Sources and Studies
in the History of Mathematics and
Physical Sciences

JACQUELINE A. STEDALL

THE ARITHMETIC OF
INFINITESIMALS

John Wallis 1656

Springer



Sources and Studies
in the History of Mathematics and
Physical Sciences

Editorial Board
J.Z. Buchwald J. Liitzen G.J. Toomer

Advisory Board

P.J. Davis T. Hawkins
A.E. Shapiro D. Whiteside

Springer Science+Business Media, LL.C



Sources and Studies in the
History of Mathematics and Physical Sciences

K. Andersen
Brook Taylor’s Work on Linear Perspective

H.JM. Bos
Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern
Concept of Construction

J. Cannow/S. Dostrovsky
The Evolution of Dynamics: Vibration Theory from 1687 to 1742

B. Chandler/W. Magnus
The History of Combinatorial Group Theory

AL Dale
A History of Inverse Probability: From Thomas Bayes to Karl Pearson,
Second Edition

Al Dale
Most Honourable Remembrance: The Life and Work of Thomas Bayes

Al Dale
Pierre-Simon Laplace, Philosophical Essay on Probabilities, Translated from the fifth
French edition of 1825, with Notes by the Translator

P. Damerow/G. Freudenthal/P. McLaughlin/J. Renn

Exploring the Limits of Preclassical Mechanics: A Study of Conceptual
Development in Early Modern Science: Free Fall and Compounded Motion in the
Work of Descartes, Galileo, and Beeckman,

Second Edition

P.J. Federico
Descartes on Polyhedra: A Study of the De Solidorum Elementis

B.R. Goldstein
The Astronomy of Levi ben Gerson (1288-1344)

H.H. Goldstine
A History of Numerical Analysis from the 16th Through the 19th Century

H.H. Goldstine
A History of the Calculus of Variations from the 17th Through the 19th Century

G. GraBhoff
The History of Ptolemy’s Star Catalogue

A.W. Grootendorst
Jan de Witt’s Elementa Curvarum Linearum, Liber Primus

Continued after Index



The Arithmetic of Infinitesimals

John Wallis
1656

Translated from Latin to English with an Introduction
by
Jacqueline A. Stedall

Centre for the History of the Mathematical Sciences,
Open University

Springer



Jacqueline A. Stedall
The Queen’s College
Oxford OX1 4AW
England
jackie.stedall@queens.oxford.ac.uk

Sources and Studies Editor:
Jesper Liitzen
University of Copenhagen
Department of Mathematics
Universitetsparken 5
DK-2100 Copenhagen
Denmark

Mathematics Subject Classification (2000) 01A45, 01A75, 51-03

Library of Congress Cataloging-in-Publication Data

Wallis, John, 1616-1703.
[Arithmetica infinitorum. English]
The arithmetic of infinitesimals : John Wallis 1656/[translated from Latin to English
with an introduction by] Jacqueline A. Stedall.
p. cm.--(Sources in the history of mathematics and physical sciences)
Includes bibliographical references and index.

1. Wallis, John, 1616-1703. Arithmetica infinitorum. 2. Curves--Rectification and
quadrature--Early works to 1800. I. Stedall, Jacqueline A. II. Title. III. Sources and
studies in the history of mathematics and physical sciences.

QA626.W25 2004
510--dc22

2003070361

Printed on acid-free paper.
ISBN 978-1-4419-1922-9 ISBN 978-1-4757-4312-8 (eBook)
DOI 10.1007/978-1-4757-4312-8
© 2004 Springer Science+Business Media New York
Softcover reprint of the hardcover 1st edition 2004
Originally published by Springer Verlag New York, Inc. in 2004.
All right reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher Springer Science+Business Media, LLC
except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed is forbidden. The use in this publication of trade names, trademarks,

service marks, and similar terms, even if they are not identified as such, is not to be taken
as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321 SPIN 10956595

springeronline.com



For June Barrow-Green and Jeremy Gray,
and in memory of John Fauvel
who did so much to make this and many other things possible



Acknowledgements

This translation was made possible by a generous grant from The Leverhulme
Trust. The idea arose initially out of conversations with John Fauvel and
David Fowler, and the project was eventually planned and set in motion by
John Fauvel, then of the Centre for the History of the Mathematical Sciences
at the Open University. Unfortunately John died less than three months after
we began working on it. Jeremy Gray of the Open University then took over
responsibility for the project, and it has been carried out as faithfully as
possible to John’s original vision.



Contents

Acknowledgement .......... ... ... ... vii
Frontispiece: Title page of the Arithmetica infinitorum 1656 .. x

Introduction: The Arithmetic of Infinitesimals
by Jacqueline A. Stedall .................................. xi

An advertisement of the forthcoming Arithmetica infinitorum,
Easter 1655 ... ... ... XXXiv

To the most Distinguished and Worthy gentleman and most
Skilled Mathematician, Dr William Owughtred, Rector of
the church of Aldbury in the Country of Surrey .......... 1

To the Most Respected Gentleman Doctor William Oughtred,
most widely famed amongst mathematicians, by John
Wallis, Savilian Professor of Geometry at Oxford ........ 9

Doctor William Oughtred: A Response to the preceding letter
(after the book went to press). In which he makes it
known what he thought of that method.................. .. 11

The Arithmetic of Infinitesimals or a New Method of
Inquiring into the Quadrature of Curves, and other more

difficult mathematical problems ........................... 13
GloSSarY . ..ot 183
Bibliography . ... ... 185



Fobannis Wallifi, ss.Th. D,

GEOMETRI]A PROFESSORIS
SAVILIeA NI inCeleberrimi

Academia OXO NIENSI,

ARITHMETICA
INFINITORVM.

SIVE

Nova Methodus Inquirendi in Curvili-

ncorum Quadraturam, aliaq; difficiliora
Mathefeos Problemata.

0OXONITI,
Typis LEON: LICHFIELD Academiz Typographi,
Iqpenfis THO. ROBINSON. Ame 1656.

Title page of the Arithmetica infinitorum 1656

——— Rand



The Arithmetic of Infinitesimals

John Wallis (1616-1703) was appointed Savilian Professor of Geometry at
Oxford in 1649. He was then a relative newcomer to mathematics, and largely
self~taught, but in his first few years at Oxford he produced his two most
significant works: De sectionibus conicis and Arithmetica infinitorum. Both
were printed in 1655, and published in 1656 in the second volume of Wal-
lis’s first set of collected works, Operum mathematicorum.! In De sectionibus
conicis, Wallis found algebraic formulae for the parabola, ellipse and hyper-
bola, thus liberating them, as he so aptly expressed it, from ‘the embranglings
of the cone’.2 His purpose in doing so was ultimately to find a general method
of quadrature (or cubature) for curved spaces, a promise held out in De
sectionibus conicis and taken up at length in the Arithmetica infinitorum.3
In both books Wallis drew on ideas originally developed in France, Italy, and
the Netherlands: algebraic geometry and the method of indivisibles, but he
handled them in his own way, and the resulting method of quadrature, based
on the summation of indivisible or infinitesimal quantities,* was a crucial step
towards the development of a fully fledged integral calculus some ten years
later.

To the modern reader the Arithmetica infinitorum reveals much that is of
historical and mathematical interest, not least the mid seventeenth-century
tension between classical geometry on the one hand, and arithmetic and

L For the first editions of De conicis sectionibus and Arithmetica infinitorum, see Operum
mathematicorum, 1656-57, 11, 49-108 and 1-199 (separate pagination). Both works were
reprinted in Wallis’s second set of collected works, Opera mathematica, Wallis 1693-99,
I, 291-354 and 355-478.

2 Wallis 1685, 291-292.

3 See De sectionibus conicis, Proposition 48; Arithmetica infinitorum, Proposition 45.
Strictly speaking an ‘indivisible’ has at least one of its dimensions zero, (for example, a
point, line or plane), whereas an ‘infinitesimal’ has arbitrarily small but non-zero width
or thickness. Wallis blurred the distinction between the two and generally spoke only of
‘infinitely small quantities’. For him ‘indivisible’ and ‘infinitesimal’ were more usefully
seen as geometric and arithmetic categories, respectively.

'S



xii The Arithmetic of Infinitesimals

algebra on the other. Newton was to take up Wallis’s work and transform it
into mathematics that has become part of the mainstream, but in Wallis’s
text we see what we think of as modern mathematics still struggling to
emerge. It is this sense of watching new and significant ideas force their way
slowly and sometimes painfully into existence that makes the Arithmetica
infinitorum such a relevant text even now for students and historians of math-
ematics alike.

Wallis’s mathematical background

Wallis was educated from the age of nine by a private tutor then, at the age
of fourteen, for a year at Felsted School in Essex, and then at Emmanuel
College, Cambridge.® He later claimed that he had learned little or no math-
ematics at Cambridge (though he did study some astronomy). Instead he
taught himself elementary arithmetic from the textbooks of a younger brother
who was preparing to go into trade. After the brief tenure of a Fellowship
at Queens’ College, Cambridge, Wallis was employed as a private chaplain,
but his mathematical bent came to the fore during the years of civil war
in England (1642-1648) when he regularly decoded letters for Parliament.®
His eventual appointment as Savilian Professor at Oxford was no doubt at
least in part a reward for his loyalty and political service to the winning
side.

By the time he took up his post, indeed possibly in preparation for it,
Wallis had begun to extend his mathematical knowledge by reading William
Oughtred’s Clavis mathematicae, the first edition of which had been published
in 1631. (Second editions appeared in English and Latin in 1647 and 1648,
respectively, but the copies owned and annotated by Wallis were first edi-
tions.”) The Clavis provided Wallis with his first taste of algebraic notation
and, as for other English readers, an elementary introduction to the new sub-
ject of algebraic geometry first developed by Viete during the 1590s. When
Wallis took up his professorship he knew little more than he had learned
from the Clavis, but once established at Oxford, he had a wealth of books
available to him, especially in the Savile Library, created by Henry Savile
for the use of the Savilian professors when he endowed the chairs of Geom-
etry and Astronomy in 1619. The two books that were to influence Wallis
most were Descartes’ La Géométrie, originally published in French in 1637

5 The most important source of biographical material on Wallis is the autobiography he
wrote when he was eighty years old; see Scriba 1970.

6 Wallis made two identical copies of letters deciphered up to 1653, both now in the
Bodleian Library, MS e. Musaeo 203 and MS Eng. misc. e. 475, ff. vii-243.

7 Wallis’s copies of the Clavis are now in the Bodleian Library, Savile Z.16, Z.19 and Z.24;
see Stedall 2002, 77-82.
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but republished in Latin as the Geometria by Frans van Schooten in 1649,%
and Torricelli’s Opera geometrica of 1644.°

Descartes’ Geometria would have taken Wallis far beyond anything he had
learned from the Clavis. Oughtred, like Viete, had seen how to express and
solve certain geometric problems algebraically, but it was Descartes who intro-
duced the coordinate systems that made it possible to describe loci or curves
by means of equations between two variables.!? Curves defined in this way
Descartes called geometric,'! and the simplest class of such curves, according
to him, consisted of conic sections, the circle, ellipse, parabola, and hyperbola.
There can be little doubt that it was Descartes’ work that inspired Wallis to
define conics by means of algebraic equations. He was not the first to do so, for
Fermat had completed a similar exercise, though still using traditional geo-
metric notation, by 1635.12 Fermat’s work circulated in manuscript amongst
mathematicians on the continent, and Charles Cavendish read it in Paris in
1646 and wrote about it to the English mathematician John Pell, then in
Amsterdam,'® but Wallis in 1650 did not belong to such circles and was
unlikely to have known of it.

In De sectionibus conicis Wallis based his treatment on the traditional
definitions of the parabola, ellipse, and hyperbola as sections of a (right or
inclined) cone, and derived from those definitions equations that related ordi-
nates labelled p,e or h to diameters d. Thus the equation of the parabola
is p? = Id, of the ellipse € = Id — %dZ, and of the hyperbola h? = Id + %dz,
where [ and ¢ are constants associated with each curve (the latus rectum and
the transverse diameter). In modern notation d becomes z; and p, e, and h
become y. Wallis was satisfied that such equations alone were sufficient to
define the curves:!*

It is no more necessary that a parabola is the section of a cone by a plane
parallel to a side than that a circle is a section of a cone by a plane parallel
to the base, or that a triangle is a section through the vertex.

8 For a hint that Wallis read the Geometria and corresponded with Van Schooten as early
as 1649, see Beeley and Scriba 2003, 13.

9 The copy of Torricelli’s Opera geometrica read and annotated by Wallis is in the Bodleian
Library, Savile Y.1.

10 Descartes’ coordinates were not necessarily the orthogonal coordinates that later came
to be called Cartesian.

11 4e ne s¢ache rien de meilleur que de dire que tous les poins, de celles qu’on peut nom-
mer Geometriques, c’est a dire qui tombent sous quelque mesure precise € exacte, ont
necessairement quelque rapport a tous les poins d’une ligne droite, qui peut estre exprimé
par quelque equation, en tous par un mesme’; Descartes 1637, II, 319.

12 Ad locos planos et solidos isagoge, Fermat 1679, 1-8; see also Mahoney 1973, 76-92.

13 Cavendish’s copy survives in British Library MS Harleian 6083, ff. 113-114.

14 ¢Non enim est Parabolae magis essentiale, ut fiat Sectione Coni Plano laters parallelo;
quam Circulo, ut fiat Sectione Coni plano basi parallelo; aut Triangulo, ut fiat Sectione
Coni per Verticem’; De sectionibus conicis, Proposition 21.



xiv The Arithmetic of Infinitesimals

Wallis went on in the second half of the book to find equations of tangents,
and other properties of conic sections. His main interest, however, was in
quadrature. His stated purpose at the beginning of De sectionibus conicis was
to find the areas enclosed by the curves (or rather, the ratios of those areas to
inscribed or circumscribed rectangles), and the Arithmetica infinitorum took
up the same challenge. One might think, therefore, that in the Arithmetica
infinitorum Wallis would use the algebraic tools he had so carefully devel-
oped in De sectionibus conicis, but he rarely did. Only in Proposition 163
when struggling with the quadrature of the hyperbola, did he specifically make
use of the algebraic formula he had previously found: A% = Id + Ld2. For the
simplest curve, the parabola, he used the geometric relationship between ordi-
nates and diameters rather than the algebraic equation, while for the circle
and ellipse he expressed the ordinates simply as mean proportionals between
the two corresponding segments of the diameter. In other words, he used the
geometrical concepts on which his equations were based rather than the equa-
tions themselves. Thus although Wallis was aware of Descartes’ work and was
almost certainly inspired by it, in the end he used his knowledge of the alge-
bra of curves very little, falling back instead on more traditional geometric
definitions.

It was in Torricelli’s Opera geometrica of 1644 that Wallis first encountered
the idea of indivisibles. The methods had been developed independently by
Gilles Persone de Roberval, Pierre de Fermat, and Bonaventura Cavalieri from
about 1629 onwards, but Roberval and Fermat had not published their results,
and Wallis remained unaware of their work until many years later.'® Cavalieri,
however, gave a full exposition of the method in his Geometria indivisibilibus
continuorum nova quadam ratione promota of 1635. Cavalieri’s treatise was
divided into seven books,'® and his fundamental definitions and theorems were
presented in Book II. His ideas were based on the notion of a plane moving
through a given figure and intersecting it in ‘All the lines of the figure’:!”

If through any opposite tangents to any given plane figure there are drawn
two planes parallel to each other, either perpendicular or inclined to the
plane of the given figure, and produced indefinitely, and if one of them is

15 For Roberval’s Traité des Indivisibles, see Roberval 1693; see also Walker 1932 and Auger
1962, 14-38. For Fermat’s early work on quadrature and his 1636 correspondence with
Roberval, see Mahoney 1973, 218-222.

In the 1635 edition each of the seven books has its own pagination, but in the second
edition, in 1653, the pages are numbered consecutively. References to both editions are
given in the following notes.

16

17 <Si per oppositas tangentes cuiuscunque datae planae figurae ducantur duo plana invicem

parallela, recta, sive inclinata ad planum datae figurae, hinc inde indefinite producta;
quorum alterum moveatur versus reliquem eidem semper aequidistans donec illi con-
gruerit: singulae rectae lineae, quae in toto motu fiunt communes sectiones plant mott,
et datae figurae, simul collectae vocentur: Omnes lineae talis figurae, sumptae regula
una earundem; et hoc cum plana sunt recta ad datam figuram: Cum vero ad illam sunt
inclinata vocentur: Omnes lineae eiusdem obliqui transitus datae figurae, requla pariter
earundem una’; Definition 1, Cavalieri 1635, II, 1-2 or 1653, 99.
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moved towards the other always remaining parallel until it coincides with it,
then the single lines which in the motion as a whole are the intersections of
the moving plane and the given figure, collected together, are called: All the
lines of the figure, taken with one of them as regula; this when the planes
are at right angles to the given figure. But if they are inclined to it, they are
called: All the lines of an oblique passage of the same given figure, likewise
with one of them as regula.

Cavalieri’s fundamental theorem was that two figures could then be said to
.18

be in the same ratio as ‘all their lines’:
Plane figures have the same ratio to each other as all their lines taken
to whatever regula; and solid figures as all their planes taken to whatever
regula.

After developing this theory in the remainder of Book II, Cavalieri went on in
Books III-VI to apply his methods to circles, ellipses, parabolas, hyperbolas,
and spirals, and to solids created from them (a range of figures similar to
those handled later by Wallis). In Book VII he returned to the theory of
indivisibles, now hoping to avoid the problems of treating collections of ‘All
the lines’ by instead comparing individual pairs of lines. Thus both here and
later, in his Ezxercitationes geometricae sex of 1647, he made repeated efforts
to put his theory on a sound footing, carefully trying to avoid the paradoxes
that could arise, as he and others recognized, from handling an infinite number
of dimensionless quantities.'® For a full discussion the reader is referred to the
work of Enrico Giusti and Kirsti Andersen.?° The details are not repeated here
because in one way they are irrelevant to the present story; Wallis never read
Cavalieri’s books, which were almost impossible to obtain, but instead learned
of his work at second hand from the more easily available Opera of Torricelli.

Torricelli’s Opera geometrica of 1644 contained three separate treatises: De
solidis sphaeralibus on the mensuration of cylindrical, conical and spherical
solids; De motu proiectorum on the motion of projectiles; and, the book that
interested Wallis, De dimensione parabola solidique hyperbolici problematis
duo, on the quadrature of the parabola and cubature of a hyperbolic solid.?!
On the title page of this third treatise, Torricelli explained that he had handled
two problems: one ancient, one new. The ancient problem was the quadrature
of the parabola, which he had solved by no fewer than twenty different meth-
ods, some geometric, some mechanical, and some based on the concept of

18 ‘Rigurae planae habent inter se eandem rationem, quam eorum omnes lineae iuzta
quamuis regulam assumptae; Et figurae solidae, quam eorum plana iuzta quamuis regu-
lam assumptae’; Theorem III, Cavalieri 1635, II, 20 or 1653, 113.

19 See also Cavalieri 1647.

20 Giusti 1980; Andersen 1985.

21 The Opera geometrica is paginated as follows: De solidis sphaeralibus, 1-94; De motu
proiectorum, 95-243; De dimensione parabola . .. problematis duo, 1-150. The pagination
in De dimensione occasionally goes awry, especially towards the end, with some page
numbers repeated and others left out.
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indivisibles.?2 The new problem concerned a ‘wonderful solid’ generated by
the revolution of a hyperbola,?® which Torricelli had found to be infinite in
extent but finite in volume. The book also contained appendices on proper-
ties of the cycloid and cochlea. In the text itself, in connection with both the
parabola and the hyperbolic solid, Torricelli sang the praises of Cavalieri, and
Wallis carefully noted his references on the flyleaf of the Savile Library copy
of the Opera geometrica.?*

Torricelli paid little heed to the precautions taken by Cavalieri, but offered
an altogether simpler version of the theory, in which a plane figure was sup-
posed equal to a collection of lines and a solid to a collection of planes or sur-
faces.?% Torricelli found the cubature of his ‘acute hyperbolic solid’ by treating
it as a collection of concentric cylinders whose surfaces could be added to give
the volume of the solid:26

Therefore all the surfaces of the cylinders taken together, that is the acute
solid EBD itself, is the same as the cylinder of base FEDC, which will be
equal to all its circles taken together, that is to cylinder ACGH.

Torricelli’s version of the theory was both simple and intuitive, and it inspired
Wallis to try his hand at similar quadratures and cubatures. Wallis’s advance
on Torricelli was to see that the necessary summations could be carried out
arithmetically rather than geometrically. For the area of a triangle, for exam-
ple, one simply needed to sum a sequence of regularly increasing terms, that
is, an arithmetic progression; the area of a parallelogram could be regarded as
the sum of a sequence of equal terms; while the area of a parabola was a sum
of squares or square roots (depending on orientation). Wallis therefore shifted
the focus of his own enquiry to the problem of finding sums of sequences of
powers, or at least the ratio of such sums to certain known quantities.
Wallis called his sequences of powers ‘infinite’ and so they are, but not
in the sense now generally understood, where the terms increase or decrease
indefinitely. Wallis’s sequences, beginning from 0, have a finite greatest term,
reached initially by a finite number of steps. If, keeping the same end point, the
steps are made smaller their number must be made larger, and eventually,
according to Wallis, infinite. Thus, keeping his end point fixed and finite,
Wallis moved from a finite number of steps to an infinite number of infinitely
small, or infinitesimal, steps. Where Cavalieri and Torricelli had summed

22 “‘Antiquum alterum. In quo parabola XX modis absolvitur, partim geometricis, mecan-
isque; partim ex indivisibilium geometria deducto rationibus’; Torricelli 1644, title page.

23 ‘Novum alterum. In quo mirabilis cuiusdam solidi ab hyperbola geniti accidentia non-
nulla demonstratur’; Torricelli 1644, title page.

24 Tn Wallis’s handwriting are the notes: ‘Geometria indiwisibilium Cavalerij pag. 56. 57.
de Dimensione parabola ... Geom. indivisib. Cavallerij. pag. 94. de Append de mens.
parab.’; Bodleian Library, Savile Y.1, flyleaf.

25 Andersen 1985, 355-358.

26 <propterea omnes simul superficies cylindricae, hoc est ipsum solidum acutum ebd, una
cum cylindro basis fedc, aequale erit omnibus circulis simul, hoc est cylindro acgh. Quod
erat etc.’; Torricelli 1644, 116.
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geometric indivisibles, Wallis now needed to sum infinite sequences of arith-
metic infinitesimals, or infinitely small parts.?” Wallis saw the two processes,
geometric and arithmetic, as exactly analogous. Just as Cavalieri’s method
could be described as geometria indivisibilium, or the geometry of indivisi-
bles, his own, he claimed, could be described as arithmetica infinitorum or
the arithmetic of infinitely small parts. Wallis himself translated the title of
his book as ‘The Arithmetick of Infinites’, but the ‘infinites’ in question were
in fact infinitely small quantities, and the single modern word ‘infinitesimals’

thus conveys Wallis’s meaning rather better than ‘infinites’.2

The writing of the Arithmetica infinitorum

As Wallis explained in the Dedication to the Arithmetica infinitorum, he wrote
De sectionibus conicis in 1652, and most of the Arithmetica infinitorum in the
same year. Printing of both books began in 1655 and they finally appeared in
Operum mathematicorum in 1656. Wallis claimed that the three years between
the completion and publication of the texts were due to delays at the printers.
This may have been true, but it was also the case that in 1652 Wallis had
reached an impasse, and the final part of the Arithmetica infinitorum was not
in fact written until 1655, just before the book went to press.

When Wallis began writing in late 1651 and early 1652, the first part of
the Arithmetica infinitorum proceeded easily. Gradually extending the scope
of his method, by analogy and by what he called ‘induction’, Wallis was able
to produce a steady flow of results, and in particular quadratures of curves
of the form (in modern notation) y = kz™, not only for the cases where n
was a positive integer, but also for n a fraction or a negative integer. Not all
these results were new; apart from those already published by Cavalieri and
Torricelli, others had been discovered by Fermat, Roberval, Descartes, and
Torricelli, but had been discussed only in private correspondence that Wallis
had never seen.?® It was Wallis who therefore provided the first systematic

27 Wallis generally used the description ‘infinitely small’, but occasionally also ‘infinitesi-
mal’, as in ‘pars infinitesima, seu infinite parva’, ‘an infinitesimal, or infinitely small,
part’, Arithmetica infinitorum, Proposition 5.

28 See notes 4 and 27.

29 As an example of how individual results on quadrature were circulated without proof,
consider the quadrature of (in modern notation) y* = z3 published by Mersenne in 1644
in Cogitata physico-mathematica, ‘Tractatus mechanicus’, sig.a2r. Charles Cavendish
wrote of this to John Pell: ‘Mersennus tells me it is Monsr: De Cartes his proposition
but that he sent him not the demonstration of it; Mr: Robervall tells me it is Monsr:
Fermats proposition but that he never sawe the demonstration of it; but saies he thinkes
he could doe it but that it would be a verie longe demonstration. I thinke Mersennus
[would have] sent me the demonstration of it into england but has forgotten it’; British
Library Add MS 4278, f. 238.

Wallis, preoccupied with domestic or political affairs, knew nothing of these intellec-
tual exchanges through Mersenne in Paris during the 1630s and 1640s. Evelyn Walker in
1932, 25, wrote that it was ‘inconceivable that by 1651 [Wallis] should not have had some
knowledge of Roberval’s approach’, but in 1651 Wallis was still new to mathematics and
had read only what was easily and publicly available.
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and general exposition. From his starting point of sequences of simple powers,
he could easily handle sums (or differences) of sequences, and hence eventually
quadratures of any curves of the form y = (1 — 2!/P)? provided p and ¢ were
integers. But because his ultimate aim was the quadrature of the circle, the
curve he was really interested in was y = (1 — z2)!/2, that is, wherep = ¢ = 1.

At this point Wallis’s method appears to have been driven by the skills
that had served him so well as a code-breaker; working on an unspoken but
intuited assumption of continuity, he proceeded to carry out a series of increas-
ingly sophisticated interpolations. By now geometry was receding into the
background, and his work became almost entirely arithmetical. Wallis made
considerable progress, but at Proposition 190 he came to a halt. The last
step, the final interpolation that would give him the ratio of a square to
an inscribed circle, eluded him. At this point, in the spring of 1652, he put
the problem to other mathematicians of his acquaintance (he named Seth
Ward, Laurence Rook, Richard Rawlinson, Robert Wood, and Christopher
Wren, all then resident in Oxford) but none could help, and indeed with-
out a detailed knowledge of Wallis’s techniques probably failed to under-
stand his question. Wallis was asking for interpolated means in the sequence
1, 6, 30, 140, 630, ... but since the means were neither arithmetic or geo-
metric, their required properties cannot have been very clear to anyone but
Wallis.

In February 1655 he addressed his problem to Oughtred, once again asking

for means between 1, 6, 30, 140, 630, ... which he now wrote also in the
alternative forms 1, 1x ¢, 6 x 2 30x 1 140 x 18 ... or 1, 1x42 1x
42 x 42 1x 42 x42 x42,1x42 x 42 x 4% x 43, ..., As Wallis described

it to Oughtred:3°

These terms in locis paribus [in even places] (supposing the second to
be 1) are made up by continued multiplication of these numbers 1 x

6x10x14x18,etc. 12Xx20x28x36,etc.
1X2x3x4,etc. 2X4X6x8,etc.

jecture), supposing the first to be Q, the rest in locis imparibus [in odd
places] will be made up by continued multiplication of these numbers

or 1x . And (if I mistake not in my con-

Q 8x16x24x32,etc.
1x3%x5X7,etc.
you might see how far I had proceeded towards the solution of what I seek
. wherein if you can do me the favour to help me out, it will be a very
great satisfaction to me, and (if I do not delude myself) of more use than
at the first view it may seem to be.

which I thought it requisite to give you notice of, that

It is clear that early in 1655 Wallis was still grappling with this final problem,
now to be found in Proposition 190. Only a short time later, however, the
problem was solved. In what was perhaps the one real stroke of genius in
Wallis’s long mathematical career, he saw how to complete his interpolations
by a method now set out in Proposition 191, and so arrived at his infinite

30 Wallis to Oughtred, 28 February 1655, Rigaud 1841, I, 85-86.
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fraction for 4/7 (denoted by O) in the form:

_3><3><5><5><7><7><etc.
T 2x4x4%x6x%x6x8X etc.

How Wallis was inspired to his breakthrough he did not say, but we do
know that he discussed his work in some detail with William Brouncker. In
particular, he seems to have put to Brouncker a similar problem to the one he
put to Oughtred, and probably at about the same time (Brouncker’s name does
not appear in the list of colleagues whom Wallis consulted in 1652). How, asked

Wallis, was he to interweave, for example, the two sequences A, 24, §3A, 4—18—54—, ..
24,68 315 105 3,575 9

(orAx fx3xgxzx...)andl, 3,32, 48A,...(or1><2 XIXgXgX...)

into a single sequence beginning A, 1,2A, % , % , %5, ..., in which the multipliers

would follow some regular order? Brouncker came up with a brilliant answer,
by producing a sequence of what are now called continued fractions, which
served Wallis’s purpose exactly. Brouncker’s work enabled Wallis to answer
the question he had left open in Proposition 190, and the solution was fully
set out in a piece entitled Idem aliter following Wallis’s discovery of his own
infinite fraction in Proposition 191.

Unfortunately, Wallis complained, Brouncker could not be persuaded to
write this piece himself, nor to explain how he had discovered his fractions,
and Wallis was unable to do so either. In fact at the beginning of the Idem
aliter (and again later in A treatise of algebra)®' Wallis seriously misled his
readers and posterity by quoting just the first of Brouncker’s fractions,

1
1 , o
e
5 49
2+

as an alternative to his own $ x 3 x 2 x 8 x ... This led Euler and several
other later mathematicians to look for ways of deriving Brouncker’s fraction
from Wallis’s, an impossible task as it stands because Brouncker’s fraction
can only be related to Wallis’s by taking the entire infinite sequence of which
it is the first. I would suggest that Brouncker’s fractions were derived not
as alternatives to Wallis’s, but in response to the problem that Wallis set
but failed to solve in Proposition 190, and that only in that context does
the relationship between Brouncker’s fractions and Wallis’s fall into place.
Wallis’s Proposition 191 and the mathematics discovered by Brouncker and
expounded in the Idem aliter comprise some of the best mathematical writing
of the mid seventeenth century. The material amply rewarded both Wallis and

his readers for the long and, it has to be said, often tedious approach through

31 Wallis 1685, 317-318.
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scores of uninspiring Propositions and Corollaries, and Wallis could justifiably
feel proud of his achievement.

Wallis was by no means the only seventeenth-century mathematician seek-
ing the quadrature of the circle. Grégoire de Saint-Vincent had claimed to
solve the problem in his massive (1226 page) Opus geometricum quadratu-
rae circuli et sectione coni of 1647. The Opus geometricum consists of ten
books, the first six of which deal with properties of lines, circles, ellipses,
parabolas and hyperbolas. In the seventh book de Saint-Vincent introduced
the idea of ‘drawing a plane into a plane’ to produce a solid, and in the
ninth book he handled cylinders, cones, spheres, and conoids. Finally in the
tenth book he addressed the quadrature of the circle, parabola, and hyper-
bola. Wallis searched his work carefully but came to the conclusion that de
Saint-Vincent had not come any closer to the quadrature of the circle than
he himself had done in Proposition 136 of the Arithmetica infinitorum (where
he had related the quadrature of the circle to a solid formed by ‘multiplying’
two parabolas).3? In de Saint-Vincent’s huge volume he found many proposi-
tions similar to his own, including the idea of ‘drawing’ a plane into a plane
(Wallis described it rather more carefully as drawing the lines of one plane
respectively into the lines of another). Wallis may have been led to some of his
theorems by what he found in de Saint-Vincent but it is equally likely that he
arrived at them independently by multiplying (or dividing) his infinite series
term by term, and then looking, as he always did, for geometrical examples
to illustrate his findings.

By 1655 when Wallis was finally ready to go to press, a more serious threat
to his priority appeared to be looming closer to home. Thomas Hobbes, pro-
voked by Seth Ward, Savilian Professor of Astronomy at Oxford and Wallis’s
close colleague, had promised, or threatened, to reveal his own quadrature of
the circle along with solutions to other geometrical problems.3? Wallis there-
fore made sure that he laid claim to his own success in a leaflet printed at
Easter (April) 1655 advertising the key results of the Arithmetica infinitorum,
even though the book itself was not yet printed. And in the ‘Dedication’ to
Oughtred, written in the Spring of 1655 he was careful to emphasize, with
supporting evidence, that he had been working on the problem since 1651.
The Dedication ends on a note of relief, for by the time Wallis completed it
in July, he had seen the first impression of Hobbes’s De corpore,3* and knew
that he could demolish Hobbes’s arguments with ease, as he went on to do in
Elenchus geometria Hobbianae. Hobbes’s attempts at quadrature were easily

32 Arithmetica infinitorum, Proposition 136; De Saint-Vincent 1647, 794, Proposition 143.

33 Ward’s challenge to Hobbes was put out in the appendix to his Vindicae academiarum
of 1654, written in reply to Hobbes’s attack on the English Universities; see Ward 1654,
57.

34 The first impression of Hobbes’s Elementorum philosophiae sectio prima de corpore
appeared in April 1655. His three (unsuccessful) attempts at the quadrature of the circle
were in Chapter 20.
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dealt with but his philosophical objections to the Arithmetica infinitorum
were not, as will be discussed further below.

The mathematics of the Arithmetica infinitorum

‘Thus a geometric problem is reduced purely to arithmetic.’> Wallis’s major
contribution to the development of seventeenth-century mathematics was per-
haps, as he himself recognized, the transformation of geometric problems to
the summation of arithmetic sequences. Many of the results demonstrated by
Wallis were already well known but, as he repeatedly pointed out, his aim
was to establish a method by which those results, and others, could be sys-
tematically obtained. To prove the soundness and applicability of his method
he therefore returned over and over again to justifications and applications in
geometry. Every new result in summing sequences was followed by corollaries
that showed how it could be interpreted geometrically, so the book describes
quadratures and cubatures of all kinds of likely and unlikely plane or solid fig-
ures. At one point (Proposition 38) there is a glimpse of how the method might
also work for rectification (straightening, or finding the length, of a curve),
but Wallis attempted this only for the parabola and failed to complete his
argument.

To the modern reader, unused to thinking in the language of Apollonius,
the continual references to classical geometry are probably the most difficult
parts of Wallis’s book to follow. As pointed out above, Wallis had found
algebraic formulae for conics and could easily have done so for the other
curves he described (usually only higher parabolas) but instead he reverted to
traditional Apollonian concepts of ‘applied ordinates’, ‘intercepted diameters’,
and ratios of lines or spaces to each other. It is not easy to translate such
geometrical language in a way that retains the essence of Wallis’s thought yet
renders it comprehensible to a modern reader.

In his attempt to relate arithmetic to geometry Wallis even used two dis-
tinct but parallel vocabularies: for example, first power, second power, and
third power in arithmetic, but side, square, and cube in geometry; the Latin
verbs multiplicare and dividere in arithmetic, but ducere and applicare in
geometry. He sometimes slid haphazardly, however, from one usage to the
other; thus on Proposition 75 he speaks of ‘multiplying’ lines (rectas sic mul-
tiplicatas) while in Proposition 140 he uses ducatur for term by term multipli-
cation of series (series ... ducatur in seriem). To the modern reader the two
sets of terms are sometimes more or less interchangeable (as ‘square roots’ and
‘second roots’, for example) but often one form, usually the geometric, has
now fallen completely out of use. Thus when, for example, Wallis describes the
product of a quantity multiplied by itself as a ‘square’ one can interpret his
meaning either geometrically or arithmetically, but it is not so easy to do so
when he describes the product of two unequal quantities as a ‘rectangle’. The

35 Arithmetica infinitorum, Preface, sig Aa3”.
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general term ‘product’ will sometimes serve for ‘rectangle’ but is inadequate
where Wallis goes on to compare his ‘rectangles’ with plane figures, in which
case only a purely geometric interpretation will do.

This parallel language is seen in the use of the word ‘infinitorum’ in Wallis’s
title as an arithmetic analogy to the geometric ‘indivisibilium’, though in the
text itself Wallis never used either term, referring instead to ‘infinitely small
parts’. This brings us to the most fundamental difficulty in Wallis’s work.
What is the precise nature of these infinitely small quantities? Do Wallis’s
lines have breadth or not? For the most part Wallis regarded a plane figure
as the sum of its lines (see, for example, Proposition 3 and many others) but
at other times (most notably in the Comment to Propositions 13 and 182)
as a sum of arbitrarily thin parallelograms. In the Arithmetica infinitorum
itself Wallis did not discuss the distinction between lines and parallelograms,
nor the difficulties to which the alternative definitions could give rise, but
they were already inherent and unresolved in the first page of De sectionibus
conicis. There in Proposition 1, Wallis wrote:36

I suppose, as a starting point (according to Bonaventura Cavalieri’s geome-
try of indivisibles) that any plane is constituted, as it were, from an infinite
number of parallel lines. Or rather (which I prefer) from an infinite number
of parallelograms of equal altitude, the altitude of each of which indeed may
be 313 of the whole altitude, or an infinitely small part (for let oo denote an
infinite number), and therefore the altitude of all taken together is equal to
the altitude of the figure.

Wallis argued that a parallelogram of infinitely small altitude was no more
than a line,3” but at the same time such a line could be considered ‘dilatable’,
or of some thickness, so that when infinitely multiplied it attained a definite
height or width.3® Therefore, said Wallis, he would call these infinitely small
parts ‘lines’ rather than ‘parallelograms’, but with the understanding that
they are in some definite ratio to the altitude of the whole figure, so that
when infinitely multiplied they make up the total altitude of the figure.??

36 <Suppono in limine (jurta Bonaventura Cavalerii Geometriam Indivisbilium) Planum
guodlibet ex infinitis lineis parallelis conflari: Vel potius (quod ego mallem) ez infinitis
Parallelogrammis aeque altis; quorum quidem singulorum altitudo sit totius altitudi-
nis 313, sive aliquota pars infinite parva; (esto enim oo nota numer: infiniti;) adeoque
omnium stmul altitudo aequalis altitudini figurae’; Wallis, De sectionibus conicis, Propo-
sition 1.

37 <Nam Parallelogrammum cujus altitudo supponitur infinite parva, hoc est, nulla, (nam

quantitas infinite parva perinde est atque non-quanta,) viz aliud est quam linea’; Wallis,

De sectionibus conicis, Proposition 1.

38 ¢ .. quod linea haec supponitur dilatabilis esse, sive tantillam saltem spissitudinem

habere ut infinita multiplicatione certam tandem altitudinem sive latitudinem possit

acquirere’; Wallis, De sectionibus conicis, Proposition 1.

‘... exiguae illius altitudinis eousque ratio habenda erit, ut ea infinities multiplicata

totam figurae altitudinem supponatur adaequare’; Wallis, De sectionibus conicis, Propo-

sition 1.

39
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A similar argument could obviously be applied to planes with a thickness of
é of the total height of a solid.

This single proposition at the beginning of De sectionibus conicis contains
the only serious discussion Wallis entered into on the nature of his infinitely
small quantities. His method did at times lead to some paradoxical comments,
as in Proposition 108 where he claimed that a finite altitude A was equal to
some number that he had just claimed could be taken to be infinite, but
Wallis merely ignored such problems. Hobbes, however, saw the difficulties
immediately:4°

‘The triangle consists as it were’ (‘as it were’ is no phrase of a geometri-
cian) ‘of an infinite number of straight lines.” Does it so? Then by your own
doctrine, which is, that ‘lines have no breadth’, the altitude of your triangle
consisteth of an infinite number of ‘no altitudes’, that is of an infinite num-
ber of nothings, and consequently the area of your triangle has no quantity.
If you say that by the parallels you mean infinitely little parallelograms,
you are never the better; for if infinitely little, either they are nothing, or
if somewhat, yet seeing that no two sides of a triangle are parallel, those
parallels cannot be parallelograms.

In a long Scholium following Proposition 182 Wallis set out some of his
rules for handling an infinite number of small parts. Adding 1 to an infinite
number, for example, left it unchanged, since according to Wallis, co + 1 = oo
and oo — 1 = co. As for multiplication and division, the reciprocal of zero is
infinite and vice versa, so Wallis could write, for example, = =0 or £ x oo =
1 without qualms. Such rules can in the right circumstances be given a rigorous
and correct interpretation, so Wallis was not as far adrift as he might have
been, and his mathematical instincts enabled him for the most part to handle
his infinite sums successfully. He was not always safe, however; his original
assertion in Proposition 5, that the Archimedean spiral was equal in length to
half the circumscribed circle, was wrong, and he was forced to add a caveat
explaining that his result applied not to the true spiral but to a series of
inscribed arcs. And in the Scholium after Proposition 182 he attempted to
explain why an infinite sum of infinitely small parts might not always give the
expected answer: a sum of parallelograms, for example, could be used to find
the area of a triangle, but the sum of their sides would not, except in special
circumstances, give the length of a side of the same triangle.

For Wallis, as for any other mathematician of the time, acceptable stan-
dards of rigour and proof were those of the Greeks, and Wallis was to argue
thirty years later that the method of indivisibles was grounded in the classical
method of exhaustions, by which a figure was approximated by a series of
inscribed or circumscribed polygons:4!

40 Hobbes 1656, 46.

41 Wallis 1685, 280; see 280-290 for three consecutive chapters entitled ‘The Method of
Exhaustions’, Of Cavallerius his Method of Indivisibles’, and ‘Of the Arithmetick of
Infinites’.
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. it will be necessary to premise somewhat concerning (what is wont to
be called) the Method of Ezhaustions, ... and the Method of Indivisibles,
introduced by Cavalierius, (which is but a shorter way of expressing that
Method of Exhaustions;) and of the Arithmetick of Infinites, (which is a
further improvement of that Method of Indivisibles.)

Wallis had no concept in the modern sense of allowing a quantity to decrease
continuously to zero or increase continuously to infinity. He did, however, use
something very similar to a limit argument when he stated that a quantity
that can always be made smaller than any assigned quantity can be taken to
be zero. The idea seems modern, but again Wallis later argued that he found
his justification in classical sources, in Euclid from Book X onwards, and in
Archimedes:4?

And when in those Books following, [Euclid] had occasion to compare Quan-
tities, wherein it was not easy by direct Demonstration, to prove their Equal-
ity; he takes this for a Foundation of his Process in such Cases: that those
Magnitudes (or quantities,) whose Difference may be proved to be Less than
any Assignable are equal. For if unequal, their Difference, how small soever,
may be so Multiplied, as to become Greater than either of them: And if not
so, then it is nothing.

... it is manifest in the opinion of Archimedes, (and as he tells us of Math-
ematicians before him,) that no Unequal Magnitudes can differ by so little,
but that the difference may be so Multiplied as to exceed either or any other
that bears any Proportion to either of them.

Basing his argument on such principles, Wallis was able to argue correctly, in
the first published proof of its kind, that the difference between 11 and 127
tends to zero, and that both quantities tend to 1 as z becomes infinitely large.

The strangest of Wallis’s concepts concerning infinity is that the ratio
of a positive number to a negative number might be somehow ‘greater than
infinite’. He was led to this conclusion by the fact that 1/a grows infinitely
large as a moves towards zero. If, therefore, a decreases through zero, the
quantity 1/a must become both negative and ‘greater than infinite’. At other
times, however, Wallis used the usual rules of division for negative numbers,
thus :13 = —% = _71, so had no reason to consider the reciprocal of a negative
quantity as ‘greater than infinite’, and his assertion has to be read in the
specific geometric context to which it pertains, the quadrature of curves whose
equations contain negative indices.

Two other fundamental mathematical concepts run through the whole of
the Arithmetica infinitorum. From the first page to the end, Wallis relied
on induction, and throughout the second half of the book, on interpolation.
By induction, Wallis meant that a pattern established for a few cases could
reasonably be assumed to continue indefinitely. Again his mathematical intu-

ition rarely led him astray on this point, but some of his critics argued that

42 Wallis 1685, 282, see also 285.
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it was hardly a satisfactory method of proof. Wallis replied that there were
strong precedents, most recently in the work of Viete, who employed a similar
kind of reasoning in Ad angularium sectionum analyticen theoremata,*3 and
in Briggs, who made use of Viete’s results on angular section to interpolate
his tables of trigonometric logarithms. A much earlier precedent, according
to Wallis, was to be found in Euclid, who allowed one triangle, for example,
to stand for an infinite number of others. This was indeed a form of induc-
tion, albeit a rather loose one, but the reasoning used by Viete and Wallis
began to have elements of modern mathematical induction, insofar as they
supposed that an argument from one case to the next could be continued
indefinitely. Wallis failed to make a distinction between Euclid’s inductive
arguments and his own, and was probably not even interested in doing so;
for him induction was an obvious and natural process that needed no further
justification.

Interpolation was the second cornerstone of Wallis’s method, and all his
later results depended upon it, but again he relied on intuition and made
no attempt to justify the process beyond the fact that it worked. Perhaps
the most remarkable example in the Arithmetica infinitorum was Wallis’s
willingness to interpolate between the triangular numbers 1, 3, 6, 10 ... or
the pyramidals 1, 4, 10, 20, ... etc. Such figurate numbers had always been
thought of as, by definition, integers, arrangements of pebbles or points, and it
made no geometric sense to look for, say, a triangular number between 3 and
6. In fact, without explicitly saying so, and indeed without even being aware
of it to begin with, Wallis began to treat the numbers 1, 3, 6, 10, ... as equally
spaced points on a continuous curve, so that all intermediate values existed
and could in principle be calculated or described. Wallis was correct, of course,
in that the figurate numbers are the integer values of continuous polynomial
functions (whose equations he went to some lengths to find in Propositions
171 to 182), but formal definitions of functions or continuity still lay far into
the future. In the final three short propositions of the book, however, Wallis
did attempt to describe the underlying continuity on which his entire method
depended, using the image of a smooth curve, which could be constructed
from a few known (integer) points.

The final aspect of Wallis’s mathematics to which we must draw attention
here is his sense that the number we now call 7, the ratio of the circumference
of a circle to its diameter, could not be expressed in any numbers so far known,
either rationals or surds. Nevertheless, he pointed out, the number could be
calculated to any degree of accuracy and clearly satisfied all the usual rules of
arithmetic, and therefore must be considered as valid as any other commonly
accepted number. The irrationality of # would not be proved for another

43 “Atque eo in infinitum progressu, dabitur laterum ratio in ratione anguli ad angulum
multipla, ut praescriptum est’; ‘By this process to infinity, there will be given the ratio
of the sides for the ratio of any angle to multiple angles, as prescribed’. Viete 1646, 290;
Viete 1983, 424
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hundred years, and its transcendence only a century after that,** but there
can be no doubt at all that Wallis in 1655 was aware of the special and elusive
nature of the number he was dealing with.45

The reception of the Arithmetica infinitorum

The first critical reaction to the Arithmetica infinitorum came from Christiaan
Huygens, who was sent a copy of the book by Frans van Schooten in July
1656.46 Huygens thanked Wallis politely for mentioning his own Ezetasis in
the Dedication, and promised to pass Wallis’s result on to Aynscom, a disciple
of de Saint-Vincent, who had recently refuted various methods of quadra-
ture of the circle, including one by Huygens.*” As to the text itself, Huygens
expressed some reservations: he missed the crucial point of Wallis’s argument
in Proposition 191 and so could not understand Wallis’s final proof; he felt
that Wallis should proceed further with concrete numerical examples since he
felt that induction was not a clear or certain enough method to resolve his
doubts; and he argued that the curves produced by Wallis at the end of his
book were not geometric in Descartes’ sense, for there was no known formula
for finding a general point. It was not enough, said Huygens, to say that the
curves were smooth, for there could be many smooth curves that would pass
through the few fixed points.

Wallis replied that Brouncker had now calculated a value for the ratio
of the circumference to the diameter using Wallis’s fraction (or one of
Brouncker’s own) and found it in perfect agreement with the values known
from other methods.*® To support his use of induction he pointed to Viete’s
Ad angularium sectionum, Briggs’ Arithmetica logarithmica, Clavius’ edition
of Euclid V. 1-34, Euclid himself in propositions 1.21, VI.20 and XII.1 (all of
which are general propositions about triangles or polygons), and Archimedes
almost everywhere. To Huygens’ final objection, that Wallis’s curves were not
geometric in Descartes’ sense, Wallis repeated what he had said in the Arith-
metica infinitorum itself: that half of his curves were certainly geometric, and
that the rest were equally well defined even if there was no known formula.*®

Fermat in Toulouse received the Arithmetica infinitorum a year later, in
the summer of 1657, through Kenelm Digby, and like Huygens raised some
objections. His first complaint was that he himself had already found many of
the same results; his second was that he could not understand why Wallis had

44 The irrationality of = was first proved by Johann Heinrich Lambert in 1761 and its
transcendence by Ferdinand von Lindemann in 1882.

45 See Panza 1995.

46 Huygens to Wallis, [11]/21 July 1656, Beeley and Scriba 2003, 189-192.

47 Huygens 1654; Aynscom 1656.

48 Wallis’s fraction for 4/7 converges too slowly to be of practical use, and it seems much
more likely that Brouncker used one of his own related continued fractions to calculate
upper and lower bounds for .

49 Wallis to Huygens, 12/[22] August 1656, Beeley and Scriba 2003, 193-197.
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chosen to work in symbols rather than by traditional Archimedean methods
(even though Wallis’s book, as pointed out above, uses algebraic notation only
sparingly, and far less than might have been expected).?° In a supplementary
letter headed Remarques sur I’Arithmetique des Infinis du S. J. Wallis,5! he
also put forward four specific criticisms, none of them concerned with any-
thing beyond Proposition 2, suggesting that he had not in fact read very far.
First, he argued, Wallis’s hope of finding the ratio of a sphere to a cylin-
der was impossible without first finding the quadrature of the circle itself;
second, that it made little sense to ask for intermediate numbers between 1,
6, 30, 140, 630, ..., and indeed if one regarded 6 (as Wallis did) as 1 x %,
then the number between 1 and 6 had to be found using a multiplier greater
than 6 itself, which was absurd; third, the sum of an arithmetic progression
could be found without resorting to induction; and fourth, that such a sum
did not require the second term of the progression to be 1. Wallis’s replies
were part of a very long letter he wrote to Fermat on a number of subjects
in November 1657.52 He pointed out that his intention was not simply to
obtain results but, unlike the Ancients, to demonstrate the methods by which
they could be found, and he was unapologetic about his use either of induc-
tion or algebraic notation. He did not disagree with any of Fermat’s specific
criticisms, but considered them adequately answered in the Arithmetica infin-
itorum itself, and ended by saying that if Fermat were to look at the book
again and ponder it a little more carefully, he would find his objections long
since answered.??

Fermat’s peevishness arose in part, no doubt, from Wallis and Brouncker’s
somewhat dismissive treatment of the number problems he had sent them ear-
lier in 1657,>* but perhaps also from the fact that he had indeed obtained
some of Wallis’s results many years before. Wallis could not have known
it, for Fermat had never published his findings, but he had found quadra-
tures for the higher parabolas as early as 1636, and for the higher hyperbolas
by 1646.55 Wallis had gone beyond this, and by different methods; neverthe-
less it was probably the appearance of the Arithmetica infinitorum in 1656
that prompted Fermat at last to write down some of his own results in 1658
or 1659.%6

The most forthright criticism of the Arithmetica infinitorum undoubtedly
came from Thomas Hobbes whose first (but not last) attack appeared in his

50 Fermat to Digby, [5]/15 August 1657, ibid. 294-297.

51 Enclosed in Brouncker to Wallis, 6/[16] October 1657, ibid. 311-316.

52 Wallis to Digby for Fermat, 21 Nov/[1 Dec] 1657, ibid. 334-337.

53 <G enim exinde otii quid nactus sit Fermatius eadem secundo inspiciendi, & paulo
accuratius pensitandi, non dubito quin jam ipse sibi pridem satisfecerit’; ibid. 337. Wallis
repeated Fermat’s objections and his own refutations of them many years later (long after
Fermat himself had died) in A treatise of algebra, Wallis 1685, 305-309.

54 See Stedall 2002, 196-207.

55 Mahoney 1973, 214-238; 244-267.

56 De aequationum localium transmutatione ... cui annectitur proportionis geometricae in
quadrandis infinitis parabolis et hyperbolis usus, published in Fermat 1679, 44-57.
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Siz lessons to the professors of the mathematiques of 1656. He did not mince
his words: ‘I verily believe that since the beginning of the world there has not
been nor ever shall be so much absurdity written in geometry as is to be found
in those books of [Wallis’s]’.>” Hobbes’s objections were many, and some were
absurd, but as Augustus De Morgan pointed out a century ago, Hobbes ‘was
not the ignoramus in geometry that he is sometimes supposed. His writings,
erroneous as they are in many things, contain acute remarks on points of
principle.’®® Hobbes’s criticisms pinpointed three main areas: Wallis’s use of
algebraic symbols; of induction; and of indivisibles.

Like Fermat a year later, Hobbes objected strongly to Wallis’s use of
algebraic symbolism:%°
[Wallis] mistook the study of Symboles for the study of Geometry, and
thought Symbollical writing to be new kind of Method, and other men’s
Demonstrations set down in Symboles new Demonstrations. ... I never saw
anything added thereby to the Science of Geometry, as being a way wherein
men go round from the Equality of rectangled Plains to the Equality of
Proportion, and thence to the Equality of rectangled Plains, wherein the
Symboles serve only to make men go faster about, as greater Winde to a
Winde-mill.

As we have noted already, Wallis used only a limited amount of algebraic
notation in the Arithmetica infinitorum, so Hobbes was perhaps tilting at
windmills in a different sense. His struggle against algebraic symbolism in this
and other contexts now seems like a futile attack on the wrong enemy, but it
arose from Hobbes’s belief that mathematics should be based on the mate-
rial and sense-perceptible, that is on space and movement. Thus for Hobbes
geometry was the true foundation of mathematics, and the introduction of
symbols served merely to confuse the reader and obscure the truth:5°

Had Pappus no analytiques? Or wanted he the wit to shorten his reckoning
by signes? Or has he not proceeded analytically in an 100 problems and
never used symbols? Symboles are poor unhandsome (though necessary)
scaffolds of demonstration; and ought no more to appear in publique, then
the most deformed necessary business which you do in your chambers.

Hobbes’s second objection was to induction, and he railed against ‘egregious
logicians and geometers that think an Induction without a numeration of all
the particulars sufficient to infer a Conclusion universall’. Wallis merely replied

57 Siz lessons to the professors of mathematiques, one of geometry, the other of astronomy:
in the chaires set up by Sir Henry Savile in the University of Ozford, Hobbes 1656,
Introduction [dated 10 June 1656).

58 De Morgan 1915, 110; for a modern analysis of Hobbes’s mathematics see Jesseph 1993
and 1999.

59 Hobbes 1656, Introduction.

60 Hobbes 1656, 23. For more on Hobbes’s philosophy of mathematics and his objections
to algebraic geometry see Jesseph 1993, 167181 and Jesseph 1999, 240-246.
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that induction was justified ‘if after the enumeration of some particulars comes
the general clause: “and the like in other cases” ’, and again sought justification
in Euclid: ‘If not, no proposition of Euclid is demonstrated.’6!

Hobbes’s most accurate and damaging criticism was aimed at Wallis’s use
of indivisibles. Part of his argument has already been quoted above; indivis-
ibles must be either ‘something or nothing’, and in either case, according to
Hobbes, contradictions followed:%2

The least altitude, is somewhat or nothing. If somewhat, then the first
character of your arithmetic progression must not be a cipher, and conse-
quently the first eighteen propositions of this your Arithmetica infinitorum
are all nought. If nothing, then your whole figure is without altitude, and
consequently your understanding nought.

Hobbes was not quite right here; the first term of an arithmetic progression did
not need to be zero, as Wallis had explained elsewhere. The real problem with
a quantity that was ‘somewhat’ was that it could not be multiplied infinitely
many times to produce a finite result. In Due correction for Mr. Hobbes,
published in 1656,%3 Wallis tried to explain more clearly what he meant by an
indivisible, now shifting slightly from lines to parallelograms, but still unable

to escape the fundamental problem:54

I do not mean precisely a line but a parallelogram whose breadth is very
small, viz an aliquot part [divisor] of the whole figures altitude, denominated

by the number of parallelograms (which is a determination geometrically
precise).

This did not answer Hobbes’s argument, and indeed contradicted Wallis’s own
claim elsewhere that the number of such very small parallelograms could be
considered infinite. Wallis ended his chapter entitled ‘ Arithmetica infinitorum
vindicated’ with the words: ‘Well, Arithmetica infinitorum is come off clear’,%%
but it had not, for Hobbes had made valid objections.®® The truth was,
however, that Wallis did not greatly care about the philosophical foundations
of his method provided that it worked, and clearly it did. The argument with
Hobbes raged backwards and forwards through further pamphlets. Hobbes in
his XTII'MAI of 1657 protested:®7

You do shift and wriggle and throw out ink, that I cannot perceive which
way you go, nor need I, especially in your vindication of your Arithmetica

61 Hobbes 1656, 46; Wallis 1656c, 41.

62 Hobbes 1656, 46.

63 Due correction for Mr Hobbes, or school discipline, for not saying his lessons right,
Wallis 1656¢, 41-50.

64 Wallis 1656c, 47.

65 Wallis 1656c¢, 50.

66 See also Jesseph 1993, 187-189 and Jesseph 1999, 177-185.

87 STICMAI or markes of the absurd geometry, rural language, Scottish church-politicks
and barbarisms of John Wallis, Hobbes 1657, 12.
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infinitorum ... your book of Arithmetica infinitorum is all nought from the
beginning to the end.

Wallis retaliated in The undoing of Mr Hobs’s points, also published in 1657,%8
but by now the quarrel between them had taken on its own momentum. It was
to end only with Hobbes’s death in 1679, and the details have been fully
described by others.5?

All the early readers of the Arithmetica infinitorum, Huygens, Hobbes,
and Fermat, homed in on those parts of the Wallis’s argument that were
indeed less than soundly based: his use of indivisibles and induction, and
his assumption of a range of a continuous and definable values between the
numbers of a sequence. Nevertheless, methods based on indivisible or infinitely
small quantities came increasingly into use amongst his contemporaries. In
1657, William Neile, a young student at Wadham College, Oxford, found the
rectification of the semicubical parabola (in modern notation 932 = 4kz®) by
a method that was geometric but involved a comparison of sums of infinitely
small quantities. Wallis was easily able to make Neile’s proof algebraic using
the notation defined in De sectionibus conicis, while William Brouncker went
further and came up with a formula for the length of a portion of the curve
in terms of its coordinates.”® At about the same time, Hendrick van Heuraet
in the Netherlands arrived independently at a general method of rectification,
and it applied it to the semicubical parabola,’’ and in 1659 Fermat rectified
both the semicubical parabola and the cycloid.”? Wallis later claimed that
all these attempts were based on the hints he had given in the Arithmetica
infinitorum:™

And I do not at all doubt that this notion there hinted, gave the occasion
(not to Mr Neil only, but) to all those others (mediately or immediately,)
who have since attempted such Rectification of Curves (nothing in that way
having been attempted before;)

It was true that Wallis had outlined a method of rectification in the Arith-
metica infinitorum, and Neile may have been inspired by it, but Neile’s method
was expressed in traditional geometric terms and he handled a curve that
Wallis had not thought about at all. Meanwhile Huygens had discovered the
relationship between the rectification of the parabola and the quadrature of
the hyperbola. He may have had hints of this idea from Wallis’s Proposi-
tion 38 where it is clear enough but, as with Neile, his result is expressed

68 Hobbiani puncti dispunctio, or the undoing of Mr Hobs’s points: in answer to M. Hobs’s
XTITMAI id est STIGMATA HOBBII, Wallis 1657.

69 For further attacks and counter-attacks between Hobbes and Wallis see the bibliography.
See also Grant 1996; Probst 1997; Jesseph 1999.

70 Wallis published all three methods, Neile’s, his own, and Brouncker’s, in Wallis 1659,
75-123; 91-96; reprinted in Wallis 1693-99, I, 542-569; 550-554.

71 Van Heuraet 1659; see Van Maanen 1984.

72 Fermat 1660; see Mahoney 1973, 267—281.

73 Wallis 1685, 298.
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in traditional geometrical language, and this and similar results were likely
to have arisen from his own longstanding interest in problems of quadrature
rather than in any clues he had picked up from Wallis.”* Van Heuraet in turn
had received only the vaguest reports of Huygens’ ideas, and must be given
credit for an independent discovery.”® Such ideas were steadily becoming more
widespread in a variety of contexts. Nevertheless it remains true that Wallis
was the first to hint at the possibility of a general method of rectification, a
problem previously considered by Descartes and others to be impossible.

In questions of quadrature, Wallis’s work certainly did have repercussions,
and important ones. In 1668 Nicolaus Mercator found the quadrature of the
hyperbola by writing its equation as:

y=——=1-z+2>—2*+...
x

and summing the individual terms by Wallis’s methods to obtain:

z?2 3

In(l+z)==z 2+3

Mercator published his findings in his Logarithmotechnia of 1668.7¢ Wallis
reviewed the book in the Philosophical transactions that same year, and
referred the reader twice to his own results in the Arithmetica infinitorum.””

But it was in the hands of Isaac Newton that the Arithmetica infinitorum
finally came into its own. Newton read the book in the winter of 1664-65 when
he was just twenty-two years old, and made extensive notes.”® His writing did
not stop when his reading finished; Newton’s train of thought continued unin-
terrupted where Wallis’s had left off, as he saw how to extend and consolidate
Wallis’s ideas. He recognized the power of Wallis’s interpolative methods for
handling curves that lay between those whose properties were already known,
but he moved far beyond Wallis in introducing an algebraic variable. Thus
where Wallis had written simple numerical sums, Newton wrote infinite power
series in which the coefficient of each power was defined and clearly visible.
For the partial area of a quadrant, for example, using the interpolated values
calculated by Wallis, Newton wrote:"®

2 3 8 5 16 7 128 9

(where, in modern notation, A(z) = f; (1 - t?)3dt).

74 See Van Maanen 1984, 241-242 for Huygen's formulation of his result and 245-250 for a
possible reconstruction of his methods.

75 Van Maanen 1984, 222-250.

76 Mercator 1668.

77 Wallis 1668; see especially 754, 755.

78 Newton 1664.

7 Newton 1664, 108.
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As Newton’s work progressed he also began to see how he could use a
method of interpolation different from Wallis’s.3® Where Wallis had regarded
his sequences as generated by multipliers, so that, as we have seen, he wrote

1,3,6,10, ... as 1 x % X %— X % X .-+, Newton saw that the same sequence
could be generated by addition, so that 1, 3, 6, 10, ... could be writ-

ten as a, a+b, a+2b+c, a+3b+3c, a+4b+6¢,... with a=1, b=2,
¢ = 1; in other words, with a pattern of constant second differences.?! Like
Wallis, Newton assumed that the overall pattern would hold for any inter-
mediate terms, and because his method was simpler than Wallis’s, he could
interpolate not just one, but two, three, or more such terms between any
two entries of a sequence. He could also extrapolate backwards to negative
numbers, something that Wallis had never attempted to do. Thus Newton
could find coefficients in the power series expansion of (14 z)P/? for any
rational value p/q either positive or negative. In short, building on Wallis’s
methods and sequences he discovered the coefficients of the general binomial
theorem. For Newton this opened up immense possibilities, for now he could
express trigonometric and logarithmic quantities by means of infinite series,
for example,

) z3 325 527
arcsmr =+ ——+—+—+---

6 40 112
tilo z_z+z_2+z_3+z_4+
A 2= 2T o T T

In other words, Newton could treat such quantities as functions of a free
variable (though the formal concept of a function did not enter mathematics
until some sixty years later). Further, he could integrate and differentiate such
functions by operating on the series term by term.

In 1669 Newton wrote up his results in De analysi per aequationes numero
terminorum infinitas, which he sent privately to Isaac Barrow and John
Collins,®? and he wrote a more extended account in 1676 to Leibniz in two
long letters now known as the Epistola prior and Epistola posterior.®3 In
those letters he was explicit about his debt to Wallis,®* and Wallis was not
slow to respond. By 1676 Wallis had completed a large part, possibly the
first seventy-two chapters, of A treatise of algebra. It was probably Newton’s
Epistola posterior that prompted him to add a further twenty-five chapters in

80 Newton 1665; see also Whiteside 1961, Dennis and Confrey 1996, Stedall 2002, 175-180.

81 Newton 1665, 130.

82 Newton 1669; though sent to Barrow and Collins in 1669, De analysi remained unpub-
lished until it appeared in Newton 1711.

83 Newton to Oldenburg, 13 June and 24 October 1676, letters 165 and 188 (and 189) in
Turnbull 1959-77, II, 2047 and 110-163.

84 Newton 1676b, 111, 130; Newton to Wallis, July 1695, letter 519 in Turnbull 1959-77,
1V, 140.
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which he outlined the methods and significance of the Arithmetica infinitorum,
and published substantial extracts from Newton’s letters.®®

Wallis himself, for all the adverse criticism his book had received when
it first appeared, had never doubted its worth, and Newton’s results were a
vindication of his methods. He would have been the first to agree with David
Gregory’s later accolade:®®

The Arithmetica infinitorum has ever been acknowledged to be the founda-
tion of all the Improvements that have been made in Geometry since that
time.

From a longer perspective it is possible to arrive at a more objective assess-
ment of Wallis’s mathematics, but the historical importance of his ideas is
not in doubt. Almost two centuries after the Arithmetica infinitorum was
written, in 1821, Charles Babbage in an unpublished essay entitled ‘Of induc-
tion’ wrote:87

Few works afford so many examples of pure and unmixed induction as
the Arithmetica infinitorum of Wallis and although more rigid methods of
demonstration have been substituted by modern writers this most original
production will never cease to be examined with attention by those who
interest themselves in the history of analytical science or in examining those
trains of thought which have contributed to its perfection.

Because Wallis’s text even now gives important insights into the development
not only of induction but of so many other seminal ideas of mid seventeenth-
century mathematics, this present translation, the first into English, is now
offered to a new generation of readers.

85 Wallis 1685, 330-346. Wallis published the Epistola prior almost in its entirety together
with some supporting material from the Epistola posterior (Turnbull 1959-77, III, 220,
note 4, is not quite accurate on this point).

86 Bodleian Library MS Smith 31, f. 58.

87 British Library Add MS 37202; Dubbey 1978, 109-114.
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D. GUILIELMO OUGHTREDO,
Mathefeos cognitione Celeberrimo,

FYOHANNES WALLISIUS
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Fig. 1. An advertisement of the forthcoming Arithmetica infinitorum, Easter 1655.



To the most Distinguished and Worthy gentleman
and most Skilled Mathematician,

Dr William Oughtred
Rector of the church of Aldbury in the county of Surrey

Here for you at last (most distinguished gentleman) is now the whole of that
work of which I gave hope in that proposition on circle measurement that I
gave you in its stead in print last Easter (see Figure 1). For since, by custom,
when one puts something out in public, it ought to be dedicated to someone,
I thought to seek not only a great gentleman but a great mathematician to
whom I might offer it. And therefore I saw that to none other greater than
you can that easily be done, who is among mathematicians most deserving,
and also by whose writings I readily confess that I have profited: who indeed
in your Clavis mathematicae, though not a large work, have there taught both
briefly and clearly, what we seek in vain in the large volumes of others.!

You may find this work (if I judge rightly) quite new. For I see no reason
why I should not proclaim it; nor do I believe that others will take it wrongly.
For although it is not to be doubted that indeed known propositions are
mixed here and there among others (which must necessarily be done, partly
so that light would shine from them to others, and so that I would not seem
to contrive something that has no relationship to what mathematicians have
already discovered or perfected; partly also lest this work itself come out both
maimed and crippled, since those things follow immediately from our princi-
ples in such a way that, even if they were otherwise unknown, they necessarily
here immediately become known; and indeed I have not previously found most
of them to stand out in the works of others, even the most distinguished of
them, other than those I have arrived at by this method); since, however, this
also has much that is new, indeed neither discovered by nor known to others,
and it teaches all by a new method, introduced by me for the first time into
geometry, and with such clarity (unless I perhaps praise myself too much)
that in these more abstruse problems no-one (as far as I know) has used: that
is why I would not hesitate to call it new.

Certainly this method of mine takes its beginning where Cavalieri ends his
Method of indivisibles. Whence the key is given both to the work itself and to

1 William Oughtred, Arithmeticae. .. quasi clavis est, London 1631.
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its title; for as his was the Geometry of indivisibles, so 1 have chosen to call
my method the Arithmetic of infinitesimals.?

By what means I arrived at it, moreover, it seems less necessary to say,
since almost everything found by that method has been written; however,
since I judge that it will not be unwelcome to you, I here also briefly bring
together the history of the thing.

Around 1650 I came across the mathematical writings of Torricelli (which,
as other business allowed, I read in the following year, 1651), where among
other things, he expounds the geometry of indivisibles of Cavalieri.?> Cavalieri
himself I did not have to hand, and I sought for it in vain at various book-
sellers. His method, as taught by Torricelli, moreover, was indeed all the more
welcome to me because I do not know that anything of that kind was observed
in the thinking of almost any mathematician I had previously met;* for what
holds for most of them concerning the circle (which was usually had by means
of polygons with an infinite number of sides, and therefore the circumference
by means of an infinite number of infinitely short lines) could also, it seemed
to me, with appropriate changes, be usefully adjusted to other problems; and
indeed by that means to examine not a little of what is found in Euclid,
Apollonius and, especially, throughout Archimedes. Those things, moreover,
I thought about as yet only in a disordered way, not yet in the order I would
bring them to. For other business has not allowed Mathematicians openly to
devote their attention to it, but only to indulge a few spare hours; whence
I first felt called to that duty which I now attempt; because nothing before
came very close to it.

Once I had perceived that a method of this kind had been obtained, I began
to think to myself whether this might not bring some light to the quadrature
of the circle, which is known always to have exercised the greatest of men.
The hope of doing which, it seemed, was here. The ratio of a cone composed
of an infinite number of circles to a cylinder of the same number was already
known, namely 1 to 3; moreover all the diameters making a triangle along the
axis of the cone, to the same number making a parallelogram along the axis of
the cylinder, are (as is known) as 1 to 2. Equally all the circles in a parabolic
conoid, to the same number of circles in a cylinder were known to have a ratio
of 1 to 2; moreover all the diameters of the former to the diameters of the
latter are as 2 to 3. It was also clear that the lines of a triangle are arithmetic
proportionals, or as 1, 2, 3, etc. and so the circles of a cone (which are as
the squares of the diameters) as 1, 4, 9, etc. In the same way the circles of
a parabolic conoid (which are as the squares of the ordinates, that is, in the
ratio of the diameters [of the parabola]), are as 1, 2, 3, etc. and therefore their

2 Wallis himself translated the title as ‘Arithmetick of Infinites; for discussion of the title
and its translation see Introduction p. xvii.

3 Bonaventura Cavalieri, Geometria indivisibilibus continuorum nova quadam ratione pro-
mota, Bologna 1635; Evangelista Torricelli, Opera geometrica, Florence 1644.

4 Wallis did not know Roberval’s ‘Traite des Indivisibles’, which was not published until
1693. See Introduction p. xiv and note 15.
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diameters as V1, V2, V3, etc., indeed as the square roots of their circles.
I hoped it might therefore be possible that, from the known ratios of other
series of circles, or (which comes down to the same thing) of squares, to the
same number of equals, there might be found also the ratio of their diameters
or sides to the same number of equals. Moreover if I could find this by some
general method, the quadrature of the circle would be sufficiently in sight. For
since, as was already known, all the parallel circles in a sphere, to the same
number in a cylinder, are as 2 to 3, if thence there could be investigated the
ratio of all the diameters of the former to the diameters of the latter, there
would be found what was sought: for certainly the diameters of the former
constitute a circle, the latter the square of the diameter. Thus a geometric
problem is reduced purely to arithmetic.

Therefore I devoted myself to this investigation at the end of that year,
1651, and the beginning of the next, 1652, by that very method that this
treatise indicates. I imagined that thence, either it was possible at some time
to establish by what means the circle could be squared, or instead that it
could indeed not be squared, or that at least something would emerge that
would make the work worthwhile.

I therefore began first (so as to start from the more simple cases) with sim-
ple series, that is, of quantities in arithmetic proportion, or of their squares,
cubes, etc. and then also their square roots, cube roots, etc. and powers com-
posed from these, thus, square roots of cubes etc. or also whatever other
composites, whether the power was rational or even irrational. In all of which,
the thing indeed came out just as wished for, and more than was hoped
for. Whence eventually a general theorem emerged, taught at Proposition 64.
But also at the same time there was produced the quadrature not only of
the simple parabola, shown by a new method, but also of all higher parabo-
las, and of their complements, which no-one before, as far as I know, began
to address, let alone achieved.® And therefore here immediately I felt had
enlarged geometry; for since previously the simple parabola was almost the
only curved figure whose quadrature was known, there may now be taught
by a single proposition the quadrature of all higher parabolas of infinitely
many kinds and indeed by one general method. And indeed if the quadra-
ture of one parabola rendered so much fame to Archimedes (so that then
all mathematicians since that time placed him as though on the columns of
Hercules), I felt it would be welcome enough to the mathematical world if I
taught the quadrature also of infinitely many kinds of figures of this sort. But
also I saw here the same doctrine widened to conoids and pyramids. For since
Archimedes taught correctly only of conoids and spheroids (as also others
after him), no mention was ever made of pyramids; I have related everything,
whether conoids or pyramids, either erect or inclined, to cylinders and prisms.
Not only for those formed from simple parabolas but also for those from all
higher parabolas and from their complements, on which so far there has been

5 Fermat had done this, but Wallis was ignorant of it, see Introduction p. xiv and note 15.
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complete silence from everyone, nor has anyone (as far as I know) anywhere
attempted it. But also I saw here that it was possible to derive as a direct
consequence an almost complete teaching of spirals; and indeed I have taught
the comparison with a circle, not only for the space contained within the
usual spirals (as Archimedes did), but also for that contained within other
spirals. But also that teaching on the spiral, no less than that on parabolas,
was capable of extension, except that I did not wish to digress too much to
corollaries.

Passing then to augmented series (as I call them) and those diminished, or
altered, which are constituted from sums or differences of two or more other
series. And here also the outcome is not at all to be disparaged. That is,
that it was not difficult to relate everything to series of equals; in particular
I saw that it was no more work than that to relate conoids or spheroids, or
even pyramids, not only erect but inclined, to cylinders or prisms. Not only
for those arising from simple hyperbolas or ellipses, or also those that can be
formed from higher hyperbolas or ellipses in a thousand ways; but I did not
consider it necessary to dwell on listing them separately, lest I spread myself
too far, especially since anyone can see what can be done by his own efforts
from what has been taught.

Moreover, I have continued the investigation with the same success not
only for those series, whether augmented or diminished, but also for those
which are as the squares, cubes, or any higher power of them, as is to be seen
from those propositions which follow afterwards. Where at the same time we
made use of the figurate numbers, thus, triangular, pyramidal, etc. (which
no-one until now has, except sparingly, made use of, and then almost as a
game) and their distinguishing features were unexpectedly uncovered.

But where we next proceeded to other series which were as the square
roots, cube roots, etc. of those augmented or diminished series (which have
a direct and immediate bearing on the quadratures of the circle, ellipse or
hyperbola, and which alone now remain a difficulty) I saw that I was there
brought to a standstill, and that I was not able to extricate myself as eas-
ily as before. Having tried the thing in various ways, there was neverthe-
less no way out of it that would satisfy all that was wished for. From that
it came about that I believed that ratio that was sought to be of a kind
that was not to be expressed in true numbers, nor indeed in surd numbers
(as they are commonly called). For I had found some progressions of num-
bers, between given terms of which, another term was to be interposed, in
order to express the sought ratio. Moreover those progressions are of such
a kind that they cannot be said to be either arithmetic (where the contin-
ual increases are equal) or geometric (where the continual multipliers are
equal), but are such that the continual multipliers include arithmetic pro-
portionals, and are therefore yet more complex than geometric progressions.
Moreover, although in a geometric progression (where the continual multi-
pliers are equal) it is sometimes the case (for example in 1, 4, 16, 64, etc.)
that the means that have to be interpolated between the terms of it are
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expressible numbers, the same is not possible in every case (thus in 1, 2, 4,
8, etc.), but it may be necessary to indicate an impossible number in some
way (thus /2, /8, etc.); I judged that it will be much less to be hoped for,
in a progression yet more complex (where the continual multipliers are con-
tinually increasing or decreasing) that this might always be done; and there-
fore I thought that there must be introduced some other method of notation
(than any so far accepted), by which such an impossible number might be
indicated.

And so far had I arrived at the beginning of the year 1652, by the time
(as I remember) of Lent; at the time, that is, according to our academic
constitutions, a series of public lectures is given, and therefore more time
away from private investigations.

Moreover, while I stopped here, it seemed good to share the thing with
other mathematicians with whom I was friendly, that I might see whether
they could be of help in designating the sought quantity. And therefore from
the various progressions of this kind that I had taken hold of, I picked out
one, which seemed to be the simplest of all (as it progressed in whole num-
bers) namely that now to be found at Proposition 192 of this treatise, and I
brought out the problem almost in this form (for I proposed it in not exactly
all the same words, but nevertheless in the same sense): If any smooth curve
touches a line at its vertex, from which line to the curve there are taken lines
parallel to the axis, equally spaced from each other, of which the first is 1,
the second 6, the third 30, the fourth 140, the fifth 630, etc. what is the size
of that which must be interposed between 1 and 67 Or also arithmetically: In
a series of numbers 1, 6, 80, 140, 630, etc., there is sought the mean term
to be placed between 1 and 67 Moreover, I indicated how those terms arise,
from continued multiplication of the numbers 1 x 4% X 4% X 4% X 4% etc. or
also 1x 8 x 10 x 1 x 18 etc,, of which both the numerators and denomi-
nators are arithmetic proportionals. The problem so drawn up I proposed
to the minds of the following (among others) the most distinguished gentle-
man and mathematician Dr Seth Ward, Savilian Professor of Astronomy and
my most deserving colleague; Lawrence Rook, then for some time at Oxford
but afterwards Professor of Astronomy at Gresham College in London; and
Richard Rawlinson, Fellow of The Queen’s College, Oxford; and I do not know
whether also at the same time (but certainly some time) Robert Wood, Fellow
of Lincoln College and Christopher Wren, Fellow of All Souls College (and also
some others, whom I refrain from naming). And indeed having revealed to all
of them (unless I am mistaken) the mark that I was aiming at, namely, given
that quantity that was sought, we would have the complete quadrature of the
circle. Moreover, neither I nor any of them (for whom either the answer was
not obvious, or there was no leisure after laying down their own problems for
them to be at all troubled by mine) satisfied what was wished for. Moreover,
some one of them advised that I should consult the Opus geometricum of
Grégoire de Saint-Vincent (whose name indeed I had not heard before) as he
had expounded things of this kind with a bearing on the quadrature of the
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circle, in a large volume.® I heeded this advice; and this book, although it
was so large a volume that I did not have leisure to read it the whole of it, I
engaged in whenever possible, watching for what I could find out from there
that would serve my purpose. Moreover, I found at times the investigations
fell out the same way both for him and for me (which was no surprise) though
we had arrived there by different methods. For example, what he calls drawing
a plane into a plane, is what I here and in my Treatise on conic sections (the
draft of which was conceived and first shaped in the same year, 1652) have
called drawing all the lines in one plane into the respective lines in another.
The reason, moreover, that I did not speak of drawing a plane into a plane
was that in reality it was not so much a plane into a plane (for thus it would
produce a plano-plane, that is, of four dimensions, not a solid), but the width
of one into the width of the other, both taken finally to the same altitude;
and therefore there emerge three (not four) dimensions. And perhaps some
other things. So that I have not taken into my treatise one proposition or
demonstration from his that I had not found previously; thus if by chance
there happens to be anything common to both, I believed it was not worth
the trouble on that account of deleting it from mine, since it is very often
bound to happen that where two or more consider treating the same thing,
they will sometimes coincide in the same observations. But (although he has
astutely made many discoveries, by a method quite different from mine) that
which I most sought in him I never found; for he did not follow the thing far
enough, nor does he even touch at all on the quadrature of the circle, which
he asserts he has found, except at a proposition not very dissimilar to my
Proposition 136, where he has arrived at a calculation whence the quadra-
ture of the circle may be found, but has not, however, followed it through, as
Dr Huygens showed in his Ezetasis.”

In the autumn of that year (1652), I proposed to the most distinguished
gentleman Francis von Schooten, Professor of mathematics at Leiden in the
Netherlands, among others, also this problem (concealing the target, how-
ever, that it was aimed at), who, having immediately communicated it to the
most distinguished gentleman Christiaan Huygens, indicated, in letters writ-
ten thus not much later, the intricacy and difficulty of the thing (although
at first sight it seemed easier), and gave no hope in the meantime that either
he nor my Lord Huygens would be free enough to expend more labour in
the further investigations of it. From the responses of all of them, I was the
more strengthened in that opinion I had previously held, namely that the
term sought was neither a rational number, nor any so far accepted surd
number, but must be described in new notation, and indeed, if you like, that

6 Grégoire De Saint-Vincent, Opus geometricum quadraturae circuli et sectionum coni,
Antwerp 1647.

7 Christiaan Huygens, Theoremata de quadratura hyperbolae, ellipsis et circuli. .. Quibus
subjuncta est Ezetasis cyclometriae G. a S. vincentio, Leiden 1651. Wallis’s copy of
Huygens’ Theoremata de quadratura and of his De circuli magnitudine inventa of 1654
are both bound in Bodleian Library Savile G.26.
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which I have assigned at Proposition 190. But if (as, for example, /2, may
not be expressed precisely in true numbers, but nevertheless as closely as
required, so) we want to express this quantity as closely as required in true
numbers (that is, with as much accuracy as one wants, meaning one does
not want it cut off), I teach how that may be done at Proposition 191. How
that may be exhibited to some extent geometrically is shown in the subse-
quent propositions. And therefore we seem to have pursued the quadrature
of the circle as far as the nature of numbers allows. But whoever requires
to show the thing further, it is from there on as though one wanted to
express v/2 in true numbers: which requirement is unfair. Meanwhile I am
not ignorant that it is possible to describe that quantity by other meth-
ods also, with endless characters, and to arrive in the same way at num-
bers closely approximate to the true ones by other methods (just as can
be said also of surd roots), in which it is not for me to lay down rules
to men of mathematics, but I leave them free to those things each prefers
to use.

Moreover, having completed the quadrature of the circle, I thought it not
worth while to touch separately on other problems related to it: thus, the
ratio of the diameter to the circumference, or the sphere to the cube, or the
cone or cylinder to the pyramid or prism, and others similar; for anyone can
see from this how to gather these together.

Nor did it seem that anything needed to be said separately of the quadra-
ture of the ellipse, which indeed was treated in conjunction with the quadra-
ture of the circle.

The quadrature of the hyperbola as far as I have attained it, I have shown
at Proposition 165.

Meanwhile, however, following the thread of the method I teach, I have
unexpectedly come across somewhat surprising questions concerning the mea-
surement of figures partly bounded, partly continued to infinity. And in par-
ticular what Torricelli showed in one solid figure I have shown can be done in
others innumerable, both plane and solid, in Proposition 87 and later at 107.
At the same time I teach by what criteria it may be discerned, for proposed
figures of this kind continued infinitely, whether they will eventually attain a
finite or infinite magnitude. Which observation seems both quite surprising
and at the same time pleasing.

Why, moreover, have I not made public more quickly what I already found
three years since? The reason was partly that I was frequently called to other
business, but especially that the typesetter, more occupied with other publi-
cations, only undertook seriously, and carried out lately, the printing of this
and other treatises which appear with it. But while those now published were
in the press, I was pleased to put out as a foretaste (last spring) a proposition
on circle measurement (including also that which I proposed in the form of
a problem some years since, as I said above, to various distinguished gen-
tlemen), and you may discover that it was chosen from the three problems
that end this treatise. Moreover, since that time (in the month just gone)
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Doctor Hobbes produced a book,® who had already promised much in geom-
etry, and especially in the quadrature of the circle, and sectioning angles in
a given ratio, and other things related to these, and at length he brought his
book out publicly, from which it was clear that he had not demonstrated any
of these things, nor indeed will he demonstrate them; for the book abounds
everywhere with the most disgraceful paradoxes, so that you scarcely at times
find anything sensible (which my Elenchus,? which is also now in the press,
will make clear), whence you may easily discern also that the author is not
one from whom we may hope that mysteries of this kind are to be unraveled.

For the rest, farewell, honoured old gentleman. And may the most merciful
God preserve you happily and make all your doings prosper: so that at length
after passing happily and piously through old age, you may exchange this
troubled life we now lead for a better life. Which is most ardently to be
prayed for.

Your most respectful servant.
John Wallis

Oxford
19 July 1655

8 Thomas Hobbes, Elementorum philosophiae; sectio primo de corpore, London 1655.
9 John Wallis, Elenchus geometria Hobbianae ... refutatio, Oxford 1655.



To the Most Respected Gentleman
Doctor William Oughtred
most widely famed amongst mathematicians
by John Wallis

Savilian Professor of Geometry at Oxford

That proposition (most famed Gentleman) that I have shown before to you,
concealed in shape and in the form of a problem, and also to not a few other
mathematicians, to whom I held out the thing some years ago, hiding for the
most part (though it was discovered by several) the target it was aimed at:
here at last I declare ahead openly, in the form of a Theorem (which was

previously buried).
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The Quadrature of the Circle

Given a smooth curve VC to whose vertex there runs the line VT, divided
into any number of equal parts, and from each point of the division, the same
number of parallel lines, constructed as far as the curve, of which the second
is 1, the fourth is 6, the sixth is 30, the eighth is 140, etc. it will be the case
that, as the second is to the third, so will be the semicircle to the square of
its diameter.

Or if the second is 1, the fourth is 11, the sixth is 1Z, etc. it will be the
case that, as the second is to the third, so will be the circle to the square of
its diameter.

Or if the second is 1, the fourth is 2%, the sixth is 4%, etc. it will be the
case that, as the second is to the third, so will be three times the circle to
four times the square of its diameter.

The method of demonstration I have arrived at for all the progressions,
both here for the circle and for innumerable other quadratures of other curves,
is shown in the treatise that I now have by me, completed for some time, and
indeed written out for the use of the printers, and which I will publish, as soon
as the delays of the printers allow, on whose leisure I have already awaited for
two whole years and more.

Given from the Press at Oxford the day after Easter, the year of our
Lord 1655.



From Doctor William Oughtred

A response to the preceding letter (after the book went to press).'?

In which he makes it known what he thought of that method.

Most honoured Sir,

I have with unspeakable delight, so far as my necessary business, the infirm-
ness of my health, and the greatness of my age (approaching now to an end)
would permit, perused your most learned papers, of several choice arguments,
which you sent me: wherein I do first with thankfulness acknowledge to God,
the Father of lights, the great light he hath given you; and next I gratulate you,
even with admiration, the clearness and perspicacity of your understanding
and genius, who have not only gone, but also opened a way into these pro-
foundest mysteries of art, unknown and not thought of by the ancients. With
which your mysterious inventions I am the more affected, because full twenty
years ago, the learned patron of sciences, Sir Charles Cavendish, shewed me a
written paper sent out of France, in which were some very few excellent new
theorems, wrought by the way, as I suppose, of Cavalieri, which I wrought over
again more agreeably to my way. The paper, wherein I wrought it, I shewed
to many, whereof some took copies, but my own I cannot find. I mention it for
this, because I saw therein a light breaking out for the discovery of wonders
to be revealed to mankind, in this last age of the world: which light I did
salute as afar off, and now at a nearer distance embrace in your prosperous
beginnings. Sir, that you are pleased to mention my name in your never dying
papers, that is your noble favour to me, who can add nothing to your glory,
but only my applause, and prayer that God by you will perfect these happy
beginnings so propitiously advanced to his glory. Which is the hearty desire of

Your truly loving friend and honourer,
William Oughtred

August 17 1655

10 This letter arrived too late to be included in the first edition of the Arithmetica infinito-
rum but was published in the second edition in 1695. It is reproduced in Stephen Jordan
Rigaud, Correspondence of scientific men of the seventeenth century, 2 vols, Oxford
1841, I, 87-88, and is included here for completeness.



The Arithmetic of Infinitesimals
or
a New Method of Inquiring
into the Quadrature of Curves, and other
more difficult mathematical problems

PROPOSITION 1

Lemma

If there is proposed a series,! of quantities in arithmetic proportion (or as the
natural sequence of numbers)? continually increasing, beginning from a point
or 0 (that is, nought, or nothing),® thus as 0, 1, 2, 3, 4, etc., let it be proposed
to inquire what is the ratio of the sum of all of them, to the sum of the same
number of terms equal to the greatest.

The simplest method of investigation, in this and various problems that follow, is
to exhibit the thing to a certain extent, and to observe the ratios produced and to
compare them to each other; so that at length a general proposition may become
known by induction.*

1 Wallis used the Latin word series in two ways: (1) to denote a list of terms defined
according to some rule; this meaning has been translated as ‘sequence’, and: (2) to denote
a (finite or infinite) collection of such terms, usually (but not necessarily) summed; this
meaning has been translated as ‘series’, even though it does not correspond exactly to
the modern mathematical understanding of the word (see Glossary).

2 Quantities in arithmetic proportion (or arithmetic proportionals) increase or decrease
by regular addition of a fixed quantity, thus: a,a + d,a + 2d,a + 3d,.... The sequence
of natural numbers 0,1,2, 3,... is the simplest example.

3 By allowing his sequences to begin ‘from a point or 0°, Wallis was implying that the
quantities can be taken either from geometry (magnitudes) or from arithmetic (numbers).

4 Inductione, (by induction) is not to be understood here in the modern formal sense of
mathematical induction. Wallis used ‘by induction’ here and throughout simply to mean
that a well established pattern could reasonably be assumed to continue.
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It is therefore the case, for example, that:

0+1 1 0+1+2=3 1
1+1 2 2+2+2=6 2

0+1+2+3=6 1 0+1+2+3+4=10 1
3+3+3+3=12 2 4+4+4+4+4=20 2

0+1+2+3+4+45=15 1  0+1+2+3+4+5+6=21 1

5+5+5+5+5+5=230 2 6+6+6+6+6+6+6=42 2

And in the same way, however far we proceed, it will always produce the same ratio
of one half. Therefore:

PROPOSITION 2

Theorem

If there is taken a series, of quantities in arithmetic proportion (or as the
natural sequence of numbers) continually increasing, beginning from a point
or 0, either finite or infinite in number (for there will be no reason to distin-
guish), it will be to a series of the same number of terms equal to the greatest,®
as 1 to 2.

That is, if the first term, is 0, the second 1 (for otherwise some adjustment must
be applied), and the last is [, the sum will be “£2{ (for in this case the number of
terms will be { 4+ 1). Or (putting m for the number of terms, whatever the second
term) mi.

PROPOSITION 3

Corollary

Therefore, a triangle to a parallelogram (on an equal base and of equal height)
isas 1 to 2.

5 Wallis’s reasoning seems to break down immediately at this point, because if his series
contains an infinite number of terms increasing indefinitely it can have no greatest term.
What he is really thinking of, however, though he does not yet make it clear.
is a series with a finite greatest term [, arrived at by m steps of size d, thus
0,d,2d,3d,...,md = . When m is finite it is clear that the sum of terms is %(m + 1)I,
or, to (m+ 1)l as 1 to 2. Wallis allowed the number of steps m to become infinitely
large, by making d arbitrarily small, indeed infinitesimally small, but in such a way that
md remains always equal to [ and is therefore finite. In that case, Wallis argued (‘by
induction’) that the same ratio of 1 to 2 would still hold.
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For the triangle consists, as it were,® of an infinite number of parallel lines in arith-
metic proportion, starting from a point, of which the longest is the base (as we
showed in Propositions 1 and 2 of our book On conic sections); and the parallelogram
consists of the same number of lines equal to the base (as is clear). Therefore the
former to the latter is as 1 to 2 (from what has gone before). Which was to be proved.

PROPOSITION 4

Corollary

In the same way, a parabolic pyramid or conoid” (whether right or inclined),
to a prism or cylinder (on an equal base and of equal height) is as 1 to 2.

A‘ » of

O,

D

Triangulum enim constat quasi ex infinitis rectis parallelis was the phrase to which
Thomas Hobbes later objected so strongly (‘“as it were” is no phrase of a geometrician’);
Hobbes 1656, 46.

A parabola is a curve whose equation in modern notation, in its simplest form, is
y™ = kz. For the common (or simple) parabola n = 2, while for a cubical, biquadratic
or supersolid parabola, n = 3, 4 or 5, respectively. By parabola Wallis always meant the
simple parabola; the others he described as paraboloeides, translated as ‘higher parabo-
las’. Wallis distinguished also between right and inclined parabolas (cut from right or
inclined cones): in a right conic the ordinates are at right angles to the diameter.

An erect parabolic conoid is the solid formed by rotation of a right parabola around
its axis of symmetry (its diameter). A parabolic pyramid is a pyramid with polygonal
cross-sections parallel to the base and parabolic cross-sections through the vertex. In
Proposition 4 the solid is based on the simple parabola y2 = kz, so that if z1,z2, ... are
arithmetically proportional then so are y%, y%, e
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For a parabolic pyramid or conoid consists, as it were, of an infinite number of planes
in arithmetic proportion, starting from a point, of which the largest is the base (as
we showed in Proposition 9 of On conic sections), and the prism or cylinder of the
same number of planes equal to the base (as is clear). Therefore the former to the
latter is as 1 to 2, by Proposition 2.

PROPOSITION 5

Corollary

In the same way, any spiral line MT® (taken from the centre of the spiral)
is to the corresponding coterminous arc PT (taken from the beginning of the
revolution) as 1 to 2.°

Let this spiral line (having completed one revolution) be MTA, and let the centre of
the spiral (which is also the centre of what I call the corresponding peripheral arc)
be M. The beginning of the revolution is the line MA, by the even circular motion of
which (keeping M fixed) there may be supposed described, by its end point A, the

8 The words ‘(Quam spuriam dicimus)’, ‘which we call spurious’ were added when the
Arithmetica infinitorum was reprinted in 1695.

9 In 1695 Wallis added a note at this point to explain that by spiral he meant not the
Archimedean spiral itself, but the sum of arcs of similar sectors, inscribed inside the
Archimedean spiral; this he called the spurious spiral. The result stated in Proposition 5
does not hold for the true Archimedean spiral. The first revolution of the Archimedean
spiral is equal in length to a half parabola whose base is the greatest radius of the
spiral and whose axis is half the circumference of the coterminous circle. This result was
discovered by Roberval and published in Mersenne’s Cogitata physico-mathematica in
1644 (Book II, De hydraulico, 129), but Wallis read it there only in 1656 and added a
hasty Scholium or Comment after Proposition 13 to explain his own results.

Wallis failed to understand that the true spiral is generated from a uniform motion
along the radius, and an accelerated motion along a steadily increasing circumference
(hence the analogy with the parabola which is similarly generated by uniform motion in
one direction and accelerated motion in another) and his failure rendered Propositions 5
to 15 somewhat meaningless. Hobbes, who had discussed the problem with Roberval
and understood the correct argument, immediately pointed out Wallis’s error, but Wallis
persisted in it even in his reply to Hobbes in his Elenchus of 1656. For further discussion
of this problem see Jesseph 1999, 117-125.
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perimeter AOA (which we call the first circle, or rather, the circumference of the first
circle, whichever is the most familiar or useful). While, in the meantime, any point
(on the same moving line) may be supposed to move (with the same even motion)
from M to A, by its motion describing the spiral line MTA. Thus any straight line
MT (from M, the centre of the spiral, to the spiral line as far as constructed) will be
to the line MA, as the perimeter arc AO (described in the same time) to the total
circumference AOA, or as the angle AMT to four right angles. And therefore also
the lines MT, MT, are proportional to the arcs AO, AQ, as is clear.

Then, having constructed any number of straight lines MT, MT, etc. making a
continuous sequence of angles AMT, TMT, etc. equal to each other (and therefore
[the lines MT are] in arithmetic proportion), we may suppose (superimposed on these
angles) the same number of similar sectors (or rather, one fewer because a sector
may not be inscribed in the first space) inscribing the figure'® MTM (bounded
by the true spiral line MT and the straight line TM). All these sectors together
constitute the plane figure (composed from similar sectors), less than the (inscribed)
plane figure MTM itself. But the difference is steadily diminished as the number of
sectors (inscribed in MTM) becomes larger (as is clear), until in fact, if the sectors are
supposed infinite in number, the figure thus inscribed coincides with the figure MTM
itself (by that which we showed more generally in Proposition 2 of On conic sections)
and therefore the arcs of all those sectors coincide with the (spurious) spiral MT.

Moreover, the arcs of those similar sectors (just as their radii) are in arithmetic
proportion, that is, as 0, 1, 2, etc., and the angle of any sector is that part of the
total angle AMT, which is found from the number of those sectors, or spaces; thus if
the sectors are supposed infinite in number, the angle of any one of them will be é
(an infinitesimal, or infinitely small, part) of the whole angle AMT so, that is, that
all together are equal to the whole of AMT. (Allow me, moreover, by analogous use
of language perhaps, to call this sum of angles also by the name of angle, although
perhaps it either equals or exceeds two right angles).

Therefore our spiral line MT may be supposed to consist of an infinite number
of arcs of sectors in arithmetic proportion (subtending é of the angle AMT), of
which the smallest radius is 0, or a point (of no magnitude), and the gfeatest is the
straight line MT.

Moreover, the corresponding coterminous arc is PT, consisting of the same
number of arcs of sectors equal to the greatest, as is clear.

Therefore the sum of the former (that is our spiral line MT) to the sum of the
latter (that is the coterminous arc PT) is as 1 to 2, by Proposition 2.

PROPOSITION 6

Corollary

And therefore, (our) spiral line MA, made by one revolution is equal to half
the circumference of the first circle, AA.

10 By figura, or ‘figure’, Wallis always meant a plane figure, enclosed by lines and having
area. In particular, a circle is a plane figure with area, while the line bounding it is the
circumference.
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For the arc coterminous with the spiral line MA is the entire circumference of the
first circle described by the point A. Therefore, by Proposition 5, it is proved.

PROPOSITION 7

Corollary

Also, the spirals described by two, three, four, etc. complete revolutions are
equal to half the circumferences of the second, third, fourth, etc. circles taken
two, three, four, etc. times.

For while the spiral MAB (made by two revolutions) is being described, the point
B describes the circumference BB twice; and while the spiral MABC is described,
the circumference CC is described three times; and the circumference DD four times
while the spiral MABCD is described. And so on, the circumference of the cotermi-
nous circle must be multiplied by the number of revolutions, and half of this multiple
is equal to the spiral meanwhile described.

PROPOSITION 8

Corollary

But if the spiral is continued beyond one revolution but not for two, it will be
equal to half of the circumference of the complete coterminous circle together
with half of its continuation beyond the complete circle.

For while the spiral MAT is being described (by the combined motion), the arc PPT
is also described (by the point P), that is, the complete circle PP plus the adjoined
additional length PT. Therefore by Proposition 5, it is proved.
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PROPOSITION 9

Corollary

Equally, if the spiral is continued through two, three, four or more complete
revolutions plus an additional part, it will equal half the circumference of the
complete coterminous circle taken two, three, four or more times (as many as
the number of complete revolutions) with half of that same addition.

Because while the spiral is being described, the complete circumference of the coter-
minous circle is described the same number of times, and also the additional part.
That is, the corresponding coterminous arc consists of the same number of whole
circles (as the number of revolutions) together with the additional part. Therefore
the proposition stands, by Proposition 5.

PROPOSITION 10

Corollary

Moreover, these spiral lines made by one, two, three, four, etc. revolutions
(thus MA, MAB, MABC, MABCD) are to each other as the squares of arith-
metic proportionals, that is as 1, 4, 9, 16, etc. Or they are as the squares!! of
the straight lines MA, MB, MC, MD etc.

For the straight lines MA, AB, BC, CD, are equal to each other (because of the
even motion of the moving point on the line MA extended, progressing as evenly
in one revolution as another). Therefore the radii MA, MB, MC, MD, just as the
circumferences (described by those radii) A, B, C, D, are to each other as 1, 2, 3, 4.
If therefore the circumferences are taken, the first once, the second twice, the third
three times, the fourth four times, the multiples (that is 14, 2B, 3C, 4D) will be
as the square numbers 1, 4, 9, 16, or 1 x 1,2 x 2,3 x 3,4'x 4. And therefore so are
also the halves of those multiples, that is (by Proposition 5) the spirals MA, MAB,
MABC, MABCD.

Or alternatively, if for the circumference of the first circle we put A = p, the
second will be B = 2p, the third C = 3p, the fourth D = 4p and so on; and 14 =
1p,2B=2x2p=4p,3C =3 x 3p=9p,4D =4 x 4p = 16p etc. And (by Proposi-
tion 5) the spirals MA = %p, MAB = %B = %p, MABC = %C = gp, MABCD =
%D = 12§p etc. and therefore to each other as 1, 4, 9, 16, etc., that is, as the squares
of the lines MA, MB, MC, MD, etc. (which are to each other as 1, 2, 3, 4, etc.)
Which was to be proved.

11 In duplicata ratione, literally ‘in duplicate ratio’ or ‘in twice the ratio’. In the Classical
geometrical context the ‘ratio’ (or power) associated with quantities in arithmetic pro-
portion is 1, the ‘ratio’ associated with their squares is 2 and with their cubes 3. It is
not a great step from ‘ratio’ in this sense to ‘index’, but Wallis did not make that move
formally until Proposition 64. ‘In duplicate ratio’ is translated here and elsewhere by the
more familiar phrase ‘as the square of’.
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PROPOSITION 11

Corollary

And generally: the segments!? of this (or any similar) spiral (taken from the
centre of the spiral) are to each other as the squares of the coterminous lines.

For while (by the construction of the spiral) the ratio of the lines MT, MT, is
the same as that of the angles PMT, PMT, (taking angles in the sense indicated
above in Proposition 5), the ratio of the arcs PT, PT, (which [ratio] is composed of
those two ratios), and thus of the spirals MT, MT, (which are half those arcs) will
be as the squares of the lines MT, MT, or as (MT)?, (MT)2.

Thus, for example, if the straight line MA (of the first revolution) is denoted
by 1r, and the circumference of the first circle (described by that radius) by
1p, the spiral MA will be %p. Therefore in the first revolution plus a half, the

coterminous line will be 1%1”: gr, and the circumference of the coterminous
circle will be %p, which multiplied'® by % (the number of revolutions) makes
% X % Xp= %p. Half of this, 2%41) = %p is the [length of the] spiral described in
the same time.

Moreover, I call spirals similar if the lines MA, MB, MC, etc. in one are equal

to corresponding lines in the other.

PROPOSITION 12

Corollary

But if in dissimilar spirals of this kind (for example, if MB in one is equal to
MC in another) the coterminous lines are equal, then the segments of these
spirals are in reciprocal proportion to the corresponding straight lines (that
is, MA in one and MA in the other).

For example, in the first, the spiral MAB (described by two revolutions) will be
equal to half of its circumference B taken twice; and in the second, the spiral MABC
(described by three revolutions) will be equal to half of its circumference C taken
three times. And since the circumferences B in the first and C in the second are
supposed equal (because of equal radii), the first spiral MAB, and the second MABC,
will be to each other as 2 to 3 (that is, as one circumference taken twice, to the same

12 A ‘segment’ in Propositions 11 to 18 is to be understood as a portion of length.

13 Ducta in, or, ‘drawn into’. The outcome, or ‘product’, of such a construction is an area
delineated by a rectangle or square. As the mathematical paradigm shifted from geometry
to arithmetic, ducta in came to have the meaning of ‘multiplied by’, and the ‘product’
was the result of the multiplication. The geometrical word ‘square’ is still used for the
product of two equal quantities, and Wallis also used ‘rectangle’ for the product of two
unequal quantities (see Proposition 120).
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or an equal one taken three times), that is, in reciprocal relation to the corresponding
straight lines MA, MA. For the straight line MA in the first is 1 the straight line
MB, and the straight line MA in the second is % (of the same or an equal straight
line) MC. Therefore MA in the second to MA in the first, is as % to %, or as % to
% or as 2 to 3. Therefore the segment MAB of the former spiral, to the segment
MABC of the latter, is as the straight line MA in the second to the straight line MA
in the first.

The same thing may be shown similarly, whatever the ratio of the corresponding

straight lines in the dissimilar spirals.

PROPOSITION 13

Corollary

If, moreover, in dissimilar spirals of this kind the coterminous straight lines
are also unequal, then the segments of the spirals will be to each other in
a ratio that is composed from the squares of the coterminous lines and the
reciprocals of the corresponding straight lines.

Follows from Propositions 11 and 12.

COMMENT!*

It must be noted in the preceding Propositions concerning spirals (and also
in some I shall make in future) that I have made use of the word spiral
loosely (that there might be no need for lengthy circumlocution on every
occasion). For example, for spiral (wherever this is compared with a cir-
cumference) I would wish there to be understood: the sum of all the arcs
of similar sectors, infinite in number, from which sectors, infinite in num-
ber, is constituted the plane figure inscribed in the true spiral; as we indi-
cated at Proposition 5 (and which evidently we have made use of in this
work at Proposition 5, and also Archimedes at Proposition 21 etc. of his On
spiral lines). Which sum indeed, taking the spiral line itself in the correct
sense is always too small, and mostly so around the beginning of the spi-
ral. For although the sum of the infinite number of those sectors may be
made equal (according to the method of indivisibles) to the plane figure
bounded by a straight line and the spiral itself; one may not, however,
obtain that for all the arcs compared with the spiral line itself (strictly
speaking).

14 This Comment was added after Wallis had discovered the rectification of the true
Archimedean spiral in Mersenne’s Cogitata, in 1656, when most of the Arithmetica
infinitorum was already printed; see note 9.
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WA

For it amounts to the same thing as if, when an infinite number of parallelo-
grams are inscribed in (or circumscribed around) a triangle, it seems that they
equal the complete triangle VBS, whence one might conclude that the sides (par-
allel to the line VB) of all of them adjacent to the line VS, are at the same
time equal to VS itself; or those (parallel to VS itself) adjacent to VB are at
the same time equal to the whole of VB. (Which, though it may sometimes hap-
pen to be true, for example, thus in an isosceles triangle, must not, however, be
concluded generally.) And indeed I have offered this warning the more strongly
because I would see even learned men sometimes inclined to error through plausi-
ble possibilities of this kind.!® That is why, moreover, the genuine spiral has been
omitted, and I have compared the spurious spiral to the circumference; the rea-
son being that for the latter but not the former it is possible to assign an equal
circumference.

PROPOSITION 14

Corollary

And therefore also the segments of a spiral of this kind, taken from the cen-
tre, are to the coterminous lines as the intercepted diameters of a truncated
parabola to its ordinates.'®

That is, as the square, by Proposition 11.

15 One such learned man was Wallis himself, see note 9. Wallis took up the same theme
again at much greater length in the Comment following Proposition 182.

16 For a parabola with equation y? = kz, the length of the diameter, or intercepted dia-
meter, at a given point is given by the z-coordinate, while the length of the ordinate is
given by the y-coordinate.

A truncated parabola is cut short by the line z = d, say, so its final intercepted

1
diameter is d and its final ordinate is kd2.
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PROPOSITION 15

Corollary

Therefore if we suppose that I have unrolled our spiral MTT so that it con-
sists of a straight line, and all the straight lines TM, TM, become parallel to
each other, then the former will represent the diameter, and the latter the
ordinates, of a parabola. Conversely, if we suppose that the diameter of a
parabola is turned in an arc so that the ordinates end at the same point, it
will become the spiral; those ordinates will be the coterminous lines and the
point will be the centre of the spiral.

COMMENT

This also shows further what we indicated after Proposition 13. That is, our
spiral, composed of an infinite number of arcs of similar sectors, cannot prop-
erly be said to be the genuine spiral, but less than it. For since it happens
in the parabola that the ordinates which are closer to the vertex than that
which is equal to the latus rectum,'” are longer than their intercepted diame-
ters; therefore it is not possible to roll up the diameter of the parabola (while
keeping it unbroken) in such a way that the ends of the ordinates meet on the
vertex itself (indeed because what is now supposed curved cannot be less than
the coterminous line, which was formerly an ordinate). Therefore it must be
that the true spiral, which turns in the same way, is greater than that sup-
posed formed from the sum of arcs, which is now shown to agree with that
formed from the diameter of a parabola, indeed which is everywhere as the
squares of the coterminous lines.

17 The latus rectum of a conic is the total length of the ordinates passing through the focus.
For a parabola with equation y? = kz (therefore with focus at (k, 0)) the latus rectum
is 2k.
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PROPOSITION 16

Corollary

The [plane] parabola so rolled (that is, the figure contained within our spiral)
is half of the same parabola unrolled.

P M
P M
P M
P M

For example, if we suppose that a side PP of a parallelogram PM is rolled up, in
such a way that the points M of every line PM coincide in the same point, there will
be formed from the parallelograms (because all the radii from the common centre M
are equal) a circular sector (which may be less than, greater than, or equal to a whole
circle, according to the ratio of the lines PP to PM to each other) which sector indeed
(that is, the rolled parallelogram) will be half the (unrolled) parallelogram (because
in place of the infinite number of parallelograms of which the shown parallelogram
is supposed to consist, there arise the same number of triangular sectors having the
same bases and heights). In the same way, if the parabola is rolled up as described,
so that the other ends of the (previously parallel) ordinates coincide in the same
point, the infinite number of parallelograms of which we suppose the plane parabola
to be constituted (by what we said in Propositions 2 and 8 of On conic sections)
become the same number of triangles having the same bases and heights (as the
parallelograms); and therefore the area of the parabola so rolled (that is the figure
of the spiral) will be half of the same unrolled. Meanwhile it must be noted: if we want
the ordinates of the parabola (the boundaries of those parallelograms) to become, in
the spiral, those straight lines that bound similar sectors (having everywhere equal
angles) we must take, in the parabola, a succession of parallelograms, not indeed of
equal height,'® but whose heights are in arithmetic proportion (thus 1, 3, 5, 7 etc.)
by means of which the adjacent ordinates are in arithmetic proportion; (which the
ratio of our spiral requires), thus as 1, 2, 3, 4, etc.

And this indeed agrees with what Torricelli says, in Example 8 of those which
he sets out in his Treatise on the hyperbolic solid;'® although clearly sought from
different principles. :

Further, this next must also be noted: just as from rolling a parabola of this kind
(contracting the [arcs]? into a single point) there arises the Archimedean spiral; so

18 Note here that the altitude, or height, of a parallelogram is the distance along the
diameter of the parabola.

19 De dimensione parabolae solidique hyperbolici, Torricelli 1644, 95-111; 101.

20 Wallis has mistakenly written ‘diameter’ here.
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from other higher parabolas (or other trilineal plane figures of this kind) by similar

rolling, there may arise other different types of spiral, of a thousand different kinds.
Some of which we will consider later.?!

PROPOSITION 17

Corollary

Moreover, those segments of a spiral of this kind which arise from the first,
second, third, fourth, etc. revolutions and so on are between themselves in the
ratio 1, 3, 5, 7, and so on, in arithmetic progression.

For (by Proposition 10) the spiral lines MA, MAB, MABC, MABD, etc. are as 1,
4, 9, 16, etc., therefore the segments of the spirals, MA, AB (= MAB — MA), BC
(= MABC — MAB), CD (= MABCD — MABC), etc. areas 1, (4 — 1 =) 3, (9 — 4 =)
5, (16 — 9 =) 7, etc.

PROPOSITION 18

Corollary

And generally, taking any sequence of straight lines MT, MT, etc. continually
making angles PMT, TMT, etc. equal to each other, the successive intercepted
segments (MT, TT, etc.) of a spiral of this kind will be as 1, 3, 5, 7, etc.

21 See Proposition 45.
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For since the straight lines MT, MT, etc. themselves (because of the equal angles)
are as 1, 2, 3, 4 etc. (by the construction of the spiral), and therefore the spiral lines
MT, MT, etc. (coterminous with those straight lines) are as the squares of those
lines (by Proposition 11), that is as 1, 4, 9, 16, etc., the successive segments MT,
TT, etc. themselves will be as 1,4 — 1, 9 — 4, 16 — 9. Which was to be proved.

COMMENT

All this teaching on the length of the spiral, now given in fourteen successive
propositions, is completely missing from the work of Archimedes in his book
On spiral lines; and I do not know that it has been taught by any other more
recent writer since then.

PROPOSITION 19

Lemma

If there is proposed a series, of quantities that are as the squares of arithmetic
proportionals (or as a sequence of square numbers) continually increasing,
beginning from a point or 0 (thus, as 0, 1, 4, 9, etc.), let it be proposed to
inquire what is its ratio to a series of the same number of terms equal to the
greatest?

The investigation may be done by the method of induction (as in Proposition 1)
and we will have:

0+1=1_3 1 1 0+1+4=5 1 1
1+1=2 6 316 21141412 3712
0+144+49=14 7 1 1
919+9+9=3 18 318
0+1+4+9+16=30 3 9 1 1
16+16+161+16+16=-8 8§ 24 324
0+1+4+9+16+25=55 11 1 1
B+ 25125+25+25125=150 30 3 30
0+1+4+9+16+254+36=91 13 1 1
36+36+36+36+36+36+36=-252 36 3 36

and so on.
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The resulting ratio is always greater than one third, or % Moreover, the excess

i i 101 1 1 1
continually decreases as the number of terms is increased, thus 5, 15, 15 21> 35°

%, etc.; the denominator of the fraction or ratio®? clearly having been increased,
in each place, in sixes (as is clear), so that the excess over one third of the given

ratio becomes as one to six times the number of terms after 0. Therefore:

PROPOSITION 20

Theorem

If there is proposed a series, of quantities that are as the squares of arithmetic
proportionals (or as a sequence of square numbers) continually increasing,
beginning from a point or 0, its ratio to a series of the same number of terms
equal to the greatest will exceed one third; and the excess will be the ratio of
one, to six times the number of terms after 0; or of the square root of the first
term after 0, to six times the square root of the greatest term.

That is (if for the first term after O there is put 1, and for the last I),

I+1
6l

I+1

‘e 2
3 + l

Or (denoting the number of terms by m, and the last by 1),

m .o m 2
3l +6m——6l'

Clear from the preceding propositions.

Since, moreover, as the number of terms increases, that excess over one third
is continually decreased, in such a way that at length it becomes less than any
assignable quantity (as is clear); if one continues to infinity, it will vanish com-
pletely.?® Therefore:

PROPOSITION 21

Theorem

If there is proposed an infinite series, of quantities that are as squares of
arithmetic proportionals (or as a sequence of square numbers) continually
increasing, beginning from a point or 0, it will be to a series of the same
number of terms equal to the greatest as 1 to 3.

Clear from what has gone before.

22 Practionis denominatore, sive consequente rationis, literally ‘the denominator of the
fraction, or the consequent term of the ratio’.

23 . ut tandem quolibet assignabili minor evadat, (ut patet;) si in infinitum procedatur,
prorsus evaniturus est.
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PROPOSITION 22

Corollary

Therefore a cone or pyramid, to a cylinder or prism (on the same or equal
base and of equal height), is as 1 to 3.

For we suppose the cone or pyramid to be composed of an infinite number of similar
parallel planes, constituting a series of squares of arithmetic proportionals, of which
the smallest may be supposed a point, the greatest the base itself; and (by what we
said in Proposition 6 of On conic sections) the cylinder or prism [is composed] of
the same number [of planes] equal to the greatest (as is clear). Therefore the ratio
is 1 to 3 by the preceding proposition.

PROPOSITION 23

Corollary

In the same way, the complement of a half parabola (understood as figure
AOT, which with the half parabola itself completes a parallelogram) is, to the
parallelogram TD (on the same or equal base and of equal height), as 1 to 3.
(And consequently the half parabola itself is to the same parallelogram as 2
to 3.)

For in the figure AOT, let the vertex be A, the diameter AT, the base TO, and as
many parallels to it as you wish (between base and vertex) TO, TO, etc. Since (by
Proposition 21 of On conic sections) the straight lines DO, DO, etc. are as the square
roots?* of the lines AD, AD, etc., conversely AD, AD, etc., that is, TO, TO, etc., will
be as the squares of the same DO, DO, etc., that is of AT, AT, etc. Therefore the
whole figure AOT (consisting of an infinite number of straight lines TO, TO, etc., the
squares of the arithmetic proportionals AT, AT, etc.) will be, to the parallelogram
of equal height TD (consisting of the same number of straight lines equal to the
greatest TO itself), as 1 to 3, by Proposition 21. (Which was to be proved.) And
consequently, the half parabola AOD (the remainder of the parallelogram) will be
to the same parallelogram as 2 to 3.

24 In subduplicata ratione, literally ‘in half ratio’; see also note to Proposition 10.
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PROPOSITION 24

Corollary

In the same way, the plane figure MTM contained within the spiral line MT
(taken from the centre of the spiral M) and the straight coterminous line MT
is, to the corresponding sector PMT, as 1 to 3.

For (as we said in Proposition 5) we may suppose the plane figure MTM to consist of
an infinite number of similar sectors, whose radii are in arithmetic proportion, and
therefore the sectors themselves are as squares of arithmetic proportionals (indeed
of their sides). Moreover, the sector PMT [consists] of the same number of sectors
equal to the greatest. And therefore the former figure to the latter will be as 1 to 3,
by Proposition 21.

I call by this name sector also the sum of any number of sectors, though it may
be equal to or even exceed a semicircle (or indeed a whole circle) (just as we also
pointed out concerning the name of angle, in Proposition 5).

PROPOSITION 25

Corollary

Therefore the plane figure MTA described by the first revolution of the spiral
is equal to one third of the first circle AA.

For the corresponding coterminous sector is the complete circle AA itself, the first
circle described by the radius MA in the same time.

PROPOSITION 26

Corollary

But the plane figures described by the first and second complete revolutions;
by the first, second and third; by the first, second, third and fourth; and so
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on (as many times as any sector is repeated, so many are the revolutions
described), will be equal to one third of the second, third, fourth, etc. circles
taken two, three, four, etc. times (according to the number of revolutions).

For while the spiral line MAB (made by two revolutions) is described by a mov-
ing point going from M to B (on the rotating line MB), so at the same time is
a plane figure, by the rotating straight line (thus continually increasing). In the
same time the second circle is described twice (by the whole rotating line MB).
Therefore, however many continually increasing sectors (increasing as a sequence of
squares) constitute the figure of the bounded spiral, the same number equal to the
greatest constitute the circle described twice. So the plane figure thus described,
contained in the spiral, will be to the coterminous circle BB taken twice as 1 to 3,
by Proposition 24.

And equally the figure of the spiral described by the first, second and third
revolutions will be, to the third circle taken three times, as 1 to 3. And that described
by the first, second, third and fourth revolutions will be, to the fourth circle taken
four times, as 1 to 3. And so on.

Here it must be noted that the complete plane figure of the spiral described by
the first revolution is repeated in the second revolution; and that described by the
second is repeated in the third and so on. Therefore, for example, in four revolutions,
the first figure (contained inside the first spiral line, described by the first revolu-
tion) is described four times, the second (which lies between the first spiral and the
second) three times, the third (which lies between the second spiral and the third)
twice, the fourth once. Therefore the first portion is taken four times, the second
three times, the third twice and the fourth once, and together equal one third of
the fourth circle taken four times, that is, as the number of revolutions. And it may
be considered similarly for any number of revolutions, always taking account of the
number of revolutions.
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PROPOSITION 27

Corollary

If moreover the spiral is continued beyond the first revolution but not as far as
a complete second, the plane spiral figure thus described (having taken twice
what will be described twice) will equal one third of the complete coterminous
circle together with one third of the continuation beyond the whole circle.

For while the spiral figure MATM is described, so also is the circular figure PPTM
described, that is, the complete circle PP together with the additional sector PMT.

PROPOSITION 28

Corollary

And in the same way, if the spiral is continued through two, three, four or more
complete revolutions with an additional part, the spiral figure thus described
(any sector being repeated as many times as it is described) will equal one
third of so many complete coterminous circles taken two, three, four or more
times (that is, as the number of complete revolutions) together with one third
of the adjoined additional part or sector.

Because while that spiral figure is described (by the rotation of an increasing straight
line) the coterminous circle is described the same number of times (by the rotation
of a fixed straight line), and also the additional part beyond.

PROPOSITION 29

Corollary

Also, the spiral figures described by the first; by the first and second; by the
first, second and third; by the first, second, third and fourth revolutions, (and
so on); (that is, MAM, MABM, MABCM, MABCDM etc.), are to each other
as the cubes of arithmetic proportionals: 1, 8, 27, 64, etc. or as the cubes?® of
the straight lines MA, MB, MC, MD, etc.

For the straight lines MA, MB, MC, MD, etc. are’as 1, 2, 3, 4, etc. (as has often been

said), therefore the first, second, third, fourth, etc. circles (described by these radii)
areas 1, 4,9, 16, etc. (that is, as the squares of the radii). Therefore if the first circle is

25 In triplicata ratione, literally ‘in triplicate ratio’; see also note to Propositions 10 and 23.
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denoted by A = 1c, the second will be B = 4c, the third C = 9c¢, the fourth D = 16¢,
etc. and therefore if the first is taken once, the second twice, the third three times.
the fourth four times, etc. we will have 1A = 1¢,2B =2 X 4¢=8¢,3C =3 X 9¢c =
27c,4D = 4 x 16¢c = 64c, etc., and therefore to each other as the cube numbers 1, 8,
27, 64, etc. and therefore also as a third of these, %c, %c, %7c, %c, etc. That is (by
Propositions 25 and 26), the spiral figures MAM, MABM, MABCM, MABCDM, etc.

are also between themselves as the cube numbers 1, 8, 27, 64, etc.

PROPOSITION 30

Corollary

And generally, spiral figures (taken from the centre of the spiral and bounded
by the same or similar spiral line) are to each other as the cubes of the
coterminous lines.

For (by the construction of the spiral line) the ratio of the straight lines MT, MT, is
the same as that of the angles PMT, PMT, (taking the name angles in the sense of
Proposition 5 above and the name sectors in the sense of Proposition 24 above). The
ratio of the sectors PMT, PMT to each other (composed from the ratio of the angles
and the ratio of the squares of the radii) is the ratio of the cubes of the straight lines
MT, MT to each other. And therefore the ratio to each other of the spiral figures
MTM, MTM, which are one third of those sectors (by Proposition 24), will also be
the same. ‘

Thus, for example, if the straight line MA (of one revolutions) is said to be 17, and
the circle described by that radius is said to be lc, the spiral figure described in the

same time will be éc. Therefore in one and half revolutions the coterminous straight
line will be 147 = 3r, the coterminous circle 3 x 2 x ¢ = %¢, which multiplied by 2
(the number of revolutions) gives 2 x 3 x 2 x ¢ = 281c, and one third of this is 2c,
the spiral figure described by one complete revolution and half a revolution beyond.

And similarly for any number of revolutions.

PROPOSITION 31

Corollary

But if spiral figures of this kind are bounded by dissimilar spiral lines but
equal straight lines (that is if MB in one spiral is the same as MC in another)
then those spiral figures on corresponding straight lines (thus MA in one and
MA in another) will be in reciprocal proportion.

For in the first, the figure MABM (described by two revolutions) is equal to one
third of its circle B taken twice. And in the second, the figure MABCM (described
by three revolutions) is equal to one third of its circle C taken three times (by
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Propositions 29 and 30),%® and since it is supposed that circle B in the first is equal
to circle C'in the second (because they have equal radii), the spiral figures MABM in
the first, and MABCM in the second, are to each other as 2 to 3 (that is, as a circle
taken twice to the same or an equal circle taken three times), that is, in reciprocal

ratio to the corresponding lines MA, MA. For MA in the first is % the straight line

MB, and MA in the second is % of (the equal straight line) MC. Therefore MA in

the second, to MA in the first, is as % to %, or % to %, or 2 to 3. And therefore the

figure MABM in the first spiral, to MABCM in the second spiral, is as the straight
line MA in the second to the straight line MA in the first.

And the same thing can similarly be shown, whatever the ratio of the corre-
sponding lines in the dissimilar spirals.

PROPOSITION 32

Corollary

If, moreover, spiral figures of this kind are bounded by dissimilar spiral lines,
and at the same time unequal straight lines, they will be to each other in a
ratio composed of the ratio of the cubes of the bounding straight lines, and
the ratio of the reciprocals of the corresponding straight lines.

Follows from Propositions 30 and 31.

PROPOSITION 33

Corollary

Further, the spiral figures described by the first, second, third, fourth, etc.
revolutions are to each other as 1, 7, 19, 37, 61, etc., that is, as the differences
of cube numbers whose roots are in arithmetic proportion.

26 The Proposition referred to here is actually 26.
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For (by Proposition 29) the figures described by the first; by the first and second; by
the first, second and third; by the first, second, third and fourth; are as 1, 8, 27, 64,
125, etc. Therefore the figures described by the first, by the second, by the third, by
the fourth, etc. are as 1, 8 — 1, 27 — 8, 64 — 27, 125 — 64, etc. that is, as 1, 7, 19,
37, 64, etc., that is, as the differences of successive cube numbers. The excesses of
these differences, or the differences of the differences, are in arithmetic proportion:
for1+6=7,7+12=19, 19+ 18 = 37, 37 + 24 = 61, etc.

PROPOSITION 34

Corollary

And generally, taking any straight lines MT, M T, etc. making successive angles
PMT, TMT, etc. equal to each other, the successive spiral figures between
these lines are to each other as 1, 7, 19, 37, 61, etc.

For (by Proposition 30) the spiral figures from the centre to these successive lines
are as 1, 8, 27, 64, 125, etc. Therefore the figures successively following, contained by
these lines, are to each otheras 1,8 -1 =7,27-8=19,64 -27=37,125-64 =

61, etc. Or as —;-c, %c, %c, %Zc, %c, etc.

PROPOSITION 35

Corollary

Finally, the portions of a spiral figure newly described in each revolution (apart
from those described in a preceding revolution), that is, contained inside the
first spiral, or between the first and second, or between the second and third,
or between the third and fourth, etc. are to each other as 1, 6, 12, 18, 24,
etc. (by the addition always, after the first place, of sixes). That is, as the
differences of the differences of the cube numbers.

Follows from Proposition 33, since 1, 7 — 1, 19 — 7, 37 — 19, 61 — 37 etc. are as 1, 6,
12, 18, 24, etc.

COMMENT

This teaching on the areas of spiral figures, here given in twelve successive
propositions, agrees with that given by Archimedes around the end of his
book On spiral lines. Allow this to follow that a little further.
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PROPOSITION 36
Corollary
The complement of the spiral figure (which, that is, with [the spiral figure]

itself completes the coterminous [circular] sector) is to the coterminous
[circular] sector as 2 to 3.

Follows indeed from Proposition 24. But we may show it otherwise in this way.

We may suppose the figure PMTT (the complement of the spiral figure MTTM) to
consist of an infinite number of arcs PT, PT, etc. which indeed are as the squares of
the arithmetically proportional lines MP, MP, (as we have shown in Proposition 11).
Moreover, the coterminous sector MPT consists of the same number of arcs propor-
tional to the same MP, MP, and therefore in arithmetic proportion (as is clear).
Moreover, a series of this kind (the squares of arithmetic proportionals) is % of
a series of equals (by Proposition 21) and a series of arithmetic proportionals is 3 of
the same series of equals (by Proposition 2). Therefore the former to the latter (that

is, the complement of the spiral figure to the sector) is as % to %, that is, as 2 to 3.

PROPOSITION 37

Corollary

A special case: the complement of the spiral figure described by one revolution
is to the first circle (coterminous to it) as 2 to 3.

For that complement consists of an infinite number of arcs PT, which are as the
squares of straight lines in arithmetic proportion, MP, (or as 0, 1, 4, 9, etc.) and
the largest of them is the complete circumference A. Moreover, that complete circle
consists of the same number of circumferences in arithmetic proportion (as 0, 1, 2,
3, etc.) of which the largest is the same circumference A. Therefore the complement
to the circle is as é to %, that is, as 2 to 3.
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PROPOSITION 38

Corollary

The spaces lacking in each revolution, between the spiral figures and their
respective complete circles, are as 2, 5, 8, 11, 14, etc., arithmetic proportionals.

For (denoting the first circle by c) the spiral figure described by the first revolution
will be (by Propositions 29 and 33) 3¢, by the second —c by the third 1 c by the
fourth 2 c etc., with coterminous c1rcles first ¢, second 4c, third 9c, fourth 16¢,
etc. Therefore the excess of each circle over its cotermlnous spiral is for the first

—c for the second —c for the third & 3¢, for the fourth 1 c etc. For 1c — gc = §c
4c— Te=2¢,9c— 2c=3c 16c— Lc= e, ete.
COMMENT

And indeed it would be easy to adjoin many other propositions similar to
these, concerning either the spiral figures themselves or their complements,
described either by complete or partial revolutions. But from what has been
said, anyone who pleases may easily supplement these, if there seems to be
need of it, and so it is not necessary to delay here longer. And I fear lest I
have already gone on too much. I add here, however, one or other of the said
corollaries (for the sake of those who doubt that it is possible to find some
rectilinear figure equal to the circle), that is:

It is clear from what has been said: any circle is equal to some rectilinear
figure.

For it is clear (from Proposition 25) that there is a spiral figure equal to
any circle, and (from Proposition 16) some parabola equal to any spiral, and
finally (from Proposition 23) some rectilinear figure equal to any parabola. It
follows that there is some rectilinear figure equal to any circle.

Therefore a rectilinear figure and a circle, or a straight line and a curve, are
not heterogeneous quantities, but may properly be compared to each other,
and indeed may be equal to one another. Although it may be that the diam-
eter and perimeter of a circle are irrational to each other, so neither in true
numbers, nor in any way of notation so far accepted, yet their ratio to each
other may be forced out.

Further, from what has already been shown there arises also a method
of finding a straight line as close as one wishes®” to a parabola (or
higher parabola).

27 Aequalem quam prozime, literally ‘very nearly equal’, but Wallis uses the phrase quam
prozime here and elsewhere in a rather stronger sense, to mean ‘as close as one wishes’
(see also, for example, the Comment to Proposition 190).
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For if an erect half parabola touches at its vertex the line AT, divided into as
many equal small parts as you please (any one of which is denoted by a and
the number of all of them by n), and on the end of each small part, to that
tangent, are the same number of ordinates TO, TO, etc. (therefore parallel
to the diameter of the parabola, and making right angles with the tangent)
of which the smallest may be said to be 1; then by Proposition 23 they will
be to each other as the square numbers 1, 4, 9, 16, etc. and their differences
as 1, 3, 5, 7, etc., the odd numbers from 1 onwards (of which the greatest
difference is 2n — 1). The straight lines (ordered along the parabola) connect-
ing the ends of those parallels, (which will therefore in turn be inscribed in
the parabola), will be as \/(a? + 1), y/(a®? +9), v/(a? + 25), /(a® + 49), etc.
(because by Euclid 1.47 their squares are equal to the squares of the small
length a and of the differences between neighbouring parallels, that is, of odd
numbers). Indeed, the more of those lines (inscribed in the parabola) there
will be, the more nearly the sum of all of them approaches the measure of the
parabola. In such a way, however, that the line so composed of all of them is
less than the parabola itself.

But if one wants another line, just too long (so that it is agreed that
between those bounds one may determine the length of the parabola), this
investigation will not be difficult, by means of completing tangents.

And if the curve AOO is supposed not a simple parabola but a cubical
or biquadratic parabola, etc. it will be the same process, with appropriate
changes, as in the simple parabola. For, taking for the differences of the
parallels, not 1, 3, 5, 7, etc., the differences of the square numbers, but 1,
7, 19, 37, etc., the differences of the cube numbers, or 1, 15, 65, 175, etc.,
the differences of biquadrate numbers, etc., as the nature of the parabola
requires, the inscribed lines will be /(a2 + 1), /(a? + 49), etc. or \/(a? + 1),
V/(a? + 225), and so on. As will be clear from what is demonstrated below in
Proposition 45.

By almost the same method, there may be found a straight line as close
as one wishes to the true spiral.
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For if (by what was said in Proposition 5) it may be supposed that the spiral
figure is inscribed or otherwise constituted from as many similar sectors as you
please; then (because of the spiral), the arcs of the sectors, and their right sines
and versed sines,?® as also their radii, will be in arithmetic proportion. More-
over, the successive increase of the radii may be called a. If, therefore, from the
beginning of the arc of any sector there is supposed dropped a constructed line
to the radius, as far as the foot of the perpendicular, that will be the right sine
of that arc, whose square, together with the square of the versed sine univer-
sally increased by the amount a, will be equal to the square of the line inscribed
in the spiral (by Euclid 1.47). If the versed sine is called v, and the diameter
of its complete circle d, the square of the right sine (made by multiplying
the versed sine, v, by the remainder of the diameter, d — v) will therefore be
vd — v?; and the square of the versed sine universally increased by the increase
(that is, v + a) will be v2 4 2va + a?; and therefore the square of the inscribed
lines (composed from these) will be vd + 2va + a2. Since, moreover, (because
of equal angles of similar sectors) the versed sine will be everywhere in the
same ratio to the diameter, let it be as 1 to m (which ratio will be seen to be
greater or less according as the angles of each sector are greater or less). There-
fore, as 1 : m = v : d, we will have d = vm; and therefore the square of the
lines inscribed in the spiral will be vd + 2va + a? = vum + 2va + a?. Finally,
since the arcs of the supposed similar sectors taken in turn, and therefore also
the versed sines, are arithmetic proportionals (beginning from 0), they may
be called 0, 1, 2, 3, etc., Those inscribed lines are therefore 1/(0m + Oa + a?),
V(m + 2a + a?), /(4m + 4a + a?), \/(9m + 6a + a?), \/(16m + 8a + a?) and
so on. And the more sectors are supposed inscribed in the same spiral figure,
the more closely the sum of the lines thus inscribed approaches the spiral line:
but, however, it will be always less than the true spiral.

If, moreover, the first of these inscribed lines is omitted and instead of
that there is placed, after the last, that which was next to be cut off (which
amounts to the same thing as substituting for the figure made from inscribed

28 The (right) sine of an arc is half the length of the chord connecting its ends. For an arc
subtending an angle 26 at the centre of a circle of radius, its ‘sine’ is therefore rsin 6.
The length of the arc itself is r8. The versed sine is the distance between the centre of
the arc and the chord connecting its ends, that is, 7(1 — cos8).
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sectors a circumscribed), and then a is added, we will have a line summed
from all of them, which will be greater than the true spiral, but which more
nearly approaches the true value the more sectors are supposed constructed.

PROPOSITION 39

Lemma

If there is proposed a series, of quantities that are as the cubes of arithmetic
proportionals (or as a sequence of cube numbers) continually increasing, begin-
ning from a point or 0 (that is, as 0, 1, 8, 27, 64, etc.), let it be proposed to
inquire what is its ratio to a series of the same number of terms equal to the
greatest?

The investigation may be done by the method of induction (as in Propositions 1
and 19). And we will have:

0+1=1_2 1 1
1+i=2 4 a1t1
0+1+8=9 3 1 1
818+8=24 5 4°3
0+1+8+27=36 4 1
T 42T 42T =108 12 47

0+ 1+8+27+64 =100 5 1.1
64164164+64164164=320 16 4116
04+ 1+8+27+64+125=225 6 1 1
125 - 125+ 125+ 125 + 125+ 125 =750 20 4 T 20
0+ 1+ 8427+ 64+ 125 + 216 = 441 7 11
216 + 216 + 216 + 216 + 216 + 216 + 216 = 1512 24 411 21

And so on.

The resulting ratio is always greater than one quarter, or %. Moreover the excess
continually decreases as the number of terms is increased, thus 1, 3, &, 1%, 35+ 3
etc.; the denominator of each fraction or ratio clearly having been increased, in each
place, in fours (as is clear), so that the excess over one quarter of the resulting ratio

becomes as that of one, to four times the number of terms after 0. Therefore:

PROPOSITION 40

Theorem

If there is proposed a series, of quantities that are as the cubes of arithmetic
proportionals (or as a sequence of cube numbers) continually increasing, begin-
ning from a point or 0, its ratio to a series of the same number of terms equal
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to the greatest will exceed one quarter; and the excess will be the ratio of one,
to four times the number of terms after 0; or of the cube root of the first term
after 0, to four times the cube root of the greatest term.

l+13 l+13 m. Mg 1
Thus: ——4—l —+——47-l or Zl +4—ll :Zm13+;i-m12

Clear from what has gone before.

Since, moreover, as the number of terms increases, that excess over one quarter
is continually decreased, in such a way that at length it becomes less than any
assignable quantity (as is clear); if one continues to infinity, it will vanish completely.
Therefore:

PROPOSITION 41

Theorem

If there is proposed an infinite series, of quantities that are as cubes of arith-
metic proportionals (or as a sequence of cube numbers) continually increasing,
beginning from a point or 0, it will be to a series of the same number of terms
equal to the greatest as 1 to 4.

Clear from what has gone before.

PROPOSITION 42

Corollary

Therefore, the complement of half the cubical parabola AOT'is, to the parallel-
ogram T'D (on the same or equal base and of equal height), as 1 to 4. (And, con-
sequently, half the cubical parabola itself, to the same parallelogram, as 3 to 4.)

Let half the cubical parabola be AOD (of which the diameter is AD, the ordinates

A T T T
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DO, DO, etc.) and the complement AOT (of which the diameter is AT, the ordinates
TO, TO, etc.) Therefore since (by Proposition 45 of On conic sections) the straight
lines DO, DO, etc. or their equals AT, AT, etc. are as the cube roots of the lines
AD, AD, etc. or their equals TO, TO, etc., conversely, TO, TO, etc. will be as the
cubes of the lines AT, AT, etc. Therefore the whole figure AOT (consisting of an
infinite number of lines TO, TO, etc. which are as the cubes of the arithmetically
proportional lines AT, AT, etc.), will be, to the parallelogram TD (consisting of the
same number of lines equal to the greatest TO itself), by what has gone before, as
1 to 4. (Which was to be shown.) And consequently, half the cubical parabola AOD
(the remainder of the parallelogram) will be to the same parallelogram as 3 to 4.

PROPOSITION 43

Lemma

By the same method may be found the ratio of an infinite series of quantities
that are as the fourth powers, fifth powers, sixth powers, etc. of arithmetic
proportionals, beginning from a point or 0, to a series of the same number of
terms equal to the greatest. That is, for fourth powers, it will be as 1 to 5; for
fiftth powers, as 1 to 6; for sixth powers, as 1 to 7. And so on.

It will be clear having tried it that the ratios discovered by induction approach
continually closer to these, in such a way that the difference at length becomes less
than any assignable quantity; and therefore continuing to infinity it vanishes.

I do not attach laborious geometrical demonstrations; which, however, if anyone
should require them, he may search out such (at leisure) by the inscription and
circumscription of figures, or also by putting forward other demonstrations (such
as Archimedes has in Propositions 10 and 11 of On spiral lines), by showing that
the ratio is neither more nor less than any assigned quantity. To me, what I have
produced seems to suffice, following Cavalieri’s Method of indivisibles (because I find
that already to be taken from geometry).

Note, however, those demonstrations I have used, which better represent inscribed
figures, since they suppose that the first term is 0. If on the other hand one prefers
to represent the figures as circumscribed it may be changed, and one may do it, only
the first term is made 1.

It must be noted also, that the ratios sought by induction, for those series which
progress as fourth (or higher) powers of arithmetic proportionals are more involved
than the preceding ones.

. 'l+14 I+1_ 4 I+1, —1-14
Thus for3b1quadrates. 5 "+ 101 3" + 30l2l + 308 .
m 4 M 4 m .4 m .4 4 3 :

putting the first term 0, the second 1, the greatest I, and the number of terms
m=1+1.)

l+15 l+].5 l+15 —l—15
6 l-:n3l l +12l2l + 12l3l'

T 128

For supersolids:

m .5 m s m
Or gl +30 + 15

5
5 l

P = %ml5 + %ml4 + l—lz,ml3 — 11—2ml2.
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For sixth powers, or squares of cubes:

l+16 Sl+55 I+1,4 I+13 I+1, [+1
7l+14l+7l 7l 42l 42l.

Or %ml6 + 1—54ml5 + %ml4 - %ml3 - 4—12ml2 + 4—12ml.

And similarly in those that follow, as will be demonstrated in Proposition 182.
But (which for us here suffices) they continually approach more closely to the

required ratio, in such a way that at length the difference becomes less than any

assignable quantity.

COMMENT

If, moreover, anyone desires to find ratios of this kind, however intricate, which
belong to any higher finite series (thus for seventh powers, eighth powers etc.
of arithmetic proportionals), it may be done by the method given below in
the Comment to Proposition 182.

PROPOSITION 44

Theorem

Therefore if there is considered an infinite series,?® of quantities beginning
from a point or 0, and continually increasing in arithmetic proportion (which
I call a series of laterals, or first powers) or of their squares, cubes, biquadrates,
etc. (which I call a series of second powers, third powers, fourth powers etc.)3°
the ratio of the whole series, to a series of the same number of terms equal to
the greatest, will be that which follows in this table. That is:

Equals % or aslto 1
First powers % 2
Second powers % 3
Third powers % 4
Fourth powers % 5
Fifth powwers % 6
Sixth powers % 7
Seventh powers % 8
Eighth powers % 9
Ninth powers % 10
Tenth powers 1—11 11

29 An infinite series should be understood in the sense of Proposition 2, that is, an increas-
ing series with a finite greatest term reached by an infinite number of infinitesimally
small steps.

30 Note Wallis’s clear distinction between geometric descriptions: laterals (or sides), squares,
cubes, biquadrates, and arithmetic descriptions in terms of powers.
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And so on. Thus the denominators of the fractions or ratios, are arithmetic propor-
tionals from one; and the common numerator, or the first part of the ratio, is 1.

PROPOSITION 45

Corollary

Here we learn the method of finding the area of the complement of a simple
parabola, and also of cubical, biquadratic or supersolid parabolas, or those
of any higher powers; and consequently also the area of a simple parabola or
parabolas of any power. Which I promised to show in Proposition 48 of On
conic sections.

That is, while the complement of a parabola (or half parabola), is a series of second
powers (as we said in Proposition 23), the complement of the cubical parabola (or
half of it) is a series of third powers (as we said in Proposition 42), and (for the same
reason) the complement of the biquadratic parabola is a series of fourth powers, the
complement of a supersolid parabola is a series of fifth powers, and so on. The ratio
of these to a circumscribed parallelogram (that is, to a series of the same number of
terms equal to the greatest) is 1to 3,1t04, 1to 5, 1 to 6, and so on, according to the
table in the preceding proposition. And consequently, those same simple, cubical,
biquadratic, supersolid parabolas, etc. (which, that is, with their complements are
equal to the circumscribing parallelograms) are to the circumscribing parallelograms
as 2to 3,3 to4,4t05,5 to 6 etc.

COMMENT

And here indeed by this means, for innumerable curvilinear figures one may
produce equal rectilinear figures. Which in the parabola alone (with greatest
admiration) Archimedes showed (and others after him), which we have now
shown for parabolas of any power whatever.

Moreover, those things that have been taught for these parabolas, as will
soon be shown, may also be accommodated by very easy work to spirals. For
if we suppose the line MT to be continually increased, not indeed in the same
ratio as the angle PMT (as in the Archimedean spiral) but as the second,
third, fourth power, etc. of it, or also as the second, third, fourth roots, etc.,
or even as the third or fourth power of the second root, or the second or fourth
power of the third root, or any others however composed: there will arise some
or other kind of spiral, of which, however, the ratio to the circumference or
arc (in the sense in which it was explained in the Comment to Propositions 13
and 15) will no less become known (as also the ratio of the enclosed plane
figure to the circle or sector) than in that of Archimedes.
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For example, if the line MT is increased as the square of the angle PMT,
the spiral line MT (beginning from the centre) will be to the coterminous arc
PT as 1 to 3, (that is, the spiral will be as a series of second powers, the arcs
as a series of equals). And the enclosed plane figure will be to the coterminous
sector as 1 to 5 (that is as a series of fourth powers to series of equals). And
similarly, if the line MT grows as the third power, fourth power, etc. of the
angle MPT, the spiral (in the above sense) will be to the coterminous arc as
1 to 4, 5, etc. and the enclosed plane figure to the coterminous sector as 1
to 7, 9, etc. The same, if the lines MT increase as the second, third roots,
etc. of the angles PMT, then the spirals (in the said sense) or the aggregates
of increasing similar arcs, to the coterminous arc (produced from the same
number of equals) will be as 1 to 13, 11, etc. And the enclosed plane figure to
the coterminous sector as 1 to 1%, 1%, etc., that is, the former as 2 to 3, 3 to
4, etc., the latter as 2 to 4, 3 to 5, etc. And so in others; whatever the power
or root, or however combined from these. Which may all be demonstrated
in the same way (with appropriate changes), as in Propositions 5, 24 etc. (at
least with the help of certain propositions subsequently introduced). And here
indeed this doctrine of spirals may be immensely increased. While, moreover,
anyone who wishes may by their own exertion understand enough from what
has already been said, and it seems to my mind superfluous labour to expand
further on this: let it suffice what I have shown so far.

But here it would even be an easy passage to successfully considering
spirals described not only in the plane but in solids, perhaps on the surfaces
of cones of spheres, or also of conoids or spheroids, and comparing them to
spirals or circles in a cylinder; and the enclosed plane figures of the former
to the enclosed plane figures of the latter. Having introduced, however, those
propositions that will be pursued below concerning augmented and reduced
geries. Moreover, all this, if I am not very much in error, I judge can be wholly
omitted: since anyone who wishes, from what has been taught here or is to be
taught below, may easily deduce it.3!

At this point in the 1695 edition Wallis inserted a section headed Monitum with further
comments on spirals; see Wallis 1693-99, I, 385-387.
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PROPOSITION 46

Lemma

In the same way (by Proposition 44): given the ratio of one series, of whatever
power, (to a series of equals), there may be found the ratio of another series
of any other power, (to the same series of equals); by finding, that is, the
corresponding term of an arithmetic progression.

For example, if [the sum of] a series of squares, or second powers, is % of a series of

equals, [the sum of] a series of laterals, or first powers, will be % a series of equals:
because, as a series of first powers is intermediate between a series of equals and a
series of second powers, so 2 (the denominator of the ratio sought for first powers)
is the arithmetic mean of 1 and 3 (the denominators of the ratios for equals and
second powers). In the same way, while the ratio of a series of cubes or third powers,
is % or 1 to 4, between that series and a series of equals, two series of powers are
interposed; so there must be sought two arithmetic means between 1 and 4, thus 2
and 3, of which the former belongs with first powers, the latter with second powers.
And so in other cases.

And similarly, if the ratio belonging to a series of higher powers is sought, it is
found by continuing the progression as far as the term sought: thus, if the ratio of a
series of fourth powers, to a series of equals, is as 1 to 5, or %; the ratio of a series of
sixth powers will be 1 to 7; because in an arithmetic progression where the fourth

term (after one) is 5, the sixth term will be 7, and the same in other cases.

PROPOSITION 47

Lemma

Moreover, this rule is no less effective if there is shown a series of whatever
quantities (not even a series of first powers, but) as any other series in the
table, and its squares, cubes, etc. are sought.

For example, if a series of this kind, of whatever quantities, is understood to be set
out as a series of squares (to which in the table [in Proposition 44] is assigned the
ratio 1 to 3): to their squares will belong the ratio 1 to 5 (because 1, 3, 5 are in
arithmetic proportion) and to their cubes will belong the ratio 1 to 7, and so on,
because 1, 3, 5, 7 etc. are arithmetic proportionals, just as unity, root, square, cube
etc. are successive powers and geometric proportionals.

Nor is this other than what is to be had in the table; for if the supposed quantities
are a series of second powers, whose ratio is é, their squares will be a series of fourth
powers whose ratio is é; and their cubes will be a series of sixth powers whose ratio
is 1; etc. as has been said.
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PROPOSITION 48
Corollary

And consequently, a conoid or pyramid generated from the complement of a
half parabola (around its own diameter) is to a cylinder or prism on an equal
base and of equal height as 1 to 5.
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That is, if the complement of half the right parabola AOT is revolved keeping the line
AT'in place, so that a right conoid is described;3? or, more generally, if (according to the
method we have indicated in Propositions 5, 6, and 9 of On conic sections) around the
diameter or axis AT the ordinates become circles, or any similar planes, of which the
radii, or lines similarly placed, have the same ratio between them as the lines TO, TO,
etc., so that the conoid or pyramid, whether right or inclined, is completed: I say that
the conoid or pyramid is to a cylinder or prism on the same base and of equal height as 1
to 5. For since all the lines T0, TO, etc. are a series of second powers (to which belongs
theratio 1 to 3), any similar planes similarly constructed on these lines, will be between
themselves as the squares of these lines; or as the squares of the lines 7’0, TO. And the
ratio belonging to the series of those lines (that is, a series of second powers) is 1 to 3;
therefore to the series of planes there belongs the ratio 1 to 5: because, that is, 1, 3, 5, are
arithmetic proportionals (as unity, root, and square are geometric proportionals). And
indeed, if the lines TO, TO, etc. are a series of second powers, their squares (or planes
proportional to thesquares) will be aseries of fourth powers, to which in the table belongs
theratiolto 5.

PROPOSITION 49

Corollary

And similarly, if from the complement of half a cubical parabola there is
generated (around its own diameter) a conoid or pyramid, this will be to a
cylinder or prism (on the same or equal base and of equal height) as 1 to 7.

32 Wallis or his printers gave the wrong diagram in this Proposition: he needed a right parabola
as in the Comment to Proposition 38, and as given here.
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For since the lines T'O, TO, etc. (in the complement of half a cubical parabola) are a
series of third powers, to which in the table belongs the ratio 1 to 4, to the series of
their squares (or of planes proportional to squares) belongs the ratio 1 to 7, because
1, 4, 7, are arithmetic proportionals. Or also, because the planes are a series of sixth
powers, to which in the table is assigned the ratio 1 to 7.

PROPOSITION 50

Corollary

And equally, if from the complement of any other half parabola (thus
biquadratic, supersolid, etc.) is generated (around its diameter) any conoid or
pyramid, it will have to a cylinder or prism (on an equal base and of equal
height) a known ratio (thus 1 to 9, 1 to 11 etc.).

For since the lines of these complements are series of fourth powers, fifth powers,
etc., and therefore have in the table the assigned ratios 1 to 5, 1 to 6, etc., series
of their squares (or of planes proportional to squares) will have the ratios 1 to 9,
1 to 11, etc., because 1, 5, 9, or 1, 6, 11, etc. are arithmetic proportionals. Or also,
since the lines are series of fourth powers, fifth powers, etc., similar planes, similarly
positioned to those lines, will be series of eighth powers, tenth powers, etc. to which
belong the ratios 1 to 9, 1 to 11, etc.

COMMENT

Therefore by this method a huge number of solid figures contained by curved
surfaces may be reduced to others contained by plane surfaces; and not only
conical bodies (as the Ancients taught) but also many other conoids, may
be reduced to a cylinder. Which I do not know that anyone else has shown
before now.

PROPOSITION 51

Lemma

According to the same rule (Propositions 46 and 47) if there is proposed a
series of any quantities, corresponding to any series in the table, their square
roots, cube roots, etc. or any intermediate powers, may be investigated in the
same way.

33

For example, if there is proposed an infinite number of squares®™ (or any similar

planes) corresponding to a series of fourth powers, (to which is assigned in the

33 Here the squares are to be understood as geometrical objects, since Wallis goes on to
compare them with similar planes.
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table the ratio 1 to 5), the series of sides (or of lines similarly placed in those
[planes]) will have the ratio 1 to 3 (to a series of equals); because 1, 3, 5, are arith-
metic proportionals. Or also, because where the planes are a series of fourth powers,
their sides will be a series of second powers, to which is assigned in the table the
ratio 1 to 3.

Thus, if there is proposed an infinite number of cubes (or any similar solids)
corresponding to a series of sixth powers, to which in the table corresponds the
ratio 1 to 7, to the sides of those cubes (or to lines similarly placed in them) belongs
the ratio 1 to 3; and to the squares of these sides (or to planes similarly placed
in those cubes) the ratio 1 to 5; because, of the two arithmetic means between 1
and 7, the smaller is 3, the larger 5, (for 1, 3, 5, 7, are arithmetic proportionals).
Moreover, I interpose two arithmetic means between 1 and 7, because we assume
the same number of geometric means between unity and a cube, that is, the side and
the square; for unity, side, square, cube are geometric proportionals. And indeed, if
the cubes are a series of sixth powers, the sides will be a series of second powers;
and the squares of the sides, a series of fourth powers; to which in the table belong
the ratios 1 to 3, 1 to 5.

But if the proposed quantities in the same series of sixth powers are squares, (or
any similar planes), to their sides will belong the ratio 1 to 4, because between 1
and 7 the arithmetic mean is 4, just as between unity and a square the geometric
mean is the root or side. And indeed if the squares are a series of sixth powers, their
sides will be a series of third powers, to which in the table belongs the ratio 1 to 4.

PROPOSITION 52

Corollary

And besides, from the known ratios of conoids and pyramids, mentioned in
Propositions 48, 49 and 50, to a cylinder or prism (on an equal base and of
equal height), there may be known the ratios of those planes from which they
are constituted, to a circumscribing parallelogram. Indeed, the complement
of a half parabola is as 1 to 3; the complements of half a cubical, biquadratic,
supersolid parabola etc. are as 1 to 4, 1 to 5, 1 to 6, etc.

For if those conoids or pyramids are known to be series of fourth, sixth, eighth, tenth
powers, etc. and to those belong the ratios 1 to 5, 1 to 7, 1 to 9, 1 to 11, etc., then
to their sides (which are therefore series of second, third, fourth, fifth powers, etc.)
belong the ratios 1 to 3, 1 to 4, 1 to 5, 1 to 6, etc. Because 1, 3 5, and in the same
way 1,4, 7,and 1, 5, 9, and 1, 6, 11, etc. are arithmetic proportionals.

PROPOSITION 53

Lemma

This understood, it opens an avenue to the investigation of the ratios (to a
series of quantities equal to the greatest) that series of this kind, of square
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roots, cube roots, biquadratic roots, etc. of numbers or arithmetic propor-
tionals, beginning from a point or 0, may be said to have. (Thus /0, /1, /2,

V3, ete., 20, 1, 22, 23, ete., 10, V1, v*2, /*3, etc.) Which I call

series of second roots, third roots, fourth roots etc.34

For example, if there is proposed an infinite number of squares of this kind which
are arithmetic proportionals, or as a series of first powers, to which in the table is
assigned the ratio 1 to 2, then to their sides (that is, to a series of second roots)
belongs the ratio 1 to 11 (or 2 to 3); because 1, 13, 2, are arithmetic proportionals.

Similarly, if there is supposed an infinite number of cubes of this kind which are
arithmetic proportionals, or as a series of first powers, to which belongs in the table
the ratio 1 to 2, then to the cube roots of those (that is, to a series of third roots)
belongs the ratio 1 to 3 (or 3 to 4), and to their fourth roots, the ratio 1 to 12 (or 3
to 5). Because clearly 1, 1%, 1%, 2 are arithmetic proportionals, just as unity, root,
square, cube are geometrical proportionals.

And in the same way, if there are understood to be an infinite number of
biquadrates, supersolids, etc. which are as a series of first powers, to which belongs
the ratio 1 to 2, then to their fourth roots, fifth roots, etc. belong the ratios 4 to 5,
5 to 6, etc. or 1 to 1%, 1 to %, etc. because 1, li, 1%, 1%, 2, and in the same way 1,
1-;—, 1%, 1%, 1%, 2, etc. are arithmetic proportionals. Therefore:

PROPOSITION 54

Theorem

If there is understood to be an infinite series, of quantities beginning from
a point or 0, and continually increasing, as the square roots, cube roots,
biquadratic roots, etc. of numbers in arithmetic proportion (which I call series
of second roots, third roots, fourth roots, etc.), then the ratio of all of them, to
a series of the same number of terms equal to the greatest, will be that which
follows in this table, that is:

Second roots % or aslto 1
Third roots % 1%
Fourth roots % li
Fifth roots % 1%
Sixth roots g 1%
Seventh roots % 1%
Eighth roots % 1%
Ninth roots % 1%
Tenth roots % 1 %0

And so on.

Clear from what has gone before.

34 At this point Wallis writes \/c, \/qq, for cube root, fourth root. Later (see Proposition 73)
he changes to the notation given here, /3, /2.
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PROPOSITION 55

Corollary

Therefore half a plane parabola (or also a whole parabola) is to the circum-
scribed parallelogram as 2 to 3. (And consequently its complement is to the
same parallelogram as 1 to 3.)

For a plane half parabola (or also a whole parabola) is an infinite series of second
roots (by Proposition 8 of On conic sections). The parallelogram, moreover, is a
series of the same number of terms equal to the greatest. Therefore the former to
the latter is as 1 to 1%, or as 2 to 3 (and consequently, its complement, that is, the
remainder of the parallelogram, as 1 to 3).

PROPOSITION 56

Corollary

In the same way, half a plane cubical parabola (or also a whole cubical
parabola), is to the circumscribed parallelogram, as 3 to 4 (and consequently,
its complement is to the same parallelogram as 1 to 4).
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For since (by Proposition 45 of On conic sections) the ordinates in a cubical parabola
are as the third roots of the diameters (or of the distances from the vertex), the plane
constituted from all those is a series of third roots, which, to a series of the same
number of terms equal to the greatest (that is, to the circumscribed parallelogram),
isas 1 to 1%, or as 3 to 4. (And consequently, its complement, that is, the remainder
of the parallelogram, is to the same parallelogram as 1 to 4.)

PROPOSITION 57

Corollary

In the same way, the ratio of a half (or whole) biquadratic or super-
solid parabola, or a parabola of any higher power, to the circumscribed
parallelogram will be known; thus as 4 to 5, 5 to 6, etc. (And consequently,
their complements will also have a known ratio to the same parallelograms;
thus as 1 to 5, 1 to 6, etc.)

For those planes are series of fourth roots, fifth roots, etc. and therefore, to a series
of equals, as 4 to 5, 5 to 6, etc.; and consequently, their complements (which are
series of fourth powers, fifth powers, etc.) as 1 to 5, 1 to 6, etc.

COMMENT

Therefore also by this table, one may find the area®® of any parabola, cubical
parabola, biquadratic parabola, or one of any higher power, and also of their
complements: which I promised in Proposition 48 of On conic sections and
have shown above at Proposition 45 of this.

PROPOSITION 58

Lemma

Finally, with the help of these rules (Proposition 46): if there is proposed
any infinite series of this kind, of quantities beginning from a point or 0,
and continually increasing, in the ratio of any power (not just any simple

35 This is the first time in the text that Wallis uses area as an absolute quantity (rather
than expressing it as a ratio).
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power, but also a composite), then its ratio to a series of the same number
of terms equal to the greatest may be investigated. Thus the squares, cubes,
biquadrates, etc. of second roots, third roots, fourth roots, etc. or also of
second powers, third powers, fourth powers, etc. Or square roots, cube roots,
biquadratic roots, etc. of second powers, third powers, fourth powers, etc.
or of second roots, third roots, fourth roots, etc. Or also any other series in
whatever way composed.

For example, since a series of third roots (thus /%0, \/°1, 32, {/33, etc.) has a ratio
(to a series of the same number of terms equal to the greatest) which is 3 to 4, or
1to 1%, their squares (which are also the same as cube roots of second powers, thus
V20, 21, /24, /29, etc.) will have a ratio, to the same number of terms equal to
the greatest, which is 1 to 1%, or 3 to 5. Because, that is, 1, 1%, 1%, or %, %, g, are
arithmetic proportionals.

Equally, a series of cubes of fourth roots, or (which amounts to the same thing)
biquadratic roots of a series of cubes or third powers, will have to a series of equals
the ratio 4 to 7. For since a series of fourth roots has a ratio in the table of 1 to 1%,
or 4 to 5, their cubes will have a ratio (to a series of the same number of terms equal
to the greatest) as 1 to 13, or 4 to 7. Because, that is, 1, 13, 12,13, or 4,3 &
%, are arithmetic proportionals, just as unity, root, square, cube, etc. are geometric
proportionals.

And similarly in powers more compounded than this: thus square roots of cubes
of a series of fifth roots. For to a series of fifth roots belongs the ratio of 1 to 1%, or
5 to 6; therefore to their cubes belongs the ratio 1 to 1%, or 5 to 8 (because, that is,
1,13,12,13,0r 3, &, I % are arithmetic proportionals); and to their square roots,
the ratio 1 to 11—30, or 10 to 13 (because, that is, 1% is the arithmetic mean between
land1%,for 1,13, 1% (=12) or 13, 13 18 (=8) are arithmetic proportionals). Or
also since the square roots of fifth roots are a series of tenth roots, to which belongs
the ratio 10 to 11, or 1 to 1—115, the cubes of these will have the ratio which is 10

to 13, or 1 to 1%. Because 1, 1%, 12,13 or 10 1L 1213

10> 1700 115> 100 100 150 150 are four terms in

arithmetic proportion.
And in the same way, in series of other powers however composed, their ratio to
series of equals may be investigated. And therefore:

PROPOSITION 59

Theorem

If there is understood to be an infinite series, of quantities beginning from a
point or 0, and continually increasing according to any power composed from
simple powers (as mentioned in Propositions 44 and 45), the ratio of all of
them, to a series of the same number of terms equal to the greatest, will be
that which follows in this table. That is:
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PROPOSITION 60

Corollary

Therefore parabolic conoids and pyramidoids, which, that is, are generated
from simple or cubical, biquadratic, supersolid parabolas, etc. are to the cir-
cumscribed cylinders or prisms (or to any others on an equal base and of equal
height) as 2 to 4, 3 to 5, 4 to 6, 5 to 7, etc.

For since those plane parabolas are series of lines that are as second roots, third
roots, fourth roots, fifth roots, etc. or as square roots, cube roots, biquadratic roots,
supersolid roots, etc. of first powers, the conoids and pyramidoids thus generated are
series of planes that are as the squares of these lines, and therefore as square roots,
cube roots, biquadratic roots, supersolid roots, etc. of second powers, to which in
the table are assigned those ratios 2 to 4, 3to 5,4 to 6, 5 to 7, etc.
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PROPOSITION 61

Corollary

But here also there becomes known the method of quadrature not only for the
simple parabola but also for all parabolas (and their complements), not only
those in which the ordinates progress according to any simple power (of which
I have spoken in Propositions 55, 56 and 57, and the same in Propositions 23
and 45) but also according to any power composed from simple powers. Thus
if the ordinates are as the squares of third roots, fifth roots, seventh roots.
etc. of the diameters, or cubes of fourth roots, fifth roots, etc., then they will
have ratios to the circumscribed parallelogram which are 3 to 5, 5to 7, 7 to 9,
etc., or 4to 7, 5 to 8, etc. And their complements (of which the ordinates are
therefore as square roots of third powers, fifth powers, seventh powers, etc. of
the diameters, or third roots of fourth powers, fifth powers, etc.) will have the
ratios 2 to 5, 2to 7, 2 to 9, etc. or 3 to 7, 3 to 8, etc. And similarly for the
rest, according to the continuation of the preceding table, at Proposition 59.

For if the ordinates are as the squares of the cube roots of the diameters, that plane
will be a series of lines which are to each other as squares of cube roots (or cube
roots of squares) of numbers in arithmetic proportion, or as cube roots of second
powers; to which in the table belongs the ratio 3 to 5.

And the complement of this will have ordinates that are as the square roots of
the cubes of its diameters (which may be proved by such argument as was used in
Proposition 23) and therefore that plane will be a series of square roots of cubes, or
third powers, to which is assigned in the table the ratio 2 to 5.

And it is to be considered the same way in other cases.

COMMENT

And therefore by this method, yet other curved figures (besides those we
indicated at Propositions 45 and 57) may be reduced to equal rectilinear
figures. That is, all parabolas however generated, and their complements.

PROPOSITION 62

Corollary

And thence is clear also the method of reducing to equal cylinders or prisms,
all parabolic conoids and pyramidoids (not only those mentioned in Propo-
sition 60, where the ordinates of the plane figures progress as any simple
powers, but also) those generated by any parabola of this kind (as mentioned
in Proposition 61) whose ordinates progress as any series of composite powers.
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For example, if the ordinates of the parabola are as the cube roots squared (or the
cube root of the squares) of the diameters, its plane will be an infinite series of lines
that are as cube roots of second powers: and therefore the conoids or pyramidoids
will be series of the same number of planes, which are as squares of the same lines,
therefore as cube roots of fourth powers, and therefore (according to the table in
Proposition 59) to the circumscribed cylinder or prism as 3 to 7.

In the same way, if the ordinates of the parabola are as the fourth roots of the
cubes of the diameters, then the planes of the conoid or pyramidoid will be as the
fourth roots of the sixth powers of those same diameters (or, which amounts to
the same thing, square roots of cubes), and therefore that conoid or pyramidoid
(constituted from a series of these planes) will be to the circumscribed cylinder or
prism as 4 to 10, or 2 to 5.

And in the same way for others according to the continuation of the table.

PROPOSITION 63

Corollary

In the same way, the conoids and pyramidoids generated by the complements
of those same half parabolas may be reduced to equal cylinders or prisms.

For example, if the complement of a half parabola has ordinates that are as the
square roots of the cubes of the diameters, the plane will be an infinite series of
lines that are as square roots of cubes, or third powers, and thence the conoid or
pyramidoid generated from this will be a series of the same number of planes that
are as the squares of the same lines, and therefore as the square roots of the sixth
power of the diameters, (or, which amounts to the same thing, as the cubes of the
diameters) and will therefore be to the circumscribed cylinder or prism as 2 to 8, or
1 to 4.

In the same way, if the complement of a half parabola has ordinates that are
as the cube roots of the fourth power of the diameters, the planes of the conoid or
pyramidoid will be as the cube roots of the eighth power of those same diameters,
and therefore as the cube roots of eighth powers; and that conoid or pyramidoid to
the circumscribed cylinder or prism as 3 to 11.

And it may be considered for others in the same way according to the previously
shown table.

COMMENT

We have shown therefore, by what method all parabolas of whatever kind,
and their complements, may be reduced to parallelograms; and their conoids
or pyramidoids to cylinders or prisms. And therefore we have solved numerous
problems that no one (as far as I know) has taken up before, still less followed
through.
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Moreover, it seems appropriate to collect everything so far from all the
preceding tables (at Propositions 44, 54 and 59) in this general theorem (which
indeed belongs with the rule at Proposition 46), that is:

PROPOSITION 64

Theorem

If there is considered an infinite series, of quantities beginning from a point
or 0, continually increasing according to any power either simple or composite,
then the ratio of all of them, to a series of the same number of terms equal to
the greatest, is that of unity to the index of that power increased by one.

I set the indices of first powers, second powers, third powers, fourth powers, etc.
(or laterals, squares, cubes, biquadrates, etc.) to be 1, 2, 3, 4, etc.; I set the indices of
second roots, third roots, fourth roots, etc. (or square roots, cube roots, biquadratic
roots, etc. of first powers, or arithmetic proportionals) to be —;—, %, i, etc.3¢ I form the
composed index of any composite power from the indices of the composing powers.
Thus, cubes of second powers (or squares of third powers) have index 6 = 2 x 3;
cube roots of second roots (or square roots of third roots) have index § = 1 x 1;
cubes of square roots of fifth powers will have index —1—25 =3x % x 5.

Moreover, the ratios assigned to these powers (in the tables) are of the same
kind. Thus to first powers, second powers, third powers, fourth powers, etc. 1 to 2,
1to03,1to4,1to5,etc.,thatisltol+1,1to2+1,1to3+1,1to4+1,etc.
To second roots, third roots, fourth roots, etc., 2 to 3, 3 to 4, 4 to 5, etc. or 1 to 1%,
1to 13, 1to 13, etc,, that is 1 to 3 +1, 1to 3 +1, 1 to § + 1, etc. To squares of
third powers (or sixth powers), 1 to 7, that is 1 to 6 + 1. To square roots of third
powers, 2 to 5, or 1 to g, that is 1 to % + 1. To cube roots of second roots (or sixth
roots) 6 to 7, or 1 to %, that is 1 to é + 1. To cubes of square roots of fifth powers (or
square roots of fifteenth powers), 2 to 17, or 1 to -151, that is 1 to % + 1. (And so on
for the rest.) Which the theorem confirms. And if the index is supposed irrational,

thus /3, the ratio will be as 1 to 1+ /3 etc.

PROPOSITION 65

Theorem

From the known ratio of any series to a series of equals, may be known the
ratio of any series to any other.

36 Although this is the first time Wallis has formally defined the concept of a fractional
index, he has already used the idea implicitly; see for example the Comment to Propo-
sition 45 where the fractions associated with square roots and cube roots are taken to

be % and é (or, in classical language, subduplicate and subtriplicate ratios).
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For example, a parabola to a triangle (that is, a series of second roots to a series
of first powers) is as % to %, or as 4 to 3. The complement of a half parabola to a
triangle, or also a cone to a parabolic conoid (that is, a series of second powers to
a series of first powers) is as § to 3, or 2 to 3. A half parabola to its complement
(that is, a series of second roots to a series of second powers) is as % to %, or as
2 to 1. Thus a parabola to a cubical parabola is as % to %, or as 8 to 9; and the
conoid of the former to the conoid of the latter, as % to %, or as 5 to 6. A cubical
parabola to a biquadratic parabola is as % to %, or as 15 to 16; and the conoid
of the former to the conoid of the latter, as % to %, or as 9 to 10. And so on in
other cases.

It is to be understood that both the bases and the heights are the same or equal
(or at least reciprocal); for if they have different bases or heights or both, the ratio
of one series to the other is composed from the ratios of the bases and of the heights
and from the ratios that belong to each series. Thus if a parabola has base B and
height A, and a triangle has base € and height «, then the parabola to the triangle
will be as %AB to %a@, or 4AB to 3a8, and similarly in other cases. In the same
way, if the triangle has base B, height A, and the parabola has base 3, height a,

the parabola to the triangle will be as %aﬁ to %AB, or 4a0 to 3AB.

o~ &

B

The proof is clear. For since parabola AB is % parallelogram AB, and triangle

a8 is 3 parallelogram a8, the former to the latter is as 2AB to 1a8. And similarly
in other cases.

PROPOSITION 66

Theorem

From the known quantity for any complete series, may be known the quantity
for that series truncated.

Thus if triangle AB is 1 parallelogram AB, and triangle a8 is 3 parallelogram a6,
then the residual trapezium will be %AB - %a 6. In the same way, the parabola ABis
% of the circumscribed parallelogram A B, and parabola af3 is % of the circumscribed
parallelogram af, so the residual portion is %AB — %a,@. And the same in other
cases.
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PROPOSITION 67
Corollary

If a triangle is cut by any number of lines parallel to the base and equally
spaced (cutting off portions of equal altitude), then the cut-off triangles
(between the vertex and the cutting lines) are as 1, 4, 9, 16, etc., square
numbers. The spaces between those lines are as 1, 3, 5, 7, etc., arithmetic
proportionals.

A

R

B D A

Because both the heights and the bases of the cut-off triangles are arithmetic pro-
portionals, therefore the planes are as squares of arithmetic proportionals, or as
square numbers 1, 4, 9, 16, etc. And therefore the spaces between as 1, 3 =4 —1,
5=9—-4,7=16 -9, etc.

PROPOSITION 68

Corollary

If a cone is cut by any number of planes parallel to the base and equally
spaced (cutting off portions of equal altitude), the cut-off cones (between the
vertex and the cutting planes) are as 1, 8, 27, 64, etc., cube numbers. The
portions between are as 1, 7, 19, 37, etc., differences of cube numbers (and
similarly for pyramids.)

v

Because since the altitudes of the cut-off cones are arithmetic proportionals, and
because so also are the diameters of the bases, therefore the bases are as squares of
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those, and the cones (which are composed from the altitudes and the bases) are as
the cubes of the altitudes, or as 1, 8, 27, 64, etc. And therefore the portions between
as 1, 7=8—1,19 =27 — 8, 37 = 64 — 27, etc.

PROPOSITION 69

Corollary

If a parabola is cut by any number of lines (parallel to the base and equally
spaced, cutting off portions of equal altitude), the cut-off parabolas (between
the vertex and the cutting lines) will be as 1/1, 24/2, 3./3, 4,/4, etc. or as
V1, 1/8,4/27, /64, etc., square roots of cube numbers. And the spaces between
as the differences of the roots.

For the bases (or rather the ordinates of the parabolas) are as the square roots of
the altitudes.

PROPOSITION 70

Corollary

If a parabolic conoid is cut by any number of planes (parallel to the base and
equally spaced, cutting off portions of equal altitude), the conoids thus cut off
(between the vertex and the cutting planes) are as 1, 4, 9, 16, etc., square
numbers. And the portions between as 1, 3, 5, 7, etc., arithmetic proportionals.
(And similarly for pyramids.)
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That is, as was said of the triangle in Proposition 67, for the bases of the cut-off
conoids are as the squares of the semi-diameters, that is, of ordinates of the parabola,
and therefore proportional to the altitudes.

PROPOSITION 71

Corollary

If the complement of a half parabola is cut by any number of lines (parallel
to the base and equally spaced, cutting off portions of equal altitude), the
complements thus cut off (between the vertex and the cutting lines) will be as
1, 8, 27, 64, etc., cube numbers. And the portions between as 1, 7, 19, 37, etc.,
differences of cube numbers.

That is, as was said above of the cone at Proposition 68, for the bases, that is, the
ordinates of the complement, are as the squares of the altitudes.

PROPOSITION 72

Corollary

If also a conoid generated by the complement of a half parabola is cut by
any number of planes (parallel to the base and equally spaced, cutting off
portions of equal altitude), the cut-off conoids (between the vertex and the
cutting planes) are as 1, 32, 243, 1024, etc., supersolid numbers. And the
portions between as 1, 31, 211, 781, etc., the differences of supersolids. (And
similarly for pyramids.)

For the bases of the cut-off conoids are as the squares of their semi-diameters,
and therefore as fourth powers of the altitudes (for the semi-diameters of the bases
themselves, or the ordinates of the complement of the half parabola, are as squares
of the altitudes). And therefore the cut-off solid figures are as the fifth powers of
the altitudes, or rather the power composed from those of the bases and of the
altitudes.
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COMMENT

And it must be considered similarly for other figures of this kind (whether
plane or solid) cut in this way: always having regard for the degree or powers
of the series that pertain.

PROPOSITION 73

Theorem

If any two series (or also more) are multiplied term by term (that is the first
term of one by the first of the other, the second by the second, etc.) there will
be produced another series of the same kind, which will have an index that is
the sum of the indices of the multiplied series. Moreover, its ratio to a series
of terms equal to its greatest will be that which the preceding tables (or also
Proposition 64) indicated.

For example, if a series of squares or second powers (with index 2) is multiplied term
by term by a series of cubes or third powers (with index 3) it will produce a series
of fifth powers (with index 5 = 2 + 3), which will therefore have, to a series of terms
equal to the greatest, the ratio 1 to 6 (= 5+ 1). Thus if a series of second powers is
multiplied term by term by a series of third powers, it will produce a series of fifth
powers.

Oa la 4a 9a 16a etc.

0b 1b 8b 27b 64b etc.

Oab 1lab 32ab 243ab 1024ab etc.

In the same way, if a series of second powers (with index 2) is multiplied term

by term by a series of third roots (with index %), there will be produced a series
of cube roots of seventh powers (with index % =2+ %) which, to a series of the

same number of terms equal to the greatest, is as 1 to 4 (= £ + 1), or as 3 to 10.
Thus if there are multiplied term by term

the series Oa, la, 4a, 9a, etc.
by the series V30b, V21b, V32b, V>3b, etc.
that is, the series V20a?, V1a®, V6443, V272903, etc.
by the series V200, V31b, V32b, V23b, etc.

it will produce the series  /°0a®b, /31a%b, /°128a%b, /°2187a%b, etc.

In the same way, if a series of second roots (with index %) is multiplied term by term
by a series of fifth roots (with index é), there will be produced a series of tenth roots
of seventh powers (with index 15 = % + 1) and therefore it will have, to a series of
terms equal to the greatest, a ratio that is 1 to —i—g (= 1—70 + 1), or 10 to 17. Thus if



62 The Arithmetic of Infinitesimals

there are multiplied term by term

the series V30a, Va, Vv*2a, V?3a, etc.
by the series V°0b, V°1b, N V°3b, etc.
that is, the series  1/*°0a®, V1%, V*°32a°, V102430, etc.
by the series V00b?, V10182, Vi04b?, Va2 etc.

it will produce V0a®h?,  /01a%b%,  /'°128a%H?, /*02187a°b?,  etc.

And this holds similarly in other multiplications of this kind.

PROPOSITION 74

Corollary

Therefore, where the sums of the indices of series multiplied term by term are
the same, there the indices of the series produced will also be the same.

For example, if a series of third powers is multiplied term by term by a series of third
powers, or a series of second powers by a series of fourth powers, or a series of first
powers by a series of fifth powers, or a series of equals by a series of sixth powers, it
will produce a series of sixth powers. Because, that is, in each case the sum of the
indices is 6 (for 3+3=24+4=1+4+5=0+ 6 = 6). And similarly in other cases.

PROPOSITION 75

Corollary

If all the lines DB of a parallelogram ADB are set perpendicular one by one
to the lines DB of a triangle ADS (of the same height),>” the rectangles
produced will be a series of first powers (of the same kind as the planes of the
parabolic cone, by Proposition 11 of On conic sections), for which if there is
substituted the same number of squares (or any other similar plane figures)
equal to them, there will be constituted a parabolic pyramid. And the sides
of those squares (or similar figures), or the mean proportionals between the
lines so multiplied,?® DE, constitute a parabola, or half parabola.

37 <Si Parallelogrami rectae omnes, in rectas Triangulis respective ducantur; ...". As pointed
out in the note to Proposition 11, the verb ducere (in) was used to describe the construc-
tion of a perpendicular, the ‘product’ being the square or rectangle so defined. Such a
construction gives the geometrical equivalent of multiplication in arithmetic.

38 A literal translation of °...inter rectas sic multiplicatas’; Wallis is now blurring the
classical distinction between geometry (which deals with lines) and arithmetic (which
deals with numbers).
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B D \\

B D 7

(It is to be understood that those planes, or mean proportionals, which thus emerge,
are supposed positioned on some line, like ordinates, as the nature of the constituted
figures requires.®® Which may also be understood in whatever comes afterwards.)

For since the lines of the parallelogram are a series of equals (with index 0) and
the lines of the triangle a series of first powers (with index 1), there is produced by
multiplication the same series of first powers (since 0 + 1 = 1), of the same kind as
the planes of a parabolic cone or parabolic pyramid (by Propositions 9 and 11 of
On conic sections), and the mean proportionals (or sides of similar planes) will be
a series of second roots (or rather square roots of first powers), of the same kind as
the lines of a parabola, by Proposition 8 of On conic sections.

PROPOSITION 76

If the lines 8D of a parallelogram ADf are set perpendicular one by one to
the lines DB of a half parabola ADB of equal altitude, the rectangles produced
will be a series of second roots; and the mean proportionals a series of fourth
roots (of the same kind as the lines of a biquadratic parabola DE).4°

E
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That is, a series of equals (with index 0) multiplied term by term by a series of second
roots (with index ) produces the same series of second roots (since 3 + 0 = 1), and
the mean proportionals (or rather square roots of second roots) will be a series of
fourth roots.

39 Here the planes, or products, are represented by a single line, or ordinate, of the same
magnitude.

40 The lines DE are those in the lower left part of the diagram. The lines on the upper right
illustrate Proposition 77, which follows.
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PROPOSITION 77

Corollary

If the lines D3 of a parallelogram ADS are set perpendicular one by one to
the lines DB of the complement of a half parabola, the rectangles produced
will be a series of second powers; and the mean proportionals a series of first
powers (constituting triangle ADE).

That is, a series of equals, thus multiplied by a series of second powers, gives also a
series of second powers (since 0 + 2 = 2), of which the square roots are a series of
first powers.

PROPOSITION 78

Corollary

If the lines DB of a triangle are set perpendicular one by one to the lines of a
half parabola DS, the rectangles produced will be a series of square roots of
third powers, and the mean proportionals the fourth roots of third powers, DE.
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That is, a series of first powers, thus multiplied by a series of second roots, will give

a series of square roots of third powers (since 1 + % = 3), of which the square roots

2
are fourth roots of third powers.

PROPOSITION 79

Corollary

If the lines DB of a triangle are set perpendicular one by one to the lines D
of the complement of a half parabola, the rectangles produced are a series of
third powers (since 1+ 2 = 3). And the mean proportionals are the square
roots of third powers, DE.

Demonstrated as in the preceding propositions.
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PROPOSITION 80

Corollary

If the lines of the complement of a half parabola are set perpendicular one by
one to the lines of a half parabola, the rectangles produced will be a series of
square roots of fifth powers (since 2 + % = %), and the mean proportionals a
series of fourth roots of fifth powers. As is obvious.

COMMENT

It may be considered in the same way for any figures, whether plane or solid,
which arise from multiplication of this kind. So if the lines of one triangle are
set perpendicular one by one to the lines of another triangle (whether similar
or dissimilar, only of equal altitude), there will arise a pyramid, but the mean
proportionals again constitute a triangle. The lines of a half parabola set
perpendicular one by one to the lines of another produce a parabolic pyramid,
but the mean proportionals a half parabola. And so on in other cases.

PROPOSITION 81

Corollary

If all the terms of a series are divided one by one by the terms of another
series, the quotients will form another series, of which the index may be found
by subtracting the index of the dividing series from the index of the divided
series, for what remains will be the index of the series arising from the division,
or of the quotient. Moreover, the ratio of the series thus produced, to a series
of the same number of terms equal to its greatest, will be that which the
preceding tables (or Proposition 64) indicate.

For example, if a series of biquadrates or fourth powers (with index 4) is divided by
a series of cubes or third powers (with index 3) the quotients will be a series of sides
or first powers, with index 1 =4 — 3.
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If a series of third powers is divided by a series of first powers, there will arise a
series of second powers, with index 2 =3 — 1.

And if a series of second powers is divided by a series of second powers, there
will arise a series of equals, with index 0 = 2 — 2. And so on for the rest.

The proof is clear from Proposition 73. Because, that is, a series of third pow-
ers multiplied term by term by a series of first powers gives rise to a series of
fourth powers. And a series of first powers thus multiplied by a series of second
powers gives rise to a series of third powers. And a series of second powers multi-
plied in the same way by a series of equals produces a series of second powers. And
so on in all the rest. For what is composed by multiplication may be resolved by
division.#!

PROPOSITION 82

Corollary

Therefore, where the excesses of the degrees or indices of series to be divided,
over those of the dividing series, are the same then the indices of the quotients
will be the same.

For example, if a series of sixth powers is divided by a series of fourth powers, or a
series of fifth powers by a series of third powers, or a series of fourth powers by a
series of second powers, or a series of third powers by a series of first powers, or
a series of second powers by a series of equals, there will arise a series of second
powers. Because, that is, in each case, the series divided exceeds the dividing series
by a degree of two (for6 —4=5—-3=4—-2=3—-1=2—0 = 2). Therefore (from
what has gone before) the resulting series will have the same index. And the same
in other cases.

PROPOSITION 83

Corollary

If a pyramid (or a series of second powers) is applied plane by line to a
triangle?? of equal altitude (that is, the planes of the former to the lines of
the latter) it will produce a triangle (since, that is, 2 — 1 = 1). If it is applied
to the complement of a half parabola it will produce a parallelogram (since
2 —2=0). If to a half parabola, the plane arising will be a series of square

41 Wallis used composition and resolution for inverse processes such as addition and sub-
traction; or multiplication and division; or raising to powers and taking roots. Other
writers, however, used the terms as equivalents of synthesis and analysis.

4% ¢ 8i Pyramis ad Triangulum respective applicetur, ...". The verb applicare (ad), literally
‘to lay to’, was used for the geometrical construction of setting an area against a line (or
a solid against an area), the geometrical equivalent of division in arithmetic (see also the
notes to Propositions 11 and 75).
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roots of third powers (since 2 — 1 = 11 = 3). If to a series of equals, it will
produce the complement of a half parabola (since 2 — 0 = 2). And thus in
other cases.

Clear from Proposition 81.

PROPOSITION 84

Corollary

Or, if from the respective lines of a first triangle ADB, and a second ADE, are
taken third proportionals,*? there will be produced a third triangle ADg. If
from respective lines of the complement of a half parabola ADB, and triangle
ADE, there will be produced parallelogram ADg. If indeed from parallelo-
gram ADS and triangle ADE, there will be produced the complement of the
half parabola ADB.

P

B D A b D

Follows from what has gone before. For the squares of the lines in the triangle
constitute a pyramid. And similarly for the rest. And the first part is shown in the
first figure, the second and third in the next.

PROPOSITION 85

Corollary

If a parabolic pyramid (that is, a series of first powers) is applied plane by line
to a triangle of equal altitude it will produce a parallelogram (since 1 — 1 = 0).
If to a parallelogram, it will produce a triangle (since 1 ~ 0 = 1). If to a half
parabola, it will produce a half parabola (since 1 — % = %) If to half a cubical
parabola, the plane arising will consist of cube roots of second powers (since
1- % = %) And equally in other applications of the same kind.

43 The third proportional of two (ordered) quantities x and y is y2/z (since z : y = y : y?/x).
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Obvious from Proposition 81.

PROPOSITION 86

Corollary

Similarly, if from the respective lines of a triangle ADS and a half parabola
ADE, are taken third proportionals, there will be produced a parallelo-
gram ADB; if from the respective lines of parallelogram ABD, and half
parabola ADE, there will be produced triangle ADgG; if from the respective
lines of a first parabola ADB, and a second ADE, there will be produced a
third parabola ADg; and thus in other cases.

Follows from what has gone before. For the squares of the lines in a half parabola
constitute a parabolic pyramid. Shown in the preceding figure.

COMMENT

And it may be considered in the same way for other plane by line applications
of solid figures to planes. It suffices to have indicated a few by way of example,
in imitation of which innumerable others become possible.

PROPOSITION 87

Corollary

If there is proposed any of the aforementioned series, to be divided by another
of higher degree or power, it will not be possible to produce any of the series
already mentioned (since it is not possible to take the index of a higher power
from the index of a lower power, or rather a greater from a smaller), but clearly
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another kind of series, that is, one whose terms are in reciprocal proportion
to the corresponding terms of another series, which has index equal to the
excess of the index of the dividing series over the index of the divided series.

Moreover, the series thus arising may be called reciprocal series, and they
have negative indices.

For example, if a series of second powers is to be divided by a series of third powers,
or a series of first powers by a series of second powers, or a series of equals by a series
of first powers (where the dividing series is one degree higher than the series to be
divided, and so the index of the dividing series is one more than the index of the
divided series, thus 3—2=2—1=1— 0= 1), the terms of the series arising will
be in reciprocal proportion to the corresponding terms of a series of first powers.
Thus if there are divided term by term

the series 0a2, 1a?, 4a%, 9d?, 1642, etc.
by the series 0a3, 1a®, 8a®, 27a®, 64a®, etc.

or the series  Oa, la, 2a, 3a, 4a, etc.
by the series 0a?, 1a?, 4a?, 9a?, 16a2, etc.
or the series 1, 1, 1, 1, 1, etc
by the series Oa, la, 2a, 3a, 4a, etc.

there will be produced the series:

1
02’ 1o’ 22’ 3a 4o %

whose terms are in reciprocal proportion to the corresponding terms in a series of
first powers
4a . .
- T 1T T T etc. as is obvious.
That is,

2
— == Ta’ and thus everywhere.

In the same way, if a series of first powers is to be divided by a series of third powers
(or what amounts to the same thing) a series of equals by a series of second powers,
the series arising will be reciprocal to a series of second powers. Thus

1 1 1 1

y y y , —=, etc.
0a? la? 4a2 9a? 16a2’

And this holds in the same way in all such divisions of this kind.
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PROPOSITION 88

Corollary

If an infinite number of (parallel) planes of a parallelepiped are applied to the
same number of lines of a triangle of equal altitude, (or if from the respective
lines of the triangle, and parallelogram, are taken third proportionals), the
series of lines arising will be reciprocal to a series of first powers, which lines
are indeed in reciprocal proportion to their distances from the vertex (or, if
you like, to their intercepted diameters).

For let there be a parallelepiped, in which the infinite planes are equal to the squares
of the same number of lines of a parallelogram ADE, which, if applied to the lines
of triangle ADB, will produce lines (third proportionals to the lines of the trian-
gle and of the parallelogram), together constituting figure AD3, which will be in
reciprocal proportion both to the corresponding lines of the triangle (since, that
is, together with them they form equal rectangles) and to their intercepted diame-
ters, or distances from the vertex, which (since the cut-off triangles are similar) are
proportional to those lines of the triangle.

PROPOSITION 89

Corollary

The same holds if the planes of a pyramid (equal to the squares of the lines of
a triangle ADE) are applied to the same number of lines of the complement
of half a cubical parabola ADBC.

Clear from Proposition 87. For (as in the preceding Proposition) the series of first
powers from which the triangle is constituted, is one degree higher than the series of
equals from which the parallelepiped is constituted. Thus (in this Proposition) the
series of third powers in the complement of half the cubical parabola is one degree
higher than the series of second powers from which the pyramid is constituted.
In either case, therefore, there arises a series reciprocal to a series of first powers.
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PROPOSITION 90

Corollary

The same holds if the planes of a parabolic pyramid (that is, a series of first
powers) equal to the squares of the lines of a half parabola ADE, are applied
one by one to the lines of the complement of a half parabola ADBP (that is,
to a series of second powers).

For here also the index of the dividing series exceeds by one the index of the series
to be divided.

PROPOSITION 91

Corollary

The plane figure constituted from a series of lines proportional to reciprocals
of first powers, is infinite. Which is also similarly true of all reciprocal series.

For since the first term in a series of first powers is 0, the first term in a reciprocal
series is oo or infinity (just as, in division, if the divisor is 0, the quotient will be
infinite). And therefore the line Ad, and the curve 83 do not meet unless after an
infinite distance (that is, never).

For the same reason, the same curve 88 and line AD (however far either is
continued) also do not meet (unless after an infinite distance), for the distance D3
will not vanish before there are infinitely many lines DB. And therefore:

PROPOSITION 92

Corollary

The curve 33 has two asymptotes, the lines A§, AD. Which is also true of
other curves of this kind bounding a reciprocal series of lines.

That is, the lines [Ad, AD] approach continually closer to the curve, in such a
way that at last their distance becomes less than any assignable quantity (as is
easily proved from what has been said), nor, however, do they ever meet, as has
already been shown. And the same may equally be shown of any other curves of this
kind.

PROPOSITION 93

Corollary

The lines D3, Df3, etc., proportional to reciprocals of first powers, continually
decrease from infinity (Ad = 0o) (in the same ratio as the respective lines DB,
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DB, continually increase as a series of first powers from a point A = 0), until

there is reached a minimum (as in the series of first powers there is reached a
maximum). Which is also true in other reciprocal series.

Clear on account of the reciprocal proportion.

PROPOSITION 94

Corollary

In the figure ADSS (from the reciprocals of first powers) the inscribed para-
llelograms ADS, ADpS, etc. are equal to each other.

For they have reciprocal bases and altitudes by Proposition 88.

PROPOSITION 95

Corollary

And therefore the curve 34 itself is a hyperbola, of which the centre is A, the
asymptotes AD, A¢.

By Proposition 12 of Book II of Apollonius.

PROPOSITION 96

Corollary

If a musical chord AD is variously divided at points D, D, etc., it produces
sounds proportional to the lines D3, Dg, etc.

For (from musical principles) the same chord (evenly and equally tense) produces

sounds in reciprocal proportion to the lengths. Therefore if the chords are as AD,
AD, etc. the sounds will be as D3, Df3, etc. by Proposition 88.

PROPOSITION 97

Corollary

If the planes of a parallelepiped (or rather a series of equals), equal to the
squares of the lines of a parallelogram ADEF, are applied one by one to the
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lines of the complement of a half parabola ADB (that is, a series of second
powers), there will be produced a series of lines proportional to the reciprocals
of second powers. If it is supposed that a plane figure ADf is constituted from
these, it will be infinite; and the curve bounding those [lines] will have two
asymptotes, the lines AD, A¢.
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Proved in the same way as various preceding propositions on series reciprocal to
series of first powers.

PROPOSITION 98

Corollary

The same holds if the planes of a pyramid are thus applied to the lines of the
complement of half a biquadratic parabola; or the planes of parabolic pyramid
to the lines of the complement of a cubical parabola.

For in those cases also, the index of the series dividing exceeds by two the index of
the series to be divided.

PROPOSITION 99

Corollary

In a series of this kind, of reciprocals of second powers, the lines D3, dg3, etc.

are in reciprocal ratio to the squares of the diameters (or distances from the
vertex), (or as (dA)?, (DA)?, etc.).*

44 Wallis used Oughtred’s notation dAq for squares, and dAq- DAq :: DB -dB3 for ratio,
throughout Propositions 99 and 100.
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Therefore, that is, the reciprocal proportionals are the lines DB, dB, etc., which are
in direct ratio to the squares of the diameters AD, Ad, etc. Thus

(dA)? : (DA)? =dB: DB =Dg:dg

Therefore = —.

PROPOSITION 100

Corollary

In the plane figure ADBQ constituted from a series of lines which are recip-
rocals of second powers, the inscribed parallelograms (ADS, Ad@B) are in
reciprocal proportion to the intercepted diameters (DA, dA).

For (by Euclid VI1.23) they are as DA x Df to dA x dg.
And moreover (by what has gone before)

dp = ((’3 :)): Dg.
And \
dA x dB = (Z‘Z) DgB.
Therefore also
DAXx DB:dAxdB=DAxDj: (D(;:)2DB
=dAx DA x DB: (DA)? x D3

=dA: DA.

PROPOSITION 101

Corollary

But if the plane figure ADGQ is constituted from a series of lines that are
reciprocals of third powers (which, that is, are third proportionals of the lines
of the complement of half a cubical parabola ADB and of a parallelogram
ADE) those lines (D, d3, etc.) will be in reciprocal ratio to the cubes of the
diameters (DA, dA, etc.), (that is, as (dA4)3, (DA)3, etc.). And the inscribed
parallelograms (ADf3, AdS, etc.) will be in reciprocal ratio to the squares of
the diameters (or as (dA)?, (DA)?, etc.).
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For (by the construction) DS : dB8 = dB : DB = (dA)® : (DA)3.
_ (DA)®
And therefore also d8 = (dA)° Dg.

Therefore the parallelograms

ADB: AdB = DA x DB : dA x df

- . (DA)?

(DA)®
(dA)?

= (dA)* x DA x DB : (DA)® x D8
= (dA)? : (DA)%.

= DA X Dj:

Dp

Which was to be proved.

COMMENT

And it may be considered in the same way for other plane figures of this
kind constituted from any reciprocal series of lines; as also for the inscribed
parallelograms themselves (or rectangles, or oblique angled figures, as the
condition of the figure requires).

Which, moreover, leads to the area of these plane figures constituted from
reciprocal series, which may be sought in almost the same way as above for
direct series. Moreover, where direct series have indices 1, 2, 3, etc. as they
ascend by so many degrees above a series of equals, so indeed will these (recip-
rocal to those) have their indices contrary and negative, —1,—2, -3, etc.,
descending below a series of equals by as many degrees. Moreover, just as the
former continually increase from 0, ciphra, or nothing, the latter, on the con-
trary, continually decrease from oo, or infinity; and in the former a greatest
term, in the latter a least term, concludes the series (which also however may
be supposed continued as far as one likes, in the former by increasing, in the
latter by decreasing). And therefore, as in the former there is a circumscribed
figure (thus a parallelogram or prism), or a series of the same number of terms
equal to the greatest, in the latter there is an inscribed figure, or a series of
the same number of terms equal to the least, to be had as a common measure,
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to which the comparison is to be made; in either case making use of that term
respectively that concludes the series.

And in the meantime it should not seem surprising to anyone (although
possibly unexpected) if I should enquire into the ratio of unbounded fig-
ures to another given bounded figure. For any such figures ADS of this
kind (howsoever extended from line Df to whatever boundary, in the man-
ner described in these comments) are supposed continued infinitely from the
line 68 (by Proposition 91), but will not, however, on account of that, have
either no ratio or always an infinite ratio to a given bounded figure, thus
to a parallelogram of equal height described on the same base DS. Indeed,
it seems possible to obtain confirmation of that more easily, since Torri-
celli has already shown the same thing in one particular solid (which may
be called an acute infinite hyperbola).*> But they will not always have a
finite ratio, but sometimes either infinite, or also (if this can be said with-
out solecism) greater than infinite. That is, if the lines §3 are shortened by
the same ratio as the lines d( are lengthened, that ratio will be infinite;
where, that is, the lengthening of one is equal to the shortening of the other
(and therefore the ratio of a continuous infinite figure composed from both
is equal to that of some figure smoothly continued to infinity). But if the
lines 3 are shortened by a smaller ratio than the lines D3 are lengthened,
the ratio will be greater than infinity; for then the lengthening of the lat-
ter runs ahead of (or more than equals) the shortening of the former. If,
moreover, the lines 63 are decreased by a greater ratio than the lines DS
are increased, the decrease of the former runs ahead of the increase in the
latter; and therefore the ratio will be finite, or rather, less than infinite.
(And indeed according to this criterion, it may be considered not only for
these figures we have already treated, but also for any other infinite figures,
whether plane or solid, compared to some bounded figures: which specula-
tion, I believe, will not seem disagreeable.) Moreover, what will happen in
each ratio, we will indicate in various following propositions (following the
rule in Proposition 64).

PROPOSITION 102

Theorem

If a figure ADBS has infinite vertex Ad, and continually decreases in width
towards the base as far as Df3, according to any reciprocal series of whatever
direct series (thus, of those mentioned in Proposition 59) which has index
less than 1, it will have to a parallelogram on the same base and of equal
height a finite ratio, that is, that of 1 to the index of that reciprocal series
increased by 1.

45 Torricelli 1644, 115-116.
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For example, let there be direct series of second roots, third roots, fourth roots,

etc. of which the indices are %, %, 1 etc. (less than 1); the series reciprocal
2' 31 1

to these will have indices —%,—2%, —21, etc. For if there is supposed a series of
273071

equals, with index 0, divided by the former, the series arising from the division
will have indices 0 — 3,0 — 3,0 — %, etc., that is, —4,—3,—3%, etc. (by Proposi-
tion 81), if to which (according to the rule of Proposition 64) there is added
1, they become —% +1, —2+1, —3+1, etc., that is, 1,23 etc. and there-
fore the ratio of the whole figure to the inscribed parallelogram (on the same
base and of equal height) is as 1 to %,%, %, etc. or as 2 to 1, 3 to 2, 4 to 3,
etc.

And in the same way, if there is taken a series reciprocal to a series of cube
roots of second powers, or fourth roots of second or third powers, or fifth roots of
second, third or fourth powers (of which the indices are %, %, 3, %, %, %) or to any
other such series, whose index is less than 1. Because the negative indices of the
reciprocal series, contrary to these (that is, —%, —%, etc.), become positive by the
addition of 1; and therefore the ratio of 1 to those indices thus increased will be a
finite ratio; or rather, a positive number to a positive.

PROPOSITION 103

Theorem

But if any such figure ADS30 of this kind thus continually decreases as a series
which is reciprocal to a direct series having index equal to 1 (that is a series
of first powers), it will have to the inscribed parallelogram an infinite ratio,
that is, that which is 1 to 0.
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For since a series of first powers has index 1, the series reciprocal to it will have
index —1, and therefore (by Proposition 64) the ratio arising will be 1 to —1 + 1,
that is, 1 to 0.

PROPOSITION 104

Theorem

Finally if any figure ADBS of this kind thus continually decreases as series
which is reciprocal to a direct series having index greater than 1, it will have
to the inscribed parallelogram a ratio greater than infinity: of a kind, that is,
that a positive number may be supposed to have to a negative number, or less
than 0. That is, that of 1 to the index increased by 1.
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Thus since the indices of series of second powers, third powers, fourth powers, etc. are
2, 3, 4, etc. (greater than 1) the indices of their reciprocal series will be —2, -3, —4,
etc., any of which increased by 1 (according to Proposition 64), however, will remain
negative, thus —2+1=-1, -3+ 1= -2, —4+1= -3, etc., and therefore the
ratio of 1 to those indices thus increased, thus 1 to —1, 1 to —2, 1 to —3, etc. will
be greater than infinity, or 1 to 0, because, that is, the second terms of the ratios
are less than 0.

And the same holds if there are taken reciprocals of series of square roots of third
powers, fourth powers, fifth powers, etc. (whose indices are %, %, %, etc.) or cube roots
of fourth powers, fifth powers, sixth powers, etc. (whose indices are 3, 2, g, etc.) or
finally of any series whose index is greater than 1. As is obvious.
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PROPOSITION 105

Theorem

If any figure AD30 of this kind having infinite vertex Aé and finite base DS,
has to the inscribed parallelogram ADB§ a ratio greater than infinity, the
same figure AD33 having infinite vertex AD and finite base §3 will have to
the inscribed parallelogram AJ6G3D a ratio less than infinity (that is, finite).
And the other way round, if having considered the former situation, there is
a ratio less than infinity, in the latter situation there will be a ratio greater
than infinity. If, finally, in one situation there is a simple infinite ratio (that is,
neither greater nor less [than infinity]) then in the other situation also there
will be a simple infinite ratio.

For example, in a series of reciprocals of second powers, since (by Proposition 99)
the lines DB, DS, are as the reciprocals of the squares of the diameters AD, AD,
then conversely the lines AD, AD, that is, 63,63, will be as the reciprocals of the
square roots of the lines D3, D3, that is, the diameters Ad, Ad; and therefore 63, 673,
etc. are themselves a series of reciprocals of second roots. And the other way round.
And (since the same also holds for other series of this kind) what is proposed is clear
by Propositions 102 and 104.

But if in a series of reciprocals of first powers, since (by Proposition 88) the
lines D3, DB, are in reciprocal proportion to the diameters AD, AD, so also the
lines 83,83, will be in reciprocal proportion to their diameters Ad, Ad; and 3,653,
themselves are likewise a series of reciprocals of first powers. Therefore what was
proposed stands, by Proposition 103.

PROPOSITION 106

Theorem

If any reciprocal series is multiplied or divided by another series (whether
reciprocal or direct), or also multiplies or divides another, the same laws must
be observed as for direct series, as in Propositions 73 and 81.

For example, if a series of reciprocals of second powers (suppose 1, 1,3 5, etc.) with
index —2, is multiplied term by term by a series of reciprocals of third powers
(suppose 1 i s’ 27, etc.) with index —3, it will produce a series of reciprocals of fifth
powers (}, 35 243, etc.) with index —5 = —2 — 3, as is obvious.
In the same way, if a series of reciprocals of third powers (i, 5 27, etc.) with
index —3 is multiplied term by term by a series of second powers (1, 4,9, etc.) with
index 2, it will produce a series }, g, 37, etc., that is , etc., reciprocals of first
powers, with index —1 = -3 4+ 2.

In the same way, if a series of reciprocals of second roots (ﬁ, %, ﬁ, etc.) with

’1’2’3

index —5, is multiplied term by term by a series of squares (1,4, 9, etc.) with index
2, it will produce the series (\/1, T3 \/3, etc. or 14/1, V2, 3\/3, etc. or 1/1, 2+/2,
3\/3 etc. or /1, 1/8, /27, etc.), square roots of cubes, or third powers, with index

I=-1l42
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Further, if a series of reciprocals of second powers, with index —2, divides a series
of reciprocals of first powers, with index —1, it will produce a series of first powers,
with index 1 = —1 + 2, that is, —1 minus —2.

In the same way, if a series of reciprocals of first powers, with index —1, divides
a series of reciprocals of second powers, with index —2, it will produce a series of
reciprocals of first powers, with index —1 = —2 + 1, that is —2 minus —1.

In the same way, if a series of reciprocals of first powers, with index —1, divides
a series of second powers, with index 2, it will produce a series of third powers, with
index 3 = 2 + 1, that is, 2 minus —1.

In the same way, if a series of reciprocals of first powers, with index —1, [is divided
by]46 a series of second powers, with index 2, it will produce a series of reciprocals
of third powers, with index —3 = —1 — 2, that is, —1 minus 2.

And the same holds in any other series of this kind. And therefore what was
proposed stands.

PROPOSITION 107

Corollary

And therefore if from any figure AD{34 of this kind (extended infinitely from
one side) corresponding to any series of reciprocals, there is generated (in the
manner I have shown in Proposition 9 of On conic sections and elsewhere
above)” an inverse pyramidoid or conoid (or rather, calatoid), it will have to
the inscribed cylinder or prism (on the same base and of equal height) that
ratio, whether finite or infinite or greater than infinite, that the preceding
theorems taught.

Thus, if the plane figure is a series of lines that are reciprocals of third roots, with
index —%, and therefore its ratio to the inscribed parallelogram (by Propositions 64

and 102) is as 1 to 2(= —3 + 1), that is, as 3 to 2, then the solid consisting of the

same number of planes, which are as the squares of the lines, will be a series of
reciprocals of squares of third roots, with index (by Proposition 106) —% = —% - %,
or -—% plus —%, and the ratio of that solid to the inscribed cylinder or prism (on

the same base and of equal height) as 1 to % = —% + 1, or as 3 to 1, and in either
case a finite ratio. By Propositions 64 and 102.
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46 Wallis has mistakenly written ‘divides’.
47 Wallis is now discussing solids of revolution.



The Arithmetic of Infinitesimals 81

If the plane figure is series of reciprocals of second roots, with index —%, and
therefore its ratio to the inscribed parallelogram as 1 to % = —% +1,oras2to1 (by
Proposition 102), then the solid consisting of the same number of planes, which are
as the squares of the lines, will be a series of reciprocals of squares of second roots, or
(which amounts to the same thing) a series of reciprocals of first powers with index
—%, or —1= —% - % And therefore the ratio of this solid to the cylinder or prism
(on the same base and of equal height) as 1 to =1+ 1 =0 (by Proposition 103).

That is, the former is finite ratio, the latter a simple infinite ratio.

N

I

If the plane figure is a series of reciprocals of squares of third roots, with index
—%, and therefore its ratio to the inscribed parallelogram as 1 to % = ——% + 1, or as
3 to 1 (by Proposition 102), then the solid consisting of the same number of planes,
which are as the squares of those lines, will be a series of reciprocals of biquadrates

of third roots, with index —% = —% - %, and therefore its ratio to the inscribed
cylinder or prism (on the same base and of equal height) as 1 to —% +1= —%, or

as 3 to —1 (by Proposition 104). That is, the former ratio is finite, the latter greater
than infinite.

If the plane figure is a series of reciprocals of first powers, with index —1, and
therefore its ratio to the inscribed parallelogram as 1 to —1+ 1 =0 (by Proposi-
tion 103), then the solid consisting of planes, which are as the squares of those lines,
will be a series of reciprocals of squares of first powers (that is, of second powers)
with index —2, and therefore its ratio to the cylinder or prism on the same base
and of equal height as 1 to —2 + 1, or as 1 to —1 (by Proposition 104). That is, the
former is a simple infinite ratio, the latter greater than infinite.

If the plane figure is a series of reciprocals of second powers with index —2, and
therefore its ratio to the inscribed parallelogram as 1 to —2 4+ 1 = —1, then the solid
consisting of the same number of planes, which are as the squares of those lines, will
be a series of reciprocals of squares of second powers, that is, of fourth powers, with
index —4 = —2 — 2, and its ratio to the inscribed cylinder or prism as 1 to -4+ 1 =
—3 (by Proposition 104). That is, in both cases the ratio is greater than infinite.

COMMENT

And thus that result (clever indeed and not a little surprising) that Torricelli
demonstrated in one solid figure (that is, that an acute hyperbolic solid,
infinitely extended, constitutes an equal cylinder) we have demonstrated for
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innumerable other figures, both plane and solid (by continuation of the six
preceding Propositions). Thus, to show for infinite figures of innumerable
different kinds, both plane and solid, equal bounded figures (or at least, what
amounts to the same thing, constituted in a known ratio).

It might have been more skilled perhaps (as I have given so much of the
needed report) to have shown by a quicker method than has been arrived at
here, some few partial propositions (just as much to be wondered and amazed
at) without demonstrations. Which, T wholly suspect, the Ancients at one
time often did; who more often seem to have intended that they themselves
might be admired rather than that others should understand; at least, that
they might show assent to those pronouncements of theirs by force, rather
than understand a genuine investigation of the problem. And I believe this to
have been the case, because their Analysis (which indeed it is sufficiently clear
that they had, from many remains, for not a few of their demonstrations) was
almost completely hidden to those who came afterwards (for plainly that part
that survives in Diophantus is quite small, if compared with those outstand-
ing discoveries they arrived at). So that mathematicians of the present age
(Viete, Oughtred, Harriot, Ghetaldi, Cavalieri, Torricelli, Descartes and other
great men) will need either to think anew, or at least revive the old (whether
wholly expounded, or completely unknown) in a new way; who indeed by their
success have shown that our analysis of the present day, is certainly equal,
or rather without doubt supercedes, that of the Ancients, hidden by so much
superstition.

Indeed, I prefer by freely philosophizing, to open those springs, that with
the same work the reader may begin to see both the demonstrations of the
propositions and the method by which I have arrived at them; whence he may
also by his own efforts investigate innumerable others of the same kind, which
I (lest I become tedious) readily pass over, content by this to have indicated
them, whence others may produce at will others similar to mine.

Indeed, it is possible both to add much to the foregoing and to inter-
polate much throughout, which may be easily deduced from the principles
already taught. Indeed, since those things I have already taught seem to me
abundantly sufficient, that both they themselves may be clearly enough under-
stood, and also that they seem to comprise a satisfactorily complete treatment,
of series (whether simple, compound, or reciprocal to either), I appear to be
hastening towards the explanation of conjoint series (whether in the form of
binomes or apotomes).

PROPOSITION 108

Theorem

If a series of equals is reduced term by term by a series of first powers (thus,
if the first term of the latter is taken from the first of the former, the second
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from the second, etc.), the [series of] differences will be half of the whole [series
of equals]. But if it is augmented in a similar way, the series of sums will be
one and a half times the given series of equals.

It is to be understood that the last terms of the equals and of the first powers are
the same, or equal (which is also to be understood in whatever follows). If they are
unequal, however, it will not be difficult to find the ratios that arise; which it is
sufficient to have pointed out, since anyone may show it by their own effort.

Suppose, for example, that any of the equal terms, and the greatest of the first
powers, is R. An infinitely small part of it may be called a = R/oo, and the number
of all the terms (or the altitude of the figure) 4.4

Differences: R — Oa Sums: R+ 0a
R—1a R+ 1a
R —2a R+ 1a
R —3a R+ 2a
etc. etc.

If the terms are continued to infinity, as far as:
R—R R+ R

then the sums of the differences and sums will be:
AR — AR AR+ ;AR

For the sum of all the equals will be AR (as is obvious). The sum of the first
powers will be half of that, or %AR, (by Proposition 2). AR — %AR = 1AR, and
AR+ AR = 3 AR. That is, to the series of equals (AR), the former is 3 and the
latter 3, just as asserted. That is, the former will be to series of equals as % to1, or

1 to 2; the latter as % tol,or 1 to %, or 3 to 2.

PROPOSITION 109

Corollary

Therefore, if from a parallelogram there is taken a triangle (on the same or
equal base and of equal height) the remainder (which indeed is itself also

48 Wallis wants to approach R by an infinite number of small steps, which would suggest
that A = oo, so there is a serious contradiction here. The problem arises from Wallis’s
concept of an area as a sum of lines: for him the area of a rectangle with base R is
equivalent to R taken infinitely many times. But if the altitude of the rectangle is A, its
area is AR, leading Wallis to state that A is equivalent to ‘infinitely many times’, or ‘the
number of all the terms’.
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a triangle inverted) will be half the parallelogram. But if the triangle is
added, the sum (that is, the trapezium) will be one and a half times the
parallelogram.

o~ &

B

Clear from what has gone before; for the parallelogram is a series of equals and the
triangle a series of first powers.

PROPOSITION 110

Corollary

In the same way, if a cylinder is hollowed out parabolically, it becomes
half the complete cylinder (which same is also true of a similarly hollowed
prism).

That is, if from the cylinder (that is, a series of equals) there is taken away a
parabolic conoid (on the same base and of equal height) which indeed is a series
of first powers (by Proposition 4 or 60), what is left will be half the total, by
Proposition 108.

And the same happens if from a prism there is taken a parabolic pyramid.

PROPOSITION 111

Theorem

If a series of equals is reduced by series of second powers, third powers, fourth
powers, etc. [the sums of] the differences will be two-thirds, three-quarters,
four-fifths, etc. of the whole [series of equals]. But if it is augmented in a
similar way, the sums will be four-thirds, five-fourths, six-fifths, etc. [of the
series of equals].
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For if the terms:

R? 7 0a? R F0a® R* ¥ 0a*

R? F1a° R®F14° R* ¥ 1a*

R? F 402 R® ¥ 84° R* ¥ 16a*

R? 7942 R® F274° R* ¥ 81a*
are continued to:

R2F R? R*FR® R*F R*

then the sums will be (by Proposition 44):
AR?*F 1AR® AR*T AR®* AR*F LAR*

that is, the sums of the differences will be:

1 2 1 3 1 4
1_5 3 1—Z 1 1—5 5
and the sums of the sums will be:
1 4 1 5 1 6
1+§_§ 1+Z i 1+5 5

PROPOSITION 112

Corollary

Therefore if from a parallelogram there is taken the complement of half of a
parabola, cubical parabola, biquadratic parabola, etc. the remainders (that
is, the half parabola, cubical parabola, biquadratic parabola, etc.) will be %,
2, %, etc. of the whole parallelogram. But if the complements are added to

the same parallelogram, the sums will be 4, 2, £, etc. of the parallelogram.

Clear from what has gone before.

PROPOSITION 113

Corollary

In the same way, a cylinder excavated by a cone (or a prism by a pyramid)
comprises two thirds of the whole. And it may be considered similarly for
other excavated figures (with appropriate changes).

Clear from Proposition 111, in fact, the subtraction of a series of second powers
from a series of equals.
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PROPOSITION 114

Theorem

If a series of equals is reduced by a series of second roots, third roots, fourth
roots, fifth roots, etc. [the sums of] the differences will be one-third, one-
quarter, one-fifth, etc. of the whole. But if thus augmented, [the sums of]
the sums will be five-thirds, seven-fourths, nine-fifths, etc. or twice, minus
one-third, one-quarter, one-fifth, etc.

For if the terms:

VR F V0a VR¥¥0a VRF Vla
VRT V1a VR¥ Vla VR¥ Vla
VR¥V2a VR F /2a VRF ¥2a
VR F V3a YR T V3a VRF 3a

are continued to:

vVR¥ VR VRF¥ VR vR¥ VR

then the sums will be (by Proposition 54):
AVR¥2AR AVR¥3AVR  AVRF2AVR

that is, the sums of the differences will be:

2 _ 3 -1 4 _ 1
|__§ 1 ] — 2 = -z £
and the sums of the sums will be:
2 5 3 7 4 9
+_ 5 1+_ L |4_g g

PROPOSITION 115

Corollary

Therefore, if from a parallelogram there is taken a parabola, cubical parabola,
biquadratic parabola, etc. the remainders will be one-third, one-quarter, one-
fifth, etc. of the whole. But if they are added, the sums will be twice the
parallelogram, less one-third, one-quarter, one-fifth, etc.
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Follows from what has gone before.

PROPOSITION 116

Theorem

It may be considered in the same way for any other series for which the index
is known by Propositions 59 or 64, subtracted from or added to a series of
equals.

Thus if the terms:

VR3 ¥ V043 VR? ¥ V/0a? VR ¥ V0a*
VR3 ¥ V1d3 VR? ¥ V1a? VR ¥ V1a*
VR3 ¥ V84d3 VR? ¥ V4a? VR ¥ V16a*
VRE T V2743 VRZ ¥ V/9a? VREF V/8la*

are continued to:

vVR3 F 1 /R3 Y R2? F JR2 JYRA ¥ NI

the sums will be:
AVEPF2AVRE AYRPF 3AVRE  AVRI 3 LAVURE

that is, the differences will be:

—
|
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Il
olw
—
|
olw
Il
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—
|
~w
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—
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And similarly (with appropriate changes) in any others whatever.

PROPOSITION 117

Theorem

If there is proposed a series of equals reduced by a series of first powers, the
[sums of] squares, cubes, biquadrates, etc. of the differences will have known
ratios to a series of the same number of terms equal to the greatest of them.
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Instead of the notation 1a, 2a, 3a, etc. (used in the preceding propositions) one may
now substitute a, b, ¢, etc. by which the process of the operation may be better

perceived.

Series Squares Cubes
R-0 R? —0R+00 R® — OR? + 00R — 000
R—a R? — 2aR + a? R3® — 3aR? + 3a’R - o®
R-b R%* —2bR 4+ b? R® — 3bR? + 3b°R — b°
R-c R? — 2¢R + ¢? R? - 3cR?+3¢*R-¢°
etc. to
R-R R* - 2RR+ R? R® - 3RR? + 3R’R - R®
AR - 1AR AR? — 2AR* + LAR* AR® — 2AR® + 3AR® — 1 ARS
that is:
1-4=} 1-3+3=} 1-3+3-4=}
or:

1 1x2 1x2x3

2 2x3 2x3x4

And so on, by continually multiplying numbers in arithmetic proportion (as the
degree of the power requires), from 1 and 2, continually increasing by one.

And indeed, these are nothing but series of the same number of first powers,
second powers, third powers, fourth powers, etc. reversed.*?

PROPOSITION 118

Theorem

If there is proposed a series of equals reduced by a series of second powers, the
[sums of] squares, cubes, biquadrates, etc. of the differences will have known
ratios to a series of the same number of terms equal to the greatest of them.
That is:

49 Inversae, here translated as ‘reversed’, means ‘decreasing instead of increasing’.
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Series Squares Cubes
R?-00 R* — 00R? + 00 R® — 00R* + 00R? — 00
R? - a? R* —24°R? 4 a* R® — 3a®R* + 3a*R? — af
R? — p? R* — 2b°R? 4+ b* R® — 3bR* 4 3b*R% — v°
R*-¢? R* - 282R% 4+ ¢* RS —3c2R*+3¢*R% — ¢8
etc. to
R? - R? R*-2R?R? + R* R® —3R?R* 4+ 3R*R®* - RS
Sum
AR? — LAR? AR* — 2AR* + LAR* AR® — 2AR® + 3AR® — L ARS
that is
-3=}% 1-3i=3 1-3+iob=i

or:

2 2x4 2x4x6

3 3 x5 Ix5x7

And so on, by continually multiplying numbers in arithmetic proportion (as far as

the degree of the power requires), from 2 and 3, continually increasing by twos.

PROPOSITION 119

Corollary

And therefore a conoid (or pyramidoid) generated by a half (or whole)
parabola around one of its ordinates, will be to a cylinder (or prism) of the
same base and height as 8 to 15.

A, .

D

That is, as the squares of the differences of a series of equals reduced by second
powers (to the same number of terms equal to the greatest). For revolving the half
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parabola ADO around its ordinate DO (or even other lines, as we said in Propo-
sition 9 of On conic sections) as an axis, there is formed a conoid (or pyrami-
doid) with vertex O. The constituent planes of that conoid (or pyramidoid) will
be as the squares of a series of equals reduced by second powers. (For the lines in
the half parabola ADO parallel to the line AD are equals reduced by the second
powers found in the complement ATO, as is clear from what was said in Propo-
sition 23.) And therefore to a series of the same number of terms equal to the
greatest (that is, the cylinder or prism) they are as 8 to 15, by what has gone
before.

COMMENT

And it may be considered in the same way for conoids or pyramidoids gener-
ated around an ordinate of any higher parabola, with the help of the following
propositions. Thus, for a cubical parabola the ratio will as 9 to 14, for a
biquadratic parabola as 32 to 45, for a supersolid parabola as 25 to 33, etc.
as in the table in Proposition 126.

PROPOSITION 120

Corollary

Thence, if an infinite series of equals reduced by a series of first powers is
multiplied term by term by the same series of equals augmented by the same
series of first powers, the sum of the rectangles,’® (or squares or any similar
figures equal or even proportional to them) will have a known ratio to the
sum of the same number of terms equal to the greatest.

And the same happens if the squares of a reduced series are multiplied by
the squares of an augmented series, or cubes of the former by cubes of the
latter, and so on.

That is, they will produce ratios as in Proposition 118. For:

R—-a (R-a)>=R?*~2aR+a®
times R+a (R+a)> = R?* + 2aR + a®
makes R? - a? R* —24’R% + o*

50 Since Wallis is speaking of multiplication of series, the Latin rectangulorum would here
more naturally be translated as ‘of the products’. I have kept the more literal translation
‘of the rectangles’, because Wallis goes on to compare these ‘rectangles’ with squares or
other geometrical figures.
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(R—a)® = R®—3aR?+3d’R - a®

times (R+a)® = R® +3aR? + 3a’R + a®
makes RS — 3a%R* + 3a*R? — a®
etc.

and so for each term of any power, as may be shown by multiplication.

PROPOSITION 121

Corollary

Therefore the circle to the square of the diameter (or also any ellipse to its
circumscribed parallelogram) will have the same ratio as a series of square
roots of differences, of an infinite series of equals reduced by a series of second
powers, to that same series of equals.

R

For if the radius of the circle is taken to be R (of which an infinitely small part
is R/oo = a) and on it stand an infinite number of perpendiculars, or right sines,
filling the quadrant of the circle, those perpendiculars are the mean proportionals
between the segments of the diameter (as is well known), that is:

between R+0 R+ 1a R+ 2a R + 3a etc.
and R-0 R—-1la R —2a R — 3a etc.
whose
product is R?—-00 R? —1a? R? — 40? R? — 942 etc.

the mean pro-
portionals are: /(R? —00) +/(R?>~—1a®) /(R?®-4d*) /(R®- 9a®) etc.

Therefore the ratio of the sum of those square roots, to the same number of terms
equal to the greatest (that is, the radius), is that of the quadrant of the circle (consist-
ing of the former) to the square of the radius (consisting of the latter). And therefore
also of the whole circle to the square of the diameter. Which was to be shown.

And the same may be easily shown of any ellipse (with appropriate changes)
since its ordinates are also mean proportionals (between segments of the transverse
diameter). Proportionals, and indeed sometimes equals, as is known from the teach-
ing on conics.
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COMMENT

Moreover, the ratio this proposition points to (that is the circle to the square
of its diameter) is that of 1 to the number intermediate between 1 and 525- in
the second sequence across in the table of Proposition 127. And the method
of finding that number (or any other interpolated between the numbers of any
such series) is to be investigated from here on.

PROPOSITION 122

Corollary

And hence, if we take an infinite number of lines of any half parabola, set
perpendicular one by one to the lines of its continuation, placed in inverse
position to the same height, the solid that arises, consisting of an infinite
number of those rectangles (or of squares equal to those rectangles) will be to
the parallelepiped on the same base and of equal height, as the circle to the
square of the diameter. (And indeed, the mean proportionals will be as the
square roots of the ordinates of the circle or ellipse.)

A w
6\/ JO
PO o
O,
o P

Suppose the line MO (parallel to the base) cuts any half parabola APO into two
segments of equal height, and let the length of the line MO be /R. The remaining
ordinates in the upper segment, ascending, will be /(R — a), /(R — 2a), /(R — 3a),
etc. and in the lower segment, descending, will be /(R + a), /(R + 2a), /(R + 3a),
etc. (since the squares of the ordinates of a parabola are in arithmetic proportion).
Therefore if we suppose that the half parabola thus divided is replicated, so that
point P coincides with point A, and the whole segment MPO is transferred to
the position MAw (so that the ordinates of the lower segment correspond to the
ordinates of the upper segment the other way round) the rectangles ODo, ODo, etc.
will be /(R? —0),/(R? — a?), /(R? — 4a?), /(R? — 9a?), etc. as will be clear by
multiplication:

VIR-0) (R-1la) V(R - 2a) V(R—3a) etc.
V(R+0) (R+1la) V(R + 2a) V(R+3a) etc.

V(R?*-0) /(R*-1a*) /(R*>-4a% /(R?-9a% etc.
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Therefore the sum of all these, to the greatest (y/(R®—0)= /R?>= R) taken
together (that is, the proposed solid to a parallelepiped of the same base and height)
is as the circle to the square of the diameter, by what has gone before. And therefore
also the mean proportionals will be as the square roots of the ordinates in the circle
or ellipse, as is clear.

PROPOSITION 123

Corollary

In the same way, a sphere (or spheroid or elliptic pyramid) to a circumscribed
cylinder (or prism) is as an infinite series of equals reduced by a series of
second powers, to a series of the same number of terms equal to the greatest.
That is as 2 to 3.

R

Follows from Proposition 121. For if the mean proportionals of the segments of the
diameter, filling the quadrant of the circle (or ellipse), are now assumed to become
the same number of radii of other circles parallel to each other, filling a hemisphere
(or hemispheroid), (or the similarly placed lines of any similar planes constituting
half an elliptic pyramidoid), those circles (or planes) will be as the squares of their
radii (or of the similarly placed lines). That is, as R® — 0, R*> — o, R*> — 4a®, R* —
9a2, etc. (for those lines are v/(R? — 0), v/(R? — a®), /(R? — 4a?), /(R? — 9a?), etc.
by Proposition 121). Therefore the sum of all these to the sum of all equal to the
greatest, is as 2 to 3 by Proposition 118.

PROPOSITION 124

Corollary

In the same way, if the lines of a triangle ADB are set perpendicular one by
one to the lines of a trapezium ADg (of equal altitude and, with the triangle
itself, completing the parallelogram), the rectangles produced will be equal
to the same number of similar planes of an elliptic conoid (or pyramidoid).
And the mean proportionals DE, DE, etc. will be ordinates in the (circle or)
ellipse.
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The demonstration appears easily from what has been said at Propositions 121
and 123. For the segments of the line B3 in this figure amount to the same thing as
the segments of the diameter in that.

If, moreover, the lines AD, DB, are equal, and the lines AD, DF are perpendicular
to each other, those lines DE, DE, will be ordinates of a circle. But if [AD is] less
[than DBJ then certainly an ellipse. The portion AE, moreover, whether of a circle
or ellipse, is greater or less than the quadrant according to whether DB is greater
than or less than Dg3.

PROPOSITION 125

Theorem

If there is proposed a series of equals reduced by a series of third powers, the
[sums of] squares, cubes, biquadrates, etc. of the differences will have known
ratios to a series of the same number of terms equal to the greatest of those.

Series Squares Cubes
R® — 000 RS — 00R® 400 R® — 00R® + 00R® — 00
R®—-d3 RS —2a®R3® +4f R® — 3a3RS + 3a°R3 - o°
R -1 RS —26°R3 418 R® — 3b°RS 4 3b°R® — p°
R - RS —2¢6*R3 + (8 R® —3c®R° +3c°R% — ¢°
etc. to
R® - R® R® —2R3R®+ RS R® —3R®R® + 3R°R® — R®
Sum
AR® - 1AR® AR°—2AR°+1AR® AR®-3AR®+ 2AR®- LAR®
that is
—i=1 0 1-ieien 1-§+3-% =13

or:

§ 3 X6 3x6x9

4 4x7 4%x7x10
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And so on, by continually multiplying numbers in arithmetic proportion (as far as
the degree of the power requires), from 3 and 4, continually increasing by threes.

PROPOSITION 126

Theorem

In the same way, if there is proposed a series of equals reduced by a series of
fourth powers, fifth powers, sixth powers, etc. the [sums of] squares, cubes,
biquadrates, etc. of the differences will have known ratios to a series of the
same number of terms equal to the greatest of them.

Thus:
1 __ 4
l-5=3
2 1 _ 32
1-35+5=%
3 3 1 384
l—5+5 -5 =%
4 8 4 1 __ 6144
-3+t 5+7 =g
or
4 4x8 4x8x12 4x8x12x 16
5’ 5x9’ 5x9x13’ 5x9x13x17
In the same way:
1 _ 5
l1-§=%
2 1 __ 50
-5+t =56
3 3 1 __ 750
1—§+ 11— 16 = 1056
4 6 4 1 __ 15000
1-§+11 — 16+ 21 = 22176

or
5 x 10 5x10 x 15 5x10x 15 x 25

’ 6 x 11’ 6x11 x 16’ 6x11x16x21

(=1 e

And so in any others you please; that is, by continual multiplication of numbers in
arithmetic proportion (as far as the degree of the power requires), from 4 and 5, or
5 and 6, or 6 and 7, etc. continually increasing by fours, fives, sixes, etc. (according
to the index of the subtracted series). As will be clear by induction. In this way:
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And so on.

That is, if the index of the reduced series is denoted by a, its ratio to a series of
terms equal to the greatest, thus:

Reduced series Squares Cubes
a a 2a a 2a 3a
h th ti X .
ave the ratlo o7 e+l 2a+1 a+1  2a+1 % 3a41°
or a ___2(12 6’ etc
a+1 2a2? 4+ 3a + 1 6a3 +11a2+6a+1

to unity, or that unity has to

a+1 a+1 2a+1 a+1 2a+1 3a+1
X X X etc.
a a 2a a 2a 3a
a+1 22 +3a+1 6a® + 11a? + 6a + 1
or —_ etc.
a 2a2 6a3

And this same will hold if the reduced series is a series of roots.
For example, if from a series of equals there is taken a series of second roots with
index % For if one puts a = %,

thena—i_lz3
a
and ﬂ__1X2a+1:3X2=6
2a
1
and &1 atl 3a+t =3 x2x12 =10 etc.
a 2a 3a

Moreover, in this kind of subtraction, the [sums of] differences, squares, cubes, etc.
are to a series of terms equal to the greatest as 1 to 3, 6, 10, etc.

Similarly, if there is taken away a series of fourth roots with index i, then a =
and

1
1

a+1 2a+1 3a+1 1 4a+ 1
4a

= 2 etc.

And 5 x 3 =15, 15 x 2% =35, 35 x 2 = 70, etc. Moreover, in this kind of subtrac-
tion, the series of differences, squares, cubes, biquadrates, etc. are as 1 to 5, 15, 35,
70, etc. And similarly in others of this kind, as will also be shown further below.
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Meanwhile one may put some of the preceding propositions together in a table,
adjoined to the following proposition. That is:

PROPOSITION 127

Theorem

If there is proposed an (infinite) series of equals reduced by a (similar) series
of first powers, second powers, third powers, etc. [the sums of] the differ-
ences themselves, and [of] their squares, cubes, etc. will have ratios to the
proposed series of equals as 1 to the numbers indicated in the adjoined Table.
That is:

Follows from what has gone before.

COMMENT

Truly it may be investigated in the same way, what are the ratios of series of
apotomes®! of square roots, cube roots, etc. to a series of the same number of
terms equal to the greatest of them. The work may be done as the need arises.
For nothing else is lacking for the quadrature of the circle and ellipse. As is
already clear from Proposition 121, and as will further be clear from various
propositions following. ‘

PROPOSITION 128

Theorem

If there is proposed a series of equals reduced by a series of second roots, the
[sums of] squares, cubes, biquadrates, etc. of the differences will have known
ratios to a series of the same number of terms equal to the greatest of them.

51 Apotomes are quantities of the form /a — /b.
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That is:

Series Squares Cubes

VR - a R—-2VaR+a RyR - 3R\/a+ 3a\/R — a\/a
VR — /b R—2VbR +b Ry/R — 3R\/b+ 3by/R — b\/b
VR —+/c R-2VcR+c R\/R —3R\/c+ 3cy/R —cy/c
etc. to

vR—- R R-2VRR+R RyR-3RyR+3RyR—-RyR

AVR-2AJR AR-%AR+1AR ARJR-$ARJR+ 3ARJR-2AR\R

1- 1-

wWhn
Np=
wio

+

W

[S11N)
sl

_1
=3 1—

— I
=

+
1 1 1
1+2 1+2+3 1+2+3+4

+

And so on; that is, the ratio of 1 to the triangular numbers, or to a sum of numbers
in arithmetic proportion from 1 continually increasing by one (as far as the degree
of the power requires).

PROPOSITION 129

Corollary

And therefore the conoid (or pyramidoid) generated by the complement of a
half parabola around one of its ordinates is to a cylinder (or prism) of the
same base and height as 1 to 6.

A, v T

LI

That is, as the squares of differences of a series of equals reduced by a series of second
roots, to the same number of terms equal to the greatest. For since in the complement
of a half parabola AOT, the lines parallel to its diameter AT are differences of
equals reduced by second roots (the ordinates of the half parabola AOD), if that
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complement AOT is turned around TO itself as axis (or also around others, as
has been said elsewhere) there is formed a conoid (or by analogy a pyramid) with
vertex O; and the circles described by such turning (or similar planes in similar
positions) will be as the squares of those lines (parallel to AT). That is, as squares
of differences, of a series of equals reduced by second roots; and therefore as 1 to 6
by what has gone before.

COMMENT

And it may be considered in the same way for cones and pyramids generated by
the complement of any higher parabola about one of its ordinates, according to
the following propositions. That is, with appropriate changes, as the degree
of the parabola will require. Thus for a cubical parabola as 1 to 10, for a
biquadratic parabola as 1 to 15, for a supersolid parabola as 1 to 21, etc.
according to the table in Proposition 131.

PROPOSITION 130

Theorem

If there is proposed a series of equals reduced by a series of third roots, the
[sums of] squares, cubes, biquadrates, etc. of the differences will have known
ratios to a series of the same number of terms equal to the greatest of them.
That is:

Series Squares Cubes
R— {¥a VRZ-2VaR + Va2 VR3-3VaR? 4+ 3Va?R— Va3
R—- Vb VRZ—2VbR + Vb2 VR3—-3VbR? + 3Vb2R— Vb3
R— ¥c VRZ—2V/cR+ Vc? VR3-3VcR? + 3V c2R— V3
etc. to
R- VR VR?-2VRR+ VR? VR3-3VRR? + 3VR*R- VR
AVR-3AVR AVRE-SAVR?+3AVR? AR—5AR+ 2AR-}AR

-3=4 1-3+i=4 “$i-i=d
or:

1 1 1
1+3=4 4+6=10 10+10=20

And so on; by continually adding triangular numbers, or sums of arithmetic propor-
tionals, there may be had the denominator of a ratio in which the numerator is 1.
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PROPOSITION 131

Theorem

In the same way, if there is proposed a series of equals reduced by a series of
fourth roots, fifth roots, etc. the [sums of] squares, cubes, biquadrates, etc. of
the differences will have known ratios to a series of the same number of terms
equal to the greatest of them.

For as in the subtraction of a series of second roots, the denominators of the ratios
arise by continual addition of numbers in arithmetic proportion, 1 +2 =3, 1+ 2 +
3=343=6,14+24+3+4=6+4+4=10,14+24+34+4+5=10+5=15,1+2+
34+44546 =15+ 6 = 21, etc. so in the subtraction of third roots, the denomina-
tors arise by continual addition of those numbers (1, 3, 6, 10, 15, 21, etc.) found in the
method for subtraction of second roots, that is, 1 +3 = 4,4+ 6 = 10, 10 + 10 = 20,
20+15=35,35+21=56,etc.,or 1+1+2=143=4,4+1+424+3=1+3+
6=10, 10+14+24+34+4=1+3+6+10=20, 20+14+2+3+4+5=1+3+
64+104+15=35, 354+1+24+34+4+54+6=1+3+6+4+ 10+ 15+ 21 =56, etc.
Thence from the numbers already found (1, 4, 10, 20, 35, 56, etc.) by continual
addition, there arise the denominators of the ratios for the subtraction of fourth
roots (that is, 1+4 =5, 5+ 10 = 15, 15 + 20 = 35, 35 + 56 = 91, etc.). And from
these again by continual addition, there arise the denominators of the ratios for
subtraction of the next series (fifth roots). And so on, by this method.

COMMENT

And here we have met on the way an unexpected investigation of figurate
numbers (as they are usually called). For all the numbers (here and in the
following tables) made by this kind of addition are figurate numbers, that
is, laterals, triangular numbers, pyramidal numbers, etc. Which, since it is
obvious to anyone, it is sufficient to have pointed out.

It is also evident (in either table) that the sequences of numbers thus found
are just the same horizontally as vertically.

Moreover, from what has been said it is possible to bring together a sum-
mary of some of the preceding propositions (that is, concerning series of equals
reduced by series of roots) in one table, which I adjoin to the next proposition.
That is:

PROPOSITION 132

Theorem

If there is proposed an infinite series of equals reduced by a similar series of first
powers (or, if one likes, first roots, which amounts to the same thing), second
roots, third roots, etc. then [the sums of] the differences themselves, and [of]
their squares, cubes, biquadrates, etc. will have ratios to the corresponding
series of equals as 1 to the numbers indicated in the adjoined table. That is:
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Follows from what has gone before. Moreover, any intermediate number in the table
is the sum of two next to it, one from above, the other moved to the right.

It must also be noted that the same ratio is produced for squares of differences
if there are taken third roots, as for cubes of differences if there are taken second
roots; the same for sixth powers if there are taken seventh roots, and for seventh
powers if there are taken sixth roots; and so everywhere, as though by reciprocation
of powers, as is clear from inspection of the table.

But other similarities also sometimes happen, thus for supersolids if there are
taken first roots, and for the differences themselves if there are taken fifth roots,
but also for squares if there are taken second roots. The same for ninth powers if
there are taken first roots, and for the differences themselves if there are taken ninth
roots, but also for cubes if there are taken second roots, and for squares if there are
taken third roots. The same for eighth powers if there are taken sixth roots, and
for sixth powers if there are taken eighth roots, but also for twelfth powers if there
are taken fifth roots, and for fifth powers if there are taken twelfth roots; and so on
elsewhere as is clear from the table.

PROPOSITION 133

Theorem

If there is proposed a series of first powers reduced by a series of second
powers, the [sums of] squares, cubes, biquadrates, etc. of the differences will
have known ratios to a series of equals. Thus:

Series Squares Cubes

aD? — a? a’D? — 2¢°D + o* a®D?® — 3a*D? + 3a°D — of

bD? — b? b?D? — 26°D + b* D% — 36 D? + 36°D — b°

cD? — ¢? ¢D? - 28D + ¢t D3 —3¢*D? +3¢°D - ¢

etc. to

DD - D? D?D? - 2D%D + D* D*D® - 3D*D? +3D°D — DS
2 2 4

1AD? - 1AD 3$AD* — 2AD*+ 1AD*  1ADS - 2ADS+ 2AD° - 1AD®

1 1 1 2 1 2 1 _ 4 3 3

3-3=§AD" 3-i+5=g5A4D i—5t5-7=104D°
11 1x2 2 1 1x2x3 6 1

2x3 6 3x4x5 60 30 4x5x6xT 840 140
11 14 1 4 L9 1

2x3 6 2x3  4x5 30 2x3  4x57 6xT7 140

And so on, by continually multiplying the numerators by square numbers, and the
denominators by pairs of consecutive arithmetic proportionals.
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PROPOSITION 134

Corollary

Therefore if a series of equals reduced by a series of first powers is multiplied
term by term by a series of first powers, the sum of the rectangles®? (or of
squares or any similar figures, equal or even proportional to them) will have
a known ratio to the sum of the same number of equals.

And the same happens if the squares of the former series are multiplied
by the squares of the latter, the cubes of the former by the cubes Of the
latter, etc.

That is, they produce the same ratios as in the preceding proposition. As if to say:

D-a (D-a)’=D?>-2aD+a*> (D-a)®=D?-3aD*+3a’D—-a?

times ‘a a® a®
makes aD—a? a’D?*-2a®*D +a* a®D?®—3a*D?*+3d°D —af
etc.

PROPOSITION 135

Corollary

Therefore the semicircle to the square of its diameter (or also the semi-ellipse
to the parallelogram circumscribing the ellipse) has the same ratio as the
square roots of the differences, of a series of first powers reduced by a series of
second powers, to a series of terms equal to the greatest of those first powers.
Therefore the complete circle (or ellipse) to that square (or parallelogram)
will have twice that ratio.

R

For if the diameter of the circle (or ellipse) is taken to be D (of which an infinitely
small part is D/oo = a), and its ordinates an infinite number of lines (equally spaced)
filling the semicircle (or semi-ellipse), they will be (as is known) mean proportionals

52 Rectangulorum, or ‘products’, as in Proposition 120.
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(or at least for the ellipse, proportional to those mean proportionals) between the
segments of the diameter. Thus:

between a 2a 3a 4a

and D—a D —2a D —3a D —4a
therefore V(aD = a?) V/(2aD — 4a?) (3aD — 9a?) V/(4aD — 16a?)
or V(@D —a?®)  /(bD —b*) V(eD —c?) (dD — d?)

And therefore the sum of all, that is the semicircle (or semi-ellipse), to the same
number of terms equal to \/D? itself, thus, to the square of the diameter (or at least
the diameter multiplied by the altitude) is

as \/(aD — a®) + \/(bD — b%) + /(cD — c*)+ etc. as far as /(DD — D?)
to /D? + /D? 4+ /D*+ etc. = A\/D* = AD

Therefore the complete circle to that same square as

2\/(aD — a*) etc. to AD

PROPOSITION 136

Corollary

And hence if we take the infinite lines (the ordinates) of any half parabola
set perpendicular one by one to the lines of the same in inverse position, the
solid that arises, consisting of an infinite number of those rectangles (or of
squares, or indeed other similar figures, equal to those rectangles) will be, to
the corresponding parallelepiped of equal height (that is, whose base is equal
to the square of the base of the half parabola), as the semicircle to the square
of its diameter. (And indeed, the mean proportionals will be as the square
roots of the ordinates of the circle or ellipse.)

N s
of 17

P
Let that same parabola be APO in normal position and PAw in inverse position.
Therefore (by the nature of the parabola) the squares of the ordinates (that is, the
lines DO, DO, etc. decreasing, or Dw, Dw, etc. increasing) will be an infinite series
of first powers, thus, a, 2a, 3a, etc. or in their place a, b, ¢, etc. of which the greatest
may be called D (that is, the square of the base PO or Aw). And therefore in inverse

position they will be D —a, D —2a, D — 3a, etc. or also D —a, D — b, D — ¢, etc.
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(For if ordered from the least the increase between each is equal, or the decrease if
ordered from the greatest.) And consequently the ordinates themselves (that is, the
second roots of those squares) are in the former case /a, v/2a, \/3a, etc. or \/a, /b,
V¢, etc. and in the latter /(D — a), /(D — 2a), /(D — 3a), etc. or (in their place)
V(D —a), /(D —b), /(D — c), etc. Therefore setting the latter perpendicular to
the former, there arise rectangles Odw. That is,

setting V(D —a) V(D —b) V(D =¢) etc.
perpendicular to Va Vb Ve ete.
gives V(aD — a?) V(6D —b?) V(eD = ¢?) etc.

Moreover, the sum of all the rectangles; to the rectangle /D — 0 times /D — 0,
that is, \/D2 = D, taken the same number of times, that is, of the solid arising from
that multiplication, to the said parallelepiped, is as the semicircle to the square of
its diameter, from what has gone before.

And therefore also, the mean proportionals between corresponding lines OD,
Dw, will be as the square roots of the ordinates of the circle or ellipse. Since, indeed,
the rectangles Odw are proportional to those ordinates.

COMMENT

Note, however, that it is not necessary for the half parabola placed in inverse
position to be exactly the same as that in normal position, for the thing
succeeds no less for any two half parabolas placed in inverse position provided
they are of equal altitude. In such a way, however, that if they have unequal
bases, the base of the parallelepiped is not taken to be the base of either
parabola squared, but equal to a rectangle of both, thus PO x Aw. Which it is
sufficient to have pointed out, since the same demonstration as that preceding
can also be accommodated to this, by making light changes. Whence this one
also may easily be inferred.

But the figure consisting of all the mean proportionals (between OD and
Dw) will be elliptoid, in which, that is, the squares of the ordinates are them-
selves proportional to the ordinates of the ellipse, as is clear. Just as, that is,
in a biquadratic parabola, the squares of the ordinates are proportional to the
ordinates of the parabola. And the squares of the ordinates of the parabola
are proportional to the ordinates of a triangle.

PROPOSITION 137

Corollary

In the same way, spheroids (or also elliptic conoids or pyramidoids) to a
circumscribed cylinder (or prism), will have the same ratio as four times a
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series of first powers reduced by a series of second powers, to a series of
the same number of terms equal to the greatest of the first powers. That is
as 2 to 3.

R

For since the lines in a circle or ellipse are twice the series v/(aD — a?), etc. the
planes in the conoid or pyramidoid will be as four times aD — a?, etc. And therefore
that to the circumscribed prism or cylinder as 4 to 6, or 2 to 3. By Proposition 133.
Which has also been shown previously at Proposition 123.

PROPOSITION 138

Corollary

In the same way, if a parallelogram is cut by a diagonal line, and the lines
of one triangle are set perpendicular to their continuations in the other, the
mean proportionals will be the same number of ordinates of {either a circle
or at least) an ellipse. And their squares will be the planes of a circular or
elliptic (or some similar) pyramidoid or conoid.

beesovisnwnawi@acncads

B -

Follows from the two preceding propositions. For the coterminous lines stand in for
the segments of the diameters. And will produce either a circle or an ellipse, as may
be proved from the same information as in Proposition 124.
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PROPOSITION 139

Theorem

If there is proposed a series of first powers reduced by a series of third powers,
the [sums of] squares, cubes, biquadrates, etc. of the differences will have
known ratios to a series of equals. That is:

Differences Squares Cubes
aD? — a’D* — 2a*D? + a® a®D% — 3a°D* 4 30" D? — a°
etc. to
DD? - D3 D?*D* —2D*D? + D¢ D?D® —3D°D* 4+ 3D"D?* — D°
1 3 12 _ 6 13 _ 9
3—1=14D 53— 2+1=14D i~ eti—1=r10204D
or:
2 2x4 2X4x6
2x4 Ixb5xT7 4x6x8x10

And so on; thus:

2x4x6x8 2x4x6x8x10 2X4x6x8x10x12

EX7x9x11x13 6x8x10x12x14x16" 7Tx9x11x13x15x 17 x 19’

etc.
PROPOSITION 140

Corollary

The same happens if a series of equals reduced by a series of second powers
is multiplied by a series of first powers. And the squares, cubes, etc. of the
former by the squares, cubes, etc. of the latter.

(Thus, if the lines of a half parabola, parallel to the diameter, are set perpendicular
to the lines of a triangle. For their continuations, in the complement, are a series of
second powers.)

Since, that is, D? — a? times a is aD? — a®

, etc.

PROPOSITION 141

Theorem

If there is proposed a series of first powers reduced by a series of fourth powers,
the [sums of] squares, cubes, etc. of the differences will have known ratios to
a series of equals. That is:
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Differences Squares Cubes

aD?® — o a?D® — 2a°D3 + o® a@®D® — 3a°D% + 3a°D% — a'?  etc.
1 4 1 2 1 8 1 3 3 1 __ 81 12
3= 5 =1AD 3~ %+5=3AD i~ 7%t 1= mAD
or:

3 3x6 3x6x9
2x5 3x6x9 4x7x10x13
3x6x9x12 I3x6x9x12x15

A hus: tc.
ndso on, thus: T S T 17 6x9x12x15x18x2l’ °F

PROPOSITION 142

Corollary

The same holds if a series of equals reduced by a series of third powers is
multiplied by a series of first powers.

(Thus, if the lines parallel to the diameter in a cubical parabola are set perpendicular
to those of an inscribed triangle. For their continuations in the complement are a

series of third powers. And similarly, with apropriate changes, in other propositions.)

Since, that is, D® — a® times a is aD? — a*.

COMMENT

And it may be similarly considered, with appropriate changes, in any other
cases whatever, where a series of this kind is composed from two or more other
series multiplied by each other. As is clear.

PROPOSITION 143

Theorem

Equally, if there is proposed a series of first powers reduced by a series of fifth
powers, sixth powers, etc. the [sums of] squares, cubes, biquadrates, etc. of
the differences will have known ratios to a series of equals.

Thus 4 4x%x8 4x8x12 4x8x12x 16 otc.
2x6° 3xT7x11" 4x8x12x16° 5x9x13x17x21’

Similarly 5 5x10 5x10x 15 5x 10 x 15 x 20 otc.
2x7 3x8x13" 4x9x14%x19° 5x10x15x20x 25’

And so on, as the power of the reduced series requires. As will be clear by induction.
Therefore:
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PROPOSITION 144

Theorem

If there is proposed a series of first powers reduced by a series of second powers,
third powers, fourth powers, etc. [the sums of] the differences themselves, and
[of] their squares, cubes, biquadrates, etc. will have ratios to a series of equals,
as the adjoined table indicates. Or as the numbers in the table have to 1.
That is:

PROPOSITION 145

Theorem

Similarly, if there is proposed a series of second powers reduced by a series
of third powers, fourth powers, fifth powers, sixth powers etc. [the sums
of] the differences themselves, and [of] their squares, cubes, biquadrates,
etc. will have ratios to a series of equals, as the adjoined table indicates.
That is:



The Arithmetic of Infinitesimals 111

PROPOSITION 146

Theorem

In the same way, if there is proposed a series of third powers reduced by a series
of fourth powers, fifth powers, sixth powers, etc. [the sums of| the differences
themselves, and [of] their squares, cubes, biquadrates, etc. will have ratios to
a series of equals, as the adjoined table indicates. That is:
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COMMENT

And in the same way, it will be easy either to continue these tables as far as one
likes, or to compose others also for the succeeding series, thus for series of fourth
powers, fifth powers, sixth powers, etc. reduced by any series of higher powers.

PROPOSITION 147

Theorem

If there is proposed a series of second roots reduced by a series of first powers,
the [sums of] squares, cubes, biquadrates, etc. of the differences will have
known ratios to a series of equals.

That is, as shown in Proposition 133. Thus:

Differences Squares Cubes

VaD-va&& V@D -2/@D+val | VaDP ~3vaiD? +3v/aSD ~ Vb ete.
to

VDD — VD2 vD?2D? —2v/D3D + VD% |VD3D3 —3vVD4D? + 3vD5D — VDb

2AVD? - 2AVD?|2AVD% - £ AVD? + 2AVDT|2AVDS — §AVD® + £AVD® — 2AVDS

2_2_2 _1 2_4,2_ 4 _ 1 2_6,6_2_ 12 _ 1
3 4 12 6 4 5 6 120 30 5 6 7 8 1680 140
2 1 2x2  1x2 2x2x3  1x2x3
3x4 2x3 4x5x6 3x4x5 5X6XTX8 AX5X6XT

PROPOSITION 148

Corollary

The same holds if a series of equals is reduced by a series of second roots, and
multiplied by a series of second roots.

(Thus if the ordinates of a half parabola are set perpendicular to their continuations
in the complement.) For vD — \/a times \/a makes vaD — vaZ = vaD — a etc.

And what is formed from the squares of the former [(vV'D — v/a)?v/a?] is equal to
that formed from the squares of the latter [(vaD — a)?], etc.

PROPOSITION 149

Corollary

Also obvious, are the ratios arising, whether the proposed series is a — a?, etc.
or the series v/a — /a2 (or \/a — a) etc.
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That is, as collected in Propositions 133 and 147.

COMMENT

And therefore to the rest of the corollaries that are to be had after Propo-
sition 133, these also (with appropriate changes), may be added without dif-

ficulty. Which it is sufficient to have indicated.

PROPOSITION 150

Theorem

If there is proposed a series of second roots reduced by a series of square
roots of third powers, the [sums of] squares, cubes, biquadrates, etc. of the
differences will have known ratios to a series of equals. That is:

Cubes

Differences Squares
aD? — Va3 | Va2D* — 2va*D? + Vab | va3D® — 3va>D4+3va7D2—/af etc.
2 2 _ 4 2 4,2 _ 16 _ 2_6,6 _ 9
375 1 i—itiTim—n F-2+8 T = mes
4 4 x4 4x4x6

VD3 _E2X% AJ/DS _2REXD AVDo
3><5AD 4><6><8AD 5><7><9><11AD

PROPOSITION 151

Corollary

The same holds if a series of equals reduced by a series of first powers is

multiplied by a series of second roots.

Since D — a or VD% — +/a?, times /a, makes D\/a — a+/a or VaD? — va3.

COMMENT

And it may also be understood similarly in other cases, where the proposed
series may be separated, into two or more components.

PROPOSITION 152

Theorem

If there is proposed a series of second roots reduced by a series of second
powers, the [sums of] squares, cubes, biquadrates, etc. of the differences will

have known ratios to a series of equals. That is:
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Differences Squares Cubes

aD3 — Va4 Va2D6 — 2v/a5D3 + Va8 | Va3D9 — 3vab D6 + 3va%D3 — val2 etc.

2_2_6_112 4., 2 36 _ 9 |2 6,6 2 _ 3224 __ 81
3 6 18 31 4 7 10 280 70 5 8 11 14 6160 1540
6 6 %6 6x6x9
3 x6 4x7x10 5x8x11x 14

And so on. And similarly for the subtraction of a series of any higher power. And
therefore:

PROPOSITION 153

Theorem

If there is proposed a series of second roots reduced by a series of first pow-
ers, second powers, third powers etc. or square roots of third powers, fifth
powers, etc. then [the sums of] the differences themselves, and [of] their
squares, cubes, biquadrates, etc. will have ratios to a series of equals, as the
adjoined table indicates. That is:
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PROPOSITION 154

Theorem

Equally, if there is proposed a series of third roots reduced by a series of first
powers, second powers, third powers etc. or cube roots of second powers, fourth
powers, fifth powers, seventh powers, etc. then [the sums of] the differences
themselves, and [of] their squares, cubes, biquadrates, etc. will have ratios to
a series of equals, as the adjoined table indicates. That is:

COMMENT

And by a similar method it will not be difficult either to continue these tables
as far as one likes, or even to compose others for other series, thus for series
of fourth roots, fifth roots, etc. (or indeed of square roots of third roots,
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fifth roots, etc. or cube roots of second roots, fourth roots, etc. or of others
similar), reduced by any series of higher powers.

But it is also easy to interpolate these tables (and others similarly cons-
tructed) to any length, by interposing between any horizontal sequences, as
will be clear from correct consideration of the progression of the tables.

For example, in the table of Proposition 144, if a series of first powers is
reduced by a series of square roots of fifth powers, this reduced series may be
interposed, forming another horizontal sequence between the first and second
of that table (since, that is, square roots of fifth powers, with index % or 2%,
hold the mean place between second powers and third powers, with indices 2
and 3), and that sequence will be:

Differences Squares Cubes Biquadrates
13 11 x3 14 x 3 x 41 11 x3x4% x6
2% 3% 3x43x6  4x5LxTx8F  5x6:x8x95x11
or 3 3x6 3x6x9 3x6x9x12
2x7 3x9x12 4x11 x14 x 17 5 x 13 x 16 x 19 x 22
or 6 6 x6 6x6x9 6x6x9x12
4x7 6 x9x12 8x 11 x 14 x 17 10 x 13 x 16 x 19 x 22

And it will not be difficult to show the same also for other tables, if the pattern
of each table is observed.

And in the same manner, one may interpolate the same tables to any
width, clearly by interposing others among the vertical sequences (thus, the
square roots of differences, square roots of cubes, etc. or cube roots of differ-
ences, squares, biquadrates, etc. or similar), but at this point the work is not,
easy, if indeed it is possible.>® Afterwards, moreover, I will try as far as I can,
and indeed will show to a certain extent, that one may work out completely
what I hardly dared promise except by approximation.

Meanwhile, something must be said of augmented series, lest I seem to
have omitted them completely; but briefly, lest I become tedious.

PROPOSITION 155

Theorem

If there is proposed a series of equals augmented by a similar series of first
powers, the [sums of] squares, cubes, biquadrates, etc. of the aggregates will

53 Here Wallis needs what he has needed all along, the binomial theorem for fractional
indices.
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have a known ratio to a series of equals. That is:

Aggregates Squares Cubes

R+a R? + 2aR +a? R3 +3aR? +3d’R +a®
etc. to

R+R R? +2RR + R? R3+3R?+3R’R+ R?

AR+ 1AR AR? + 2AR? + L AR? AR® + 3AR3 + 3AR® + 1 AR®

1 3 2 1 _ 7 3 3 1 __ 15
1+§=§ 1+§+§—§ 1+§+§+Z_T

Where any numerator consists of twice the preceding one increased by 1; and the
denominator, of the preceding one increased by 1.

PROPOSITION 156

Corollary

Therefore, if from a trapezium (constituted from a parallelogram and a tri-
angle, of equal base and height), there is generated a truncated conoid (or
pyramidoid), (whether by turning about the axis, or otherwise), it will be to
the inscribed cylinder or prism as % to 1, or as 7 to 3.

That is, as the squares, of a series of equals augmented by a series of first powers,
to a series of equals.

If the bases of the parallelogram and triangle are unequal, some adjustment must
be introduced.

PROPOSITION 157

Corollary

If, moreover, that truncated conoid or pyramidoid is excavated by a cylinder
or prism, the residue will be (to the greatest inscribed cylinder or prism) as 4
to 3.

That is, £ — 3 =% to 1.
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PROPOSITION 158

Theorem

If there is proposed a series of equals augmented by a series of second powers,
the [sums of] squares, cubes, biquadrates, etc. of the aggregates will have
known ratios to a series of equals. (Thus, if a parallelogram is augmented by
the complement of a half parabola.)

That is, for any term of the series of first powers I put a (to shorten the work), and
therefore for any term of the second powers, a?, etc. Then:

Aggregates Squares Cubes
R? + 42 R* 4+ 24%R? + o* RS +3a’R* + 3a*R% + af
etc.

1AR? + 1AR? 1AR*+2AR*+ 1AR'* 1ARS+ 3AR®+ 3ARS + 1ARS

1 __ 4 2 1 _ 28 3 3 1 __ 288
l+3=3 l+3+5=1 l+3+5+7 =10

COMMENT

And it may be carried out by the same method if a series of equals is aug-
mented by a series of third powers, fourth powers, etc. As is clear.

PROPOSITION 159

Theorem

If there is proposed a series of equals augmented by a series of second roots,
the [sums of] squares, cubes, biquadrates, etc. of the aggregates will have
known ratios to a series of equals. (Thus, if a parallelogram is augmented by
a half parabola.) That is:

Aggregates Squares Cubes
VR+a VR? + 2vaR + Va2 VR3 + 3VaR? + 3Va?R+Va?
etc.

AVR+2AVR  AVR?+2AVR?+2AVR? AVR® + $AVR+ SAVR3+ 2AVR?

2_10 _5 2,2 __ 68 __ 17 6, 6, 2 _ 58 _ 49
1"‘3‘"6—3 1+3+4_24—6 1+3*‘4"‘5_120—10
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PROPOSITION 160

Theorem

If a series of equals is augmented by a series of third roots, [the sums of] the
aggregates and [of] their squares, cubes, etc. will have known ratios to a series
of equals.

(Thus, if a parallelogram is augmented by half a cubical parabola.). That is:

Aggregates Squares Cubes

YR+ ¥a VR? + 29/aR + Va2 VR? + 3VaR? + 3Va?R + Va3

etc.

2 ,.3_71 6,3 _ 31 3,9, 9,3 _ 111

3ti=g Ititi=15 3tatsts=%
COMMENT

And it may be carried out by the same method if there is proposed a series of
equals augmented by series of fourth roots, fifth roots, etc. or also by series of
square roots of cubes, supersolids, etc. or cube roots of second powers, fourth
powers, etc. And the same in other cases.

PROPOSITION 161

Theorem

Equally, if a series of first powers is augmented by a series of second powers,
[the sums of] the aggregates, and [of] their squares, cubes, etc. will have known
ratios to a series of equals. That is:

Aggregates Squares Cubes

aR+a? a’R? +2a°R + a* a®R3 + 3a*R? 4 3a°R + a®
etc.
1.1 _54p2 1.2, 1_ 31 4pd 1,33, 1_ 209 4p6
3tT3=¢AR 3tTi+35=54R8 itstets=10AR

And it may be carried out by the same method if there is proposed a series
of first powers (or also second powers, third powers, etc.) augmented by any
other series; so it is not worth dwelling on this any longer. In all of which, the
sequence of numbers, first in the numerator, then in the denominator, is clear
to the eye.
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PROPOSITION 162

Corollary

Therefore a hyperbolic conoid or pyramid to half the circumscribed cylinder
or prism is as 5 to 6, and to the total as 5 to 12.

(It is to be understood that both the transverse diameter and the maxi-
mum intercepted diameter, are equal to the latus rectum, otherwise an appro-
priate adjustment must be introduced.)

For if the latus rectum of the hyperbola is taken to be [ or R, the transverse diameter
t = [, and intercepted diameter d, the squares of the ordinates will be dl + %dl (by
Proposition 33 of On conic sections)® or (since t = 1) dl + d?. And therefore (since !
or R are fixed quantities, while d is variable, and indeed proportional to the altitude,
for which may therefore be substituted a, b, c, etc.) all the squares (and also therefore
the planes of the conoid of pyramidoid) will be an infinite series of first powers
augmented by a series of second powers, thus aR + a2, bR + b2, cR + ¢, etc. as far
as R? + R? = 2R%. And therefore that series, to half a series of the same number
equal to greatest (thus to AR?), will be as 5 to 6 by what has gone before. And
therefore to the complete series of equals as 5 to 12. As was proposed.

COMMENT

The same also happens if the greatest intercepted diameter is taken to be
equal to the transverse diameter. As may be gathered from the following
proposition.

54 Here for the first time Wallis used some of the algebraic formulae that he developed in
On conic sections.
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PROPOSITION 163

Corollary

If, moreover, the limitation of the preceding proposition does not apply,®®
the ratio of the conoid or pyramidoid to the circumscribed cylinder or prism,
although not the same as there indicated, is nevertheless known.

For in any case, the squares of ordinates of the hyperbola are dl + ?l, ordL + gL,

r ML. If for the intercepted diameters, d, d, etc. there are put in turn

a, b, ¢, etc. and it is supposed that the greatest of them is D, then the square

of the greatest ordinate is DT—;ZEL. All aT + bT + cT etc. (as far as DT)

are equal to $ADT, and all a? + b + % ete. (to AD?) are equal to %AD27 the
sum of which, 2ADT + %AD2, if multiplied by L and the product divided by

LADT + 1 AD? l741p
T, will give 2———3———L, or also 2——3 " ADL, or thence 3—T—_'_—2P—ADL.

6T
T
3—6_;12—DADL, the sum of squares of all ordinates, to

ADL, the sum of the same number of terms equal to the

And the ratio of this,

2
DT+D” ) o TED

square of the greatest, is that of the conoid or pyramidoid to the circumscribed

cylinder or prism (since the planes are proportional to those squares), that is, as
3T6+T2D to T;D, or as 3T + 2D to 6T + 6D, or as %T+ %D to T+ D. There-

fore:

PROPOSITION 164

Corollary

As half the transverse diameter augmented by a third of the intercepted diam-
eter, to the sum of the transverse and intercepted diameters; or as three times
the transverse together with twice the intercepted to six times both together:
so is the hyperbolic conoid or pyramidoid to the circumscribed cylinder or
prism (on the same base).

Clear from what has gone before.

55 That is, the limitation that both the transverse diameter and the maximum intercepted
diameter must be equal to the latus rectum.
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PROPOSITION 165

Corollary

In the same way, the hyperbola to the circumscribed parallelogram is as a
series of square roots augmented term by term, to a series of the same number
of terms equal to the square root of the greatest.

That is, if the condition of Proposition 162 holds, as v/(aR + a2) + /(bR + b%) +
V/(cR + ¢?) etc. (as far as /(R* + R?)), to A\/(R? + R*) = A\/2R? = AR,/2. That
is, as all the ordinates to the greatest taken the same number of times.

aT + a?

But if that condition does not hold, then it will at least be as L+

bT + b2 \/cT+c2 [DT + D? {DT + D?
\/ T L+ T L etc. (as far as —T—L),toA —T———L.That

is, (dividing everything by /L and multiplying by /T) as /(aT + a®) + /(bT +
b%) + V/(cT + ¢?) etc. (as far as /(DT + D?)), to A\/(DT + D?), as is clear from
the demonstration in Proposition 163.%¢

COMMENT

And by what means the ratio of the sum of those roots, to the sum of the
same number equal to the greatest, may eventually be expressed in numbers,
is not so easily shown.

And therefore we here come upon the same difficulty in the quadrature
of the hyperbola as we recalled several times above for the quadrature of the
circle or ellipse (and various other curved figures), that is, that it must now
be inquired what are the ratios for infinite series of roots of binomes, just as
there for apotomes.

And indeed I was sometimes inclined to believe the thing to be quite
impossible, that an infinite number of surd roots, incommensurable to each
other, might be brought together in one sum that has an explicable ratio to
some proposed rational quantity.

And this indeed seems to be confirmed still more strongly, since a finite
series of this kind, to a series of the same number of terms equal to the great-
est, has scarcely allowed any other expression of the ratio than by repetition
of everything piece by piece; for rarely do two or more happen to be commen-
surable, that can be gathered into one sum.

For example, if the radius of a circle is taken in six equal parts, the
right sines or ordinates in the quadrant standing on the ends of each of
those parts will be /(36 — 0) + /(36 — 1) + /(36 — 4) + /(36 — 9) + /(36 —
16) + /(36 — 25) + /(36 — 36) (by what was said at Proposition 121), or what

56 This is virtually the last of Wallis’s geometric examples; from now on his investigations
are based almost entirely on arithmetic.
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it reduces to, /36 + /35 + /32 + /27 4+ /20 + /11 4+ /0, or as irrationals
reduced to their least terms, 6 4+ /35 + 44/2+ 3/3 +2,/5+ /11 + 0. The
ratio, therefore, of this sum of roots to the greatest root taken the same
number of times, thus 7,/(36 — 0), or 7./36, or 7 x 6, that is 42, can be no
better expressed than

6+/35+4y/2+3/3+2,/5+/11+0
42 '

And that is the ratio of those right sines or ordinates in the quadrant, to the
same number of lines equal and parallel to the radius in the circumscribed
square.

Equally, if the radius is taken in ten parts, the right sines will be
/(100 — 0) + /(100 — 1) + /(100 — 4) + /(100 — 9) + /(100 — 16) + /(100 —
25) + /(100 — 36) + /(100 — 49) + /(100 — 64) + /(100 — 81) + /(100 —
100). That is /100 + /99 4+ /96 + /91 + /84 + /75 + /64 + /51 + /36 +
V194 ,/0. Or 10+ 3y/11 +4/6 + /91 + 2,/21 + 5,/3 + 8 + /51 + 6 +
/19 + 0. Which sum cannot be written otherwise more briefly than by sub-
stituting 24 for 10 4+ 8 + 6 + 0; so the ratio of this sum to the greatest root
taken the same number of times, thus to 11,/100 or 11 x 10 or 110, can be no
better expressed than

244 3/11 +4/6 + /91 + 2/21 + 5¢/3 + /51 + /19
110 ’

which seems still less intelligible than when the radius is taken in fewer parts,
such as six.

And in the same way, as more parts of the radius are taken, so the expres-
sion for the ratio necessarily becomes more intricate; and indeed requires
repetition of almost all the roots, since they happen little, indeed rarely, and
only as if by chance, to be commensurable either with rational numbers or
with each other. And therefore if one takes the radius in an infinite number
parts, the ratio arising will appear even less expressible than here.

The same holds if, in the manner of Proposition 135, one takes the diameter
of the circle in twelve parts. For then the corresponding right sines in the semi-
circle are \/(0x12—-0)++/(1x12—-1)+/(2x12-4)+/(3x12-9) +
V(4 x12 = 16) + /(5 x 12 — 25) + /(6 x 12 — 36) + /(7 x 12 — 49) + /(8 X
12 — 64) + /(9 x 12 — 81) + /(10 x 12 — 100) + /(11 x 12 — 121) + /(12 x
12 — 144). That is /(0 —0) + /(12 — 1) + /(24 — 4) + /(36 — 9) + /(48 —
16) 4+ /(60 — 25) 4+ /(72 — 36) + /(84 — 49) + /(96 — 64) + /(108 — 81) +
/(120 — 100) + /(132 — 121) + /(144 — 144). That is /0+ /11 4+ /20 +
V27 + /324 /354 /36 + /35 4+ /32 4+ /27 + /20 + /11 + /0. Or because
of those roots taken twice, 24/0 + 24/11 4 2/20 + 2/27 + 2,/32 + 2,/35 +
v/36. Or reducing irrationals to least terms, 0+ 24/11 4+ 4,/5 + 6+/3 + 8\/2 +
2,/35 + 6. Therefore the ratio of this sum to the same number of roots equal to
the greatest, thus to 13,/36 or 13 x 6, that is to 78, can be no better expressed
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than as

0+2y/11+4/5+6y/3+8y/24+2,/35+6
78 ’
or
V11 +2/5+3/34+4y/2+,/35+3
39 '

And this is the ratio of the sum of those right sines in the semicircle, to
the same number of lines equal and parallel to the radius in the parallelo-
gram circumscribing this semicircle. If, moreover, the greatest sine /36 = 6 is
assumed to be taken twice (for both quadrants at the same time) and there-
fore for 13 equals, are put 14 (thus for 13 x 6 = 78 is put 14 x 6 = 84) this
will be the same ratio as was said above to arise from taking the radius in six
parts.

Equally if the diameter is taken 20 parts. The right sines in the semicircle
will be /(0x20-0)++/(1x20—1)4+/(2x20—4)+/(3x20-9)+
V(4 %20 —16) + /(5 x 20 — 25) + /(6 x 20 — 36) + /(7 x 20 — 49) + /(8 x
20 —64) + /(9 x 20 — 81) + /(10 x 20 — 100) + /(11 x 20 — 121) + /(12 x
20 —144) + /(13 x 20 — 169) + /(14 x 20 — 196) + /(15 x 20 — 225) + /(16 x
20 —256) + /(17 x 20 — 289) + /(18 x 20 — 324) + /(19 x 20 — 361) + /(20 x
20 — 400). That is /0 + /19 + /36 + /51 + /64 + /75 + /84 + /91 + /96 +
V99 + /100 + /99 + /96 + /91 + /84 + /75 + /64 + /51 + /36 + /19 +
V0. Or 2,/0 + 2/19 4 2/36 + 24/51 + 2/64 + 2,/75 + 2,/84 + 2,/91 + 2,/96
+ 24/99 + 1/100. (That is, the same as held above in a quadrant taking the
radius in ten parts, here put twice, except that the greatest sine, in common
to both quadrants, is not repeated.) Or also 0+ 24/19 + 12 + 2,/51 + 16 +
10/3 4+ 44/21 +24/91 + 8,/6 + 64/11 +10. Or finally (since 0+ 12+
16 +10 =38), 38+2\/19 +2,/51 + 104/3 + 44/21 + 2,/91 + 8\/6 + 6,/11.
And therefore the ratio of the sum of those roots to the greatest taken the
same number of times (thus, 21 x 10 = 210) is

38 + 2¢/19 + 2¢/51 4 104/3 4 41/21 + 2,/91 + 8,/6 + 6,/11
210

or
19 4+ /19 + /51 + 5y/3 + 2¢/21 + /91 + 4,/6 + 3,/11
105

And indeed the more parts there are taken of the radius or diameter,
so much less does the ratio of all the sines, to the greatest taken the same
number of times, seem expressible. Therefore if the radius or diameter is taken
in infinitely many parts (which it seems must be done for our purposes) the
ratio of all sines, to the radius taken the same number of times, that is, the
quadrant or semicircle to the circumscribed square or parallelogram, seems
wholly inexpressible, at least unless an expression of this kind is judged to be
sufficient, as we showed in Propositions 121 and 135.
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And thus having weighed this carefully, it nearly came about that I aban-
doned the investigation of the thing that, as it were, I so called for above. The
one thing that gave hope was this. That is, that the same difficulty notwith-
standing, in square roots, cube roots, biquadratic roots, etc. of numbers in
arithmetic proportion the thing turned out not badly.

For example, if a series of second roots is continued as far as you please,
thus, /O + /14 2+ /3 4+ /4 + /5 + /6, their ratio to the greatest taken
the same number of times, thus, 7./6, does not seem to be expressible other
than as

VO+V/1+2+/3+/4+/5+ /6
7/6 ’

or

0+1++v2+3+2+5+6
7/6 ’

or at least (since 0+ 1+2=3) as

3+v2+V3+5+ 6
7/6 ’

unless perhaps it pleases one to multiply both the numerator and denominator
by /6 to produce the ratio 3,/6 + /12 + /18 + /30 + /36 to 7 x 6, or rather
364234324 /3046 to 7 x 6 =42. And similarly in other series of
this kind.

But if the same series is supposed continued to infinity, it will eventually
produce the ratio % or 2to3orlto 1%, as was said in Propositions 53
and 54, the infiniteness itself indeed (which seems amazing) destroying the
irrationality.

And it holds similarly for third roots, fourth roots, etc. as is clear from
what was taught above in Propositions 54 and 59.

This difficulty notwithstanding, the quadrature of the simple parabola
been shown both by others before this, and also by us by our method; and
also the quadrature of any higher parabola (the same difficulty remaining) has
been taught by us happily enough above, so clearly not all hope was lacking
of eventually finding the ratio of series of universal roots (of augmented or
reduced series) to a series of equals. And indeed if not in every case, at least for
those so far set out; and perhaps even in those that touch on the quadrature
of the circle itself or the ellipse, or also the hyperbola, something may be
gained.

That what must next be inquired after may be more rightly seen, let us
remember what (among other things) has been achieved so far towards the
quadrature of the circle (or any ellipse).
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That is, by Propositions 118 and 121, if the sequence of ratios 1, 2, £, 48
%ﬁg—, etc. can be interpolated, the ratio that must be placed as intermediate
between the first and second is that of a quadrant of a circle to the square of
the radius, or the circle itself to the square of the diameter.

In the same way, by Propositions 133 and 135, if it were possible to inter-
polate this sequence of ratios }, &, 35, 135+ g3g» €tC., the ratio that must be
placed as intermediate between the first and second is that of a semicircle to
the square of the diameter.

But, above all, if it were possible to interpolate the diagonal num-
bers in the table in Proposition 132, that is, 1, 2, 6, 20, 70, etc., the
ratio of 1 to the number intermediate between the first and second of
those, is that of the circle to the square of the diameter, and the ellipse
to the circumscribed parallelogram. As will be proved by the following

proposition.

PROPOSITION 166

Theorem

If an infinite series of equals, first powers, second powers, third powers, etc.
is multiplied term by term by itself reversed,®” and the same also by itself
directly,® the sums of the products of the former, to the sums of the lat-
ter, are as 1 to 1, 2, 6, 20, 70, etc., the diagonal numbers in the table in
Proposition 132.

For if a series of equals (whether taken directly or reversed) is multiplied term by
term by itself, it will give a series of equals, to which there belongs the ratio 1 to 1.

If, moreover, a series of first powers is thus multiplied by itself directly, it will
give a series of second powers; if a series of second powers is thus multiplied it will
give a series of fourth powers; if a series of third powers, it will give a series of
sixth powers, etc. by Proposition 73. To which belong the ratios %, £, 1, 1, etc. by
Propositions 44 or 64.

If, moreover, a series of first powers is multiplied term by term by itself
reversed (thus the series a, b, ¢, etc. by the series D —a, D —b, D —c, etc.) or
in the same way a series of second powers by itself reversed (thus a?, b2, &2, etc.
by the series (D —a)?, (D —b)2, (D —¢)?, etc or D? — 2aD + a?, D? — 2bD + b2,
D? - 2¢D + ¢2, etc.) or in the same way a series of third powers by itself reversed

57 In seipsam inverse positam, that is ‘taken backwards’ or ‘reversed’. Bear in mind that
Wallis’s series, though it has an infinite number of terms, has a finite greatest term, and
so the terms can be taken in either direction.

58 In seipsam directe positam; Wallis uses ‘directly’ here to mean ‘forward’. Earlier (in
Propositions 99, 102, 103, 104, 106) he spoke of direct and reciprocal proportion; the
two uses of ‘direct’ are linked in that the powers, or indices, of direct series go forwards
(1,2,3,...) whereas the indices of reciprocal or inverse series go backwards
(-1,-2,-3,...).
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(that is a3, b3, ¢, etc. by (D —a)®, (D — b)3, (D —¢)3, etc.), and so on for the
rest, the ratios belonging to them are é, 310, 115 &30 etc. by Propositions 133
and 134.

Therefore the ratios of the latter ratios to the former ratios are as 1 to the
numbers 1, 2, 6, 20, 70, etc., that is, to the diagonal numbers in the table in Propo-
sition 132 (as is clear from the calculations). Which was to be proved.

COMMENT

It must be noted here: in the sequence of ratios %, %, —é—, %, —}5, etc. the denomi-

nators are arithmetic proportionals; and therefore if in the intervals there are
to be interposed the same number of ratios, they will be %, i—, %, %, etc.
by analogy with arithmetic proportionals, and the rules in Propositions 44
and 64.

But in the sequence of ratios %, %, %, ﬁ, éﬁ, etc. the denominators

are 1, 6, 30, 140, 630, etc. arising from continued multiplication of the num-

6 x10x 14 x 18 12 x 20 x 28 x 36etc.
.orl here b
bers 1 x X2 %3 x4 etc. or 1 x 5% 4 % 6 x Setc. (where both the

numerators and denominators of the fractions are arithmetic proportionals).
And therefore (by analogy with those progressions), if the number to be inter-
posed between the first and second is called A, then the rest, to be interposed

in the remaining intervals, arise from continued multiplication of the numbers

1 .
A X ———6 X 24 x 32etc . (And indeed, the number placed before the first is %A,
3 x 5 x Tete.

by the same analogy. In the previous case, moreover, and therefore in the
sequence soon to follow, the number before the first vanishes; that is, first to
0, then to infinity.)%°
Finally in the sequence of ratios %, %, %, %, 716’ etc. the denomina-
tors 1, 2, 6, 20, 70, arise from continued multiplication of the numbers
2 x 6 x 10 x 14etc. 4 x 12 x 20 x 28etc.

or 1x
1x2x 3 x 4etc. . 2X4x6 x 8etc.
the numerators and the denominators of the fractions are arithmetic propor-

tionals). And therefore (by analogy with such progressions), if the number to
be interposed between the first and second is called ¢, the rest arise from con-
8 x 16 x 24etc.

3 x 5 x Tete.

(where, as above, both

tinued multiplication of the numbers o x . (Moreover, a = %A,

since divided by lisz2=4L=1)

59 What Wallis means here is that in the sequence just discussed the multiplier before %

(following the same pattern) would be %, and therefore the term before A must be %A.
In the previous sequence the multiplier before % (following the same pattern) would be %
and therefore the term before 1 must be g = 0, and the one before that must be infinite.
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PROPOSITION 167

Theorem

Therefore if an infinite series of second roots (thus +/a, /b, \/c, etc.) is
multiplied term by term by itself reversed (thus by /(D —a), /(D —b),
V(D —c) etc.) and also by itself directly (thus the series \/a, /b, \/c, etc.
by the series v/a, /b, \/c, etc.), the sum of products of the former (thus
V(aD —a?) +/(bD — b%) + \/(cD — c?), etc.) to the sum of the latter (thus
Va? + /b2 +/c% etc. or a+b+c etc.) is as 1 to the intermediate number
interposed between the diagonal numbers 1 and 2 in the table in Proposi-
tion 132.

Follows from what has gone before. For a series of second roots is intermediate
between a series of equals and series of first powers (as is clear from what was said
in Proposition 64).

Moreover, a series of second roots multiplied by itself directly (thus \/a, v/b,
Ve, ete. by v/a, /b, v/c, etc.) is a series of first powers (thus v/a2, /b2, /c?, etc. or
a, b, ¢, etc.) to which belongs the ratio % by Propositions 44 or 64. And therefore,
if the ratio that belongs to a series of [second roots]®® multiplied by itself reversed

1

(intermediate, that is, between the ratios 1 and %) is said to be ﬁ, then the ratio

of this -5, to that 3, that is &, will be (by what has gone before) that of 1 to
the number interposed between 1 and 2, in the sequence of diagonal numbers 1, 2,
6, 20, 70, etc. in the table of Proposition 132. Which number, therefore, in what
follows will be called 0. And it is half the number interposed between 1 and 6 in the

sequence 1, 6, 30, 140, 630, etc.

PROPOSITION 168

Corollary

And therefore the circle to the square of its diameter is as 1 to [J, that is, to
the number interposed between 1 and 2 in the sequence of diagonal numbers
1, 2, 6, 20, 70, etc. in the table of Proposition 132.

For since (by Propositions 133 and 135) the semicircle to the square of its diame-
ter is as 1 to 200 (the number intermediate between 1 and 6 in the sequence 1, 6,
30, 140, 630, etc.) the circle (twice the semicircle) is as 1 to O (the number inter-
mediate between 1 and 2 in the sequence 1, 2, 6, 20, 70, etc.) by what has gone
before.

And indeed the same ratio % is that which must be placed as intermediate

between % and % in the sequence %, %, %, %, etc. by Propositions 118 and 121,

as will also be further obvious later.

60 Wallis has mistakenly written ‘first powers’.
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COMMENT

Since therefore (as at last we return to what we pointed out in the Comment

to Proposition 165) the thing may be reduced to this, Whether we can inter-

polate those ratios (noted in Proposition 118), 1 1 g, 185, 705 etc., that is, 1 to

1, g, 185, 14085, etc. (that is, to 1, 15 L 17 2498, etc.) which arise from continued
3 X 5 X 7 x 9etc.

2 x4 %6 x 8etc.’

Or also those 1, 1, 3%, ﬁ, etc. (from Proposition 133), of which the

denominators 1, 6, 30, 140, etc. arise from continued multiplication of the
6 x 10 x 14 x 18etc.

1 x 2 X 3 x 4etc.

Or finally those 1, 2, 1, L etc., that is, of 1 to 1, 2, 6, 20, etc. (the
diagonal numbers in the table in Proposition 132) which arise from continued
multiplication of the numbers 1 x £ X % X 10 X T 4 etc.

If, I say, we can interpolate any one sequence of these ratios, we will have
the quadrature of the circle very accurately. And indeed in the first and third,
the ratio to be interposed (after the first) will be £, but in the second the
ratio % And therefore if the interpolation is shown in one, it may also be
done without difficulty in the others.

One may therefore approach the table in Proposition 132 (as we assumed
from the beginning, whence there shines greater hope of understanding the
question), that we may see by what art we may interpolate it. And therefore we
repeat it with spaces placed alternately (so that what were there the first, sec-
ond, third sequence, etc. are here the second, fourth, sixth, etc.) and examine
it a little more closely, which is to be done in various propositions following.

PROPOSITION 169

multiplication of the numbers 1 x

numbers 1 x

Theorem

All the numbers of the table in Proposition 132 are figurate. That is, those in
the first sequence (whether vertically or horizontally) are units; those in the
second, sides; those in the third, triangular numbers; those in the fourth, pyra-
midal numbers, and so on, thus, triangulo-triangulars, triangulo-pyramidals,
pyramido-pyramidals, etc.

This is clear from inspection of the table, and by comparison (if needed) with the
figurate numbers that occur in Maurolico and others. Moreover, I use those names
that our master Oughtred (an exceptional mathematician) uses in his Clavis mathe-
maticae, (Chapter 17, note 11).%

61 Wallis is referring here to the second and later editions of William Oughtred’s Clavis
mathematicae, those published from 1647 onwards; in the first (1631) edition, Oughtred’s
note on figurate numbers appears at Chapter 18, note 16. Wallis was involved in cor-
recting the third Latin edition of the Clavis for publication at Oxford in 1652. See
Stedall 2002, 55-87.



130 The Arithmetic of Infinitesimals
Moreover, what were the first, second, third sequences, etc. in that table

in Proposition 132, now here repeated in the same way become the second,
fourth, sixth, etc. (because of the interposed spaces to be filled, if possible, with

numbers).

PROPOSITION 170

Theorem

Two sequences in the table shown, that is, units and sides, are easily interpo-
lated (interposing as many places as one likes); in the former, obviously, by
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the interposition of one as many times as needed; in the latter, by the same
number of arithmetic means.

Thus, one may interpose a single number everywhere; the interpolated sequences of
units will be 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1; but of sides 3, 1, 1%, 2,21, 3,31, 4, 43,
3, 5%1 6, or %7 17 %7 2’ %, 3y %7 41 %7 ‘5y %7 6.

The reasoning is obvious; since the numbers in the former sequence are equals,
in the latter arithmetic proportionals.

COMMENT
The remaining sequences are not so easily interpolated, except by first finding

the true nature of each sequence, which we will investigate in the following
Propositions.

PROPOSITION 171

Lemma

Let it be proposed to inquire, what is the ratio of the triangular numbers to
their sides.

We will investigate that by this process:

1. If one takes the number of points that any triangular number requires, they can
of necessity be displayed in the form of a triangle, and the lines may be joined
as in the diagram. It is clear that the complete triangular figure is divided into
as many triangles (similar both to the whole and amongst themselves) as the
square of the number of the side less one (which may be demonstrated if need
be from Euclid’s Elements V1.19). And therefore if the number of the side is I,
the number of small triangles will be (I — 1)% = 1% — 2] + 1.

2. Since any of these triangles has three angles, the number of these angles will be
31> — 61 + 3.

3. It must be noted that at three angular points of the whole figure, only the same
number of angles adjoin (that is, one each), and therefore those three angles
occupy three points, or 3P.
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At the remaining points along the sides, there meet three angles, any one of
which therefore occupies one third of a point. Moreover, those intermediate
points on the sides are | — 2 on each side, therefore 3! — 6 in all (since there are
three sides); and the angles adjacent to these intermediate points are 91 — 18

(since there are three angles to each point), of which any one occupies one third
91— 18
P.

of a point, or %P. Therefore all together occupy

At the remaining points left over, inside the area of the figure, there meet six
angles (that is, six at each) which therefore occupy one sixth of a point. How
many are those angles, thus together? The total number of angles is (as we
said) 31% — 61 + 3. Now if there are subtracted 3 (taken at the corners of the
whole figure) and 9/ — 18 (adjacent to the points on the sides) there remain
31% — 150 + 18, which is the number of angles meeting at points inside the area.
But since any of them occupies one sixth of a point, or éP , they occupy together
2
3% — 1651 + 18P.

9l — 18

Finally, if all the points so found are added together, that is, 3P and P

2 2
3l—165l+—18P, their sum will be Ll

points, the number of all the points.

That is, the triangular number of side I. Therefore:

The side of any triangular number to the number itself is as I to

PROPOSITION 172

Theorem

2 4+1

As has been shown in what has gone before.

Therefore, given a side I, there will be given a triangular number belonging to that

2
side, thus n = ﬂ

And conversely, given a triangular number, its side may be found.
That is, by solving this equation: 2n = I* + I, we will have /(3 +2n) — 1 =1.

PROPOSITION 173

Corollary

If the transverse diameter of a hyperbola is 1 and its latus rectum %, taking
diameters (between the foot of the ordinate and the vertex) 1, 2, 3, 4, 5, etc.,
the squares of the ordinates will be 1, 3, 6, 10, etc., that is, triangular numbers
whose sides are 1, 2, 3, 4, 5, etc.

This may be proved by Propositions 17 or 33 of my On conic sections. The figure
in the following Proposition shows the hyperbola itself.
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PROPOSITION 174

Corollary

In the same way, suppose that on the same line AaD there are two similar
triangles DB, ADB, and that AD to DB and aD to Dg are as 1 to /1,
and take equal steps Ao =1 = aD = DD etc. The rectangles BD3, BDp,
etc. will be to each other as 1, 3, 6, 10, etc., triangular numbers, whose sides
are aD, aD, etc. But the mean proportionals between BD and DS, BD and
Dg etc. are the ordinates of the hyperbola aDE whose transverse diameter
is Ao and latus rectum aB, or equal to it.

Clear from the calculation. For of the rectangles BDg, the first will be \/% X
2y/2 = 1. The second 24/3 x 3y/3 =3. The third 3,/3 x 4y/4 = 6. The fourth
4y/3 % 5y/1 =10. And so on. Which are the squares of the ordinates in the hyper-
bola, by what has gone before. And therefore the mean proportionals /1, /3, 1/6,
/10, etc. are the ordinates themselves.

COMMENT

If, moreover, it had been assumed that AD = DB and also aD = Dj, then the
rectangles would have been 1 x 2 =2,2x3=6,3 x4 =12,4 x 5 =20, etc.,
twice the triangular numbers, and the mean proportionals /2, /6, /12,
/20, etc. would be the ordinates of a hyperbola, in which both the latus
rectum and transverse diameter would be 1, which, as has been said, will be
clear from consideration. Which is easily accommodated to other ratios of the
latus rectum to the transverse diameter.
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PROPOSITION 175

Theorem

The sequence of triangular numbers in the previous table may be conveniently
interpolated if between the sides of those numbers there are interposed as
many arithmetic means as are needed, and from these are formed triangular
numbers according to Proposition 172.62

Thus if in the sequence of triangular numbers 1, 3, 6, 10, 15, etc. a single number is
to be everywhere interposed: their sides 1, 2, 3, 4, 5, etc. interpolated by arithmetic
means, must be 1, 1, 11, 2, 21, 3, 31, 4, 41, 5, etc. to which sides (by Proposi-

tion 172) correspond the trlangular numbers , 1, 17 3, 43 6, 77 10, 123, 15, 17%,

21,etc. Or 3, 1,158,335 6 8 10 % 15 143 , 21, etc. Or finally 3, 8, 13 24 38
488, 683, %, 989 , %, %, 128, etc. whose drfferences are arithmetic proportionals.

In the same way, if two places are to be interposed in a single interval, they will
produce the numbers %, 3, 1, 9, 290, 3, 35, 44 6, 695, 797, 10, etc. Or g, 3 g, 19‘{
%9, —2@1, etc. whose differences, in the same way, are arithmetic proportionals.

PROPOSITION 176

Lemma

It is proposed to inquire what is the ratio of the pyramidal numbers to their
sides.

This proposition also may be investigated by the same process as we used in Propo-
sition 171, which anyone who wishes may try (having observed in the meantime the
facts that necessarily distinguish the arrangement of pyramidal numbers from the
arrangement of triangular numbers). But since it is not so easy for the reader to
conceptualize the necessary placing of points in a pyramid (as not all of them can
be positioned in the same plane), or the placing of the solid angles at each point, it
seems more satisfactory here to show it by the method that follows. (Which indeed,
except that I preferred to show another method, could have been applied also at
Proposition 171.)

1. A pyramidal number is equal to a sum of triangular numbers (as is clear from
what was said at Propositions 130 and 132), that is, from 1 to the trian-
gular number with the same side as itself, inclusive. (In the same way also,
triangular numbers arise from sums of sides; and sides from units; and also
triangulo-triangulars from pyramidals; and so on).

62 Note the mixture of geometry and algebra in this theorem. Triangles and sides are
geometrical concepts, while an arithmetic mean can be constructed either geometrically
or algebraically. The final step in Wallis’s argument, however, the construction of new
triangular numbers from given sides is purely algebraic: there is no physical meaning to
a triangular number based on a side of lor1d g or2 % points.
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2

. . l "
2. Moreover, any triangular number of side [ is , by Proposition 171.

3. Therefore, having taken the sides 1, 2, 3, 4, etc. or (in their place) a, b, ¢, d, etc.
the sum of a® + a, b®> + b, ¢® + ¢, d% + d, etc. (the number of which will be equal
to the greatest side) will be twice the sum of triangular numbers; and therefore
half of this will be the pyramidal number, whose side is equal to the side of the
greatest triangular number.

4. Therefore, the pyramidal number is half the sum of two series, continued from
1 as far as one likes, until the number of places is equal to the side of the
pyramidal number sought, which may be supposed I. To which if there is added
in front another place 02 + 0 (so that the series is understood to begin from 0)
the number of terms will be [ + 1. And the sum of both series is already known
from Propositions 2 and 20.

5. That is, the sum of a series of first powers 0 + a + b + ¢ etc. of which the last is

| and the number of terms [ + 1, will be g—;—l—l, by Proposition 2.

6. And the sum of a series of second powers 0 + a® + b2 + ¢? etc. of which the last
l+1 I+1 I+1

term is [2 and the number of terms  + 1, will be 3 2+ 6l % or 3 2+
L+~l—l, by Proposition 20.
6 {+1 I+1 l+1
7. Therefore the sum of both together (thus 5 I+ 3 2+ 6 l), that is,
2 3 2, 52 3 2
3 +31+2 6+ A+ +i = 2+ %l +4 is the sum of the two series, half
54312 +2
of which sum, l—i§—+—l is the pyramidal number of side I. Therefore:

6

PROPOSITION 177

Theorem

13 +312 421

The side of any pyramidal number to the number itself is as [ to 5

As shown in what has gone before.
But, given a pyramidal number n, its side will not be known except by solving
the cubic equation 6n = I® + 312 + 21.

PROPOSITION 178

Theorem

The sequence of pyramidal numbers in the previous table may be conveniently
interpolated if between the sides of those numbers there are interposed as
many arithmetic means as are needed, and from them are formed pyramidal
numbers according to the preceding Proposition.
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Thus, if the sides 1, 2, 3, 4, 5, 6, etc. of pyramidal numbers 1, 4, 10, 20, 35, 56, etc.
are interpolated in this way: 1,1, 1%, 2, 23, 3, 33, 4, 43, 5, 53, 6, etc. To these sides

will correspond the pyramidal sequence =, 1, 23, 4, 6%, 10, 14-%, 20, 2632 35,

16> 16° 16’ 16’ 16°
11 5 35 105 231 429 715
443, 56, etc. or also 16 1, 16° 4, 16 10, 6 20, 16 35, 16 0 56, etc. Or rather,
15 105 315 693 1287 2145
et 1, 8 4, 8 10, 8 20, a8 35, 48 56, etc.

PROPOSITION 179

Lemma

It is proposed to inquire what is the ratio of triangulo-triangular numbers to
their sides.

This will be shown by the same method as in Proposition 176. That is:

1. A triangulo-triangular numbers is equal to the sum of all the pyramidal numbers
(the sides of which are to be understood as integers, for the interpolation is not
yet carried out) from 1 to the number sharing the same side, inclusive.

P +32+2

2. Moreover if the side is [, the pyramidal number is 6

tion 177.

3. Therefore, having taken sides 1, 2, 3, 4, etc. or (in their place) a, b, ¢, d, etc.
the sum of a® + 3a® + 2a, b® 4 3b% 4 2b, ® + 3¢® + 2¢, d® + 3d? + 2d, etc. (the
number of all of which will be equal to the greatest side, as is obvious) will
be six times the sum of pyramidal numbers; and therefore a sixth of this sum
will be the triangulo-triangular number whose side is the same as that of the
greatest pyramid.

4. And therefore the triangulo-triangular number is one sixth of the sum of three
series, continued from 1 as far as one likes until the number of terms is equal
to the side of the required triangulo-triangular number, which may be called 1.
And therefore, if to that there is added in front another term 0% + 0% 40 (so
the series are understood to increase from 0), then the number of terms will be
I+ 1. And the sum of each of those series is already known from Propositions 2,
20 and 40.

5. That is, the sum of twice a series of first powers, 0 + 2a + 2b + 2c, etc. whose
+1

, by Proposi-

last term is 2/, and with number of terms [ + 1, will be

2l, by Proposition 2.

6. The sum of three times a series of second powers, 0 4 3a® + 3b2 + 3¢2, etc. whose

Lrlgp I lgp p

last term is 312, and with number of terms [ + 1, will be 3 ol

Proposition 20.

7. The sum of a series of third powers, 0 + a® + b® + ¢, etc. whose last term is I3,

I+l 1415,
4 4]

and with number of terms [ + 1, will be by Proposition 40.

Therefore the aggregate of these sums

) i I+1, 1+1
(thusl’; oty L lge 41 I+

3
3 6l 4 4l F),
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240% + 241 + 241> + 241° + 121° + 121 + 61* + 61° + 61° + 61°
24 B

, is the aggregate of those three series, one sixth of which,

that is,
61* + 3613 + 6612 + 361

24
* 4602 +11% +6l
24

, is the triangulo-triangular number of side {. Therefore:

PROPOSITION 180

Theorem

The side of any triangulo-triangular number to the number itself is as [ to
14+ 603 + 1112 4 61
24 '

Therefore, given side ! there is given the triangulo-triangular number, thus:

. * +60° +111° + 6
= 51 :

But given a triangulo-triangular number its side will not be found except by
solving this equation 24n = I* 4 61> 4 1112 + 61.

PROPOSITION 181

Theorem

The sequence of triangulo-triangular numbers in the previous table may be
conveniently interpolated if between the sides of those numbers there are
interposed as many arithmetic means as are needed, and from them are formed
triangulo-triangular numbers according to the preceding Proposition.

Thus, to the interpolated sides %,1,1%,2,2%,3,3%,4,4%,5,5%, 6, etc. correspond

the triangulo-triangular numbers £5,1,23%,5,9:3-,15,233% 35,503 70,9412

35 315 ¢ 1155 3003 6435 12155
126, etc. or also 133,1, 538,95, 55 15, 955, 35, T35, 70, ~155~, 126, etc. Or rather,

105 1 945 = 3465 9009 19305 36465
384 1> 3847 D) 3840 195 351139, 3355 10, 3547 126, etc.

PROPOSITION 182

Lemma

It is proposed to inquire what are the ratios of subsequent sequences of figu-
rate numbers to their sides, that is, triangulo-pyramidal numbers, pyramido-
pyramidal numbers, etc.
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It is possible indeed for this to be shown by the same method that we used in
Propositions 176 and 179, with the help of the Propositions noted there, that is,
Propositions 2, 20 and 40 together with Proposition 43, at least if we would first
pursue further the teaching of ratios of finite series of fourth, fifth, sixth (and subse-
quent) powers to a series of equal terms, which teaching we only briefly indicated at
Proposition 43. But if anyone wants that further continuation, he may demonstrate
it by another method as best pleases him, or also (unless better aids occur to him)
by the help of the table itself, which we already have in hand, after which, by a way
soon to be taught, we will show how to investigate the ratios of figurate numbers,
to the sides of any of them, in subsequent sequences. For as at Propositions 176
and 179, from known ratios of simple finite series (thus, by Propositions 2, 20 and
40, of first powers, second powers and third powers, to series of equals) there may be
investigated the ratios of this table (thus, triangular, pyramidal, triangulo-triangular
numbers to their respective sides), so in turn, the latter known, the former also may
be sought out, and therefore the teaching of Proposition 43 may be continued as far
as one likes.

Because, moreover (as we said), that was only touched on at Proposition 43. Nor
indeed is it necessary to the present purpose to proceed with it further, since from
the known formulae®® of a few sequences of this table (or the ratios of those figurate
numbers to their respective sides) a method of investigating the formulae also of the
subsequent sequences will begin to appear, so that I may now operate more easily
by that, as is given here.

The formula for each sequence of numbers is clear from what has gone before.

Units 1
Sides l

Triangulars lz ;“ !

Pyramidals &t}(l:_“l'?{
Triangulo-triangulars I +60° -;41112 + 61

It is also clear, looking more closely, that those formulae arise from continued
multiplication of these quantities:

Loll 142 143 Ix(+1) x(+2)x (1+3)

Ix1x= 3 1 Ix2x3x4

63 Serierum characteribus, literally ¢ from the properties of the sequences’. Since for Wallis
the properties of each sequence had now come to be defined by an algebraic formula,
character is translated from here onwards by ‘formula’.
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For

140
1x ¥ =1
P L LA
2 2

41 2 B+312+20

2 3 6

B+3i2+2 L3 I* 4 61° 4+ 1112 + 61

6 4 24

And therefore, if the multiplication of the ratio last discovered is continued further,

I+4 145 1+6

by 5 X 5 = etc. we will have the formulae of the subsequent sequence.
1° +100* + 351% + 5012 + 241
Thus
120
1% 4+ 150° + 851* 4 22513 4 2741 4 1201
and
720
17 + 2118 + 1750° + 7351* + 162413 + 17641% + 72011 %*
and
5040
And so on, as far as you please.5?
COMMENT

In this way we say, from the continuation of the ratios or formulae of the
present table, it is possible to deduce also the continuation of those ratios
indicated in Proposition 43.56 But since that will perhaps not be obvious to

64

65

66

This formula was included only in the edition reprinted in the Opera mathematica in

1695; it is included here for completeness.

These formulae were first written down symbolically, almost exactly as Wallis has them
here, by Thomas Harriot about fifty years earlier, except that Harriot used nn etc.
where Wallis later wrote 12 etc.; see British Library Add MS 6782, f. 108, reproduced
in Lohne 1979, 294. Harriot also discovered the same method of generating the numbers
by successive multiplication. The formulae and the method of generating them were also
known to Fermat who, however, expressed the results verbally: ‘The last side multiplied
by the next greater makes twice the triangle. The last side multiplied by the triangle
of the next greater side makes the three times the pyramid. The last side multiplied by
the pyramid of the next greater side makes four times the triangulo-triangle. And so on
by the same progression ad infinitum’; Fermat to Roberval, 4 November 1636, Fermat
1891-1912, II, 84-85, see also Mahoney 1974, 230.

From his formulae for figurate numbers Wallis is about to derive further results on sums
of powers. It seems that Fermat was in possession of the same facts but worked the other
way round: from sums of powers to formulae for figurate numbers: see Mahoney 1974,
229-233.
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all, I have considered it worth a little trouble to show it in passing. Which
indeed, may be introduced here without inconvenience, in a way that will
perhaps not be unwelcome to some. Therefore for example:

Let it be proposed to inquire what is the ratio of a finite series of fourth
powers (beginning from 0) to a series of the same number of terms equal to
the greatest.

1. The formula for the triangulo-triangular numbers (by Proposi-

1+ 603+ 1112 + 61
tion 180) is + ;— 1 + , and for the triangulo-pyramidals

15+ 100* + 3513 + 5012 + 241

, by Proposition 182.

2. Moreover, (as1 %10215 often been said), a figurate number of any degree (in the
present table) is the sum of all those preceding in the degree nearest to it.
Therefore a triangulo-pyramidal number is a sum of triangulo-triangular
numbers.

3. And therefore, taking sides 1, 2, 3, etc. or (in their place) a,b,c, etc. (of
which the greatest may be called !), and forming from them triangulo-

triangular numbers, their sum will be the triangulo-pyramidal number of
15 +100* + 3513 + 5002 + 241

the same side, that is

120
4. Moreover, the sum of the series 0 + 6a + 6b + 6¢ etc. is (by Proposition 2)
+1. 61% + 6l
2 2

5. The sum of the series 0+ 11a? + 11b% + 11¢? etc. is (by Proposition 20)
l 1 113 + 1112 1112 + 11 2203 1?2 +11
—?111%%1112: ey ; = +3§ 1T

6. The sum of the series 0+ 6a® + 6b3 + 6¢3 etc. is (by Proposition 40)

l I+1 614 +613 6134612 611+ 123 + 612
+1 615 + + 63 — + + + _ + +
4 4l 4
7. These three sums collected into one are

61 + 1203 + 612 91* + 401% + 6012 + 291

1 )
612 +61 2203+ 3312+ 111
+ 6

4 6
8. If, therefore, from twenty-four times the sum of all of them, is taken the
sum of the three series,

that is, if from (I° + 101* + 3513 + 5012 4 241) /5

is taken (91 + 4013 + 6012 + 291) /6
(615 + 601* + 21012 + 30012 + 1441)/30
(451% + 20012 + 30012 + 1451)/30

that is, from
is taken

there remains the sum of the fourth series, that is, of fourth powers

(61° 4+ 151* + 101* + 0012 — 11)/30



The Arithmetic of Infinitesimals 141

That is, one thirtieth of 61° + 614

+91* 4+ 93
+ 118 4+ 112
—12 -1l
Cl4+1, 343, I+1, I+1
That is 5l—+—10l+301 30l.

Which is therefore the sum of the series of fourth powers whose last term
is 4, with number of terms I + 1.
Or, if for the number of terms [ + 1, there is substituted m, and therefore
a series of equal terms mi*, the series of fourth powers will be tml* +
3ml® + Zmi? — &ml (if, that is, the first term is 0, the second 1), or
ml*  3ml* mlt  mi*
5 o0 T3P 302
9. Therefore a finite series of fourth powers, to a series of the same number

1
of terms equal to the greatest, is as 5 + T0i + 302 302 to 1. Which is

what was sought.5”

And in the same way, these being known, the ratio of a series of fifth
powers to a series of equals may be found with the help of the formula for the
next series of the table. And thence the ratio of a series of sixth powers, with
the help of the formula for the next following series in this table, and so on
as far as one likes.

Moreover, that this may be better understood, it will perhaps be worth
the effort to open up a little more precisely what has already been taught. For
although it seems to me that I have taught it sufficiently clearly, it may be,
nevertheless, that the reader less accustomed to those things might perhaps
sometimes hesitate.

It should be noted, therefore, that here (as also everywhere else, where we
speak of finite series) we make the number of terms [ + 1 (thus, if the first
term is 0, the second is said to be 1), one more than the number of steps by
which the last term is reached; that is, [than the number] of all the differences
of the terms taken continually, the sum of all of which is equal to the greatest
term, whether those differences are equal, as in a series of first powers (thus,
1, 1, 1, 1, etc., differences of arithmetic proportionals), or increasing, as in as
series of second powers, third powers, etc. (thus, 1, 3, 5, 7, etc., differences of
squares; or 1, 7, 19, 37, etc., differences of cubes, etc.), or even decreasing, as
in a series of second roots, third roots, etc. (since, for example, the difference
V3 — /2 is less than /2 — /1, and this less than /1 — /0, etc. and so on
for the rest). The number [ of these differences (in any series) is one less than
the number of terms, as is obvious. And the sum of all (because of the nullity

67 When the Arithmetica infinitorum was reprinted in 1695 Wallis added further (lengthy)
calculations for the sums of sequences of fifth and sixth powers; see Wallis 1695, I,
449-452.
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of the first term, 0) is the greatest term itself. Moreover, where the number
or quantity of terms is called m, the number of differences, or of steps to the
greatest, will be m — 1.

Take, for example, a series of first powers, which is like a sum of paral-
lelograms of equal altitude filling the figure of a circumscribed triangle; of
which, if the first is called 0 (that is, of no width, although of the same alti-
tude as the rest), the second 1, etc. and the number of all is 16, there will
be 15 differences (equal to each other, that is everywhere 1), and the great-
est term therefore 15. And therefore since in each parallelogram the common
altitude is -1 VB (see figure 1) and the continual increase in width L BS, all
the altitudes taken at once, that is, the altitude of the inscribed figure, are
VB = %g VB, but at the same time all the increases in width, that is, the base
of the inscribed figure, are not BS, but %BS, or BS — 1—1635'. If, moreover,
one proceeds yet one step further, adjoining under the base one further par-
allelogram, we will indeed have the width of BS precisely, but the altitude
now becomes augmented, that is VB + {5 VB. But if (in figure 2) the figure
is taken to be circumscribed by parallelograms, then first the altitudes of all
the parallelograms taken together, that is, the altitude of the circumscribed
figure, are VB (which is now to be imagined perpendicular to the base), and
then all the parts of the width taken together, that is, the base of the circum-
scribed figure, are BS precisely. But now the series begins not from 0, but 1;
but if this series is continued one step further above the vertex (so as to begin
from 0) the altitude thus increased will now be VB + = VB, as is obvious.
And therefore the inscribed figure continued one step below the base and the
circumscribed figure continued one step above the vertex amount to the same
thing.

And the total in this triangle (and by the same reasoning in other figures,
unless the steps are unequal) is sufficiently evident. For (besides that it is
clear enough from what has already been said) if in the triangle there are
taken any number of lines parallel to the base (in which count we wish to
include the base itself, and the point of the vertex) and the same number of
parallelograms adjacent to them, then if all those are assumed to lie under
their lines, the lowest of them will be under the base; if above, the highest
will be above the vertex. If, moreover, we suppose that those lines lie neither
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at the top nor the bottom of the parallelograms but pass through the middle
of them, then both the highest and lowest of them will be part in, part out,
of the triangle. Therefore whatever place we suppose those lines to have with
respect to the parallelograms, the figure constituted from the parallelograms
(so long as it begins from 0) will either have its base a little less or its altitude
a little greater than has that true triangle.

And this excess or defect, as long as one is dealing with finite series, must
be wholly taken account of. Where, however, one is dealing with infinite series,
it may be safely neglected. For since the more terms there are assumed, the
smaller becomes the difference of either the base or the altitude, if one pro-
ceeds to infinity it vanishes; indeed ;10— (an infinitely small part) may be taken
for nothing (at least, observing some limitations of which we will soon speak).
Thus, for example, if a triangle with altitude A, base B, is inscribed with par-
allelograms, in each of which the altitude is éA, and the increase of width is
L B, the inscribed altitude will be 0o X & A, and the base not B but B — LB.
For the number of altitudes is oo and of differences co — 1. But if the figure
so inscribed is continued one step below the base, or the circumscribed one
step above the vertex, the base will be oo x éB = B, the altitude A + éA;
indeed the number of increments is co and of altitudes oo + 1. Where therefore
one deals with finite series, by the altitude and base must be understood the
altitude and base of the adscribed figure (whether inscribed or circumscribed)
not, however, of that to which it is adscribed; but in an infinite series it is all
the same whether one understands the former or the latter, since the differ-
ence is infinitely small, and therefore vanishing or zero. For oo, 00 + 1,00 — 1,
amount to the same thing. And just as when a polygon with infinitely many
sides is taken for a circle, it is all the same whether it is understood inscribed
or circumscribed (that is, whether the radius is supposed equal to a line from
the centre to a vertex, or to one taken from the centre to the middle of a side,
the difference of which, because of the infinite number of sides, is infinitely
small), so in our adscription it is all the same (because of the infinitely small
difference) whether the altitude or base of the inscribed or circumscribed
figure is taken for the true one. And indeed as in an inscribed or circum-
scribed polygon with infinitely many sides, the sides are supposed equal to
each other, that is, their right sines and tangents are equal both to each other
and to the arcs themselves, so here also both the bases and altitudes of the
figures consisting of inscribed or circumscribed parallelograms must be sup-
posed equal both among themselves and to that of the adscribed figure; that
is, if one wishes to speak precisely, not to differ except by an infinitely small
part.

In the same way, in the figure in Proposition 5, in the figure inscribed by
similar sectors of spirals, if the number of sectors is finite, it will be a finite
series, whose first term is 0, but the last is the last of the inscribed sectors
(whose radius is one part less than that of the last circumscribing sector),
and the arcs of all those sectors taken together equal half the arc of the
coterminous circle, that is, coterminous with the figure consisting of sectors,
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not coterminous with the true spiral. And if the number of sectors (just as
was supposed there) is supposed infinite, the arcs of all the sectors taken
together to this point will be equal to half the arc of the coterminous circle,
that is, coterminous with the figure consisting of these infinitely many sectors;
which [arc] however is either itself identical with that coterminous with the
true spiral, or certainly less than it by an infinitely small part of itself (that is,
nothing). But if instead of inscribed sectors there are taken circumscribed, the
arc of the coterminous circle will be increased by one part of itself (whether
the number of sectors is finite or infinite) so that half of it will be equal to that
to be had by taking all the arcs of the sectors together, and therefore it must
be supposed to have begun one step before the beginning of the true spiral,
so that the arc of the first sector is 0. For in arithmetic proportionals, unless
the first term is 0, the sum of all will not be equal to half the last multiplied
by the number of terms.

Moreover, what has been shown in these figures, may be understood (with
appropriate changes) of any others, that is, the number of terms (if begun
from 0) will be one more than the number of differences, or small parts, from
which the greatest term is constituted (whether those differences are equal
or unequal); and therefore if in the adscribed figure (whether inscribed or
circumscribed) the base is taken equal to the base of the proposed figure, to
which it is adscribed, (whether by continuing the inscribed one step below
the base, or the circumscribed one step above the vertex), the altitude of
the former will be one part greater than the altitude of the latter (whether
that part is finite or infinite). Where, moreover, the number of parts of the
altitude of the latter is assumed infinite, it will be in the former oo + 1; or if
the altitude of the latter is A, that of the former will be A + %A. If in the
former it is A (as we usually put it), it will be in the latter A — ;%A, which
however (at infinity) amounts to the same thing on account of the infinitely
small difference.

But when we say that an infinitely small part may be taken as nothing, this
must be received with caution, for this does not hold everywhere, but some-
times offers occasion to lapse. Since from an infinitely small part multiplied
infinitely there sometimes arises a sufficiently large quantity, namely, that of
which that part was a divisor, although infinitely small. For é X 00 =1 and
LAxoo=A.
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We have shown an example in the Comment to Proposition 13. If (in figures
1 and 2) one were to conclude, because the sides of the infinite number of
parallelograms (constituting line VB) and the sides of the trapezia (completing
VS) taken piece by piece do not differ from each other except by an infinitely
small part (since both the latter and the former are infinitely small, indeed
513 of the lines VB, VS), that this therefore is to be discounted, and that the
sides of the parallelograms and trapezia are to be said to be equal; and that
therefore (since from the addition of equals to equals, the sums are equal)
the infinite number of the former is equal to the infinite number of the latter,
that is, all of VS is equal to all of VB. This is clearly a paradox (into which,
nevertheless, one is quite inclined to fall unless one takes care). For although
the differences piece by piece are infinitely small (that is, L VS — L VB),
nevertheless the sum of all (an infinite number), has a sufficiently noteworthy
magnitude, that is, SV — VB.

And meanwhile in the same parallelograms and trapezia (if we look at the
area) not only do they have infinitely small differences taken piece by piece,
but also the sum of the former and the sum of the latter (that is, an infinite
number of parallelograms taken together and an infinite number of trapezia)
differ from each other only by an infinitely small part, which does not hold
for their sides.

The reason for the distinction is this: since where one deals with the
comparison of sides [of parallelograms and trapezial, taking any two respec-
tively, although the difference is less as the number of all is greater, yet it is
always the same ratio by which each difference is diminished as the number of
differences is increased; and therefore the sum of the differences, to be divided,
is not diminished. But where one is dealing with areas, not only are the differ-
ences of any two (trapezia and parallelograms) taken respectively diminished,
but also the sum of all of them; and indeed the more differences there are,
the less is the sum of them, until at length not only does each [parallelogram]
differ infinitely little from each [trapezium]| (which it would not be sufficient
to have demonstrated) but so also do all [the parallelograms] from all [the
trapezia] taken together, as is clear from the demonstrations. And this I have
considered worth the trouble of noting somewhat more fully, because in this
place I have noticed some are inclined to fall.

Lest, moreover, anyone here suspects this danger, that while we have the
accurate altitude of any figure, we also have the same increased by an infinitely
small part of itself, this one thing may sufficiently restore their security, that,
other things being equal, the increase of altitude of any figure (whether plane
or solid) increases the area or size only in the same ratio. And therefore where
the increase in altitude is only some infinitely small part of itself, the increase
of the whole figure will also be only in the same ratio, that is, by some infinitely
small part of itself, or % of the whole figure; because (since there are taken
so many at a time but not infinitely many) the space will be less than any
assigned quantity, and may therefore be taken as nothing.
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But finally it may be asked why I choose the inscribed figure rather than
the circumscribed, therefore beginning almost everywhere from 0 rather than
17 Particularly since the circumscribed figure (not continued one step above
the vertex so that it begins from 0, but rather from 1) has precisely both the
same base and altitude as that to which it is circumscribed, whether in series
of first, or second, or any subsequent powers, and whether a finite or infinite
series?

I say it is indeed possible for what we have dealt with to be done by
either method, that is, by inscribed or circumscribed figures (which we also
pointed out above at Proposition 43 which gave the opportunity for all this
Comment, indeed the greater part of it could not be conveyed more quickly
since it depends on the Proposition immediately preceding this). Therefore,
for example, a series of first powers may be denoted indifferently by 1, 2, 3,
etc. or by 0, 1, 2, etc. for the first term 0 adds nothing to the sum of the
rest. And indeed I already at one time set out my lemmas by both methods,
although either was sufficient for our demonstration, so I did not think the
reader should be burdened with both, especially since I was mostly looking at
infinite series, and have scarcely made use of finite series other than in lemmas
to have at hand for theorems of infinite series.

And meanwhile circumscribed figures, if the thing is weighed carefully,
are no more like the figures by which they are circumscribed, than are
inscribed. For example, the inscribed agrees with the given figure
as to altitude and width at the vertex but differs as to the base (that is,
the width at the lowest point); the same inscribed figure continued one step
below the base (or the circumscribed so continued above the vertex) agrees
with the given figure as to base, and width at the vertex, but differs as to
altitude. But the circumscribed (not continued) indeed agrees with the given
figure as to base and altitude but not as to width at the vertex, which in one
is 0, in the other 1.

Since, therefore, to this extent circumscribed and inscribed figures behave
indifferently as far as our business is concerned, I prefer our series to begin
with O rather than 1, partly because although an inscribed figure seems to be
better suited, nevertheless both can be adjusted (as has already been said),
whether it is supposed continued above the vertex or below the base; partly
because in this way (since the lowest term is 0) the sum of the extremes is the
same as the greatest term; but especially so that I can, without going a long
way round in words, understand under the name of a series of first powers not
only 0, 1, 2, 3, etc. but also 0, 2, 4, 6, etc. or 0, 3, 6, 9, etc. or 0, 4, 8, 12, etc.
and similarly others beginning from 0, whatever the second term; and under
the name of a series of second powers not only 0, 1, 4, 9, etc. but also 0, 2, §,
18, etc. or 0, 3, 12, 27, etc. and similarly others. And the same in subsequent
series.

If anyone however prefers to begin their series from 1, they may set out
the results in this manner.



Series of first powers:

0+1
1+1 2

0+1+2
2+2+2 2

0+1+2+3
3+3+3+3 2
0+1+2+3+4
i+4+4+4+4 2
0+1+2+3+4+5
5+5+5+5+5+5 2
etc.

Or also:

0+1
2+2
0+1+2
3+3+3
0+14+2+3

44+44+4+4
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5+5+5+5+5 2 10
etc.

Series of second powers:

0+1
1+1
0+1+4
4+4+4
0+1+4+9 ,
9+9+9+9 3 18
0+1+44+94+16
16+16+16+16+16

etc.
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1+2
3+3 2
1+2+43
4+4+4 2

1+2+3+4

5+45+5+5 2
1+2+3+4+5

6+6+6+6+6 2
etc.
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Or also:

0+1 | 1+4 | 5

1yd -3 144 _3Tm

0+1+4 4 1n 14449 1 15

9+9+9 3 & 9+9+9 38
O+1+449 L 2 14449416 1 o6

—_ = — =2 :—+——

164+16+16+16 3 192 164+16+16+16 3 = 192
0+1+449+16 | 3 1+44+9+16+25 1,0
254+25+25+25+25 3 375 25+ 25+25+25+25 3 ' 375
etc. etc.

Series of third powers:

0+1 ;4 11 1

151 1t 8T178

0+1+8 ;1 1+8 _ 1 _ 1

8+848 ¢ 8 27427 4 12
0+14+8+27 1,1 1+8+27 ;|

27 4+27+4+27+27 4112 64+64+64 4 16
0+1+8+27+64 i1 1+8+27464 |
64+64+64+64+64 4 16 1254125 + 125+ 125 4 20
etc. etc.

And similarly in the subsequent series, which I have abstained from listing
lest I over extend myself. The reader may, if he wishes, with no great work
either turn these arguments into theorems, or generate other similar ones
for the subsequent series, if he has paid attention to what I have already
taught.

But there is also yet another way of setting out the series up to here (if the
reader is attracted by diversity), which will also sometimes be no less useful.
If, that is, the series is begun neither from 0 (as in the inscribed figure) nor
from 1 (as in the circumscribed figure) but from an intermediate quantity, thus
% (which therefore represents a figure intermediate between an inscribed and
circumscribed, or greater than an inscribed and less than a circumscribed),
to give, for example, a series of first powers 3 + 11 + 21 + 3% etc. or (which
derives from that) 1 + 3 + 5 + 7 etc. In which case the argument for first

powers is to be set out thus.
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3_1 1_1

1 2 2 2

1+11 1 1+3 1
212 2 114 2
3+H13+25 1 1+3+5 1
3+3+3+3 2 6+6+6 2
sF1l3+2;+3% 1 14+34+5+7 1
4+4+4+4+4 2 8+8+8+8 2

And indeed this method best of all suits Propositions 15 and 16 where we

compare the figure contained in the spiral with that in a parabola. For if

in the spiral figure, having taken any number of lines MT making angles

successively equal to each other, there are supposed sectors inscribed in each

space, their arcs will be as 0, 1, 2, 3, etc., but if circumscribed, as 1, 2, 3,

4, etc. But if they are applied so that the arcs of the sectors are bisected by
1

the spiral, they will be as 3, 1%,2%,3%, etc. or as 1, 3, 5, 7, etc. (that is, as

differences of square numbers).

And therefore if those arcs, (whether finite or infinite in number, although
infinite in the same way that words are facts: I have considered this curiosity
should there be omitted) are supposed taken in line and continued in turn
so as to make the same number of segments of the diameter of a parabola
(placed continuously), whence the intercepted diameters come out to be 1, 4,
9, 16, etc. (for 1+3=4,1+3+5=29, etc.) to which correspond ordinates
(as square roots of the diameters) which will be to each other as 1, 2, 3, 4,
etc., that is, as those lines MT, MT, etc. themselves passing through the ends
of similar sectors in the true spiral.

And by this method one may compare a figure consisting not only of an
infinite number of sectors (which we did there), but also of a finite num-
ber, contained in the spiral, with the figure made from the same number
of parallelograms contained in the parabola. Which indeed (without a new
figure) may be sufficiently understood. If those arcs of sectors are denoted
1la,3a, 5a, etc. and the true radii (proportional to those) 2r,6r, 10r, etc. the
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sectors will be 1ar, 9ar, 25ar, etc. (that is, half the product of the radius and
arc respectively). Having taken continual segments along the diameter of a
parabola in the same way, la, 3a, 5a, etc., and therefore intercepted diameters
la,4a(= la + 3a),9a(= 4a + 5a), etc. and ordinates that correspond to those
diameters (as their square roots), 2r, 4r, 6r, etc. (which divide spaces not of
equal altitude,®® but whose altitudes are in arithmetic proportion, as 1, 3,
5, etc., as is obvious), the parallelograms inscribed in those spaces will be
la x Or,3a x 2r,5a x 4r, etc. or Oar,6ar, 20ar, etc. or circumscribed will be
la X 2r,3a x 4r,5a % 6r, etc., or 2ar,12ar,30ar, etc. Moreover, those inter-
mediate, part inscribed, part circumscribed (which, that is, have a width,5°
that is the arithmetic mean between the two ordinates bounding the space)
or (which amounts to the same thing) inscribed trapezia, will be la x 1r,3a x
3r,5a x 5r, etc., or lar,9ar, 25ar, etc. equal one by one to the proposed sec-
tors; of which the arcs, that is, are equal to the altitudes of the parallelograms
(that is, to the segments of the diameter of the parabola), but the radii twice
the widths of the parallelograms; or if the radii of the sectors are equal to the
widths of the parallelograms, the parallelograms will be twice the sectors.

But it is time I put an end to this extended Comment; since why I have
omitted anything here was explained above.

PROPOSITION 183

Theorem

The side of any figurate number, in any sequence of the given table (of Propo-
sition 132) continued as far as one likes, will have a known ratio to its figurate
number.

That is, as indicated in the preceding Proposition.

PROPOSITION 184

Theorem

And therefore it will not be difficult to interpolate the subsequent sequences
in the given table continued as far as one likes.

That is, having found the proper formula of each by Proposition 182, the interpola-
tion may be done as in Propositions 175, 178 and 181.

68 The ‘altitude’ of each space is the length of the segment along the diameter of the
parabola.

69 The ‘width’ of each parallelogram (actually a rectangle) is the length of the ordinate
that bounds it.
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The same table, as was promised, will be here shown thus interpolated.

Or otherwise more expediently: after the interpolation of sequences both hori-
zontally and vertically as far as one likes has been begun by Propositions 170 and
175, etc., one may continue it further as far as one likes solely by the summation
of numbers already found; for not only the numbers in the table in Proposition 132
(where we pointed out the same thing), but also those interposed by interpolation,
arise from the summation of two others, one above, one to the left (not indeed adja-
cent as in Proposition 132, because of the place now interpolated) but taken after
one interpolated place. As will be clear from inspection.

What has already been said, moreover, in various preceding propositions about
the interpolation of one place in each space may also be easily accommodated, with
appropriate changes, to two or three or more interposed places.

COMMENT

It must be noted here that it is possible to accomplish all this work of interpo-
lation so far shown (even without finding the correct formula for any sequence)
with the help of the reminders to be had in the Comments to Propositions 126
and 154. That is, by first interpolating the vertical sequences and then repeat-
ing the interpolations in the same way in the horizontal sequences. But while
it is not injudicious to investigate the formula for each distinct sequence, and
the reader may not perhaps be ungrateful, it may please to him to proceed
by another method rather than that used.

Since this has arisen, moreover, it is clear from the interpolation car-
ried out between each sequence, whether vertically of horizontally, in the
table of Proposition 132, that new sequences have already emerged amongst
them, not yet complete, however, but with gaps. And indeed that place (sig-
nified by the symbol O) whose completion I wish for the most, remains
as yet empty. If, moreover, it was given to fill any one of those empty
places, then the rest could be filled without difficulty, as will be clear from
Proposition 188.

But since the table in Proposition 132 is now to be had interpolated by
new sequences, in order that the interposed sequences have their appropriate
titles according to the scheme of that table, this following Proposition is to
be noted.

PROPOSITION 185

Theorem

If a new sequence is interposed among the sequences of the table in Proposition
132, in order that it may be given its correct title, the indices of the powers
positioned there must be noted. And only those powers are to be interposed
whose indices hold the correct relationship to the original indices.
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Thus, since the powers found at the head of that table have indices 0, 1, 2, 3, 4, etc.,
by the interpolation of one place now done everywhere the indices of the powers
positioned there will be —%,0, —12-, 1, 1%,2, 2%,3, 3%,4, etc.
In the same way, since the indices of powers positioned down the margin of
that table are 3,1,1, 1,1, etc. or %, %, %, %, 2, etc., the indices of the powers now
2 22222222

positioned will be 2,2, 2 2 2 2 2 2 2 2 ofc. (or for 2 you may substitute -2

or =2 or —2, which amounts to the same thing).
Therefore the table now interpolated may be had in this way.

If an infinite series of equal terms is reduced by a similar series of first
roots, or second roots, or third roots, etc. [the sums of] the differences, and
[of] their squares, cubes, etc. will be in the same ratio to a corresponding
series of equals as 1 to the numbers in the following table.

COMMENT

And here now one may note another series of those we mentioned in the
Comments to Propositions 165 and 168, namely one that I had taught before
at Propositions 118 and 121, unexpectedly arises also in the present table,
that is, in the third sequence across.
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PROPOSITION 186
Theorem

This is clear, that an infinite series of universal roots, to a series of the same
number of equals, may have a rational ratio.

That is, by the preceding Propositions we will have:

Square roots Differences Square roots of cubes
of differences

Vv(VR - Va) VR - \/a V(VR? — 3VR%a + 3V RaZ — Va?)
V(VR = Vb) vVR- b V(VR? — 3vVR?b + 3VRb? — Vb3)
VIR =) VR — /¢ V(VR? - 3VR%c + 3VR — V3)
etc. to

V(VR - VR) vVR- VR V(VR? - 3VR? + 3VR? — VR?)

2 VR 1AVR 2 VR?

V(VR - ¥a) VR - {a V(VR® — 3V R2%a + 3V/Ra? — Va3)
V(VR - Vb) VR - b V(VRZ = 3V/R?b + 3VRb? — V/b3)
V(YR - ¥e) VR - e V(VR3 —3VR%c + 3VRE — Vc3)
etc. to

V(VR - VR) VR- VR V(VR3 - 3VR2R + 3VR? — V/RR?)

6
= AVR ;AVR VR =2 AVR
or %gA{s/ﬁ %\/6 R3 = T%%A\/E

And by the same method for any other sequence of this table for which the interpo-
lation has been completed.

Therefore nothing is lacking for perfecting the same in the remaining sequences
(and in particular for the quadrature of the circle), except that there should be
discovered a method of filling the empty places, or (which comes down to the same
thing) that there should be found the correct formulae for those sequences. And
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indeed although it is not obvious how to find the formulae for the interpolated
sequences, nevertheless one may come to know from the following Proposition what
ratios they have to each other, so that if by any art we may find one of them, at
once the rest are also found.

PROPOSITION 187

Theorem

In the table of Proposition 184: just as taking any number 1 of the second
sequence (that is, the first of the even sequences), the formulae for the remain-

ing terms (from the even sequences) arise from continued multiplication of the
I I+1 14+2 [1+3 . s 70
numbers 1 x 71X X X etc. (as was said in Proposition 182)

2 3 4
20 21+2 21+4 2
or (which amounts to the same thing) 1 x 5 X : X ;_ X +6
so taking any letter A of the first (of the odd) sequences,” the formu-

lae for the remaining terms from the odd sequences arise from continued

20—-1 2141 20+3 2l+5
multiplication of numbers A X T X L+ X L+ X + etc. And

etc.,

therefore if one of these becomes known, the rest also immediately fol-
low.

For here one claims an analogy with arithmetic progressions, which are seen in both
the numerators and denominators. And the induction confirmed this for all the
places that are filled, so that there may be no doubt but that the same may also be
considered in the empty places.

And therefore from the formulae for the odd sequences, if one term becomes
known the rest also follow.

PROPOSITION 188

Theorem

In the sequences in the table of Proposition 184, if the first terms A are
labelled o, A, 3,B,~,C,6,D,¢, E, etc.”? and the second terms (that is, the

70 Wallis mistakenly has Proposition 178 here.

71 Here Wallis takes A to represent any term of the first sequence, thus oo, 1, —%, e

72 Here Wallis uses A in two distinct ways: (i) to represent in a general way the first terms
of the even sequences (see note 5), but also (ii) to denote in particular the first term of
the second sequence.
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first of the evens) 1, then all the rest (both even and odd) arise from continued
multiplication of the following numbers. Thus:

Odd Even
In the first o (1) : ; i ; >X< g : g th 1x 21:43:65:87:1%8:;.
S
S ST
In the fourth B x 3115317;;97);191;?- 1x 42>§<64>§<86>§<180><X1102eettcc..
.
.

And so on.

Proved from what has gone before. Or also (as before) by analogy with an
arithmetic progression. And indeed, it was confirmed by induction in all the filled
places, so that there may be no doubt but that the same may be considered in the
empty places.

If, moreover, anyone hesitates at the odd places of the first sequence (which I

e . O0x2x4x6 te.
assert arise from continued multiplication of the numbers o x x 6 x Bete ),
1 x3x5x7x 9etc.

that is, lest the figure 0 which is seen there completely destroy the whole con-
tinued multiplication, however large it becomes, and make all the terms of the
sequence vanish into 0 or nothing, it must be understood how this danger has been
guarded against, because the term A in this sequence is oo, or infinity, (just as
we showed above in the Comment to Proposition 166), and therefore unless 0 fol-
lows (to diminish the force of that oo) all the terms of the sequence would have
turned out to be oo, or infinity. But both of them together conveniently remedy
this danger. For although oo x 0 does not definitely designate any number (and
therefore nothing can thence be concluded with certainty about the rest of the
quantities), it can nevertheless come up in place of virtually all numbers in turn.
For any number divided by oo will give a quotient 0 and conversely. Thus 1/0co = 0,
1/0 = o0; 2/00 =0, 2/0 = 00; 3/00 =0, 3/0 = co. And so on, for any others. And
therefore (since divisor multiplied by quotient must restore the number divided),




The Arithmetic of Infinitesimals 157

it must be that co x 0 =1, or co x 0 =2, or oo x 0 = 3; and so on for any other
numbers.

PROPOSITION 189

Theorem

Here it follows that if in the empty spaces of the table of Proposition 184 any
one is filled with a known number, then all the rest will also be known.

For example, if the number designated by this symbol [J is assumed known, all the
rest also become known; which, that is, will have the ratio to that quantity as is
indicated here below.

The whole process is shown by the preceding propositions.

It must also be noted here, moreover, that any intermediate number is the sum
of two others, one taken from above, the other carried to the right (not to the next
place but after one interposed).

We may also adjoin the formula for any sequence (as far as it is known from
Propositions 182 and 187), so that the reader may better see how far we have taken
the thing.
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COMMENT

And indeed until now we seem to have carried the thing through happily
enough. But here, at last, I am at a loss for words. For I do not see in
what manner I may produce either the quantity O, or the formula for the
sequence A.”® (Nor therefore how to attain completely the formulae for the
odd sequences, though their ratios to each other are known, nor the odd
places in the odd sequences, although the ratios of these to each other are
also known.) For although if the lateral numbers are integers, thus, 1, 2 3
4 etc. the first terms of their sequences may be written down, thus, 1, 1 5 8,
48, etc. it is nevertheless not easy to understand in what manner the ratio of
these numbers to their respective lateral numbers may be expressed by any
one equation; or whence also to the remaining lateral numbers (in the odd
places) %, g, 5, etc. there may be fitted the first term of their sequences.
For although here no small hope seemed to shine, nevertheless, this slippery
Proteus whom we have in hand, both here and above, frequently escapes and
disappoints hope. In what manner, moreover, having also been constrained
here he might have shown his face, it will perhaps not be unwelcome to have
put forward. Namely:

PROPOSITION 190

Theorem

In the fourth (or second even) sequence, numbers taken alternately (in even
places) 1, 2, 3, 4, 5, etc. arise from continued multiplication of the numbers,

orfractions,1x2x§x§x§etc or 1x3x8x8%x10 etc; and(inodd
1 3 5 L3 wboly?8
places) 3, 35, 3, 2, etc. from the multiplication 1 3 X X3 XgXx3 ete. So

because of the interpolation of one number in each space (so that from both
odd and even places intermingled there arises a single sequence), any of the
ratios by which the first term of all, whether of the evens or odds, is continually
multiplied, must be separated into two ratios (as, for example, the ratio 1 to
2 is composed from the ratios 1 to 1% and 1% to 2) in this way:

b § X % 4 g X g &ec.
A ~Ary o~ o~
Fx i x i x§xfx§xlx$xy

L \./-Y\I L Ly
sx o1 ox b ox §ox 3

73 The sequence of first terms.
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In the sixth (or third even) sequence, if the same is to be done, any ratio must
be separated in the same way into two ratios, but both of those are composed
of two ratios, in this way:

That is, by first separating any ratio into four ratios (thus % = %%ii—ig and

—;’; = %, and so on for the rest), and then distributing them alternately

into two classes.

In the eighth (or fourth even) sequence, any ratio must be separated in the
same way into two ratios, but both of those are composed of three ratios, thus:

: : EN : : 8 _ 3x4x5x6x7x8
That is, by first separating any ratio into six ratios (thus 5 = 5552 7>=>¢>> etc.

and § = $x5x6x7x8x9 et ) which must then be distributed alternately into
two classes.

And similarly in the tenth sequence, twelfth sequence, etc. any ratio must
be separated into eight ratios, ten ratios, etc. which must then be distributed
alternately into two classes.

(Moreover, in the second (or first even) sequence, there is no need for the
separation of the ratios, but since all are the same ratio of equality, or %, that
same ratio is also everywhere interposed, for % X % = %)

But if we attempt this in the odd sequences, that is, so that any ratio is

separated (proceeding evenly) into two ratios, the thing does not come out so
happily.

So (for example), since (by analogy with the rest) the ratios of the fifth sequence
must be separated into three ratios, of the seventh into five ratios, etc. (always
an odd number), an equal partitioning of them into two classes, as needed for the
required interpolation, cannot be done.
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This whole Proposition (by inspection of the table) is sufficiently clear in itself
to those who are attentive.

The thing will perhaps appear somewhat more clearly if I separate some of the
ratios of the sequences into two, three, four ratios, etc. (as each sequence requires).
That is:

In the third sequence In the fourth sequence
2_2 3 2x3
1 1 17 1x2
3_3 4 _ 3x4
27 2 2 7 2x3
4_14 5 _ 4x5
3 3 3 7 3x4
5_5 6 _ 5x6
4 4 4 7 4x5
6 _§ 7 _ 6x7
5 5 5 7 5x6
77 8 _ 7x8
6 6 6 — 6x7
8 _8 9 _ 8x9
7 7 7 T T8
2=2 10 _ 9x10
8~ 8 8 T 8x9
In the fifth sequence In the sixth sequence
4 _ 2x3x4 5 _ 2x3x4x5
1 1x2x3 1 1x2x3x4
5 _ 3x4x5 6 _ 3x4x5x6
2 2x3x4 2 2X3X4X5
6 _ 4X5x6 7 _ 4AX5X6XT
3 3X4X5 3 3x4x5x6
7 _ 5x6x7 8 _ 5x6x7x8
4 4X5%6 4 4X5X6XT
8 _ 6x7x8 9 _ 6XTx8x9
5 5x6x7 5 7 B5X6XTx8
9 __ 7x8x%x9 10 __ 7x8x9x10
6 T 6x7x8 6 T 6xX7x8x9
10 _ 8x9x10 11 __ 8x9x10x11
7 7x8%x9 7 T Tx8x9x10
11 _ 9x10x11 12 __ 9x10x11x12
8 T 8x9x10 8 T 8x9x10x11

In the seventh sequence

6 _ 2x3x4x5x6
1 7 1x2x3x4x5

7 __ 3X4x5x6X7
2 T 2x3x4x5%x6
8 _ 4X5xX6x7x8
3 T 3X4X5X6XT
9 __ 5X6X7x8x9
4 7 4X5X6XTX8
10 __ 6X7x8x9x10
5 T BX6X7xX8X9
11 _ 7x8x9x10x11
6 T 6X7X8%x9X10

-

12 _ 8x9x10x11x12
7 T Tx8X9x10x11

13 __ 9x10x11x12x13
8 T 8x9x10x11x12

In these sequences (however far continued) and all subsequent sequences, it must
be noted that ratios from any even sequences are separated into an even number
of others, which may therefore be conveniently distributed (as was said) into two
classes; ratios from any odd sequences, however, are separated into an odd number
of others, which therefore can not be so distributed.
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COMMENT

If, moreover, anyone thinks a cure might sufficiently conveniently be applied to
this problem by separating the ratios of the fifth sequence, seventh sequence,
etc. (not into three ratios, five ratios, etc. but) into six ratios, ten ratios,
etc. (that is twice three, twice five, etc.) in such a way that the ratios (now
even in number) may be distributed into two classes: the thing cannot on
any account succeed as wished. For this indeed amounts to the same thing
as if the ratios of the fourth sequence, sixth sequence, eighth sequence, etc.
are separated (not into two ratios, four ratios, six ratios, etc. but) into four
ratios, eight ratios, twelve ratios, etc. and after that distributed alternately
into two classes. Which indeed if it were done, would not produce the ratios
sought (which we showed above) but others somewhat different from those,
as will be clear to the experienced.

And indeed I am inclined to believe (what from the beginning I suspected)
that this ratio we seek is such that it cannot be forced out in numbers accord-
ing to any method of notation so far accepted, not even by surds (of the
kind implied by Van Schooten in connection with the roots of certain cubic
equations, in his Appendiz to the treatise On a complete description of conic
sections,” or in the thinking of Viete, Descartes and others) so that it seems
necessary to introduce another method of explaining a ratio of this kind, than
by true numbers or even by the accepted means of surds.

And indeed this, whether opinion or conjecture, seems to be confirmed
here, since if we have the appropriate formula, for any even sequence (in the
table of Proposition 184) so also we might have obtained a formula of this kind
for any odd sequence; then, just as for the formulae for the even sequences we
have taught how to investigate the ratio of finite series of first powers, second
powers, third powers, fourth powers, etc., to a series of the same number of
terms equal to the greatest of those (in the Comment to Proposition 182), so
by formulae of the same kind for odd sequences, it would seem there could
be investigated similarly the ratio of finite series of second roots, third roots,
etc. to a series of the same number of terms equal to the greatest of these:
why this is not to be hoped for, moreover, we showed in the Comment to
Proposition 165.

And therefore what arithmeticians usually do in other work, must also
be done here; that is, where some impossibility is arrived at, which indeed

74 Frans van Schooten, De organica conicarum sectionum in plano descriptione tractatus,
Leiden 1646. The Appendiz gives Cardano’s formula for the solution of 23 = * — pz + g as

f/-&—%q + ,/%qq + 51.7173 - i/—%q + ,/iqq + %pi”. This was perhaps the first time that

Wallis saw Cardano’s formula in Cartesian notation; he himself had arrived at the same
result in 1647 or 1648 but using Oughtred’s notation; see Wallis to Collins, 12 April 1673,
in Rigaud 1841, II, 564-566. For Wallis’s self-confessed ignorance of the arithmetic of
surds in his early years see also Wallis to Collins, 6 May 1673, ibid. II, 578. Wallis’s copy
of Van Schooten’s 1646 Tractatus with his annotations on the flyleaf is now Bodleian
Library Savile Bb.10.
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must be assumed to be done, but nevertheless cannot actually be done, they
consider some method of representing what is assumed to be done, though it
may not be done in reality.

And this indeed happens in all operations of arithmetic involving reso-
lution,” for example, in subtraction: if it is proposed that a larger number
must be taken from a smaller, thus 3 from 2 or 2 from 1, since this can not be
shown in reality, there are considered negative numbers, by means of which
a supposed subtraction of this kind may be expressed, thus 2 — 3, or 1 — 2,
or —1.

In division, if it is proposed that a number must be divided by another
which is not a divisor,”® thus 3 by 2, since this can not be shown in reality,
there is invented a method of indicating a supposed division of this kind, in
this form: % or 1%.

In the extraction of roots, if there is proposed a number that is not in its
nature truly a power, for example, if there is sought the square root of 12,
since that root cannot be expressed as any integer or fractional number, there
is invented a method of indicating any supposed root of this kind in this form:
V12 or 24/3.

Equally, in a geometric progression, thus, 3, 6, 12, etc. if there is sought
a new term to be interposed between 3 and 6, it is said to be 3./2, or /18,
or /(3 x 6), or better (since it amounts to the same thing), /(2 x 9), which
is the same as to say more explicitly, the mean term between 3 and 6 in the
progression 3, 6, 12, etc. or between 2 and 9 in the progression 2, 9, 40%, etc.
Thus if between 3 and 6 there are to be interposed two geometric means, the
first will be /3 x 3 x 6 or ¢/54 or rather 3.¥2 (that is, 3 times the cube root
of the common multiplier 2), and so on in other cases.

If, moreover, a geometric progression, which is assumed to be formed by
continued multiplication of the first term by any numbers equal to each other
(thus, 3, 6, 12, 24, etc. from the continued multiplication 3 X 2 x 2 x 2 etc.)
does not always have rational intermediate terms, it is no wonder if that does
not happen in a progression formed by continued multiplication of the first
term by any succeeding unequal numbers, whether increasing or decreasing
(thus 1, 2, 6, 24, etc. from the continued multiplication 1 x 2 x 3 x 4 etc., or
1, %, %, %’ etc. from the continued multiplication 1 x % X % X % etc.

As much, moreover, holds here; since it is not possible to designate that
quantity (O) by a true number (not even by the usual said radicals, or surds),
there may be sought some method of expressing it in some way. Therefore,
as /(3 x 6) signifies the mean term between 3 and 6 in a regular geometric
progression 3, 6, 12, etc. (from the continued multiplication 3 x 2 X 2 etc.) so
nr-(1|%) signifies the mean term between 1 and % in a decreasing hypergeometric

75 Resolution is here used as the opposite of composition, thus of subtraction as opposed
to addition, division as opposed to multiplication, or extraction of roots as opposed to
composition of powers.

76 Non metitur, literally ‘by which it is not measured’.
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progression (from the continued multiplication 1 X g X % etc.) which will be:
O= nr‘(1| ). And therefore the circle, to the square of its diameter, is as 1
to a(1]2 ) Which indeed is the true Quadrature of the Circle expressed in
numbers as far as the nature of those numbers may be shown.

And indeed, just as in a regular geometric progression, 3, 12, 48, etc.,
anyone who says the term intermediate between 3 and 12 is 1/(3 x 12) may not
be said to have set the thing out satisfactorily, since that term may be more
explicitly said to be 6 (for /(3 x 12) = /36 = 6). But anyone who assigns
between 3 and 6 (in the progression 3, 6, 12, etc.) the intermediate term
V(8 x 6) (or rather /18, or 3,/2) may be said to have set it out sufficiently,
since it is not possible to assign a true number. Thus if in the progression 1,
5 954 etc. a.nyone says that m=(1|%2) is the intermediate term between the
terms 1 and , he has not taught the thlng sufficiently explicitly, for he could
have said 3 But anyone who assigns a~(1|2) as the intermediate term between
1 and 3 must be said to have set the thmg out sufficiently, since this term
cannot be expressed in true numbers; therefore it suffices if it is indicated in
some way.

And, further, although /(3 x 6) (in the progression 3, 6, 12, etc.) or /18
or 3,/2 cannot be expressed accurately in true numbers, it may, nevertheless,
be signified as closely as one wishes (thus greater than 4.24 but less than 4.25;
or greater than 4.2426 but less than 4.2427; or greater than 4.242639 but less
than 4.242640, and so on); so also the number [ = nr'(1|%) may be signified as
closely as one wishes in true numbers, though not exactly, thus, greater than
1.27 but less than 1.28; greater than 1.2732 but less than 1.2733; greater than
1.273239 but less than 1.273240, and so on, as may be put together either
from our table (which will be shown in the following Proposition) or also in
various other ways.

Therefore I see no reason why the ratio of the circle to its circumscribed
square (or also the elhpse to the circumscribed parallelogram), that is, 1 to
O =m(1|3), or O = 1a3 (that is, 1 to the term intermediate between 1 and 3
in the progression 1, ‘;’, 2185, etc.) may not be said to be just as systematlcally
explained as the ratio of the side of a square to its diagonal, that is as 1 to 14/2,
or, or to /(1 x 2) (that is, as 1 to the intermediate term between 1 and 2 in the
progression 1, 2, 4, etc.), except that this notation /2 or /(1 x 2) is already
accepted (thought is was at one time new) while ours is now introduced for
the first time because of the new kind of progression now for the first time
(as I believe) discovered. Moreover, just as the notation for surd numbers
(thus, /2, etc.) introduced into arithmetic the method of adding, subtracting,
multiplying, dividing etc. for surd roots, so it will not be difficult to apply
operations of this kind to this our new method of notation, which however
is not the purpose of the present work. Meanwhile I am not ignorant that
for perfecting this notation more accurately, there must be adjoined distinct
symbols, thus a2 a3 a4, etc. as will indicate either a single mean, or the
first of two, or three, etc., just as is also usually done for the sign +/, thus

\/2,\/3,\/4 , etc. to signify a square root, cube root, fourth root, etc., that
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is, either a single mean proportional or the first of two, three, etc. In the
same way, other distinct signs must be added which indicate, in the continued
multiplications (of the given interpolated sequences), whether they increase
by ones, or by twos, threes, etc. But all this, and whatever similar problems,
must await more exact inquiry into these progressions, if mathematicians are
of the opinion this should be admitted into arithmetic (and why less should
be done, I do not see). It is sufficient for the purpose of the present work
that we wish to indicate it in some way and to supply in plain words what is
lacking in symbols. If, moreover, this method of notation thought out by me
is less pleasing to mathematicians, I would as happily allow it to be changed
to a way that they show more appropriate.

Howsoever this may be, I must indeed acknowledge that I am still unable
to supply formulae of this kind for the odd sequences as for the even sequences
in the table; nor for the odd places in the odd sequences (though I have now
shown the ratios of those to each other) according to any method of notation
(that T know yet accepted). And although in those above, often by fortune and
by breaking paths never, as far as I know, trodden before, I have discovered
some of the hoped for conclusions, I could scarcely, however, (for the reasons
already shown) have dared to hope that likewise here also everything would
come out as wished. If, by chance, anyone else from here on treading in my
footsteps arrives at length at what it was not given to me to arrive at (for I
would not wish to proclaim to the skilled the limits of all other methods in
the same way as for mine), and discover more useful methods of expressing
those same quantities, I would certainly not bear any ill will. In the meantime
I believe it will be by no means unwelcome to mathematicians that I have
offered some new light, not (as I judge it) wholly to be disparaged, on the
obscurity of problems concerning the quadrature of the circle, and to have
expressed that in numbers as far as the nature of numbers allows.

What we have already found, moreover, it may also be pleasing to set out
in some following Propositions, in a form a little changed. And first indeed it
may be signified as closely as one wishes by whole numbers, and afterwards
also by straight lines.

PROPOSITION 191

Problem

It is proposed to inquire, what is the value of the term O (in the table of
Proposition 189), as closely as one wishes using whole numbers.

That the thing may come out more easily, the terms of the progression (the
same produced again) 10, 1, O, 3, %D, pE s %D, g:iig, etc. may be called
«,a, 57 b1 7Y€ (57 d7 etc.

Moreover, 1 : 2=a:8,and2:3=a:b,and3:4=0F:v,and4:5="b:¢c, and
5:6=v:6,and 6:7=c:d.




The Arithmetic of Infinitesimals 165

v 4 54§ 6d T

_——= - = -, — = =, — = — tC.

3p 47 5 ¢ 6°°

multiplying ratios continually decrease) we will have

= B = %, therefore less than \/—

= =, therefore greater than \/>

(Ne)

o B2 3 _
Tha.tls,a—1 =3

Q

b_
a
Therefore (since the

Q

»-q»-

the lesser of both”? < x 2

is (6% a
the greater of both é 2

a p

SR

I\Jl»—l

a
b_
a

less than 1v2=1

and therefore 8 =a x — =0 is
greater than 1\/g =1 1%

In the same way

_4 therefore less than 2=,/11

b Y
35s 8" 3
5 5
352 1 therefore greater than f

x &
v
less than §>< /1_l
27 V'3
{ 3
2

Y-

the lesser of both

e

the greater of both

and therefore y =bx —- = ~
greater than

3x3
X 4/1%, ter th /1%
greater an2x4>< 3

that is, [ is less than

And (by the same reasoning)

3 x5
less than X ,/lé
d=c é—4X6Dis x4
3%5 eater than x5 ><,/1l
&r 2x4 6
. . 3x3x5x5 1 3x3x5x5 1
thatls,Dlslessthan2X4X4x6x ls,greaterthanzx4x4xﬁ>< 1g

And (continuing the work in this way according to the rules of the table) it will be
found that

IX3IXEXEXTXTXx9IXx9Ix11x11x13x13 X\/EI
2X4X4X6X6x8x8x10x10x12x12x 14 3
IXIXEXHIXTXTXx9IXx9Ix11x11x13x13 1
2><4><4><6><6><8><8><10><10><12><12><14X\/:

less than

Ois

greater than

77 Wallis’s argument here is that 3/a is the smaller of the two quantities a/a and 8/a
(because of the decreasing ratio), and is therefore less than the square root of their
product. Wallis does not make himself entirely clear, and Christiaan Huygens was puzzled
by this part of the argument, and failed to understand why Wallis went on to take a
square root; see Huygens to Wallis, [11]/21 July 1656, Beeley and Scriba 2003, 189-192.
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And so on as far as one likes. In such a way, that is, that the numerator of the
fraction arises from continually multiplying odd numbers 3, 5, 7, etc. placed twice,
but the denominator from continually multiplying even numbers 2, 4, 6, etc. also
placed twice, except the first and last, which are put only once; and finally all that
ratio, or fraction, thus formed, is multiplied by the square root of 1 increased by
some fraction of itself, namely that which has as its denominator the last of the odd
numbers in the continued multiplication, if we seek a number too large, or of the
evens, if we seek a number too small.

And by this method it may be done as far as one likes until the difference
between the greater and the smaller becomes less than any assigned quantity (which,
therefore, if one supposes the operation continued infinitely, will at last disappear).
Which indeed, in case it is needed, will be demonstrated here.

Thus, as has already been said of the numbers in the continued multiplication,
the greatest of the evens (that is, the final factor of the denominator) may be called
2, and therefore the greatest of the odds (that is, the final factor of the numerator)
will be z — 1 (that is, the other less one). Therefore (since the same multiplier is

combined with both) the number too large to the number too small will be as /1 zil

to 1%, that is, as the final surd number in the former to the final surd number in the

latter), that is, as , /%5 to ,/%l, that is, as 4/ z’_21 to /(z 4+ 1) that is as /2% = 2

to /(2% — 1). Moreover it may happen (by increasing the quantity z as needed) that
the difference between the roots v/z2 and /(2® — 1), that is, z — /(2% — 1), becomes
less than any assigned quantity (as is known, and was also said elsewhere by me at
Proposition 39 of On conic sections). And therefore the number too large exceeds
the number too small by a fraction less than any assigned quantity.”® Which was to
be proved.

Since, moreover, as is clear from what has been said, by increasing the number
z infinitely, the number too large exceeds the number too small by a fraction less
than any assigned quantity, the differences between them (and therefore of either
from the true quantity) will be infinitely small, that is, nothing.

Further, since the number 2z is thus increased infinitely, that fractional part of 1

adjoined to it will be infinitely small; it will be \/g or ,/lﬁ, which amounts
to the same thing therefore as /1 or 1 (on account of the vanishing infinitely
small part), which by multiplication changes nothing. We say that the fraction
3x3x5x5xTxTetc. or 9 X 25 x 49 x 8letc.
2x4x4x6x6 x 8etc. 8 X 24 x 48 x 80etc.
cisely the required number [, and the ratio of 1 to this is that of the circle to the
square of its diameter. Or (if this is more pleasing), as the denominator of that frac-
tion is to the numerator, so we may say is the circle to the square of its diameter.
And, as the numerator is to the denominator, so is the square to the circle. That
is, as the product of the continued multiplication 9 X 25 x 49 x 81 etc. (squares of

continued infinitely is itself pre-

78 Wallis's proof has interesting elements of a later limit argument, but is incomplete. His
argument that z — /(22 — 1) can be made less than any assigned quantity is correct; he
has ignored, however, the fact that this quantity is multiplied by a fraction that increases
with each new pair of multipliers. The convergence of the fraction therefore depends on
the properties of not one but two infinite processes.
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odd numbers) to the product of 8 x 24 x 48 x 80 etc. (the same squares decreased
by one), continued infinitely.

Moreover, if some more curious person inquires how far that continued multi-
plication must be continued until at last that given difference, or less than that,
is arrived at, or so that the number too large exceeds the number too small, by
however small a part of itself (or not even that), that will be investigated by this
method.

Let the greater quantity be called m, the smaller n, and let their difference, that

a . .
part however small, thus Em = m — n, and let it be inquired how far the work must

be continued, that is, what will be the number z, the greatest (simple) multiplier
that produces that difference (or even less than it).
. a . a
Since therefore m —n = Em, we will have n=m — Em, and m:n=m:

m— %m = gm: b ; Sm=bib—a=2z: V(2> = 1) (by the method demonstrated).
Therefore by/(22 —1) = bz —az. And (squaring everywhere) b%22 —b? = b%22 +

a?2? — 2abz%. And then (deleting b22% everywhere and transposing the rest) 2abz? —
2

a?z? = b2. And finally (dividing everywhere) 2% = 5 Therefore the square

b
2ab—a
root of this number (if it is an even number), or at least (if it is either a fraction
or a surd or an odd number) the even number next greater than that root, will be
the greatest of the multipliers that arrives at the assigned difference or certainly less
than that. Which was to be investigated.

The same another way

After this our description of that quantity O, we may also add another, which
I have received from that most noble person and very skilled geometer, Lord
William Viscount and Baronet Brouncker.

Since I showed him some of my progressions, and indicated by what rule
they proceeded, meanwhile asking him to indicate in what form he thought
that quantity might usefully be described. That Noble Gentleman, having
thought it over himself, judged by a method of infinites of his own that the
same quantity could be most conveniently described in this form:

1
25
2
275
2*2— etc.

That is, if to one there is added a fraction that has a denominator continually
broken, by the rule that the numerators of each small fraction are 1, 9, 25,
etc., squares of odd numbers 1, 3, 5, etc., but the denominators everywhere 2
with an adjoined fraction, and thus infinitely. Adding this at the same time,
that, wherever at length it pleases one to stop, instead of the final 2 with the
fraction afterwards cut off, there may be put (according to the place where
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one requires it to stand) any of 3, 5, 7, 9, etc. (arithmetically proportional
from 1, in whole numbers); that is, if it is required to stand in the first place,
3, if in the second, 5, if in the third, 7, and so on, putting the number that
defines the place, doubled and increased by one. And, in the same manner, if
it is required to stand at an odd place of the fraction it will produce a number
too large; but if even, too small. And the longer it is carried on, the more
nearly it approaches in either case the true number.

1 too small
131- too large
11_ too small
99
5
1_1_ too large
99
25
2 7
11_ too small
99
25
2 49
2 9

And he has described in the same form the remaining numbers sought in
our table, and interpolated others of our progressions, similar to those in the
table shown. But to open up all the process of his method would take longer
than can be spared here. I hoped, moreover, that at some time the thing itself
would be publicly shown by him in an orderly way.

COMMENT

But since I see that persuading the Noble Gentleman that he himself wishes
to undertake it is going to be more difficult, I will endeavour to show the thing
according to his thinking, as closely as I can and briefly.

The Noble Gentleman noticed that two consecutive odd numbers, if mul-
tiplied together, form a product which is the square of the intermediate
even number minus one (thus, 1 x3=4-1=2%2-1,3x5=15=16—-1=
4% — 1, etc.) And similarly two consecutive evens form a product which is
one less than the square of the intermediate odd number (thus, 0 x 2 =
0=1-1=12-1,2x4=8=9-1=32-1,4x6=24=25—-1=52—1,
etc.) He asked, therefore, by what ratio the factors must be increased to form a
product, not those squares minus one, but equal to the squares themselves. He
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found this could be done, moreover, if both factors are increased by a fraction
that has a denominator continually broken, infinitely so, in the form we have
shown above. That is, the numerators of the part fractions are squares of odd
numbers, but the denominators are everywhere twice an integer, increased by
a fraction, and so infinitely. In this form, continued as far as one likes.”

Moreover, those factors thus constituted, continued as far as one likes
(though not infinitely) form a product either less than the required square, if
the number of fractions adjoined to the integer is even, or greater, if odd; so
that, however, the longer this is carried on, the more nearly it approaches the
required square, which is confirmed by this demonstration.

Let the first whole number of any required [pair of] factors be F, and
the next F + 2. The number between, therefore, (to be squared) is F + 1.
The product of the former, F? + 2F, is less than the square of the latter,
F2+2F +1.

Now one fraction is adjoined to each factor. Therefore the factors

form a product

1
2F +4

4F* +16F°% 4+ 20F2 + 8F +9

4F? 4+ 8F
4F% +16F3 + 20F? + 8F
4F? 4+ 8F
Then two more fractions are adjoined; the resulting factors
1

2F + 4+ 57

1
F+ﬁandF+2+

, which will be greater than the square

F242F+1=

1
F+-——3 and F+2+ form a product

2F+§p
AFS +11F AF® + 24F? + 59F +54 _
4F? +9 4F2 4+ 16F + 25 -

16F® + 96 F° + 280F* + 480F3 + 649F? + 594F
16F4 + 64F3 + 136F2 + 144F + 225

79 The first fraction, beginning with zero, oscillates between zero and infinity, but multiplied
by the next fraction, beginning with 2, it is supposed to make 1.
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which is less than the square F?2 +2F +1 =

16F% 4+ 96F® + 280F% + 480F3 + 649F2 + 594F + 225
16F4 + 64F3 + 136 F2 + 144F + 225

And thus it may be done as far as one likes; it will form a product which will
be (in turn) now greater than, now less than, the given square (the difference,
however, continually decreasing, as is clear), which was to be proved.

These having been found, moreover, they may be so adapted to our
sequences, that thence the desired terms in the table become known, described
according to this method of notation.

For example, (putting A for the first term of any sequence), the first
sequence in our table is composed (as was shown above) in the odd places by

the continued multiplication A x § x 2 x 4 x S etc.or Ax I x4 x & x 12
i L3 b y? 24,8 14
etc.AndlntheevenplaceslxEx4xﬁxgetc.or1x4x6><mxlsetc.

That is,

0x2)Qo(§ 4x6)Q4(t  8x10)Q8(%

{ A L8 €
oy i $ " 1 1 i
Tig tiip, 343, Shy, Thy, ohy, Ihy,
8

Ax x X X X x X x&e,
o 2 4 é 10 12

CAny ey, IV
2x4)Qa(} 6x8)QS(§ rox12)Qro(ig

Or also (which clearly comes down to the same thing) in this form

Qor(s QOIS  Quo)krold
ONAND ONANN
o 2 4 ¢ 8 10 12

Ax x x X x X x x&c.

Iig, 3%3, Seg, Tag, g, sy, DNdg,
VN —— - .
Q4)2x4(3 Q8)sx8(§ Qr2)rox12(8

Either way, the ratios from which the numbers to be put in either odd or
even places are composed, may be separated into two ratios (as is clear), from
which may be constituted the numbers to be put in each place continually;
that is, the numbers in first the even then the odd, reduced to one sequence
by common interpolation.

Similarly, in the third sequence, in which the numbers occupying odd

places are composed by the continued multiplication A x % X % X g X % etc.
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4.8, 12,16 ; 3.5
orA><2><6><10><14etc.,andlntheevenplacesbyl><2><4><

6. 10 14 18 :
or 1 X z X % X 95 X 1¢ etc. That is,

[N

9
X 3 etc.

And these are indeed abundantly sufficient for completing all the numbers
of our table, since it has already been shown above at Proposition 188, that
any one of the desired numbers being found, the rest immediately become
known. If anyone, however, desires that just as we resolved our ratios in the
first and third sequences, so also to have the ratios of the remaining sequences
resolved in the same way, it will indeed be possible that that also should be
done, so that, however, in the fourth sequence (that is, the second after the
sequence of units), there will be a separation of any ratios produced into two
ratios; in the fifth, into three, and so on.

That is, in the fourth in this form:

In the fifth sequence, in this form:

And similarly in the following sequences. That is, each ratio of the fourth,
fifth, sixth sequence etc. is composed from two, three, four ratios etc. of the
third sequence.
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Since, moreover, for each of those sequences of ratios now discovered (from
which the numbers of our table may be constructed by continued multiplica-
tion), it might seem convenient that they can be shown in various forms, and
(just as needed) transformed from one to another, so that (standing in for
other fractions) they may better support the operations of arithmetic: it is
also possible to do this conveniently by what was given at the beginning of
this Comment, that is, by the resolution (as was there taught) of squares
of even numbers into the factors®® there indicated, each being written (for
convenience) in symbols, in this way:

For since OB = 22 = 4, and BC = 4% = 16,
Wewillhave4:16:DB:BC:D:C=%D=4D;
and %D =C

In the same way, % = B and % =[.

And the same in the other places.

Therefore with the ratios recently found, there are for the sequences:

First A x 0 X 2 X 4 X 6 X 8 X 10
1 1 1 1 1
s 33 53 ~9 9 ]
oF 66 10107 L prex 18181 29y
X 12 X etc
1
13—
3%+
0 2 4 6 8 10
thatis AX =X =X = X = X = X — X — X et
o BAXEX B D E"F e
2 4 6 8 12
S dAX =X =X=X=X— X — Xet
econ 27517678 10 127

Rectangulorum aequalium latera, literally ‘sides of equal rectangles’.
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. B C D E F @&
ThlrdAXE'XZxEXgXI—OXEX'—ertC
vourth 4y B CD DE BF  FG_ GH __HI
our 2x4 4x6 6x8 8x10 10x12 12x14  14x16
X etc.
wieen Ay BCD_ _CDE  DEF _EFG _ _ FGH
! 2x4x6 Ax6x8 6x8x10 8x10x12  10x12x 14
X GHI X etc
2x1dx16 &¢

And thus in the rest (where, however, it is to be understood that A is
not everywhere the same quantity, but in the first sequence A = 0o, or better
oold, in the second A =1 = ooO X o in the third 4 = %D =1x %, in the
fourth A = £ = 40 x = in the fith A= 30=4 x = =} x 1C= 1 x 40,
And so on. For the first vertical sequence is the same as the first across (as is
clear above). They may thus be shown, merely by an equally powerful demon-
stration, so that only one of these infinite numbers is needed in each expres-
sion, and often indeed not one. For example, in the fifth sequence, the sec-

CDE  36E  64C 40 16 C 12 3E
4x6x8 4x6x8 4x6x8 3 3B 3 D 16
etc. and therefore by multiplying this ratio written in any of these ways,
by the second term of that sequence, 1, (found in our table) the third term is
to be had:

ond ratio

40 16 C 12 3FE
— :——:—Z—etC.

X3 =330~ 16

And this third term multiplied by the next ratio:

DEF 64F 100D 900B 15 15B 15 5D

6x8x10 6x8x10 6x8x10 1920 81 32 2C 24
40
=3—Eetc.

will give the fourth term of the same sequence, % = 2%, that is, the same as
the table shows. (But the same term is also equally shown by multiplication
of the second term, 1, by the ratio composed of the second and third.) And
in this way one may show each term of our table, having made use sometimes
of some one, but more often not even one, of those infinite numbers, the first
of which indeed, that denoted [J, we introduced into our table.

Therefore the ratio of the circle to the square of its diameter (as
4 C 9 9E 225 25G
1 i 1 12= :L__]_—_-——:—:—:——.:-—:_ .
already said) ;pd:d* =1 B-1-D - 61" 16F 256 etc. And
similarly (since the ratio of the circumference to the diameter is four times
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the ratio of the circle to the square, because, that is, 1pd: d? = 1p: d), the
ratio of the circumference to the diameter, p : d = [J : 4, and the diameter to
the circumference, d : p=0:4 =

L A_p_l6_4D 256 _64F _10u
‘O~ "¢ "9 T9E 25 BG ¢

That is, 1 to [J is the ratio of the circle to the square of its diameter

and 1 to B is the ratio of the diameter to the circumference.

It remains that I should show a reason (not so much from necessity as for
the sake of clarity) why in assigning the value of the quantity O, as I said
above, for the final denominator of the continually broken fraction (taking it
to stand wherever one likes), there is to be put not 2 but rather 3, 5, 7, 9, etc.
as the place where it is to stand requires. The reason indeed is this.

Since it may be assumed (as already taught) that O x B = 22 = 4, and
that O = IT and B = S—r, then if we divide 4 = 22 by B (the next factor)

it will give D If the quantlty B is taken incomplete, it will produce not the

quantity O itself but another which will be either greater or less, according as

the imperfect value taken for B is less or greater than the exact value of B.

That is, if for the divisor B is taken 3, having done the division it will give

1% for O; if for the divisor we take 3%, it will give 1—2—1§ s if 36—15, it will give
5 6

12—r- And so on, as is clear from the calculation itself.
.35

And so it will be for B = 3&, C = 5&, D= 7&, etc. That is, for B
the last denominator will be one of these: 5, 7, 9, 11, etc. (namely, the one that
the place where it stands requires) because 3 (the whole number with which
the description of the quantity B begins) continually increases in arithmetic
progression in twos. And similarly in C, one of these: 7, 9, 11, 13, etc. And in
D one of these: 9, 11, 13, 15, etc. (which, that is, in the former from 5, and
in the latter from 7, continually increase in arithmetic progression in twos).
And similarly in those that follow, which the calculation itself will indicate.

And generally, in any of those quantities to be described (in whatever
place at length one would wish to stop) for the last denominator there may
be taken twice the number that denotes the place of the fraction, increased
by that whole number that begins the description.

If anyone asks, moreover, why in this process (in designating the last
denominator) we make the division by the second factor rather than the
first, the reason is, that thus the thing proceeds more conveniently. For as
those denominators now go forward from the initial whole number increasing
arithmetically; if the division were done by the first factor, the denominators
would go backwards from the initial whole number, decreasing (which would
confuse the description more), as trying it will show. And therefore by that
rule, if (for example) the quantity F is written as 102 = 100 divided by F,
the denominators thus produced will be 9, 7, 5, 3, 1, —1, etc. If, however, by
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the first method, as 122 = 144 divided by G, they would have been 13, 15, 17,
19, 21, 23, 25, etc., that is, the former decreasing from 11, the latter increas-
ing; and, moreover, wherever the latter method gives quantities altogether too
large, the former will likewise give them too large, and conversely. Whence
it is also clear, that the first method of writing the final denominator is not
only less confusing, but is also more accurate than the second. For since the
excess and defect are always determined by the final fraction (by the addition
of which, a quantity which was too large becomes too small, and conversely),
where the denominator is greater (keeping the same numerator) the fraction
is less, and therefore either the excess or defect is less, than if the denominator
were [smaller].8! Therefore putting in place denominators continually increas-
ing will decrease the error, and those continually decreasing will increase it.
Which indeed is true as far as you like, so that not just in our correction
which proceeds by continual increase of denominators, anyone may find to
their advantage (or rather, disadvantage on account of the said reason), that
it may be taken so far that the increased denominator is greater than the
general denominator, (namely, that which is equal to twice the whole num-
ber at the beginning) for, until that is arrived at, changing from the general
denominator to the increasing denominator does not diminish, but increases
the adjoined fraction, therefore also the error.

There seems to remain yet one more thing, that is, that I show by what
rule continually broken fractions of this kind may be conveniently reduced to
ordinary fractions.

Moreover, while it may be done by a method known to everyone, beginning
from the end, and going back until one eventually arrives at the beginning, all
the same it seems desirable that it may by done by starting from the beginning
and proceeding as far as one likes. Therefore, we will now show how this may
be done.

Therefore, let any continually broken fraction of this kind be written thus:

Therefore it may be agreed that the reduction may be set up by the
accepted method, in this way:

a_2a

a a

a  af
T—b+aﬂ
a.._

B

81 Wallis has mistakenly written ‘greater’ (major) here.
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a
B _ac+afy
a—, ac+ by + afy
Y
e
a_lf._ . aBd + acé + aBvd
g—cd_ ~ bd + aBd + acd + byé + aBd
'YT

etc.

And so on, as needed. Whence we may put together this rule, with the
help of which we may begin the reduction from the beginning, continuing as
far as we like:

That is, if (of three consecutive fractions) the numerator of the third given,
is multiplied by the numerator of the first just sought out, and the denomina-
tor of the third given, by the numerator of the second just sought out, the sum
will be the numerator of the third sought. And similarly, if the numerator of
the third given, is multiplied by the denominator of the first just sought out.
and the denominator of the third given, by the denominator of the second
just sought out, the sum will be the denominator sought.

An example may make the thing clear.

Let the fraction to be reduced be: 1

The work may be set up thus. Having found the second fraction by the
usual method, the third and those following may be had thus.

82 Propositus, or proposed, or given.
83 Quaesitus, or sought out.
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P
25| x1=25 d
? 29 1 1
x2=4 By 2
9 2 1
x 2 =50 = —=-3
25 76 2 13,9
21x13=26 2
5 o 25 29 1
X 2= ) % .
49 156 2
21 x29=58 -
49 156 1
13 = 637 -~ ==
il o 789 2 T, 9
2| %76 = 152 25
9 49
81| x 29 = 2349 2
o 4065 81 4065 1
x 156 = 1716 11 14835 9.9
25
_ 2—
81| xT6=6156 | oo 40
11|, 789 — 8679 2%-

And so on as far as needed. The reason for the operations is clear from
what has already been said.

If anyone still wonders, moreover, how it comes about that these continually
broken fractions are alternately now greater than, now less than the required
quantity, (according to whether it pleases anyone to stop here or there),
he may briefly be given the reason for it. Since it is certain that an inte-
ger without any adjoined fraction is too small, the first fraction adjoin-
ing that integer increases the quantity, but the smaller it is itself, the
less it increases it. Here, therefore, the first fraction increases the quan-
tity, and indeed as far as this, that now what was too small becomes too
large. And keeping the same numerator of this fraction, if the denomina-
tor is increased (which comes about by the adjoining of a second fraction)
the first fraction, and therefore also the whole quantity, is decreased by
adjoining a second. And this decrease will be smaller (and therefore the
total quantity greater) as the denominator of this second fraction (keeping
the same numerator) is increased, which comes about by adjoining a third
fraction. Therefore the third fraction decreases the second, and therefore
increases the first, and thus also, therefore, the whole quantity. And simi-
larly in the subsequent steps. Thus the fourth adjoined fraction decreases
the third, that is, increases the second, decreases the first and therefore
the whole quantity. The fifth decreases the fourth, and therefore increases
the third, decreases the second, and increases the first and therefore the
whole quantity. Therefore adjoining fractions in odd places increases, in
even places decreases, the quantity. Which is to be understood not only of
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this, but of any other fractions thus continually broken (in the denomina-

tors).

And thus far I have shown the thinking of the Noble Gentleman as briefly
and clearly as I could. And what else I thought could be said about his method,

I have indicated briefly.
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PROPOSITION 192

Theorem

Suppose there is a smooth curve VC' (not moving jerkily from here to there)
with axis VX, and with tangent to the vertex VT, from which to the curve
there are taken lines parallel to the axis and equally spaced from each other,
of which the second, fourth, sixth, eighth, etc. (in even places) are as 1, 6,
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30, 140, etc. (which numbers arise from continued multiplication of these:
1x 8 x 10 x 145 18 etc.) Then as the second is to the third (that is, as 1
to the number interposed between 1 and 6), so will be the semicircle to the

square of its diameter.

Follows from Propositions 139 and 135.

PROPOSITION 193

Theorem

Suppose there is proposed a smooth curve VC, to which there runs to the
vertex a line VT, from which to the curve there are taken any number of
parallel lines equally spaced from each other, of which the second, fourth,
sixth, eighth, tenth, etc. (in even places) are as 1,3,13 195 98 etc. (which
numbers arise from continued multiplication of these: 1 x 3 x 2 x I x 2 etc.)
Then as the second is to the third (that is, as 1 to the number that must be
interposed between 1 and %), so will be the circle to the square of its diameter.
(And also as the second is to the fifth, so will be three times the circle to four

times its square, etc.)

Follows from Propositions 118, 121 and 185.

PROPOSITION 194

Theorem

Suppose there is a smooth curve VC, with axis VX, and tangent to the vertex
VT, and of the lines taken from there to the curve (parallel to the axis and
equally spaced) the second, fourth, sixth, eight, tenth, etc. (in even places) are
as 1, —g—, §8§, 37418—5, %, etc. (which numbers arise from continued multiplication
of these: 1 x 3 x % X % X % etc.) Then as the second is to the third (that
is, as 1 to the number that must be interposed between 1 and -g—) so will be
the circle to % of the circumscribed square (or the square of its diameter), or
three times the circle to four times the circumscribed square. (And as also as
the second is to the fifth, so will be three times the circle to eight times its

square, etc.)

Clear from what has gone before and from the table in Proposition 189.
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COMMENT

And indeed innumerable propositions of this kind may be deduced from the
same table (in Proposition 189), certainly having formed some or other curves
of this kind according to the course of the table.

And what kind of curves all these will be it will not be very easy to
judge. All the same, one may observe certain things here. That is, in the sixth
sequence the (triangular) numbers 1, 3, 6, 10, etc. (which arise by continued
multiplication of these: 1 x g X % X % X % etc.) are as the squares of the
ordinates in a hyperbola, as was said at Proposition 173.

In the fourth sequence, the (arithmetically proportional) numbers 1, 2, 3,
4, etc. (which arise from continued multiplication of these: 1 x 3 x § x & etc.)
are as the squares of the ordinates of a parabola, or as lines in a triangle, as
is obvious.

In the second sequence, the (equal) numbers 1, 1, 1, 1, etc. (which arise
from continued multiplication of these: 1 x % X % X % etc.) are as the squares
of lines (or also as the lines themselves) in a parallelogram, as is obvious.
Therefore in the second and fourth sequence, in reality there arise straight
lines for the curves, namely, in the latter the side of a triangle, in the former
the side of parallelogram.

In the sixth, eighth, tenth, etc. (taking alternate sequences), there will arise
yet more complex curves, but their formulae are no less accurately designated
in the said table than the known formulae of the parabola, hyperbola and
ellipse.

Moreover, in the remaining interposed sequences, the first, third, fifth, etc.
(in odd places) there arise the same smooth and regular curves (thus of the
kind Descartes would understand as geometric),3* although their formulae are
more difficult to set out, as they are intermediate between the known formulae
of sequences placed in even positions, according to what we showed of the form
of the progressions in Proposition 187.

What the exhibited curves, indicated by each sequence of the table
(whether taken in even or odd places), present for inspection, the adjoined
figure shows, which exhibits those depicted curves one by one, taking the
correct measure of each on (as it is said) the same scale.

Meanwhile it must be noted (what the inspection itself also indicates)
that the convexity of VC (turning against the line VT'), which in the last of
the curves is greatest, gradually decreases in the previous ones (if we reckon
it backwards), until in the fourth place the curve passes to a line (which is
intermediate between concave and convex), thence in the third to concave,
and in the second to a parallel, and finally in the first is recurved (that is, it
continually approaches a line by those steps by which the rest recede). The

84 Descartes’ definition of a geometric curve is not that it should be smooth and regular,
but that it can be described by a single equation in the coordinates. Wallis has failed
to find such an equation for the odd curves, but goes on to argue (see below) that such
formulae or equations must exist.
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same line VT, which in the fifth and following is a tangent, in the fourth cuts
the line, in the third is a diameter of the curve, in the second a parallel, and
finally in the first an asymptote.

What are the properties of all these curves, moreover, and by what meth-
ods they may most conveniently be described, the more curious may not for
the present ask of me (for I am already tired and weary enough from the
varied and difficult journey), nor that I should further handle the quadrature
of the hyperbola (which was done above). And indeed it is possible that it
may be pleasing to some that I offer this business while remaining silent on
it, since it allows them, the method having been already demonstrated, to be
diverted by the same mysteries.

And all are such as Descartes would have by the name of geometric, which
without doubt is the case, since it is already sufficiently established for the
even places, their formulae having now been discovered, and therefore also for
odd places (though their formulae are not so conveniently written) it cannot
be thought otherwise. What kind of equations they are that belong to each,
will be clear from the regularity itself. For since to the fourth sequence there
belongs a linear equation; to the sixth, a quadratic; to the eighth, a cubic;
etc. (that is, the highest power is linear, a square, a cube, etc.) so to the
interpolated sequences, equations must pertain that are intermediate to these
(thus, to fifth powers, that which is intermediate between quadratic and linear;
and it may be judged in the same way for the rest). But that equations of
this kind may be satisfactorily written in the accepted way, is perhaps to be
doubted.

To me, all the same, it is sufficient (and indeed repays the taking up of
this labour) to have pursued the thing this far, and treading a new path
to have uncovered the same by other ways; indeed what might lead me was
not therefore easy to foretell at the beginning, but that pertaining to the
quadrature of curves (or at least some of them), and other more difficult
problems of this kind, seemed to direct the course correctly. Nor indeed was
our hope disappointed. For although for the circle, its ratio to the square
(which I do not deny I also looked to from the beginning) did not appear
so plainly as we wished, as in various other curves, to be explained in some
accepted way of notation (but by some meanderings it led me, and at length
stopped at something unsayable); the reward for this labour, however, is to
have indicated that [quadrature] as far as the nature of numbers allows, so that
nothing more remains than that it should be agreed between mathematicians
by what notation (whether mine or another yet to be considered for decision)
they wish to indicate that unsayable ratio. And in other curves thus no less,
everything has come out as wished (and indeed often beyond what was hoped
for), in that I have shown innumerable quadratures of curves, some quite
unknown until now, as well as some indeed known before, but now taught by
a new and easier method. And in innumerable other intricate mathematical
problems (thus of pyramids, conoids and spheres, of spiral lines and the spaces
contained in them, of parabolas, and others in passing), I have either been
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the first to complete them, or have much elucidated. In the same way, I have
reduced figures continued to infinity, both plane and solid, to known and finite
measure (not one only, which was already done by Torricelli, which seemed
amazing enough, but many).

Indeed, it would have been easy (by the method one preferred) to have
inferred innumerable other propositions in passing (which no one skilled in
these things can doubt) since that doctrine that I hand over is sufficiently
fertile in its consequences. And indeed, in the first parts of this treatise I
have more copiously inserted consequences of this kind, particularly so that
I might indicate what this doctrine offered. But in what followed I did that
more sparingly, partly because now our method and its usefulness was clear
from what had gone before up to then, so that now anyone could show it by
his own effort; partly also lest the number of propositions (which now seemed
to swell) and therefore the whole treatise should grow to an exceedingly heavy
bulk. Therefore much has been indicated lightly in passing, which if the more
diligent wanted to follow up, would require, rather, a whole inquiry to each
part.

There remains this: we beseech the skilled in these things, that what we
thought worth showing, they will think worth openly receiving, and whatever
it hides, worth imparting more properly by themselves to the wider mathe-
matical community.

PRAISE BE TO GOD



Glossary

(The number in brackets after each definition indicates the Proposition where
the term first appears.)

Arithmetic proportionals: Quantities that increase or decrease by regular
addition of a fixed quantity. (1)

Binomes and apotomes: A binome is a quantity of the form /a + /b, and
an apotome of the form /a — /b. (Comment following 127)

Circle: In Wallis’s text a circle is always a plane figure with area. The bound-
ing line is the circumference. (6)

Conoid: A solid formed by rotation of a curve around an axis of symmetry (a
diameter) or an ordinate; a parabolic conoid is generated by the rotation
of a parabola. (4)

Diameter: One of the principal axes of a conic (and for a right conic an axis

of symmetry). If such an axis is aligned with the z-axis, with the vertex

of the curve at the origin, then the length of the diameter as far as a
given point is given by the z-coordinate (see also ordinate). (14)

The diameter is also sometimes called the intercepted diameter. (88)

Figure: A plane figure with an area. (5)
Indez: The number denoting a power, thus the indezx of z™ is n. (64)

Latus rectum: The total length of the ordinates passing through a focus of a
conic. For a parabola with equation y? = kz the latus rectum is 2k. (15)

Ordinate: In modern notation, the length of an ordinate of a curve at any
point is given by the y-coordinate (see also diameter). (14)
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Parabola: A curve whose equation in its simplest form is 4™ = kz. For the
common (or simple) parabola n = 2, while for cubical, biquadratic or
supersolid parabolas, n = 3, 4 or 5, respectively. The latter are known
as higher parabolas. (4; Comment following 38)

A right parabola has ordinates at right angles to its diameter, while an
inclined parabola (cut from an inclined cone) has ordinates at some
other angle to the diameter. (4)

A truncated parabola is cut off by a line z = d. (14)

Proportionals: Quantities of the form a, ar, ar?, ar®,.... (Strictly these are

geometric proportionals; see also arithmetic proportionals above.)

The mean proportional between = and y is /7y (since y: /Ty = /Ty :
z). (75)

The third proportional of two (ordered) quantities z and y is y?/z. (84)

Pyramid: A solid with polygonal cross-sections parallel to the base; in a
parabolic pyramid any cross-section through the vertex is bounded by
parabolic curves. (4)

Right conics: Conics in which the ordinates are at right angles to the
diameter. (4)

Segment: A portion of length of a line or curve. (11)

Sequences and series: A sequence is a finite or infinite list of terms, while a
series is now generally understood as a sequence of partial sums. Wallis
uses the single Latin word series both for a list of terms and as a col-
lective noun to denote a set of such terms, usually summed. I have used
sequence where Wallis describes individual terms generated according to
some rule, but series where it is clear that he means all the terms taken
collectively. My use of series in the text is thus not strictly in keeping
with modern mathematical conventions, but nor was Wallis’s. (1)

Sines, right and versed: The right sine of an arc subtending an angle 26 at
the centre of a circle is half the length of the chord connecting its ends,
that is, 7sin §. The versed sine is the distance between the centre of the
arc and the chord connecting its ends, that is, (1 — cosf). (Comment
following 38)

Universal root: A root of two or more quantities added together. (Comment
following 165)
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