
We have already used particular cases of it in previous chapters.

§2.] Ezpansion of an Infinite Product in the form of an
Infinite Series.

If Su, be an absolutely convergent series, and 3w, ,Su, u,,

oy U Uy, . Uy, . . . denote the sums of the products of its
Jirst n terms taken one, two, . . ., 7, . . ., at o time, then
L 3u,=T, L, Suu=T, ..., L,3uu,...u.=T,,..
n=w n=w n=w
where Ty, Ty, . . ., Ty, . . . are all finite.

Also the infinite series 1+ 3T, is convergent ; and converges
to the same limit as the infinite product IL (1 + u,).
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After what has been laid down in chap. xxvr., it will
obviously be sufficient if we prove the above theorem on the
assumption that all the symbols w, ,, . . ., %,, . . . represent
positive quantities. In the more general case where these are
complex numbers the moduli alone would be involved in the
statements of inequality, and the statements of equality would
be true as under.

Since w,, %, . - ., s, . . . are all positive, we see, by the
Multinomial Theorem (chap. xxiL, § 12), that

0<, 3ty .« Up<(y+Ug+. . . +u,)/r!
<(uy+u+. . .+uy+...ado)/r!
<S’/’I‘!, (1)’

where 8§ is the finite limit of the convergent series Swu, ; and the
inequality (1) obviously holds for all values of » up to r=n,

however great n» may be.
Therefore ,Su, 4, . . . % has always a finite limit, 7' say,

such that
0P T, p8/r! (2).
By (2), we have

0<1+ T+ To+. . .ado<1+8/11+8%2+. . .adoo,
that is,
0<1+ §Tn<es (3).
1

Hence 1+37, is a convergent series, whose limit cannot

exceed €5,
Again, since L,3u, 4, . . . #,= T, when n= o, we may write

a2 Uy o o Up=(1+,4,) T, (4),
where L, A,=0 when n=o0.
Hence, A4, being a mean among 14,, 24, . . ., zd,, and
therefore such that LA4,=0 when n=o, we have

ﬁ(1+un)51+n2ul+n2u1u2+. et W SU U . . Uy

1 n
=1+(1+4,)3T, (5).

1
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If in (5) we put n= o0, we get

O(1+uw)=1+L{1+4,)3T,
1 © 1
=1+37, (6),
1

since LA4,=0, and §.Tn is finite.
1

This completes the proof of our proposition.

Cor. 1. If Su, be absolutely convergent, then, T, having the
above meaning, 1 + 32T, will be convergent for all finite values
of ; and we shall have

i 1+ zu,)=1+ §w"Tn (7).
1 1

This follows at once by the above, and by chap. xxvr., § 27.
Cor. 2. Let
Uy = qVo + L+ 0224 . . (8),
where 0y, 01, &c., are independent of x, and the series on the
right of (8) may either terminate or not; and let
Uy = ||+ a0 || 2| + |[wve] |22+, .. 9).
Then, if Su, be convergent jfor all values of x such that
|| <p, it follows that for all such values II (1 + u,) is convergent,
and can be expanded in a convergent series of ascending powers of 2.
For, if 7, have the meaning above assigned to it, then it will
obviously be possible to arrange 7, as an ascending series of
powers of #. Moreover, if we consider the double series that
thus arises from 1+37),, we see that all Cauchy’s conditions
(see chap. xxvi, § 35) for the absolute convergence of this
double series are satisfied. Hence we may arrange 1+ 37, as
a convergent series of ascending powers of .
Example 1. To expand (1+z)(1+2?)(1 +x4)(1+:::8) . . .inan ascending
series of powers of . (Euler, Introd. in Anal. Inf., § 328.)
The series Z|xz|*" is obviously convergent so long as |1;|<1 Hence, so
long as |z|<1, we may write
L+z)(L+2)(L+af)(1+28). . .=14+Cz+Cor®+. . .+ Cpa®+. . . (10).
To determine the coefficients C,, C,, C,, we observe that, if we multiply
both sides of (10) by 1 -z, the left-hand side becomes L (1-z?"), that is,

n=wo
1, since {x|<1. We must therefore have

1/(1-2)=1+Cix+ Cox?+. . .+ Cpa®+. . .,
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that is,
l+z+224+. . .42+, . .=1+C2+Cox?+. . .+ Cpa™+. ..,
therefore Ci=Cy=...=Cp=...=1

Another way is to put 22 for « on both sides of (10), and then multiply by
(14+z). We thus get
1430 ar=14z+C a2+ . . .+ Cpa®+ Cpa™i. . .5
whence Con=Cont1=Cpn, C;=1,
from which it is easy to prove that all the coefficients are unity.

Example 2. To show that
(L+wz)(1+222) . .. (L+a™2)
_ m (L-z™)(1-am 1) ... (1-am "t
B Ay § g v e )
(Cauchy, Comptes Rendus, 1840.)

U t1)/2 g (]_)-

Let
(L+w2)(1+2%2) . . . (L+2™2)
=14d12+4,224+. . .+ A2+ . . o+ 42" (2),
where 4,, 4,, . . . are functions of £ which have to be determined.
Put zz in place of z on both sides of (2), then multiply on both sides by
(1+ z2)/(1+2™+1z), and we get
(1+x2)(1+222) ... (1+2™2)
={14+ (1 +4,) 32+ (4 + dg) 2222+ . oo+ (g + 4,) T2+ A amtigmily,
X {l—gmtlgpg2mtl 24, (= )rgrmtlgng L) (3).
Hence, arranging the right-hand side of (3) according to powers of 2,
replacing the left-hand side by its equivalent according to (2), and then
equating the coefficients of 2" on the two sides, we get
Ap=(dp+dy)2"~ am it (4, + Ay o) a3t
T+t (A, o+ A,_g) a2
(=) a0 (4 + 1)
( — )n zn(m+1);
whence
1-2"
(L —am)
Putting n — 1 in place of n in (4), we have
1—gn1
xn-—l(l _ zm)
If we multiply (5) by a™ and add (4), we derive, after an obvious
reduction,

Ap=Ap q— Ay @™+ 4y gz — . . . (- lal-Um (4),

dpy=4po- An—axm+An—4x2m - (- )n—2x(n—2)m (5)'

(1 - 2%) = (& - &"4) Ay (6.

In like manner,
(L-2r )4, =@t -am) 4, , (69),
(L-am2) 4, = ("2 -a") 4, 4 (69),

(i - x).Al = (z - x;nﬂ) . (6,)-
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Multiplying (6,), (6,), - - ., (6,) together, we derive
_ ($ — z’nﬂ}']) (.’E’l - .’L""H'l) V. (_Tn - zm+1)
An= Ql-a)(l-x?)...(1-2" ),
_ (1 — .’t""') (1 — xm—l) Ve (1 - xm—’n+]) R (8),

1-x)(1-2%...(1-2")
which establishes our result.

If |xz|<1, the product (1+z2)(1+z2%2). .. will be convergent when
continued to infinity, and will, by the theorem of the present paragraph, be
expansible in a series of powers of z. The series in question will be obtained
by putting m=c0 in (1). We thus get

9),

© nint1)/2
2 = "
(L+az)(L+2%2). . adw =1+ 2 g 7

an important theorem of Euler’s (Introd. in Anal, Inf., § 306).

§38.] Ezpansion of Sech x and Sec 2.
We have, by the definition of Exp ,

2/(Exp @ + Exp — #) = 1/(1 + 2a™/(2n)!) (1).

Hence, if y =32"/(2n)! (2),
2/(Expa+Exp-2)=1/(1+y),

~143 (=) ®).

The expansion (3) will be valid provided |y|<1; and the
series (2) is absolutely convergent for all finite values of .
Hence, if ¢=|z|, it follows from § 1 that the series (3) can
be converted into a series of ascending powers of 2 provided

%1 &/(2m)! <1 ().

This last condition involves that
f+ef)—1<1;
that is, that £<log (2 + /3).

This condition can obviously be satisfied ; and we conclude
that 2/(Exp # + Exp - #) can be expanded in a series of ascending
powers of # provided | z| do not exceed a certain finite limit.

Since the function in question is obviously an even function
of @, only even powers of # will occur in the expansion. We
may therefore assume

2/(Exp z + Exp —z) =1+ 3 (- " E,2™/(2n)! (5).
To determine E,, E;, . .., we multiply one side of (5) by



342 EULER'S NUMBERS CH. XXX

% (Exp 2 + Exp — z), and the other by its equivalent 1 + Sa™/(2n)!;
we thus have

1={1 +3 (=Y E,2®/(2n)} {1 + Sa/(20)]}  (6).

E, E, ... must be so determined that (6) becomes an
identity. We must therefore have

1 E, E, E,
@n)lol ~ @rn-2)2! T @n—4a)idl " (= )0'(272)' O
or,

En = 2n02En—1 - zn(/ydEn—2 +.o.0. ( - )n_22n02n—2El + ( - l)n_l (8)-
The last equation enables us to calculate K., K., E;, . ..
successively. We have, in fact,
E=1; E,=6E\ -1; HE,=15E,—15E,+1;
E,=28E,-10E,+28E,-1; &ec.

whence
E= 1, E,= 2702765,
E,= 5, E, = 199360981,
E,= 61, Ey= 19391512145,
E,= 1385, Ey=2404879675441,
E;=50521,-

These numbers were first mtroduced 1nt0 a.na,lyms by Eulel
and the above table contains their values so far as he calculated
them.

Since the constants &, K,, . . . are determined so as to make
(6) an identity, (6), and therefore also (5), will be valid for all
values of z, real or complex, which render all the series involved
convergent. Hence, since 1+ 32™/(2n)! is convergent for all
values of z, (5) will be valid for all values of # which render the
series 1+ 3 (— )" E,2™/(2n)! convergent. We shall determine
the radius of convergency of this series presently. Meantime
we observe that (5) as it stands may be written

Sechz=1+3 (- )" W2 (2n)! . 9);
and, if we put <z in place of z, it gives
Secz =1+ 3E,2™/(2n)! (10).

* See Imst. Calc. Diff., § 224: the last five digits of E, are incorrectly
given by Euler as 61671.

For a number of curious properties of the Eulerian numbers see Sylvester,
Comptes Rendus, t. 52; and Stern, Crelle’s Jour., Bd. Lxxix,
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Cor. Seckx and Sec*z can each be expanded in a series of
even powers of x.

"The possibility of such an expansion follows at once from the
above. The coefficients may be expressed in terms of Euler’s
numbers. We may also use the identity 1= (1 + 34,2™/(2n)})
cos” z; expand cos™ z first as a series of cosines of multiples of z;
finally in powers of #; and thus obtain a recurrence formula for

calculating 4,, A,, . . . The convergency of any expansion thus
obtained will obviously be co-extensive with the convergency of
(10).

§ 4] FEapansion of Tanh z, 2 Cothz, Cosechz; Tan 2,
2z Cot z, Cosecx*.
We have already shown, in chap. xxvIir, § 6, for real values
of z, that
z/(1-e®) =1+3a+ 3 (- ) B,a™/(2n)),
the expansion being valid so long as the series on the right is
convergent. In exactly the same way we can show, for any
value of # real or complex, that
z/(1-EBxp—az)=1+32+32 (=) B,2™/(2n)! (1),
where Exp — 2 is defined as in chap. xx1x., and z is such that
|#| is less than the radius of convergency of the series in (1).
From (1) we derive the following, all of which will be valid so
long as the series involved are convergent :
2 (Exp #— Exp — 2)/(Exp « + Exp — 2)
= 42/(1 — Exp — 42) — 22/(1 — Exp — 22) — 2,
=3 (-)tem (2™ —1) B,a™/(2n)!  (2);
2 (Bxp 2 + Exp - 2)/(Exp« - Exp — )
=z/(1—Exp - 22) — z/(1 — Exp 2z),
=1+3 (- )12 B,a™/(2n)! 3);
2z/(Bxp # — Exp — #) =22/(1 - Exp — ) - 22/(1 - Exp - 22),
=1+23 (=) (2"'— 1) B,a™/(2n)! (4).
From these equations, we have at once
Tanh z =3 (- )**2" (2" -1) B,2*Y/(2n)! (5);
z Cothz =1+ 3 (- )" 2™ B,a*/(2n)! (6);
2 Cosech # =1 +23 (- )" (2™ —1) B,2™/(2n)! (7).

* Euler, lLc.
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Ifin (2), (3), and (4), we replace z by iz, we deduce
Tan z = 32% (22" - 1) B, 2™ /(2n)! (8);
2 Cot =1 —32% B,2*/(2n)! 9);
@ Cosec =1+ 25 (21— 1) B,a™/(2n)!  (10).

Cor. Each of the functions (Tank )", (x Coth )", (x Cosech x)",
(Tan z)*, (z Cot 2)", (x Cosec z)" can be expanded in an ascending
series of powers of .

ExEercises XXI.

(1.) If 0=gdu (see chap. xxix., § 31), show that
0=ayu—-agud+azub—. . .,
u=a,0+a;6%+az6°+. . .,
where @y, =E,[(2n+ 1)
(2.) Find expressions for the coefficients in the expansions of Sin®z and
Cos™ z.
(8.) Find recurrence-formule for calculating the coefficients in the
expansions of (zcosecxz)® and (sec )™
In particular, show that
Sec2ptl g — E SpEp+8SpaBppnt+. o + 81 Epip it Eny . % ,
o @)l @)l
where S, denotes the sum of the products r at a time of 12,32,52,. . ., (2p - 1)%
(Ely, American Jour. Math., 1882.)

(4.) If |z|<1, show that
(1+22)(1+24(1+28)...ad @ =1+Zz"H)(1-2?)(1—2%) ... (1-a%™),
(6.) If |x|>1, and p be a positive integer, show that
@ nnt+1-2p)2

I+ 2 ey E- . e

(6.) Show that the Binomial Theorem for positive integral exponents is
a particular case of § 2, Example 2.

(7.) Show that

(1+zz)(L+2%2) . . . (L+2°m12)

1+ 3 (1—a?m) (1 —a?m-2), . . (1 - 2?m—2nt2)
B R P Y T T
(Cauchy, Comptes Rendus, 1840.)

:c"2 2",

(8.) Show that
1 _ non(L=2™) (1—a™l), . (1 -gmtn-l)
-2, (-as) T i a-a...a-a) '
also that, if |z|<1, |2z| <1,
1/(1-zz)(1-2%2)...ad 0 =1+Zz2?/(1-z)(1-2%)...(1-2z").
(Euler, Int. in Anal. Inf., § 313.)
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(9.) If m be a positive integer (1 — ™) (1—a™1). .. (1 -z™ ") is exactly
divisible by (1-2) (1 -2?%) . . . (L-2a").
(Gauss, Summatio quarumdam serierum singularium,
Werke, Bd. 11., p. 16.)
—m —gm-1), . (1 - gm—ntl
(10) 1t flam=14+2 (- (”‘1_);1)(1“42; - .((l—a;") ), where ||
>1, show that
f (=, m)=f(z, m-2\) (L —a™ ) (1-am-3) ., . (1-am-2Atl)
1_gm-l 1_gm-3 1_gm-5
i =S g SR pape ad o.
Hence show that, if || <1, then
1-22 1-2% 1-26 a
T T i e
(Gauss, Ib.)

1 +Zzn (nt+1)/2 =

(11.) Show that, if m be a positive integer,
. 1-a?m) (1 - 22m-2) , ., (1 - g2m—2+3)
(I+z)(1+2%) ... (1+zm)=1+2x"( @ )—(a:2) .. .((1 =)
(Gauss, Ib.)
(12.) Show that
1
(I-=z2)(1-a%2) . . . (1-a?mlz)
(1 - a2m) (1 g2mt2) | |, (1 g2mion=2)
1-2z3)(1-2% ... (1-2™)

=14 Zame"
Also that, if |#]<1, and |22 |<1,

1/1-=zz)(1-2%2) . . . ad @ =1+3a”=?(1-2?) (1-2%) . .. (1-2™).
(13.) Show that, if |z|<1,

1/l-=z)(1-2®)(1-2% ...ad o =(1+z)(1+2?) (1+2%) ... ad .
(Euler, Le., § 325.)
(14.) If |z|<1,
<+
(l-2)(1-2Y)(L-23) . ..ad o= 3 (-)rabrtine,
(Euler, Nov. Comm. Pet., 1760.)
(15.) If |z|<1,
log {(1-2)(1-22) (1-2?) . .. ad o }=—Z[(n)2"/n,
1
where [(n) denotes the sum of all the divisors of the positive integer n; for

example, [(4)=1+2+4.
Hence show that

= ?j(n)x".

(Euler, Ib.)
(16.) If d(n) denote the number of the different divisors of the positive
integer 7, and || <1, show that

@ @ N
n —
?d(n)x _E) T

(Lambert, Essai d’drchitectonique, p. 507.)
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Also that

® ® 1+an
n— n
Zl]d(n)z _?a: (1—.1;”')'

(Clausen, Crelle’s Jour., 1827.)

(17.) If |z |<1, show that

m 3 b _a:+:c2+a:3+
Iz 1212 Tl yra Tzt -
(18.) Santi(1 - g2n )2 = Spgn/(1 - a2n),
(=) 1nan/(1+a%) == (=) 1zn/(1+ zn)2

(19.) The sum of the products r at a time of z, 22, . . ., 2" is

g2 (741 — 1) (27 +2-1) . . . (2" -1)/(x-1) (22-1) . . . (2" -1).

(20.) If S, be the sum of the products r at a time of 1, z, ..., 271, then
Sp=8p_pz— (D (n=2r)2,

(21.) Show that, if « lie between certain limits, and the roots of az?+ bz +¢
be real, then (pz+q)/(az®+bz+c) can be expanded in the form u,+
2 (u,z™+vn2~") ; and that, if the roots be imaginary, no expansion of this
kind is possible for any value of z.

ON THE EXPRESSION OF CERTAIN FUNCTIONS IN THE FORM
OF FINITE AND INFINITE PRODUCTS.

§ 5.] The following General Theorem covers a variety of
cases in which it is possible to express a given function in the
form of an infinite product; and will be of use to the student
because it accentuates certain points in this delicate operation
which are often left obscure if not misunderstood.

Let f(n, p) be a function (with real or imaginary coefficients)
of the integral variables n and p, such that L f(n, p) is finite for

peco

all finite values of n, say L f(n, p)=f(n),; and let us suppose
y L p

that for all values of n and p (n<p), however great, which exceed
o certain finite value, | f(n, p)|/|f(n)| is not infinite.

Then L T {1+f(n p)}=11{1+f(0)} (),

provided 3| f(n)| be convergent (that is, provided 1L {1 + f(n)} be
absolutely convergent).

Let us denote lill {1+/(n, p)} by Py; L 1211 {1+f(n, p)} by
P; |f(n, p)| by fi(n, p); and |f(n)| by £ (n).
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We may write
Py=H s p)} I {1470, )},
= P, Qn, say, 2).
Just as in chap. xxvr., § 26, we have
@113 I {1+/(n,p)-1.

Now, by one of our conditions, if m, and therefore p, exceed

a certain finite value, we may put f; (», p)/fi (n) = 4,, where 4,
is not infinite. If, therefore, 4 be an upper limit to 4,, and
therefore finite and positive, we have f; (», p) P Af;(n). Hence

@n-11% T {1+ A0} -1,

+ 51 1+ Af, (0)} - 1, (3).

Let us now put p=w in (2). Since m is finite, and
L f(n, p)=s(n), we have
p=x

L Py =TI {1+f ()}

Therefore P :fj[ {1+/(n)} Qn (4),

where @, is subject to the restriction (3).

Let us, finally, consider the effect of increasing m.

Since II {1 +/, (n)} is absolutely convergent, II {1 + Af (n)} is
absolutely convergent. It therefore follows that, by sufficiently

increasing m, we can make II {1+ Af,(»)} -1, and, @ fortiors,
m+1

|@n—1] as small as we please. Hence, by taking m sufficiently
great, we can cause @, to approach 1 as nearly as we please.
In other words, it follows from (4) that

P=I{L+f(n) (5).

In applying this theorem it is necessary to be very careful to see that both
the conditions in the first part of the enunciation regarding the value of
f(n, p) are satisfied. Thus, for example, it is not sufficient that L f(n, p)

PpP=0

have a finite definite value f(n) for all finite values of n, and that Zf; (n) be
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absolutely convergent. This seems to be taken for granted by many mathe-
matical writers ; but, as will be seen from a striking example given below,
such an assumption may easily 1ead to fallacious results.

§ 6.1 Factorisation of sink pu, sinku, sinpb, and sin0*.
From the result of chap. xir., § 20, we have, p being any
positive integer,

p-1 nwr
wﬂp—la(zﬂ—l)ﬂ<m2—2wcos—]7+l> (1).
n=1
From this we have
x?—-1_»1 nr .
21 =nI=II(.z'2—2xcos ; + l) ;

whence, putting 2 =1, and remembering that L(2?®—1)/(2*—1)=p,
we have

-1
p= 911 (1 —cos . nx/p) (2);
1
-1
= 4T sin?. nw/2p 3);
1
and, since sin.w/2p, sin.2w/2p, ..., sin.(p-—-1)7/2p are
obviously all positive,
Np =201 M sin. am/2p (4).
1

If we divide both sides of (1) by 2?, we deduce
P -g?=(x—2") 0 (z+ 27— 2 cos . nm/p) (),
where for brevity we omit the limits for the product, which are
as before.
If in (5) we put #=¢* we get at once
sinh pw = 27! sinh » II (cosh » — cos . nm/p) (86),
= 47~ ginh » II (sin®. nw/2p + sinh? /2) (7.
Using (3), we can throw (7) into the following form :—
sinh pu=p sinh » IT {1 + sinh?u/?/sin?mrﬂp} (8).
Finally, since (8) holds for all values of u, we may replace »
by w/p, and thus derive

* The results in §§ 6-9 were all given in one form or another by Euler in
his Introductio in Analysin Infinitorum. His demonstrations of the funda-
mental theorems were not satisfactory, although they are still to be found
unaltered in many of our elementary text-books.
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u Pt sinh?. u/2p
sinh & =psinh % I {1 +m} (9)-

n=1

We shall next apply to (9) the general theorem of § 5.
Before doing so, we must, however, satisfy ourselves that the
requisite conditions are fulfilled.

In the first place, so long as # is a finite integer, we have

(10).

This can be deduced at once, for complex values of w, from
the series for sinh.w/2p and sin.nw/2p. When w is real it
follows readily from chap. xxv., § 22.

The product II (1 +u*/n*n?) is obviously absolutely convergent.
We have, therefore, merely to show that, for all values of » and p
exceeding a certain finite limit,

2

sinh®. w/2p  o*
pn SINZ . [0 WPm?

sinh®. w/2p | w*

sin?. nw/2p/ nPx? (11),

where 4 is a finite positive constant. That is to say, we have
to show that

sinh.u/?p‘/ sin . n7r/2p
u/2p n7r/2p

remains finite.

Now
) |
14 3{(;;)2 , (12).

Since the series within the bracket is absolutely convergent,
its modulus can be made as small as we please by taking »
sufficiently great.

Again we know, from chap. xxIx., § 14, that, if 03 ./(6 x7)
P 648, and, a fortiors, if 632w, then

sin 646 — 16°,
that is, if 6 be positive,
sin 6/0<1 — 36
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Now, since np — 1, nw/2pP im. Therefore

sm;2 Tn/,;r}/fp 41— ( p)

41- ﬂ<t-58 (13).

From (12) and (18) it is abundantly evident that the con-
dition (11) will be satisfied if only p be taken large enough ; and
it would be easy, if for any purpose it were necessary, to assign
a numerical estimate for 4. All'the conditions for the applica-
bility of the General Limit Theorem being fulfilled, we may make
p infinite in (9). Remembering that Lp sinh .w/p =u, we thus get

sinhw=u 1T (1 + w*/n?n?) (14).
n=1

To get the corresponding formule for sinpf and sinf, we
have simply to put in (5) z=exp6.. The steps of the reasoning
are, with a few trifling modifications, the same as before. It will
therefore be sufficient to write down the main results with a
corresponding numbering for the equations.

sin p6 = 271 sin o' (cos 8 — cos . nr/p) (6);
n=1

= 4P-1gin 611 (sin’ nm/2p — sin®.6/2) (7).
sin pf =p sin 011 (1 —sin® 6/2[ sin®. nr/2p) (8.

R - sin%.60/2p ,
smt9—ps1n5 nl;ll {1—8-5,_,.,’”/2})} 9).
sin 0= 0 TI {1 - 6%/n2=? (14).

n=1

It should be noticed that, inasmuch as (6), (7), (8), (9), and
(14) were proved for all values of w, real and complex, we might
have derived (6", (7'), (8), (9), and (14") at once, by putting
u=10.

Cor. 1. The following finite products for sinpb and sinkpu
should be noticed :—
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sin pf = 27! gin 6 sin (6 + =/p) sin (6 + 27[p) . . .
sin (0+p —1x[p) (15);
sinh pu = (- 2¢)*~ sinh w sinh (u + ¢7/p) sinh (u + 2én/p) . .
sinh (u + p — Lin/p)  (16).
The first of these may be deduced from (6°), as follows :—
sin pf = 27~ sin 011 (cos 6 — cos. nw/p),
= 2P~15in 011 {2 sin (nm/2p + 6/2) sin (nr/2p — 6/2)},
=2P-15in 011 {2 sin (n7/2p + 6/2) cos (p — nw/2p + 6/2)}.
Hence, rearranging the factors, we get
sin pf = 271 sin 611 {2 sin (nm/2p + 0/2) cos (nw/2p + 6/2)},

-1
—9P-1gin § I sin (0 + n/p).
n=1

We may deduce (16) from (15) by putting 6 = — u
Cor. 2. Wallis's Theorem.
If in (14") we put 6 = }=, we deduce

1= 31 (1 — 1/2%2) 17);
1
w22 4 (2n)?
whence 51.3'3.5 " "@-D@+D) " .adw,
2244 2n 2n
=1335 " m-Tam+i 24 (18

This formula was given by Wallis in his Arithmetica In-
Jinitorum, 1656. It is remarkable as the earliest expression
of = by means of an infinite series of rational operations. Its
publication probably led to the investigations of Brouncker,
Newton, Gregory, and others, on the same subject.

§7.] Factorisation of cos pb, cos b, cosh pu, coshu. Following
the method of chap. xir., § 20, and using the roots of —1, we
can readily establish the following identity :—

P+ 1= Ipl<x"’—2wcosw+l) (1).
n=1 2p
Putting herein z=1, we get
2=2°II (1 — cos. (2n — 1) =/2p) (2);
= 4?1 sin’. (2n — 1) w/4p (3).
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Hence, since all the sines are positive,
N2 =2PIsin. (2n—1) n/dp 4).
From (1),
a? + 2 P=I (z+ 27 —2cos. (2n — 1) 7/2p) (5);
whence, putting « =Exp 6, we deduce
cospf =% . 2?11 (cos 6 —cos . (2n — 1) =/2p) (6);
=%, 47101 (sin®. (2 — 1) w/4p — sin®. 6/2) (7).
From (7), by means of (3), we derive
cos p6 =TI (1 —sin®.6/2 [sin®. (2n — 1) 7/4p) (8).
From (8), putting 6/p in place of 6, we get
cos 6= "1111 {1 - s—_——inﬂ,s(l‘zn;-f/f )” -7 410} 9).
For any finite value of » we have
sin?. 6/2p _ 4
g SID%. (20— 1) w/dp (20— 1)*a®
Also the product II(1+ 46%/(2n—1)*s®) is absolutely con-

vergent.
Moreover,

(10).

sin.6/2p | 1_l(i)2+
0/2p | | 31\2p/ "

SWEVED

so that |sin.6/2p I 6/2p| can be brought as near to 1 as we please

by sufficiently increasing p.
Also, since (2n—1)7/4pP 34w, we have, exactly as in last

paragraph,

(12);

sin.(2n — 1) w/dp
(2n—1)w/4p

We may, therefore, put p = o in (9) ; and we thus get

<458 (13).

cosf = 1211 (1 - 46%/(2n — 1)*7% (14).
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In like manner, putting # = ¢* in (5), we get

coshpu=7%.2? i (cosh w—cos. (2n— 1) 7/2p) (6');
n=1
=4.4PTI (sin®. (2 — 1) w/4p + sinh®. u/2) (7).
cosh pu=1I (1 + sinh?. u/2/sin «(2n—1) 7/4p) (8).
_ b _sinh®. u/2p :
cosh _nI=Il {1 * sin?. (2n-1) 7r/4p} ).
coshw =11 {1+ 4w?*/(2n — 1)* =% (14").
1

We might, of course, derive the hyperbolic from the circular
formule by putting 6=7u.

It is also important to observe that we might deduce (14)
from the corresponding result of last paragraph, as follows :—
From (14') and (17) of last paragraph, we have
. 20 (1—6*/n*n®
sin 6 = p il {lfﬂé2n)2} ,
260 {2721r~29 2n7r+20}
@n-1)7"2n+1)7) "
Hence, putting 3= — 6 in place of 6, we deduce
w— 20 2n—-1)w+20 (2n+1)T—20
cos 6= H{( (2n—)1)7r . (2n+)1)1r }
=(1-20/=) I {(1+26/(2n—1)m) (1 —26/(2n + 1) )},
=(1—-26/m) (1 + 260/x) (1 —26/37) (1 +26/37) . . .
Written in this last form the infinite product is only semi-
convergent, and the order of its terms may not be altered
without risk of changing its value; we may, however, associate
them as they stand in groups of any finite number. Taking
them in pairs, we have .
cos 0= (1 —46%/%) (1 —46%/3%*x%) . . .,

T

— 0 {1 — 46/(2n — 1)Pn3),
n=1

§8.] From the above results we can deduce several others
which will be useful presently.
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We have, since all the products involved are absolutely

convergent,
sin(@+¢) 0+¢ M{l—(0+ ) n’n?}
sinf 0 I{1-6nx? °

provided 6 = n.

Hence, provided 6 =+ n,

2
cos¢+sin¢cot0:<1 + %))II {1 - ifi;t‘z?} (1).

In like manner, starting with cos (6 + ¢)/cos 8, we deduce

2
CoSs ¢ - Sin ¢ tan 0=11 {1 —4 (—é;),_gg]_(})%-{;(é:lg?} (2),
provided 6+ % (2n — 1) =.
Also, from the identity
sing+sinf sini(p+06)cosi(p-6)
sind sin 16 cos 46 ’

we derive
1 + cosec 6 sin ¢

= (1 N i’) 1 [“ — (¢ -+ OP/an*m} {1 — (¢ — O)/(2n 1)27,2}]

6 (1= Flan= {1 — 020 — 1)
-(1+g)u - St @)

provided 6 = n.

A great variety of other results of a similar character could
be deduced; but these will suffice for our purpose.

§9.] Before leaving the present subject, it will be instructive
to discuss an example which brings into prominence the neces-
sity for one of the least obvious of the conditions for the applica-
bility of the General Theorem of § 5.

We have, 6 being neither 0 nor a multiple of ,

2% — 22P cos 6 + 1 ={a? — (cos 6 + ¢ sin )} {a® — (cos 6 — 7 sin G)}.

The pth roots of cos 6+ 7sin 6 are given by
cos. (2nm + 60)/p + i sin. (2nw +6)[p, n=0, 1, . . ., p—1 (1).

The pth roots of cos@—isind, that is, of cos(—6)+4<
sin (- 6), by
cos. (2nm —0)[p +isin. (2nwr—0)[p, n=0, 1, . . ., p—1 (2).



§8,9 PRODUCT FOR COS ¢ — COS 6 355

Since cos . (2nm —0)/p=cos. {2(p—n) ™+ 6}/p,
sin. (2nr —0)/p=—sin. {2 (p —n) = + 6}/p,
(2) may be replaced by
cos. (2nm +0)/p—isin. (2nw +6)fp, n=0, 1, . . ., p—1 (2).
We have, therefore,
2 - 22° cos 0 + 1

-1
=(a*— 2w cos.O/p+ l)pH {#*—2xcos. (2nm +O)[p+1}  (8).
n=1

Since cos.(2nm + 0)/p = cos.{2 (p—n) = — 0}/p, we may, if p be
odd, arrange all the factors of the product on the right of (3)
in pairs. Thus, if p=2¢9+1, we have
242 — 22U+ cos 0+ 1 =

0 (22— 2@ cos. (2nm + 0)/(29+ 1) + 1)
(wz ~ 2w cos 2¢+1 * ]'>n1211{>< (#*— 2z cos. (2nmr—0)/(2q + 1) + 1)}
(4)-

If we now put z=1, we get
nea L mw+ 6., 2mr—6}

i 2n:1{s1n “Ig+o sin®. 172 (5).

If we divide both sides of (4) by #**!, and put #=Expi¢,
we deduce
2 (cos (2¢ +1) ¢ —cos 6)

=2%+1{cos ¢ — cos. 0/(2¢ + 1)} IT{cos ¢ — cos . (2n7 + 0)/(2¢ + 1)}
(6),
where the double sign indicates that there are two factors to be
taken.

Transforming (6), and using (5), &c., just as in the previous

paragraphs, we get, finally,

. .0 .
4 sin® 5= 4%+ gn?

cos ¢ — cos 6
s _sin®. ¢/(4q + 2)} < sin®. ¢/(4q + 2)
=2sin 30 {1 - Bf(ag + ) - & (@nm £ 0)/(dg + 2)}
(7).
Since nPq, (2nm+0)/(4¢+2)P(2qr+6)/(4g+2); and the
limit of this last when ¢= o is 4= Hence, by taking ¢ large
enough we can secure that (27w +6)/(4¢+2) shall have for its

n=1
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upper limit a quantity which differs from 4= by as little as
we please; and therefore (see § 6) that sin. (2n1rit9)/(4q+2)/
(2nm + 6)/(4g + 2) shall have for its lower limit a quantity not
less than °58.

We may, therefore, put ¢= o, &c., in (7). We then get

cos ¢ —cos6=2sin*$6 (1 — ¢*/6?) il {1 -¢*(2nr +6)% (8),
n=1

that is,
cos ¢ —cos 0

=2sin%%6 {1 - %2} {1 - (27r¢—29)2} {1 - (2:’: 0)2} Ce
Putting ¢ =<¢w in (8), we deduce

cosh u —cos 0 =2sin*10 (1 + u?/6?) ﬁ {1 +4/(2nm +0)% (9).
n=1

The formula (8) might have been readily derived from those
of previous paragraphs by using the identity cos ¢ — cos 6
=2sin } (6 + ¢) sin } (6 — ¢) and proceeding as in the latter part
of § 7.

Remark.—At first sight, it seems as if we might have dis-
pensed with the transformation (4) and reasoned directly from
(8), thus—

From (3) we deduce

-1
2 (cos p¢ — cos 0) = 27 (cos ¢ — cos . 0/p) 1T {cos ¢ — cos. (2nm + 6)/p}.
n=1

Hence

cos ¢ — cos 6

—9sin? 1l _si.n2¢/2p}pﬁ1{ _ sin®. ¢/2p }
Zsin’ § {1 sin® 6/2p) =y 1 sin®. (2nm + 6)[2p)

Put now p = o, &ec., and we get
cos ¢ —cos 0 =2sin* 46 (1 — ¢?/6°) i {1 - ¢*/(2nm + 6)2}.
1

This result is manifestly in contradiction with (8), although
the reasoning by which it is established is the same as that often
considered sufficient in such cases.
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In point of fact, however, the condition of § 5, that
M=f,(n, p)lfy(n) must remain finite when » and p exceed certain
limits, is not satisfied.

In the present case the upper limit of (2nw + 6)/2p, namely,
{2(p—1) =+ 6}/2p, can be made to approach as near to = as we
please. Hence in this case M may become infinite. We have,

in fact, .
sin.. (¢/2p) [(4/2p) .

sin. (2nm + 6)/2p [(2n7 + 0)/2p |’
hence, if we give n its extreme value p — 1, and put p=o, M
becomes infinite. No finite upper limit to the modulus M can
therefore be assigned ; and the General Theorem of § 5 cannot be
applied.
This is an instructive example of the danger of reasoning
rashly concerning the limits of infinite products.

Exercises XXII.

(L) If (1 +iz/a)(1+ix/b) (1+iz[c)...=4 +iB, then
2 tan~1 (z/a) =tan—!(B/4).
Hence show that z tan—'(2/n?) = 3r/4.
1

(Glaisher, Quart. Jour. Math., 1878.)
(2.) Find the » roots of

n— mn—2+n (7"2'_ 3) Zn—4 _

nn-r-1)(n-r-2)...(n-2r+1
(T =2). o
(3.) If n be an odd integer, find the n roots of the equation
2_12 . 2_12 2__32 2_12 ,2_32 2_52
o1 BT 08 100 8 )
(4.) Solve completely

n=2r 4., .=0.

x4+ '+, . .=a.

z" 4,0 cosaz™ 4 ,Cyc08 2a 22+ . . . +cosna=0.
(Math. Trip., 1882.)
(5.) The roots of
zmginnd -, 012" 1sin (n6 + @) +,,Cox® 2sin (n6+2¢) — . . . =0

are given by x=sin (8 + ¢ — kmw/n) cosec (6 — km/n), where k=0, 1, . . ., or
(n-1).

If a=m/2p, prove the following relations:—

(6.) p=2Plsin2asinda...sin(2p-2)a;

1=2r"1ginasin3a...sin{2p-1)a.
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(7.) A/p=2P-1cosacos2a...cos(p-1)a.
(8.) 1=2rlsin.a/2sin.3a/2...sin.(2p-1)a/2;
=2P1¢os.af2c08.3al2...cos.(2p—1)af2.
(9.) sinpf=2r-1sin @ sin (2a+0)sin (4a+6). . .sin (2p - 2a+0);
o8 pf=2°—1sin (a+6) sin (3a+ 6) sin (5a +6) . . .sin (2p — la +6).
(10.) tanp6=tan 6 tan (6+2u). . .tan (6 + (2p — 2)a), where p is odd.
(11.) tan@tan(0+2a)...tan (6+(2p - 2)a)=(—1)?2, where p is even.

(12.) Show that the modulus of
cos (0 +ig) cos (0 +ip+m[p). . .cos (0 +i¢p+(p—1)m[p)
is {cosh p¢ — cos ( pr +2pf)} /274,
(13.) If n be even, show that

042 0+4mr 0+(2n-2)mr
cos _'nﬁ' . .COS——-——”_- .

[4 [
in2 2 —(—yn29n—2¢cog 2
sin’ g (-) cos — cos

(14.) Show that ﬁ (1+sec 270) =tan 276/tan 4;
0
ﬁ {1+sec2(q/3")} .

0

and evaluate

(15.) Show that
sin @

1;[ (1—§sin23£n> ==
FI (1—4sin29>=coso;
1 3n
and write down the corresponding formule for the hyperbolic functions.
(Laisant.)

Prove the following results (Euler, Int. in Anal. Inf., chap. 1x.):—
ebte oot 1 4(b—c)z+4x? .

eb+ ¢ +(2n—1)27r2+(b—c)2 !
et _ o= 2z 4(b-c)x+4a®

ed—ec T (1+b—c> II{14—(211)27r2+(b—c)2} '

cosh y + cosh¢ =+ 2cy +y*

1 . —m ———————— .
a7) l+coshe H{1+(2n—1)27r2+c2} ’

- 2 2
coshy —coshe (l_éy?) H{l- +2cy+y } .

(16.)

1-coshe (2n)2 w2+ c? 7
sinhy +sinhc _ Yy (=)"2cy+y7 |
sinh ¢ - (1+Z) 1 {1+ nir?+ c? } ’
sinhy —sinhe_ y (=)™ 2y +y°
—W'—"(l‘z)“{“_——nﬂmcz }

Write down the corresponding formulee for the circular functions, and deduce
them by transformation from § 9.
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(18.)

(19.) cos¢+tan}fsing=II %(1 e _21?1- 0) (1 “Bn —21?1r+0>§ ’
(20 cosc((;:dfﬁ) H{(1+(2n—f)¢1r—2€)(1_(2n—3;ﬁ1r+20>};

sin (6-¢) _ 2\ ¢ __ 9
sin 8 ‘(1'0> {(”2 = 0) (1 2mr+e>}‘
(21.) Show that

cosh 2v — cos 2u=2 (u?+v2) I g

cos ¢p+cosf _ @¢*
1+cosé g ((2n—1)7r=1=0)2§ :

(nwr = u)?+ v?
) 5

2n—-1)r+ 2 2
cosh 2v + cos 2u =211 %wﬂ%,

2n-1)2w2

4
cosh 2u — cos 2u=4u?Il %1 + 4u 4§

24yt
cosh 2u + cos 2u =211 %1 + 55— @n—1)¢ 7'_4}
(Schlémilch, Handbd. d. Alg. Anal., chap. x1.)
4n? —4n+5
(22.) Evaluate H < —4n—+—1> .

(23.) If w=log (1+,\/2), show that
2
V2= <1+412 2) <1+432%2) .. .ad o,

EXPANSION OF THE CIRCULAR AND HYPERBOLIC FUNCTIONS
IN AN INFINITE SERIES OF PARTIAL FRACTIONS.

§10.] By § 8 we have, provided 6+% (2n—1)m,
. _ 204 + ¢*
COS¢—Sln¢tan0—H{1_4m} (1).

Now, referring to § 2, Cor. 2, we have here

’ 0 1 2
R Forey vy v I R oy vy L B
80, ’ 4 2
}|(2n—1)2 —10%|* Y (@1 —27
where ' =|60|, ¢'=|¢|. It follows, therefore, that the product

in (1) may be expanded as an ascending series of powers of ¢.
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Expanding also on the left of (1), we have

¢ :
1_2_!4., . .—tan6<¢—§!+. . >
1
=1-4Q06+ )3 0 Ty
+16 (206 + ¢7)° 3 ;

{(2m — 1)*n® — 46°%}{(2n — 1)*x® — 467}
. . . . . (2).

Since the two series in (2) must be identical, we have, by
comparing the coefficients of ¢,

2 1
tan 6 = 80?« m (3).

This series, which is analogous to the expansion of a rational
function in partial fractions obtained in chap. viiL, is absolutely
convergent for all values of 6 except §, 3w, &=, . . . It should
be observed, however, that when 6 lies between § (22 — 1) 7 and
3 (2n + 1) m, the most important terms of the series are those in
the neighbourhood of the nth term, so that the convergence
diminishes as 6 increases.

We may, if we please, decompose 86/{(2n — 1)*n* — 46% into
2/{(2n — 1) m — 26} — 2/{(2n — 1) = + 26}, and write the series (3)
in the semi-convergent form

2 2 2
1r——-2(9_1r+29+31r—20—37r+20
2 2 ,
+57r—20_57r+20+' NG

tan 0 =

In exactly the same way, we deduce from (1) and (8) of § 8
the following :—

1
fcotf=1-20°3 ;o7 4),
or
0 0 0 0
000t€:1_w—6+w+0—2w—0+27T+(9
0 0

50 g )
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provided =%, 2w, 3w, . . .;

and
0 ) ( 1)7!,—1
cosec =1 + 26 2 - ©),
or
0 9 8 0
000sec€=]+7r_0—ﬂ_+9_2,,._0+21r+0
0 6
+3_7rj@—m—. .o (5)’

provided 6w, 2m, 8m, . . ..

We might derive (4) from (3) by writing (37— 6) for 6 on
both sides, multiplying by 6, decomposing into a semi-convergent
form like (8"), and then reassociating the terms in pairs; also
(5) might be deduced from (3) and (4) by using the identity
2 cosec 6 = tan $6 + cot 16.

When we attempt to get a corresponding result for sec 6,
the method employed above ceases to work so easily ; and the
result obtained is essentially different. We can reach it most
readily by transformation from (5'). If we put (5') into the form

1 1 1 1 1
008600 =G+ T T T 0 S5m0 e b
P SR T
3r—6 3wr+6
which we may do, provided 6+ 0, and then put v -6 in place
of 6, we get

sec@—2+2— 2__ 2
Tw-20 w+20 3w—-20 3w+20
2 2 N
+51r—20+57r+29_' - (6
or, if we combine the terms in pairs,
2n—1)mw
6: n—1 (
sec 42( ) (2” 1)2 2 492 (6)’

where 6+ m, 37, Sm, . . ..
The series (6), unhke its congeners (3), (4), and (5), s only
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semi-convergent ; for, when n is very large, its nth term is com-
parable with the nth term of the series 31/(2n —1).

We might, by pairing the terms differently, obtain an abso-
lutely convergent series for sec 6, namely,

secl =

2 0 (—1p ,
T—20 + 4(""_'20)§ An*n® — (m— 20)° (7):

but this is essentially different in form from (3), (4), and (5).

Cor. 1.  The sum of all the products two and two of the terms
of the series S1/{(2n — 1)*n®— 46% is (tan 6 — 6)[1286°; and the
like sum jfor the series S1/{n*w®— 6%} is (3 — 6%— 36 cot 6)/86"

This may be readily established by comparing the coefficients
of ¢* in (2) above, and in the corresponding formula derived from
§ 8 (1).

Cor. 2. The series 31/{(2n — 1)*n*— 46*}* converges to the
value (0 tan® 0 —tan 0+ 0)/646°; and 31/(n*w*— 6% to the wvalue
(62 cosec? 6 + 6 cot 6 — 2)[46°

Since the above series have been established for all values of
0, real and imaginary, subject merely to the restriction that 6
shall not have a value which makes the function to be expanded
infinite, we may, if we choose, put 6 =wi. We thus get, inter alia,

tanh u =8u31/{(2n — 1)*#* + 4u?} 8);
wcothu=1+2u?S1/{n*7* + u?} 9);
wcosech w=1—2u?3 (- 1)"/{n*=* + u?} (10);

sechu=43 (=)' (2n- 1) n/{(2n - 1)?7*+ du?}  (11).

EXPRESSIONS FOR THE NUMBERS OF BERNOULLI AND EULER.
RADIUS OF CONVERGENCY FOR THE EXPANSIONS OF
TAN 0, CcOT 6, COSEC 6, AND SEC 4.

§ 11.] If |6|<m, then every term of the infinite series
36*/(n*n*— 6%) can be expanded in an absolutely convergent series
of ascending powers of 6. Also, when all the powers of 6 are
replaced by their moduli, the series arising from 1/(n*xz®— 6%)
will simply become 1/{n*=*— |6[%}, which is positive, since |6|<.
The double series
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therefore satisfies Cauchy’s criterion, and may be arranged
according to powers of 6. Hence, if

Oam = 1/13m 4 1/ 4 1/82m 4 | (1),
we have, by § 10 (4),
6 cot 6 = 1—236%/(n*x*— 67),
= 1 — 2305, 6" [m™ ().

Since o, (<o,) is certainly finite*, the series (2) will be
convergent so long as, and no longer than, <.
Now, by § 4 (9), we have

0 cot 6 =1 — 32*™ B,,0*™/(2m)! (3),
provided 6 be small enough.

The two series (2) and (3) must be identical. Hence we
have '

_2(2m)logm _ 2 (2m)! {L 1 1
Bm - (271_)27"4 - (2,".)27"- 12m + 22m + 32m + L .} (4)'
§ 12.] If, instead of using the expansion for 6 cot 6, we had
used in a similar way the expansion for tan 6, we should have
arrived at the formula

 2(2m)! 1 1 1
Bm_ﬂ——_ﬂm{ﬁ"+3m+ﬁ+"'} (5)-

This last result may be deduced very readily from (4); it is,
indeed, merely the first step in a remarkable transformation of
the formula (4), which depends on a transformation of the series
on due to Eulerf. We observe that the result of multiplying
the convergent series o,, by 1—1/2*™ is to deprive the series of
all terms whose denominators are multiples of 2. Thus

(1-1/2") 09 =1 +1/8™ + 1/5"™ + . . ..

* It may, in fact, be easily shown that Loy, =1 when m=ow; for, by
chap. xxv., § 25, we have the inequality 1/(2m —1)>1/22m+1/32m 1 1/4%m
+. ..>1/(2m - 1) 221, which shows that L(1/2*™+1/3*m 4 1/4*m 4, . .)=0,
when m=w.

1 See Introd. in Anal. Inf., § 283.
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If we take the next prime, namely 38, and multiply
(1-1/2*") 0y, by 1-1/3"" we shall deprive the series of all
terms involving multiples of 8; and so on. Thus we shall at
last arrive at the equation
(1-1/2"") (1—1/8") (1 = 1/6*™) . . . (1 = 1/p*™) oo

=1+1/g"™+ ... (6),
where 2, 8, 5,. . ., p are the succession of natural primes up to
p, and ¢ is the next prime to p. We may, of course, make ¢
as large as we please, and therefore 1/¢*™ +. . . (which is less
than the residue after the ¢ —1th term of the convergent series
o9m) as small as we please. Hence

Tom=1/(1— 1/2™) (1-1/3") (1 = 1/5°") . . . (1),
where the succession of primes continues to infinity. Hence
B, =2 (2m)!/(2m)™ (1 - 1/22™) (1 - 1/3*) (1 - 1/5™) . . . (8).

§ 18.] Bernoull's Numbers are all positive; they increase
after By; and have o for an upper limit.

That the numbers are all positive is at once apparent from
§ 11 (4). The latter part of the corollary may also be deduced
from (4) by means of the inequality of chap. xxv., §25. For
we have

1/(2m— 1)> 1/22”‘ + 1/32"‘ + 1/42"‘ +...> 1/(2m - 1) Q2m—1 (9)
Hence
By _ (2m +2) 2m+1) otz
Bm (2'”' Tam

(2m +2) (2m + 1) {1+ 1/(2m + 1) 22™+1}
(2m)* {1 + 1/(2m — 1)} ’
(2m)° -1
7 Tam
Hence By4/Bn>1, provided m>,./(=*+1), that is, if
m>3'16. Now B,>B;, hence B;<B,<B;<
Again, it follows from (9) that Lo,,=1 when m =, and
L(2m)!/(2w)*™ is obviously infinite; hence LB, is infinite.
Cor. B,/(2m)! ultimately decreases in a geometrical pro-
gression having for its common ratio 1/An%.  From which it follows
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that the series for tan 0, 6cot 6, and 0 cosec O, given in § 4, have
Jor their radii of convergence 0=, = and = respectively.

§ 14.] Turning now to the secant series, we observe that
435 (=" (2n — 1) w/{(2n — 1)*x* — 46% does not, if treated in the
above way as it stands, give a double series satisfying Cauchy’s
criterion, for, although when |6|<4r the horizontal series are
absolutely convergent after we replace ¢ by |6, yet the sum
of the sums of the horizontal series, namely, 43 (—)*~* (2%~ 1) =/
{(2n — 1)*x* - 4|6}%}, is only semi-convergent. We can, however,
pair the positive and negative terms together, and deal with the
series in the form

42{ (4n=-3)r  (4n-1)m }
(dn—3Pm— 46 (dn- 1)Pn*— 40°
(4n— 8) (4n — 1) 7* + 46°
{Gn — 3P — 40 (@n — 1y —agy (11

Since (11) remains convergent when for 6 we substitute
|6], it is clear that we may expand each term of (10) in as-
cending powers of 6, and rearrange the resulting double series
according to powers of 6. In this way we get

(10),

that is, 873,

© © 1 1 22m02m
N
sec 4m2=0 nél (4” _ 3)27Il+1 (4” — 1)2m+1 ,n.?.m,+1 )
= § 22m+27'2m+1 62m/_n.2m+1 (12)’
m=0
where Toman= 1/12MH = 1/32m14  5men_ (13).

Comparing (12) with the series
sec0 =1+ 3K, 6™/(2m)!,
obtained in § 3, we see that

_ 22m+2(2m>! Tom41
m = 7r2m+1 >

2\ (1 1 1
=2(2m)!<7—r> {]m— 3727T+I+ —52,”—”_1'— “ . .} (14),

which may be transformed into

2\ 2m+1 1 1 1
Em = 2(2%)' (;) /(1 + W) (1 - 5§m—-ﬁ> (1 + %2»7—;—1) e

in the same way as before. (15)*.

* See again Euler, Introd. in Anal. Inf., § 284,
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Cor. 1. Euler's numbers are all positive; they continually
. increase in magnitude, and have infinity for their upper limit.

For we have
, 1> Ty >1 — 1/32041 (16).
Hence
Epy  (2m+2)(2m+ 1) 47y s
_E—'m a ‘“'2"'2m+1 ’
_(@m+2)(2m+ 12) 4(1-1/3m)
s

But this last constantly increases with m, and is already
greater than 1, when m=1. Hence K <E,<E,<. .. Also,
from (16), we see that Lmy,y =1 when m =, and
L (2m)! (2/w)™ ! = w0, hence LE,= o.

Cor. 2. E,/(2m)! wultimately decreases in a geometrical
progression whose common ratio is 4/m*. Hence the radius of
convergence of the secant series is 6 =4,

§15.] We have, by § 11 (4),
1 1 1 gmp

0-2m:Fﬁ+2Tm+3Tm+" .:WW (1)*;
and hence
, 1 1 1 _ 1\2"™1B. .
O‘2m=]—-m+ 3Tm+ 5_21~n+ « o —~<1 —2Tn>‘ (2m)! ﬂ_lm’
_ (2m - 1) Bm om .
T 2@m)t @)
and
o111 :< _ 2\2"B, ,.
2m 12m 92m gam 92m (2’”&)' >
_ (22m—1 —_ I)Bm m
= (3).
Again, from (14) of last paragraph
1 1 1 E,
Tom+1 = e T gl pamt T . :22m—+2(m L (4)

* The remarkable summations involved in the formule (1), (2), (3) were
discovered independently by John Bernoulli (see Op., t. 1v., p. 10), and by
Euler (Comm. dc. Petrop., 1740).
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Inasmuch as we have independent means of calculating the
numbers B,, and F,, the above formule enable us to sum the
various series involved. It does not appear that the series oypyy
can be expressed by means of B, or E,; but Euler has cal-
culated (to 16 decimal places) the numerical values of oy, in a
number of cases, by means of Maclaurin’s formula for approxi-
mate summation*. As the values of o, are often useful for
purposes of verification, we give here a few of Euler’s results.
It must not be forgotten that the formule involving = for o,
are accurate when m is even; but only approximations when
m is odd.

oy = 1'6449340668 . . . ==/6.
o3=12020569031 . . . ==%/25:79436 . . ..
o,=1'0823232337 . . . =='/90.

oy = 10369277551 . . . ==/285°1215 . . ..
o= 10173430620 . . . ==%945.

o= 10083492774 . . . =7/2995°286 . . ..
o= 10040773562 . . . ==*/9450.

oy = 1:0020083928 . . . =7°/29749'35 . . ..

EXPANSIONS OF THE LOGARITHMS OF THE
CIRCULAR FUNCTIONS.

§16.] From the formule of §§ 6 and 7, we get, by taking
logarithms,

log sin6=1log 6+ 3 log (1 - 6¥/ntx?),
n=1

—log 0~ 3 oy, 6" /mmm 1),
m=1

since the double series arising from the expansions of the
logarithms is obviously convergent, provided |6|<.

If we express o3, by means of Bernoulli’s numbers, (1) may
be written

log sin 6 =1log 6 - 5 21 B,, 6" |m (2m)! (1).
m=1

¥ Inst. Calc. Diff., chap. vr.



368 STIRLING'S THEOREM CH. XXX

The corresponding formula for cos 6 are
lOg Ccos 0 = E (22m _ 1) 0.2'"02171/”277.2::1, (2) ;
=— 32-1 (2 — 1) B, 6" [m (2m)!  (2').

The like formulee for log tan 6, log cot 8, log sinh #, log cosh #,
&c., can be derived at once from the above.

If a table of the values of oy, or of B,, be not at hand, the
first few may be obtained by expanding log (sin 6/6), that is,
log (1—6%/8!+ 6*/5! — . . .), and comparing with the series
- 309, 0" /mm*™.  For example, we thus find at once that
o, = m2/6.

STIRLING'S THEOREM.

§ 17.] Before leaving this part of the subject, we shall give
an elementary proof of a theorem of great practical importance
which was originally given by Stirling in his Methodus Differen-
tialis (1730).

When nis very great, n! approaches equality with \/(2nw)(nfe)";
or, more accurately, when n is a large number, we hawve

n! = J(2mn) (nfe)" exp {1/12n + 6} (1),
where — 1/24n*<0<1/24n (n—1).

Since log {n/(n— 1)} = —log (1 - 1/r), we have

2, 1 . 0,1
n 20 3% 4An' T mm™

We can deprive this expansion of its second term by multi-

plying by n—3%. We thus get

lo—n— +
o

n 1 1 m—1
(n—%)logn——_lsl T ot ee T +2—_m(m+1)n"‘+
Hence, taking the exponential of both sides, and writing suc-
cessively n, »—1, n—2, . . ., 2 in the resulting equation, we
deduce

"->H—ex (1 NN EA
<n— 1 —exp 1222 122°

pom-t )
2m(m+1)n™ ")’
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n—1\r~1-% 1 1
(m) - exp <1 ESCICEE AN TI IS A
P ek S )
am(m+1) (-1 )
n—2\"" 2% 1 1
(n—_§,> = exp <1+12(n~2)2+12(n—2)3+' o

+ m—1 + )
2m(m+1) (m—2)" """ ")’

+_7£:_1__+ >
2m(m+1)3™ " ")’

?>H Cexp (14— Lo
(1 ‘e"p< 1222 1298

pom-l )
2m(m+1)2m " )"
By multiplying all these together, we get
(ni—if)' = exp {(n— 1) + 112 Sy + é Ss+. ..
m—1 ,
* st St } @),
where 8, =1/2"+1/8™ +1/4™ + . . . + 1/a™

Now

S'n=8n—1/(n+1)"—1/(n+2)"—. . . 3),
where Sp=1/2"+1/8"+. ., . +1/a™+. .. ad w.

By the inequality (6) of chap. xxv., § 25, we have
J(m—1)2"'>1)(n+1)"+1/(n +2)" +. . . >1/(m—1) (n + 1),
Hence

Sp—1/(m—1) (n +1)"'>8,>8,-1/(m - 1) ™2,

Therefore

1 o 1 o m-—1 ,
ES2+ES3+...+M(T+1~) mt ...
w(m_l)sm_ I 1 .
>%§ m (m + 1) %f m(m+ l)nm—l (4) H
co(m_l)Sm_ © 1
<%§m(m+1) %fm(m+l)(ln+1)m—1 (5).
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Since S, <1/(m — 1), the series = (m — 1) Sy/m (m + 1) con-
verges to a finite limit which is independent both of m and of »

Again,
2 1
3 m (m + 1) p™?
1 1 1
“osn 3w 4T 6);
1 + ! 1+ 1 +l + }
6n  12n° n nt )’
1 1
6n 1?7?(72 -1) @

Also, by (6),

1
2m(m+1)(n+1)"?

2/1 1 1
3w ar e
1 1
(7L+1)2W ’I1/+1) E(m—;l—)(hvﬂ)m_'_l,

(n+1){ —lg\l——1>}

n+1
=+%+n—(n’+n)log(1 +71L>;

)

—1+ —7+l—i+—1—— —1+l—i+
B R T T v TR
111
T9.8n 3.4n 4.5 "7
1 1
= - 8).
>6n 127° (®)
Combining (2), (4), (5), (7), and (8), we have
n+y NS, 1 1
>exp{n 1+%2(~Wi—)———

(m + 1) 12n_§4’n(7_‘1)} 9);
<exp{n—1+%2£m___1_)§ 1 1 }

mr 1) 1zn 24w (10).
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Hence, putting

- _ 13 (m= !),Sm}
C=exp {1 23 m(m+1) (11),
so that C is a finite numerical constant, we have
1 1
! nt} oxp | __>
n!>Ce "n"exp | \i2n ~ om (12),
1 1
=N Nt} .
< Ce"p™texp (12n sy = 1)> (18);
or, since the exponential function is continuous,
1
| = =7 Nt} .
nl= Ce "n"*texp <l2n + 0) (14),

where — 1/24n*< 6<1/24n (n.— 1).
Hence, putting » = o on both sides of (14), we have
In!=CLe"n"+} (15).

The constant €' may be calculated numerically by means of
the equation (11). Its value is, in fact, J/(27), as may be easily
shown by using Wallis’s Theorem, § 6 (18).

Thus we have, when n=

T_I 2% (ﬂ)ﬂ2n+ 1) oy (nl)(2n+1)
2 1% ... (2n+1)? {(2n + 1)1}?
Hence, using (15) we get
24n —4n 4n+2 (27l+ 1)

g =L e (2n 4 1)
_ L é
{(1+1/2n)™2{1 + 1/20}>’
02
v
Therefore, since C is obviously positive,
C=,/(2m) (16).
Using this value of €' in (14), we get finally
=/ (27n) (nfe)" exp {1/12n + 6} * (17),

where —1/24n2<6<1/24n (n—1).

* An elementary proof that Ln!=L\/(2wn) (n/e)® was given by Glaisher
(Quart. Jour. Math., 1878). In an addition by Cayley a demonstration of
the approximation (17) is also given; but inasmuch as it assumes that series



372 EXERCISES XXIII CH. XXX

Cor. By combining (11) and (16), we deduce that

© — Sm,
1—55%%E%ij=%bg2+%bgr (18),

where S, =1/2"+1/8™+1/4™+. . . ad .

Exercises XXIII.

(1.) Show that, when |z|>m, zcotz can be expanded in the form
dy+Z (B,z~™+ Cp2™); and determine the coefficients in the particular case
where <z <2m.

(2.) Show that the sum of the products r at a time of the squares of the
reciprocals of all the integral numbers is #2/(2r +1)!; and find the like sum
when the odd integers alone are considered.

(3.) Sum to n terms

tan @ +tan (6 +m/n)+tan (6+2m/n)+. . .;
tan? 6 + tan? (0 + w[n) + tan?(6 + 2w /n) +
Sum the following:—

(4.) 1/(12+2?) +1/(22+2?)+1/(8%+42?) . . .

(5.) 1/a*-1/(x?-7?)+1/(x? - 227%) -

6) Uz+1j—1)+1/@+1)+1f(z-2)+1/(z+2)+.

(1) Y- +1(A-)+1@-)+. . .+1/(n-e)+.

8.) 1/1.2+1/2.4+1/3.6+1/4.8+. e

Show that
(9.) (v2-6)/6=1/12.2+1/22.34+1/32.4+. .. .
(10.) =/8-1/3=1/1.8.5-1/3.5.7+1/5.7.9—. ..
(11.) If f,.(n) be an integral function of n whose degree is r, show that
;f,. (n)[(2n — 1)*™ can be expressed in terms of Bernoulli’s numbers, provided

r+2m-2; and b (= )1 f,. (n)/(2n — 1)*+1 in terms of Euler’s numbers, pro-
vided r+2m — 1.
In particular, show that

1 1+2 14243 w2 w2
ERT —?—+'“—a(‘ﬁ)
(12.) Show that
2 1/(nmw+ 6)2=cosec? 6 ;

2 1/(nw + 6)*=cosec?d — % cosec?d,

n=0 being included among the values to be given to n. (Wolstenholme.)

of the form of 1/2™41/8™ 4 . , . can be expanded in powers of 1/m, it cannot
be said to be elementary. The proofs usually given by means of the Mac-
laurin-sum-formula are unsatisfactory, for they depend on the use of a series
which does not in general converge when continued to infinity, and which can
only be used in conjunction with its residue. See Raabe, Crelle’s Jour., xxv.
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373
(13.) 3 1 =Msinh.7rm~/2+sin.1rx\/2— 1
: 1ni+ad 4a® cosh.way/2 —cos. w2 2xt”
(Math. Trip., 1888.)
(14.) Show that
E ] 1 w2 : 1
ne1{(2n)2 = (2m — 1)‘}2 16 (2m—-1)2 2(2m-1)4
© 1 2

,,21{ 2n — 1)2 - (2m)?}? = dm2
Also that the sum of the reciprocals of the squares of all possible differ-
ences between the square of any even and the square of any odd number is
m4[384.
(15.) If p<m, show that
cos P _ 1"}51 (=) sin. (2r+1) m[2n . cos . P(2r +1) 7r/2n
cosné

Uy cos 0 cos . (2r+1) [2n
(16.) Show that

v 2 v
tan~1- - 3 {tan—! —~tan!
U e nw—u

2 } =tan~! (tanh v cot u);
nw+u
@ 20 2v
-1 —tan—1 —tan-! h X
nzl {ta,n @D r-2u tan @ioD) _”_+2u} tan—! (tanh v tan u)
(Schlomileh, Handb. d. Alg. Anal
(17.) If A(x)==2I{1-(z[na)?},
1

., Cap. XIL.)

n(z)= ﬁ {1-(2x/2n - 1a)?}, express
1

\ (z+ a/2) in terms of u (), and also u (z +a/2) in terms of A (z).

Hence evaluate L 1.3.5 ... (2m-1)/(2m+1)/2™m!.
m=@

(Math. Trip., 1882.)
(18.) Show that, if » be a positive integer,

1 1/2 _ 1)(r—
L (1—1) " (1—3)f . (1—T—l)m Ry
e 7 r 7

(19.) Show that

x + x + T + _m
rmw \Z24+12 0 22422 24327 7 /T2

(20.) If n, p, z be all integers, prove
I n+z)(n+x+1) . (n+p+x 1)
z=w (1+z)(2 +$) - (p+2)

REVERSION OF SERIES—EXPANSION

OF AN ALGEBBAIC
FUNCTION.

§18.] The subject which we propose to discuss in this and
the following paragraphs originated, like so many other branches
of modern analysis, in the works of Newton, more especially in his
tract De Analysi per Aquationes Numero Terminorum Infinitas
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Let us consider the function
3, (m, n) 2™y"=(1, 0) z+(0, 1)y+(2, 0)a*+(1, 1)ay+(0, 2)5*+. . .,
where the indices 7 and » are positive integers, and we use the
symbol (m, n) to denote the coefficient of 2™y, so that (m, n) is
a constant. We suppose the absolute term (0, 0) to be zero;
but the coefficients (1, 0) (0, 1) are to be different from zero.
The rest of the coefficients may or may not be zero ; but, if the
number of terms be infinite, we suppose the double series to be
absolutely convergent when |z|=|y|=1%  From this it follows
that the coefficient (m, #) must become infinitely small when m
and n become infinitely great ; so that a positive quantity A can
in all cases be assigned such that | (m, =) |} A whatever values we
assign to m and n. It also follows (see chap. xxvi., § 87) that
3 (m, n) 2™y"™ is absolutely convergent for all values of # and y
such that |z|3 1, |y| P L ‘

We propose to show that one value, and only one value, of y as
a function of x can be found-which has the following properties:—

1°. ¥y 1s expansible in a convergent series of integral powers of
z for all values of x lying within limits which are not infinitely
narrow.

2°.  y has the initial value 0 when x = 0.

3°.  y makes the equation

3 (m, n) 2™y" =0 (1)
an intelligible identity.

Let us assume for a moment that a convergent series for y
of the kind demanded can be found. Its absolute term must
vanish by condition 2°. Hence the series will be of the form

Yy=bx+b, 2+ b2 +. . . (2).

In order that this value of ¥ may make (1) an intelligible
identity, it must be possible to find a value of #<1 such that
(2) gives a value of y<1. The series (1), when transformed by
means of (2), will then satisfy Cauchy’s criterion, and may be
arranged according to powers of z. All that is further necessary

* The more general case, when the series is convergent so long as [z |+ a
and |y |+ B, can easily be brought under the above by a simple transforma-
tion.
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to satisfy condition 3° is simply that the coefficients of all the
powers of z shall vanish.

It will be convenient for what follows to assume that
(0, 1)=-1 (which we may obviously do without loss of
generality), and then put (1) into the form—

={(1,0)z+(2,02+(3,02°+. ..}
+H{1, D+, 1)2+(3, 1)2*+. ..}y
+{(0, 2) + (3, 2)w+(2 Da*+(8,2)P+. ..}y

{(O n)+ 1, n x+(2 n).z'?+(3 n)x’+. . }y;”

Usmg (2) we get

be+ b+ b+, .
={(1,0)z+(2,0)2*+ (3,0)2*+. . }
(L D+ (2, 1)2%+ (3, 1)a+. . . Hb+bywr+byaP+. .}
+{(0,2)+ (1, 2)xz+ (2, 2).1,3+(3 D +. . o+ bw+bydP+. . PP

+{(O n)+ (1 n)x+(2 n)ﬂ+(3 n).z"+ }{bl+bg.z+bsar+ } i
. . 4).
Hence equating coefﬁclents, we have
b, =(1,0),
2=(2 0)+(1,1)b, +(0, 2)b:%
(3 0)+(1 1)b2 +(2, l)b1 +(1, 2)bl +2(0 2)blb2+(0 3)b1,

(n 0)+(1 l)b 1+(2 l)bn 2 ¥ (0, n)b1

Here it is 1mportant to notice that each equation assigns one
of the coefficients as an integral function of all the preceding
coefficients. Hence, since the first equation gives one and only
one value for &;, all the coefficients are uniquely determined.
There is therefore only one value of g, if any.

In order to show that (5) really affords a solution, we have to
show that for a value of # whose modulus is small enough, but
not infinitely small, the conditions for the absolute convergency
of (2) and (4) are satisfied when &,, b,, . . . have the values
assigned by (5).
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This, following a method invented by Cauchy, we may show
by considering a particular case. The moduli of the coefficients
of the series (3) have, as we have seen, a finite upper limit A.
Suppose that in (3) all the coefficients are replaced by A, and
that & has a positive real value <1. Then we have

y=Az+22+27+. ..}
+AMe+22+22+. ..}y
+Ml+a+22+22+. .. 1P
. . . . (6).
This series is convergent so long as #<1 and |y|<1. It
can, in fact, be summed ; for, adding A + Ay to both sides, we get
(L+Ny+A2=2(1-2)(1-y),
that is, (1+Ny—y+rz/(1—2)=0.
Hence, remembering that the value of y with which we are
concerned vanishes when =0, we have

y=[1-Jil-4r(1+N)z/Q1-2)})/2(A+1) (7).

Now, provided 4A (1 +X) z/(1 —z)<1, that is, z<1/(2A + 1)?,
the right-hand side of (7) can be expanded in an absolutely con-
vergent series of integral powers of z, the absolute term in which
vanishes. Also, when 2<1/(2\ +1)?, the value of y given by
(7) is positive and <1, therefore the absolute convergency of (6)
is assured.

It follows that the problem we are considering can be solved
in the present particular case. If we denote the series for y in
this case by

y=Cz+ Coz+ Ca® +. . . (8),
then the equations for determining €, C,, Cs, . .. will be
found by putting (1, 0)=(2, 0)=(1, 1)=. . .=X in (5), namely,

0, =,

Co=M(1+0 + 0P,
Co =A(1+ 0, + O+ OF + 20,0, + C),

Co,=A(1+Cpy+ Cps+. . . +0O™),

. . . . . . . (9);
from which it is seen that C,, C;, C,;, . . . are all real and
positive.
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Returning now to the system (5), and denoting moduli by
attaching dashes, we have, since (1, 0)', (2, 0), &c., are all less
than A,
b'=(1, 0)<r<(,
b3 (2, 0) + (1, 1Y8y + (0, 2)b,2<A(1+ O, + C*) < C;,

b F(8, 0)+(1, 1)b,/+(2, 1)b,+(1, 2)'b,%+2 (0, 2)'b,'b, +(0, 3)'d,",
<A1+ G+ O+ C2+ 20,0, + OP¥) < G,
(10).

Hence the moduli of the coefficients in (2) are less than the
moduli in the series (8), which is known to be absolutely con-
vergent. It therefore follows that the series (2) will certainly be
absolutely convergent, provided |z |<1/(2\ + 1)

It only remains to show that # may be so chosen (and yet
not infinitely small) that y as given by (2) shall be such that
y'<1. We have

y<b'ad +bx?+ba%+. . .,
<Cx' + Cox®+ Cya®+. . .,
<[1-J{1-4r(1+N)a/1-2)}]/2(A+1) (11).

Now the right-hand side of (11) is less than 1, provided
Z<1/(2h+1)%  If, therefore, |#|<1/(2A+1)’, the absolute
convergency of the double series (3) or (4) will be assured;
and (2) will convert (1) into an intelligible identity.

We have thus completely established that one and only one
value of y expansible within certain limits as a convergent series
of integral powers of # can be found to satisfy the equation (1);
and the like follows for @ as regards y.  The functions of x and y
thus determined, being representable by power-series, are of course
continuous. * The limifs assigned in the course of the demonstra-
tion for the admissibility of the solution are merely lower limits ;
and it is easy to see that the solution is valid so long as (2) itself
and the double series into which it converts the left-hand side of
(1) remain absolutely convergent.

It should be remarked that we have not shown that no other
power-series whose absolute term does not vanish can be found to
satisfy (1); nor have we shown that no other function having
zero initial value, but not expansible in integral powers of z, can



378 REVERSION OF SERIES CH. XXX

be found to satisfy (1). We shall settle these questions presently
in the case where the series = (m, n) 2™y terminates.

§ 19.] The problem of the Reversion of Series properly so
called is as follows :—

Gliven the equation

=0+ U Y™+ Qe Y+ L (1),

where a,+0, but a, may or may not be zero, and the series
A Y™ + QY™+ . . . is absolutely convergent so long as
|y |Pa fized positive quantity p, to find a convergent expansion,
or convergent expansions, for y in ascending powers of x— ay.

Let ¢ denote {(z—a,)/en}'™, that is, the principal value of
the mth root of (z- ay)/@m, and , a primitive mth root of
unity, then (1) is equivalent to m equations of which the
following is a type :—

ug,,.'fzy(l L Y .>1/m (2).
A W,

Now, the series inside the bracket in (2) being absolutely
convergent for all values of y such that |y|$p, it follows from
the binomial theorem combined with § 1 that we can, by taking y
within certain limits, expand the right-hand side of (2) in an
ascending series of powers of y. We thus get, say,

—onE+y+ O + Oy’ +. . =0 (3).
It follows, therefore, from the general theorem of last para-

graph that we have, provided |£¢| does not exceed a certain
limit,

Y= 010y & + byonTE + by TE+ . L. (4).
We have, of course, m such results, in whick the coefficients
by, bs, bs, . . . will be the same, but r will have the different
values 0, 1, 2, . . ., (m-1).

Each of these solutions is, by chap. xxv1., § 19, a continuous
function of #. If we cause # to circulate about @, in Argand’s
Diagram, the m branches of y will pass continuously into each
other ; and after m revolutions the branches will recur. The
point a, is therefore a Branch Point of the mth order for the
function ¥, just as the point 0 is for the funection w'* in
chap. xx1x., § 5, 6.
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Cor. In the particular case where a,=0, m=1, we get the
single solution

Y=bx+ b, + b +. . . (5).
Example. To reverse the series
z=1+y/l+y2f21+ 9331 +. . . (6).
Let z=1+2, then we have
_y vy
x—ﬁ+§!+ﬁ RSN (7),

Hence, provided |xz| lie within certain limits, we must have by the

general theorem
Yy=bx+byx®+bya®+. . . (8).

Knowing the existence of the convergent expansion (8), we may determine
the coefficients as follows.

Give y a small increment %, and let the corresponding increment of x be k;
then, from (7), we have

_W+h)-y  (y+RP-y  +R’-y°
s TR T A

Hence, since L {(y+k)*~y®*}/k=ny™"! when k=0, and since, owing to

the continuity of the series as a function of y, h=0 when k=0, we have

h oy ¥
LTc_1+ﬂ+2_1+' C ey

Again, from (8), we have, in like manner,
k
Lﬁ=b1+2b2z+3b3m2+. . (10).

Combining (9) and (10), we have
by + 20y + 3by2%+. . .=1/(1+2z),
=l-z+22-...
We must therefore have
= = - =1/3, . ..
Therefore b=l b Y2 B=18,
_x a? ad
y—I— §+§—. .« oy
_z2-1 (2-1)2 (e-1)°
=17 T2 tTmo
It must be remembered that (11) gives only that branch of the function y
which is expansible in powers of z-1 and which vanishes when z=1. We
have, in fact, merely given another investigation of the expansion of the
principal value of logz.

(11).

§20.] Exzpansions of the various branches of an Algebraic
Function.
The equation
32 (m, n) z"y" + (0, 0) =0 (1))
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where the series on the left terminates, gives for any assigned value
of 2 a finite number of values of y. If the highest power of y
involved be the nth, we might, in fact, write the equation in the
form
Agy* + Ayt 4. . .+ Ay + 4,=0 (2),

where 4,, A, . . ., A, are all integral functions of . If, then,
we give to & any particular value, @, real or complex, it follows
from chap. x1r., § 28, that we get from (2) » corresponding values

of g, say by, by, . . ., by. If we change z into a value a +4
differing slightly from @, then &, b,, . . ., b, will change into
bit+ky, by+ke, ..., by+Ek,; that is to say, we shall get n values

of y which will in general be different from the former set. We
may therefore say that (2) defines y as an n-valued function of
z; and we call y when so determined an algebraic function of .

Since every equation of the form y= F'(z), where F(z) is an
ordinary synthetic irrational algebraic function (as defined in
chap. x1v., § 1), can be rationalised, it follows that every ordinary
irrational algebraic function is a branch of an algebraic function
as now defined. Since, however, integral equations whose degree
is above the 4th cannot in general be formally solved by means
of radicals, it does not follow, conversely, that every algebraic
function is expressible as an ordinary synthetic irrational alge-
braic function.

In what follows we assume that the equation (2) contains (so
long as # and y are not specialised) no factor involving 2 alone
or y alone. We also suppose that, so long as 2 is not assigned,
the equation is Irreducible, that is to say, that it has not a
root in common with an integral equation of lower degree in y
whose coefficients are integral functions of . If this were so, a
factor could (by the process for obtaining the G.C.M. of two
integral functions) be found having for its coefficients integral
functions of #, and the roots of the equation formed by equating
this factor to 0 would be the common root or roots in question.
Therefore the equation (2) could be broken up into two integral
equations in y whose coefficients would be integral functions of x;
and each of these would define a separate algebraic function of .

The condition of irreducibility involves that (2) cannot have
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two or more of its roots equal for all values of 2. For, if (2)
had, say, r equal roots, then, denoting all the roots by
Y1y, Yas - - -, Yn, the equation

S@-m@-2) - - G-1)@-Yn) - - @-)=0 (3)
would have -1 roots in common with (2), for r—1 equal
factors would occur in each of the terms comprehended by 3.
Now the coefficients of (3) are symmetric functions of the roots
of (2); therefore (3) could he exhibited as an equation whose
coefficients are integral functions of 4,, 4,,. . ., 4,, and there-
fore integral functions of a2*. Hence (2) would be reducible,
which is supposed not to be the case.

It must, however, be carefully noticed that irreducibility in
general (that is, so long as # is not specialised) does not exclude
reducibility or multiplicity of roots for particular values of . In
fact, we can in general determine a number of particular values
of & for which (2) and (3) may have a root in commont. In
other words, i may happen that the n branches of y have points
in common ; but it cannot happen that any two of the n branches
wholly coincide.

When, for z = @, the n values by, b,, . . ., b, are all different,
a (or its representative point in an Argand-diagram) is called an
ordinary point of the function v, and &,, b,, . . ., b, single values.

If b=b,=. . .=b,, each =b, say, then « is called an r-ple point
of the function, and b an r-ple value.

For every value of 2 (zero point) which makes A,=0, one
branch of y has a zero value; for every value of z (double zero
point) which makes 4,=0 and 4,=0, two branches have a zero
value; and so on. These are called single, double, . . ., zero
values.

For every value of # (pole) which makes A4, =0, one branch
of y has an infinite value; for every value of & (double pole)
which makes 4,=0 and 4,-,=0, two branches have an infinite

* See chap. xvir, § 4.
+ These are the values of z for which
Anyn""in—lyn‘l'l" . '+Aly+A0:O
and nd Y"1+ (n-1) Ay i, L L+ 4,=0
have a root in common.
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value; and so on. These may be called single, double, . . .,
infinities of the function.

The main object of what follows is to show that every bramch
of an algebraic function is (within certain limits), in the neigh-
bourhood of every point, expansible in an ascending or descending
power series of o particular kind; and thus to show that every
branch is, except at a pole, continuous for all finite values of .

§21.] If, at the point x=a, the algebraic function y has a
single value y=0b, then y—b is, within certain limits, expansible
in an absolutely convergent series of the form

y-b=0C(z-0a)+Cy(@—a)+ Cs(z—a)*+. .. (4)

Let 2=a+¢, y=0+n, then the equation (1) becomes, after
rearrangement,

0, 0)+(1,0)€+(0, 1)+ (2, 0) €+ &c. =0 (5).

Since y =5 is a single root of (1) corresponding to z=a, it
follows that when £=0 (5) must give one and only one zero
value for . Therefore we must have (0, 0)=0 and (0, 1) +0.

It follows, from the general theorem of § 18, that within
certain limits the following convergent expansion,

=06+ + G +. . .,
and no other of the kind will satisfy the equation (5) ; that is,
y=b+C(@—-a)+ C(z—a)+ Ci(z—al+... (6)
will satisfy (1).
The function » determined by (6) is continuous so long as

|#—a| is . less than the radius of convergency of the series
involved ; and it has the value y =b when z=a.

If we suppose all the values of y, say b, b, . . ., b,, corre-
sponding to #=a to be single, then we shall get in this way for
each one of them a value of the function y of the form (6).
Hence we infer that

Cor. So long as no two of the branches of an algebraic function
have a point in common, each branch is a continuous function of x;
and the increment of y at any point of o particular branch is ex-
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pansible in an ascending series of positive integral powers of the
increment of x so long as the modulus of the increment of x does
not exceed a certain finite value.

§22.] We proceed to discuss the modification to which the
conclusions of last paragraph are subject when #=a is a multiple
point of the function .

We shall prove that for every multiple point of the qth order, to
which corresponds a q-ple value y =b, we can find q different con-
vergent expansions for y of the form y=>b+ 3C, (x - a)’, where the
exponents r form o series of increasing positive rational numbers.

It will probably help the reader to keep the thread of the
somewhat delicate analysis that follows if we premise the follow-
ing remarks regarding expansibility in ascending power-series
in general :—

If 5 be expansible in an absolutely convergent ascending
series of positive powers of £ of the form

=0 &+ Cpéot® 4 Cyfhtataayr || (A),
where a,, a,, . . . are all positive, then we can establish a series
of transformations of the following kind :—
n=£4 (0 + "h)a m=E(Co+ ), M= £ (Cs + 773), ey

Mn—1= &n (On + "71).) (B))
where %, %, . . ., 7, all vanish when é=0; C}, C,, . . ., C,
are all independent of & and all different from zero; and
Oy =Lnj¢s, Co=Lny[e, . . ., Cy= Ly, ,[/¢* when £=0.

Conversely, if we can establish a series of transformations of
the form (B), and if we can show that 7, is expansible in a series
of ascending positive powers of £, it will obviously follow that 7
is expansible in the form (A).

Let now y =4 be a g-ple value of y corresponding to z = a,
and put as before z=a+§ y=0+7, then the equation (1)
becomes

2 (m, m) ™" =0 (7).
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Since ¢ values of y become b when z=a, ¢ values of n must
become 0 when £=0. Hence the lowest power of » in (7)
which is not multiplied by a power of ¢ must be #% There
must also be a power of ¢ which is not multiplied by a power of
7, otherwise (7) would be divisible in general by some power of
n, which is impossible since (1) is irreducible. Let the lowest
such power of & be £2.

Put now

77:?‘(01‘*"'71):5)"0 (8)7

and let us seek to determine a positive value of A such that
C,=Lv= Ly/é is finite both ways* when £=0.

The equation (7) gives

S, (m, n) Emtrnegt =0 (9).

Now (9) will furnish values of » which are finite both ways when
£=0, provided we can so determine A that at least two terms of
(9) are of the same positive degree in &, and lower in degree
than all the other terms.

Assume for the present that we can find a value of A for
which a group of » terms has the character in question, so that

d=my+ My =my+AMp=. . .=m, +An, (10),
where mbmP. .. P,
and A= (= m)(ny— ) = g b, say, (1),

where ¢ is prime to 4,
8= (mh + ng)/h.
Then, putting & =£&"1 so that £, =0 when ¢=0, and dividing
out &Mt we deduce an equation of the form
(&, V) &+ (my, 0y) VY + (Mpeqy M) V140 L+ (g, ) V=0

(12),
where ¢ (&, ) is an integral function of & and ».
For our present purpose we are concerned only with those

* That is, neither zero nor infinite—a useful phrase of De Morgan’s.
+ It is sufficient for our purpose to take the principal value merely of the
hth root of &.
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roots of (12) whose initial values are finite both ways. There are
evidently 7, — »; such roots, and their initial values are given by

(M, 1y) B ="+ (Mpoyy M) V1ML L+ (my, 1) =0
(13).

If the roots of (13) are all different, then we get n, —n, trans-
formations of the form (8); and the corresponding values of v,
that is, of C,+w, are given by the algebraical equation (12).
Moreover, since all the values of v are single, we shall get for
each value of », an expansion of the form

m=d & +dE+. . .,
=d M+, (14);

and each of these will give for # a corresponding expansion of
the form

7= O & + dy E0TIM 4 oot 4, (14).

If a group of the roots of (13) be equal, then we must
proceed by means of a second transformation,

hm= 51”' (02 + 772) (15),

to separate those roots of (12) which have equal values. If the
next step succeeds in finally separating all the initial values,
then we have for each of the group of equal roots of (13) two
transformations (8) and (15), and finally an expansion like (14'),
the result being the final separation of all the n, —n, roots of
(12), with convergent expansions for each of them.

Moreover, we must in every case be able, by means of a
finite number of transformations like (8) and (15), tc separate
the initial values, otherwise we should have two branches of y
coincident up to any order of approximation, which is impossible,
since (1) is irreducible.

The indices in the series (14') may be all integral or else
partly or wholly fractional (see Examples 2 and 1 below).

In the former case the corresponding branch of the function
7 is single-valued in the neighbourhood of the point £=0; that
is to say, if we cause £ to circulate about the point £=0 and
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return to its original position, » returns to the value with which
we started.

If some or all of the indices be fractional, the series will take
the form

n=C &M+ CLPll+ Ciola+ | | | (147),

where one at least of the fractions a/q, B/g, . . ., is at its lowest
terms. The function % is then g-valued and the series (14")
will as in § 19 lead to a cycle, as it is called, of ¢ branches
which pass continuously into each other when ¢ is made to
circulate ¢ times round £=0. At any multiple point there
may be one or more such cycles; and for each of them the
point is said to be a branch point of the ¢th order, ¢ being the
number of branches belonging to the cycle.

All that now remains is to show that we can in all cases
select a number of groups of terms satisfying the conditions (10)
sufficient to give us ¢ expansions corresponding to the ¢ branches
which meet at the ¢-ple point z =a.

The best way, both in theory and in practice, of settling this
point is to use Newton's Parallelogram, which is constructed as
follows :—Let 0.X and OY (Fig. 1) be a pair of rectangular axes,
the first quadrant of which is ruled into squares (or rectangles)
for convenience in plotting points whose co-ordinates are positive
integers. For each term (m, n)&"7%" in equation (7) we plot a
point K (degree-point) whose co-ordinates are OM =m, MK =n.
We observe that, if KP be drawn so that cot KPO =X\, then
OP=0M + MP=m+2\. Hence OP is the degree in ¢ of the
term in (9) which corresponds to (m, n)&™y® If, therefore, we
select any group of terms whose degree-points lie on a straight
line A, these will all have the same degree in £ namely, the
intercept of A on OX.

The necessary and sufficient conditions, therefore, that a
group of two or more terms furnish the initial values of a group
of expansions, let us say be an effective group, are :—

1°.  That the line A containing the degree-points shall cut
0.X to the right of O, and OY above 0. This secures that A be
positive.
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2°.  That all the other degree-points shall lie on the opposite
side of A to the origin. This secures that all the other terms in
(9) be of higher degree in & than those of the selected group.

Y Ys
Pa oy ey
N Pr =gl 2 1
F
H
4 J K N
G NC
\ N,
N\
T
D N
L L N
AN I
c TTN
~ sl [ |/ N
A INA s N
3 Y V] (3 P
Yl Y2
Fia. 1.

We have thus the following rule for selecting the effective
groups :—

Let A and E be the degree-points of the terms that contain
¢ and 7 alone, so that O4d =p, OE=q. Let a radius vector,
coinciding originally with A4X;, turn clock-wise about 4 as
centre until it passes through another of the degree-points B.
If it passes through others at the same time as B, let the last of
them taken in order from A4 be C. Next, let the radius turn
about (' as centre in the same direction as before, until it passes
through another point or points, and let the last of this group
taken in order from Cbe D. Then let the radius turn about D ;
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and so on, until at last it passes through £, or through a group
of which Z is the last.

We thus form a broken line convex towards O, beginning at
A and ending at E, every part of which contains a group of
degree-points the terms corresponding to which satisfy the
conditions (10).

Now the degree of the equation (13) corresponding to any
group CD is the difference between the degrees of # in the first
and last terms C' and D ; but this difference is the projection of
CD on OY. 'The sum of all the projections of AC, CD, &ec., on
0Y is OF, that is to say, . Hence we shall get, by taking all
the groups 4C, CD, &c., ¢ different expansions for y correspond-
ing to the ¢ different branches that meet at the multiple point
2z=a. Each one of these has the same initial value b, and each
is represented by a separate expansion in positive ascending
rational powers of z-a.

Example 1. To separate the branches of the function % at the point £=0,
n being determined by
DE3,’,5+CE71’2+E7710+B2107’+A£l3+L597,4
+ Tyl 4 FE3qls 4 KBplo 4 GEbyld 4 [El4 g7
+ HE012=0, (16).
The lowest term in % alone is 9%, so that £=0 is a multiple point of the
10th order. Plotting the degrees of the terms in Newton’s diagram, and
naming the points by affixing the coefficients, we find (see Fig. 1) that the
effective groups are ABC, CD, DE. Taking, for simplicity of illustration,
A=+2, B=-3, C=+1, D=-1, E=+1,
we get from the group 4BC
A=6/2=3/1, so that h=1, and v%-3v+2=0 gives the initial values of v,
that is, v=1, or 2, the corresponding expansions being
=8 1+d E+d 82+ . . .),
=8 2+dE+dyE+. . ).
From the group CD, we get
A=4/3, v3-1=0 gives the initial values of v,
that is, v=1, », ?, where w is a primitive imaginary cube root of 1, the
corresponding expansions being
n=E0 (L4 QPP dER . . ),
n=FB(w+d/EF+d/EP+ . . L),
n=§B(*+d) " ELB+d, B+, . ).
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In like manner, DE gives five expansions of the type
=8P (a+d EP+d 82+ . . L),
where a is any one of the five 5th roots of 1.

All the ten branches are thus accounted for ; and they fall into cycles of
the orders 1, 1, 3, 5.

Example 2. To separate the branches of # at the point £=0, 7 being
determined by )
455 -8 -4 (n - £) +4 (- £)*=0 an.
The effective group for (17) at the point £=0 corresponding to branches
which have the initial value =0 is 4(n-¥)?; as will be readily seen from
Newton’s diagram.
A=1, h=1and, if n=§ (C, +7,) =&v, we have
483382 4k (v—1)+4 (v -1)22=0 (18).
Hence two branches have the same initial value for v, viz. v=1. For
each of these n=£(1+%,); and we have for », the equation
458 — BE2 — 4y, +49,2=0 (18).
If we draw Newton’s diagram for (18’), we find that the effective group is
4% — 4fy, - 3£2; and that A\=1. Put now n,=£(Cy+n,)=£v,; and w2 get

4+ (20, - 8) (20, +1)=0 (19).
The initial values of v, are given by (2v, - 8) (2v, +1)=0, which give the
single values v, =3/2, v,= -1/2. Hence.for the two branches we have

m=£B/2+n)5 m'=((-3+m);
and the farther procedure will lead to integral power series for 5, and »,.
‘We have therefore for the two branches
n=E+382+Cof®+. . .
M=E-ERCIP .
and the double point is not a branch point on either.

It should be observed that, if we form an integral equation
by selecting from any given one a series of terms which form an
effeciive group, the new equation gives an algebraic function.
Those branches of this function that have zero initial values
coincide to a first approximation (that is, as far as the first term
of the expansion) with certain of the branches of the algebraic
function determined by the original equation which have initial
zero values. Thus, reverting to Example 1 just discussed,
from the group ABC we have

A$13 + Bé:lo,r] + 0&7 2 — 0.
This gives, when we drop out the irrelevant factor &,
Cp*+ B&n + A8 =0,
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which breaks up into two equations,

n+pE=0, n+qf=0;
and thus determines two functions, each of which has a branch
coincident to a first approximation with a branch of  (as deter-
mined by (16)) which has zero initial value. .

In like manner, CD gives C&+ Dy?=0; and DE gives
D& + En°=0.

We thus get a number of binomial equations, each of which
gives an approximation for a group of branches of the function
n determined by (16). We shall return to this view of the
matter in § 24.

§ 23.] Before leaving the general theory just established, we
ought to point out that Newtow's Parallelogram enables us to
obtain, at every point (singular or mon-singular), convergent
eapansions for every branch of an algebraic function in ascending
or descending power-series, as the case may be.

To establish this completely, we have merely to consider the
remaining cases where # or y or both become infinite.

1st. Let us suppose that the value of the function ¥ tends
towards a finite limit & when # tends towards . Then, if we
put n=y—b, z=¢, we shall get an equation of the form

3(m, n) "y =0 (17),
which gives n=0 when é=o0.
Let us suppose that Fig. 1, as originally constructed, is the
Newton-diagram for (17), and let & be the highest power of ¢

that occurs in (17) so that OO;=#% Now in (17) put é=1/¢,
and multiply the equation by £*; we then get the equation

3 (m,m) £ " =0 (18),

which is obviously equivalent to (17).

But the Newton-diagram for (18) is obviously still Fig. 1,
provided O, X; and O,Y; be taken, instead of OX and OY, as
the positive parts of the axes.

Hence, if we make a boundary convex towards O, in the
same way as we did for O, we shall obtain a series of branches
of n all of which are expansible in ascending powers of ¢, that
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is, in descending powers of & and all of which give =0 when
é=w. For each such branch we have

n=Er(c+-dE*+eEB+. . ),

(y-b)ar=c+dfa*+efzP+. . . (19),
where A, a, B, . . . are all positive, and ¢ is finite both ways.
2nd. Suppose that z=« is a pole of y, so that y=w when
z=a; and put =y, £=2—a, so that we derive an equation
3 (m, n) £ =0 (20),
for which Fig. 1 is the Newton-diagram with OX and OY as
axes. Then, putting »=1/y, we get an equation of the form
3 (m, n) "= 0 (21),
! being the highest exponent of # in (20).

The Newton-diagram for (21) is then Fig. 1 with 0,.X;
and O,Y, as axes; and we construct, as before, a boundary,
EFG say, convex towards O,, every part of which gives a series
of branches of 7', that is, of 1/%, expansible in ascending powers
of & For every such branch we shall have

2 =1/(c+dé*+eff+. . .),
where A, o, B, . . . are all positive, and ¢ is finite both ways.
Hence also, by the binomial theorem combined with § 1,
A =1fc+ dé*+e¥ +. . .,

that is,

that is,
y@-aP)=1jc+d (z—ay+é(x-a)f+. .. (22),
where A, a, 8/, . . . are all positive, and ¢ is finite both ways.
3rd. Suppose that » has an infinite value corresponding to
z=ow (pole at infinity). Then, if we put #z=£¢=1/¢, y=9=1/y,
we shall get, by exactly the same kind of reasoning as before, a
boundary GHI convex to O,, each part of which will give a
group of expansions of the form
n = c+dE* +efB+. . L}
Whence, as before, for every such branch
ylor=1[(c + dfx*+e[2P +. . .),
=1ljc+d[a*+&[zF +. . . (23),
where A, a, 8, . . . are all positive, and ¢ is finite both ways.
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If we combine the results of the present with those of the
foregoing paragraphs, we arrive at the following important
general theorem regarding any algebraic function y:—

Ify=0 when z=a (a+ ), then L y/(z-a)* is finite both
ways.
If y=0 when z = o, then L y[z=* is finite both ways.

If y=w when z=a(a+ o), then L y/(x—a)~ is finite both
ways.
If y =0 when x= o, then {/ Y/ is finite both ways.

X is in all cases a finite positive commensurable number
which may be called the ORDER of the particular zero or infinite
value of y.

This theorem leads us naturally to speak of algebraical zero- or infinity-
values of functions in general, meaning such as have the property just
stated. Thus sinz=0 when 2=0; but Lsinz/r=1 when £=0; therefore
we say that sin z has an algebraic zero of the first order when £=0. Again,
tanz=c when x=3}r; but Ltanxz/(x—3m)! is finite when z=%r; the
infinity of tanz is therefore algebraical of the first order. On the other
hand, e*=w when z=o ; but this is not an algebraical infinity, since no
finite value of X can be found such that Le®[z? is finite when z=w. (See
chap. xxv., § 15.)

§ 24.] Application of the method of successive approzima-
tion to the expansion of functions. This method, when applied
in conjunction with Newton’s diagram, greatly increases the
practical usefulness of the general theorems which have just
been established. The method is, moreover, of great historical
interest, because it appears from the scanty records left to us
that it was in this form that the general theorems which we have
been discussing originated in the mind of Newton.

Let us suppose that the terms of an equation (which may be
an infinite series) have been plotted in Newton’s diagram, and
that an effective group of terms has been found lying on a line
A; and let p™—¢" (the coefficients are taken to be unity for
simplicity of illustration) be a factor in the group thus selected,
repeated, say, a times, so that the whole group is ¢, (£, 9) (y™— &)=
Let A be moved parallel to itself, until it meets a term or group



§§ 23, 24 SUCCESSIVE APPROXIMATION 393

of terms ¢, ( n); then again until it meets a group ¢; (£, 9);
and so on.
The complete equation may now be arranged thus—

S (&, M =€) + b (§,m) + s () +. . =0,

or thus—

m __ én\a ¢2(§) 7)) ¢3(£> 7’) —
(™ — &) +¢1(£’ 1})+¢1(£ "l)+' ..=0 (24),
say, (™= & +rn+m+. . . =0.

Now, by the properties of the diagram, when 7= £&""
bo (& 1), b5 (£ m),. . . are in ascending or descending order as
regards degree in ¢, and the same is true of =, 75, . . . Let
us suppose that & and » are small, so that =,, 75, . . . are in
ascending order.

As we have seen, n™=¢" that is, n=¢v™ gives a first
approximation. To obtain a second, we may neglect 5, 74, . . .,
and substitute in 7, the value of n as determined by the first
approximation. To get a third approximation, neglect =, . . .,
substitute in 7, the value of % as given by the second approxima-
tion, and in 75 the value of 7 as given by the first approximation.

We may proceed thus by successive steps to any degree of
approximation ; the only points to be attended to are never to
neglect any terms of lower degree than the highest retained,
and not to waste labour in calculating at any stage the co-
efficients of terms of higher degree than those already neglected:

There is a special case in which this process of successive
substitution requires modification. We have supposed above
that the substitution of the first approximation, 5 =£&"™ in =,
does not cause 7, to vanish, which will happen, for example,
when ¢, (¢ ) contains »™—£" as a factor. In such a case the
beginner might be tempted to put 7,=0 and go on to substitute
the first approximation in v;. This would probably lead to error.
For, if we were to substitute the complete value of » in 7, it
would not in general vanish, but simply become of higher order
than is indicated in Newton's diagram, of the same order
possibly as ;. The best course to follow in such cases may be
learned from Example 5 below, which deals with a case in point.
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Example 1. Taking the equation (16), to find a third approximation to
one of the branches of the group CD.

Next in order to C and D a parallel to CD meets successively B and 4.
Hence, putting, for simplicity, D= +1, C=B=4= -1, the equation (16)
may be written

En* (P - ) -0 -84, . .=0.
Whence p—E-En-%2+. . .=0 (25).

The first approximation is n=£43; hence, neglecting £19/9? in (25), we get

for the second
7P~ £ - §1[g#R =0,
Whence n=§4 (14 £5R)IB =48 (1 + 3£53) (26).

If we use this second approximation in £/, and the first approximation
in £19/52 now to be retained, (25) gives for the third approximation

.”3 _ 54 _ 57/54/3 (1 +%_£5/3) - 510/58/3:0.
Whence, if all terms higher than the last retained be neglected,
7P 4~ 7P — 3P =0,
which gives
n=£48 (1+ 858 + 350m)3,
=0 (L+ 485+ §507) (27),
which is the required third approximation.

This might of course be obtained by successive applications of the method
of transformation employed in the demonstration of § 22, or by the method
of indeterminate coefficients, but the calculations would be laborious. It
will be observed ‘on comparing (27) with the theoretical result in § 22 that
dy=dy=dy=d;=dg=d,=dg=dy=0; a fact which, in itself, shows the advan-
tages of the present method.

The other branches of the cycle to which (27) belongs are given by

n=(wB¥B)4 {1 +} (wEB)S + } (wE3)10},
where w is any imaginary cube root of unity.

Example 2. To find a second approximation for the branches corre-
sponding tc 4BC in equation (16), in the special case where 4 =+1, B= -2,
C=+1,D=-1.

The terms concerned in this approximation are (4BC) and (D). We
therefore write

E(n— 8- 89°=0,
or (- &) -n*[E=0.
The first approximation is n=#3; hence the second is given by
(n—£3)2 - £15[£4=0,
that is, (n—£)2- g1 =0.
Whence n—ELENI=0,
which gives the two second approximations corresponding to the group.
There are two, because to a first approximation the branches are coincident.

This, therefore, is a case where a second approximation is necessary to
distinguish the branches.
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Example 3. To find a second approximation, for large values both of
¢ and 7, to the branch corresponding to 1 in equation (16).

Referring to Fig. 1, we see that, if HI move parallel to itself towards O,
the next point which it will meet is G. Hence, so far as the approximation
in question is concerned, we may replace (16) by

(Hslo.'])ﬂ -+ 1514777) + G 567]14 =0.

For simplicity, let us put H=1, I=G = —1, and write the above equation

in the form
7P - g = 4 =0.
Confining ourselves to one of the five first approximations, say n=£4, we
get for the second approximation
7P = §4- 9P =0,
which gives n=£45 (14 1£7125),
The other branches of the cycle are given by
7= () {1+ (o)),
where w is any imaginary fifth root of unity.
Example 4. Given
e=y+y? 2t +y338l+yijdl+ .. .,
to find y to a fourth approximation. We have
y=x -yl —y3[3! —yij4l - . ..

Hence 1st approx. y=2.
2nd ,, y=x-3z%
3rd iE) yzz_%(z_émﬁ)ﬁ_%zﬂ’
= — $2%+ Jad.

4th  ,, y=z-4(x-42%+}2%)2 -} (z - §o?)® - et
=z — 2%+ §a8 - fat,

Example 5. To separate the branches of 5 at §=0, where

48 -3 -4 (n-£) +4 (n - §)%=0.

If we plot the terms in Newton’s diagram, and arrange them in groups

corresponding to their order of magnitude, we find
{4 (=8} - {48 (n - 8)}o - {3845+ {48°},=0,
where the suffixes attached to the brackets indicate the orders of the groups.

The first approximation #=¢ is common to the two branches,

Since n — £ is a factor in { },, we cannot obtain a second approximation
by neglecting { }; and putting »=¢ in { },. In obtaining the second
approximation we therefore retain { },, treating n—¢ as a variable to be
found. We thus get

4 (n— £ - 482 (n - §) =3¢

whence {2 (n-§)-8)2=48,
which gives n=§+3¢%2;
or 7 =£-§2.

The branches are thus separated.
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If a third approximation were required, we should now retain { },, and

write
{2(n-§) - £}r=45 - 48
Hence 2(n-§) - 2= £282(1- )},
= £2£2(1-£/2).

n=£+38%2 - £2;
n=E-£[2+ 2.

Historical Note.—As has already been remarked, the fundamental idea of the
reversion of series, and of the expansion of the roots of algebraical or other equa-
tions in power-series, originated with Newton. His famous ¢ Parallelogram ' is
first mentioned in the second letter to Oldenburg; but is more fully explained
in the Geometria Analytica (see Horsley's edition of Newton’s Works, t. 1.,
p. 398). The method was well understood by Newton’s followers, Stirling and
Taylor; but seems to have been lost sight of in England after their time. It was
much used (in a modified form of De Gua’s) by Cramer in his well-known Analyse
des Lignes Courbes Algébrigques (1750). Lagrange gave a complete analytical form
to Newton’s method in his *“ Mémoire sur 'Usage des Fractions Continues,” Nouv.
Mém. d. U Ac. roy. d. Sciences d. Berlin (1776). (See Burres de Lagrange, t. 1v.)

Notwithstanding its great utility, the method was everywhere all but forgotten
in the early part of this century, as has been pointed out by De Morgan in an
interesting account of it given in the Cambridge Philosophical Tranmsdctions,
vol. 1x. (1835).

The idea of demonstrating, a priorz, the possibility of expansions such as the
reversion-formule of § 18 originated with Cauchy ; and to him, in effect, are due
the methods employed in §§ 18 and 19. See his memoirs on the Integration of
Partial Differential Equations, on the Calculus of Limits, and on the Nature and
Properties of the Roots of an Equation which contains a Variable Parameter,
Exercices d'Analyse et de Physique Mathématique, t. 1. (1840), p. 327; t. 1L
(1841), pp. 41, 109. The form of the demonstrations given in §§ 18, 19 has
been bLorrowed partly from Thomae, El. Theorie der Analytischen Functionen
einer Complecen Verdnderlichen (Halle, 1880), p. 107 ; partly from Stolz, Allge-
meine Arithmetik, I. Th. (Leipzig, 1885), p. 296.

The Parallelogram of Newton was used for the theoretical purpose of establish-
ing the expansibility of the branches of an algebraic function by Puiseux in
his Classical Memoir on the Algebraic Functions (Liowv. Math. Jour., 1850).
Puiseux and Briot and Bouquet (Théorie des Fonctions Elliptiques (1875), p. 19)
use Cauchy’s Theorem regarding the number of the roots of an algebraic equation
in a given contour; and thus infer the continuity of the roots. The demonstra-
tion given in § 21 depends upon the proof, a priorz, of the possibility of an
expansion in a power-series; and in this respect follows the original idea of
Newton.

The reader who desires to pursue the subject further may consult Durege,
Elemente der Theorie der Functionen einer Complexen Verdnderlichen Grisse, for
a good introduction to this great branch of modern function-theory.

The English student has now at his disposal the two treatises of Harkness and
Morley, and the work of Forsyth, which deal with function-theory from various
points of view.

The applications are very numerous, for example, to the finding of curvatures
and curves of closest contact, and to curve-tracing generally. A number of
beautiful examples will be found in that much-to-be-recommended text-book,
Frost’s Curve T'racing.

We thus get
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Exercises XXIV.

Revert the following series and find, so far as you can, expressions for
the coefficient of the general term in the Reverse Series :—
e n@n=1) , nn-1)(n-2) ,
(1.) y_1+1-!+ o1 x4 3] AL S
(2.) y=xz-3a3+325—Fa7+ . . .
x a7

x3
(3.) y:x~3—!+a"‘ﬁ+

(4.) y=z+a%22+ 2332+ /42 + . . .
(5.) If y=sin z/sin (z +a), expand z in powers of y.

z and y being determined as functions of each other by the following
equations, find first and second approximations to those branches, real or
imaginary, for which |z| or |y |, or both, become either infinitely small or
infinitely great :—

(6.) y2—2y=ux*-2%
(7.) a®(y+z)-2a% (y+x)+2i=0, (F. 69*).
(8.) (x-y)-(v-y)a®-3a*—§y*=0, (F. 82).

(9.) a(y?-2?(y-22)-y*=0, (F. 88).
(10.) az(y - x)*-y*=0, (F. 96).
(11.) z(y-=z)?-a®*=0, (F. 115).
(12.) x®y? - 2a2z% + a%c— b5 =0, (F. 121).
(18.) y(y —2)* (y + 2z) =9ca?, (F. 131).
(14.) {z (y - ) - a®}%yP=d7, (F. 140).
(15.) o - z%® + ady* - azys =0, (F. 143).
(16.) a(2®+y°) - a%z3y + 2% =0, (F. 143).
(17.) zPy*+ax?y?®+ bty + cx + dy*=0, where a, b, ¢, d are all positive,
(F. 155).

(18.) If e, be any constant whatever when n is a prime number, and
such that e, =epeqe, . . . when n is composite and has for its prime factors
Py ¢, 7, « . ., then show that

If a,b,¢, . . . be agiven succession of primes finite or infinite in number,
s any integer of the form a%f¢Y . . ., ¢t any integer of the forms a, ab,
abe, . . . (where none of the prime factors are powers), and if

F (2)=Ze,f (2%),
then 7 (@) =3 (- e, Fa),
where u is the number of factors in ¢.

(This remarkable theorem was given by Mobius, Crelle’s Jour., 1x. p. 105.
For an elegant proof and many interesting consequences, see an article by
J. W. L. Glaisher, Phil. Mag., ser. 5, xvii1., p. 518 (1884).)

* F. 69 means that a discussion of the real branches of this function,
with the corresponding graph, will be found in Frost’s Curve T'racing, § 69.



CHAPTER XXXI.

Summation and Transformation of Series
in General.

THE METHOD OF FINITE DIFFERENCES.

§1.] We have already touched in various connections upon
the summation of series. We propose in the present chapter to
bring together a few general propositions of an elementary
character which will still further help to guide the student in
this somewhat intricate branch of algebra.

It will be convenient, although for our immediate purposes it
is not absolutely necessary, to introduce a few of the elementary
conceptions of the Calculus of Finite Differences. We shall thus
gain clearness and conciseness without any sacrifice of simplicity ;
and the student will have the additional advantage of an intro-
duction to such works as Boole’s Finite Differences, where he
must look for any further information that he may require
regarding the present subject.

Let, as heretofore, u, be the nth term of any series; in other
words, let , be any one-valued function of the integral variable

3 Un_y, Un—s, . - -, % the same functions of n—1,2-2,. .., 1
respectively.
Farther, let Auw,, Athy_y, . . Auy
denote Ungr— U, Up—Un_1, . . 3 Us— U}
also A (Au,), A(Auyy), ..., A(Auw),

which we may write, for shortness,
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A%u,, Ay y, .., A2y,
denote
Aun+1 - Aun) Aun - Aun—la LY Au2 - Az(/1 )
and so on. Thus we have the successive series,
U, Uy, Ug, « o .y Uy, « . . 1);
Auy, Auy, Aug, ..., Au,, ... 2);
Ay, A%u,, Auy, ..., A%y, ... 3);
Ady,, Adu,, A%uy, ..., Auw,, ... 4);

where each term in any series is obtained by subtracting the one
immediately above it from the one immediately above and to the
right of it.

The series (2), (8), (4), . . . are spoken of as the series of
1st, 2nd, 3rd, . . . differences corresponding to the primary
series (1).

Example 1. If u, =n?, the series in question are

1, 4,9,16, .. .n% ...
3,3, 7 9,...2n+1, .*. .3
2,22 2 ...2 ...;
0,00 O0...0,...;

where, as it happens, the second differences are all equal, and the third and
all higher differences all vanish.

Cor. If we take for the primary series

ATwy, ATuy, ATug, ..., ATuy, ...,
then the series of 1st, 2nd, 3rd, . . . differences will be
ATy, AT, ATy L AT, L s
A2y, ATy, ATy L ATy, oL L
.

Ar+3 Uy, ATH3 Uy, Ar+3u3, e, Ar+3 Uy, .

In other words, we have, in general, ATA%w,=A%,. This is
sometimes expressed by saying that the difference operator A
obeys the associative law for multiplication.

Although we shall only use it for stating formule in concise
and easily-remembered forms, we may also introduce at this
stage the operator &, which has for its office to increase by unity
the variable ir any function to which it is prefixed. Thus
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Ep(n)=¢(n+1); Bu,=unp; Euw=u,;
and so on.

In accordance with this definition we have £ (Hu,), which we
contract into E*u,, = By = tnio; and, in general, E™u, =ty p.
We have also, as with A, E"E*u, = E™+*u,, for each of these is
obviously equal t0 %gqris-

Example 2. E™n®=(n+r).
Example 3. The mth difference of an integral function of n of the rth

degree is an integral function of the (r-m)th degree if m<r, a constant if
r=m, zero if m>r.

Let
¢ (n)=an™+n""14enm 2+, . .
then
Agp,(M)=a(n+1)"+b(n+1)"+c(n+1)r2+. . .
—an” - bnr-1 - 2. L L,
=ran1+{}r(r-Na+(r-1)b}nw2+. . .,
=¢p1 (1),

say, where ¢,_, (n) is an integral function of n of the (r — 1)th degree. Then,
in like manner, we have A¢,_, (n)=¢,_,(n). But A¢,_, (n)=Ap,n; hence
A2, (n) =,y (n). Similarly, A%, (n)=¢,_53(n); and, in general, A™¢, (n)
=¢,_m (n). We see also that A7, (n) will reduce to a constant, namely, rla;
and that all differences whose order exceeds r will be zero.

The product of a series of factors in arithmetical progression, such as
a(a+b)...(a+ (m-1)b), plays a considerable part in the summation of series.
Such a product was called by Kramp a Faculty, and he introduced for it the
notation a™'d, calling a the base, m the exponent, and b the difference of the
faculty. This notation we shall occasionally use in the slightly modified
form a'!™!% which is clearer, especially when the exponent is compound.

Since

a(@+bd) ... (a+(m-1)b)y=>b"(a/b)(a/d+1) . .. (a/b+m-1),
any faculty can always be reduced to a multiple of another whose difference
is unity, that is, to another of the form ¢!™!1, which, omitting the 1, we may
write ¢!™!. In this notation the ordinary factorial m! would be written 1!™1,

The reader should carefully verify and note the following properties of
the differences of Faculties and Factorials. In all cases A operates as usual
with respect to n.

Example 4.
A(a+bn)'mb=mb{a+b(n+1)}Im-11b,
Example 5.
A {1/(a+bn)!™Id} = — mb[(a + bn) ! m+11b,
Example 6.

a'nld a_c(a_b)l'n+llb
%cnnlb}=a_b P
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Example 7.
Acos (a+pn)= - 2sin §Bsin (a+3B+6n);
A sin (a +Bn)= +2sin 3B cos (a + 4B+ Bn).

§ 2.) PFundamental Theorems. The following pair of
theorems* form the foundation of the methods of differences,
both direct and inverse :—

L A"uy=tpsm— mCrthnim + mColnima+. « o+ (=) tp.

II.  tpgn = U + nCi DUy + n CoBPU + . o o+ A Uy,

To prove 1. we observe that
Aun =Upy1— Un;

2 —_—
AUy =Upyo— Unia

= Upyr+ Up,
= Unyo— 2Upty + Up;
hence
Aaun =Unys— 2Unig+ Up
— Up4et 2un+1 — Un,
= Untsz — SUna + SUnyy — Un;
and so on.

Here the numerical values of the coefficients are obviously
being formed according to the addition rule for the binomial
coefficients (see chap. 1v., § 14); and the signs obviously alter-
nate. Hence the first theorem follows at once.

To prove II. we observe that we have, by the definition of
Ay, Uiy = Uy + Au,. Hence, since the difference of a sum of
functions is obviously the sum of their differences, we have, in
like manner, Umis=Unss + AUy = Up + Aty + A (U + Auy,) =
Upm + Aty + Au, + A%u,,. We therefore have in succession

* The second of these was given by Newton, Principia, lib. 111., lemma v.
(1687) : and is sometimes spoken of as Newton’s Interpolation Formula. See
his tract, Methodus Differentialis (1711); also Demoivre, Miscellanea Analytica,
p. 152 (1730), and Stirling, Methodus Differentialis, &ec., p. 97 (1730).
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Upps = Uy, + Dy,
Upyo = Uy + AUy,
+ Ay + Ay,

Uy + 280+ APty
Uz = Uy + 28U, + A%u,
+ Au,, + 20%U, + AU,

U, + BAU, + BA2U,, + Adu,,;
and so on.
The second theorem is therefore established by exactly the
same reasoning as the first, the only difference being that the
signs of the coefficients are now all positive.

If we use the symbol %, and separate the symbols of opera-
tion from the subjects on which they operate, the above theorems
may be written in the following easily-remembered symbolical
forms :—

A"y, = (B -1)"u, (1.); Unin = (1 + A)*u, (IL.).

§8.] The following theorem enables us to reduce the sum-
mation of any series to an inverse problem in the calculus of
finite differences.

If v, be any function of n such that Av,=u,, then

S Uy = Vpy1 — Vs (1).

"This is at once obvious, if we add the equations

Up = Ay, = V41~ Un,
Up =DV =V — Uy,

Us =0V =Dy — Vs
The difficulty of the summation of any series thus consists
entirely in finding a solution (any solution will do) of the finite
difference equation Av, =y, OT V44, — v, = %,. This solution can
be effected in finite terms in only a limited number of cases,
some of the more important of which are exemplified below.

On the other hand, the above theorem enables us to con-
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struct an infinite number of finitely summable series. All we
have to do is to take any function of » whatever and find its
first difference; then this first difference is the nth term of a
summable series. It was in this way that many of the ordinary
summable series were first obtained by Leibnitz, James and John
Bernoulli, Demoivre, and others.

Example 1. b5 {a+nb}{a+(n+1)b} ... {a+(n+m-1)b}.
Using Kramp’:—;otation, we have here to solve the equation
Av,={a+nb}Imid (2).
Now we easily find, by direct verification, or by putting m+1 for m and
n—1 for n in § 1, Example 4, that
Al{a+(n—-1) b} mH110)(m 4+ 1) b]={a+nd}'™Id,
Hence v,={a+(n-1)b}'™*1%/(m+1)b is a value of v, such as we

require.
Therefore

{a+nb}Imtlid_{g 4 (5 1) h}Im+1id
(m+1)b @)

n
> {a+nb}'m”’=
8

Hence the well-known rule
S{a+nb} {a+@+1)0} . . . {a+@mt+m-1)b}
=C+{a+nb}{a+(n+1)d} ... {a+(n+m-1)b}{a+(n+m)d}/(m+1)b

where C is independent of n, and may be found in practice by making the two
sides of (4) agree for a particular value of n.

Example 2. To sum any series whose nth term is an integral function of
n, say f (n).

By the method of chap. v., § 22 (2nd ed.), we can express f(n) in
the form a+bn+cn(n+1)+dn(n+1)(n+2)+. .. Hence

n
Zf(n)=C+an+3bn(n+1)+3cn(n+1) (n+2)+3dn(n+1) (n+2) (n+3)+. . .
(5),
where the constant C can be determined by giving n any particular value
in (5).
Example 3. Z1/{a+bn}'mb,
Proceeding exactly as in Example 1, and using § 1, Example 5, we deduce
3 1 _1j{a+bs}m-1b—1/{a+b(n+1)} m-1Ib
= (@ bnimts m-10 )
Hence a rule for this class of series like that given in Example 1.

Example 4. To sum the series 2f (n)/{a + bn}'™'?, f(n) being an integral
function of n.
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Decompose f (n), as in Example 2, into
a+B(a+bn) 11ty (a+bn)'2b45(a+bn)!db4, . . (7).

Then we have to evaluate

aZ1/{a-+bn} ™04 831/ {a+b (n+ 1)}m-1ib 4. ®),

which can at once be done by the rule of Example 3*.

Example 5.

9).

This can be deduced at once from § 1, Example 6, by writing a+b for b
and n—-1 for n.

n glnlb a (a+D)™1d  (q4b)ls-11b
Semb T g o b | clmlb T ls-iip %

Example 6. To sum the series whose terms are the Figurate Numbers of
the mth rank.

The figurate numbers of the 1st, 2nd, 8rd, . . . ranks are the numbers
in the 1st, 2nd, 3rd, . . . vertical columns of the table (IL) in chap. 1v.,
§ 25. Hence the (n+1)th figurate number of the mth rank is ,,—1Cpn—
= pm—1Cn=m(m+1) . . . (m+n-1)/nl. Hence we have to sum the series

1+§:m(m+1) o (171+7z—}).
1 1.2...n

Now if in (9), Example 5, we put a=m, b=1, ¢=1, we get

%m'"'_(m+1)'"|_m+_1
g Linl 1!inl 1 °
Hence
m (m+1) mm+l) . . . (mtn-1)
mt =g+t 1
(m+1)(m+2) ... (m+1+n-1
=g B o)

that is to say, the sum of the first n figurate numbers of the mth rank is the nth
JSigurate number of the (m+ 1)th rank.

This theorem is, however, merely the property of the function ,,H,,, which
we have already established in chap. xxmm., § 10, Cor. 4. The present
demonstration of (10) is of course not restricted to the case where m is a
positive integer.

Many other well-known results are included in the formula of Example 5,
some of which will be found among the exercises below.

* The methods of Examples 1 to 4 are all to be found in Stirling’s Methodus
Differentialis. He applies them in a very remarkable way to the approxi-
mate evaluation of series which cannot be summed. (See Exercises
xxvir., 17.)
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Example 7. To sum the series
S,=cosa+cos (a+p)+. . .+cos(a+(n-1)p);
T,=sina+sin (a+p)+. . .+sin (a+(n-1)p).

From § 1, Example 7, we have cos (a+82)=A {sin (a — 38+ pn)/2sin } 8}.

Hence
S, = {sin (a — 18+ pn) —sin (a — 3B)}/2sin 3B,
=i A8 cos fa 48 (n- 1)
Similarly, . )
7, =52 sin a4 (-1}

§4.] Eapression for the sum of n terms of & series in terms
of the first term and its successive differences.

Let the series be w; + % +. . . +u,; and let us add to the
beginning an arbitrary term u,. Then if we form the quantities

Sy=uy, Si=u+u, So=1us+ U+ U,

o Sp =gt Ut Ut Uy, e e
we have

ASn:un+1; A2Sn: Aun+1’ L AmSnZAm_]u'rHI, LI
Hence, putting » =0,
AS,=u,, AX,=Au, ... A™S=A"g, ... (1)
Now, by Newton’s formula (§ 2, IL.),
8, =8 + ,C1AS, + ,C. A% + . . .+ A"S, (2).
If, therefore, we replace S,, AS,, A%S,, . . . by their values
according to (1), we have
%un =y + nCroty + ,CoAuy + ,C3A%u, +. . .+ A"y (3);
0
or, if we subtract «, from both sides,

Sty = 101ty + 2 CoAuy + n,CsA%u; + . .+ A" Ty, (4)%,
1

The formula (4) is simply an algebraical identity which may
be employed to transform any series whatsoever; for example,
in the case of the geometric series 32" it gives

* This formula, which, as Demoivre (Miscell. An., p. 153) pointed out, is
an immediate consequence of Newton’s rule, seems to have been first explicitly
stated by Montmort, Jowrn. d. Savans (1711). It was probably independently
found by James Bernoulli, for it is given in the Ars Conjectandi, p. 98 (1713).
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2+ +. .+ a"
:nw+nm2—'—1)m(w—1)+m:$‘—2)w(x—l)z+. ..

+x(z— 1",
which can be easily verified independently by transforming the
right-hand side. The transformation (4) will, however, lead to
the sum of the series, in the proper sense of the word sum, only
when the mth differences of the terms become zero, m being a
finite integer. The sum of the series will in that case be given
by (4) as an integral function of n of the mth degree. Since the
nth term of the series is the first difference of its finite sum, we
see conversely that any series whose sum to » terms is an
integral function of % of the mth degree must have for its nth
term an integral function of # of the (m — 1)th degree. We have
thus reproduced from a more general point of view the results of
chap. xx., § 10.

Example. Sum the series
2 (n+1) (n+2) (n+3).
1

If we tabulate the first few terms and the successive differences, we get
1, 2, 3, 4, 5
u, | 24, 60, 120, 210, 336,
Au, | 36, 60, 90, 126,
A%u, | 24, 30, 36,
Adu, 6, 6,
Atu, 0.

Hence, by (4),
E(n+1) (n+2) (n+3)

=n.24+”("2" 1).36+"("_16)("‘2).24+’l('5———‘ 1) (’;; 2 (n-3) g

=3} (n*+10n3 + 3512 + 50n).
§ 5.1 Montmort’s Theorem regarding the summation of Su,z"
An elegant formula for the transformation of the power-
series Su,2" may be obtained as follows. Let us in the first

@®
place consider 8= Su,2", which we suppose to be convergent when
1

|#z|<1; and let us further suppose that |z|<|l1-=z|. But
z=y/(1+y); so that
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lg7/(L+y) | =]2[<1,
and ly|=|a/(l-2)|<1.
Then, since
(1 +?/)_m: 1-,0y+ w1 O — mCsP 4. o L,
we have
§=Suny/(1+9),

=wmy—wmy+  wyt—  wmyt+  wmy—. ..
+ U — Oy + 3Ottty — ConyP +. . .
+  wgy — Oyt + CougyP — . L
+ eyt - Chugyt+. L
+ wyt—. ..

This double series evidently satisfies Cauchy’s criterion, for
both |y|<1 and |y/(1+%)|<1. Hence we may rearrange it
according to powers of y. If we bear in mind § 2, I, we find
at once

S=wy + Ay + A’uy P + Ayt + Ay + . L

Hence, replacing y by its value, namely, z/(1 - ), we get

2 . wmw | Awa® | Aua? %
?unx _1—z+(1—x)2+(1—x)“+' .. (1)*.

When the differences of a finite order m vanish, Montmort’s
formula gives a closed expression for the sum to infinity ; and,
if the differences diminish rapidly, it gives in certain cases a
convenient formula for numerical approximation.

Cor. 1.  We hawe for the finite sum

3 (2 N w v w2
?unz = () — Up1 @ )m +(Auy — 2" Aty y) (1_—‘27)2
A2 nA2 xz
+ ( U —Z 'l&n+1) m +. .. (2)
For, if we start with the series w,q 2" +u,,.2"2+. . ., and
proceed as before, we get
© U xn-{-l A w wn+2 Azu xn+3
E o n+1 + n+1 i + n+1 ] +. .. .
nt1 Uni (1-2) (1-2) (1+~z) ®)

From (1) and (3) we get (2) at once by subtraction.

* First given by Montmort, Phil. Trans. R.S.L. (1717). Demoivre gave
in his Miscellanea a demonstration very much like the above.

Dok
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The formula (2) will furnish a sum in the proper sense only
when the differences vanish after a certain order. The summa-
tion of the integro-geometric series, already discussed in chap.
xxX., § 13 and 14, may be effected in this way. It should be
observed that, inasmuch as (2) is an algebraic identity between
a finite number of terms, its truth does not depend on the con-
vergency of Su,2", although that supposition was made in the
above demonstration.

Cor. 2. If u, be a real positive quantity whick constantly
diminishes as n increases, and if Lu,=0, then

1

1 1
.:5201—2—2Au1+ SA0%—. .. (4%

Uy —Us+ U3 — . . 58

This is merely a particular case of (1); for, if in (1) we put
—x for z, we get

‘% (= Vtna® = ‘;2"( YAy, . (1 %,«) (5).

Since the differences must ultimately remain finite, the right-
*hand side of (5) will be convergent when 2=1. Also, by Abel’s
Theorem (chap. xxvrL, § 20), since 3 (—)"u, is convergent, the
limit of the left-hand side of (5) when =1 is E(— )Y*u,. Hence

1

the theorem follows.

The transformation in formula (4) in general increases the
convergency of the series, and it may of course, in particular
cases, lead to a finite expression for the sum.

Cor. 3. We get, by subtraction, the following formula -—
=ttt (=)= (= (= i) = g5 (Bt = (=) Bitas)
+ 3 (O (<) Au) . (6),
in which the restrictions on w, will be unnecessary if the right-

hand side be a closed expression, which it will be if the differences
of u, vanish after a certain order.

* Euler, Inst. Diff. Calc., Part IL., cap. 1. (1787).
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Example 1. We have (Gregory’s Series)
T 1 1 1
i=l-g+z-7t - (7).
If we apply (4), we have u,=1/(2n-1). Hence
Aru,=(-)2.4 ... 21'/(2n—1)(2n+1) (2n+38) . .. (2n+2r-1);

Aruy=(-)"2.4...2r1.3.5. (27+1)
=(-)ror.1.2...7/1.3. 5. (2r+1).
T 1 1.2 1.2.3
5 e 8).
Therefore =1+ +3+3 T3 7+ (8)
Example 2. To sum the series
S,=12-224382—, ., (-)"1nd
Since Aty =2n+3, Au;=3,
A, =2, Au, =2,
Au, =0, Adu, =0,

we have, by (6),

Sp={1- () (n+12} -3 (8- (- )" (2 +3)} +3{2- (-)"2},
=(- )10 (n+1).

Exercisgs XXV.

(1.) Sum to » terms the series whose nth term is the nth r.gonal
number*,
Sum the following series to m terms, and, where possible, also to
infinity :—
@) Zn(n+2) (n+4). 3. %1/@2 -1).
(4) 1/3.8+1/8.13+1/13.18+. . .
(5) 11.8.5+1/3.5.7+1/5.7.9+. .. .
(6) 1/1.2.3.4+1/2.8.4.5+1/3.4.5.6+. ..
(7.) Z(an+b)/n(n+1)(n+2).
8.) 1/1.3.5+2/3.5.7+8/5.7.9+. ..
(9) 1/1.2.4+1/2.3.5+1/3.4.6+... .
(10.) 1/1.83.7+1/3.5.9+1/5.7.11+. ..
(11.) Z(n+1)*n(n+2).
(12.) 4/1.8.5.7+9/2.4.6.8+16/3.5.7.9+. .. .
(18.) Zsecmfsec (n+1)6. (14.) = tan (6/2%)/2".
(15.) Ztan-!{(na-n+1) a1 +n(n-1) 1)},
(16.) = tan—' {2/n2}.
(17.) ml4+m+1)Y1+m+2)2l+. . . .
(18.) LlYm!+2!/(m+ 1)1 +38/(m+2)14-. . .

* The sums to n terms of arithmetical progressions whose first terms are

all unity, and whose common differences are 0, 1, 2, . .., (r—1), . . . respec-
tively, are called the nth polygonal numbers of the 1st, 2nd, 3rd, . .., rth, ...
order. The numbers of the first, second, third, fourth, . . . orders are spoken

of as linear, triangular, square, pentagonal, . . . numbers.
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(19.) 1-pCi+mCo—- . . (=)"mCa
(20.) Show that the figurate numbers of a given rank can be summed by
the formula of § 3, Example 1.

L) 1+7%+m(1mi1)Jr m112)(§z+2)+

@23) STy T ewn teer (airzﬂ.ﬂ)
(24) Z(a+m)'m- 2l/(c+n)|m|

(25) lg 22 i 5+

1.3.
T.2.3.4712.3.4.51.2.3.
(+) 14+2r)  (L+7)(1+2r) (1+30)
1.2.3.4.57 1.2.3.4.5.6

+ou~1

(26.)

2 22
(27.) I™= {3 m(m—l)+1 3
S

(28.) Show that
113 +1 1/13 . 11 3 ‘3
'3 \"*g)"1m/gra 2+m§-§--'("‘é)"--

FRSTIEN YA

57n(m—1)(m—2)—

n! n!
(Glaisher.)
(29.) Show that
1+2(1-a)+3(1-a)(1-2a)+. . .+n(l-a)(1-2a) . . . (1-(n-1)a)
=a{l-(1-a)(1-2a) . .. (1-na)}.

11 21 3!
sl 2ol @ Ne-9) @E-N@E-2)@-3)

(-)"tinl n+l
(z-1)(z-2) ... (m—n)(l—x—-l-_l)'

(30.)

(31.) Ifa+b+2=c+d, then

galnlblnl_ ab (a+1)|nl(b+1)lnl (a+1)|s—1|(b+1)1s—11
scmdml ™ (a+1)(b+1)-cd| ~ c'midinl - cls—1Tgls—11 g
(82.)
g.r 9(a-1).7(r-1) -
Tp=gr). -0 (pog+ D (p-q+2). @71 (p+r-2)
_(p-9).(p+7)
p.(P-g+7)”

(Educational Times Reprint, vol. xL1., p. 98.)

(88.) Transform the equation
log2=1-%+3-%+...
by § 5. Cor. 2.
(34.) Show, by means of § 2, I., that, if m be a positive integer, then
a(a-1) a(a-1)(a-2)
L= w01 +nCaj =1 "5 Eon -9

(D)) - i)
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RECURRING SERIES.

§6.] We have already seen that any proper rational fraction
such as (a + bz + ca?) /(1 + px + qa* + ra®)* can always be expanded
in an ascending series of powers of #. In fact, if |2 be less than
the modulus of that root of 7a2* + ga*+ px + 1 =0 which has the
least modulus, we have (see chap. xxviL, § 6 and 7)

a+ b+ ca® . .
1 +px+qm2+m":u°+u'w+ U2+ . . HuZ+ . .. (1)

We propose now to study for a little the properties of the
series (1).

If we multiply both sides of the equation (1) by 1+pe
+q2*+ra®, we have

a+bx+cat = (1 +px+ qa*+ r2) (tho + U & + U+ . . .Uz +. . .)

).
Hence, equating coefficients of powers of #, we must have
U=a (81) 3
Uy +puy=b (32);
Uy + PUy + QUy=C (8s) ;
Us + Pls+ Qb + 7%, =0 (34) 3
Up + PUpy + QUp—g+ TUp—3=0 (Bn41)-

Any power-series which has the property indicated by the
equation (8,4,) is called a Recurring Power-Series t; and the
equation (3,41) is spoken of as its Scale of Relation, or, briefly,
its Scale. The quantities p, ¢, r, which are independent of #,
may be called the Constants of the Scale. According as the scale

has 1,2, 8,. . .,7,. . . constants, the recurring series is said to
be of the 1st, 2nd, 3rd, . . ., 7th, . .'. order. When z=1, so
that we have simply the series w,+u +ug+. . .+ uy+. . .,

with a relation such as (8,,) connecting its terms, we speak of

* For simplicity, we confine our exposition to the case where the
denominator is of the 3rd degree; but all our statements can at once be
generalised.

1 The theory of Recurring Series was originated and largely developed
by Demoivre.
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the series as a recurring series simply* ; so that every recurring
series may be regarded as a particular case of a recurring power-
series.

It is obvious from our definition that all the coefficients of a
recurring power-series of the 7th order can be calculated when
the values of the first » are given and also the constants of its scale.
Hence a recurring series of the rth order depends wpon 2r constants;
namely, the r constants of its scale, and r others.

From this it follows that if the first 27 terms of a series (and
these only) be given, it can in general be continued as a recurring
series of the rth order, and that in one way only ; as a recurring
series of the ( + 1)th order in a two-fold infinity of ways; and
$0 on.

On the other hand, if the first 2 terms of the series be
given, two conditions must be satisfied in order that it may be a
recurring series of the (r — 1)th order; four in order that it may
be a recurring series of the (r — 2)th order ; and so on.

Example. Show that
T+ 2%+ 823+ 4244 525+ 625+ . . .

is a recurring series of the 2nd order. Let the scale be w, + pu,_; + qu, _,=0.
Then we must have

3+2+q=0, 4+3p+2¢=0, 5+4p+3¢=0, 6+5p+4g=0.

The first two of these equations give p= -2, ¢= +1; and these values
are consistent with the remaining two equations. Hence the theorem.

§7.] The rational fraction (a+ bz + c2®)/(1 + pz + q2* + ra?),
of which the recurring power-series u,+ & +u,2°+. . . is the
development when |2 | is less than a certain value, is called the
Generating Function of the series. We may think of the series
and its generating function without regarding the fact that the
one is the equivalent of the other under certain restrictions. If
we take this view, we must look at the denominator of the
function as furnishing the scale, and consider the coefficients

* We might of course regard a recurring power-series as a particular case
of a recurring series in general. Thus, if we put U, =u,z", we might regard
the series in (1) as a recurring series whose scale is

U,+paU,_,+q22U,_ o+ 72U, _3=0.
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as determined by the equations (8,), (8.), . . ., (8zn)*. No
question then arises regarding the convergence of the series.

Given the scale and the first r terms of a recurring power-
series of the rth order, we can always find its generating function.

Taking the case » =3, we see, in fact, from the equations (3,),
(32),. . ., (Bn4y), . . . of § 6, that

{tg + (10, + puy) @ + (g + puy + qug) 2}/{1 + px + ga* + ra*}
is the generating function of the series w,+ w,& + u,2* +. . .
whose scale 1s wy, + pity—y + QUn—g + 7Uy_3= 0.

Cor. 1. Ewery recurring power-series may, of |x| be small
enough, be regarded as the expansion of a rational fraction.

Cor. 2. The general term of any recurring series can always
be found when its scale is given and a sufficient number of its
initial terms.

TFor we can find the generating function of the series itself
or of a corresponding power-series; decompose the generating
function into partial fractions of the form A4 (z—a)=*; expand
each of these in ascending powers of #; and finally collect the
coefficient of 2" from the several expansions.

Example. Find the general term of the recurring series whose scale is
u, — 41,y + SUy,_y— 2w, _3=0, and whose first three terms are 1+0-5. Con-
sider the corresponding power-series. Here p= -4, ¢=5§, r= - 2; so that

a=uy=1, b=u;+puy= -4, c=uy+pu,+qu,=0.
The generating function is therefore
1-4z _ 1-4zx
1-4z+52°-22% (1-x)*(1-2z)°
2 3 4

s e (- %)

fi

Expanding, we have
FT]'_;;;W?,:2{1+E-’E"}+3{1+2(n+1)z”} —4{1+32ngn},
=142 (3n+5 - 2"+,
The general term in question is therefore 3n +5 — 2"+2,
§8.] If w, be any function of an integral variable % which
satisfies an equation of the form
Up, + PUp—y + QUp—g + TUy_3=0,
or, what comes to the same thing,
Uns + Pllnta + Qllnia + Ty =0 (1),

* We might also regard the series as deduced from the generating
function by the process of ascending continued division (see chap. v., § 20).




414 LINEAR DIFFERENCE-EQUATION CH. XXXI

we see from the reasoning of last paragraph that w, is uniquely
determined by the equation (1), provided its three initial values
Uy, W, U, are given ; and we have found a process for actually
determining w,.

It is not difficult to see that we might assign any three
values of u, whatever, say ., ug, u,, and the solution would
still be determinate. We should, in fact, by the process § 7,
determine u, as a function of # linearly involving three arbitrary
constants u,, %,, %, say f(u,, u, 4y, n); and wu,, u;, u, would be
uniquely determined by the three linear equations
S oy, Uy, @) = wa, [y, w, Up, B) = ug, f(ty, ty, s, ) =uy (2).

An equation such as (1) is called @ Linear Diflerence- Equation
of the 3rd order with constant coefficients ; and we see generally
that o lnear difference-equation of the rth order with constant
coefficients has a unique solution when the values of the function
involved are given for r different values of its integral argument.

Example. Find a function u, such that w, 35— 4u, o+ 5u,,, —2u,=0;
and u,=1, u;=0, u,=-5.
We have simply to repeat the work of the example in § 7.

§9.] 70 sum a recurring series to n + 1 terms, and (when
convergent) to infinity.

Taking the case of a power-series of the 3rd order, let

Sy =y + &+ ud® +. . . Fu 2",

then

S, =pUyx + PU +. . APy 2+ PU ™,

q2*S, = QU . o A QU o B QU T+ QU 2T,

r&®S, = e AT Uy g B P Uy & Uy 2T, 2R

Hence adding, and remembering that w, + pu,—; + qu,_,
+ U3 = =0 for all values of # which exceed 2, we have
(1 + pa + q2® +r2®) Sy = o+ (uy + puy) @ + (us + puy + quy) 2°
+ (PUp + QU + TUp—g) T+ QU + TUpy) 2™+ Puga™™® (1)
whence S, can in general be at once determined by dividing by
1+ pz + q2® + ra.

The only exceptional case is that where for the particular
value of z in question, say #=a, it happens that
1+pa+ga®+7ra®=0.
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In this case the right hand of (1) must, of course, also
vanish, and 8, takes the indeterminate form 0/0. &8, may in
cases of this kind be found by evaluating the indeterminate form
by means of the principles of chap. xxv. This, however, is often
much more troublesome than some more special process applicable
to the particular case.

If the series Su,z" be convergent, then ZLw,2"=0 when
n=oco ; therefore the last three terms on the right of (1) will
become infinitely small when n=ow. We therefore have for
the sum to infinity in any case where the series is convergent

S _ U+ (U + pUg) 2+ (U + pu, + qu,) 2 @).
® 1+px+qa®+rad®
The particular cases
Ug+ Uy + U+ . o U+ (8),
Up— U+ U—. (=) U F. .. (4),

are of course deducible from (1) and (2) by putting z=+1
and #=-1. Exceptional cases will arise if 1+p+¢+7r=0, or
ifl-p+qg-r=0.

It is needless to give an example of the above process, for
Examples 1 and 2, chap. xx.,§ 14, are particular instances,
Snz” and 1 + 2 (— )" '2na™ being, in fact, recurring series whose
scales are w,— Uy + Sthp_o—Un_3=0 and u,+ 2Up_;+Up_s=0
respectively.

ExgErcises XXVI.

Sum the following recurring series to n+1 terms, and, where admissible,
to infinity :—

(1) 2+5+13+35+97+. . .

(2.) 2+10+12~-24+2+10+12+. . .

(3.) 2+17x+9522+4612%+. . . .

(4.) 5+122+ 302+ 78%3+21024+. . .

(5.) 1+4x+172%+762%+353z%+. . .

(6.) 1+4x+1022+2223+46x%+. . .

(7.) If a series has for its rth term the sum of r terms of a recurring
series, it will itself be a recurring series with one more term in the scale of
relation.

Find the sum of the series whose rth term is the sum of 7 terms of the
recurring series 1+6 +40+288+. . .
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8.) It T',, T4y, T,4e be consecutive termseof the recurring series
whose scale is T, ,,=aT,, - 0T,, then
(Tn+12 - a’Tn T'n+1 + ang)/( Tu-—‘r+12 - a’T'n—r Tn—'r+1 + an-r2) =0
(9.) Form and sum to n terms the series each term in which is half the
difference of the two preceding terms.

(10.) Show that every integral series (chap. xx., § 4) is a recurring series;
and show how to find its scale.

(11.) If w,=wu,—;+u,o, and uy=au,, show that

Uy = Uy Uy = (P (a2 = @ = 1) 0,
(12.) If the series u;, uy, ug, . . ., Uy, . . . be such that in every four
_consecutive terms the sum of the extremes exceeds the sum of the means by
a constant quantity ¢, find the law of the series; and show that the sum of

2m terms is
gm (m - 1) (4m - 5) ¢ — m (m — 2) 1y + muy+m (m — 1) ug.
(18.) If uppq=tpyy +u,, u=1, uy=1, sum the series
1 2 Untg
m * ﬁ-i- e “n+1un+3.

(14.) By French law an illegitimate child receives one-third of the portion
of the inheritance that he would have received had he been legitimate. If
there be ! legitimate and n illegitimate children, show that the portion of
inheritance 1 due to a legitimate child is

1 n n(n-1) nn-1)...2.1
TR S R TS I SRR S oy 7 P e (Fen B
(Catalan, Nouv. Ann., ser. 11, t. 2.)

SIMPSON’S METHOD FOR SUMMING THE SERIES FORMED BY
TAKING EVERY KTH TERM FROM ANY POWER-SERIES
WHOSE SUM IS KNOWN,

§10.] This method depends on the theorem that the sum of
the pth powers of the kth roots of unity is k if p be a multiple
of k, but otherwise zero.

This is easily seen to be true; for, if w be a primitive kth
root of 1, then the % roots are o, 0!, o? . . ., o*L If p=pk,
then (0*)P=w**=(u**=1. If p be not a multiple of %, then
we have

(0P + (M +. o+ (PP =1+ (P) + (0P) +. .+ (0P)F
={1 - (o?)}/(1 - 0?),
=0,
for (w?)*=(o*?=1, and o?=*1.
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Let us suppose now that f(2) is the sum of » terms of the
power-series %, + Su,z", n being finite, or, it may be, if the series
is convergent, infinite.

Consider the expression

U,=
()Y ) () ) )

(1),

where m is 0 or any positive integer <#.
The coefficient of 2" in the equivalent series is

Uy {(m0>k—m+r+ (ml)k—m+r+(w2')k—m+r .. L+ (wk—l)lc—m+1-}/]c (2).

Now, by the above theorem regarding the 4th roots of unity,
the quantity within the crooked brackets vanishes if £—m +7r
be not a multiple of %, and has the value % if Z—m +7 be a
multiple of £ Therefore we have

U = U @™ + Ui @ + @™ + . . . (3),
where the series extends until the last power of # is just not

higher than the nth, and, in particular, to infinity if f(2) be a
sum to infinity*,

If we put m =0, we get
{f (@) +f(o'@) + fo?2) +. . .+ f(o" @)}k
= Uy + U B + Uy &+ ug ™ +. . . (4).

Example 1.
l4z+a?+. .. +a2?=(1-2*)/(1-zx).

Hence, if w be a primitive cube root of 1, we have
1 - gntl 1 — @ntlgntl 1- w2n+2xn+l
l1-z 1-wz 1- iz }’

1+ad+ab+4. .. +z3’:§{

where 3s is the greatest multiple of 3 which does not exceed n.
Example 2. To sum the series
z3 $7 xll

§+ﬂ+1_l—!+' ..ad w.

* This method was given by Thomas Simpson, Phil. Trans. R. S. L.
Nov. 16, 1758 (see De Morgan’s T'rigonometry and Double Algebra (1849),
p. 159). It was used apparently independently by Waring (see Phil. Trans.
R. S. L. 1784).
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‘We have

2 3
e”=1+x+z—+<z—|+. ..ad o,

20 3
Hence, if w be a primitive 4th root of unity, say w=1, then, since here
k=4, m=3, k-m=1, w?= -1, w¥= -1, we get
. NI I LA 22
X4 3ot% _ p=% _ oty ="__ 1 4 T _ o
1 (P +ie®— e % —fe~®) gttt -
7 pll

. . . o
that is, %(sxnhm—s1nx)=?ﬁ+,ﬁ+ﬁ+. .

MISCELLANEOUS METHODS.

§ 11.] When the nth term of a series is a rational fraction,
the finite summation may often be effected by merely breaking
up this term into its constituent partial fractions; and even
when summation cannot be effected, many useful transformations
can be thus obtained. In dealing with infinite series by this
method, close attention must be paid to the principles laid down
in chap. xxvI, especially § 13; otherwise the tyro may easily
fall into mistakes. As an instance of this method of working,
see chap. xxviirL, § 14, Examples 1 and 2.

Example 1. Show that

1 1
{(x+1)2(x+2)+(x+2)2(a:+3)+(a:+3)2(a:+4)+' . }
1 1

* {(x+1) @22 @ro) (T3P M E) (z+4)2+‘ ) } BTSN
Denote the sums of n terms of the two given series by S, and T,
respectively, and their nth terms by u, and v, respectively. Then
U= - 1f(z+n) +1f(x+n)2+1f/(x+n+1);
v,=1/(z+n)-1fz+n+1)?-1/(z+n+1).
‘Whence we get at once
Spt+Tp=1/(z+1)2-1/(x+n+1)%
Therefore S, +T,=1/(z+1)%
Example 2. Resolution into partial fractions will always effect the
summation of the series
)ty (ntd) . . . (),

where a, b, . . ., k are positive or negative integers, and f(n) is an integral
function of n whose degree is less by two at least than the degree of

(n+a) (n+d) . .. (n+k).
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For we have
f@)|n+a)(n+d) ... (n+k)=24/(n+a),

f(r)=Z4 (n+b)(n+c) . . . (n+k).
Since the degree of f(n) is less by one at least than the degree of the
right-hand side of this last identity, we must bave
A+B+...+K=0.

But, since a, b, . . ., k are all integral, any partial fraction whose
denominator p is neither too small nor too great will occur with all the
numerators 4, B, . . ., K, so that we shall have 4/p+B[p+. . . +K[p=0.

On collecting all the fractions belonging to all the terms of the series we
shall be left with a certain number at the beginning and a certain number at
the end; so that the sum will be reduced to a closed function of n.

and

§12.] KEuler’s Identity. The following obvious identity*
-+, (1—) + (L —ag) +. . . +0as. .. & (1 =)
=l—t@y. .. 0y (1)

is often useful in the summation of series. It contains, in fact,

as particular cases a good many of the results already obtained
above.

If in (1) we put

=", a=""0 g TP g T
Yy WY+ Y +pe Y+pa’
and multiply on both sides by /(v — ), we get
L_® _z(@+p) . x@+p) . . (@ pa)
v m e (yip) (3+p)(y+ps) . . - (¥ +pn)

_ Y z_ (@+p)(@+ps) . . . (@+pn) @)
Ty y-a (grp) (). (el
If the quantities involved be such that
I (Z+p)(@+p) . . .(m+_pn):0 3),
n=w (Y+p1) (¥ +22) - - . (¥ +Pn) @)

then

z z (z + p,) _ Y
Yo @ e T My @

* Used in the slightly different form,

(I4+a)(1+ay) (L+az)(1+ay) . - .
=l+ar+ag(l+a)+ag(l+ay) (1+ag)+a,(1+a,) (1+ay) (L+ag)+. . .

by Euler, Nov. Comm. Petrop. (1760).
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If in (2) we put y =0, we get

1+£+MP1)+ +x(x+}71)- . '(‘z'+p'n—])

y 2 Pp: e PPz - . Pn

(D)8 . (1+2)

From (5) a variety of particular cases may be derived by
putting 7= o, and giving special values to p,, ps, . . . Thus,
for instance, if the infinite series 31/p, diverge to + o, then (see
chap. xxvI., § 24) we have

1-2,2@-p)  4ee0 (6).
D D1pe
In general, if the continued product I1(1+ /p,) converge to any
1

defintite limit, then the series 1+§w(x+pl) o @+ Pu)[PiDs .+ - P
1

converges to the same limit.
Example. Find when the infinite series
_z z (z+p) + z (z+Dp) (z+2p) R
y+p  (y+p) (y+2p)  (y+p) (y+2p) (y+3p)
converges, and the limit to which it converges.
If in (2) above we put p,=p, p,=2p, &ec., . . ., we have

_¥ __= g (a+p) (@ +2) .. . ) ®)
Y- Y-Z n=w (¥+p) Y +2p) . . . (y+7p) ’
Now the limit in question may be written
it 1ozl
1 L+y/np
but this diverges to o if (z —y)/p be positive, and converges to 0 if (z -y)/p
be negative (chap. xxvr., § 24).
Hence, if p denote in all cases a positive quantity, we see that

S=1+

T z (z+p) y
14— —— .oad o =—"—,
. vrp TG p @+ y-zx
if y>z; and ( )
z(x-p Yy
1+ P ..ad o0=—2—,
to-nw-2) " Y-z

if y<uw.
Exercises XXVII.

(1.) Given 1/(1-z)?=1+42r+3x2+4a%+ . . .,
sum 1+ 428+ 726+ 102° +

(2.) Sum the series
1+a3/4+28/T+. . .3

1+ 233! +28[6!+. . .
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(8.) If f(x)=uy+uc+ux®+. .., and a, B, ¥, . . . be the nth roots
of —1, show that

'Ill, {a2n—mf (az) + " f Br)+. . }p=uua™— um-0-’:»:’"‘m-”l + “m+2n"':m+2n -
where m<mn. (De Morgan, Diff. Calc., p. 319 (1839).)

Sum the following series, and point out the condition for convergency
when the summation extends to infinity :—
(4) 1-23/4+25/7— .. .ad o;
—z4l 4+ -. . . ad .
(5.) 14+,C3+pCs+mCo+...adwo;
1-,03+;,C6—Co+...ado.
(6.) 1/1.3+1/1.2.4+1/1.2.3.5+. . . ton terms.
(7.) 1/1.2.84,,C,/2.8.4+,,Cy/3.4.5+. . . ad .
(8) 1-2z/1+32%2-4a%3+...ad ®.
(9.) cosf/1.2.3+cos20/2.3.4+cos36/3.4.5+...ad .
(10.) 1/12.2247/2¢.3%2+. . .+ (2n2+4n+1)/(n+1)% (n+2)2
(11) 1/12.22-1/22.8% 4, . . (=) 11/n2(n+1)%+. . . ad .
(12.) If n be a positive integer, show that
n 1 n(n-1) +1 n(n—1)(n-2)
m+n + 2(m+n)(m+n-1)  3(m+n)(m+n—1)(m+n- 2)
_m 1 n(n-1) +1 n(n—1) (n-2)
“m+1l 2(m+1) (m+2) m+1)(m+z)(m+3)
(13.) Show that
___"Ag,l, ”C AR nCs - =" .
Tzl (I-z))(1-22) A-z)(1-22) (1-23) " “n-a
and hence show that
20101 = 0nCo0s+ . . . (=)%Cho,=1/n,
where ¢, =1/1+1/2+. . . +1/r.
(14.) Sum the series
m2  m?(m?-1) m?(m?-1%) (m? - 2")

1_ﬁ+—T‘3.22— 129282 +...ad oy
2 (m2 4 12 2 (m2+12) (m2 + 32
D T,
(15.) Show that
] Da, P1P2a3
a+py (“1 +p1) (%"'1’2) (a1+py) (a3 +py) (%""Pa)
PP+« « Pp—lp PPy« . - Py

+ .
(a1+p1) (a2+p2) e (@ntPn) (@ P (8P - -+ (@ntDy)
(16.) Show that
5 } _ 14 — (1‘.’. — 1:2)?‘ 34 — (32 —_ x.)z
tan 27r:c— T2 +(12_$.z e 2),+. ..
(Glaisher, Math, Mess., 1878, p. 138.)
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(17.) Show that
11 1 1.2
1?_<n(n+1)+n(n+l)(n+2)+n(n+1)(n+2) (n+3)

and apply this result to the approximate calculation of 72 by means of the
formula

+ ..}

m2[6=1/124+1/22+1/32+. . .
(Stirling, Methodus Differentialis, p. 28.)

(18.) Show that 21/(m*-1)=1 and =1/(a®-1)=log?2, where m and n
have all possible positive integral values differing from unity, a is any even
positive integer, and each distinct fraction is counted only once.

(Goldbach’s Theorem, see Liouv. Math. Jour., 1842.)

(19.) If » have any positive integral value except unity, and » be any
positive integer which is not a perfect power, show that = (n-1)/(r"-1)
=76 ; and, if d(n) denote the number of divisors of =, that = (d(n)-1)/r*
=1; also that = (n - 1)[r=21/(r - 1)2. (ID.)



CHAPTER XXXII.

Simple Continued Fractions.

NATURE AND ORIGIN OF CONTINUED FRACTIONS.

§1.] By a continued fraction is meant a function of the form

b
a + —=

Qy +

a3+_b_4. - (1);
@y

the primary interpretation of which is that b, is the ante-
cedent of a-quotient whose consequent is all that lies under the
line immediately beneath &,, and so on.

There may be either a finite or an infinite number of links in
the chain of operations; that is to say, we may have either a
terminating or non-terminating continued fraction.

In the most general case the component fractions —bai, 2—3,
2 3
Z—“, . . ., as they are sometimes called, may have either positive or
4

negative numerators and denominators, and succeed each other
without recurrence according to any law whatever. If they do
recur, we have what is called a recurring or periodic continued
fraction.

For shortness, the following abbreviative notation is often
used instead of (1),
b, by b,
az"'ﬁa:: ’

(),

the signs + being written below the lines to prevent confusion
with

454
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M+ —=+=+=+... .*
Ay Az Oy

Examples have already been given (see chap. 1., Exercises
1r., 15) of the reduction of terminating continued fractions
and from these examples it is obvious that every terminating
continued fraction whose constituents a,, a,, . . ., by, by, . . . are
commensurable numbers reduces to a commensurable number.

§ 2.] In the present chapter we shall confine ourselves
mainly to the most interesting and the most important kind
of continued fraction, that, namely, in which each of the nume-
rators of the component fractions is +1, and each of the
denominators a positive integer. When distinction is necessary,
this kind of continued fraction, namely,

1 1 1
al+@-£—;m ... (1),
may be called a simple continued fraction. Unless it is otherwise
stated, we suppose the continued fraction to terminate.

In this case, for a reason that will be understood by and by,
the numbers a,, @,, @;, . . . are called the first, second, third,. . .
partial quotients of the continued fraction.

§ 8.1 Every number, commensurable or incommensurable, may
be expressed uniquely as a simple continued fraction, which may
or may not terminate.

For, let X be the number in question, and @, the greatest
integer which does not exceed X ; then we may write

1
X—al +_Yl (1),

where X;>1, but is not necessarily integral, or even commensur-
able.

Again, let a, be the greatest integer in X, so that a,<1;
then we have

1
Xi=a,+—=> 2
1=ty (2),
where X,>1, as before.
. by * by * b, . .
* The notation a, + Lot 2 +. . . is frequently used by Continental
2 3 4

writers.
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Again, let a; be the greatest integer in X, ; then

1
Xg =3+ 73 (3) H
and so on.

This process will terminate if one of the quantities X, say
Xn-1, is an integer; for we should then have

X n-1=0n (n)
Now, using (2), we get from (1)
X=a,+ ! i
Ay + E :
Thence, using (3), we get
PR
as +
a3+ ==’
X
and so on.
Finally, then,
AXv=al+—1L-...l (a).
ay + s+ @y
It may happen that none of the quantities X comes out
mtegral. In this case, the quotients @,, @, . . . either recur, or

go on continually without recurrence; and we then obtain in
place of (a) a non-terminating continued fraction, which may be
periodic or not according to circumstances.
To prove that the development is unique, we have to show
that, if
1 1 , 1 1

.. .= +#A,’...
Ay + 3 + at a; +a; + (8),
then o, =a), aa=a,, ;= as, &ec.
Now, since a, and «, are positive integers, and al—+ ... and
3
1 ce . 1 1 1
+— . . . are both positive, it follows that — ——- . . . and ——
o + @+ g+ ;) +
1 .
o/ g+ - - are both proper fractions. Hence, by chap. 111., § 12,
3
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we must have

0n=a @),
and
1 1 1 1
a;(—t——{-.":f 7 o« o (8).
2+ (3 Ay + a3 +
Again, from (8), we have
s L1 DN S ()
2 a3+a4+.-_-— 2 a3,+a4,+..- .
From (¢), by the same reasoning as before, we have
@y = ay (Z),
and 11 1...=,;,1 ,1 (7).
s+ a4+ as+ as + a4 + a5 +

Proceeding in this way, we can show that each partial
quotient in the one continued fraction is equal to the partial
quotient of the same order in the other*,

This demonstration is clearly applicable even when the
continued fraction does not terminate, provided we are sure
that the fractions in (B), (8), (1), &c. have always a definite
meaning. This point will be settled when we come to discuss
the question of the convergency of an infinite continued fraction.

Cor. If @y, @y « -+, @u, by, bs, . . ., by be all positive
ntegers, Tnyy ANG Ynin ANY POSitive quantities rational or irra-
tional each of whick is greater than wnity, and if

@+ A 1,1 1 1

Yt Gt @ bat T bt Ypan
then must

=by, ay=by, . . ., ay=0by, and also Tp11= Yo

§ 4.] As an example of the general proposition of § 3, we
may show that every commensurable number may be converted
mto a terminating continued fraction.

Let the number in question be A/B, where 4 and B are
integers prime to each other. Let @, be the quotient and C the
remainder when A4 is divided by B; a, the quotient and D the

* We suppose, as is clearly allowable, that, if the fraction terminates, the
last quotient is>1. It should also be noticed that the first partial quotient
may be zero, but that none of the others can be zero, as the process is
arranged above.
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remainder when B is divided by C'; a; the quotient and £ the
remainder when C is divided by D; and so on, just as in the
arithmetical process for finding the G.C.M. of 4 and B. Since
A and B are prime to each other, the last divisor will be 1, the
last quotient a,, say, and the last remainder 0. We then have

A C 1
§=a1+§=a1+B—/0,
B D 1
U:a2+ﬁ:a2+ﬁ/b’
(4 E 1
ﬁ—a3+ﬁ—a3+m,
Hence &e.
A 1 1 1
E:a1+¢;d;. . .a—n.

It should be noticed that, if 4 < B, the first quotient @, will be zero.

Example 1.
To convert 167/81 into a continued fraction.

Going through the process of finding the G.C.M. of 167 and 81, we have

81)167(2
162
5)81(16
80
1)5(5
5
0
Hence
167 9 11
81 °ti6+ 5
Example 2.
Consider 23 =23/100.
‘We have
100)23(0
9
23)100(4
92
78)23(2
16
7)8(1
7
1)7(7
7
0
Hence

1

. 11
23_0+4+ ar i

3| -
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Cor. If we remove the restriction that the last partial quotient
shall be greater than unity, we may develop any commensurable
number as a continued fraction which has, at our pleasure, an
even or an odd number of partial quotients.

For example, 2+ 161;+ % has an odd number of partial quotients; but we
1

11 .
Bris 1 which has an even number.

may write it 2+

§5.] Any single surd, and, in fact, any simple surd number,
such as A+ Bp'"+ Cp*™+. . . + Kp®™ " can be converted into
a continued fraction, although not, of course, into o terminating
continued fraction.

"The process consists in finding the greatest integer in a series
of surd numbers, and in rationalising the denominator of the
reciprocal of the residue. Methods for effecting both these
steps are known (see chap. Xx.), but both, in any but the
simplest cases, are very laborious. It will be sufficient to give
two simple examples, in each of which the result happens to
be a periodic continued fraction.

Example 1.
To convert /13 into a continued fraction.
We have, 3 being the greatest integer < ,\/1_3,

— — 1
13=3+ 13-3 =3+f,
N W ) B3
1
=3+ — 1).
(n/13+3)/4 (
Again, since the greatest integer in ( J 13+3)/4 is 1, we have
~/13+3=1+,/13—1=1+ 1 ,
1 OV
1
(W13+1)/3 @)
Similarly, we have
~/13+1=1+~/13—?:1+ 1
3 3 3/(x/13-2)
1

_1+(J13+2)ﬁ
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R 3/(~/1L3—1)’
B B s s

JliH:HN/I:_§=1+4/(«/;5—3)'
:1+71_;_+3 6);

Jﬁ+3=6+¢1‘3‘—3:6+m),
: (©);

=6+
: (V13 +3)/4
after which the process repeats itself.
From the equations (1)...(6) we derive
VB T T ey e
*

*
where the * * indicate the beginning and end of the cycle of partial quotients.
Example 2.
W3-

1. . .
5 into a continued fraction.

To convert
‘We have

J3-1_ 1

TN R
=04 ——;
3+l

M3+1=24,/3-1=2+

1
1/(J/3-1)"
:2+m2

M3+l o AfB-1_ 1
7 e Uy sy

— 1 + 1 .
J3+1]
after which the quotients recur. We have, therefore,
N8-1 401 1
2 24 1+

* *

It will be proved in chap. xxxi11. that every positive number of the form
(n/P+ Q)/R, where P is a positive integer which is not a perfect square, an