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The Arithmetic of Infinitesimals

John Wallis (1616-1703) was appointed Savilian Professor of Geometry at
Oxford in 1649. He was then a relative newcomer to mathematics, and largely
self-taught, but in his first few years at Oxford he produced his two most
significant works: De sectionibus conicis and Arithmetica injinitorum. Both
were printed in 1655, and published in 1656 in the second volume of Wal­
lis's first set of collected works , Operum math ematicorum.t In De sectionibus
conicis, Wallis found algebraic formulae for the parabola, ellipse and hyper­
bola, thus liberating them, as he so aptly expressed it, from 't he embranglings
of the cone' .2 His purpose in doing so was ultimately to find a general method
of quadrature (or cubature) for curved spaces, a promise held out in De
sectionibus conicis and taken up at length in the Arithmetica injinitorum.3

In both books Wallis drew on ideas originally developed in France, Italy, and
the Netherlands: algebraic geometry and the method of indivisibles , but he
handled them in his own way, and the resulting method of quadrature, based
on the summation of indivisible or infinitesimal quantities," was a crucial step
towards the development of a fully fledged integral calculus some ten years
later.

To the modern reader the Arithmetica injinitorum reveals much that is of
historical and mathematical interest , not least the mid seventeenth-century
tension between classical geometry on the one hand, and arithmetic and

1 For the first editions of De conicis sectionibus and Arithmetica infinitorum, see Operum
mathematicorum, 1656-57, 11, 49-108 and 1-199 (separate pagination) . Both works were
reprinted in Wallis's second set of collected works, Opera mathematica, Wallis 1693-99,
I, 291-354 and 355-478.

2 Wallis 1685, 291-292 .
3 See De sectionibus conicis, Proposition 48; Arithmetica infinitorum, Proposition 45.
4 Strietly speaking an 'ind ivisible' has at least one of its dimensions zero, (for example, a

point, line or plane) , whereas an 'infinitesimal' has arbitrarily small but non-zero width
or thiekness. Wallis blurred the distinction between the two and generally spoke only of
' infinitely small qu antities '. For hirn ' indivisible' and 'infinitesimal' were more usefully
seen as geometrie and arithmetie categories, respectively.



xii The Arithmetic of Infinitesimals

algebra on the ot her. Newton was to take up Wallis's work and t ransform it
into mathemati cs that has become par t of the mainstream , but in Wallis 's
text we see what we think of as modern mathemati cs still st ru ggling to
emerge . It is t his sense of watehing new and significant ideas force their way
slowly and sometimes painfully into existence t hat makes t he Arithmetica
infinitorum such a relevan t text even now for st udents and historians of math­
ematics alike.

Wallis 's mathematical background

Wallis was educated from the age of nine by a pri vate tuto r t hen, at the age
of fourteen , for a year at Felsted School in Essex, and then at Emmanuel
College, Cambridge." He later claimed that he had learned lit tl e or no math­
emat ics at Cambridge (though he did study some astronomy) . Instead he
tau ght hirnself elementary arit hmet ic from the textbooks of a younger brother
who was preparing to go int o trad e. After the bri ef tenure of a Fellowship
at Queens' College, Cambridge, Wallis was employed as a privat e chaplain,
but his mathematical bent came to the fore during t he yea rs of civil war
in England (1642-1648) when he regularly decoded let ters for Parli ament ."
His event ual appointment as Savilian P rofessor at Oxford was no doubt at
least in par t a reward for his loyalty and polit ical service to the winning
side .

By the t ime he too k up his post , indeed possibly in prepar ation for it ,
Wallis had begun t o extend his mathematical knowledge by reading Willi am
Ou ghtred 's Clavis mathematicae, the first edit ion of which had been published
in 1631. (Second editions appeared in English and Lat in in 1647 an d 1648,
respectively, but the copies owned and annotated by Wallis were first edi­
t ions.") The Clavis provided Wallis with his first taste of algebraic notation
and, as for ot her English readers, an elementary introd uct ion to t he new sub­
ject of algebraic geometry first developed by Viet e during the 1590s. When
Wallis took up his professorship he knew lit tle more t ha n he had learned
from the Clavis, bu t once established at Oxford, he had a wealt h of books
available to hirn , especially in t he Savile Library, created by Henry Savile
for the use of the Savilian professors when he endowed the cha irs of Geom­
et ry and Astronomy in 1619. The two books that were to influence Wallis
most were Descartes ' La Geometrie, originally published in French in 1637

5 The most important souree of biographical materi al on Walli s is t he autobiography he
wrote when he was eighty years old ; see Seri ba 1970 .

B Walli s made two iden t ieal eopies of letters deciphered up to 1653, both now in t he
Bodleian Libr ary, MS e. Musaeo 203 a nd MS Eng. mise. e. 475, ff. vii-243.

7 Wa llis 's eop ies of t he Clavis are now in the Bodl eian Library, Savile Z.16, Z.19 and Z.24;
see Stedall 2002 , 77- 82.
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but republished in Latin as the Geometria by Frans van Schooten in 1649,8
and Torricelli's Opera geometriea of 1644.9

Descartes' Geometria would have taken Wallis far beyond anything he had
learned from the Clavis. Oughtred, like Viete, had seen how to express and
solve certain geometrie problems algebraically, but it was Descartes who intro­
duced the coordinate systems that made it possible to describe loci or curves
by means of equations between two variables.!" Curves defined in this way
Descartes called geometrie,ll and the simplest class of such curves, according
to hirn, consisted of conie sections, the circle, ellipse , parabola, and hyperbola.
There can be little doubt that it was Descartes' work that inspired Wallis to
define conies by means of algebraic equations. He was not the first to do so, for
Fermat had completed a similar exercise, though still using traditional geo­
metrie notation, by 1635.12 Fermat's work circulated in manuscript amongst
mathematicians on the continent, and Charles Cavendish read it in Paris in
1646 and wrote about it to the English mathematician John Pell, then in
Amsterdam.I'' but Wallis in 1650 did not belong to such circles and was
unlikely to have known of it.

In De seetionibus eonieis Wallis based his treatment on the traditional
definitions of the parabola, ellipse, and hyperbola as sections of a (right or
inclined) cone , and derived from those definitions equations that related ordi­
nates labelled p , e or h to diameters d. Thus the equation of the parabola
is p2 = ld, of the ellipse e2 = ld - id2, and of the hyperbola h2 = ld + id2,
where land t are constants associated with each curve (the latus rectum and
the transverse diameter) . In modern notation d becomes X; and p, e, and h
become y . Wallis was satisfied that such equations alone were sufficient to
define the curves.l"

It is no more necessary that a parabola is the section of a cone by a plane
parallel to a side than that a circle is a section of a cone by a plane parallel
to the base, or that a triangle is a section through the vertex.

8 For a hint that Wallis read the Geometria and corresponded with Van Schooten as early
as 1649 , see Beeley and Scriba 2003 , 13.

9 The copy ofTorricelli's Opern geometrica read and annotated by Wallis is in the Bodleian
Library, Savile Y .1.

10 Descartes ' coordinates were not necessarily the orthogonal coordinates that later came
to be called Cartesian.

11 'ie ne secehe rien de meilleur que de dire que ious les poins, de ce/les qu 'on peut nom­
mer Geometriques, c'est a dire qui tombent sous quelque mesure precise & exacte, ont
necessairement quelque rnpport a tous les poins d'une ligne droite, qui peut estre exprime
par quelque equation, en tous par un mesme'; Descartes 1637, II, 319.

12 Ad locos pIanos et solidos isagoge, Fermat 1679, 1-8; see also Mahoney 1973, 76-92.
13 Cavendish's copy survives in British Library MS Harleian 6083 , ff. 113-114.
14 ' Non enim est Parabolae magis essentiale, ut fiat Sectione Coni Plano lateri parallele;

quam Circulo , ut fiat Sectione Coni plano basi parallele; aut Triangulo , ui fiat Sectione
Coni per Verticem',. De sectionibus conicis, Proposition 21.
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Wallis went on in the second half of the book to find equations of tangents,
and other properties of conic sections. His main interest, however, was in
quadrature. His stated purpose at the beginning of De sectionibus conicis was
to find the areas enclosed by the curves (or rather , the ratios of those areas to
inscribed or circumscribed rectangles) , and the Arithmetica injinitorum took
up the same challenge. One might think, therefore, that in the Arithmetica
injinitorum Wallis would use the algebraie tools he had so carefully devel­
oped in De sectionibus conicis, but he rarely did. Only in Proposition 163
when struggling with the quadrature of the hyperbola, did he specifically make
use of the algebraie formula he had previously found : h2 = ld + td2. For the
simplest curve, the parabola, he used the geometrie relationship between ordi­
nates and diameters rather than the algebraic equation, while for the circle
and ellipse he expressed the ordinates simply as mean proportionals between
the two corresponding segments of the diameter. In other words, he used the
geometrieal concepts on whieh his equations were based rather than the equa­
tions themselves. Thus although Wallis was aware of Deseartes' work and was
almost eertainly inspired by it, in the end he used his knowledge of the alge­
bra of curves very little, falling baek instead on more traditional geometrie
definitions.

It was in Torricelli's Opera geometrica of 1644 that Wallis first encountered
the idea of indivisibles. The methods had been developed independently by
Gilles Persone de Roberval, Pierre de Fermat, and Bonaventura Cavalieri from
about 1629 onwards, but Roberval and Fermat had not published their results,
and Wallis remained unaware of their work until many years later.P Cavalieri,
however , gave a full exposition of the method in his Geometria indivisibilibus
continuorum nova quadam ratione prometa of 1635. Cavalieri's treatise was
divided into seven books.!" and his fundamental definitions and theorems were
presented in Book H. His ideas were based on the notion of a plane moving
through a given figure and intersecting it in 'All the lines of the figure'r!"

If through any opposite tangents to any given plane figure there are drawn
two planes parallel to each other , either perpendicular or inclined to the
plane of the given figure, and produced indefinitely, and if one of them is

15 For Roberval's Traite des Indivisibles, see Roberval1693 j see also Walker 1932 and Auger
1962, 14-38. For Fermat 's early work on quadrature and his 1636 correspondence with
Roberval, see Mahoney 1973, 218-222.

16 In the 1635 edition each of the seven books has its own pagination, but in the second
edition, in 1653, the pages are numbered consecutively. References to both editions are
given in the following notes.

17 'Si per oppositas tangentes cuiuscunque datae planae flgurae ducantur duo plana invicem
parallela , recta , sive inclinata ad planum datae flgurae , hinc inde indeflnite producta;
quorum alterum moveatur versus reliquem eidem semper aequidistans donec illi con­
gruerit: singulae reciae lineae, quae in toto motu flunt communes sectiones plani moti,
et datae flgurae, simul collectae vocentur: Omnes lineae talis flgurae , sumptae regula
una earundem; et hoc cum plana sunt recta ad datam flguram: Cum vero ad illam sunt
inclinata vocentur: Omnes lineae eiusdem obliqui transitus datae flgurae, regula pariter
earundem una'; Definition 1, Cavalieri 1635, 11, 1-2 or 1653, 99.



The Arithmetic of Infinitesimals xv

moved towards the other always remaining parallel until it coincides with it,
then the single lines which in the motion as a whole are the intersections of
the moving plane and the given figure , collected together, are called: All the
lines of the figure , taken with one of them as requla ; this when the planes
are at right angles to the given figure . But if they are inclined to it , they are
called: All the lines of an oblique passage of the same given figure, likewise
with one of them as regula.

Cavalieri's fundamental theorem was that two figures could then be said to
be in the same ratio as 'all their lines' r'"

Plane figures have the same ratio to each other as all their lines taken
to whatever requla ; and solid figures as all their planes taken to whatever
regula.

After developing this theory in the remainder of Book II , Cavalieri went on in
Books III-VI to apply his methods to circles, ellipses, parabolas, hyperbolas,
and spirals, and to solids created from them (a range of figures similar to
those handled later by Wallis) . In Book VII he returned to the theory of
indivisibles, now hoping to avoid the problems of treating collections of 'All
the lines ' by instead comparing individual pairs of lines. Thus both here and
later, in his Exercitationes geometricae sez of 1647, he made repeated efforts
to put his theory on asound footing, carefully trying to avoid the paradoxes
that could arise, as he and others recognized, from handling an infinite number
of dimensionless quantities.l? For a full discussion the reader is referred to the
work of Enrico Giusti and Kirsti Andersen.r" The details are not repeated here
because in one way they are irrelevant to the present story; Wallis never read
Cavalieri's books, which were almost impossible to obtain, but instead learned
of his work at second hand from the more easily available Opera of Torricelli .

Torricelli's Opera geometrica of 1644 contained three separate treatises: De
solidis sphaeralibus on the mensuration of eylindrieal, conical and spherical
solids; De motu proiectorum on the motion of projectiles; and, the book that
interested Wallis , De dimensione parabola solidique hyperbolici problematis
duo, on the quadrature of the parabola and eubature of a hyperbolic solid. 21

On the title page of this third treatise, Torricelli explained that he had handled
two problems: one ancient, one new . The ancient problem was the quadrature
of the parabola, which he had solved by no fewer than twenty different meth­
ods, some geometrie, some meehanical, and some based on the concept of

18 'Fiqurae planae habent inter se eandem rationem, quam eorum omnes lineae iuxta
quamvis regulam assumptae; Et figurae solidae, quam eorum plana iuxta quamvis regu­
lam assumptae' ; Theorem III , Cavalieri 1635, 11 , 20 or 1653 , 113.

19 See also Cavalieri 1647.
20 Giusti 1980; Andersen 1985.
21 The Opera geometrica is paginated as folIows: De solidis sphaeralibus, 1-94; De motu

proiectorum, 95-243; De dimensione parabola . . . problematis duo , 1-150. The pagination
in De dimensione occasionally goes awry, especially towards the end, with some page
numbers repeated and others left out.



xvi The Arithmetic of Infinitesimals

indivisibles.V The new problem concerne d a 'wonderful solid ' generated by
the revolut ion of a hyp erbola .F' which Torricelli had found to be infinite in
extent bu t finite in volume. The book also contained append ices on proper­
ties of the cycloid and cochlea . In the text itself, in connection wit h both t he
parabola and the hyp erb olic solid, Torricelli sang the praises of Cavalieri, and
Wallis carefully noted his references on the flyleaf of the Savile Library copy
of the Opera qeometricar"

Torricelli paid lit tle heed to the precau t ions taken by Cavalieri, bu t offered
an altogether simpler vers ion of the theory, in which a plane figure was sup­
posed equal to a collect ion of lines and asolid to a collect ion of plan es or sur­
faces.25 Torricelli found t he cubature of his 'acute hyp erbolic solid ' by t reating
it as a collect ion of concentric cylinders whose sur faces could be added to give
the volume of the solid .?"

Therefore all the surfaces of the cylinders taken together, that is the acute
solid EBD itself, is the same as the cylinder of base FEDC, which will be
equal to all its circles taken together, that is to cylinder ACGH.

Torricelli's version of the theory was both simple and intuit ive, and it inspired
Wallis to t ry his hand at similar quadratures and cubatures . Wallis's advance
on Torri celli was to see that the necessary summations could be carried out
arithmetically rat her t ha n geometrically. For the area of a triangle, for exam­
ple, one simply needed to sum a sequence of regularl y increasing terms, that
is, an arit hmetic progression ; the area of a parallelogram could be regarded as
the sum of a sequence of equal terms; while the area of a parabola was a sum
of squares or square roots (depending on orientation). Wallis therefore shifted
the focus of his own enq uiry to the problem of finding sums of sequences of
powers, or at least the rat io of such sums to certain known quantities.

Wallis called his sequences of powers ' infinite' and so they are, but not
in the sense now generally understood, where the te rms increase or decrease
indefinitely. Wallis 's sequences, beg inning from 0, have a finite greatest te rm,
reached ini tially by a finite number of steps . If, keeping the same end point , the
steps are made smaller their number must be mad e larger, and eventua lly,
according to Wallis, infinite. Thus, keeping his end point fixed and finit e,
Wallis moved from a finite number of steps to an infinite number of infini tely
small, or infinitesimal , steps. Where Cavalieri and Torricelli had summed

22 'Antiquum alterum. In quo parabola X X mo dis absolvitur , partim geome tricis, m ecan­
isque; part im ex indivisibilium geometria deducto rationibus ' ; Torrice lli 1644 , t itl e page.

23 'Novum alterum . In quo mirabilis cuiusdam soli di ab hyperbola geniti accidentia non­
nulla demonstratur '; Torricelli 1644, ti t le page.

24 In Wa llis's handwr it ing are t he notes: 'Geom etria indivisibilium Cavalerij pag. 56. 57.
de Dim ensione parabola . . . Geom. indivisib. Cava llerij . pag. 94. de Append de mens.
pamb. '; Bodleian Library, Savil e Y.1, fiyleaf.

25 Andersen 1985, 355-358.
26 'Propterea omnes simul superficies cylindricae, hoc est ipsum solidum acutum ebd , una

cum cylindro basis fede, aequale eri t omnibus cireulis sim ul, hoc esi cylindro acg h. Quod
erat etc. '; Torrieelli 1644, 116.



The Arithmetic of Infinitesimals xvii

geometrie indivisibles, Wallis now needed to sum infinite sequences of arith­
metic infinitesimals, or infinitely small parts.27 Wallis saw the two processes,
geometrie and arithmetie, as exaetly analogous. Just as Cavalieri's method
eould be deseribed as geometria indivisibilium, or the geometry of indivisi­
bles, his own, he claimed, eould be deseribed as arithmetica infinitorum or
the arithmetie of infinitely small parts. Wallis hirnself translated the title of
his book as 'The Arithmetiek of Infinites', but the 'infinites' in question were
in faet infinitely small quantities, and the single modern word 'infinitesimals'
thus eonveys Wallis's meaning rather better than 'infinites' .28

The writing 0/ the Arithmetiea infinitorum

As Wallis explained in the Dedieation to the Arithmetica infinitorum, he wrote
De sectionibus conicis in 1652, and most of the Arithmetica infinitorum in the
same year. Printing of both books began in 1655 and they finally appeared in
Operuni mathematicorum in 1656. Wallis claimed that the three years between
the eompletion and publieation of the texts were due to delays at the printers.
This may have been true, but it was also the case that in 1652 Wallis had
reached an impasse, and the final part of the Arithmetica infinitorum was not
in fact written until 1655, just before the book went to press .

When Wallis began writing in late 1651 and early 1652, the first part of
the Arithmetica infinitorum proceeded easily. Gradually extending the scope
of his method, by analogy and by what he called 'induction', Wallis was able
to produee a steady flow of results, and in partieular quadratures of curves
of the form (in modern notation) y = kx ", not only for the cases where n
was a positive integer, but also for n a fraction or a negative integer. Not all
these results were new; apart from those already published by Cavalieri and
Torricelli, others had been discovered by Fermat, Roberval, Descartes, and
Torricelli, but had been discussed only in private correspondenee that Wallis
had never seen. 29 It was Wallis who therefore provided the first systematic

27 Wallis generally used the description 'infinitely smalI' , but occasionally also 'infinitesi­
mal', as in ' pars infinitesima, seu infinite parva ', 'an infinitesimal, or infinitely smalI,
part ', A rithmetica infinitorum, Proposition 5.

28 See notes 4 and 27.
29 As an example of how individual results on quadrature were circulated without proof,

consider the quadrature of (in modern notation) y4 = x 3 published by Mersenne in 1644
in Cogitata physico-mathematica, 'Tractatus mechanicus' , sig .a2r. Charles Cavendish
wrote of this to John Pell : 'Mersennus teils me it is Monsr: De Cartes his proposition
but that he sent hirn not the demonstration of it; Mr : Robervall teils me it is Monsr:
Fermats proposition but that he never sawe the demonstration of it : but saies he thinkes
he could doe it but that it would be a verie longe demonstration. I thinke Mersennus
[would haveJ sent me the demonstration of it into england but has forgotten it "; British
Library Add MS 4278 , f. 238.

Wallis, preoccupied with domestic or political affairs, knew nothing of these intellec­
tual exchanges through Mersenne in Paris during the 1630s and 1640s . Evelyn Walker in
1932, 25, wrote that it was ' inconceivable that by 1651 [Wallis] should not have had some
knowledge of Roberval's approach' , but in 1651 Wallis was still new to mathematics and
had read only what was easily and publicly available.
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and general exposition. From his starting point of sequenees of simple powers ,
he eould easily handle sums (or differenees) of sequenees, and henee eventually
quadratures of any eurves of the form y = (1 - x 1/ p )Qprovided p and q were
integers. But beeause his ultimate aim was the quadrature of the circle , the
eurve he was really interested in was y = (1 - x2 ) 1/2, that is, where p = q = !.

At this point Wallis's method appears to have been driven by the skills
that had served hirn so weil as a code-breaker: working on an unspoken but
intuited assumption of eontinuity, he proeeeded to earry out aseries of inereas­
ingly sophisticated interpolations. By now geometry was reeeding into the
background, and his work beeame almost entirely arithmetieal. Wallis made
eonsiderable progress, but at Proposition 190 he eame to a halt. The last
step, the final interpolation that would give hirn the ratio of a square to
an inseribed circle , eluded hirn . At this point, in the spring of 1652, he put
the problem to other mathematieians of his aequaintanee (he named Seth
Ward, Laurenee Rook, Richard Rawlinson, Robert Wood, and Christopher
Wren, all then resident in Oxford) but none eould help, and indeed with­
out a detailed knowledge of Wallis's teehniques probably failed to under­
stand his question. Wallis was asking for interpolated means in the sequenee
1, 6, 30, 140, 630, . . , but sinee the means were neither arithmetic or geo­
metrie, their required properties eannot have been very clear to anyone but
Wallis.

In February 1655 he addressed his problem to Oughtred, onee again asking
for means between 1, 6, 30, 140, 630, . . . whieh he now wrote also in the
alternative forms 1, 1 x ~ , 6 X 12°, 30 X 134, 140 X 148, or 1, 1 x 41 , 1 x

41 x 4~, 1 x 41 x 4~ x 4~, 1 x 41 x 4~ x 4~ x 41, As Wallis deseribed

it to Oughtredr'"

These terms in loeis paribus [in even places] (supposing the second to
be 1) are made up by continued multiplication of these numbers 1 X

6xl0x14X18 ,et c. or 1 X 12X20X28x36,etc . . And (if I mistake not in my con-
lx2x3x4 ,et c. 2x4x6x8, et c .

jecture), supposing the first to be Q, the rest in loeis imparibus [in odd
places] will be made up by continued multiplication of these numbers

Q X 8 x 16x 24 x 32,etc . which I thought it requisite to give you notice of, that
Ix 3x5x7, et c.

you might see how far I had proceeded towards the solution of what I seek
. .. wherein if you can do me the favour to help me out, it will be a very
great satisfaction to me, and (if I do not delude myself) of more use than
at the first view it may seem to be .

It is clear that early in 1655 Wallis was still grappling with this final problem,
now to be found in Proposition 190. Only a short time later, however, the
problem was solved . In what was perhaps the one real stroke of genius in
Wallis 's long mathematical eareer, he saw how to eomplete his interpolations
by a method now set out in Proposition 191, and so arrived at his infinite

30 Wallis to Oughtred, 28 February 1655, Rigaud 1841, I , 85-86.
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fraction for 4/1f (denoted by D) in the form:

3 x 3 x 5 x 5 x 7 x 7 x etc.
D = -----------

2 x 4 x 4 x 6 x 6 x 8 x etc.

How Wallis was inspired to his breakthrough he did not say, but we do
know that he discussed his work in some detail with William Brouncker. In
particular, he seems to have put to Brouncker a similar problem to the one he
put to Oughtred, and probably at about the same time (Brouncker's name does
not appear in the list of colleagues whom Wallis consulted in 1652). How, asked
Wallis, was he to interweave, for example, the two sequences A, 2A, 8:, 4f:, .. .
( A 2 4 6 8 ) d 1 3 15 105 (1 3 5 7 9 )or x"1 x 3" x 5 x '7 x . .. an , 2 ' 8"" ' 48 ' . .. or x 2 x 4 x (; x 8 x . . .
into a single sequence beginning A, 1, 2A, ~' 8: , 185, . . . , in which the multipliers
would follow some regular order? Brouncker came up with a brilliant answer,
by producing a sequence of what are now called continued fractions , which
served Wallis's purpose exactly. Brouncker's work enabled Wallis to answer
the question he had left open in Proposition 190, and the solution was fully
set out in a piece entitled Idem aliter following Wallis's discovery of his own
infinite fraction in Proposition 191.

Unfortunately, Wallis complained, Brouncker could not be persuaded to
write this piece himself, nor to explain how he had discovered his fractions,
and Wallis was unable to do so either. In fact at the beginning of the Idem
aliter (and again later in A treatise 01 algebra)31 Wallis seriously misled his
readers and posterity by quoting just the first of Brouncker's fractions,

1
1-

2_9_
25

2­
49

2­
2+

as an alternative to his own ~ x ~ x %x ~ x . .. . This led Euler and several
other later mathematicians to look for ways of deriving Brouncker's fraction
from Wallis's, an impossible task as it stands because Brouncker's fraction
can only be related to Wallis's by taking the entire infinite sequence of which
it is the first . I would suggest that Brouncker's fractions were derived not
as alternatives to Wallis 's, but in response to the problem that Wallis set
but failed to solve in Proposition 190, and that only in that context does
the relationship between Brouncker's fractions and Wallis 's fall into place.
Wallis's Proposition 191 and the mathematics discovered by Brouncker and
expounded in the Idem aliter comprise some of the best mathematical writing
of the mid seventeenth century. The material amply rewarded both Wallis and
his readers for the long and, it has to be said, often tedious approach through

31 Wallis 1685, 317-318.
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scores of uninspiring Propositions and Corollaries, and Wallis could justifiably
feel proud of his achievement.

Wallis was by no means the only seventeenth-century mathematician seek­
ing the quadrature of the circle. Cregoire de Saint-Vincent had claimed to
solve the problem in his massive (1226 page) Opus geometricum quadratu­
rae circuli et sectione coni of 1647. The Opus geometricum consists of ten
books, the first six of which deal with properties of lines , circles , ellipses,
parabolas and hyperbolas. In the seventh book de Saint-Vincent introduced
the idea of 'drawing a plane into a plane' to produce asolid, and in the
ninth book he handled cylinders, cones, spheres, and conoids . Finally in the
tenth book he addressed the quadrature of the circle , parabola, and hyper­
bola. Wallis searched his work carefully but came to the conclusion that de
Saint-Vincent had not come any closer to the quadrature of the circle than
he hirnself had done in Proposition 136 of the Arithmetica infinitorum (where
he had related the quadrature of the circle to asolid formed by 'multiplying'
two parabolasj .V In de Saint-Vincent's huge volume he found many proposi­
tions similar to his own, including the idea of 'drawing' a plane into a plane
(Wallis described it rather more carefully as drawing the lines of one plane
respectively into the lines of another) . Wallis may have been led to some of his
theorems by what he found in de Saint-Vincent but it is equally likely that he
arrived at them independently by multiplying (or dividing) his infinite series
term by term, and then looking, as he always did , for geometrical examples
to illustrate his findings.

By 1655 when Wallis was finally ready to go to press, a more serious threat
to his priority appeared to be looming closer to horne. Thomas Hobbes, pro­
voked by Seth Ward, Savilian Professor of Astronomy at Oxford and Wallis's
close colleague, had promised, or threatened, to reveal his own quadrature of
the circle along with solutions to other geometrical problems.i''' Wallis there­
fore made sure that he laid claim to his own success in a leaflet printed at
Easter (April) 1655 advertising the key results of the Arithmetica infinitorum,
even though the book itself was not yet printed. And in the 'Dedicat ion' to
Oughtred, written in the Spring of 1655 he was careful to emphasize, with
supporting evidence, that he had been working on the problem since 1651.
The Dedication ends on a note of relief, for by the time Wallis completed it
in July, he had seen the first impression of Hobbes's De corpore,34 and knew
that he could demolish Hobbes's arguments with ease, as he went on to do in
Elenchus geometria Hobbianae. Hobbes 's attempts at quadrature were easily

32 Arithmetica infinitorum, Proposition 136; De Saint-Vincent 1647,794, Proposition 143.
33 Ward 's challenge to Hobbes was put out in the appendix to his Vindieae academiarum

of 1654, written in reply to Hobbes's attack on the English Universities; see Ward 1654,
57.

34 The first impression of Hobbes's Elementorum philosophiae sectio prima de corpore
appeared in April 1655. His three (unsuccessful) attempts at the quadrature of the circle
were in Chapter 20.
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dealt with but his philosophieal objeetions to the Arithmetiea infinitorum
were not , as will be discussed further below .

The mathematies 0/ the Arithmetiea infinitorum

'Thus a geometrie problem is reduced purely to arithmetic.v" Wallis's major
contribution to the development of seventeenth-century mathematics was per­
haps, as he himself recognized, the transformation of geometric problems to
the summation of arithmetic sequences. Many of the results demonstrated by
Wallis were already weIl known but, as he repeatedly pointed out, his aim
was to establish a method by which those results , and others, could be sys­
tematieally obtained. To prove the soundness and applicability of his method
he therefore returned over and over again to justifications and applications in
geometry. Every new result in summing sequences was followed by corollaries
that showed how it could be interpreted geometrieally, so the book describes
quadratures and cubatures of all kinds of likely and unlikely plane or solid fig­
ures. At one point (Proposition 38) there is a glimpse of how the method might
also work for reetification (straightening, or finding the length, of a curve),
but Wallis attempted this only for the parabola and failed to complete his
argument.

To the modern reader, unused to thinking in the language of Apollonius,
the continual references to classieal geometry are probably the most difficult
parts of Wallis's book to follow. As pointed out above, Wallis had found
algebraic formulae for conies and could easily have done so for the other
curves he described (usually only higher parabolas) but instead he reverted to
traditional Apollonian concepts of 'applied ordinates', 'intercepted diameters',
and ratios of lines or spaces to each other. It is not easy to translate such
geometrieallanguage in a way that retains the essence of Wallis's thought yet
renders it comprehensible to a modern reader.

In his attempt to relate arithmetic to geometry Wallis even used two dis­
tinet but parallel vocabularies: for example, first power, seeond power, and
third power in arithmetic, but side, square, and eube in geometry; the Latin
verbs multiplieare and dividere in arithmetic, but dueere and applieare in
geometry. He sometimes slid haphazardly, however, from one usage to the
other; thus on Proposition 75 he speaks of 'multiplying' lines (reetas sie mul­
tiplieatas) while in Proposition 140 he uses dueatur for term by term multipli­
cation of series (series . . . dueatur in seriem) . To the modern reader the two
sets of terms are sometimes more or less interchangeable (as 'square roots' and
'second roots', for example) but often one form, usually the geometrie, has
now fallen completely out of use . Thus when, for example, Wallis describes the
product of a quantity multiplied by itself as a 'square' one can interpret his
meaning either geometrically or arithmetically, but it is not so easy to do so
when he describes the product of two unequal quantities as a 'reet angle' . The

35 Arithmetica infinitorum, Preface, sig Aa3 v .
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general term 'produet' will sometimes serve for 'rect angle' but is inadequate
where Wallis goes on to eompare his 'reetangles' with plane figures, in whieh
ease only a purely geometrie interpretation will do.

This parallellanguage is seen in the use ofthe word 'infinitorum' in Wallis's
title as an arithmetie analogy to the geometrie 'indivisibilium', though in the
text itself Wallis never used either term, referring instead to 'infinitely small
parts'. This brings us to the most fundamental diffieulty in Wallis 's work.
What is the precise nature of these infinitely small quantities? Do Wallis's
lines have breadth or not? For the most part Wallis regarded a plane figure
as the sum of its lines (see, for example, Proposition 3 and many others) but
at other times (most notably in the Comment to Propositions 13 and 182)
as a sum of arbitrarily thin parallelograms. In the Arithmetica infinitorum
itself Wallis did not diseuss the distinetion between lines and parallelograms,
nor the diffieulties to whieh the alternative definitions eould give rise, but
they were already inherent and unresolved in the first page of De sectionibus
conicis. There in Proposition 1, Wallis wroter'"

I suppose, as a starting point (according to Bonaventura Cavalieri's geome­
try of indivisibles) that any plane is constituted, as it were , from an infinite
number of parallelIines. Or rather (which I prefer) from an infinite number
of parallelograms of equal altitude, the altitude of each of which indeed may
be ~ of the whole altitude, or an infinitely small part (for let 00 denote an
infinite number), and therefore the altitude of all taken together is equal to
the altitude of the figure .

Wallis argued that a parallelogram of infinitely small altitude was no more
than a line,37 but at the same time such a line eould be eonsidered 'dilatable' ,
or of some thickness, so that when infinitely multiplied it attained adefinite
height or width.i''' Therefore, said Wallis, he would eall these infinitely small
parts 'lines' rather than 'parallelograms', but with the understanding that
they are in some definite ratio to the altitude of the whole figure, so that
when infinitely multiplied they make up the total altitude of the figure.39

36 'Suppono in limine (juxta Bonaventura Cavalerii Geometriam Indivisbilium) Planum
quodlibet ex infinitis lineis parallelis confiari: Vel potius (quod ego mallem) ex infinitis
Parallelogrammis aeque altis ; quorum quidem singulorum altitudo sit totius altitudi­
nis ~ ' sive aliquota pars infinite parva; (esto enim 00 nota numeri infiniti;) adeoque
omnium simul altitudo aequalis altitudinifigurae '; Wallis, De sectionibus conicis, Propo­
sition 1.

37 'Nam Parallelogrammum cujus altitudo supponitur infinite parva, hoc est, nulla, (nam
quantitas infinite parva perinde est atque non-quanta,) vix aliud est quam linea '; Wallis,
De sectionibus conicis, Proposition 1.

38 ' . . . quod linea haec supponitur dilatabilis esse , sive tantillam saltem spissitudinem
habere ut infinita multiplicatione certam tandem altitudinem sive latitudinem possit
acquirere '; WalIis , De sectionibus conicis, Proposition 1.

39 ' .. . exiguae illius altitudinis eousque ratio habenda erit, ui ea infinities multiplicata
totam figurae altitudinem supponatur adaequare '; WalIis , De sectionibus conicis, Propo­
sition 1.
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A similar argument could obviously be applied to planes with a thickness of
.;, of the total height of asolid.

This single proposition at the beginning of De sectionibus conicis contains
the only serious discussion Wallis entered into on the nature of his infinitely
small quantities. His method did at times lead to some paradoxical comments,
as in Proposition 108 where he claimed that a finite altitude A was equal to
some number that he had just claimed could be taken to be infinite, but
Wallis merely ignored such problems. Hobbes, however, saw the difficulties
immediatelyr'"

'The triangle consists as it were' ('as it were' is no phrase of a geometri­
cian) 'of an infinite number of straight lines.' Does it so? Then by your own
doctrine, which is, that 'lines have no breadth', the altitude of your triangle
consisteth of an infinite number of 'no altitudes' , that is of an infinite num­
ber of nothings, and consequently the area of your triangle has no quantity.
If you say that by the parallels you mean infinitely little parallelograms,
you are never the better; for if infinitely little, either they are nothing, or
if somewhat, yet seeing that no two sides of a triangle are parallel, those
paralleis cannot be parallelograms.

In a long Scholium following Proposition 182 Wallis set out some of his
rules for handling an infinite number of small parts. Adding 1 to an infinite
number, for example, left it unchanged, since according to Wallis, 00 + 1 = 00

and 00 - 1 = 00 . As for multiplication and division, the reciprocal of zero is
infinite and vice versa, so Wallis could write, for example, .;, = 0 or .;, x 00 =
1 without qualms. Such rules can in the right circumstances be given a rigorous
and correct interpretation, so Wallis was not as far adrift as he might have
been, and his mathematical instincts enabled hirn for the most part to handle
his infinite sums successfully. He was not always safe, however; his original
assertion in Proposition 5, that the Archimedean spiral was equal in length to
half the circumscribed circle, was wrong, and he was forced to add a caveat
explaining that his result applied not to the true spiral but to aseries of
inscribed ares. And in the Scholium after Proposition 182 he attempted to
explain why an infinite sum of infinitely small parts might not always give the
expected answer: a sum of parallelograms, for example, could be used to find
the area of a triangle, but the sum of their sides would not, except in special
circumstances, give the length of a side of the same triangle.

For Wallis , as for any other mathematician of the time, acceptable stan­
dards of rigour and proof were those of the Greeks, and Wallis was to argue
thirty years later that the method of indivisibles was grounded in the classical
method of exhaustions, by which a figure was approximated by aseries of
inscribed or circumscribed polygonsr'!

40 Hobbes 1656, 46.

41 Wallis 1685, 280; see 280-290 for three consecutive chapters entitled 'The Method of
Exhaustions', Of Cavallerius his Method of Indivisibles' , and 'Of the Arithmetick of
Infinites ' .
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. . . it will be necessary to premise somewhat concerning (what is wont to
be called) the Method 0/ Exhaustions, .. . and the Method of Ind unsibles,
introduced by Cavalierius, (which is but a shorter way of expressing that
Method of Exhaust ions;) and of the Arithmetick 0/ Infinites, (which is a
further improvement of that Method of Indivisibles.)

Wallis had no concept in the modern sense of allowing a quanti ty to decrease
continuously to zero or increase continuously to infin ity. He did , however , use
something very similar to a limit argument when he stated that a quanti ty
that can always be mad e smaller tha n any ass igned qua nt ity can be taken to
be zero . The idea seems modern, bu t again Wallis later argued that he found
his justification in c1assieal sources , in Euc1id from Book X onwards , and in
Archimedes .V

And when in those Books following, [Euclid] had occasion to compare Quan­
titi es, wherein it was not easy by direct Demonstr ation, to prove their Equal­
ity; he takes this for a Foundation of his Process in such Cases: that those
Magnitudes (or quantities,) whose Difference may be proved to be Less than
any A ssignable are equal. For if unequal, their Difference, how small soever,
may be so Multiplied, as to become Greater than either of them: And if not
so, then it is nothing.
. . . it is manifest in the opinion of Archim edes, (and as he teils us of Math­
ematicians before hirn,) that no Unequal Magnitudes can differ by so little,
but that the difference may be so Multiplied as to exceed either or any other
that bears any Proportion to either of them.

Basing his ar gument on such principles, Wallis was able to argue correctly, in
the first published proof of its kind, t hat the difference between 1 ~ and 1 Z~ l

te nds to zero, and that both quanti ti es tend to 1 as z becomes infini tely large.
The strangest of Wallis 's concepts concerning infini ty is that the ratio

of a positive number to a negative numb er might be somehow 'greater than
infini te' . He was led to this conc1usion by the fact that Y]« grows infini tely
lar ge as a moves towards zero. If, therefore , a decreases through zero , the
quantity 1/ a must become both negative and 'greate r than infini te' . At other
t imes, however , Wallis used the usual rul es of division for negati ve numbers ,
t hus -':2= - ~ = -,} , so had no reason to consider the reciprocal of a negative
quantity as 'greater than infinite' , and his assertion has to be read in the
sp ecific geometrie context to whieh it pertains, the quadrature of curves whose
equat ions contain negative indi ces.

Two other fundamental mathematical concepts run through the whole of
the Arithmetica infini torum. From the first page to the end, Wallis relied
on induction, and throughout the second half of the book, on interpolation.
By induction, Wallis meant that a pat tern established for a few cases could
reasonably be assumed to cont inue indefinitely. Again his mathemat ieal intu­
it ion rarely led hirn astray on this point , but some of his crit ics argued that

42 WalIis 1685, 282, see also 285.
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it was hardly a satisfactory method of proof. Wallis replied that there were
strong precedents, most recently in the work of Viete, who employed a similar
kind of reasoning in Ad angularium sectionum analyticen theoremata,43 and
in Briggs, who made use of Viete's results on angular section to interpolate
his tables of trigonometrie logarithms. A much earlier precedent, according
to Wallis, was to be found in Euclid, who allowed one triangle, for example,
to stand for an infinite number of others. This was indeed a form of induc­
tion, albeit a rather loose one, but the reasoning used by Viete and Wallis
began to have elements of modern mathematical induction, insofar as they
supposed that an argument from one case to the next could be continued
indefinitely. Wallis failed to make a distinction between Euclid's inductive
arguments and his own, and was probably not even interested in doing so;
for hirn induction was an obvious and natural process that needed no further
justification.

Interpolation was the second cornerstone of Wallis's method, and all his
later results depended upon it, but again he relied on intuition and made
no attempt to justify the process beyond the fact that it worked. Perhaps
the most remarkable example in the Arithmetica infinitorum was Wallis's
willingness to interpolate between the triangular numbers 1, 3, 6, 10 . . . or
the pyramidals 1, 4, 10, 20, . . . etc . Such figurate numbers had always been
thought of as, by definition, integers, arrangements of pebbles or points, and it
made no geometrie sense to look for, say, a triangular number between 3 and
6. In fact, without explicitly saying so, and indeed without even being aware
of it to begin with, Wallis began to treat the numbers 1, 3, 6, 10, ... as equally
spaced points on a continuous curve, so that all intermediate values existed
and could in principle be calculated or described. Wallis was correct, of course,
in that the figurate numbers are the integer values of continuous polynomial
functions (whose equations he went to some lengths to find in Propositions
171 to 182), but formal definitions of functions or continuity stilllay far into
the future. In the final three short propositions of the book, however, Wallis
did attempt to describe the underlying continuity on whieh his entire method
depended, using the image of a smooth curve , which could be constructed
from a few known (integer) points.

The final aspect of Wallis's mathematics to whieh we must draw attention
here is his sense that the number we now call z , the ratio of the circumference
of a circle to its diameter, could not be expressed in any numbers so far known,
either rationals or surds. Nevertheless, he pointed out, the number could be
calculated to any degree of accuracy and clearly satisfied all the usual rules of
arithmetie, and therefore must be considered as valid as any other commonly
accepted number. The irrationality of 1r would not be proved for another

43 'Atque eo in infinitum progressu, dabitur laterum ratio in ratione anguli ad angulum
multipla, ut praescriptum est'; 'By this process to infinity, there will be given the ratio
of the sides for the ratio of any angle to multiple angles, as prescribed'. Viete 1646, 290;
Viete 1983, 424
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hundred years, and its transeendenee only a eentury after that ,44 but there
ean be no doubt at all that Wallis in 1655 was aware of the special and elusive
nature of the number he was dealing with.45

The reeeption 01 the Arithmetica infinitorum

The first eritical reaetion to the Arithmetiea infinitorum eame from Christiaan
Huygens, who was sent a eopy of the book by Frans van Sehooten in July
1656.46 Huygens thanked Wallis politely for mentioning his own Exetasis in
the Dedieation, and promised to pass Wallis 's result on to Aynseom, a disciple
of de Saint-Vineent , who had reeently refuted various methods of quadra­
ture of the eircle, including one by Huygens.V As to the text itself, Huygens
expressed some reservations: he missed the erueial point of Wallis's argument
in Proposition 191 and so eould not understand Wallis's final proof; he feIt
that Wallis should proeeed further with eonerete numerieal examples sinee he
feIt that induetion was not a clear or eertain enough method to resolve his
doubts; and he argued that the eurves produeed by Wallis at the end of his
book were not geometrie in Deseartes' sense, for there was no known formula
for finding a general point. It was not enough, said Huygens, to say that the
eurves were smooth, for there eould be many smooth eurves that would pass
through the few fixed points.

Wallis replied that Brouneker had now ealculated a value for the ratio
of the cireumferenee to the diameter using Wallis 's fraetion (or one of
Brouncker's own) and found it in perfect agreement with the values known
from other methods.f" To support his use of induetion he pointed to Viete's
Ad angularium seetionum, Briggs' Arithmetiea logarithmiea, Clavius' edition
of Euclid V. 1-34, Euelid hirnself in propositions 1.21, V1.20 and XILl (all of
which are general propositions about triangles or polygons), and Arehirnedes
almost everywhere. To Huygens' final objeetion, that Wallis's eurves were not
geometrie in Deseartes' sense, Wallis repeated what he had said in the Arith­
metiea infinitorum itself: that half of his eurves were eertainly geometrie, and
that the rest were equally well defined even if there was no known formula .t?

Fermat in Toulouse reeeived the Arithmetiea infinitorum a year later, in
the summer of 1657, through Kenelm Digby, and like Huygens raised some
objections. His first complaint was that he hirnself had already found many of
the same results; his seeond was that he eould not understand why Wallis had

44 The irrationality of tt was first proved by Johann Heinrich Lambert in 1761 and its
transcendence by Ferdinand von Lindemann in 1882.

45 See Panza 1995.
46 Huygens to Wallis, [11]/21 July 1656, Beeley and Scriba 2003, 189-192.
47 Huygens 1654; Aynscom 1656.
48 Wallis's fraction for 4/1r converges too slowly to be of practical use , and it seems much

more likely that Brouncker used one of his own related continued fractions to calculate
upper and lower bounds for n .

49 Wallis to Huygens, 12/[22] August 1656, Beeley and Scriba 2003, 193-197.
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chosen to work in symbols rather than by traditional Archimedean methods
(even though Wallis's book, as pointed out above, uses algebraic notation only
sparingly, and far less than might have been expectedj .P" In a supplementary
letter headed Remarques sur l'Arithmetique des Infinis du S. J. Wallis,51 he
also put forward four specific criticisms, none of them concerned with any­
thing beyond Proposition 2, suggesting that he had not in fact read very far.
First, he argued, Wallis's hope of finding the ratio of a sphere to a cylin­
der was impossible without first finding the quadrature of the circle itself;
second, that it made little sense to ask for intermediate numbers between 1,
6, 30, 140, 630, . . . , and indeed if one regarded 6 (as Wallis did) as 1 x ~ ,

then the number between 1 and 6 had to be found using a multiplier greater
than 6 itself, which was absurd; third, the sum of an arithmetic progression
could be found without resorting to induction; and fourth , that such a sum
did not require the second term of the progression to be 1. Wallis's replies
were part of a very long letter he wrote to Fermat on a number of subjects
in November 1657.52 He pointed out that his intention was not simply to
obtain results but, unlike the Ancients, to demonstrate the methods by which
they could be found, and he was unapologetic about his use either of induc­
tion or algebraic notation. He did not disagree with any of Fermat 's specific
criticisms, but considered them adequately answered in the Arithmetica infin­
itorum itself, and ended by saying that if Fermat were to look at the book
again and ponder it a little more carefully, he would find his objections long
since answered.F'

Fermat's peevishness arose in part, no doubt, from Wallis and Brouncker's
somewhat dismissive treatment of the number problems he had sent them ear­
lier in 1657,54 but perhaps also from the fact that he had indeed obtained
some of Wallis 's results many years before. Wallis could not have known
it, for Fermat had never published his findings, but he had found quadra­
tures for the higher parabolas as early as 1636, and for the higher hyperbolas
by 1646.55 Wallis had gone beyond this, and by different methods; neverthe­
less it was probably the appearance of the Arithmetica infinitorum in 1656
that prompted Fermat at last to write down some of his own results in 1658
or 1659.56

The most forthright criticism of the Arithmetica infinitorum undoubtedly
came from Thomas Hobbes whose first (but not last) attack appeared in his

50 Fermat to Digby, [5J/15 August 1657, ibid . 294-297.
51 Enclosed in Brouncker to Wallis, 6/[16] October 1657, ibid. 311-316.
52 Wallis to Digby for Fermat, 21 Nov/[1 DecJ 1657, ibid . 334-337.
53 'Si enim exinde otii quid nactus sit Fermatius eadem secundo inspiciendi, fj paulo

accuratius pensitandi, non dubito quin jam ips e sibi pridem satisfecerit' ; ibid. 337. Wallis
repeated Fermat's objections and his own refutations of them many years later (long after
Fermat hirnself had died) in A treat ise of algebra, Wallis 1685, 305-309.

54 See Stedall 2002, 196-207.
55 Mahoney 1973, 214-238; 244-267.
56 De aequationum localium transmutatione .. . cui annectitur proportionie geometricae in

quadrandis infinitis parabolis et hyperbolis usus, published in Fermat 1679, 44-57.
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Six lessons to the professors of the mathematiques of 1656. He did not mince
his words: 'I verily believe that since the beginning of the world there has not
been nor ever shall be so much absurdity wri t t en in geometry as is to be found
in those books of [Wallis 's]' .57 Hobbes's objections were many, and some were
absurd , but as Augustus De Morgan pointed out a century ago, Hobbes 'was
not the igno ramus in geometry that he is sometimes supposed. His writings ,
erroneous as they are in many things , contain acute remarks on points of
principle.P'' Hobbes's criticisms pinpointed three main areas: Wa llis 's use of
algebraic symbols; of induction ; and of indivisibles.

Like Fermat a year later , Hobbes objected strongly to Wallis 's use of
algebraic symbolism.P''

[Wallis] mistook the study of Symbol es for the study of Geom etry, and
thought Symboll ical writing to be new kind of Method, and other men's
Demonstrations set down in Symboles new Demonst rations. . .. I never saw
anything added thereby to the Science of Geometry, as being a way wherein
men go round from the Equality of rectangled Plains to the Equality of
Prop ortion, and thence to the Equality of rectangled Plains, wherein the
Symboles serve only to make men go faster about , as greater Winde to a
Winde-mill ,

As we have noted already, Wallis used only a limited amount of algebraic
notation in the Arithmetica infini torum, so Hobbes was perh aps t ilt ing at
windmills in a different sense. His struggle against algebraic symbolism in t his
and other contexts now seems like a futile attack on the wrong enemy, but it
arose from Hobbes's be lief that mathe matics should be based on the mate­
rial and sense- perce ptible, t hat is on space and movement. Thus for Hobbes
geometry was t he t rue foundati on of mathematics, and the int roduct ion of
symbols served merely to con fuse t he reader and obscure the t ruth:60

Rad Pappus no analytiques? Or wanted he the wit to short en his reckoning
by signes? Or has he not proceeded analytically in an 100 problems and
never used symbols? Symboles are poor unhandsome (though necessary)
scaffolds of demonstrat ion; and ought no more to appear in publique, t hen
the most deformed necessary business which you do in your chambers.

Hobbes's second objection was to induct ion, and he railed against 'egregious
logicians and geometers that think an Indu ction without a numemtion of all
the par ti cul ars sufficient to infer a Conclusion universall '. Wallis merely replied

57 Si» lessons to the professors of mathematiques, one of geom etry, the other of astronomy:
in the chaires set up by Sir Henry Savile in th e Unive rsi ty of Oxjord, Hobbes 1656,
Int roduct ion [dat ed 10 J une 1656].

58 De Morgan 1915, 110; for a modern analys is of Hobbes 's mathem at ics see J esseph 1993
and 1999.

59 Hobbes 1656, Introd uct ion.
60 Hobb es 1656, 23. For more on Hobbes 's philosophy of mathem atics and his ob jections

to a lgebraic geom etry see J esseph 1993 , 167-181 an d Jesseph 1999, 240-246.
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that induction was justified 'if after the enumeration of some particulars comes
the general clause: "and the like in other cases" " and again sought justification
in Euclid: 'If not , no proposition of Euclid is demonstrated.'61

Hobbes's most accurate and dam aging criticism was aimed at Wallis 's use
of indivisibles. Part of his argument has already been quoted above; indivis­
ibles must be either 'something or nothing', and in either case, according to
Hobbes, cont radict ions followed:62

The least altitude, is somewhat or nothing. If somewhat , then the first
character of your arithmetic progression must not be a cipher, and conse­
quently the first eighteen propositions of this your Arithmetica infinitorum
are all nought. If nothing , then your whole figure is without alt itude, and
consequently your understanding nought.

Hobbes was not quite right here; t he first term of an arithmetic progression did
not need to be zero , as Wallis had explained elsewhere. The real problem with
a quantity that was 'somewhat' was that it could not be multiplied infinitely
many times to produce a finit e result . In Due correction for Mr. Hobbes,
published in 1656,63 Wallis tried to explain more clearly what he meant byan
indivisible, now shift ing slightly from lines to parallelograms, but still unable
to escape the fundamental problem.P?

I do not mean precisely a line but a parallelogram whose breadth is very
small, viz an aliquot part [divisor] of the whole figures alti tude , denominated
by the number of parallelograms (which is a determinat ion geometrically
precise).

This did not answer Hobbes's argument, and indeed contradi ct ed Wallis 's own
claim elsewhere that the number of such very small parallelograms could be
considered infinite. Wallis ended his chapter entitled 'Arithmetica infinitorum
vindicated ' with t he words: 'WeIl, Ari thmetica infini torum is come off clear' ,65

bu t it had not , for Hobbes had made valid obj ections.f" The truth was ,
however , that Wallis did not greatly car e about the philosophical foundations
of his method provided that it worked , and clearly it did. The argument with
Hobbes raged backwards and forwards through further pamphlet s. Hobbes in
his ETlrMAI of 1657 protested. P"

You do shift and wriggle and throw out ink, that I cannot perceive which
way you go, nor need I, especiaIly in your vindication of your Arithmetica

61 Hobbes 1656 , 46; Wallis 1656c, 41.
62 Hobbes 1656, 46 .

63 Due correcti on [or Mr Hobbes, or school disciplin e, [or not say ing his lessons right,
Wallis 1656c, 41-50.

64 Walli s 1656c, 47.
65 Walli s 1656c, 50.
66 See also J esseph 1993, 187-189 and J esseph 1999, 177-185.
67 ETlrMAI or markes 0/ th e absurd geom etry, rural language, Scottish church-politi cks

and barbarisms 0/ lohn Wal/ is , Hobbes 1657, 12.
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infinitorum ... your book of Arithmetica infinitorum is all nought from the
beginning to the end.

Wallis retaliated in The undoing of Mr Hobs's points, also published in 1657,68
but by now the quarrel between them had taken on its own momentum. It was
to end only with Hobbes's death in 1679, and the details have been fully
described by others.69

All the early readers of the Arithmetica infinitorum, Huygens, Hobbes,
and Fermat, homed in on those parts of the Wallis 's argument that were
indeed less than soundly based: his use of indivisibles and induction, and
his assumption of a range of a continuous and definable values between the
numbers of a sequence. Nevertheless, methods based on indivisible or infinitely
small quantities came increasingly into use amongst his contemporaries. In
1657, William Neile, a young student at Wadham College, Oxford, found the
rectification of the semicubical parabola (in modern notation 9y2 = 4kx3

) by
a method that was geometric but involved a comparison of sums of infinitely
small quantities. Wallis was easily able to make Neile's proof algebraic using
the notation defined in De sectionibus conicis, while William Brouncker went
furt her and came up with a formula for the length of a portion of the curve
in terms of its coordinates.?" At ab out the same time, Hendrick van Heuraet
in the Netherlands arrived independently at a general method of rectification,
and it applied it to the semicubical parabola,"! and in 1659 Fermat rectified
both the semicubical parabola and the cycloid.P Wallis later claimed that
all these attempts were based on the hints he had given in the Arithmeiica
infinitorum:73

And I do not at all doubt that this notion there hinted, gave the occasion
(not to Mr Neil only, but) to all those others (mediately or immediately,)
who have since attempted such Rectification of Curves (nothing in that way
having been attempted before;)

It was true that Wallis had outlined a method of rectification in the Arith­
metica infinitorum, and Neile may have been inspired by it, but Neile's method
was expressed in traditional geometrie terms and he handled a curve that
Wallis had not thought about at all . Meanwhile Huygens had discovered the
relationship between the rectification of the parabola and the quadrature 01'
the hyperbola. He may have had hints of this idea from Wallis's Proposi­
tion 38 where it is clear enough but, as with Neile, his result is expressed

68 Hobbiani puncti dispunctio, or the undoing o] Mr Hobs's points: in answer to M. Hobs 's
ETIrMAI, id est STIGMA TA HOBBII, Wallis 1657.

69 Für further attacks and counter-attacks between Hobbes and Wallis see the bibliography.
See also Grant 1996; Probst 1997; Jesseph 1999 .

70 Wallis published all three methods, Neile's, his own, and Brouncker 's, in Wallis 1659 ,
75-123; 91-96; reprinted in Wallis 1693-99, I, 542-569; 550-554.

71 Van Heuraet 1659; see Van Maanen 1984.
72 Fermat 1660; see Mahoney 1973, 267-28l.
73 Wallis 1685, 298.
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in traditional geometrical language, and this and similar results were likely
to have arisen from his own longstanding interest in problems of quadrature
rather than in any eIues he had picked up from Wallis. 74 Van Heuraet in turn
had received only the vaguest reports of Huygens' ideas, and must be given
credit for an independent discovery.I '' Such ideas were steadily becoming more
widespread in a variety of contexts. Nevertheless it remains true that Wallis
was the first tohint at the possibility of a general method of rectification, a
problem previously considered by Descartes and others to be impossible.

In questions of quadrature, Wallis's work certainly did have repercussions,
and important ones. In 1668 Nicolaus Mercator found the quadrature of the
hyperbola by writing its equation as :

1 2 3y=--=l-x+x - x + ...
l+x

and summing the individual terms by Wallis's methods to obtain:

x 2 x3

In(l + x) = x - - + - - ...
2 3

Mercator published his findings in his Logarithmotechnia of 1668.76 Wallis
reviewed the book in the Philosophical transactions that same year, and
referred the reader twice to his own results in the Arithmetica infinitorum.77

But it was in the hands of Isaac Newton that the Arithmetica infinitorum
finally came into its own. Newton read the book in the winter of 1664-65 when
he wasjust twenty-two years old , and made extensive notes." His writing did
not stop when his reading finished; Newton's train of thought continued unin­
terrupted where Wallis's had left off, as he saw how to extend and consolidate
Wallis's ideas. He recognized the power of Wallis's interpolative methods for
handling curves that lay between those whose properties were already known,
but he moved far beyond Wallis in introducing an algebraic variable. Thus
where Wallis had written simple numerical sums, Newton wrote infinite power
series in which the coefficient of each power was defined and eIearly visible.
For the partial area of a quadrant, for example, using the interpolated values
calculated by Wallis, Newton wrote:79

1 x3 1 x5 1 x 7 5 x9
A=x- -. - - - . - - _ . - - _ . - - . ..

2 3 8 5 16 7 128 9

(where, in modern notation, A(x) = fox (1 - t2)!dt).

74 See Van Maanen 1984, 241-242 for Huygen's formulation of his result and 245-250 for a
possible reconstruction of his methods.

75 Van Maanen 1984 , 222-250.
76 Mercator 1668 .
77 Wallis 1668; see especially 754, 755.
78 Newton 1664.
79 Newton 1664, 108.
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As Newton's work progressed he also began to see how he could use a
method of interpolation different from Wallis 's .80 Where Wallis had regarded
his sequences as generated by multipliers, so that, as we have seen, he wrote
1, 3, 6, 10, ... as 1 x f x ! x i x "' , Newton saw that the same sequence
could be generated by addition, so that 1, 3, 6, 10, . . . could be writ­
ten as a, a + b, a + 2b+ C, a + 3b + 3c, a + 4b + 6c, . .. with a = 1, b = 2,
C = 1; in other words, with a pattern of constant second differences.P! Like
Wallis , Newton assumed that the overall pattern would hold for any inter­
mediate terms, and because his method was simpler than Wallis 's , he could
interpolate not just one , but two, three, or more such terms between any
two entries of a sequence. He could also extrapolate backwards to negative
numbers, something that Wallis had never attempted to do. Thus Newton
could find coefficients in the power series expansion of (1 + x)p /q for any
rational value p/q either positive or negative. In short, building on Wallis 's
methods and sequences he discovered the coefficients of the general binomial
theorem. For Newton this opened up immense possibilities, for now he could
express trigonometrie and logarithmic quantities by means of infinite series,
for example,

x3 3x5 5x7

arcsin x = x + - + - + - + ...
6 40 112

z2 z 3 Z4
antilog Z = Z + - + - + - + ...

2 6 24

In other words , Newton could treat such quantities as functions of a free
variable (though the formal concept of a function did not enter mathematics
until some sixty years later) . Further, he could integrate and differentiate such
functions by operating on the series term by term.

In 1669 Newton wrote up his results in De analysi per aequationes numero
terminorum infinitas, which he sent privately to Isaac Barrow and John
Collins ,82 and he wrote a more extended account in 1676 to Leibniz in two
long letters now known as the Epistola prior and Epistola posterior.83 In
those letters he was explicit about his debt to Wallis ,84 and Wallis was not
slow to respond. By 1676 Wallis had completed a large part , possibly the
first seventy-two chapters, of A treatise 01 algebra. It was probably Newton's
Epistola posterior that prompted hirn to add a furt her twenty-five chapters in

80 Newton 1665; see also Whiteside 1961, Dennis and Confrey 1996, Steda1l2002, 175-180.
81 Newton 1665, 130.
82 Newton 1669; though sent to Barrow and Collins in 1669, De analysi rem ained unpub­

lished until it appeared in Newton 1711.
83 Newton to Oldenburg, 13 June and 24 October 1676, letters 165 and 188 (and 189) in.

Turnbull 1959-77, II, 20-47 and 110-163.
84 Newton 1676b , 111, 130; Newton to Wallis , July 1695, letter 519 in Turnbull 1959-77,

IV, 140.
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which he outlined the methods and significance ofthe Arithmetica infinitorum,
and published substantial extracts from Newton's letters.85

Wallis himself, for all the adverse criticism his book had received when
it first appeared, had never doubted its worth, and Newton's results were a
vindication of his methods. He would have been the first to agree with David
Gregory's later accolade.'"

The Arithmetica infinitorum has ever been acknowledged to be the founda­
tion of all the Improvements that have been made in Geometry since that
time.

From a longer perspective it is possible to arrive at a more objective assess­
ment of Wallis's mathematics, but the historical importance of his ideas is
not in doubt. Almost two centuries after the Arithmetica infinitorum was
written, in 1821, Charles Babbage in an unpublished essay entitled 'Of induc­
tion' wrote:87

Few works afford so many examples of pure and unmixed induction as
the Arithmetica infinitorum of Wallis and although more rigid methods of
demonstration have been substituted by modern writers this most original
production will never cease to be examined with attention by those who
interest themselves in the history of analytical science or in examining those
trains of thought which have contributed to its perfeetion.

Because Wallis's text even now gives important insights into the development
not only of induction but of so many other seminal ideas of mid seventeenth­
century mathematics, this present translation, the first into English, is now
offered to a new generation of readers.

85 Wallis 1685, 330-346. Wallis published the Epistola prior almost in its entirety together
with some supporting material from the Epistola posterior (Turnbull 1959-77, III, 220,
note 4, is not quite accurate on this point) .

86 Bodleian Library MS Smith 31, f. 58.
87 British Library Add MS 37202; Dubbey 1978, 109-114.
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To the most Distinguished and Worthy gentleman

and most Skilled Mathematician,

Dr William Oughtred
Rector of the church of Aldbury in the county of Surrey

Here for you at last (most dist inguished gent leman) is now the whole of that
work of which I gave hope in that proposition on circle measurement that I
gave you in its stead in print last Easter (see Figure 1). For since, by custom,
when one puts somet hing out in publi c, it ought to be dedicat ed to someone,
I thought to seek not only a great gentleman but a grea t mathematician to
whom Imight offer it . And therefore I saw that to none other greater than
you can that easily be done , who is among mathematicians most deserving,
and also by whose writings I readily confess that I have profited: who indeed
in your Clavis mathematicae, though not a large work, have there taught both
briefly and clearly, what we seek in vain in the large volumes of others .'

You may find this work (if I judge rightly) quite new. For I see no reason
why I should not proclaim it ; nor do I believe that ot hers will take it wrongly.
For alt hough it is not to be doubted that indeed known propositions are
mixed here and there among others (which must necessarily be done , partly
so that light would shine from them to others, and so that I would not seern
to contrive something that has no relationship to what mathematicians have
already discovered or perfected; partly also lest this work itself come out both
maimed and crippled, since thos e things follow immediately from our princi­
ples in such a way that , even if they were otherwise unknown, they necessarily
here immediately become known ; and indeed I have not previously found most
of them to stand out in the works of others , even the most distinguished of
them, other than thos e I have arrived at by this method); since, however, this
also has much that is new, indeed neither discovered by nor known to others,
and it teaches all by a new method, introduced by me for the first time into
geometry, and with such clarity (unless I perhaps praise myself too much)
that in these more abstruse problems no-one (as far as I know) has used: that
is why I would not hesitate to call it new.

Certainly this method of mine takes its beginning where Cavalieri ends his
Method 0/ indivisibles. Whence the key is given both to the work itself and to

1 William Oughtred, Arithmeticae ... quasi clavis est, London 1631.
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its title; for as his was the Geometry of indivisibles, so I have chosen to call
my method the Arithmetic of infinitesimale."

By what means I arrived at it, moreover, it seems less necessary to say,
since almost everything found by that method has been written; however,
since I judge that it will not be unwelcome to you, I here also briefly bring
together the history of the thing.

Around 1650 I came across the mathematical writings of Torricelli (which,
as other business allowed, I read in the following year, 1651), where among
other things, he expounds the geometry of indivisibles of Cavalieri.f Cavalieri
hirnself I did not have to hand, and I sought for it in vain at various book­
sellers . His method, as taught by Torricelli, moreover, was indeed all the more
welcome to me because I do not know that anything of that kind was observed
in the thinking of almost any mathematician I had previously met." for what
holds for most ofthem concerning the cirele (which was usually had by means
of polygons with an infinite number of sides, and therefore the circumference
by means of an infinite number of infinitely short lines) could also, it seemed
to me, with appropriate changes, be usefully adjusted to other problems; and
indeed by that means to examine not a little of what is found in Euelid,
Apollonius and, especially, throughout Archimedes. Those things, moreover,
I thought about as yet only in a disordered way, not yet in the order I would
bring them to . For other business has not allowed Mathematicians openly to
devote their attention to it, but only to indulge a few spare hours; whence
I first felt called to that duty which I now attempt; because nothing before
came very elose to it.

Once I had perceived that a method of this kind had been obtained, I began
to think to myself whether this might not bring some light to the quadrature
of the cirele, which is known always to have exercised the greatest of men .
The hope of doing which, it seemed, was here . The ratio of a cone composed
of an infinite number of cireles to a cylinder of the same number was already
known, namely 1 to 3; moreover all the diameters making a triangle along the
axis of the cone, to the same number making a parallelogram along the axis of
the cylinder, are (as is known) as 1 to 2. Equally all the cireles in a parabolic
conoid, to the same number of cireles in a cylinder were known to have a ratio
of 1 to 2; moreover all the diameters of the former to the diameters of the
latter are as 2 to 3. It was also elear that the lines of a triangle are arithmetic
proportionals, or as 1, 2, 3, etc . and so the cireles of a cone (which are as
the squares of the diameters) as 1, 4, 9, etc . In the same way the cireles of
a parabolic conoid (which are as the squares of the ordinates, that is, in the
ratio of the diameters [of the parabola]), are as 1, 2, 3, etc . and therefore their

2 Wallis hirnself translated the title as 'Arit hmet ick of Infinites; for discussion of the title
and its translation see Introduction p . xvii.

3 Bonaventura Cavalieri, Geometria indivisibilibus continuorum nova quadam ratione pro­
mota, Bologna 1635; Evangelista Torricelli, Opera geometrica, Florence 1644.

4 Wallis did not know Roberval's 'Traite des Indivisibles ', which was not published until
1693. See Introduction p. xiv and note 15.
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diameters as VI, y'2, J3, ete., indeed as the square roots of their circles.
I hoped it might therefore be possible that, from the known ratios of other
series of eircles, or (whieh eomes down to the same thing) of squares, to the
same number of equals, there might be found also the ratio of their diameters
or sides to the same number of equals. Moreover if I eould find this by some
general method, the quadrature of the eircle would be sufficiently in sight. For
sinee, as was already known, all the parallel circles in a sphere, to the same
number in a eylinder, are as 2 to 3, if thenee there eould be investigated the
ratio of all the diameters of the former to the diameters of the latter, there
would be found what was sought: for eertainly the diameters of the former
eonstitute a eircle, the latter the square of the diameter. Thus a geometrie
problem is redueed purely to arithmetie.

Therefore I devoted myself to this investigation at the end of that year,
1651, and the beginning of the next , 1652, by that very method that this
treatise indieates. I imagined that thenee, either it was possible at some time
to establish by what means the circle eould be squared, or instead that it
eould indeed not be squared, or that at least something would emerge that
would make the work worthwhile.

I therefore began first (so as to start from the more simple eases) with sim­
ple series, that is, of quantities in arithmetic proportion, or of their squares,
eubes, ete . and then also their square roots, eube roots, ete . and powers com­
posed from these, thus, square roots of eubes ete . or also whatever other
eomposites, whether the power was rational or even irrational. In all of which,
the thing indeed eame out just as wished for, and more than was hoped
for. Whenee eventually a general theorem emerged, taught at Proposition 64.
But also at the same time there was produeed the quadrature not only of
the simple parabola, shown by a new method, but also of all higher parabo­
las, and of their eomplements, which no-one before, as far as I know, began
to address, let alone achieved." And therefore here immediately I felt had
enlarged geometry; for sinee previously the simple parabola was almost the
only eurved figure whose quadrature was known, there may now be taught
by a single proposition the quadrature of all higher parabolas of infinitely
many kinds and indeed by one general method. And indeed if the quadra­
ture of one parabola rendered so mueh farne to Arehirnedes (so that then
all mathematicians sinee that time plaeed hirn as though on the eolumns of
Hereules), I felt it would be welcome enough to the mathematieal world if I
taught the quadrature also of infinitely many kinds of figures of this sort. But
also I saw here the same doetrine widened to eonoids and pyramids. For sinee
Arehirnedes taught eorreetly only of eonoids and spheroids (as also others
after hirn) , no mention was ever made of pyramids; I have related everything,
whether eonoids or pyramids, either erect or inclined, to eylinders and prisms.
Not only for those formed from simple parabolas but also for those from all
higher parabolas and from their eomplements, on which so far there has been

5 Fermat had done this, but Wallis was ignorant of it , see Introduction p. xiv and note 15.
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complete silence from everyone, nor has anyone (as far as I know) anywhere
attempted it . But also I saw here that it was possible to derive as a direct
consequence an almost complete teaching of spirals; and indeed I have taught
the comparison with a circ1e, not only for the space contained within the
usual spirals (as Archimedes did), but also for that contained within other
spirals. But also that teaching on the spiral, no less than that on parabolas,
was capable of extension, except that I did not wish to digress too much to
corollaries.

Passing then to augmented series (as I call them) and those diminished, or
altered, whieh are constituted from sums or differences of two or more other
series. And here also the outcome is not at all to be disparaged. That is,
that it was not difficult to relate everything to series of equals; in partieular
I saw that it was no more work than that to relate conoids or spheroids, or
even pyramids, not only erect but inc1ined, to cylinders or prisms. Not only
for those arising from simple hyperbolas or ellipses, or also those that ean be
formed from higher hyperbolas or ellipses in a thousand ways; but I did not
consider it necessary to dweIl on listing them separately, lest I spread myself
too far , especially since anyone ean see what ean be done by his own efforts
from what has been taught.

Moreover, I have eontinued the investigation with the same suecess not
only for those series, whether augmented or diminished, but also for those
whieh are as the squares, cubes, or any higher power of them, as is to be seen
from those propositions which follow afterwards. Where at the same time we
made use of the figurate numbers, thus, triangular, pyramidal, ete . (whieh
no-one until now has , except sparingly, made use of, and then almost as a
game) and their distinguishing features were unexpeetedly uneovered.

But where we next proceeded to other series whieh were as the square
roots, eube roots, etc. of those augmented or diminished series (whieh have
a direct and immediate bearing on the quadratures of the circle, ellipse or
hyperbola, and whieh alone now remain a diffieulty) I saw that I was there
brought to astandstill, and that I was not able to extrieate myself as eas­
ily as before. Having tried the thing in various ways, there was neverthe­
less no way out of it that would satisfy all that was wished for. From that
it came about that I believed that ratio that was sought to be of a kind
that was not to be expressed in true numbers, nor indeed in surd numbers
(as they are commonly caIled) . For I had found some progressions of num­
bers, between given terms of whieh, another term was to be interposed, in
order to express the sought ratio. Moreover those progressions are of sueh
a kind that they cannot be said to be either arithmetie (where the contin­
ual increases are equal) or geometrie (where the continual multipliers are
equal), but are such that the eontinual multipliers inc1ude arithmetie pro­
portionals, and are therefore yet more eomplex than geometrie progressions.
Moreover, although in a geometrie progression (where the continual multi­
pliers are equal) it is sometimes the ease (for example in 1, 4, 16, 64, ete .)
that the means that have to be interpolated between the terms of it are
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expressible numbers, t he same is not possible in every case (t hus in 1, 2, 4,
8, etc.) , but it may be necessary to indicate an impossible number in some
way (t hus ,,/2, ,,/8, etc .); I judged that it will be much less to be hoped for,
in a progression yet more complex (where the conti nual multipli ers are con­
tinually increas ing or decreasing) t hat this might always be done; and t here­
fore I thought that there must be introduced some ot her method of notation
(than any so far accepted) , by which such an imp ossible number might be
indicated.

And so far had I arri ved at the beginnin g of the year 1652, by the tim e
(as I remember) of Lent ; at the t ime, that is, according to our academic
const itutions, aseries of publi c lectures is given, and therefore more t ime
away from private investigations.

Moreover, while I stopped here, it seemed good to share the t hing with
other mathematicians with whom I was friendly, that I might see whether
they could be of help in designating the sought quantity. And therefore from
the various progressions of t his kind that I had taken hold of, I picked out
one, which seemed to be the simplest of all (as it progressed in whole num­
bers) namely that now to be found at Proposition 192 of thi s t reat ise, and I
brought out the problem almost in this form (for I proposed it in not exactly
all the same words, but nevertheless in the same sense) : I/ any smooth eurve
touehes a line at its vert ex, [rom whieh line to the eurve there are taken lines
parallel to the axis, equally spaeed from. eaeh other, 0/ whieh the first is 1,
the seeond 6, the third 30, the [ourtli 140, the fifth 630, ete. what is the size
0/ that whieh must be interposed between 1 and 6'1 Or also arithmetically: In
aseries 0/ numbers 1, 6, 30, 140, 630, ete., there is sought the mean term
to be plaeed between 1 and 6'1 Moreover , I indicated how those terms arise,
from cont inued multiplication of the numb ers 1 x 4t x 4~ x 4~ x 4~ etc. or
also 1 x ~ X 12° X 134 X 1f etc ., of which both t he numerators and denomi­
nators are arithmetic proportionals. The problem so drawn up I proposed
to t he minds of the following (among others) the most distinguished gentle­
man and mathematician Dr Seth Ward, Savilian Professor of Astronomy and
my most deserving colleague; Lawrence Rook , then for some tim e at Oxford
but afterwards Professor of Astronomy at Gresham College in London; and
Richard Rawlinson, Fellow of The Queen 's College, Oxford ; and I do not know
whether also at the same time (but certainly some t ime) Robert Wood , Fellow
of Lincoln College and Christopher Wren , Fellow of All Souls College (and also
some others, whom I refrain from naming) . And indeed having revealed to all
of them (unless I am mistaken) t he mark that I was aiming at, namely, given
t hat quant ity that was sought, we would have the complete quadrat ure of the
circle. Moreover, neither I nor any of t hem (for whom either the answer was
not obvious, or there was no leisure after laying down t heir own problems for
t hem to be at all troubled by mine) satisfied what was wished for. Moreover,
some one of them advised that I should consult the Opus geometrieum of
Gregoire de Saint-Vincent (whose name indeed I had not heard before) as he
had expounded things of this kind with a bearin g on the quadrature of the
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circle, in a large volume ." I heeded this advice; and this book, although it
was so large a volume that I did not have leisure to read it the whole of it, I
engaged in whenever possible , watehing for what I could find out from there
that would serve my purpose. Moreover , I found at times the investigations
fell out the same way both for hirn and for me (which was no surprise) though
we had arrived there by different methods. For example, what he calls drawing
a plane into a plane, is what I here and in my Treatise on conic sections (the
draft of which was conceived and first shaped in the same year, 1652) have
called drawing all the lines in one plane into the respective lines in another.
The reason, moreover, that I did not speak of drawing a plane into a plane
was that in reality it was not so much a plane into a plane (for thus it would
produce a plano-plane, that is, of four dimensions, not asolid), but the width
of one into the width of the other, both taken finally to the same altitude;
and therefore there emerge three (not four) dimensions. And perhaps some
other things. So that I have not taken into my treatise one proposition or
demonstration from his that I had not found previously; thus if by chance
there happens to be anything common to both, I believed it was not worth
the trouble on that account of deleting it from mine, since it is very often
bound to happen that where two or more consider treating the same thing,
they will sometimes coincide in the same observations. But (although he has
astutely made many discoveries, by a method quite different from mine) that
which I most sought in hirn I never found; for he did not follow the thing far
enough, nor does he even touch at all on the quadrature of the circle, which
he asserts he has found , except at a proposition not very dissimilar to my
Proposition 136, where he has arrived at a calculation whence the quadra­
ture of the circle may be found, but has not , however, followed it through, as
Dr Huygens showed in his Ezetasis.'

In the autumn of that year (1652), I proposed to the most distinguishecl
gentleman Francis von Schooten, Professor of mathematics at Leiden in the
Netherlands, among others, also this problem (concealing the target, how­
ever, that it was aimed at), who, having immediately communicated it to the
most distinguished gentleman Christiaan Huygens, indicated, in letters writ ..
ten thus not much later, the intricacy and difficulty of the thing (although
at first sight it seemed easier), and gave no hope in the meantime that either
he nor my Lord Huygens would be free enough to expend more labour in
the further investigations of it. From the responses of all of them, I was the
more strengthened in that opinion I had previously held, namely that the
term sought was neither a rational number, nor any so far accepted surcl
number, but must be described in new notation, and indeed, if you like, that

6 Gregoire De Saint-Vincent , Opus geometricum quadraturae circuli et sectionum coni ,
Antwerp 1647.

7 Christiaan Huygens, Theoremata de quadratura hyperbolae, ellipsis et circuli . . . Quibu8
subjuneta est Exetasis cyclometriae G. a S. vincentio, Leiden 1651. Wallis's copy of
Huygens' Theoremata de quadratura and of his De circuli magnitudine inventa of 1654
are both bound in Bodleian Library Savile G.26 .
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which I have assigned at Proposition 190. But if (as, for example, .../2, may
not be expressed precisely in true numbers, but nevertheless as closely as
required, so) we want to express this quantity as closely as required in true
numbers (that is, with as much accuracy as one wants, meaning one does
not want it cut off) , I teach how that may be done at Proposition 191. How
that may be exhibited to some extent geometrically is shown in the subse­
quent propositions. And therefore we seem to have pursued the quadrature
of the circle as far as the nature of numbers allows. But whoever requires
to show the thing furt her , it is from there on as though one wanted to
express ..j2 in true numbers: which requirement is unfair. Meanwhile I am
not ignorant that it is possible to describe that quantity by other meth­
ods also, with endless characters, and to arrive in the same way at num­
bers closely approximate to the true ones by other methods (just as can
be said also of surd roots) , in which it is not for me to lay down rules
to men of mathematics, but I leave them free to those things each prefers
to use.

Moreover, having completed the quadrature of the circle , I thought it not
worth while to touch separatelyon other problems related to it : thus, the
ratio of the diameter to the circumference, or the sphere to the cube, or the
cone or cylinder to the pyramid or prism, and others similar; for anyone can
see from this how to gather these together.

Nor did it seem that anything needed to be said separately of the quadra­
ture of the ellipse, which indeed was treated in conjunction with the quadra­
ture of the circle.

The quadrature of the hyperbola as far as I have attained it , I have shown
at Proposition 165.

Meanwhile, however, following the thread of the method I teach, I have
unexpectedly come across somewhat surprising questions concerning the mea­
surement of figures partly bounded, partly continued to infinity. And in par­
ticular what Torricelli showed in one solid figure I have shown can be done in
others innumerable, both plane and solid, in Proposition 87 and later at 107.
At the same time I teach by what criteria it may be discerned, for proposed
figures of this kind continued infinitely, whether they will eventually attain a
finite or infinite magnitude. Which observation seems both quite surprising
and at the same time pleasing.

Why, moreover, have I not made public more quickly what lalready found
three years since? The reason was partly that I was frequently called to other
business, but especially that the typesetter, more occupied with other publi­
cations, only undertook seriously, and carried out lately, the printing of this
and other treatises which appear with it. But while those now published were
in the press , I was pleased to put out as a foretaste (last spring) a proposition
on circle measurement (including also that which I proposed in the form of
a problem some years since , as I said ab ove, to various distinguished gen­
tlemen) , and you may discover that it was chosen from the three problems
that end this treatise. Moreover , since that time (in the month just gone)
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Doctor Hobbes produced a book," who had already promised much in geom­
etry, and especially in the quadrature of the circle, and sectioning angles in
a given ratio , and other things related to these, and at length he brought his
book out publicly, from which it was clear that he had not demonstrated any
of these things, nor indeed will he demonstrate them; for the book abounds
everywhere with the most disgraceful paradoxes, so that you scarcely at times
find anything sensible (which my Elenchus,9 which is also now in the press,
will make clear), whence you may easily discern also that the author is not
one from whom we may hope that mysteries of this kind are to be unraveled.

For the rest, farewell, honoured old gentleman. And may the most merciful
God preserve you happily and make all your doings prosper: so that at length
after passing happily and piously through old age, you may exchange this
troubled life we now lead for a better life. Which is most ardently to be
prayed for.

Your most respectful servant.
John Wallis

Oxford
19 July 1655

8 Thomas Hobbes, Elementorum philo sophiae; sectio prima de corpore, London 1655.
9 John Wallis, Elen chus geometria Hobbianae . . . refutatio, Oxford 1655.



To the Most Respected Gentleman

Doctor William Oughtred
most widely famed amongst mathematicians

by John Wallis
Savilian Professor of Geometry at Oxford

That proposition (most famed Gentleman) that I have shown before to you,
concealed in shape and in the form of a problem, and also to not a few other
mathematicians , to whom I held out the thing some years ago , hiding for the
most part (though it was discovered by several) the target it was aimed at:
here at last I declare ahead openly, in the form of a Theorem (which was
previously buried).
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The Quadrature of the Circle

Given a smooth curve VC to whose vertex there runs the line VT, divided
into any number of equal parts, and from each point of the division, the same
number of parallel lines, constructed as far as the curve, of which the second
is 1, the fourth is 6, the sixth is 30, the eighth is 140, etc. it will be the case
that , as the second is to the third, so will be the semicircle to the square of
its diameter.

Or if the second is 1, the fourth is 1~, the sixth is 1i , etc. it will be the
case that , as the second is to the third , so will be the circle to the square of
its diameter.

Or if the second is 1, the fourth is 2~, the sixth is 4i, etc. it will be the
case that , as the second is to the third, so will be three times the circle to
four times the square of its diameter.

The method of demonstration I have arrived at for all the progressions,
both here for the circle and for innumerable other quadratures of other curves ,
is shown in the treatise that I now have by me, completed for some time, and
indeed written out for the use of the printers, and which I will publish, as soon
as the delays of the printers allow, on whose leisure I have already awaited for
two whole years and more .

Given from the Press at Oxford the day after Easter, the year of our
Lord 1655.



From Doctor William Oughtred

A response to the preceding let ter (afte r the book went to press).10

In which he makes it known what he thought of that method.

Most honoured Sir ,

I have wit h unspeakable delight, so far as my necessary business , the infirm­
ness of my health, and the greatness of my age (app roaching now to an end)
would permit , perused your most learned pap ers, of several choice arguments,
which you sent me: wherein I do first with thankfulness acknowledge to God,
the Father of lights, the great light he hath given you; and next I gratulate you,
even with admirat ion, the clearness and perspicacity of your understanding
and genius, who have not only gone, but also opened a way into these pro­
foundest mysteries of art, unknown and not thought of by the ancients. With
which your mysterious inventions I am the more affected, becau se full twenty
years ago , the learned patron of sciences, Sir Charles Cavendish, shewed me a
written paper sent out of France, in which were some very few excellent new
theorems, wrought by the way, as I suppose, of Cavalieri, which I wrought over
again more agreeably to my way. T he pap er , wherein I wrought it , I shewed
to many, whereof some took copies , bu t my own I cannot find . I mention it for
thi s, because I saw therein a light breaking out for the discovery of wonders
to be revealed to mankind, in this last age of the world: which light I did
salute as afar off, and now at a nearer distance embrace in your prosperous
beginnings. Sir , that you are pleased to mention my name in your never dyin g
pap ers, that is your noble favour to me, who can ad d nothing to your glory,
bu t only my applause, and prayer that God by you will perfect t hese happy
beginnings so propit iously advanced to his glory. Which is the hearty desire of

Your truly loving friend and honourer ,
Willi am Oughtred

August 17 1655

10 This let t er arrived too late to be included in the first edition of the Arithmetica infinito­
rum but was published in the second ed ition in 1695. It is reproduced in Stephen Jordan
Rigau d , Correspondence of scientific m en of the seven teenth century, 2 vols, Oxford
1841 , I, 87-88, and is included here for completeness.



The Arithmetic of Infinitesimals
or

a N ew Method of Inquiring
into the Quadrature of Curves, and other

more difficult mathematical problems

PROPOSITION 1

Lemma

If t here is proposed aseries, 1 of quantities in arithmeti c proportion (or as the
natural sequence of numbersj' cont inually increasing, beginning from a point
or 0 (that is, nought , or nothing)," thus as 0, 1, 2, 3, 4, etc., let it be proposed
to inquire what is the ratio of the sum of all of them, to the sum of the same
number of terms equa l to t he greatest .

The s im p les t method of invest iga ti on , in t h is a nd va rious problems t hat follow, is
t o ex h ib it t he t h ing to a certain ex t ent, a nd t o observe t he ra tios prod uced and t o
co m pa re t he m to each other; so tha t a t length a ge neral proposition may b ecome
known by induction.?

1 Walli s used the Latin word serie s in two ways: (1) t o denot e a list of t erms defined
according to som e ru le: t his meaning has been trans lated as 'sequence' , and : (2) to denot e
a (finite or infinite) collection of such terms, usually (but not necessarily) summed; t his
meaning has been translated as 'series ' , even t ho ugh it does not correspond exactly to
the mode rn mathem atical underst anding of the word (see Glossary ) .

2 Quan tities in arithmetic prop ortion (or arithmetic prop or tion als) increase or decrease
by regul ar addition of a fixed qu antity, t hus : a , a + d, a + 2d , a + 3d, . . . . The sequence
of natural numbers 0, 1,2, 3, . . . is the simplest example.

3 By allowing his sequ ences to begin 'from a point or 0', Walli s was implying that t he
quant it ies can be t aken eit her from geomet ry (magnit udes) or from arithmet ic (numbers) .

4 Induction e, (by induction ) is not to be understood here in th e modern formal sense of
mathem at ical induct ion. Wallis used 'by ind uction ' here and t hroughout simply t o mean
t hat a weil esta blished pattern could reasonably be assu med to cont inue .
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It is therefore the case, for example, that:

0+ 1 1-- -
1 + 1 2

0+1+2+3=6 1
3 + 3 + 3 + 3 = 12 2

o+ 1 + 2 + 3 + 4 + 5 = 15 1
5 + 5 + 5 + 5 + 5 + 5 = 30 2

0+1+2=3 1
2+2+2=6 2

0+1+2+3+4=10 1
4 + 4 + 4 + 4 + 4 = 20 2

0+ 1 + 2 + 3 + 4 + 5 + 6 = 21 1
6 + 6 + 6 + 6 + 6 + 6 + 6 = 42 2

And in the same way, however far we proceed, it will always produce the same ratio
of one half. Therefore:

PROPOSITION 2

Theorem

If there is taken aseries, of quantities in arithmetic proportion (or as the
natural sequence of numbers) continually increasing, beginning from a point
or 0, either finite or infinite in number (for there will be no reason to distin­
guish) , it will be to aseries ofthe same number ofterms equal to the greatest.P
as 1 to 2.

That is, if the first term, is 0, the second 1 (for otherwise some adjustment must
be applied), and the last is I, the sum will be 1~11 (für in this case the number of
terms will be 1+ 1). Or (putting m for the number of terms, whatever the second
term) ~ml.

PROPOSITION 3

Corollary

Therefore, a triangle to a parallelogram (on an equal base and of equal height)
is as 1 to 2.

5 Wallis's reasoning seems to break down immediately at this point, because if his series
contains an infinite number of terms increasing indefinitely it can have no greatest term.
What he is really thinking of, however , though he does not yet make it dear.
is aseries with a finite greatest term I, arrived at by m steps of size d, thus
0, d, 2d, 3d, .. . , m d = I. When m is finite it is dear that the sum of terms is ~ (m + 1)1,
or, to (m + 1)1 as 1 to 2. Wallis allowed the number of steps m to become infinitely
large , by making d arbitrarily smalI , indeed infinitesimally smalI, but in such a way that
md remains always equal to 1 and is therefore finite . In that case, Wallis argued ('by
induction') that the same ratio of 1 to 2 would still hold .
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For the triangle consists, as it were," of an infinite number of parallel lines in arith­
metic proportion, starting from a point, of which the longest is the base (as we
showed in Propositions 1 and 2 of our book On conic sections); and the parallelogram
consists of the same number of lines equal to the base (as is clear) . Therefore the
former to the latter is as 1 to 2 (from what has gone before) . Which was to be proved.

PROPOSITION 4

Corollary

In the same way, a parabolic pyram id or conoid" (whether right or inclined),
to a prism or cylinder (on an equal base and of equal height) is as 1 to 2.

A L
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6 Triangulum enim constat quasi ex infinitis rectis parallelis was the phrase to which
Thomas Hobbes later objected so strongly (' "as it were" is no phrase of a geometrician');
Hobbes 1656, 46.

7 A parabola is a curve whose equation in modern notation, in its simplest form, is
y n = kx . For the common (or simple) parabola n = 2, whi le for a cubical, biquadratic
or supersolid parabola, n = 3, 4 or 5, respectively. By parabola Wallis always meant the
simple parabola; the others he described as paraboloeides, translated as 'higher parabo­
las' . Wallis distinguished also between right and inclined parabolas (cut from right or
inclined cones) : in a right conic the ordinates are at right angles to the diameter.

An erect parabolic conoid is the solid formed by rotation of a right parabola around
its axis of symmetry (its diameter) . A parabolic pyramid is a pyramid with polygonal
cross -sections parallel to the base and parabolic cross-sections through the vertex. In
Proposition 4 the solid is based on the simple parabola y2 = kx , so that if Xl, X2, . • . are
arithmetically proportional then so are Yf' y~, . . ..
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For a par abolie pyramid or eonoid eonsist s, as it were , of an infin ite number of planes
in ar ithmetic proportion, st arting from a point, of which the largest is the base (as
we showed in Proposition 9 of On conic sections) , and the prism or eylinder of the
sam e number of planes equal to the base (as is clear) . Therefore the former to the
latter is as 1 to 2, by Proposition 2.

PROPOSITION 5

Corollary

In the same way, any spiral line MT8 (taken from the eent re of the spiral)
is to the eorresp onding eot erm inous a re PT (taken from the beginning of the
revolution) as 1 to 2.9

Let this spiralline (having eompleted one revolution) be MTA , and let t he eent re of
the spiral (which is also the eent re of what I eall the eorresponding peripheral are)
be M. The beginning of the revolution is the line MA , by the even cire ular motion of
whieh (keeping M fixed) there may be supposed deseribed, by its end point A, the

8 T he words ' (Quam spuriam dicimus) ' , 'which we eall spurious' were added when the
Arithm etiea infinitorum was reprinted in 1695.

9 In 1695 Walli s added a note at this point to explain that by spiral he meant not the
Arehimedean spiral its elf , but the sum of ar es of similar seetors, inseribed inside the
Arehimedean spiral; this he ea lled t he spurious sp iral. The result stated in P rop osition 5
does not hold for the t rue Arehimedean spiral. The first revolution of the Arehimedean
spi ra l is equal in length to a half parabola who se base is the greatest radius of the
spiral and whos e axis is half the cireumferenee of the eote rminous cirele. This resu lt was
diseovered by Roberval and published in Mersenne's Cogitata phy sieo-mathematiea in
1644 (Book 11, De hy draulico, 129) , but Wallis read it there only in 1656 and added a
hasty Se holium or Comment aft er Proposition 13 to explain his own results.

Wallis failed to understand that the true spiral is generate d from a uniform motion
a long the radius, and an aceelerat ed motion along a steadily inereasing cireumferenee
(henee the an alogy with t he parabola whi eh is similarly generated by uniform motion in
one direetion and aeee iera te d motion in anot her) and his failure rendered Propositions 5
to 15 somewhat meaningless. Hobbes, who had diseussed the problem with Roberval
and understood the eorree t argument, immediately pointed out Wallis's error, but Walli s
pers ist ed in it even in his reply to Hobbes in his Elench us of 1656. For further diseussion
of this probl em see Jesseph 1999, 117-125.
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perimeter A OA (which we eall t he first circle, or rather , t he circumference of the first
circle, whicheve r is t he most familiar or useful ). While, in the meantime , any point
(on t he same moving line) may be supposed to move (wit h t he same even moti on )
from M t o A , by it s mot ion deseribing t he spiral line MTA . T hus any straight line
MT (from M, t he eent re of the spiral , to t he spiral line as far as eonstructed) will be
to t he line MA , as t he perimeter are AO (deseribed in t he same ti me) to the to t al
cir eumferenee A OA, or as t he angle AMT to four right angles . An d t herefore also
t he lines M T, M T, are prop ort ional to t he ares A 0 , A 0, as is dear.

Then , having eonstrueted any number of straight lines MT, MT, ete. making a
eont inuous sequenee of angles AMT, TMT, ete. equal to each other (a nd t herefore
[the lines M T are] in arit hmetic propor tion ), we may suppose (superimposed on these
angles) t he same number of similar sectors (or rather , one fewer beeause a sector
may not be inseribed in t he first spaee) inseribing t he figure'" M TM (bo unded
by t he t rue spiral line M T and t he straight line TM ). All these sectors toget her
constitute the plane figure (eomposed from similar secto rs), less t han the (inseribed)
plan e figure MTM itself. But t he differenee is steadily diminished as the number of
sectors (inse ribed in MTM) beeom es lar ger (as is d ear) , un til in fact , if t he sectors are
supposed infinite in number , t he figure thus inseribed coincides with t he figur e MTM
itself (by that which we showed more generally in Prop osition 2 of On conic sections)
and t here fore the ares of all t hose sectors eoincide with t he (spur ious) spiral MT.

Moreover , the ares of t hose similar sectors (ju st as their rad ii) are in arithmetic
prop orti on , that is, as 0, 1, 2, ete., and t he angle of any sector is tha t part of the
total angle AM T, wh ich is fou nd from t he numb er of t hose sectors , or spaces; thus if
t he sectors are supposed infinite in number, t he angle of any one of t hem will be ~
(an infinitesimal, or infinitely smalI, part ) of t he whole angle AMT so, t hat is, that
all together are equal to t he whole of AMT. (Allow me, mo reove r , by analogous use
of lan guage perhaps, to eall t his sum of angles also by the name of angle, alt hough
perh aps it eit her eq uals or exeeeds two righ t angles).

Therefore our spiral line M T may be supposed to eonsist of an infinite number
of ares of sectors in arithmetic proport ion (subtending ...!... of t he angle AMT), of

00 ,

which t he smallest radius is 0, or a point (of no magnit ude) , and t he greatest is the
straight line MT.

Moreover , t he eorres ponding eoterminous are is P T, eons ist ing of the same
number of ares of sectors equal to the greatest, as is dear.

Therefore t he sum of the former (t hat is our spiral line M T) to the sum of t he
la t ter (t hat is the eoterminous are PT) is as 1 to 2, by P rop osit ion 2.

PROPOSITION 6

Corollary

And t herefore, (OUf) spiral line MA , made by one revolution is equal to half
the circumference of the first circle, A A.

10 By figum, or 'figure' , Wallis always meant a plane figure, enclosed by lines and having
area. In part icular , a circl e is a plane figure with area, while t he line bounding it is the
circumference.
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For the are eoterminous with the spiral line MA is the entire cireumferenee of the
first circle deseribed by the point A. Therefore, by Proposition 5, it is proved.

PROPOSITION 7

Corollary

Also, the spirals described by two, three, four, etc . complete revolutions are
equal to half the circumferences of the second, third, fourth, etc. circles taken
two, three, four , etc. times .

For while the spiral MAB (made by two revolutions) is being deseribed, the point
B deseribes the cireumferenee BB twice; and while the spiral MABC is deseribed,
the cireumferenee CC is deseribed three times; and the cireumferenee DD four times
while the spiral MABCD is deseribed. And so on, the cireumferenee of the eotermi­
nous circle must be multiplied by the number of revolutions, and half of this multiple
is equal to the spiral meanwhile deseribed.

PROPOSITION 8

Corollary

But if the spiral is continued beyond one revolution but not for two, it will be
equal to half of the circumference of the complete coterminous circle together
with half of its continuation beyond the complete circle.

For while the spiral MAT is being deseribed (by the eombined motion), the are PPT
is also deseribed (by the point P), that is, the eomplete circle pp plus the adjoined
additional length PT. Therefore by Proposition 5, it is proved.
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PROPOSITION 9

Gorollary

Equally, if the spiral is continued through two, three, four or more complete
revolutions plus an additional part, it will equal half the circumference of the
complete coterminous circle taken two, three, four or more times (as many as
the number of complete revolutions) with half of that same addition.

Because while the spiral is being deseribed, the eomplete cireumference of the coter­
minous circle is described the same number of times, and also the additional part.
That is, the corresponding eoterminous are eonsists of the same number of whole
circles (as the number of revolutions) together with the additional part . Therefore
the proposition stands, by Proposition 5.

PROPOSITION 10

Gorollary

Moreover, these spiral lines made by one, two, three, four, etc. revolutions
(thus MA, MAB, MABG, MABGD) are to each other as the squares of arith­
metic proportionals, that is as 1, 4, 9 , 16, etc. Or they are as the squaresll of
the straight lines MA, MB, MG, MD etc.

For the straight lines MA, AB, BC, CD, are equal to each other (because of the
even motion of the moving point on the line MA extended, progressing as evenly
in one revolution as another). Therefore the radii MA, MB, MC, MD, just as the
circumferences (described by those radii) A, B, C, D, are to eaeh other as I, 2, 3, 4.
If therefore the cireumferenees are taken, the first onee, the seeond twiee, the third
three times, the fourth four times, the multiples (that is IA , 2B, 3C, 4D) will be
as the square numbers I, 4, 9, 16, or 1 x 1,2 x 2,3 x 3,4' x 4. And therefore so are
also the halves of those multiples, that is (by Proposition 5) the spirals MA , MAB,
MABC, MABCD.

Or alternatively, if for the cireumferenee of the first circle we put A = p, the
seeond will be B = 2p, the third C = 3p, the fourth D = 4p and so on; and IA =
Ip,2B = 2 x 2p = 4p,3C = 3 x 3p = 9p,4D = 4 x 4p = 16p etc. And (by Proposi­
tion 5) the spirals MA = ~p,MAB = ~B = ~p,MABC = ~C = ~p,MABCD =
~D = lfp ete. and therefore to eaeh other as I , 4, 9, 16, etc., that is, as the squares
of the lines MA, MB, MC, MD, ete. (which are to eaeh other as I, 2, 3, 4, ete.)
Which was to be proved.

11 In duplicata ratione, literally ' in duplieate ratio' or 'in twice the ratio' . In the Classical
geometrical eontext the 'ratio' (or power) associated with quantities in arithmetie pro­
portion is 1, the 'ratio' associated with their squares is 2 and with their eubes 3. It is
not a great step from 'ratio' in this sense to 'index' , but Wallis did not make that move
formally until Proposition 64. 'In duplicate ratio' is translated here and elsewhere by the
more familiar phrase 'as the square of".
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PROPOSITION 11

Gorollary

And generally: the segments ' F of this (or any similar) spiral (taken from t he
cent re of the spiral) are to each ot her as the squares of the coterminous lines.

For while (by the eonstruetion of t he spira l) t he ratio of the lines MT, MT, is
the same as that of the angles PMT, PMT, (t aking angles in the sense ind icated
above in Proposition 5), t he rat io of t he ares PT, PT, (whieh [rat io) is eomposed of
th ose two ratios), and t hus of the spi ra ls MT, M T, (whieh are half those ares) will
be as th e squ ares of the lines M T, MT, or as (M T)2 , (MT)2.

T hus, for example, if t he st raig ht line MA (of the first revolution) is denoted
by 1r, and the cireumferenee of the first circle (dese ribed by t ha t radius) by
Ip, the spiral MA will be ~p . Therefore in the first revolu tion plus a half, the

eote rminous line will be l ~r = ~ r, and the cireumferenee of the eote rminous
circle will be ~p, which multiplied':' by ~ (the number of revoluti ons) makes
~ x ~ x p = ~p. Half of t his, 2 ~4 P = ~P is the [length of the] spiral deseribed in
the same t ime.

Moreover , I eall spira ls similar if t he lines MA , MB, M G, ete . in one are equa l
to eorresp onding lines in the ot her .

PROPOSITION 12

Corollary

But if in dissimilar spirals of t his kind (for example, if MB in one is equa l to
M G in another) the coterminous lines are equal, then the segments of t hese
spirals are in reciprocal proportion to the corres ponding straight lines (t hat
is, MA in one and MA in the ot her) .

For example, in the first , t he spiral MAB (dese ribed by two revolu tions) will be
equal to half of it s cireumferenee B taken twice; and in th e seeond , the spira l MABG
(dese ribed by three revolutions) will be equal to half of its eireumferenee G taken
three times. And sinee the cireumferenees B in the first and G in the seeond are
supposed equal (beeause of equal radi i) , t he first spiral MAB, and the seeond MABG,
will be to eaeh other as 2 to 3 (t ha t is, as one cireumferenee taken twice, to th e same

12 A 'segment ' in Prop ositions 11 to 18 is to be underst ood as a por tion of length.
13 Ducta in, or, 'drawn int o'. T he outcome , or 'product ' , of such a const ruct ion is an area

delin eated by a rect an gle or square. As t he mathem at ical paradigm shifted from geometry
to arithmetic, duct a in ca me to have the meaning of 'mult iplied by ' , and t he 'product '
was the resu lt of the mu lt iplicat ion. T he geometrical word 'square ' is still used for t he
product of two equal quant iti es, and Wa llis also used 'rect angle' for t he product of two
un equ al qu an ti ti es (see Proposition 120).
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or an equal one taken three times), that is, in reciprocal relation to the corresponding
straight lines MA, MA . For the straight line MA in the first is ~ the straight line
MB, and the straight line MA in the second is ~ (of the same or an equal straight
line) MG. Therefore MA in the second to MA in the first, is as ~ to ~ , or as ~ to
~ or as 2 to 3. Therefore the segment MAB of the former spiral, to the segment
MABG of the latter, is as the straight line MA in the second to the straight line MA
in the first.

The same thing may be shown similarly, whatever the ratio of the corresponding
straight lines in the dissimilar spirals.

PROPOSITION 13

Corollary

If, moreover, in dissimilar spirals of this kind the eoterminous straight lines
are also unequal, then the segments of the spirals will be to eaeh other in
a ratio that is eomposed from the squares of the eoterminous lines and the
reciproeals of the eorresponding straight lines.

Follows from Propositions 11 and 12.

COMMENT14

It must be noted in the preeeding Propositions eoneerning spirals (and also
in some I shall make in future) that I have made use of the word spiral
loosely (that there might be no need for lengthy cireumloeution on every
occasion) . For example, for spiral (wherever this is eompared with a cir­
eumferenee) I would wish there to be understood: the sum of all the ares
of similar seetors, infinite in number, fram whieh seetors, infinite in num­
ber, is eonstituted the plane figure inseribed in the true spiral; as we indi­
eated at Proposition 5 (and which evidently we have made use of in this
work at Proposition 5, and also Arehirnedes at Proposition 21 ete. of his On
spiral lines). Whieh sum indeed, taking the spiral line itself in the eorreet
sense is always too small, and mostly so around the beginning of the spi­
ral. For although the sum of the infinite number of those seetors may be
made equal (aeeording to the method of indivisibles) to the plane figure
bounded by a straight line and the spiral itself; one may not, however,
obtain that for all the ares eompared with the spiral line itself (strictly
speaking) .

14 This Comment was added after Wallis had discovered the rectification of the true
Archimedean spiral in Mersenne's Cogitata, in 1656, when most of the Arithmetica
infinitorum was already printed; see note 9.
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For it amounts to the same thing as if, when an infinite number of parallelo­
grams are inscribed in (or circumscribed around) a triangle, it seems that they
equal the complete triangle VBB, whence one might conclude that the sides (par­
allel to the line VB) of all of them adjacent to the line VB, are at the same
time equal to VB itself; or those (parallel to VB itself) adjacent to VB are at
the same time equal to the whole of VB. (Which, though it may sometimes hap­
pen to be true, for example, thus in an isoseeles triangle, must not, however , be
concluded generally.) And indeed I have offered this warning the more strongly
because I would see even learned men sometimes inclined to error through plausi­
ble possibilities of this kind.15 That is why, moreover, the genuine spiral has been
omitted, and I have compared the spurious spiral to the circumference; the rea­
son being that for the latter but not the former it is possible to assign an equal
circumference.

PROPOSITION 14

Corollary

And therefore also the segments of aspiral of this kind , taken from the cen­
tre, are to the coterminous lines as the intercepted diameters of a truncated
parabola to its ordinates.!"

That is, as the square, by Proposition 11.

15 One such learned man was Wallis hirnself, see note 9. Wallis took up the same theme
again at much greater length in the Comment following Proposition 182.

16 For a parabola with equation y2 = kx, the length of the diameter, or intercepted dia­
meter, at a given point is given by the x-coordinate, while the length of the ordinate is
given by the y-coordinate.

A truncated parabola is cut short by the line x = d, say , so its final intercepted
1

diameter is d and its final ordinate is kd'i .
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PROPOSITION 15

Corollary

Therefore if we suppose that I have unrolled our spiral MTT so that it con­
sists of a st raight line, and all the straight lines TM, TM, beeome parallel to
eaeh ot her , t hen t he former will represent the diameter , and the latter the
ordinates, of a para bola. Conversely, if we suppose that the diameter of a
parabola is turned in an are so that the ordinates end at the same point , it
will become the spira l; those ordinates will be the eoterminous lines and t he
point will be the eentre of the spira l.

COMMENT

This also shows further what we ind icated after Proposition 13. That is, our
spira l, eomposed of an infini te number of ares of similar sect ors, eannot prop­
erly be said to be the genuine spiral, bu t less t han it. For sinee it happens
in the parabola that the ordinates which are closer to the vertex than that
which is equa l to the latus rectum, 17 are longer than th eir intereepted diame­
ters; therefore it is not possible to roll up the diamet er of the parabola (while
keepin g it unbroken) in such a way that the ends of the ordinates meet on the
vertex itself (indeed beeause what is now supposed eurved eannot be less than
the eote rminous line, whieh was formerly an ordinate). Therefore it must be
that t he t rue spiral, which turns in the same way, is greate r than that sup­
posed formed from the sum of ares, whieh is now shown to agree with that
formed from t he diameter of a parabola, indeed whieh is everywhere as the
squares of t he eoterminous lines.

17 The latus rectum of a conie is t he total length of t he ordinates passing t hrough t he foeus.
For a par abola wit h equation y2 = kx (t he refore wit h foeus at (k, 0» the latus rectum
is 2k.
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PROPOSITION 16

Corollary

The [plane] parabola so rolled (that is, the figure contained within our spiral)
is half of the same parabola unrolled.

p .--- - --, 1urt"·...
P ;M
P M

PL..-__...J M

For example, if we suppose that a side pp of a parallelogram PM is rolled up, in
such a way that the points M of every !ine PM coincide in the same point , there will
be formed from the parallelograms (because all the radii from the common centre M
are equal) a circular sector (which may be less than, greater than, or equal to a whole
circle, according to the ratio of the !ines PP to PM to each other) which sector indeed
(that is, the rolled parallelogram) will be ha lf the (unrolled) parallelogram (because
in place of the infinite number of parallelograms of which the shown parallelogram
is supposed to consist, th ere arise the same number of triangular sectors having the
same bases and heights). In the same way, if the parabola is rolled up as described,
so that the other ends of the (previously parallel) ordinates coincide in the same
point, the infinite number of parallelograms of which we suppose the plane parabola
to be const it uted (by what we said in Propositions 2 and 8 of On conic sections)
become the same nurnb er of triangles having the same bases and heights (as the
parallelograms) ; and therefore the area of the parabola so rolled (that is the figure
of the spiral) will be half of the same unrolled . Meanwhile it must be noted: if we want
the ordinates of the parabola (the boundaries of those parallelograms) to become, in
the spiral, those straight !ines that bound similar sectors (having everywhere equal
angles) we must take, in the parabola, a succession of parallelograms, not indeed of
equal height.l" but whose heights are in arithmetic proportion (thus 1, 3, 5, 7 etc.)
by means of which the adjacent ordinates are in arithmetic proportion; (which the
ratio of our spiral requires) , thus as 1, 2, 3, 4, etc.

And this indeed agrees with what Torricelli says, in Example 8 of those which
he sets out in his 'I'reatise on the hyperbolic solid/9 although clearly sought from
different principles.

Further, this next must also be noted: just as from rolling a parabola of this kind
(contracting the [arcs]20 into a single point) there arises the Archimedean spiral; so

18 Note here that the altitude, or height, of a parallelogram is the distance along the
diameter of the parabola.

19 De dimensione pambolae solidique hyperbolici , Torricelli 1644, 95-111; 101.
20 Wallis has mistakenly written 'diameter ' here.
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from other higher parabolas (or other trilineal plane figures of this kind) by similar
rolling, there may arise other different types of spiral, of a thousand different kinds.
Some of which we will consider later.2 1

PROPOSITION 17

Corollary

Moreover, those segments of a spiral of this kind which arise from the first ,
second , third, fourth , etc . revolutions and so on are between themselves in the
ratio 1, 3, 5, 7, and so on, in arithmetic progression.

For (by Proposition 10) the spirallines MA, MAB, MABC, MABD, et c. are as 1,
4, 9, 16, etc., therefore the segm ents of the spirals, MA , AB (= MAB - MA) , BC
(= MABC - MAB) , CD (= MABCD - MABC), etc . are as 1, (4 - 1 =) 3, (9 - 4 =)
5, (16 - 9 =) 7, etc.

PROPOSITION 18

Corollary

And generally, taking any sequence of straight lines MT, MT, etc . continually
making angles PMT, TMT, etc. equal to each other, the successive intercepted
segments (MT, TT, etc.) of a spiral of this kind will be as 1, 3, 5, 7, etc.

21 See Proposition 45 .
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For since the straight lines M T, M T, etc. themselves (because of the equal angles)
are as 1, 2, 3, 4 etc. (by the construct ion of the spiral) , and therefore the spiral lines
M T, MT, etc . (cote rminous with t hose st raight lines) are as the squares of those
lines (by Proposition 11), that is as 1, 4, 9, 16, etc., the successive segments MT,
TT, etc. themselves will be as 1, 4 - 1, 9 - 4, 16 - 9. Which was to be proved.

COMMENT

All this teaching on the length of the spiral, now given in fourteen successive
propositions, is complete ly missing from the work of Archimedes in his book
On spiral lin es; and I do not know that it has been taught by any ot her more
recent write r since then.

PROPOSITION 19

Lemma

If there is proposed aseries, of qu anti ti es that are as the squares of ar it hmetic
propor tionals (or as a sequence of square numbers) continually increasing,
beginning from a point or 0 (t hus , as 0, 1, 4, 9, etc.), let it be proposed to
inquire what is its rati o to aseries of the same number of te rms equal to the
greatest?

The investig ation may be done by the method of induction (as in Prop osit ion 1)
and we will have:

0+1=1 3 1 1 0+1+4= 5 1 1
1 + 1 = 2 = 6 = 3 + 6 4 + 4 + 4 = 12 = 3 + 12

0+ 1 + 4 + 9 = 14 7 1 1
9 + 9 + 9 + 9 = 36 = 18 = 3 + 18

o+ 1 + 4 + 9 + 16 = 30 3 9 1 1
16 + 16 + 16 + 16 + 16 = 80 = 8" = 24 = 3 + 24

o+ 1 + 4 + 9 + 16 + 25 = 55 11 1 1
25 + 25 + 25 + 25 + 25 + 25 = 150 = 30 = 3 + 30

0+ 1 + 4 + 9 + 16 + 25 + 36 = 91 13 1 1
36 + 36 + 36 + 36 + 36 + 36 + 36 = 252 = 36 = 3 + 36

and so on.
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The resulting ratio is always greater than one third, or ~ . Moreover, the excess
cont inually decreases as the number of terms is increased , thus ~ , b, fs ' f4' iö,
;ft , etc. ; the denominator of the fra ction or rati022 dearly having been increased,
in each place, in sixes (as is clea r}, so that the excess over one third of the given
rat io becomes as one to six times the number of te rms after O. Therefore:

PROPOSITION 20

Theorem

If there is proposed a series, of quantities that are as the squares of arithmetic
proportionals (or as a sequence of square numbers) continually increasing,
beginning from a point or 0, its rat io to aseries of the same number of terms
equal to the greatest will exceed one third; and the excess will be the ratio of
one, to six times the number of terms after 0; or of the square root of the first
term after 0, to six times the square root of the greatest term.

T hat is (if for the first term after 0 t her e is put 1, and for t he las t l) ,

Or (denot ing the number of terms by m , and t he last by l) ,

Clear from the preceding propositions.

Since, moreover, as t he number of t erms inc reases, that excess over one t hird
is continually decreased, in such a way that at lengt h it becomes less than any
assignable quantity (as is d ear); if one continues to infinity, it will vanish com­
pletely.23 Therefore:

PROPOSITION 21

Theorem

If there is proposed an infinite series, of quantities that are as squares of
ar ithmetic proportionals (or as a sequence of square numbers) continually
increasing, beginning from a point or 0, it will be to aseries of t he same
number of terms equal to t he greatest as 1 to 3.

Clear from what has gon e before.

22 Fractionis denominatore, sive consequ ente mtionis , literally 'the denominator of the
fraction , or the consequent term of the ratio' .

23 . .. ut tandem quolibet assignabili m inor evadat, {ut patet ;} si in infinitum procedatur,
prorsus evaniturus est .
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PROPOSITION 22

Corollary

T herefore a cone or pyramid, to a cylinder or prism (on the same or equal
base and of equal height) , is as 1 to 3.

For we suppose the cone or pyramid to be composed of an infinit e numb er of similar
parallel planes, constituting aseries of squa res of arithmetic pro portionals, of which
the smallest may be sup posed a point , t he greatest t he base itself; and (by what we
said in Proposition 6 of On conic sections) t he cy!inder or prism fis composed] of
t he same number [of planes] equal to the greatest (as is clear) . T herefore the ratio
is 1 to 3 by the preced ing proposition.

PROPOSITION 23

Corollary

In the same way, the complement of a half parabola (understood as figure
A OT, which with the half parabola itse lf completes a parallelogram ) is, to the
parallelogram TD (on the same or equal base and of equal height ), as 1 to 3.
(And consequent ly the half parabola itself is to the same parallelogram as 2
to 3.)

For in the figure AO T, let t he vertex be A, the diam eter AT, the base TO, and as
many para lleIs to it as you wish (between base and vertex) TO, T O, etc. Since (by
Propositi on 21 of On conic sections) t he straight !ines DO, DO, etc. are as the squar e
roo ts 24 of t he !ines AD, AD, etc., converse ly AD, AD, etc ., that is, TO, TO, etc., will
be as t he squares of the same DO, DO, etc., that is of AT, AT, etc . T herefore the
whole figure AOT (consisting of an infinite number of st ra ight lines TO, TO, etc. , the
squa res of the arit hmetic propor t ionals AT, AT, etc.) will be , to the parallelogram
of equa l height TD (consisting of the same number of straight !ines equa l to the
greatest TO itself), as 1 to 3, by Proposition 21. (Which was to be proved.) And
consequently, t he half parabola AOD (t he rem ainder of the parallelogram) will be
to the same parallelogram as 2 to 3.

24 In subduplicata mtion e, literally 'in half ratio ' ; see also note to P rop osit ion 10.
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PROPOSITION 24

Corollary

In the same way, the plane figure MTM contained within the spiralline MT
(taken from the centre of the spiral M) and the straight coterminous line MT
is, to the corresponding sector PMT, as 1 to 3.

For (as we said in Proposition 5) we may suppose the plane figure MTMto consist of
an infinite number of similar sectors, whose radii are in arithmetic proportion, and
therefore the sectors themselves are as squares of arithmetic proportionals (indeed
of their sides) . Moreover, the sector PMT [consists] of the same number of sectors
equal to the greatest. And therefore the former figure to the latter will be as 1 to 3,
by Proposition 21.

I call by this name sector also the sum of any number of sectors, though it may
be equal to or even exceed a semicircle (or indeed a whole circle) (just as we also
pointed out concerning the name of angle, in Proposition 5).

PROPOSITION 25

Corollary

Therefore the plane figure MTA described by the first revolution of the spiral
is equal to one third of the first circle AA .

For the corresponding coterminous sector is the complete circle AA itself, the first
circle described by the radius MA in the same time.

PROPOSITION 26

Corollary

But the plane figures described by the first and second complete revolutions;
by the first, second and third; by the first, second, third and fourth; and so
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on (as many times as any sector is repeated, so many are the revolutions
described), will be equal to one third of the second, third, fourth, etc . eirc1es
taken two, three, four, etc . times (according to the number of revolutions).

For while the spiral line MAB (made by two revolutions) is deseribed by a mov­
ing point going from M to B (on the rotating line MB), so at the same time is
a plane figure , by the rotating straight !ine (thus eontinually inereasing). In the
'seme time the second circle is described twice (by the whole rotating !ine MB) .
Therefore, however many eontinually inereasing seetors (inereasing as a sequenee of
squares) eonstitute the figure of the bounded spiral, the same number equal to the
greatest eonstitute the circle deseribed twice . So the plane figure thus deseribed,
eontained in the spiral, will be to the eoterminous circle BB taken twice as 1 to 3,
by Proposition 24.

And equally the figure of the spiral deseribed by the first , seeond and third
revolutions will be , to the third circle taken three times, as 1 to 3. And that deseribed
by the first, seeond, third and fourth revolutions will be, to the fourth circle taken
four times, as 1 to 3. And so on.

Here it must be noted that the eomplete plane figure of the spiral deseribed by
the first revolution is repeated in the seeond revolution; and that deseribed by the
seeond is repeated in the third and so on. Therefore, for example, in four revolutions,
the first figure (eontained inside the first spiral !ine, deseribed by the first revolu­
tion) is deseribed four times, the seeond (which lies between the first spiral and the
seeond) three times, the third (which lies between the seeond spiral and the third)
twice , the fourth onee . Therefore the first portion is taken four times, the seeond
three times, the third twice and the fourth onee, and together equal one third of
the fourth circle taken four times, that is, as the number of revolutions. And it may
be eonsidered similarly for any number of revolutions, always taking aeeount of the
number of revolutions.
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PROPOSITION 27

Gorollary

If moreover the spiral is continued beyond the first revolution but not as far as
a complete second, the plane spiral figure thus described (having taken twice
what will be described twice) will equal one third of the complete coterminous
circle together with one third of the continuation beyond the whole circle.

For while the spiral figure MATM is described, so also is the circular figure PPTM
described, that is, the complet e circle pp together with the additional sector PMT.

PROPOSITION 28

Gorollary

And in the same way, if the spiral is continued through two, three, four or more
complete revolutions with an additional part , the spiral figure thus described
(any sector being repeated as many times as it is described) will equal one
third of so many complete cote rminous circles taken two, three, four or more
times (that is, as the number of complete revolutions) together with one third
of the adjoined additional part or sector.

Because while that spiral figure is described (by the rotation of an increasing straight
!ine) the coterminous circle is described the same number of times (by the rotation
of a fixed straight Iine) , and also the additional part beyond.

PROPOSITION 29

Gorollary

Also, the spiral figures described by the first ; by the first and second; by the
first , second and third; by the first , second , third and fourth revolutions, (and
so on) ; (that is, MAM, MABM, MABGM, MABGDM etc .), are to each other
as the cubes of arithmetic proportionals: 1, 8, 27, 64, etc . or as the cubes 25 of
the straight lines MA, MB , MG, MD , etc .

For the straight !ines MA, MB , MG, MD, etc. areas 1, 2, 3, 4, etc. (as has often been
said) , therefore the first, second, third, fourth , etc . circles (described by these radii)
are as 1, 4, 9, 16, etc. (that is, as the squares of the radii) . Therefore ifthe first circle is

25 In triplicata ratione, literally 'in triplicate ratio'; see also note to Propositions 10 and 23.
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denoted by A = 1e, the seeo nd will be B = 4e, the t hird C = ge, the fourth D = 16e,
ete. and therefore if t he first is taken onee, t he seeo nd twice, t he t hird three times .
the fourth four ti mes , ete . we will have 1A = 1e, 2B = 2 x 4e = 8e, 3C = 3 x ge =
27e,4D = 4 x 16e = 64e, etc., and t herefore to eaeh ot her as the eube numbers 1, 8,
27, 64 , ete. and t herefore also as a t hird of t hese , ~e, ~e, ~ e, ~e, ete. That is (by
P rop osit ions 25 and 26) , the spi ral figures MAM, MABM, MA BCM, MABCDM, ete.
are also between t hemselves as t he eube numbers 1, 8, 27, 64, ete.

PROPOSITION 30

Gorollary

And ge nerally, sp iral figures (taken from the centre of t he sp iral a nd bounded
by t he same or sim ilar sp iral line) are to each other as the cu b es of the
co ter m inous lines .

For (by the eonst ruetion of the spiral !ine) the ratio of the st raight !ines MT, MT, is
the same as that of the angles PMT, PMT, (t aking t he nam e angles in the sense of
Prop osition 5 above and t he name seciors in the sense of P rop osition 24 above). The
ratio of t he sectors PMT, PMT to eaeh othe r (eomposed from the ratio of the angles
and t he ra t io of the squares of the radii ) is t he rat io of t he eubes of t he straight !ines
M T, M T to eaeh other. And t he refore the ratio to eaeh other of t he spiral figures
MTM, M TM, which are one t hird of t hose seetors (by Prop osition 24) , will also be
t he same.

Thus, for example, ifthe straight !ine MA (of one revolu t ions) is sa id to be I r , and
the circle deser ibed by t hat radius is said to be l e, t he spiral figure deseribed in t he
same time will be ~e. Therefore in one and half revo lutions t he eoterminous straight

!ine will be l ~r = ~ r , t he eotermi nous circle ~ x ~ x c = ~e, whic h multi plied by ~

(t he number of revolu tions) gives ~ x ~ x ~ x e = ~e, and one t hird of t his is ~e ,

t he spiral figure described by one eomplete revolu tion and half a revolu tion beyond.
And similarly for any number of revolu ti ons.

PROPOSITION 31

Gorollary

But if sp iral figures of this kind a re bounded by di ssimilar sp ir a l lines but
equal st r a ight lines (that is if MB in one sp ir a l is the same as MG in anot her)
then t hose spiral figures on co rresp ond ing straight lines (thus MA in one and
MA in a nother) will b e in reciprocal proportion.

For in t he first , the figure MA BM (described by two revolutions) is equal to one
t hird of its eircle B taken twice. And in the seco nd, t he figure MABCM (describe d
by t hree revolu tions) is equal to one t hird of its cir cle C taken t hree t imes (by
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Propositions 29 and 30),26 and since it is supposed that circle Bin the first is equal
to circle Gin the second (because they have equal radii), the spiral figures MABM in
the first, and MABGM in the second, are to each other as 2 to 3 (that is, as a circle
taken twice to the same or an equal circle taken three times), that is, in reciprocal
ratio to the corresponding lines MA, MA. For MA in the first is ~ the straight line
MB, and MA in the second is ~ of (the equal straight line) MG. Therefore MA in
the second, to MA in the first, is as ~ to ~ ' or ~ to ~ ' or 2 to 3. And therefore the
figure MABM in the first spiral, to MABGM in the second spiral, is as the straight
line MA in the second to the straight line MA in the first .

And the same thing can similarly be shown, whatever the ratio of the corre­
sponding lines in the dissimilar spirals.

PROPOSITION 32

Corollary

If, moreover, spiral figures of this kind are bounded by dissimilar spiral lines,
and at the same time unequal straight lines, they will be to each other in a
ratio composed of the ratio of the cubes of the bounding straight lines, and
the ratio of the reciprocals of the corresponding straight lines.

Follows from Propositions 30 and 31.

PROPOSITION 33

Corollary

Further, the spiral figures described by the first, second, third, fourth , etc .
revolutions are to each other as 1, 7, 19, 37, 61, etc., that is, as the differences
of cube numbers whose roots are in arithmetic proportion.

26 The Proposition referred to here is actually 26.
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For (by Proposition 29) the figures described by the first ; by the first and second; by
the first, second and third; by the first , second, third and fourth; are as 1, 8, 27, 64,
125, etc. Therefore the figures described by the first, by the second, by the third, by
the fourth, etc. are as 1, 8 - 1, 27 - 8, 64 - 27, 125 - 64, etc . that is, as 1, 7, 19,
37, 64, etc., that is, as the differences of successive cube numbers. The excesses of
these differences, or the differences of the differences, are in arithmetic proportion:
for 1 + 6 = 7, 7 + 12 = 19, 19 + 18 = 37, 37 + 24 = 61, etc.

PROPOSITION 34

Corollary

And generally, taking any straight lines MT, MT, etc . making successive angles
PMT, TMT, etc. equal to each other, the successive spiral figures between
these lines are to each other as 1, 7, 19, 37, 61, etc .

For (by Proposition 30) the spiral figures from the centre to these successive lines
are as 1, 8, 27, 64, 125, etc. Therefore the figures successively following, contained by
these lines, are to each other as 1, 8 - 1 = 7, 27 - 8 = 19, 64 - 27 = 37, 125 - 64 =
61, etc. Or as ie, ~e, lfe, ?te, !!fe, etc.

PROPOSITION 35

Corollary

Finally, the portions of a spiral figure newly described in each revolution (apart
from those described in a preceding revolution), that is, contained inside the
first spiral, or between the first and second , or between the second and third ,
or between the third and fourth, etc . are to each other as 1, 6, 12, 18, 24,
etc. (by the addition always, after the first place, of sixes). That is, as the
differences of the differences of the cube numbers.

Follows from Proposition 33, since 1, 7 - 1, 19 - 7, 37 - 19, 61 - 37 etc . are as 1, 6,
12, 18, 24, etc .

COMMENT

This teaching on the areas of spiral figures, here given in twelve successive
propositions, agrees with that given by Archirnedes around the end of his
book On spiral lines . Allow this to follow that a little furt her.
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PROPOSITION 36

Corollary

The complement of t he spi ral figure (which , t hat is , with [the sp iral figure]
it self completes t he coterminous [circ ular] sector) is to t he coterm inous
[circ ula r] sector as 2 to 3.

Follows indeed from Proposition 24. But we may show it otherwise in this way.

We may suppose the figure PMTT (the eomplement of the spira l figure MTTM) to
eonsist of an infinite number of ares PT, PT, ete. which indeed are as the squares of
t he arithmetically proportional lines MP, MP, (as we have shown in Proposition 11).
Moreover, the eote rminous seeto r MPT eonsists of t he same number of ares propor­
t ional to the sa me MP, MP, and therefore in arithmetic prop ort ion (as is clear).

Moreover , aseries of t his kind (t he squares of arithmetic proportionals) is ~ of
aseries of equals (by Proposit ion 21) and aseries of arit hmetic prop ortionals is 4of
the sa me series of equals (by P rop osition 2) . T herefore t he former to the latter (that
is, the eomplement of the spiral figure to the seet or ) is as ~ to 4, that is, as 2 to 3.

PROPOSITION 37

Corollary

A special case: the com plement of the sp ira l figure described by one revolution
is to the first circle (coterm inous to it ) as 2 to 3.

For that eomplement eonsists of an infinite number of ares PT, which are as the
squa res of st ra ight lines in arithmetic prop ortion, MP, (or as 0, 1, 4, 9, ete.) and
the largest of them is th e eomplete cireumferenee A. Moreover , tha t eomplete eircle
eonsists of the same number of cireumferenees in ar it hmetic proportion (as 0, 1, 2,
3, ete .) of which the largest is the sa me eireumferenee A. Therefore the eomplement
to the circle is as ~ to 4, that is, as 2 to 3.
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PROPOSITION 38

Corollary

The spaces lacking in each revolut ion, between the spira l figures and t heir
respective complete circles , are as 2, 5, 8, 11, 14, etc. , arithmetic proportionals.

For (denoting t he first circle by c) the spiral figure descr ibed by t he first revolut ion
will be (by Propositions 29 and 33) ~e, by t he second i e, by t he t hird .!fe, by t he
fourth ~e, etc ., wit h coterminous circles first c, second 4e, t hird ge, fourth 16c,
etc. T herefore t he excess of each circle over its coterrninous spiral is for t he first
~ c, für t he second ~c, für t he t hird ~e, für t he fourth lf e, etc. Für l e - ~e = ~e,

4e - i e = ~e, ge- .!fc = ~e, 16e - ~c = lf e, etc .

COMMENT

And indeed it would be easy to adj oin many other propositi ons similar to
these, concern ing eit her the spiral figures themselves or their complements,
describ ed eit her by complete or par ti al revolutions. But from what has been
said, anyone who pleases may easily supplement these, if t here seems to be
need of it , and so it is not necessary to delay here longer . And I fear lest I
have already gone on too much. I add here, however , one or ot her of the said
corollaries (for t he sake of those who doubt that it is possible to find some
rectilinear figure equal to the circle), that is:

It is clear from what has been said: any circle is equal to some rectilin ear
jigure.

For it is clear (from Proposition 25) that there is a spira l figure equal to
any circle, and (from Proposition 16) some parab ola equal to any spira l, and
finally (from Prop osit ion 23) some rectilinear figure equal to any parab ola. It
follows that there is some rect ilinear figure equal to any circle.

Therefore a recti linear figure and a circle, or a st ra ight line and a curve , are
not heterogeneous quanti ti es, bu t may properly be compared to each ot her,
and indeed may be equal to one another. Although it may be that the diam­
eter and perimet er of a circle are irr ational to each other , so neither in true
numbers, nor in any way of notation so far accepted, yet their ratio to each
other may be forced out.

Further, from what has a lre ady been shown there arises also a method
0/ jinding a stra ight lin e as close as on e wishes 27 to a parabola (or
higher parabola).

27 A equalem quam proxim e, lit era lly ' very nearly equal', but Walli s uses t he ph rase quam
proxime here and elsewhere in a ra the r stro nge r sense , to mean 'as close as one wishes'
(see also, for example, the Comment to P roposit ion 190) .
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o

For if an erect half parabola touches at its vertex the line AT, divided into as
many equal small parts as you please (any one of which is denoted by a and
the number of all of them by n), and on the end of each small part , to that
tangent , are the same number of ordinates TO, TO, etc. (therefore parallel
to the diameter of the parabola, and making right angles with the tangent)
of which the smallest may be said to be 1; then by Proposition 23 they will
be to each other as the square numbers 1, 4, 9, 16, etc. and their differences
as 1, 3, 5, 7, etc., the odd numbers from lonwards (of which the greatest
difference is 2n - 1). The straight lines (ordered along the parabola) connect­
ing the ends of those parallels, (which will therefore in turn be inscribed in
the parabola), will be as J(a2 + 1), J(a2 + 9), J(a2 + 25), J(a2 + 49) , etc.
(because by Euclid 1.47 their squares are equal to the squares of the small
length a and of the differences between neighbouring parallels, that is, of odd
numbers). Indeed, the more of those lines (inscribed in the parabola) there
will be , the more nearly the sum of all of them approaches the measure of the
parabola. In such a way, however, that the line so composed of all of them is
less than the parabola itself.

But if one wants another line , just too long (so that it is agreed that
between those bounds one may determine the length of the parabola) , this
investigation will not be difficult, by means of completing tangents.

And if the curve AGO is supposed not a simple parabola but a cubical
or biquadratic parabola, etc. it will be the same process, with appropriate
changes, as in the simple parabola. For , taking for the differences of the
parallels, not 1, 3, 5, 7, etc., the differences of the square numbers, but 1,
7, 19, 37, etc., the differences of the cube numbers, or 1, 15, 65, 175, etc. ,
the differences of biquadrate numbers, etc., as the nature of the parabola
requires, the inscribed lines will be J(a2 + 1), J(a2 + 49) , etc. or J(a2 + 1),
J(a2 + 225) , and so on . As will be clear from what is demonstrated below in
Proposition 45.

By almost the same method, there may be found a straight line as close
as one wishes to the true spiral.
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For if (by what was said in Proposition 5) it may be supposed that the spiral
figure is inseribed or otherwise eonstituted from as many similar sectors as you
please; then (beeause of the spiral), the ares of the sectors, and their right sines
and versed sines,28 as also their radii, will be in arithmetic proportion. More­
over, the sueeessive inerease of the radii may be ealled a. If, therefore, from the
beginning of the are of any sector there is supposed dropped a eonstrueted line
to the radius, as far as the foot of the perpendicular, that will be the right sine
of that are, whose square, together with the square of the versed sine univer­
sally inereased by the amount a, will be equal to the square of the line inseribed
in the spiral (by Euclid 1.47). If the versed sine is ealled v, and the diameter
of its eomplete circle d, the square of the right sine (made by multiplying
the versed sine, v, by the remainder of the diameter, d - v) will therefore be
vd - v2

; and the square of the versed sine universally inereased by the inerease
(that is, v + a) will be v2 + 2va + a2j and therefore the square of the inseribed
lines (composed from these) will be vd + 2va + a2 . Sinee, moreover, (beeause
of equal angles of similar sectors) the versed sine will be everywhere in the
same ratio to the diameter, let it be as 1 to m (which ratio will be seen to be
greater or less aecording as the angles of eaeh sector are greater or less). There­
fore, as 1 : m = v : d, we will have d = vm j and therefore the square of the
lines inseribed in the spiral will be vd + 2va + a2 = vvm + 2va + a2 . Finally,
sinee the ares of the supposed similar sectors taken in turn, and therefore also
the versed sines, are arithmetie proportionals (beginning from 0), they may
be ealled 0, 1, 2, 3, ete., Those inseribed lines are therefore J(Dm + Da + a2 ) ,

J(lm + 2a + a2
) , J(4m + 4a + a2

) , J(9m + 6a + a2
) , J(16m + 8a + a2

) and
so on. And the more sectors are supposed inseribed in the same spiral figure,
the more closely the sum of the lines thus inseribed approaehes the spiralline:
but, however, it will be always less than the true spiral.

If, moreover, the first of these inseribed lines is omitted and instead of
that there is plaeed, after the last, that which was next to be cut off (which
amounts to the same thing as substituting for the figure made from inseribed

28 The (right) sine of an are is half the length of the ehord eonnecting its ends. For an are
subtending an angle 2B at the eentre of a eircle of radius, its 'sine' is therefore r sin /1,
The length of the are itself is rB, The versed sine is the distanee between the eentre of
the are and the ehord eonneeting its ends, that is, r(l - eosB).
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sectors a circumscribed), and then a is added, we will have a line summed
from all of them, which will be greater than the true spiral, but which more
nearly approaches the true value the more sectors are supposed constructed.

PROPOSITION 39

Lemma

If there is proposed aseries, of quantities that are as the cubes of arithmetic
proportionals (or as a sequence of cube numbers) continually increasing, begin­
ning from a point or °(that is, as 0, 1, 8, 27, 64, etc.), let it be proposed to
inquire what is its ratio to aseries of the same number of terms equal to the
greatest?

The investigation may be done by the method of induction (as in Propositions 1
and 19). And we will have:

0+1=1 2 1 1
1+1=2=4=4+4

0+1+8=9 3 1 1
8+8+8=24 ="8=4+"8

o+ 1 + 8 + 27 = 36 4 1 1
27 + 27 + 27 + 27 = 108 = 12 = 4 + 12

o+ 1 + 8 + 27 + 64 = 100 5 1 1
64 + 64 + 64 + 64 + 64 + 64 = 320 = 16 = 4 + 16

o+ 1 + 8 + 27 + 64 + 125 = 225 6 1 1
125 + 125 + 125 + 125 + 125 + 125 = 750 = 20 = 4 + 20

0+ 1 + 8 + 27 + 64 + 125 + 216 = 441 7 1 1
216 + 216 + 216 + 216 + 216 + 216 + 216 = 1512 = 24 = 4 + 24

And so on .
The resulting ratio is always greater than one quarter, or ~ . Moreover the excess

continually decreases as the number of terms is increased, thus ~, ~' i2, ft" :10, -14 ,
etc.; the denominator of each fraction or ratio clearly having been increased, in each
place, in fours (as is clear), so that the excess over one quarter of the resulting ratio
becomes as that of one, to four times the number of terms after O. Therefore:

PROPOSITION 40

Theorem

If there is proposed aseries, of quantities that are as the cubes of arithmetic
proportionals (or as a sequence of cube numbers) continually increasing, begin­
ning from a point or 0, its ratio to aseries of the same number of terms equal
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to the greatest will exceed one quarter; and the excess will be the ratio of one,
to four times the number of terms after 0; or of the cube root of the first term
after 0, to four times the cube root of the greatest term.

Thus: [ + 1[3 [ + 1[3 m [3 m [3 1 [3 1 [2-- +-- or - + - = -m +-m
4 4l 4 4l 4 4

Clear from what has gone before .

Since, moreover, as the number of terms increases, that excess over one quarter
is continually decreased, in such a way that at length it becomes less than any
assignable quantity (as is clear); if one continues to infinity, it will vanish completely.
Therefore:

PROPOSITION 41

Theorem

If there is proposed an infinite series, of quantities that are as cubes of arith­
metic proportionals (or as a sequence of cube numbers) continually increasing,
beginning from a point or 0, it will be to aseries of the same number of terms
equal to the greatest as 1 to 4.

Clear from what has gone before.

PROPOSITION 42

Corollary

Therefore, the complement of half the cubical parabola AOTis, to the parallel­
ogram TD (on the same or equal base and of equal height) , as 1 to 4. (And , con­
sequently, half the cubical parabola itself, to the same parallelogram, as 3 to 4.)

Let half the cubical parabola be AOD (of which the diameter is AD, t he ordinates

A

»....----'1\.
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DO, DO, etc .) and the compleme nt A OT (of which the diameter is AT, the ordinates
TO , TO, etc .) Therefore since (by Proposition 45 of On conic sections ) the stra ight
lines DO, DO, etc. or their equals AT, AT, etc. are as the cube roots of the lines
A D, AD, etc. or their equals TO , TO , etc ., conversely, TO , TO, etc, will be as the
cube s of t he lines AT, AT, et c. Therefore the whole figur e AOT (consisting of an
infinite number of lines TO , TO , etc . wh ich are as the cubes of the arithmetically
proportionallines AT, AT, etc.), will be, to t he parallelogram TD (consisting of the
same number of lines equal to the greatest TO its elf) , by what has gone before, as
1 to 4. (Which was to be shown.) And consequently, half the cubical parabola AOD
(the rem ainder of the parallelogram) will be to the same parallelogram as 3 to 4.

PROPOSITION 43

Lemma

By the same method may be found the ratio of an infinite series of quantities
that are as the fourth powers , fifth powers , sixth powers, et c, of ar ithmetic
proportionals, beginning from a point or 0, to a series of the same number of
terms equal to the greatest . That is, for fourth powers , it will be as 1 to 5; for
fifth powers, as 1 to 6; for sixth powers , as 1 to 7. And so on .

It will be clear having tried it that the ra t ios discovered by induction approach
continually closer to these, in such a way that t he d ifference at length becomes less
than any assignable quantity ; and therefore cont inuing to infinity it vani shes.

I do not at tach laborious geomet rical demonstrations; wh ich , however , if anyone
should require them , he may sear ch out such (at leisure) by t he inscription and
circumscription of figures , or also by putting forward other demonstrations (such
as Ar chimedes has in Propositions 10 and 11 of On spiral lines), by showing that
the ratio is neither more nor less than any assigned quantity. To me, what I have
produced seems to suffice, following Cavali eri 's Method 01 indivisibles (because I find
that already to be t aken from geometry).

Note, however, those demonstrations I have used , wh ich better represent inscr ibed
figur es , since they suppose that the first t erm is O. If on the other hand one prefers
to represent the figur es as circumscribed it may be changed , and one may do it , onl y
the first term is made l.

It must be noted also, that the ratios sought by inducti on, for those series which
progress as fourth (or higher) powers of arithmetic proportionals are more involved
than the preceding ones .

. l + 1 4 l + 1 4 l + 1 4 -l - 1 4
Thus for biquadrates: -5-l + 1ü13l + 30[2 l + 30[3 l .

O m 4 3m 4 m 4 m 4 I 4 3 3 1 2 1 .
r 5 l + lO[2l + 30[3l - 30[3l = r; m l + TIjml + 3öm l - 3öm l. (That IS ,

putting the first term 0, the second 1, the greatest l , and the number of terms
m=l+l.)

. l + 1 5 l + 1 5 l + 1 5 -l - 1 5
For supersohds: -6- l +~l + 12[2 l + 12z3l

O ml5 m 5 m 5 m 5 1 5 1 4 1 3 1 2r"6 + 3l l + 12[2l - 12[3l = (jml + "3 m l + 12m l - 12m l .
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For sixth powers, or squares of cubes:

Or l.ml 6 + .!i..m l 5 + l.ml4
- l.ml3 - 2...ml2 + 2...ml7 14 7 7 42 42 '

And similarly in those that follow, as will be demonstrated in Proposition 182.
But (which for us here suffices) t hey continually approach more close ly to t he

required ratio, in such a way that at length the difference becomes less than any
assignable quantity.

COMMENT

If, moreover, anyone desires to find ratios ofthis kind, however intricate, which
belong to any higher finite series (thus for seventh powers, eighth powers etc .
of arithmetic proportiona ls), it may be done by the method given below in
the Comment to Proposition 182.

PROPOSITION 44

Theorem

Therefore if there is considered an infinite series,29 of quantities beginning
from a point or 0, and cont inually increasing in arithmetic proportion (which
I call aseries of laterals, or first powers) or of t heir squares, cubes, biquadrates,
etc , (which I call aseries of second pouiers, third powers, fourth powers etc.)30
the ratio of the whole series, to aseries of the same number of te rms equal to
the greatest, will be that which follows in this table. That is:

Equals t or as 1 to 1

First powers 1 22
Second powe rs 1 33"
T hird powers 1 4:4
Fourth powers 1 55
Fifth powwers 1 66
Sixth powers 1 7"7
Seventh powe rs 1 88"
Eighth powers 1 9'9
Ninth powers 1 1010
Tenth powers 1 1111

29 An infinite seri es should be understood in the sense of Proposition 2, that is, an increas­
ing series with a finite greatest term reached by an infinite number of infinitesimally
small steps .

30 Note Wallis's clear distinction between geometrie descriptions: laterals (or sid es), squares,
cubes, biquadrates, and arithmetic descriptions in terms of powers.
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And so on . Thus the denominators of the fra ctions or ratios, are arithmetic propor­
tionals from one; and the common numerator, or the first part of the ratio, is 1.

PROPOSITION 45

Corollary

Here we learn the method of finding the area of the eomplement of a simple
parabola, and also of eubieal, biquadratie or supersolid parabolas, or those
of any higher powers; and eonsequently also the area of a simple parabola or
parabolas of any power. Whieh I promised to show in Proposition 48 of On
conic sections.

That is, whil e the compleme nt of a parabola (or half parabola) , is aseries of second
powers (as we said in Proposition 23) , t he complement of the cubical parabola (or
half of it) is aseries of third powers (as we said in Proposition 42) , and (for the same
reason) the complement of the biquadratic parabola is a series of fourth powers , the
complement of a supersolid parabola is aseries of fifth powers, and so on . The ratio
of these to a circumscribed parallelogram (that is, to a series of the same number of
terms equal to the greatest) is 1 to 3, 1 to 4,1 to 5,1 to 6, and so on , accord ing to the
table in the preceding proposition. And consequently, those same simple, cubical,
biquadratic, supersolid parabolas, et c. (which, that is , with their complements are
equal to the circumscribing parallelogr ams) ar e to the circumscribing parallelograms
as 2 to 3, 3 to 4, 4 to 5, 5 to 6 etc .

COMMENT

And here indeed by this means, for innumerable eurvilinear figures one may
produce equal rectilinear figures. Whieh in the parabola alone (with greatest
admiration) Arehirnedes showed (and others after hirn) , whieh we have now
shown for parabolas of any power whatever .

Moreover , those things that have been taught for these parabolas, as will
soon be shown, may also be aeeommodated by very easy work to spirals. For
if we suppose the line MT to be eontinually inereased, not indeed in the same
ratio as the angle PMT (as in the Archimedean spiral) but as the second ,
third, fourth power , ete. of it, or also as the seeond , third, fourth roots, etc .,
or even as the third or fourth power of the seeond root , or the seeond or fourth
power of the third root, or any others however eomposed: there will arise some
or other kind of spir al, of whieh, however, the ratio to the cireumferenee or
are (in the sense in which it was explained in the Comment to Propositions 13
and 15) will no less become known (as also the ratio of the enclosed plane
figure to the eircle or seetor) than in that of Arehirnedes.
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For example, if the line MT is inereased as the square of the angle PMT,
the spiral line MT (beginning from the centre) will be to the eoterminous arc
PT as 1 to 3, (that is, the spiral will be as aseries of seeond powers, the ares
as aseries of equals) . And the enclosed plane figure will be to the eoterminous
sector as 1 to 5 (that is as aseries of fourth powers to series of equals) . And
similarly, if the line MT grows as the third power, fourth power , ete . of the
angle MPT, the spiral (in the above sense) will be to the eoterminous are as
1 to 4, 5, ete . and the enclosed plane figure to the eoterminous sector as 1
to 7, 9, ete . The same, if the lines MT inerease as the seeond, third roots,
ete. of the angles PMT, then the spirals (in the said sense) or the aggregates
of inereasing similar ares, to the eoterminous are (produeed from the same
number of equals) will be as 1 to 1~, 1~, ete . And the enclosed plane figure to
the eoterminous sector as 1 to 1~, 1~, etc., that is, the former as 2 to 3,3 to
4, etc., the latter as 2 to 4, 3 to 5, etc. And so in others; whatever the power
or root, or however eombined from these. Which may all be demonstrated
in the same way (with appropriate ehanges), as in Propositions 5, 24 etc. (at
least with the help of eertain propositions subsequently introdueed) . And here
indeed this doctrine of spirals may be immensely increased. While, moreover,
anyone who wishes may by their own exertion understand enough from what
has already been said, and it seems to my mind supcrfluous labour to expand
further on this: let it suffiee what I have shown so far.

But here it would even be an easy passage to sueeessfully eonsidering
spirals deseribed not only in the plane but in solids, perhaps on the surfaees
of eones of spheres, or also of eonoids or spheroids, and eomparing them to
spirals or eircles in a eylinder; and the enclosed plane figures of the former
to the enclosed plane figures of the latter. Having introdueed, however, those
propositions that will be pursued below eoneerning augmented and redueed
§fries. Moreover, all this, if I am not very mueh in error, I judge ean be wholly
omitted: sinee anyone who wishes, from what has been taught here or is to be
taught below, may easily deduce it .31

At this point in the 1695 edition Wallis insertcd a section headed Monitum with further
comments on spirals; see Wallis 1693-99, I, 385-387.
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PROPOSITION 46

Lemma

In the same way (by Proposition 44) : given the ratio of one series, of whatever
power, (to aseries of equals), there may be found the ratio of another series
of any other power, (to the same series of equals) ; by finding, that is, the
corresponding term of an arithmetic progression.

For example, if [the sum of] aseries of squares, or seeond powers, is ~ of aseries of
equals, [the sum of] aseries of laterals, or first powers, will be ~ aseries of equals:
beeause, as aseries of first powers is intermediate between aseries of equals and a
series of seeond powers, so 2 (the denominator of the ratio sought for first powers)
is the arithmetic mean of 1 and 3 (the denominators of the ratios for equals and
seeond powers) . In the same way, while the ratio of aseries of eubes or third powers,
is ~ or 1 to 4, between that series and aseries of equals, two series of powers are
interposed; so there must be sought two arithmetic means between 1 and 4, thus 2
and 3, of which the former belongs with first powers, the latter with seeond powers.
And so in other eases.

And similarly, if the ratio belonging to aseries of higher powers is sought, it is
found by eontinuing the progression as far as the term sought: thus, if the ratio of a
series of fourth powers , to aseries of equals, is as 1 to 5, or i;the ratio of aseries of
sixth powers will be 1 to 7; beeause in an arithmetic progression where the fourth
term (after one) is 5, the sixth term will be 7, and the same in other eases .

PROPOSITION 47

Lemma

Moreover, this rule is no less effective if there is shown aseries of whatever
quantities (not even aseries of first powers, but) as any other series in the
table, and its squares, cubes, etc. are sought.

For example, if aseries of this kind, of whatever quantities, is understood to be set
out as aseries of squares (to whieh in the table [in Proposition 44] is assigned the
ratio 1 to 3) : to their squares will belong the ratio 1 to 5 (beeause 1, 3, 5 are in
arithmetie proportion) and to their eubes will belong the ratio 1 to 7, and so on ,
beeause 1, 3, 5, 7 ete . are arithmetie proportionals, just as unity, root, square, eube
ete. are sueeessive powers and geometrie proportionals.

Nor is this other than what is to be had in the table; for if the supposed quantities
are aseries of seeond powers, whose ratio is ~ ' their squares will be aseries of fourth
powers whose ratio is i;and their eubes will be aseries of sixth powers whose ratio
is t; ete. as has been said.
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PROPOSITION 48

Corollary

And consequently, a conoid or pyramid generated from the complement of a
half parabola (around its own diameter) is to a cylinder or prism on an equal
base and of equal height as 1 to 5.

A

lt'------.\

That is, if the complement of half the right parabola A OT is revolved keeping the line
ATin place, so that a right conoid is describedr'i' or , more generally, if (according to the
method we have indieated in Propositions 5,6, and 9 of On conic sections) around the
diameter or axis ATthe ordinates become circles, or any similar planes, ofwhieh the
radii , or lines similarly placed, have the same ratio between them as the lines TO, TO,
etc., so that the conoid or pyramid, whether right or inclined, is completed: I say that
the conoid or pyramid is to a cylinder or prism on the same base and of equal height as 1
to 5. For since all the lines TO, TO, etc. are aseries of second powers (to whieh belongs
the ratio 1 to 3) , any simil ar planes similarly constructed on these lines , will be between
themselves as the squares of these lines; or as the squares of the lines TO, TO. And the
ratio belonging to the series of those lines (that is, aseries of second powers) is 1 to 3;
therefore to the series ofplanes there belongs the rat io 1 to 5: because, that is, 1,3,5, are
arithmetie proportionals (as unity, root, and square are geometrie proportionals). And
indeed, if the lines TO, TO, etc. are aseries of second powers, their squares (or planes
proportional to the squares) will be aseriesoffourth powers, to whieh in the table belongs
the ratio 1 to 5.

PROPOSITION 49

Corollary

And similarly, if from the complement of half a cubical parabola there is
generated (around its own diameter) a conoid or pyramid, this will be to a
cylinder or prism (on the same or equal base and of equal height) as 1 to 7.

32 Wallis or his printers gave the wrong diagram in this Proposition: he needed a right parabola
as in the Comment to Proposition 38, and as given here.
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For since the lines TO, TO, etc . (in the complement of half a cubical parabola) are a
series of third powers, to which in the table belongs the ratio 1 to 4, to the series of
their squares (or of planes proportional to squares) belongs the ratio 1 to 7, because
1,4,7, are arithmetic proportionals. Or also, because the planes are aseries of sixth
powers, to which in the table is assigned the ratio 1 to 7.

PROPOSITION 50

Corollary

And equally, if from the complement of any other half parabola (thus
biquadratic, supersolid, etc.) is generated (around its diameter) any conoid or
pyramid, it will have to a cylinder or prism (on an equal base and of equal
height) a known ratio (thus 1 to 9, 1 to 11 etc.) .

For since the lines of these complements are series of fourth powers, fifth powers,
etc., and therefore have in the table the assigned ratios 1 to 5, 1 to 6, etc ., series
of their squares (or of planes proportional to squares) will have the ratios 1 to 9,
1 to 11, etc ., because 1, 5, 9, or 1, 6, 11, etc . are arithmetic proportionals. Or also,
since the lines are series of fourth powers, fifth powers, etc., similar planes, similarly
positioned to those lines, will be series of eighth powers, tenth powers, etc . to which
belong the ratios 1 to 9, 1 to 11, etc.

COMMENT

Therefore by this method a huge number of solid figures contained by curved
surfaces may be reduced to others contained by plane surfaces; and not only
conical bodies (as the Aneients taught) but also many other eonoids, may
be redueed to a eylinder. Which I do not know that anyone else has shown
before now.

PROPOSITION 51

Lemma

Aeeording to the same rule (Propositions 46 and 47) if there is proposed a
series of any quantities, eorresponding to any series in the table, their square
roots, eube roots, ete. or any intermediate powers, may be investigated in the
same way.

For example, if there is proposed an infinite number of squares'" (or any similar
planes) corresponding to aseries of fourth powers, (to which is assigned in the

33 Here the squares are to be understood as geometrical objects, since Wallis goes on to
compare them with similar planes.
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table the ratio 1 to 5), the series of sides (or of !ines similarly placed in those
[planes]) will have the ratio 1 to 3 (to aseries of equals); because 1, 3, 5, are arith­
metie proportionals. Or also , because where the planes are aseries of fourth powers,
their sides will be aseries of second powers, to whieh is assigned in the table the
ratio 1 to 3.

Thus, if there is proposed an infinite number of cubes (or any similar solids)
corresponding to aseries of sixth powers , to whieh in the table corresponds the
ratio 1 to 7, to the sides ofthose cubes (or to !ines similarly placed in them) belongs
the ratio 1 to 3; and to the squares of these sides (or to planes similarly placed
in those cubes) the ratio 1 to 5; because, of the two arithmetie means between 1
and 7, the smaller is 3, the larger 5, (for 1, 3, 5, 7, are arithmetie proportionals) .
Moreover, I interpose two arithmetie means between 1 and 7, because we assume
the same number of geometrie means between unity and a cube, that is, the side and
the square; for unity, side, square, cube are geometrie proportionals. And indeed, if
the cubes are aseries of sixth powers, the sides will be aseries of second powers ;
and the squares of the sides , aseries of fourth powers; to which in the table belong
the ratios 1 to 3, 1 to 5.

But if the proposed quantities in the same series of sixth powers are squares, (or
any similar planes) , to their sides will belong the ratio 1 to 4, because between 1
and 7 the arithmetic mean is 4, just as between unity and a square the geometrie
mean is the root or side. And indeed if the squares are aseries of sixth powers, their
sides will be aseries of third powers , to whieh in the table belongs the ratio 1 to 4.

PROPOSITION 52

Corollary

And besides, from the known ratios of conoids and pyramids, mentioned in
Propositions 48, 49 and 50, to a cylinder or prism (on an equal base and of
equal height), there may be known the ratios of those planes from which they
are constituted, to a circumscribing parallelogram. Indeed, the complement
of a half parabola is as 1 to 3; the complements of half a cubical, biquadratic,
supersolid parabola etc. are as 1 to 4, 1 to 5, 1 to 6, etc.

For if those conoids or pyramids are known to be series of fourth, sixth, eighth, tenth
powers, etc. and to those belong the ratios 1 to 5, 1 to 7, 1 to 9, 1 to 11, etc., then
to their sides (whieh are therefore series of second, third, fourth, fifth powers, etc.)
belong the ratios 1 to 3, 1 to 4, 1 to 5, 1 to 6, etc . Because 1, 3 5, and in the same
way 1,4, 7, and 1, 5, 9, and 1, 6, 11, etc . are arithmetie proportionals.

PROPOSITION 53

Lemma

This understood, it opens an avenue to the investigation of the ratios (to a
series of quantities equal to the greatest) that series of this kind, of square
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roots, cube roots, biquadratic roots, etc. of numbers or arithmetic propor­
tionals, beginning from a point or 0, may be said to have. (Thus ylO, yll , yl2,
yl3, etc., yl30, yl31, yl32, yl33, etc., ~O, ~I , ~2, ~3, etc.) Which I call
series of second roots, third roots, fourth roots etc.34

For example, if there is proposed an infinite number of squares of this kind which
are arithmetic proportionals, or as aseries of first powers, to which in the table is
assigned the ratio 1 to 2, then to their sides (that is, to aseries of second roots)
belongs the ratio 1 to q (or 2 to 3); because 1, 1~ , 2, are arithmetic proportionals.

Similarly, if there is supposed an infinite number of cubes of this kind which are
arithmetic proportionals, or as aseries of first powers , to which belongs in the table
the ratio 1 to 2, then to the cube roots of those (that is, to aseries of third roots)
belongs the ratio 1 to -k (or 3 to 4), and to their fourth roots, the ratio 1 to 1~ (or 3
to 5). Because clearly 1, 1-k, 1~, 2 are arithmetic proportionals, just as unity, root,
square, cube are geometrical proportionals.

And in the same way, if there are understood to be an infinite number of
biquadrates, supersolids, etc. which are as aseries of first powers, to which belongs
the ratio 1 to 2, then to their fourth roots, fifth roots, etc. belong the ratios 4 to 5,
5 to 6, etc. or 1 to 1i, 1 to t,etc . because 1, 1i, 1~, 1t, 2, and in the same way 1,
1t, 1~, 1~ , 1~ , 2, etc. are arithmetic proportionals. Therefore:

PROPOSITION 54

Theorem

If there is understood to be an infinite series, of quantities beginning from
a point or 0, and continually increasing, as the square roots, cube roots,
biquadratic roots, etc. of numbers in arithmetic proportion (which I call series
of second roots, third roots, fourth roots, etc.), then the ratio of all of them, to
aseries of the same number of terms equal to the greatest, will be that which
follows in this table, that is :

Second roots

Third roots

Fourth roots
Fifth roots
Sixth roots

Seventh roots

Eighth roots

Ninth roots

Tenth roots

And so on.

Clear from what has gone before .

~ or as 1 to
3
4"
4
:5
5
6
6
'7
7
"8
8
9
9
Tä
10
TI

34 At this point Wallis writes y'c , y'qq, for eube root , fourth root . Later (see Proposition 73)
he ehanges to the notation given here, y'3, y'4 .
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PROPOSITION 55

Corollary

Therefore half a plane parabola (or also a whole parabola) is to the circurn­
scribed parallelogram as 2 to 3. (And consequently its complement is to the
same parallelogram as 1 to 3.)

For a plane half parabola (or also a whole parabola) is an infinit e series of second
roots (by Proposition 8 of On conic sections) . The parallelogram, moreover, is a
series of the same number of terms equal to t he greatest. Therefore the former to
the latter is as 1 to 1~ , or as 2 to 3 (and consequent ly, its complement , that is, the
remainder of the parallelogram, as 1 to 3).

PROPOSITION 56

Corollary

In the same way, half a plane cubical parabola (or also a whole cubical
parabola), is to the circumscribed parallelogram, as 3 to 4 (and consequently,
its complement is to the same parallelogram as 1 to 4) .

o
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For since (by Proposition 45 of On conic sections) the ordinates in a cubical parabola
are as the third roots ofthe diameters (or ofthe distances from the vertex) , the plane
constituted from all those is a series of third roots, which, to aseries of the same
number of terms equal to the greatest (that is, to the circumscribed parallelogram),
is as 1 to 1~ , or as 3 to 4. (And consequently, its complement, that is, the remainder
of the parallelogram, is to the same parallelogram as 1 to 4.)

PROPOSITION 57

Corollary

In the same way, the ratio of a half (or whole) biquadratic or super­
solid parabola, or a parabola of any higher power, to the circumscribed
parallelogram will be known; thus as 4 to 5, 5 to 6, etc. (And consequently,
their complements will also have a known ratio to the same parallelograms;
thus as 1 to 5, 1 to 6, etc .)

For those planes are series of fourth roots, fifth roots, etc. and therefore, to aseries
of equals, as 4 to 5, 5 to 6, etc.; and consequently, their complements (which are
series of fourth powers, fifth powers, etc.) as 1 to 5, 1 to 6, etc.

COMMENT

Therefore also by this table, one may find the area35 of any parabola, cubical
parabola, biquadratic parabola, or one of any higher power, and also of their
complements: which I promised in Proposition 48 of On conic sections and
have shown above at Proposition 45 of this.

PROPOSITION 58

Lemma

Finally, with the help of these rules (Proposition 46): if there is proposed
any infinite series of this kind , of quantities beginning from a point or 0,
and continually increasing, in the ratio of any power (not just any simple

35 This is the first time in the text that Wallis uses area as an absolute quantity (rather
than expressing it as a ratio) .
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power , bu t also a eomposite), then its ratio to aseries of t he same number
of te rms equa l to t he greatest may be investigated. Thus the squa res , eubes ,
biquadrates, ete. of seeond roots, third roots, fourth root s, ete. or also of
seeond powers, third powers, four th powers , ete . Or squa re roots, eube roots,
biquadratic roots, ete. of seeond powers, third powers, fourth powers, ete.
or of seeond roots, third roots, fourth roots, ete. Or also any other series in
whatever way eomposed.

For example, sinee a series of third roo ts (t hus y'30, y'31, 32, y'33, ete.) has a ratio
(to aseries of the sam e number of te rms equal to the greatest) wh ich is 3 to 4, or
1 to 1~ , their squares (whieh are also t he same as eube roots of seeo nd powers , thus
y'30, ,li , y'34, y'39, et e.) will have a ratio, to the same number of te rms equal to
t he greatest , whieh is 1 to 1 ~ , or 3 to 5. Beeau se, tha t is, 1, 1 ~ , 1 ~ , or ~, ~ , ~ , are
arithmet ic prop ortionals.

Equally, aseries of eubes of fourth roots , or (wh ich amounts to t he sa me thing)
biquadratic roots of aseries of eubes or third powers , will have to aseries of equals
the ratio 4 to 7. For sinee a series of four th roots has a ratio in the t able of 1 to 1~,

or 4 to 5, t hei r eubes will have a rati o (to a ser ies of the sa me number of terms equal
to the greatest) as 1 to 1 ~ , or 4 to 7. Beeau se, tha t is , 1, 1~ , 1 ~ , 1 ~ , or ~, ~, ~,

i ,are arithmetic prop or t ion als , just as un ity, root , sq uare, eube, ete. a re geometrie
propor t ion als .

And similarly ·in powers more eompounded t han t his : thus squar e roo ts of eubes
of aseries of fifth roots . For to aseries of fifth root s belongs t he ratio of 1 to 1i ,or
5 to 6; t he refore to t heir eub es belongs t he rat io 1 to 1~ , or 5 to 8 (beeause , t hat is,

1, l i , 1 ~ , 1 ~ , or %' ~ , t , ~ , are arit hmetic proportionals): and to t heir square roots ,
t he ra tio 1 to 1-&, or 10 to 13 (bee ause, t hat is, 1-& is t he arit hmetic mean bctween
1 and 1 ~ , for 1, 1-& , 1 ~ (=1 ~) or *'-M, -H; (=~) are ar it hmetic propor tionals) . Or
also sinee t he square roo ts of fifth roots are aseries of tenth roots, t o wh ich belongs
t he ra tio 10 to 11, or 1 to 1to , the eubes of t hese will have t he ratio wh ich is 10

to 13, or 1 to 1-&. Beeau se 1, lto , l fo ' 1-& , or *' -Ni , *' -M , are four te rms in
arit hmetie proportion .

And in t he same way, in series of other powers however eomposed, t heir ratio to
series of equals may be invest igated . An d therefore:

PROPOSITION 59

Theorem

If there is und ers tood to be an infinite series, of quanti ti es beginning from a
point or 0, and eont inua lly inereasing aeeording to any power eomposed from
simple powers (as mentioned in Prop ositions 44 and 45), the ratio of all of
them, to aseries of the same number of terms equa l to the greatest, will be
t hat whieh follows in this table. That is:
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Of aseries of

And so on

PROPOSITION 60

Corollary

Therefore parab olic conoids and pyramidoids, which, that is, are generated
from simple or cubical, biquadrat ic, supersolid parab olas , etc. are to the cir­
cumscribed cylinders or prisms (or to any others on an equal base and of equal
height) as 2 to 4, 3 to 5, 4 to 6, 5 to 7, etc .

For sinee those plane par ab olas are series of lines that are as seeond root s, third
roots , fourth roots , fifth roots, ete. or as squa re root s, eube roots, biquadratic roo ts,
supe rsolid roots, ete. of first powers, t he eonoids and pyr amidoids thus generated are
series of planes that are as the squares of these lines, and therefore as square root s,
eube roots, biquad rat ic roots, supe rsolid root s, ete. of seeo nd powers, to which in
the table are assigned those rat ios 2 to 4, 3 to 5, 4 to 6, 5 to 7, ete.
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PROPOSITION 61

Corollary

But here also there becomes known the method of quadrature not only for the
simple parabola but also for all parabolas (and t heir complements), not only
those in which the ordinates progress according to any simple power (of which
I have spoken in Propositions 55, 56 and 57, and the same in Propositions 23
and 45) but also according to any power composed from simple powers. Thus
if th e ordinates are as th e squares of third roots, fifth roots, seventh roots,
etc . of the diameters, or cubes of fourth roots, fifth roots, etc ., then they will
have ratios to t he circumscrib ed parallelogram which are 3 to 5, 5 to 7, 7 to 9,
etc ., or 4 to 7, 5 to 8, etc . And their complements (of which the ordinates are
therefore as square roots of third powers , fifth powers , seventh powers , etc. of
the diameters, or third roots of fourth powers , fifth powers , etc. ) will have the
ratios 2 to 5, 2 to 7, 2 to 9, etc . or 3 to 7, 3 to 8, etc . And similarly for t he
rest, according to the continuation of the preceding table, at Proposit ion 59.

For if the ord inates are as the squares of the cube roots of the diameters , that plane
will be aseries of lines which are to each ot her as squar es of cube roots (or cube
roots of squares) of numbers in arit hmetic proportion, or as cube roots of second
powers; to which in the table belongs the ratio 3 to 5.

And the complement of this will have ordinates that are as t he square roots of
the cubes of it s diameters (which may be proved by such argument as was used in
Proposition 23) and therefore that plan e will be aseries of squa re roo ts of cubes , or
third powers, to which is assigned in t he table the ratio 2 to 5.

And it is to be conside red the same way in other cases.

COMMENT

And therefore by this method, yet other curved figur es (besides those we
indicated at Proposit ions 45 and 57) may be reduced to equal rectilinear
figures. That is, all parabolas however generated, and th eir complements.

PROPOSITION 62

Corollary

And thence is clear also the method of reducing to equal cylinders or prisms,
all parabolic conoids and pyramidoids (not only those mentioned in Propo­
sition 60, where the ordinates of the plane figures progress as any simple
powers , but also) those generated by any parabola of this kind (as mentioned
in Proposition 61) whose ordinates progress as any series of composite powers.
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For example, if the ordinates of the parabola are as the cube roots squared (or the
cube root of the squares) of the diameters, its plane will be an infinite series of !ines
that are as cube roots of second powers: and therefore the conoids or pyramidoids
will be series of the same number of planes, which are as squares of the same !ines,
therefore as cube roots of fourth powers, and therefore (according to the table in
Proposition 59) to the circumscribed cy!inder or prism as 3 to 7.

In the same way, if the ordinates of the parabola are as the fourth roots of the
cubes of the diameters, then the planes of the conoid or pyramidoid will be as the
fourth roots of the sixth powers of those same diameters (or, which amounts to
the same thing, square roots of cubes) , and therefore that conoid or pyramidoid
(constituted from aseries of these planes) will be to the circumscribed cy!inder or
prism as 4 to 10, or 2 to 5.

And in the same way for others according to the continuation of the table.

PROPOSITION 63

Corollary

In the same way, the conoids and pyramidoids generated by the complements
of those same half parabolas may be reduced to equal cylinders or prisms.

For example, if the complement of a half parabola has ordinates that are as the
square roots of the cubes of the diameters, the plane will be an infinite series of
!ines that are as square roots of cubes, or third powers, and thence the conoid or
pyramidoid generated from this will be aseries of the same number of planes that
are as the squares of the same !ines, and therefore as the square roots of the sixth
power of the diameters, (or, which amounts to the same thing, as the cubes of the
diameters) and will therefore be to the circumscribed cy!inder or prism as 2 to 8, or
1 to 4.

In the same way, if the complement of a half parabola has ordinates that are
as the cube roots of the fourth power of the diameters, the planes of the conoid or
pyramidoid will be as the cube roots of the eighth power of those same diameters,
and therefore as the cube roots of eighth powers; and that conoid or pyramidoid to
the circumscribed cy!inder or prism as 3 to 11.

And it may be considered for others in the same way according to the previously
shown table.

COMMENT

We have shown therefore, by what method all parabolas of whatever kind,
and their complements, may be reduced to parallelograms; and their conoids
or pyramidoids to cylinders or prisms. And therefore we have solved numerous
problems that no one (as far as I know) has taken up before, stillless followed
through.
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Moreover, it seems appropriate to collect everything so far from all the
preceding tables (at Propositions 44,54 and 59) in this general theorem (which
indeed belongs with the rule at Proposition 46), that is:

PROPOSITION 64

Theorem

If there is considered an infinite series, of quantities beginning from a point
or 0, continually increasing according to any power either simple or composite,
then the ratio of all of them, to aseries of the same number of terms equal to
the greatest , is that of unity to the index of that power increased by one.

I set the indices of first powers, second powers, third powers, fourth powers, etc .
(or laterals, squares, cubes, biquadrates, etc.) to be 1, 2, 3, 4, etc.; I set the indices of
second roots, third roots, fourth roots, etc. (or square roots, cube roots, biquadratic
roots, etc. of first powers, or arithmetic proportionals) to be ~ , ~ , t,etc.36 I form the
composed index of any composite power from the indices of the composing powers.
Thus, cubes of second powers (or squares of third powers) have index 6 = 2 x 3;
cube roots of second roots (or square roots of third roots) have index i = ~ x ~ ;

cubes of square roots of fifth powers will have index 1f = 3 x ~ x 5.
Moreover, the ratios assigned to these powers (in the tables) are of the same

kind. Thus to first powers, second powers, third powers, fourth powers, etc . 1 to 2,
1 to 3, 1 to 4, 1 to 5, etc ., that is 1 to 1 + 1, 1 to 2 + 1, 1 to 3 + 1, 1 to 4 + 1, etc .
To second roots, third roots, fourth roots, etc ., 2 to 3, 3 to 4, 4 to 5, et c. or 1 to 1~,

1 to 1~ , 1 to It, etc., that is 1 to ~ + 1, 1 to ~ + 1, 1 to t + 1, etc. To squares of
third powers (or sixth powers) , 1 to 7, that is 1 to 6 + 1. To square roots of third
powers , 2 to 5, or 1 to ~, that is 1 to ~ + 1. To cube roots of second roots (or sixth
roots) 6 to 7, or 1 to i, that is 1 to i + 1. To cubes of square roots of fifth powers (or
square roots of fifteenth powers), 2 to 17, or 1 to lJ- , that is 1 to 1f + 1. (And so on
for the rest .) Which the theorem confirms. And if the index is supposed irrational,
thus yl3, the ratio will be as 1 to 1 + yl3 etc.

PROPOSITION 65

Theorem

From the known ratio of any series to aseries of equals, may be known the
ratio of any series to any other.

36 Although this is the first time Wallis has formally defined the concept of a fractional
index, he has already used the idea implicitly; see for example the Comment to Propo­
sition 45 where the fractions associated with square roots and cube roots are taken to
be ! and ~ (or, in classicallanguage, subduplicate and subtriplicate ratios).
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For example, a parabola to a triangle (that is, aseries of second roots to aseries
of first powers) is as ~ to ~, or as 4 to 3. The complement of a half parabola to a
triangle, or also a cone to a parabolic conoid (that is, aseries of second powers to
aseries of first powers) is as ! to ~ , or 2 to 3. A half parabola to its complement
(that is, aseries of second roots to aseries of second powers) is as ~ to !' or as
2 to 1. Thus a parabola to a cubical parabola is as ~ to ~, or as 8 to 9; and the
conoid of the former to the conoid of the latter, as ~ to i, or as 5 to 6. A cubical
parabola to a biquadratic parabola is as ~ to t, or as 15 to 16; and the conoid
of the former to the conoid of the latter, as i to ~, or as 9 to 10. And so on in
other cases.

It is to be understood that both the bases and the heights are the same or equal
(or at least reciprocal) ; for if they have different bases or heights or both, the ratio
of one series to the other is composed from the ratios of the bases and of the heights
and from the ratios that belong to each series. Thus if a parabola has base Band
height A, and a triangle has base € and height o, then the parabola to the triangle
will be as ~AB to ~a€, or 4AB to 3a€, and similarly in other cases. In the same
way, if the triangle has base B, height A, and the parabola has base ß, height o ,
the parabola to the triangle will be as ~aß to ~AB, or 4aß to 3AB.

The proof is clear. For since parabola AB is ~ parallelogram AB, and triangle
a€ is ~ parallelogram a€, the former to the latter is as ~AB to ~a€. And similarly
in other cases.

PROPOSITION 66

Theorem

From the known quantity für any complete series, may be known the quantity
für that series truncated.

Thus if triangle AB is ~ parallelogram AB, and triangle a € is ~ parallelogram a €,
then the residual trapezium will be ~ AB - ~a €. In the same way, the parabola AB is
~ of the circumscribed parallelogram AB, and parabola aß is ~ of the circumscribed
parallelogram aß, so the residual portion is ~AB - ~aß. And the same in other
cases.
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PROPOSITION 67

Corollary

If a triangle is cut by any number of lines parallel to the base and equally
spaced (cutting off portions of equal altitude) , then the cut-off triangles
(between the vertex and the cutting lines) are as 1, 4, 9, 16, etc. , square
numbers. The spaces between those lines are as 1, 3, 5, 7, etc. , arithmetic
proportionals.

A

Because both the heights and the bases of the cut-off triangles are arithmetic pro­
portionals, therefore the planes are as squ ares of arithmetic proportionals, or as
square numbers 1, 4, 9, 16, etc. And therefore the spaces between as 1, 3 = 4 - 1,
5 = 9 - 4, 7 = 16 - 9, etc .

PROPOSITION 68

Corollary

If a cone is cut by any number of planes parallel to the base and equally
spaced (cutting off portions of equal altitude), the cut-off cones (between the
vertex and the cutting planes) are as 1, 8, 27, 64, etc., cube numbers. The
portions between are as 1, 7, 19, 37, etc ., differences of cube numbers (and
similarly for pyramids.)

v v V

Bt----r----t$ B S BF---~--f.

Because since the altitudes of the cut-off cones are arithmetic proportionals, and
because so also are the diameters of the bases, therefore the bases are as squares of
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those, and the cones (whi ch are composed from the alti t udes and t he bases) are as
the cubes ofthe alti t udes , or as 1, 8,27,64, etc . And therefore the portions between
as 1, 7 = 8 - 1, 19 = 27 - 8, 37 = 64 - 27, etc.

PROPOSITION 69

Corollary

If a par abola is cut by any number of lines (par allel to the base and equally
spaced, cut t ing off portions of equal alti tude) , the cut-off parabolas (between
t he vertex and the cut t ing lines) will be as 1J1, 2J2, 3J3, 4J4, etc . or as
J1,J8, J27, J64 ,etc ., squar e roots of cube numbers. And the spaces between
as the differences of t he roots.

..
~. ....... .

:,\i

:\
1\
\

]) o

For the bases (or rat her the ordinates of the parabolas ) are as the square roots of
the altitudes .

PROPOSITION 70

Corollary

If a parab olic conoid is cut by any number of planes (parallel to the base and
equally spaced , cut t ing off por tions of equal alt it ude), the conoids thus cut off
(between the vertex and the cutt ing planes) are as 1, 4, 9, 16, etc., square
numbers. And the portions between as 1, 3,5,7, et c., arithmet ic proportionals.
(And similarly for pyramids.)

O'--_--"':.L-__~O
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That is, as was said of the triangle in Proposition 67, for the bases of the cut-off
conoids are as the squares of the semi-diameters, that is, of ordinates of the parabola,
and therefore proportional to the altitudes.

PROPOSITION 71

Corollary

If the complement of a half parabola is cut by any number of lines (parallel
to the base and equally spaced, cutting off portions of equal altitude), the
complements thus cut off (between the vertex and the cutting lines) will be as
1,8, 27, 64, etc., cube numbers. And the portions between as 1, 7, 19,37, etc.,
differences of cube numbers.

That is, as was said above of the cone at Proposition 68, for the bases, that is, the
ordinates of the complement, are as the squares of the altitudes.

PROPOSITION 72

Corollary

If also a conoid generated by the complement of a half parabola is cut by
any number of planes (parallel to the base and equally spaced, cutting off
portions of equal altitude) , the cut-off conoids (between the vertex and the
cutting planes) are as 1, 32 , 243, 1024, etc., supersolid numbers. And the
portions between as 1, 31, 211, 781, etc., the differences of supersolids. (And
similarly for pyramids.)

For the bases of the cut-off conoids are as the squares of their semi-diameters,
and therefore as fourth powers of the altitudes (for the semi-diameters of the bases
themselves, or the ordinates of the complement of the half parabola, are as squares
of the altitudes) . And therefore the cut-off solid figures are as the fifth powers of
the altitudes, or rather the power composed from those of the bases and of the
altitudes.
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COMMENT

And it must be considered similarly for other figures of this kind (whether
plane or solid) cut in this way: always having regard for the degree or powers
of the series that pertain.

PROPOSITION 73

Theorem

If any two series (or also more) are multiplied term by term (that is the first
term of one by the first of the other, the second by the second, etc.) there will
be produced another series of the same kind, which will have an index that is
the sum of the indices of the multiplied series. Moreover, its ratio to aseries
of terms equal to its greatest will be that which the preceding tables (or also
Proposition 64) indicated.

For example, if aseries of squares or second powers (with index 2) is multiplied term
by term by aseries of cubes or third powers (with index 3) it will produce aseries
of fifth powers (with index 5 = 2 + 3), which will therefore have, to aseries of terms
equal to the greatest, the ratio 1 to 6 (= 5 + 1). Thus if aseries of second powers is
multiplied term by term by aseries of third powers , it will produce aseries of fifth
powers.

Oa
Ob
Oab

1a
1b
lab

4a
8b
32ab

9a
27b
243ab

16a etc .
64b etc.
1024ab etc .

In the same way, if aseries of second powers (with index 2) is multiplied term
by term by aseries of third roots (with index ~), there will be produced aseries
of cube roots of seventh powers (with index ~ = 2 + ~) which , to aseries of the
same number of terms equal to the greatest, is as 1 to 1j- (= ~ + 1), or as 3 to 10.
Thus if there are multiplied term by term

the series Oa, 1a, 4a, 9a, etc .

by the series y'"30b, y'"31b, y'"3 2b, y'"33b, etc.

that is, the series y'"30a3, y'"3 1a3, y'"364a3, y'"3729a3, etc.

by the series y'"30b, y'"3 1b, .r»; y'"33b, etc.

it will produce the series y'"30a3b, y'"31a3b, y'"3128a3b, y'"32187a3b, etc.

In the same way, if aseries of second roots (with index ~) is multiplied term by term
by aseries of fifth roots (with index i), there will be produced aseries of tenth roots
of seventh powers (with index iö = ~ + i) and therefore it will have , to aseries of
terms equal to the greatest, a ratio that is 1 to M(= iö + 1), or 10 to 17. Thus if
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there are multiplied term by term

the series v;20a, ,Pla, ..;22a, ..;23a, etc.

by the series ..;5Ob, ..;51b, ..;52b, ..;53b, etc.

that is, t he series ..;100a5, ,,;10 1a5, ..;1032a5, ,,;10243a5, etc.

by t he series ..;100b2, ..;10 1b2, ..;104b2, ..;109b2, etc.

it will produce ..;100a5b2, ..;10 1a5b2, ..;10 128a5b2, ..;102187a5b2 , etc.

And t his holds similarly in ot her multiplications of this kind .

PROPOSITION 74

Corollary

Therefore, where t he sums of the indices of series multiplied term by term are
the same , there the indices of the series produced will also be the same.

For example, if aseries of third powers is multiplied te rm by term by aseries of third
powers , or aseries of second powers by aseries of fourth powers, or aseries of first
powers by aseries of fifth powers, or aseries of equals by aseries of sixth powers, it
will produce aseries of sixth powers. Because, that is, in each case the sum of t he
indices is 6 (for 3 + 3 = 2 + 4 = 1 + 5 = 0 + 6 = 6) . And sim ilarly in ot her cases.

PROPOSITION 75

Corollary

If all the lines DB of a parallelogram ADB are set perpendicular one by one
to the lines Dß of a triangle A Dß (of the same height ),37 t he rectangles
produced will be aseries of first powers (of the same kind as the planes of the
parabolic cone, by Proposition 11 of On conic sections), for which if there is
substituted the same number of squares (or any other similar plane figures)
equal to them , t here will be constituted a parabolic pyramid. And the sides
of those squares (or similar figures), or the mean proportionals between the
lines so mult iplied.i''' DE, const itute a parabola, or half parabola.

37 'Si Parallelogrami reciae omnes, in rectas Triangulis respectiv e ducantur; . .. ' . As pointed
out in the note to Proposition 11, the verb ducere (in) was used to des cribe the construc­
tion of a perpendicular, t he 'product' being the square or rectangle so defined. Such a
construction gives the geometrica l equ ivalent of multiplication in arithmetic.

38 A literal translation of ' . . . inter rectas sic multiplicatas ' j Wallis is now blur ring the
classical distinction between geometry (which deals with lines) and arithmetic (which
deals wit h numbers) .
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Bo.--~----->.

(It is to be understood that those planes, or mean proportionals , which thus emerge,
are supposed positioned on some line , like ordinates, as the nature of the constituted
figures requires.i'" Which may also be underst ood in whatever comes aft erwards.)

For since the lines of the parallelogram are a series of equals (with index 0) and
the lines of the triangle aseries of first powers (with index 1), there is produced by
multiplication the same series of first powers (since 0 + 1 = 1), of the same kind as
the planes of a parabolic cone or parabolic pyramid (by Propositions 9 and 11 of
On conic sections), and the mean proportionals (or sides of similar planes) will be
a series of second roots (or rat her square roots of first powers) , of the same kind as
the lines of a parab ola , by Proposit ion 8 of On conic sections .

PROPOSITION 76

If the lines ßD of a parallelogram ADß are set perp endi cular one by one to
the lines DB of a half parabola ADB of equal alt itude, the rect angles produced
will be a series of second roots; and t he mean proportionals a series of fourth
roots (of the same kind as the lines of a biquadratic parabola DE) .40

1\
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That is, aseries of equals (with index 0) multiplied term by term by a series of second
roots (with index ~ ) produces the same series of second roots (since ~ + 0 = ~) , and
the mean proportionals (or rather square roots of second roots) will be a series of
fourth roots.

39 Here the planes, or products, are represented by a sing le !ine, or ordinate, of the same
magnitude.

40 The !ines DE are those in t he lower left part of the diagram. The !ines on the upper right
iJlustrate Proposition 77, which folIows.
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PROPOSITION 77

Corollary

If the lines D ß of a parallelogram ADß are set perpendicular one by one to
the lines DB of the complement of a half parabola, the rectangles produced
will be a series of second powers; and the mean proportionals aseries of first
powers (constituting tri angle ADE).

That is, aseries of equals, thus multiplied by aseries of second powers , gives also a
series of second powers (since 0 + 2 = 2) , of which the squ are roots are aseries of
first powers .

PROPOSITION 78

Corollary

If the lines DB of a triangle are set perpendicular one by one to the lines of a
half parabola Dß, the rectangles produced will be aseries of square roots of
third powers, and the mean proportionals the fourth roots of third powers, DE.

That is, a ser ies of first powers, thus multiplied by aseries of second roots, will give
a series of square roots of third powers (since 1 + ~ = ~ ), of which the squ are roots
ar e fourth roots of third powers.

PROPOSITION 79

Corollary

If the lines DB of a triangle are set perpendicular one by one to the lines D ß
of the complement of a half parabola, the rectangles produced are a series of
third powers (since 1 + 2 = 3). And the mean proportionals are the square
roots of third powers , DE.

Demonstrat ed as in the preceding propositions.
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PROPOSITION 80

Corollary

If the lines of the complement of a half parabola ar e set perpendicular one by
one to the lines of a half parabola, the rectangles produced will be aseries of
square roots of fifth powers (since 2 + ~ = ~) , and the mean proportionals a
series of four th roots of fifth powers. As is obvious.

COMMENT

It may be considered in the same way for any figures, whether plane or solid ,
which arise from mul tiplication of thi s kind. So if the lines of one triangle are
set perpendicular one by one to the lines of another triangle (whether similar
or dissimilar, only of equal altitude), there will arise a pyramid, but the mean
proportionals again const it ute a t riangle. T he lines of a half parabola set
perpendicular one by one to the lines of another produce a parabolic pyramid,
but t he mean propor tionals a half par ab ola. And so on in other cases .

PROPOSITION 81

Corollary

If all the terms of aseries are divided one by one by the terms of another
series, the quotients will form another series , of which the index may be found
by subtracting the index of the dividing series from the index of the divided
series, for what remains will be the index of the series arising from the division,
or of the quo tient . Moreover , the ratio of the series thus produced , to aseries
of t he same number of terms equal to its greatest , will be that which the
preceding tables (or Proposition 64) indicate.

For example, if a series of biquadrates or fourth powers (with index 4) is divided by
a series of cubes or third powers (with index 3) the quotients will be aseries of sides
or first powers, with index 1 = 4 - 3.
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If aseries of third powers is divided by a seri es of first powers , t here will arise a
ser ies of second powers , wit h ind ex 2 = 3 - l.

And if aseries of seco nd powers is divided by aseries of seco nd powers , there
will arise aseries of equals, with index 0 = 2 - 2. And so on for t he rest .

T he proof is clear from Prop osit ion 73. Because, t hat is , aseries of t hird pow­
ers mul tiplied te rm by te rm by aseries of first powers gives rise t o aseries of
fourth powers. And aseries of first powers thus multiplied by aseries of second
powers gives rise to aseries of t hird powers . And aseries of seco nd powers multi­
plied in the same way by aseries of equals produces aseries of seco nd powers . And
so on in a ll t he rest . For wh at is composed by multiplicati on may be resolved by
division . v'

PROPOSITION 82

Corollary

Therefore, where the excesses of the degrees or indices of series to be divided,
over those of the dividing series, are the same then the indices of the quotients
will be the same.

For exam ple, if a series of sixth powers is divided by aseries of fourth powers , or a
series of fifth powers by aseries of t hird powers, or a seri es of fourth powers by a
series of seco nd powers , or aseries of third powers by aseries of first powers, or
aseries of second powers by aseries of equals, t here will arise aseries of second
powers . Because, t hat is, in eac h case, t he ser ies divid ed excee ds t he dividing series
by a degree of two (for 6 - 4 = 5 - 3 = 4 - 2 = 3 - 1 = 2 - 0 = 2). T herefore (from
what has gone befor e) t he res ult ing series will have t he same index. And t he same
in other cases.

PROPOSITION 83

Corollary

If a pyramid (or a series of second powers) is applied plane by line to a
trianglev' of equal alti tude (that is, the planes of the former to the lines of
the latter) it will produce a triangle (since, that is, 2 - 1 = 1). If it is applied
to the complement of a half parabola it will produce a parall elogram (since
2 -: 2 = 0). If to a half parabola, the plane arising will be aseries of square

4 1 Wallis used compositi on and reso lution for inverse processes such as addition and sub­
t ractio n; or multipli cation and division; or raising to powers and ta king roots. Other
writers, however , used the terms as equivalents of synthesis and ana lysis .

42 'Si P ymmis ad Tri angulum respective applicetur, .. .'. The verb applicare (ad) , literally
'to lay to', was used for the geomet rical const ruct ion of setting an area against a line (or
asolid against an area), the geomet rical equivalent of division in arithmetic (see also th e
notes to Propositions 11 and 75).
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roots of third powers (since 2 - ~ = q = ~). If to aseries of equals, it will
produce the complement of a half parabola (since 2 - 0 = 2). And thus in
other cases.

Clear from Proposition 81.

PROPOSITION 84

Corollary

Or, if from the respective lines of a first triangle ADE, and a second ADE, are
taken third proportionals.v' there will be produced a third triangle ADß. If
from respective lines of the complement of a half parabola ADE, and triangle
ADE, there will be produced parallelogram ADß. If indeed from parallelo­
gram ADß and triangle ADE, there will be produced the complement of the
half parabola ADE.
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Follows from what has gone before. For the squares of the lines in the triangle
constitute a pyramid. And similarly for the rest. And the first part is shown in the
first figure, the second and third in the next.

PROPOSITION 85

Corollary

If a parabolic pyramid (that is, aseries of first powers) is applied plane by line
to a triangle of equal altitude it will produce a parallelogram (since 1 - 1 = 0).
If to a parallelogram, it will produce a triangle (since 1 - 0 = 1). If to a half
parabola, it will produce a half parabola (since 1 - ~ = ~) . If to half a cubical
parabola, the plane arising will consist of cube roots of second powers (since
1 - ! = ~). And equally in other applications of the same kind.

43 The third proportional oftwo (ordered) quantities x and y is y2 [» (since x : y = y : y2 Ix) .
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Obvious from Proposition 81.

PROPOSITION 86

Corollary

Similarly, if from the respective lines of a triangle ADß and a half parabola
ADE, are taken third proportionals, there will be produced a parallelo­
gram ADB; if from the respective lines of parallelogram ABD, and half
parabola ADE, there will be produced tri angle ADß; if from the respective
lines of a first parabola ADB, and a second ADE, there will be produced a
third parabola ADß; and thus in other cases.

Follows from what has gone before. For the squares of the lines in a half parabola
constitute a parabolic pyramid. Shown in the preceding figure .

COMMENT

And it may be considered in the same way for other plane by line applications
of solid figures to planes . It suffices to have indicated a few by way of example,
in imitation of which innumerable others become possible .

PROPOSITION 87

Corollary

If there is proposed any of the aforementioned series, to be divided by another
of higher degree or power, it will not be possible to produce any of the series
already mentioned (since it is not possible to take the index of a higher power
from the index of a lower power, or rather a greater from a smaller) , but clearly
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another kind of series, that is, one whose terms are in reciprocal proportion
to the corresponding terms of another series , which has index equal to the
excess of the index of the dividing series over the index of the divided series.

Moreover, the series thus arising may be called reciprocal series, and they
have negative indices.

For example, if aseries of second powers is to be divided by aseries of third powers,
or aseries of first powers by aseries of second powers , or aseries of equals by aseries
of first powers (where the dividing series is one degree higher than the series to be
divided, and so the index of the dividing series is one more than the index of the
divided series, thus 3 - 2 = 2 - 1 = 1 - 0 = 1), the terms of the series ar ising will
be in reciprocal proportion to the corresponding terms of aseries of first powers .
Thus if there are divided term by term

the series Oa2
, 1a2

, 4a2
, 9a2

, 16a2
, etc.

by the series Oa3
, 1a3

, 8a3
, 27a 3

, 64a 3
, etc.

or the series Oa, 1a , 2a , 3a, 4a , etc.
by the series Oa2

, 1a2
, 4a2

, 9a2
, 16a2

, etc.

or the series 1, 1, 1, 1, 1, etc
by the series Oa, 1a , 2a , 3a, 4a, etc .

there will be produced the series:

1 1 1 1 1
Oa

,
1a

,
2a

,
3a

,
4a

, etc.

whose terms are in reciprocal proportion to the corresponding terms in aseries of
first powers

Oa 1a 2a 3a 4a . bvi
T ' T ' T ' T' T ' etc . as IS 0 VIOUS .

That is,
1 1 3a 2a

and t hus everywhere.
2a 3a T :T'

In the same way, if aseries of first powers is to be divided by aseries of third powers
(or what amounts to t he same thing) aseries of equals by aseries of second powers,
the series arising will be reciprocal to aseries of second powers. Thus

1 1 1 1
Oa2 ' 1a2 ' 4a 2 ' 9a2 '

1
16a2 ' etc.

And this holds in the same way in all such divisions of this kind.
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PROPOSITION 88

Corollary

If an infinit e numb er of (parallel) planes of a parallelepip ed are applied to the
same number of lines of a triangle of equal altitude, (or if from the respective
lines of the triangle, and parallelogram , are taken third proportionals), the
series of lines arising will be reciprocal to aseries of first powers, which lines
are indeed in recipro cal prop ortion to t heir distances from the vertex (or, if
you like, to their intercepted diameters).

For let t here be a par allelep iped , in which the infin it e planes are equa l to t he squares
of the same number of lines of a parallelogram ADE, which, if applied to the lines
of trian gle ADE, will produce lines (t hird proportionals to the lines of the t rian­
gle and of the parallelogram ), togeth er constit ut ing figure ADß, which will be in
reciprocal proportion both to the corr esponding lines of the triangle (since, that
is, together with them they form equa l rect angles) and to their int ercepted diarne­
t ers, or distances from the vertex , which (since the cut -off t riangles are similar) are
proport ional to those lines of t he t riangle.

PROPOSITION 89

Corollary

The same holds if t he planes of a pyramid (equal to the squares of the lines of
a tri angle ADE) are applied to the same number of lines of the complement
of half a cubical parabola ADBC.

Clear from P roposition 87. For (as in the preceding Proposition) the series of first
powers from which t he triangle is const it uted, is one degree higher tha n the series of
equ als from which t he parallelep iped is constituted. Thus (in this P roposit ion ) t he
series of third powers in the complement of half the cubical parab ola is one degree
higher t han the series of second powers from which the pyramid is consti t uted.
In eit her case, therefore, t here arises aseries reciprocal to aseries of first powers.
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PROPOSITION 90

Corollary

The same holds if the planes of a parabolic pyramid (that is, aseries of first
powers) equal to the squares of the lines of a half parabola ADE, are applied
one by one to the lines of the complement of a half parabola ADBP (that is,
to aseries of second powers).

For here also the index of the dividing series exceeds by one the index of the series
to be divided.

PROPOSITION 91

Corollary

The plane figure constituted from aseries of lines proportional to reciprocals
of first powers, is infinite. Which is also similarly true of all reciprocal series.

For since the first term in aseries of first powers is 0, the first term in a reciprocal
series is 00 or infinity (just as, in division , if the divisor is 0, the quotient will be
infinite). And therefore the line A8, and the curve ßß do not meet unless after an
infinite distance (that is, never).

For the same reason, the same curve ßß and line AD (however far either is
continued) also do not meet (unless after an infinite distance) , for the distance Dß
will not vanish before there are infinitely many lines DE. And therefore:

PROPOSITION 92

Corollary

The curve ßß has two asymptotes, the lines Ab", AD. Which is also true of
other curves of this kind bounding a reciprocal series of lines.

That is, the lines [A8, AD] approach continually closer to the curve , in such a
way that at last their distance becomes less than any assignable quantity (as is
easily proved from what has been said) , nor, however, do they ever meet, as has
already been shown. And the same may equally be shown of any other curves of this
kind.

PROPOSITION 93

Corollary

The lines Dß, Dß, etc., proportional to reciprocals of first powers, continually
decrease from infinity (Ab" = 00) (in the same ratio as the respective lines DB,
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DB, continually increase as aseries of first powers from a point A = 0), until
there is reached a minimum (as in the series of first powers there is reached a
maximum) . Which is also true in other reciprocal series.

Clear on account of the reciprocal proportion.

PROPOSITION 94

Corollary

In the figure ADßß (from the reciprocals of first powers) the inscribed para­
llelograms ADß, ADß, etc. are equal to each other.

For they have reciprocal bases and altitudes by Proposition 88.

PROPOSITION 95

Corollary

And therefore the curve ßß itself is a hyperbola, of which the centre is A, the
asymptotes AD, Ab".

By Proposition 12 of Book 11 of Apollonius.

PROPOSITION 96

Corollary

If a musical chord AD is variously divided at points D , D, etc ., it pro duces
sounds proportional to the lines Dß, Dß, etc .

For (from musical principles) the same chord (evenly and equally tense) produces
sounds in reciprocal proportion to the lengths. Therefore if the chords are as AD,
AD, etc . the sounds will be as Dß, Dß, etc. by Proposition 88.

PROPOSITION 97

Corollary

If the planes of a parallelepiped (or rather aseries of equals) , equal to the
squares of the lines of a parallelogram ADE, are applied one by one to the
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lines of the complement of a half par ab ola A DE (t hat is, aseries of second
powers) , there will be produced aseries of lines propor tional to the reciprocals
of second powers. If it is supposed that a plane figure A Dß is constituted from
these , it will be infini te; and t he curve bounding those [lines] will have two
asymptotes, the lines AD, Ab'.

A~ J'J' d J'
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Proved in t he same way as var ious preceding prop osit ions on series reciproca l to
series of first powers.

PROPOSITION 98

Corollary

The same holds if t he planes of a pyr amid are thus applied to t he lines of the
complement of half a biquadrat ic parab ola; or the planes of par abolic pyrami d
to the lines of the complement of a cub ical par ab ola .

For in those cases also, the ind ex of t he series dividing exceeds by two t he index of
t he series to be d ivid ed .

PROPOSITION 99

Corollary

In aseries of this kind , of reciprocals of second powers, the lines D ß ; dß , etc.
are in reciprocal rati o to the squa res of the diamet ers (or dist an ces from the
vertex), (or as (dA)2, (DA)2, etc.) .44

44 WalIis used Ough t red 's nota t ion dAq for squares , and dAq · DAq :: D ß . dß for ra t io,
throughout P rop osit ions 99 and 100 .



74 The Arithmetic of Infinitesimals

Therefore, that is, the reciprocal proportionals are the !ines DB, dB, etc., which are
in direct ratio to the squares of the diameters AD, Ad, etc. Thus

Therefore

(dA)2 : (DA)2 = dB : DB = Dß : dß

(dA)2 Dß
(DA)2 dß '

PROPOSITION 100

Corollary

In the plane figure ADßß constituted from aseries of lines which are recip­
rocals of second powers, the inscribed parallelograms (ADß, Adß) are in
reciprocal proportion to the intercepted diameters (DA, dA).

For (by Euclid VI.23) they are as DA x Dß to dA x dß .
And moreover (by what has gone before)

(DA)2
dß = (dA)2 Dß.

And

dA x dß = (~~? Dß.

Therefore also

(DA?
DA x Dß : dA x dß = DA x Dß :~Dß

= dA x DA x Dß : (DA)2 x Dß

= dA : DA.

PROPOSITION 101

Corollary

But if the plane figure ADßß is constituted from aseries of lines that are
reciprocals of third powers (which, that is, are third proportionals of the lines
of the complement of half a cubical parabola ADE and of a parallelogram
ADE) those lines (Dß, dß, etc.) will be in reciprocal ratio to the cubes ofthe
diameters (DA, dA, etc.), (that is, as (dA)3, (DA)3, etc.) . And the inscribed
parallelograms (ADß, Adß, etc.) will be in reciprocal ratio to the squares of
the diameters (or as (dA)2, (DA)2, etc .).
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A'----: ... r!" ". "
------ -.... -

:B --31' ß:../ l/{I- f;,./ ....

For (by the const ruct ion) Dß : dß = dB : DB = (dA) 3 : (DA) 3.
(DA?

And therefore also dß = (dAP Dß,

Therefore the par allelogram s

AD ß: Ad ß = DA x D ß : dA x dß

(DA )3
= DA x D ß : dA x (dA) 3 Dß,

(DA )3
= DA x D ß : (dAF D ß

= (dA) 2 x DA x D ß : (DA) 3 x D ß

= (dA) 2 : (DA) 2.

Which was to be proved .

COMMENT

And it may be considered in the same way for ot her plane figures of this
kind const ituted from any reciprocal series of lines; as also for the inscrib ed
parallelograms themselves (or rectangles, or oblique angled figures, as the
condit ion of the figure requires).

Which, moreover, leads to t he area of these plane figures const ituted from
reciprocal series, which may be sought in almost the same way as above for
direct series. Moreover, where direct series have indices 1, 2, 3, etc . as they
aseend by so many degrees above aseries of equals, so indeed will these (recip­
rocal to those) have their indices cont rary and negative, -1 , -2, - 3, etc .,
descending below aseries of equals by as many degrees. Moreover, just as t he
former cont inually increase from 0, ciphra , or not hing, the latter , on the con­
trary, continually decrease from 00, or infinity; and in the former a greatest
term , in the latter a least term , concludes the series (which also however may
be supposed continued as far as one likes, in the former by increasing, in the
latter by decreasing). And therefore, as in the former t here is a circumscribed
figure (thus a parallelogram or pr ism) , or aseries of the same numb er of terms
equal to the greates t, in the latter t here is an inscrib ed figure, or a series of
the same number of terms equal to the least , to be had as a common measure,
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to which the comparison is to be mad e; in eit her case making use of that term
respectively that concludes t he series.

And in the meantime it should not seem surprising to anyone (although
possibly unexpected) if I should enquire into the ratio of unbounded fig­
ures to another given bounded figure. For any such figures ADß of this
kind (howsoever exte nded from line Dß to whatever boundary, in the man­
ner described in these comments) are supposed cont inued infinite ly from the
line /jß (by Proposition 91) , bu t will not , however , on account of that, have
eit her no ratio or always an infinite ratio to a given bounded figure, thus
to a par allelegram of equal height described on the same base D ß , Indeed ,
it seems possible to obtain confirmation of that more easily, since Torri­
celli has already shown the same thing in one particular solid (which may
be called an acut e infini te hyperbola).45 But they will not always have a
finit e ratio, bu t sometimes either infinite, or also (if this can be said with­
out solecism) greater than infinite. That is, if the lines /jß ar e shortened by
the same ratio as the lines dß are lengthened, that ratio will be infinite;
where, t hat is, the lengthening of one is equa l to the shortening of the other
(and therefore the ratio of a cont inuous infinite figure composed from both
is equal to that of some figure smoot hly cont inued to infinity ). But if the
lines /jß are shorte ned by a smaller ratio than the lines D ß are lengthened,
the rat io will be greater than infini ty ; for then the lengthening of the lat­
ter runs ahead of (or more than equals) the shortening of the former. If,
moreover , the lines /jß are decreased by a greater ratio than the lines D ß
are increased, the decrease of the former runs ahead of the increase in the
latter; and therefore the rat io will be finite , or rather , less than infinite.
(And indeed according to this criterion, it may be considered not only for
these figures we have already t reated, but also for any ot her infinite figures ,
whether plane or solid , compa red to some bounded figures: which specula­
t ion, I believe, will not seem disagreeable.) Moreover , what will happen in
each ratio, we will indicate in various following propositions (following the
rul e in Proposition 64) .

PROPOSITION 102

Th eorem

If a figure ADß ß has infinite vertex A/j, and cont inually decreases in width
towards the base as far as Dß, according to any reciprocal series of whatever
direct series (thus, of those mentioned in Proposition 59) which has index
less than 1, it will have to a parallelogram on the same base and of equa l
height a finit e ratio, that is, that of 1 to the index of that reciprocal series
increased by 1.

45 Torricelli 1644 , 115-116.
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ß

For example, let t here be direct series of second roots , t hird roots , fourth roots ,
etc. of which the indices are ~ , ~, i , etc. (less than 1); t he series reciprocal

to t hese will have indices - ~ , - ~ , - i , etc. For if t here is supposed aseries of
equals, with index 0, d ivided by t he former , t he series ar ising from t he d ivisio n
will have indices 0 - ~ ,O - ~ , O - i , etc., t hat is , - ~ , - ~ , - i, etc, (by Proposi­
t ion 81), if to which (according to t he rule of Prop osition 64) t here is added
1, they becom e - ~ + 1, -~ + 1, - i + 1, etc., t hat is , ~ ,~ , ~ , etc. and there­
fore t he ratio of the whole figure to t he inscribed parallelogram (on the same
base and of equal height) is as 1 to ~ , ~ , ~ , etc . or as 2 to 1, 3 to 2, 4 to 3,
etc.

And in t he same way, if t here is taken aseries reciprocal t o aseries of cube
roo ts of seco nd powers, or fourth root s of seco nd or third powers , or fifth roo t s of
seco nd , t hird or fourth powers (of which t he indices are ~ ,~ , ~, ~, ~ , t) or to any
other suc h series, whose index is less t han 1. Becau se the negative indices of t he
recip rocal series , cont rary to t hese (t hat is, - ~ , - ~ , etc.) , becom e positive by the
addition of 1; and therefore t he ratio of 1 to those ind ices thus increased will be a
finite ratio; or rather , a positive number to a positive.

PROPOSITION 103

Theorem

But if any such figure A D ß ß of this kind thus cont inually decreases as aseries
which is reciprocal to a direct series having index equal to 1 (that is a series
of first powers), it will have to the inscribed parallelogram an infinite ratio,
that is, that which is 1 to O.
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For since aseries of first powers has index 1, the series reciprocal to it will have
index -1 , and t herefore (by Proposition 64) the ratio arising will be 1 to -1 + 1,
that is, 1 to O.

PROPOSITION 104

Theorem

Finally if any figure ADß ß of this kind thus continually decreases as series
which is reciprocal to a direct series having ind ex great er than 1, it will have
to the inscribed parallelogram a ratio greater than infinity: of a kind, that is,
that a positive number may be supposed to have to a negative number , or less
than O. That is, that of 1 to the ind ex increased by 1.

Thus since the indices of series of second powers , third powers, fourth powers , etc. are
2, 3, 4, et c. (greater than 1) the indices of their reciprocal series will be -2, - 3, -4 ,
etc ., any of which increased by 1 (according to Proposition 64), however , will rem ain
negative, thus -2 + 1 = -1 , -3 + 1 = -2, -4 + 1 = -3, etc. , and therefore t he
ratio of 1 to those indi ces thus increased , thus 1 to -1, 1 to -2, 1 to - 3, etc. will
be greater than infin ity, 0 1' 1 to 0, because, that is, the second terms of t he ratios
are less than O.

And the same holds if there are taken reciprocals of series of square roots of third
powers , fourth powers , fift h powers , etc . (whose indices are ~ , ~ , ~, etc .) 01' cube roots
of fourth powers, fifth powers, sixth powers, etc. (whose indices are ~, ~, ~ , etc .) 01'

finally of any series whose index is greater than 1. As is obvious.
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PROPOSITION 105

Theorem

If any figure A Dßß of this kind having infinite vertex A<5 and finit e base D ß,
has to the inscribed par allelogram ADß<5 a rati o greater than infinity, the
same figure ADßß having infinite vertex AD and finite base <5ß will have to
the inscribed par allelogram A<5ßD a ratio less than infinity (that is, finite).
And t he ot her way round, if having considered the former sit uation, there is
a rat io less than infinity, in the latter sit uation there will be a rati o greater
tha n infinity. If, finally, in one sit uation there is a simple infinite ratio (that is,
neither greate r nor less [than infinity]) then in the ot her situation also there
will be a simple infini te ratio.

For example, in aseries of recip rocals of second powers, since (by Proposition 99)
the lines D ß , D ß , ar e as the reciprocals of the squares of the diam et ers AD , AD ,
then conversely the lines AD, AD, that is, Öß, Öß , will be as the reciprocals of the
squa re roots of the lines D ß, D ß , t hat is, the diamet ers AÖ, AÖj and therefore Öß, Öß ,
etc . are themselves a series of reciprocals of second roots. And the other way round.
And (since the same also holds for ot her series of this kind) what is proposed is clear
by P rop ositions 102 and 104.

Hut if in aseries of reciprocals of first powers, since (by Proposit ion 88) the
lines D ß , D ß , are in reciprocal proporti on to the diameters A D, A D, so also the
lines Öß,Öß , will be in reciprocal propor t ion to their diam eters AÖ,AÖ; and Öß, Öß,
themselves are likewise aseries of recip rocals of first powers. T herefore what was
prop osed stands , by Proposit ion 103.

PROPOSITION 106

Theorem

If any reciprocal series is mul tiplied or divided by another series (whether
reciprocal or direct ), or also mul tiplies or divides another, the same laws must
be observed as for dir ect series, as in Propositions 73 and 81.

For example, if aseries of recip rocals of second powers (suppose + , ~ , ~ , etc. ) with
index -2, is multiplied term by term by aseries of reciprocals of third powers
(suppose f, ~, ft , etc.) with ind ex - 3, it will produce aseries of reciprocals of fifth

powers (f, i2, 2~3' etc. ) with ind ex - 5 = -2 - 3, as is obvious.
In the same way, if aseries of reciprocals of third powers (+, ~, ft , etc. ) with

index -3 is multiplied te rm by te rm by aseries of second powers (1, 4, 9, etc .) with
index 2, it will produce aseries + , ~ , ~ , etc ., that is, + , ~ , ~ , etc ., reciprocals of first
powers, with ind ex -1 = - 3 + 2.

In the same way, if aseries of reciprocals of second roots ( )1 ' )2' )3' etc .) with

index -~ , is multiplied te rm by term by aseries of squa res (1, 4, 9, etc.) wit h index
2, it will produce the series ()1' J2 ' J3 ' etc . or +J l, ~ J 2, ~ J3, etc. or 1J l, 2J2,
3J3, etc. or J I , J8, J27, etc.), squa re roots of cubes, or third powers, with index
~ = - ~ + 2.
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Further , if a seri es of reciprocals of second powers , with index - 2, divides a series
of recip rocals of first powers , with ind ex -1 , it will produce aseries of first powers ,
with ind ex 1 = -1 + 2, t hat is, -1 minus -2.

In t he same way, if aseries of recip rocals of first powers , wit h index -1 , divides
aseries of reciprocals of second powers, with index - 2, it will produce aseries of
reciprocals of first powers , wit h index -1 = - 2 + 1, t hat is -2 minus -1.

In the same way, if aseries of reciprocals of first powers, with index - 1, divides
aseries of seco nd powers , wit h ind ex 2, it will produce aseries of t hird powers, with
index 3 = 2 + 1, t hat is , 2 minus -1.

In t he same way, if aseries of reciprocals of first powers, wit h index - 1, fis divided
by]46 aseries of seco nd powers , with index 2, it will produce aseries of reciprocals
of t hird powers , wit h ind ex - 3 = - 1 - 2, t hat is, - 1 minus 2.

And t he same hold s in any other series of this kind. An d t herefore what was
pr op osed stands.

PROPOSITION 107

Corollary

And therefore if from any figure ADßtS of this kind (extended infinitely frorn
one side) corresponding to any series of reciprocals, there is generated (in the
manner I have shown in Proposition 9 of On conic sections and elsewhere
abovej''" an inverse pyramidoid or conoid (or ra ther , calatoid), it will have to
the inscrib ed cylinder or prism (on the same base and of equal height ) that
ratio, whether finite or infinite or greater than infinite, that the precedin g
theorems taught .

T hus, if the plane figure is aseries of lines t hat ar e recip rocals of t hird roots , with
index - ~ , and t here fore its rat io to t he insc ribed par allelogram (by P ropositions 64
and 102) is as 1 to ~(= - ~ + 1), that is, as 3 to 2, t hen t he solid consisting of t he
same number of planes , which are as t he squares of t he lines , will be aseries of
recip rocals of squares of t hird roots, with ind ex (by P roposit ion 106) - ~ = - ~ - ~ ,

or - ~ plus - ~ , and the ratio of that solid to the inscribed cylinde r or prism (on
the same base and of equal height) as 1 to ~ = - ~ + 1, or as 3 to 1, and in eit her
case a finite ratio. By Propositions 64 and 102.

46 Wallis has rnistakenly written 'divides' .
47 Wallis is now discussing solids of revolution.
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If the plan e figur e is series of recip rocals of seco nd roots, with ind ex -~ , and
therefore its ratio to t he inscribed par allelogram as 1 to ~ = - ~ + 1, or as 2 to 1 (by
Prop osition 102), then t he solid consist ing of the same number of plan es, wh ich are
as the squares of t he lines , will be aseries of recip rocals of squares of seco nd roots , or
(which amo unts to t he same t hing) aseries of reci procals of first powers with index
- ~ , or - 1 = - ~ - ~ . An d t herefore t he ratio of this solid to t he cy linder or pri sm
(on t he same base and of equal height ) as 1 to -1 + 1 = 0 (by P rop osition 103).
T hat is, t he former is finite ra tio, t he la tter a simple infinite rati o.

ß

If the plane figur e is aseries of reciprocals of squar es of t hird root s , wit h index
- ~, and t herefore its ratio to t he inscr ibed par allelogram as 1 to ~ = -~ + 1, or as
3 to 1 (by Proposition 102), then t he solid cons ist ing of the same nu mb er of plan es ,
wh ich are as t he squares of t hose lines , will be aseries of reciprocals of biquadrates
of t hird roots , with ind ex - ~ = - ~ - ~ , and t here fore its rat io to t he inscr ibed
cylinder or pri sm (on t he same base and of equa l height ) as 1 to - ~ + 1 = - ~ , or
as 3 to - 1 (by Proposit ion 104). T hat is , the former rati o is finit e, the latter greater
than infinite.

If t he plan e figure is aseries of recip rocals of first powers, with index -1 , and
therefore it s rat io to t he inscr ibed par allelogram as 1 to -1 + 1 = 0 (by Proposi­
t ion 103), t hen t he solid consist ing of planes, whi ch are as t he squares of those lines ,
will be aseries of reciprocals of squares of first powers (t hat is, of second powers)
with ind ex -2, and therefore its ratio to the cylinder or prism on the same base
and of equal height as 1 to -2 + 1, or as 1 to -1 (by P rop osition 104). That is, t he
form er is a simple infinite ratio, the latter greate r t han infinite.

If the plane figur e is aseries of reciprocals of second powers with ind ex -2, and
t herefore its ratio to t he inscribed par allelogram as 1 to -2 + 1 = - 1, then the solid
consist ing of the same number of plan es, which are as the squares of those lines , will
be aseries of reciprocals of squares of seco nd powers , that is , of fourth powers , with
index -4 = -2 - 2, and it s ratio to the inscribed cylinder or prism as 1 to -4 + 1 =
- 3 (by Proposition 104) . That is , in both cases the ratio is greate r than infinite.

COMMENT

And thus th at result (clever indeed and not a lit tle surprising) that Torricelli
demonstrated in one solid figure (that is, that an acute hyperb olic solid,
infinitely extended, const itutes an equal cylinder) we have demonstrated for
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innumerable other figures, both plane and solid (by continuation of the six
preceding Propositions). Thus, to show for injinite jigures of innumerable
different kinds, both plane and solid, equal bounded jigures (or at least, what
amounts to the same thing, constituted in a known ratio).

It might have been more skilled perhaps (as 1 have given so much of the
needed report) to have shown by a quicker method than has been arrived at
here , some few partial propositions (just as much to be wondered and amazed
at) without demonstrations. Which, 1 wholly suspect, the Ancients at one
time often did ; who more often seem to have intended that they themselves
might be admired rather than that others should understand; at least, that
they might show assent to those pronouncements of theirs by force, rather
than understand a genuine investigation of the problem. And 1 believe this to
have been the case, because their Analysis (which indeed it is sufficiently clear
that they had, from many remains, for not a few of their demonstrations) was
almost completely hidden to those who came afterwards (for plainly that part
that survives in Diophantus is quite small, if compared with those outstand­
ing discoveries they arrived at). So that mathematicians of the present age
(Viete, Oughtred, Harriot, Ghetaldi, Cavalieri , Torricelli, Descartes and other
great men) will need either to think anew, or at least revive the old (whether
wholly expounded, or completely unknown) in a new way; who indeed by their
success have shown that our analysis of the present day, is certainly equal,
or rather without doubt supereedes, that of the Ancients, hidden by so much
superstition.

Indeed, I prefer by freely philosophizing, to open those springs, that with
the same work the reader may begin to see both the demonstrations of the
propositions and the method by which I have arrived at them; whence he may
also by his own efforts investigate innumerable others of the same kind , which
I (lest I become tedious) readily pass over, content by this to have indicated
them, whence others may produce at will others similar to mine.

Indeed, it is possible both to add much to the foregoing and to inter­
polate much throughout, which may be easily deduced from the principles
already taught . Indeed, since those things I have already taught seem to me
abundantly sufficient, that both they themselves may be clearly enough under­
stood, and also that they seem to comprise a satisfactorily complete treatment
of series (whether simple, compound, or reciprocal to either) , I appear to be
hastening towards the explanation of conjoint series (whether in the form of
binomes or apotomes) .

PROPOSITION 108

Theorem

If aseries of equals is reduced term by term by aseries of first powers (thus,
if the first term of the latter is taken from the first of the former, the second
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from the second , etc.), the [series of] differences will be half of the whole [series
of equals] . But if it is augmented in a similar way, the series of sums will be
one and a half times the given series of equals.

It is to be understood that the last term s of the equals and of the first powers are
the same, or equal (wh ich is also to be understood in whatever follows) . If they are
unequal , however , it will not be difficult to find t he ratios that arise; which it is
sufficient to have pointed out, since anyone may show it by their own effort .

Suppose, for example, that any of t he equal t erms, and the greatest of t he first
powers, is R. An infinitely sm all part of it may be ca lled a = R /oo , and the number
of all the terms (or the alt it ude of t he figure) A.48

Differences: R - Da
R-1a
R-2a
R- 3a

etc.

Sums: R+Da
R+1a
R+ 1a
R+2a

etc.

If the terms are cont inued to infin ity, as far as :

R-R

then the sums of the differences and sums will be:

AR- ~AR

R+R

AR+ ~AR

For the sum of all the equa ls will be AR (as is obvious) . The sum of the first
powers will be half of that, or ~AR , (by Proposition 2). AR - ~ AR = tAR, and
AR + .!AR = ~ AR. That is, to the ser ies of equa ls (AR), t he former is "2 and the
latter ~ , just as asser te d. That is, t he form er will be to series of equa ls as ~ t o 1, or
1 to 2; the latter as ~ to 1, or 1 to ~, or 3 to 2.

PROPOSITION 109

Corollary

Therefore, if from a parallelogram there is taken a triangle (on the same or
equal base and of equal height) the remainder (which indeed is itself also

48 Wallis wants to approach R by an infinite number of sm all steps , wh ich would suggest
that A = 00 , so there is a serious cont rad ict ion here. The problem arises from Walli s 's
concept of an area as a su m of !ines: for hirn the area of a reetangle with base R is
equiva lent to R t aken infin it ely man y t imes . But if the alti tude of the reet angle is A , it s
area is AR, lead ing Walli s to state t hat A is equivalent to ' infinitely many t imes' , or ' t he
number of all t he terms'.
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a t riangle inver ted ) will be half the parallelogram. But if t he t riangle is
added, the sum (t hat is, t he t rapez ium) will be one and a half t imes the
par allelogram .

Clear from what has gone before; for the parallelogram is a series of equals and the
triangle aseries of first powers.

PROPOSITION 110

Corollary

In the same way, if a cylinder is hollowed out parabo lica lly, it becom es
half t he complete cylinder (which same is also true of a simil arly hollowed
prism).

That is, if from the cylinder (that is, aseries of equals) there is taken away a
parabolic conoid (on the same base and of equal height ) which indeed is a series
of first powers (by Proposit ion 4 or 60), what is left will be half the total, by
Proposition 108.

And the same happens if from a prism there is taken a parabolic pyramid.

PROPOSITION 111

Th eorem

If aseries of equals is reduced by series of second powers , t hird powers, fourth
powers, etc. [the sums of] the differences will be two-thirds , t hree-quarters,
four -fift hs, etc. of the whole [series of equals]. But if it is augmented in a
similar way, the sums will be four-thirds , five-fourths, six-fifths, etc. [of the
series of equals].
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For if the terms:

R 2 TOa 2 R 3 TOa3 R4 TOa 4

R2 T l a2 R 3 T la3 R4 T l a4

R2 T 4a2 R 3 T 8a3 R4 T 16a4

R 2 T 9a2 R3 T 27a3 R4 T 81a4

are continued to:

R 2 TR2 R 3
TR

3 R 4
TR

4

then th e sums will be (by Prop osition 44) :

that is, th e sums of the differences will be:

l- i= i l-k= ~

and the sums of the sums will be:

1+ ~= ~ l+ k= ~

PROPOSITION 112

Corollary

Therefore if from a parallelogram t here is t aken the complement of half of a
parabola , cubical parabola , biquadrati c parabola , etc . the remainders (that
is, the half parab ola , cubical par abola , biquadratic parabola , etc .) will be ~,

~ , ~ , etc. of the whole par allelogram. Bu t if the complements are added to
the same par allelogram, the sums will be t, ~ , ~, etc . of t he par allelogram .

Clear from what has gone before.

PROPOSITION 113

Corollary

In the same way, a cylinder excavated by a cone (or a prism by a pyramid)
comprises two thirds of the whole. And it may be considered similarly for
other excavated figures (with appropriate changes).

Clear from Propos ition 111, in fact, the subtraction of aseries of second powers
from aseries of equals.
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PROPOSITION 114

Theorem

If aseries of equals is reduced by aseries of second roots, third roots, fourt h
roots, fifth roots, etc. [the sums of] the differences will be one-third, one­
quarter, one-fifth, etc . of the whole. But if thus augmented, [the sums of]
the sums will be five-thirds, seven-fourths, nine-fifths , etc. or twice, minus
one-third, one-quarter, one-fifth, etc .

For if the terms:

v'R~voa

v'R~JIä

v'R~v'2ä

v'R~J3ä

are continued to :

V'R~wa

V'R~ijI(l

V'R~ij2a

V'R~wa

~~~

~~iji"ä

~~~

~~~

then the sums will be (by Proposition 54) :

that is, the sums of the differences will be :

1- t = i
and the sums of the sums will be :

l+~=i

PROPOSITION 115

Corollary

Therefore, if from a parallelogram there is taken a parabola, cubical parabola,
biquadratic parabola, etc . the remainders will be one-third, one-quarter, one­
fifth, etc . of the whole. But if they are added, the sums will be twice the
parallelogram, less one-third, one-quarter, one-fifth , etc.
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Follows from what has gone before.

PROPOSITION 116

Theorem

It may be considered in the same way for any other series for which the index
is known by Propositions 59 or 64, subtracted from or added to aseries of
equals .

Thus if the terms:

JR3 =f JOa3

JR3 =f VIa3

JR3 =f J8ä3
JR3 =f J27a3

are continued to :

the sums will be :

iflfi=f~

iflfi =f ijlQ}

iflfi=f~

iflfi=f~

ifR4 =f ijQ(i4

ifR4 =f ifia4

ifR4 =f ij16a4

ifR4 =f ij81a4

that is, the differences will be :

and the sums:

1+~=t 1+ ~=~ 1+ ~ = ~

And similarly (with appropriate changes) in any others whatever.

PROPOSITION 117

Theorem

If there is proposed aseries of equals reduced by aseries of first powers, the
[sums of] squares, cubes , biquadrates, etc. of the differences will have known
ratios to aseries of the same number of terms equal to the greatest of them.
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Instead of the notation I a , 2a, 3a, etc . (used in the preceding propositions) one may
now subs t it ute a, b, c, etc . by which the process of the op eration may be better
perceived.

Seri es Squares Cubes

R -O R 2
- OR+OO R3 - OR2 + OOR - 000

R -a R 2 -2aR+a2 R3 - 3aR2 + 3a2 R - a3

R -b R 2 _ 2bR+ b2 R3 _ 3bR2 + 3b2 R _ b3

R- c R2 _ 2cR+ c2 R3 - 3cR 2 + 3c2 R _ c3

etc. to

R-R R 2
- 2RR+R2 R3 - 3RR2 + 3R 2 R - R3

AR- ~AR AR2
- ~AR4 + ~AR4 AR3 - ~AR3 + ~ AR3 - ~AR6

that is:

I- ~=~ I-~+~=~ I - ~+ ~ -~ =~

or:

1 1 x 2 I x2 x 3
2 2 x3 2 x3 x4

And so on , by continu ally mul tiplying numbers in arithmet ic proportion (as the
degree of the power requires), from 1 and 2, continually increasing by one.

And indeed, these are nothing but series of the same number of first powers ,
seco nd powers , third powers , fourth powers , et c. reversed. f"

PROPOSITION 118

Theorem

If there is proposed aseries of equals reduced by aseries of second powers, t he
[sums of] squares, cubes , biquadrates, etc . of the differences will have known
ratios to a series of the same number of terms equal to the greatest of them.
That is:

49 Inversae, here translated as ' reversed ' , means 'decreas ing instead of incr easing' .
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Series Squares Cubes

R 2 - 00 R 4 - 00R2 + 00 R 6 - 00R4 + 00R2 - 00
R 2 _ a2 R 4 _ 2a2R 2 + a4 R 6 _ 3a 2R 4 + 3a4R 2 _ a6

R 2 _ b2 R 4 _ 2b2R 2 + b4 R 6 _ 3b2R 4 + 3b4R 2 _ b6

R 2 _ c2 R 4 _ 2c2R 2 + c4 R 6 _ 3c2R 4 + 3c4R 2 _ c6

etc . to

R 2 _ R 2 R 4 _ 2R2R 2 + R 4 R 6 _ 3R2R 4 + 3R4R 2 _ R 6

Sum :

AR2 - ~AR2 AR4 - ~AR4 + k A R 4 AR6_~AR6 +~AR6 _tAR6

t hat is:

1 - ~ = ~ l-~+k=~ l-~ +~ -t = 1~5

or:

2 2x4 2x4x6
3 3x5 3x5x7

And so on, by continually multiplying numbers in arithmetic pro portion (as far as
the degree of the power requires), from 2 and 3, continually increasing by twos.

PROPOSITION 119

Corollary

And therefore a conoid (or pyramidoid) generated by a half (or whole)
parabola around one of its ordinates, will bc to a cylinder (or prism) of the
same base and height as 8 to 15.

.A. ...........:,,\
1\1

\
\

n o

That is, as t he squares of the differences of aseries of equals reduced by second
powers (to the same number of terms equa l to the greatest) . For revolving the half
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parabola ADO around its ordinate DO (or even other lines , as we said in Propo­
sition 9 of On conic sections) as an axis, there is formed a conoid (or pyrami­
doid) with vertex O. The constituent planes of that conoid (or pyramidoid) will
be as the squares of aseries of equals reduced by second powers . (For the lines in
the half parabola ADO parallel to the line AD are equals reduced by the second
powers found in the complement ATO, as is clear from what was said in Propo­
sition 23.) And therefore to aseries of the same number of terms equal to the
greatest (that is, the cylinder or prism) they are as 8 to 15, by what has gone
before.

COMMENT

And it may be considered in the same way for conoids or pyramidoids gener­
ated around an ordinate of any higher parabola, with the help of the following
propositions. Thus, for a cubical parabola the ratio will as 9 to 14, for a
biquadratic parabola as 32 to 45, for a supersolid parabola as 25 to 33, etc .
as in the table in Proposition 126.

PROPOSITION 120

Corollary

Thence, if an infinite series of equals reduced by aseries of first powers is
multiplied term by term by the same series of equals augmented by the same
series of first powers , the sum of the rectangles.P" (or squares or any similar
figures equal or even proportional to them) will have a known ratio to the
sum of the same number of terms equal to the greatest .

And the same happens if the squares of a reduced series are multiplied by
the squares of an augmented series, or cubes of the former by cubes of the
latter, and so on.

That is, they will produce ratios as in Proposition 118. For :

times

makes

R-a

R+a

(R - a)2 = R 2 - 2aR + a2

(R + a)2 = R 2 + 2aR + a2

50 Since Wallis is speaking of multiplication of series, the Latin rectangulorum would here
more naturally be translated as 'of the products'. I have kept the more literal translation
'of the rectangles' , because Wallis goes on to compare these ' rect angles' with squares or
other geometrical figures .
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(R - a)3 = R3 - 3aR2 + 3a2 R - a3

(R + a)3 = R3 + 3aR2 + 3a2 R + a3

and so for each term of any power , as may be shown by multiplication.

PROPOSITION 121

Corollary

Therefore the circle to the square of the diameter (or also any ellipse to its
circumscribed parallelogram) will have t he same ratio as aseries of square
roots of differences, of an infinite series of equals reduced by aseries of second
powers , to t hat same series of equals.

For if the radius of the circle is taken to be R (of whieh an infin it ely small part
is R / oo = a) and on it stand an infinite number of perpendicul ar s, or right sines,
filling the quadrant of the circle, those perpendieulars are t he mean proportionals
between the segm ents of the diamet er (as is weil known) , that is:

between R+O R+ 1a R+2a R + 3a etc.
and R-O R-1a R-2a R - 3a etc.

whos e
product is R 2

- 00 R 2 _ 1a2 R 2 _ 4a2 R 2
- 9a2 etc.

the mean pro-
V(R2

- 00) V(R2
- 1a2

) V(R2
- 4a2

) V(R2
- 9a2

) etc .portionals are :

T herefore the ratio of t he sum of t hose square roots , to the same number of te rms
equal to the greatest (that is, the radius), is that ofthe quadrant of t he circle (consist­
ing of t he form er) to the square of the radius (consisting of the latter ). And therefore
also of the who le circle to the square of t he diameter. Which was to be show n.

And the same may be eas ily shown of any ellipse (with appropriate changes)
since its ordinates are also mean proportionals (between segments of the transverse
diamet er ). Proportionals , and indeed sometimes equ als , as is known from the teach­
ing on conies.
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COMMENT

Moreover , the ratio thi s proposition points to (t hat is the circle to the square
of its diameter) is that of 1 to the number intermediate between 1 and ~ in
the second sequence across in t he table of Proposition 127. And the method
of finding t hat number (or any other interp olated between the numbers of any
such series) is to be invest igated from here on.

PROPOSITION 122

Corollary

And hence, if we take an infinite number of lines of any half parabola, set
perp endi cular one by one to the lines of its cont inuation, placed in inverse
position to the same height , the solid that arises, consist ing of an infinite
number of those rect angles (or of squares equal to those rectangles) will be to
the parallelepip ed on the same base and of equal height , as the circle to the
square of t he diameter . (And indeed, th e mean proportionals will be as the
square roots of the ordinates of the circle or ellipse.)

.-:;;-. ..,.''10

oL..------'

Suppose the line MO (para llel to the base) cuts any half par abola A PO into two
segments of equal height , and let t he length of the line M O be ..,IR . The remaining
ordinates in the upper segment , asce nding, will be VeR- a) , veR - 2a) , veR - 3a) ,
etc . and in the lower segment , descending, will be VeR+ a ), veR+ 2a ), veR+ 3a),
etc . (since t he squares of the ordina tes of a par ab ola are in ar ithmetic proportion) .
Therefore if we suppose that the half par abola thus divided is replicated , so th at
point P coincides with point A, and the whole segment MPO is transferr ed to
the position MAw (so that the ordina te s of the lower segment correspond to the
ordinates of the upper segment the other way round) t he rect angles ODo, ODo, etc .
will be V(R2

- 0), V(R2
- a2

) , V(R2
- 4a2

) , V(R2
- 9a 2

) , et c. as will be clear by
multiplication :

veR- 0)
v(R+0)

veR- l a)
v(R+ l a)

veR- 2a )
v(R+ 2a )

veR- 3a ) etc .
Ve R+ 3a) etc.
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Therefore t he sum of all t hese , to t he greatest (v'( R 2
- 0) = v'R2 = R ) taken

together (that is, the prop osed solid to a par allelepiped of t he same base and height )
is as t he circle to t he square of t he diameter, by what has gone before. And t here fore
also t he mean proportion als will be as t he square roots of the ordinates in t he circle
or ellipse , as is clear.

PROPOSITION 123

Corollary

In the same way, a sphere (or spheroid or ellipt ic pyramid) to a circumscribed
cylinder (or prism) is as an infinite series of equals reduced by a series of
second powers , to a series of the same number of terms equal to the greatest .
That is as 2 to 3.

Follows from Prop osition 121. For if the mean pr opor t ionals of the segments of the
diameter , filling t he quadrant of the circle (or ellipse) , are now ass umed to become
t he same number of rad ii of other circles par allel to each othe r, filling a hemisphere
(or hemi spheroid), (or t he simi larly placed lines of any similar planes constit uting
half an elliptic pyr amidoid ), t hose circles (or planes) will be as t he squares of t he ir
radii (or of t he simil arly placed lines). That is , as R2

- 0, R 2
- a2

, R 2
- 4a2

, R 2
­

9a2
, etc, (for t hose lines are v'( R 2

- 0), v'(R 2
- a2

) , v'( R2
- 4a2

) , v'( R 2
- 9a2

) , etc.
by Propositi on 121). Therefore t he sum of all t hese to the sum of all equal to the
greatest, is as 2 to 3 by P roposition 118.

PROPOSITION 124

Corollary

In the same way, if the lines of a triangle ADB are set perpendicular one by
one to the lines of a trapezium ADß (of equal alti tude and, with the triangle
itself, complet ing the parallelogram ), the rect angles produced will be equal
to the same number of similar planes of an elliptic conoid (or pyramidoid).
And t he mean proportionals DE, DE, etc . will be ordinates in the (circle or)
ellipse.
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A

s

The demonstration appears easily from what has been said at Propositions 121
and 123. For the segments of the line Bß in this figure amount to t he same thing as
the segments of the diameter in that .

If, moreover, the lines AD, DB, are equa l, and the lines AD, DE are perp end icular
to each other , those lines DE, DE, will be ord inat es of a circle. But if [AD is] less
[than DB] then certai nly an ellipse. The portion AE, moreover , whether of a circle
or ellipse, is greater or less tha n the quadrant according to whether DB is greate r
than or less than D ß .

PROPOSITION 125

Theorem

If ther e is proposed aseries of equals reduced by aseries of third powers, the
[sums of] squares, cubes, biquadrates , etc. of the differences will have known
ra tios to a series of the same number of terms equal t o the greatest of those.

Series Squares Cubes

R 3 - 000 R 6 - 00R3 + 00 R 9
- 00R6 + 00R3 - 00

R 3 _ a3 R 6 _ 2a3R 3 + a6 R 9 _ 3a3R 6 + 3a6R 3 _ a9

R 3 _b3 R 6 _ 2b3R 3 + b6 R 9 _ 3b3R 6 + 3b6R 3 _ b9

R 3 _ c3 R 6 _ 2c3R 3 + c6 R 9 _ 3c3R 6 + 3c6R 3 _ c9

etc . to

R 3_R3 R 6 _ 2R3R 3 + R 6 R 9 _ 3R 3R 6 + 3R 6R 3 _ R 9

Sum :

AR3 - ~AR3 AR6 - ~AR6 + lAR6 AR9 - l A R 6 + l A R 6 - ...LAR9
4 7 4 7 10

that is:

1- ~= ~ 1 - ~ + ~ =* 1- ~+ ~-fö= ~~~

or:

3 3 x6 3x 6x 9
4 4 x7 4 x 7 x 10
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And so on, by continually multiplying numbers in arithmetic proportion (as far as
the degree of the power requires) , from 3 and 4, continually increasing by threes.

PROPOSITION 126

Theorem

In the same way, if there is proposed aseries of equals reduced by aseries of
fourth powers, fifth powers, sixth powers, etc . the [sums of] squares, cubes,
biquadrates, etc. of the differences will have known ratios to aseries of the
same number of terms equal to the greatest of them.

Thus:

1-i=t
l-~+i=*

1 3 3 1 _ 384
- 5 + 9 - 13 - 585

1 4 8 4 1 6144
-5+9-13+17=9945

or
4

5'

In the same way:

4x8
5 x 9 '

4 x 8 x 12
5 x 9 x 13'

4 x 8 x 12 x 16
5 x 9 x 13 x 17

1-~=~

l-~+ft=~

1-i+!I--h= 1~5506

1 4 6 4 1 15000
- 6 + TI - 16 + TI = 22176

or
5
6'

5 x 10
6 x 11 '

5 x 10 x 15
6 x 11 x 16 '

5 x 10 x 15 x 25
6 x 11 x 16 x 21

And so in any others you please; that is, by continual multiplication of numbers in
arithmetic proportion (as far as the degree of the power requires) , from 4 and 5, or
5 and 6, or 6 and 7, etc. continually increasing by fours, fives, sixes, etc . (according
to the index of the subtracted series). As will be clear by induction. In this way:
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Ra t io to aseries of terms eq ua l to the greatest
1

lll! xU= I~~' l~ xfl= ~m? '

And so on

Supersolids
Jit xt, = H8 .

c
~I x 10 - 311 10 • 0
~.{~ 11 - 103!1.\ 0

Mm x tt.=~ . ~
GUI :ro 122&0 c
!I'J.ß x 21 = 21'ol8'{ ~ ' ~

4~x la = ~·

Biquadrates
l~x!.=rit ·

di!. x~ = m·
MitxH=~ '

~!. x t~ = fMI. '

Cubes
~xi=i~'

~x~ = It~, ·

~ x fb = ~ .

t,x lY = t.l! .

ix ~ = ~ .

!,x .1 = ir. ·

Squares
~x 3 = ~ .

3 x~ = d·

Differences
Firs t powe rs J'
Secend powers i:
Third powers ~ .

Fourth powers !..
Fifth powers ~ .

And so on .
T hat is, if the index of the red uced series is denoted by a, its ratio to aseries of

terms equal to t he greatest, t hus :

Red uced series

have the ratio~1
a +

or
a

a +1

Squares

a 2a-- x---
a + 1 2a + 1

2a2

2a2 + 3a + 1

Cubes

a 2a 3a
- - x --- x - -- etc .
a + 1 2a + 1 3a + 1

6a3

3 2 etc.
6a + lla + 6a + 1

to unity, or t hat unity has to

a+ 1 a + 1 2a + 1 a + 1 2a + 1 3a + 1-- x--- -- x --- x --- etc .
a a 2a a 2a 3a

a +1 2a2 + 3a + 1 6a3 + lla2 + 6a + 1
etc .or

2a2 6a3a

And this same will hold if the red uced series is aseries of roots.
For example, if from aseries of equals there is taken aseries of second roots with

index ~. For if one puts a = ~ ,

a+1
then -- = 3

a

and

and

a +1 x 2a +1 = 3 x 2= 6
a 2a

a + 1 x 2a + 1 x 3a + 1 = 3 x 2 x 1~ = 10 etc .
a 2a 3a 3

Moreover, in this kind of subtraction, the [sums of] differences, squares, cubes, etc .
are to aseries of te rms equal to the greatest as 1 to 3, 6, 10, etc.

Similarly, if t here is taken away aseries of fourth roots with index i, then a = i,
and

a + 1 _ 5
- ,

a
2a + 1 = 3,

2a
3a + 1 = 2!

3a 3'
4a + 1----::ta = 2 etc .

And 5 x 3 = 15, 15 x 2~ = 35, 35 x 2 = 70, etc . Moreover , in this kind of subtrac­
tion, t he series of differences, squares, cubes, biqu adrates, etc . are as 1 to 5, 15, 35,
70, etc . And similarly in others of this kind , as will also be shown further below.
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Meanwhile one may put some of the prece ding propositions to gether in a t able,
adjoined to the followin g proposition . That is:

PROPOSITION 127

Theorem

If there is proposed an (infinite) series of equa ls reduced by a (similar) series
of first powers , second powers , t hird powers , etc. [the sums of] the differ­
ences themselves, and [of] their squa res , cubes, etc . will have ratios to t he
proposed series of equals as 1 to the numbers indicated in the adjoined Table.
That is:

COMMENT

Truly it may be investigat ed in the same way, what are the ratios of series of
apotomes'' ! of squa re roots, cube roots, etc . to aseries of the same number of
terms equa l to the greatest of them. The work may be done as the need arises .
For not hing else is lacking for the quadrature of the circle and ellipse. As is
already clear from Proposition 121, and as will further be clear from various
propositions following.

PROPOSITION 128

Theorem

If there is proposed a series of equals reduced by aseries of second roots, the
[sums of] squares , cubes, biquad ra tes, etc . of t he differences will have known
ratios to aseries of the same number of terms equal to the greatest of them.

5 1 Apotomes are qu antities of t he form va- Vb.
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That is:

Series

.,jR - .,ja

.,jR - .,jb

.,jR - .,je

etc . to

.,jR -.,jR

A.,jR- ~A.,jR

1 _ 1 - 1
3 - 3

1
1+2

Squares

R-2vaR+a

R- 2VbR+ b

R-2VCR+e

R - 2,j"ifR + R

AR - ~AR+ ~AR

1+2+3

Cubes

R.,jR - 3R.,ja + 3a.,jR - a.,ja

R.,jR - 3R.,jb + 3b.,jR - b.,jb

R.,jR - 3R.,je + 3e.,jR - e.,je

R.,jR - 3R.,jR + 3R.,jR - R.,jR

AR.,jR - ~AR.,jR + ~AR.,jR - ~AR.,jR

1-~+~-~=f2
1

1+2+3+4

And so on; that is, the ratio of 1 to the triangular numbers, or to a sum of numbers
in arithmetic proportion from 1 continually increasing by one (as far as the degree
of the power requires) .

PROPOSITION 129

Corollary

And therefore the conoid (or pyramidoid) generated by the complement of a
half parabola around one of its ordinates is to a cylinder (or prism) of the
same base and height as 1 to 6.

A ~
.......... ",:

1\
\

n \"
That is, as the squares of differences of aseries of equals redueed by aseries of second
roots, to the same number of terms equal to the greatest . For since in the complement
of a half parabola AOT, the lines parallel to its diameter AT are differences of
equals reduced by second roots (the ordinates of the half parabola AOD), if that
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complement AO T is turned around TO itself as axis (or also around others, as
has been said elsewhere) there is formed a conoid (or by analogy a pyramid) with
vertex 0; and the circles described by such turning (or similar planes in similar
positions) will be as t he squares of those !ines (parallel to AT) . That is, as squares
of differences, of aseries of equals reduced by second roots; and therefore as 1 to 6
by what has gone before.

COMMENT

And it may be considered in the same way for cones and pyramids generated by
the complement of any higher parabola about one of its ordinates, according to
the following propositions. That is, with appropriate changes, as the degree
of the parabola will require. Thus for a cubical parabola as 1 to 10, for a
biquadratic parabola as 1 to 15, for a supersolid parabola as 1 to 21, etc .
according to the table in Proposition 131.

PROPOSITION 130

Theorem

If there is proposed aseries of equals reduced by aseries of thi rd roots, the
[sums of] squares, cubes, biquadrates, etc. of the differences will have known
ratios to aseries of the same number of terms equal to the greatest of them.
That is:

Series Squares Cubes

R -~ ~-2~+Vdi ifli3-3{!aR2 + 3 {!a2R- {Ia3

R - ifb ~-2m+W ifli3-3{!bR2 + 3 {!b2R- W
R- {/C ~-2{ICR+ {IC2 ifli3-3{!cR2 + 3 {!c2R- {IC3

etc. to

R- ifR ~-2ifRR+~ ifli3- 3 {!RR2 + 3 {!R 2R - ifli3

AifR-i!AifR A~_2A~+i!A~ AR-~AR+ ~AR-~AR4 4 5

1 - ~ = ~ l-~+~=k l-~+~-~=fo

or:

1 1 1
1+3=4 4+6 =10 10+ 10 = 20

And so on ; by continually adding triangular numbers, or sums of arithmetic propor­
tionals, there may be had the denominator of a ratio in which the numerator is 1.
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PROPOSITION 131

Theorem

In the sa me way, if t here is proposed aseries of equals reduced by aseries of
fourth roots, fifth roo ts, etc. t he [sums of] squares , cubes, biquadrates, etc. of
the differen ces will have known ratios to aseries of the sa me number of terms
equal to the greatest of them.

For as in the subt raction of aseries of second roots , t he denominat ors of the ratios
arise by continual addition of numbers in ar ithmetic proportion, 1 + 2 = 3, 1 + 2 +
3 = 3 + 3 = 6, 1+ 2 + 3 + 4 = 6 + 4 = 10, 1+ 2 + 3 + 4 + 5 = 10+ 5 = 15, 1 + 2 +
3 + 4 + 5 + 6 = 15 + 6 = 21, etc. so in the subtract ion of third roots , the denomina­
tors arise by continual addit ion ofthose numbers (1, 3, 6, 10, 15, 21, etc.) found in the
method for subt raction of second roots, t hat is, 1 + 3 = 4, 4 + 6 = 10, 10+ 10 = 20,
20 + 15 = 35, 35 + 21 = 56, etc ., or 1 + 1 + 2 = 1 + 3 = 4, 4 + 1 + 2 + 3 = 1 + 3 +
6 = 10, 10 + 1 + 2 + 3 + 4 = 1 + 3 + 6 + 10 = 20, 20 + 1 + 2 + 3 + 4 + 5 = 1 + 3 +
6 + 10 + 15 = 35, 35 + 1 + 2 + 3 + 4 + 5 + 6 = 1 + 3 + 6 + 10+ 15 + 21 = 56, etc .
Thence from the numbers already found (1, 4, 10, 20, 35, 56, etc .) by continual
addit ion, there arise the denominators of the ratios for the subt raction of fourth
roots (that is, 1 + 4 = 5, 5 + 10 = 15, 15 + 20 = 35, 35 + 56 = 91, etc .). And from
these again by continual addition, there arise the denominators of the ratios for
subt raction of the next series (fifth roots) . And so on, by this method.

COMMENT

And here we have met on t he way an un expect ed investi gat ion of figurate
numbers (as they are usually called) . For all t he numbers (here and in the
following tables) made by this kind of addit ion are figurate numbers, that
is, laterals, t riangular numbers, pyramidal numbers, etc. Which, since it is
obvious to anyone , it is sufficient to have pointed out .

It is a lso evident (in eit her table) t hat the sequences of numbers thus found
are just t he same horizontally as vert ica lly.

Moreover , from what has been said it is possibl e to bring toget her a sum­
mary of some of the pr eceding propositi ons (t hat is, concern ing series of equals
reduced by series of roo ts) in one tabl e, which I adj oin to the next proposition.
That is:

PROPOSITION 132

Theorem

If t here is proposed an infini t e series of equals reduced by a similar series of first
powers (or, if one likes, first roots, which amounts to the sa me thing), second
roots, t hird roots, etc . t hen [the sums of] the differences themselves, and [of]
their squares , cubes , biquadrates, etc. will have ratios to the corresponding
series of equals as 1 to the numbers indica ted in t he adjo ined table. That is:
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Follows from what has gone before. Moreover, any intermediate number in the table
is the sum of two next to it , one from above, the other moved to the right .

It must also be noted that the same ratio is produced for squares of differences
if there are taken third roots, as for cubes of differences if there are taken second
roots; the same for sixth powers if there are taken seventh roots, and for seventh
powers if there are taken sixth roots; and so everywhere, as though by reciprocation
of powers, as is clear from inspection of the table.

But other similarities also sometimes happen, thus for supersolids if there are
taken first roots, and for the differences themselves if there are taken fifth roots,
but also for squares if there are taken second roots. The same for ninth powers if
there are taken first roots, and for the differences themselves if there are taken ninth
roots, but also for cubes if there are taken second roots, and for squares if there are
taken third roots. The same for eighth powers if there are taken sixth roots, and
for sixth powers if there are taken eighth roots, but also for twelfth powers if there
are taken fifth roots, and for fifth powers if there are taken twelfth roots; and so on
elsewhere as is clear from the table.

PROPOSITION 133

Theorem

If there is proposed aseries of first powers reduced by aseries of second
powers, the [sums of] squares, cubes , biquadrates, etc . of the differences will
have known ratios to aseries of equals. Thus:

Series

aD2 _ a2

bD2 _ b2

cD 2 _ c2

etc. to

DD-D2

1 1
2 x 3 6

1 1
=2 x 3 6

Squares

a2 D 2
_ 2a3 D + a4

b2 D 2
- 2b3 D + b4

c2 D 2
- 2c3 D + c4

1_ ~ + 1 = ..!..AD4
3 4 5 30

1 x 2 2 1
3 x 4 x 5 60 30

1 4 1
--x--=-
2x3 4x5 30

Cubes

a3 D 3 _ 3a4 D 2 + 3a5 D _ a6

b3 D 3 _ 3b4 D 2 + 3b5 D _ b6

c3 D 3 _ 3c4 D 2 + 3c5 D _ c6

1 _ 1 + 1 _ 1 = .i!...AD6
4 5 6 7 140

1x2x3 6 1
=4 x 5 x 6 x 7 840 140

1 4 9 1
--x--x--=­
2 x 3 4 x 5 6 x 7 140

And so on, by continually multiplying the numerators by square numbers, and the
denominators by pairs of consecutive arithmetic proportionals.
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PROPOSITION 134

Corollary

Therefore if aseries of equals reduced by aseries of first powers is multiplied
term by term by aseries of first powers, the sum of the rectangles'f (or of
squares or any similar figures, equal or even proportional to them) will have
a known ratio to the sum of the same number of equals.

And the same happens if the squares of the former series are multiplied
by the squares of the latter, the cubes of the former by the cubes Of the
latter, etc.

That is, they produce the same ratios as in the preceding proposition. As if to say:

times a

makes aD-a2

etc.

PROPOSITION 135

Corollary

Therefore the semicircle to the square of its diameter (or also the semi-ellipse
to the parallelogram circumscribing the ellipse) has the same ratio as the
square roots of the differences, of aseries of first powers reduced by aseries of
second powers, to aseries of terms equal to the greatest of those first powers.
Therefore the complete circle (or ellipse) to that square (or parallelogram)
will have twice that ratio.

For if the diameter of the circle (or ellipse) is taken to be D (of which an infinitely
small part is D / 00 = a), and its ordinates an infinite number of lines (equally spaced)
filling the semicircle (or semi-ellipse), they will be (as is known) mean proportionals

52 Reetangulorum, or 'products' , as in Proposition 120.
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(or at leas t for the ellipse , prop ortional to t hose mean proportionals) between the
segments of t he diameter. T hus:

between a

and D-a

t herefore y'(aD - a2
)

or y'(aD - a2
)

2a

D - 2a

y'(2a D - 4a2
)

y'(bD - b2
)

3a

D -3a

(3aD - 9a2
)

y'(cD - c2
)

4a

D -4a

y'( 4aD - 16a2
)

(dD - d2
)

And t herefore the sum of all, t hat is t he semicircle (or sem i-ellipse), to t he same
number of terms equal to y'D 2 itself, t hus , to the square of the diameter (or at leas t
the diameter multi plied by the altitude) is

as y' (aD - a2
) + y'(bD - b2

) + y'(cD - c2 )+ et c. as far as y'(DD - D2
)

to y'D2 + y'D2 + y'D2+ etc . = Ay'D2 = A D

T herefore t he complete circle to that sa me square as

2y'(aD - a2
) etc. to AD

PROPOSITION 136

Corollary

And hence if we take the infinite lines (the ordinates) of any half parabola
set perp endicular one by one to the lines of the same in inverse pos it ion, t he
solid that ar ises, consisti ng of an infinite number of t hose rectangles (or of
squares, or indeed other similar figures , equal to those rectangles) will be, to
the corresponding parallelepiped of equal height (that is, whose base is equal
to t he square of the base of the half parabola), as the semic ircle to the square
of its diameter. (And indeed, the mean propor t ionals will be as the square
roots of the ordinates of the circle or ellipse .)

J\.

o ._.._ __ - CI)
D

o _.., _._- (,lJ
D

0_..•••••• ...• __ ._•._ ••_ . W
D

p
Let t hat same parabola be A P O in norm al position and P Aw in inverse position.
Therefore (by the nature of the parabola) t he squares of the ordinates (that is, the
lines DO, DO, etc. decreasing, or Dw , Dw, etc . increasing) will be an infinite series
of first powers, t hus, a, 2a,3a, etc . or in their place a, b, c, etc . of which the greatest
may be ca lled D (that is, t he square of the base PO or Aw) . And therefore in inverse
position they will be D - a, D - 2a, D - 3a, etc. or also D - a, D - b, D - c, etc.
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(For if ordered from the least the increase between each is equal, or the decrease if
ordered from the greatest.) And consequently the ordinates themselves (that is, the
second roots of those squares) are in the former case y'a, y'2a, y'3a, etc. or y'a, y'b,
y'e , etc. and in the latter y'(D - a), y'(D - 2a), y'(D - 3a), etc. or (in their place)
y'(D - a), y'(D - b), y'(D - e), etc. Therefore setting the latter perpendicular to
the former, there arise rectangles Odw . That is,

setting

perpendicular to

gives

y'(D - a)

y'a

y'(D - b)

y'b

y'(D - e)

y'e

etc .

etc.

etc.

Moreover, the sum of all the rectangles, to the reetangle y'D - 0 times y'D - 0,
that is, y'D2 = D, taken the same number oftimes, that is, ofthe solid arising from
that multiplication, to the said parallelepiped, is as the semicircle to the square of
its diameter, from what has gone before.

And therefore also, the mean proportionals between corresponding lines OD,
Dw, will be as the square roots of the ordinates of the circle or ellipse. Since, indeed,
the rectangles Odw are proportional to those ordinates.

COMMENT

Note, however, that it is not necessary for the half parabola placed in inverse
position to be exactly the same as that in normal position, for the thing
succeeds no less for any two half parabolas placed in inverse position provided
they are of equal altitude. In such a way, however, that if they have unequal
bases, the base of the parallelepiped is not taken to be the base of either
parabola squared, but equal to a reetangle of both, thus PO x Aw. Which it is
sufficient to have pointed out, since the same demonstration as that preceding
can also be accommodated to this, by making light changes. Whence this one
also may easily be inferred.

But the figure consisting of all the mean proportionals (between GD and
Dw) will be elliptoid, in which , that is, the squares of the ordinates are them­
selves proportional to the ordinates of the ellipse, as is clear. Just as, that is,
in a biquadratic parabola, the squares of the ordinates are proportional to the
ordinates of the parabola. And the squares of the ordinates of the parabola
are proportional to the ordinates of a triangle.

PROPOSITION 137

Corollary

In the same way, spheroids (or also elliptic conoids or pyramidoids) to a
circumscribed cylinder (or prism), will have the same ratio as four times a
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series of first powers reduced by aseries of second powers, to aseries of
the same number of terms equal to the greatest of the first powers. That is
as 2 to 3.

R.

For since the lines in a circle or ellipse are twice the series J(aD - a2
) , etc. the

planes in the conoid or pyramidoid will be as four times aD - a2
, etc. And therefore

that to the circumscribed prism or cylinder as 4 to 6, or 2 to 3. By Proposition 133.
Which has also been shown previously at Proposition 123.

PROPOSITION 138

Corollary

In the same way, if a parallelogram is cut by a diagonal line, and the lines
of one triangle are set perpendicular to their continuations in the other, the
mean proportionals will be the same number of ordinates of (either a circle
or at least) an ellipse. And their squares will be the planes of a circular or
elliptic (or some similar) pyramidoid or conoid.

•..

:8----_--11'
D

Follows from the two preceding propositions. For the coterminous lines stand in for
the segments of the diameters. And will produce either a circle or an ellipse, as may
be proved from the same information as in Proposition 124.
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PROPOSITION 139

Theorem

If there is proposed aseries of first powers reduced by aseries of third powers,
the [sums of] squares, cubes, biquadrates, etc. of the differences will have
known ratios to aseries of equals. That is:

Differences

aD2 _ a3

etc. to

DD2 _ D3

~ - t = t A D3

or:

2

2 x 4

And so on; thus :

2 x 4 x 6 x 8
5 x 7 x 9 x 11 x 13 '

etc .

Squa res

a2 D4 _ 2a4 D 2 + a6

2 x4
3x5x 7

2 x4 x6 x8 x lO
6 x 8 x 10 x 12 x 14 x 16 '

Cubes

a3 D6 _ 3a5 D4 + 3a7 D 2 _ a9

2x4x 6
4 x 6 x 8 xlO

2 x 4 x 6 x 8 x 10 x 12
7 x 9 x 11 x 13 x 15 x 17 x 19 '

PROPOSITION 140

Corollary

The same happens if aseries of equa ls reduced by aseries of second powers
is mul tiplied by aseries of first powers. And the squares, cubes , etc. of the
former by the squares , cubes , etc. of the latter .

(Thus, if the lines of a half par ab ola , parallel to the diamet er , are set perpendicular
to t he lines of a triangle. For their cont inua t ions, in the complement , are a series of
second powers.)

Since, that is, D2
- a2 times a is aD 2

- a3
, etc.

PROPOSITION 141

Theorem

If there is prop osed aseries of first powers reduced by aseries of fourth powers,
the [sums of] squares , cubes, etc. of the differences will have known ratios to
aseries of equa ls. That is:
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Differences Squares Cubes

aD 3 _ a4 a2D6 _ 2a5 D 3 + a8 a3 D9 _ 3a6 D6 + 3a9 D 3 _ a 12 etc .

~ - i = foA D
4

~ - t + ~ = ~AD8 i - ~ + fo - f3 = 1~;oAD12

or:

3 3 x6 3 x6 x9
2 x 5 3 x6 x9 4 x 7 x 10 x 13

And so on, thus:
3 x 6 x 9 x 12 3 x 6 x 9 x 12 x 15

5 x 8 x 11 x 14 x 17 ' 6 x 9 x 12 x 15 x 18 x 21 '
etc .

PROPOSITION 142

Corollary

T he same holds if a series of equals reduced by a seri es of third powers is
mu ltiplied by a series of first powers.

(T hus, if the !ines parallel to the diameter in a cubical parabola are set perpendicular
to those of an inscribed triangle. For their cont inuations in th e complement are a
series of third powers. And similarly, with apropriate cha nges, in other propositions.)

Since, t hat is, D 3
- a3 t imes a is aD 3

- a4
.

COMMENT

And it may be similarly considered, with appro priate changes, in any other
cases whatever , whe re aseries of t his kind is composed fro m two or more other
series multiplied by each other. As is clear.

PROPOSITION 143

Th eorem

Equally, if t here is proposed aseries of first powers reduced by aseries of fifth
powers, sixt h powers, etc. t he [sums of] squares, cubes, biquadrates, etc. of
t he differences will have kn own rati os to a series of equals.

Thu s

Similarly

4
2 x 6 '

5
2 x 7 '

4 x 8
3 x7 x11 '

5 x 10
3 x 8 x 13 '

4 x 8 x 12
4 x 8 x 12 x 16 '

5 x 10 x 15
4 x 9 x 14 x 19 '

4 x 8 x 12 x 16
5 x 9 x 13 x 17 x 21 '

5 x 10 x 15 x 20
5 x 10 x 15 x 20 x 25 '

etc .

etc .

And so on, as t he power of the reduced series requires. As will be clear by induct ion.
Therefore:



110 The Arithmetic of Infinitesimals

PROPOSITION 144

Theorem

If there is proposed aseries of first powers reduced by aseries of second powers,
third powers, fourth powers, etc. [the sums of] the differences themselves, and
[of] their squares, cubes, biquadrates, etc. will have ratios to aseries of equals,
as the adjoined table indicates. Or as the numbers in the table have to 1.
That is:

._3 ~6'_I__3.X6X9 _
3 x6 X,9 4-x7 x 10 x 13

f p8
4- x 8 x I:!.

3x711 II 4-118~"IT

1
1 X10 _5_~L378 x 13-- "1- 11 9 11 14- 11 19·

-
6'x 12. 6XI2.1I18

3 x9 x I 5 4-IIIOXI6x2.2
--

Fifth powers

Sixth powers

____D_ifi_e-lre:~1 Squares I__~_s__I Biquadrate~

Second powers ,':31--ii:il .:;:;;, I 1':::)'~~9
J. I 2.X~-:;-1 :2.x4-x6 2.x.p6x8

Third powers ~4-i 3x;~~~'I-;;-I~~0I3

3 /' 3 x 6 x,9X12
Fourth powers

2.X5 j"X8XUXIfx17

------1
-L I-.tX8~~._

':6 11;;:~::;~:'
______,2 x7 tJPI0XI5X~X15

6' 6xI2.XI8xZ4
Seventh powers1--- ----~--

.lx8 /PIIXI1X:2.3lC2.9

------11 I 7lCI4- I IX I4-X2. [ I '7 x l+x2.I x 2.8
Eighth powers -- ----.-- -------
______I_2._x~IOX11 . 4- XIlX 18x2.~uX19 X16 x B J

And so on, as is clear by induction

PROPOSITION 145

Theorem

Similarly, if there is proposed aseries of second powers reduced by aseries
of third powers, fourth powers, fifth powers, sixth powers etc. [t he sums
of] the differences themselves, and [of] their squares, cubes, biquadrates,
etc . will have ratios to aseries of equals, as the adjo ined table indicates.
That is:
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Ratio to a series of equals
A

____D=ifIi::;e:::;:7ncc~1 Squares I~~~uadrat~
Third powers 1 _~ J__I_X _2_1~~_3 I X2. Xl_x±-_

Pf J 'x6 x7 j x8 X9XIO 9 X1 0 X1lX l :t. x q

------I-~· i--:t.~I·~4~~f x 6:-8-
Fourth powers I' --,--- - - - - ---- - - ' - - -' - -- ,

pr p 7 X9 ', i X9 XIl XI1 ;9 XlI XI3 X1 P I/

F-i-rt-h-p-o-w-e-r-s-' 3 -1 3: 6 _tx_6 ~~:=!--l~~
_____ _ 1, 3x 6.1~~I~ q x 1 6j~2 x Ir x 18 x21

'10 )1 4- xS I fx8x I:!. I 4 x 8 x I2.x [6Sixth powers -- ----- --- --- - ­
3x-,7 J x9 x 13 7 x I1 XI f x 19;9 x I 3x 17 x:u x 2.f

1 -;_·,I~lCIO --;~~ I fXIOXlfX1.O
Seventh powers -- - - - ---,----- ---

/

3 x 8 Ix 10X IS 7xnXI7X~J.9 x IfxI9x2.4X2.9

- - - ---1--
Eighthpowers I 6 / 6xl1. I 6xuxIi I 6xl1.xISx2.4

P.9 f-; II x 17 , 7 x 1 3~ 19unI x Ij'-;m~7 x H
T

And 0 on, as is clear by induction

PROPOSITION 146

Theorem

In the same way, if t here is proposed aseries of third powers reduced by aseries
of fourth powers, fifth powers, sixth powers, etc. [t he sums of] the differences
themselves, and [of] their squares, cubes, biquadrates, etc. will have ratios to
aseries of eq uals, as the adjoined table indicates. That is:

Ratio to a series of equals
•

.
\

Differences Squares I Cubes Biquadra tes
1- -

ourth powers
/_ 1_ _ _ ~!~. _ _I ~t___~~x 3 xf_ _

rx~ 7XS1l9 10 'll11 II 12X13 I3xIilllrX.16xl~

ifth powers
2 2 II 4- 2x4x6 211fx611R•'J 1" ,.. ;;;;-;;;;;.-". 'l"f "1".'.,

ixth powers
~ -p-,- --;6x9-1 p.6x,llx 12-

+X'j 7X IOXI3 zOll 13:'16111 9 iq x 161119 x 2,:1-;;-"
4- ,p8 I '1oxS xn 4-x8xnxI6

event h powers --,1--- . - - - ----
'10 x 8 7 x II II 1r , :JO II 1'10 x18 x22 13 x17 X:tI 11 :1j' x 29-

ighth powers I-r-I---;;-;;;-I '"0"' I s"0'" " 0
.+X.9 J;"i1-;X;-,lOll 'lf-;io Uj' i'j-;-i8-;1~s'";jl

T
,

And so on, as is clea r by induction
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COMMENT

And in the same way, it will be easy either to cont inue these tables as far as one
likes, or to compose others also for the succeeding series, thus for series of fourth
powers , fifth powers, sixth powers, etc . reduced by any series of higher powers.

PROPOSITION 147

Th eorem

If there is proposed aseries of second roots reduced by aseries of first powers,
the [sums of] squares, cubes, biquadrates, etc . of the differences will have
known ratios to aseries of equals.

That is, as shown in Propositi on 133. Thus:

Differences Squares

V a2D2- 2Va3D+ #

Cubes

V a3D3-3Va4 D2+3Va5 D - # etc.

to

.JDl5 - .JJ52 ..; D 2D2 - 2"; D3 D + .Jjj4 ..;D 3D 3 - 3"; D4 D2 + 3"; D 5D - .Ji56

.a _.a -.1- -1
3 4 - 12 - 6

2 1
3 x4 2 x3

~ - ~ + ~ = I~O = to
2 x 2 1 x 2

4 x5 x6 3 x4 x5

~ - ~ + ~ - ~ = 1~~O = I~O
2 x2 x3 1 x2 x 3

5 x6 x7 x8 4 x5 x6 x7

PROPOSITION 148

Corollary

The same holds if aseries of equals is reduced by aseries of second roots, and
multi plied by aseries of second root s.

(T hus if the ordinates of a half parab ola are set perpendicular to t heir conti nuat ions
in t he complement .) For ..;I5- va times va makes v'aJ5 - ,fä'i = v'aJ5 - a etc.
And what is formed from the squares of the former [(..;I5 - va)2,fä'i] is equal to
tha t formed from the squares of the latter [(v'aJ5 - a?J, etc .

PROPOSITION 149

Corollary

Also obvious, are the ratios arising, whether t he proposed series is a - a2 , etc.
or t he series Ja - Ja2 (or Ja - a) etc.
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That is, as collected in Propositions 133 and 147.

COMMENT

And therefore to the rest of the corollaries that are to be had after Propo­
sition 133, these also (with appropriate changes), may be added without dif­
ficulty. Which it is sufficient to have indicated .

PROPOSITION 150

Theorem

If there is proposed a series of second roots reduced by aseries of square
roots of third powers, the [sums of] squares , cubes, biquadrates, et c. of the
differences will have known ratios to aseries of equals. That is:

Differences
../aD2 -.JQJ

_ 4_AVD3
3x5

Squares
../a2D4 - 2../a4D2 + ,fä6

4 x4 AJD6
4x6 x 8

Cubes
../a3D6 - 3../a5 D4+ 3../a7 D2_# etc .

~ -~ +~ -fI =3~~5

4 x4 x 6 Am
5x 7x 9x 11

PROPOSITION 151

Corollary

The same holds if a series of equals reduced by a series of first powers is
multiplied by a series of second roots .

Since D - a or ,Jl52 - R , times va, makes Dva - ava or ../aD2 - .JQJ.

COMMENT

And it may also be understood similarly in ot her cases, where the proposed
series may be separate d, into two or more components .

PROPOSITION 152

Theorem

If there is proposed a series of second roots reduced by aseries of second
powers, the [sums of] squ ar es, cubes, biquadrates, etc . of the differences will
have known ratios to a series of equals. That is:
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Differences
JaD3-#

Squares Cubes
J a2 D 6 - 2Ja5 D3 +.;;;s Ja3 D9 - 3Ja6 D6 + 3Ja9 D3 - ~ etc .

6
3 x6

6 x6
4 x 7 xlO

6 x6 x9
5 x 8 x 11 x 14

And so on. And similarly for t he subtract ion of aseries of any higher power. And
therefore:

PROPOSITION 153

Theorem

If there is proposed a series of second roots reduced by aseries of first pow­
ers, second powers, third powers etc. or square root s of third powers, fifth
powers, etc . then [the sums of] the differences t hemse lves, and [of] their
squares , cubes, biquadrates, etc. will have ratios to aseries of equals, as the
adjo ined table indicates. That is:

Ratio to a eries of cqua ls

Differ nces Squares Cubes Biquadrates.- - - --- - - ---- - '---
7- z x %. 2 x2 X3 2X2 X3 Xt

First powers -- - ----
p 6 qx 8P 4- .p 5 x6 6 x7x 8 x 9 x JO

.- ---- -
Square roots of ...L. +x + --±.2J: 6 4 x.p 6 x 8
third power P5 ~6-:S 5 x 7 x 9 x II 6 x 8 x 10 x I2. x 14-

- - -- - - - ---- ------- -
6 6x6 6xC; x 9 6x 6)(9 X1Z

econd powers - - --- - t x8 XI- I X1+ I$)(9 x~-;X8p6 4 x 7 x 10

- - - - ____1___ -

Sq uare root s of 8 8x 8 8 x 8 x 12 I 8 x !3 xIZx l 6'- -- -- rX9 x 13 x I1 6 x I O XJ .p J 8 x 2 2fift h powers P 7 +x 8 x 17-
- --- _.-;;;:-;~ x I f 1 10 XIO x J f XJ.O10 10x 10

Third powers pS - - --
'P 9 X1+ s: x 10 x 1.1 x 20.6 x·1'1 x 16' x :U x :16

.- ---... ----- .
Sq uare root s of 12 12 x r a I2X!2xI& I2xnx18x~- - - - - - - - - --- -sevent h powers PS> +x 10X 16 plI x1ix1.3 IS' x I2 XI8n..... 30- -
Fourth power ~ 1+)(1+ IfXI+~ Jt xI4-X2.I ~:z.8---,-._-

pIO 4 Xl 1x18 fX n x 1.9 x 26 6'x J 3 x2.0 X21lC H
l'

And so on, as is clear by induction
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PROPOSITION 154

Th eorem

Equally, if there is proposed a series of third roots reduced by a series of first
powers , second powers, third powers etc. or cube roots of second powers , fourth
powers , fifth powers , seventh powers , etc. then [the sums of] the differences
themselves, and [of] their squares, cubes, biquadrates, etc . will have ratios to
aseries of equals, as the adjoined table indicates. That is:

Ratio of a se r ies of eq ua ls

v.::
..c:...
'­o
rn
QJ.;:
QJ
rn

-<

r ,

r D_if_fe_re~1 Squ ares I Cubes I~~~
Cube roots of I 3 I 3 x1 3 X:2. x3 I 3 x:L X 3 x 4-
seco nd powers l4-xS r 'x6";:;-1 6x7x~1 ix8~iö7'It

I-;-j~~ ~4---:6II~.p 6-:S-
First powers I'--1- - - ---4-x('/' P7~ 6x8x~W-~~
-----1-
Cube roots of I9 5> x 6' SI x6'x 5> 9 x 6' x 5> x a
fourth powers f x i j78-m (f;9;-I;~;-;ro~~

Cube root s of ~u IJ.x 8 I2x81 U n.x 8 x 12. x 16---------- -
fifth powers f 1 8 ~9XlJ . ~lfXI8rXllX1SX 1.91],3

If ISXIO ' IjXIOXIS I I S XI O x t 5 X:l0
Second powe rs ------/______ 4- 1 9/s x 1011)'" 6)( IIx 16xu 7 XI:lX Ij~22.X' 27

Cube roots of 1 18 I 18xn. 18xl2.XI8/18xnxI8x:2.4

seve nt h powers ~ 4- 11011~ I I x17- 6x 12~'lS-x-:z.4. j x13 x 19 x-;S'x l~

Cube roots of I~-2.:.:~ ~4:.~-'~~+ x::.1 128

. ighth po". " 4'"If" U 19 6"l' 20"'I""+.." .8 , H

24 I 24x16 24x 161 2.of.124 X 16 x 2.p pTh ird powers -- - ,- - - -
'!-xn. SI( 13 X2.1 61 I+X 22. 1 307 x Ir 1( 231( 311(39

\.-------------'"""'V-----------~
And so on, as is clea r by inductio n

COMMENT

c
o
o
'J1

"C<

And by a similar method it will not be difficult either to cont inue these tables
as far as one likes, or even to compose others for other series, thus for series
of fourth roots, fifth roots, etc. (or indeed of square roots of third roots,
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fifth roots, etc. or cube roots of second roots, fourth roots, etc. or of others
similar) , red uced by any series of higher powers.

But it is also easy to interpolate t hese tables (and others similarly cons­
tructed) to any length, by interposing bctween any horizontal sequences, as
will be clear from correct consideration of the progression of the tables.

For example, in the table of Proposition 144, if aseries of first powers is
reduced by aseries of square roots of fifth powers, this red uced series may be
interposed, forming another horizontal sequence between the first and second
of that table (since, that is, squa re roots of fifth powers, wit h index ~ or 2~,

hold the mean place between second powers and third powers, with indices 2
an d 3), an d that sequence will be :

Differences Squares Cubes Biquadrates

11 11 x 3 11 x 3 x 41 11 x 3 x 41 x 62 2 2 2 2 2

2 x 31 3 x 4~ x 6 4 x 51 x 7 x 81 5 x 6~ x 8 x 9~ x 112 2 2

3 3x6 3 x 6 x 9 3 x 6 x 9 x 12
or --

2x7 3 x 9 x 12 4 x 11 x 14 x 17 5 x 13 x 16 x 19 x 22

6 6x6 6 x 6 x 9 6 x 6 x 9 x 12
or - -

6 x 9 x 12 8 x 11 x 14 x 17 10 x 13 x 16 x 19 x 224x7

And it will not be difficult to show the same also for other tables, if the pattern
of each table is observed.

And in the same manner, one may interpolate t he same t ables to any
width, clearly by interposing others among the vertical sequences (thus, the
square roots of differences , square roots of cubes, etc. or cube roots of differ­
ences, squares, biquad rates, etc. or similar), but at this point the work is not
easy, if indeed it is poss ible .F' Afterwards, moreover, I will try as far as I can,
and indeed will show to a certain extent , that one may work out complete ly
what I hardly dared pro mise except by approximation.

Meanwhile, something must be said of augmented series, lest I seem to
have omitted them complete ly; but br iefly, lest I become tedious.

PROPOSITION 155

Theorem

If there is proposed aseries of equa ls augmented by a similar series of first
powers, the [sums of] squares, cubes, biquadrates, etc. of the aggregates will

53 Here Wa llis needs what he has needed a ll along, the binomial theorem for fractional
indices.
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have a known ratio to aseries of equals. That is:

Aggregates Squares Cubes

n -: « R2 + 2aR +a2 R3 + 3aR 2 + 3a2 R + a3

etc. to

R +R R2 + 2RR + R 2 R3 + 3R2 + 3R 2 R + R3

AR+ !AR AR2 + 2.AR2 + 1.AR2 AR3 + QAR3 + QAR3 + 1.AR3
2 3 2 34

1 1 _ 3 l +2. +1. -l 1+ Q + Q + 1. = 15+2 -2 2 3 - 3 2 3 4 4

Where any numerator consists of twice the preceding one increased by 1; and the
denominator, of the preceding one increased by 1.

PROPOSITION 156

Corollary

Therefore, if from a trapezium (constituted from a parallelogram and a tri­
angle, of equal base and height), there is generated a truncated conoid (or
pyramidoid) , (whether by turning about the axis , or otherwise) , it will be to
the inscribed cylinder or prism as ~ to 1, or as 7 to 3.

That is, as the squares, of aseries of equals augmented by aseries of first powers,
to aseries of equals.

If the bases of the parallelogram and triangle ar e unequal, some adjustment must
be introduced.

PROPOSITION 157

Corollary

If, moreover , that truncated conoid or pyramidoid is excavated by a cylinder
or prism, the residue will be (to the greatest inscr ibed cylinder or prism) as 4
to 3.

T hat is, ~ - i = ~ to 1.
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PROPOSITION 158

Theorem

If there is proposed aseries of equals augmented by aseries of second powers,
the [sums of] squares, cubes , biquadrates, etc. of the aggregates will have
known ratios to aseries of equals. (Thus, if a parallelogram is augmented by
the complement of a half parabola. )

That is, für any term of the series of first powers I put a (to shorten the work) , and
therefore für any term of the second powers , a2

, etc . Then:

Aggregates

R2 + a2

etc.

Squares

R 4 + 2a2 R 2 + a4

Cubes

R 6 + 3a2 R4 + 3a4 R 2 + a6

COMMENT

And it may be carried out by the same method if aseries of equals is aug­
mented by aseries of third powers, fourth powers, etc . As is clear.

PROPOSITION 159

Theorem

If there is proposed aseries of equals augmented by aseries of second roots ,
the [sums of] squares, cubes, biquadrates, etc. of the aggregates will have
known ratios to aseries of equals, (Thus, if a parallelogram is augmented by
a half parabola.) That is:

Aggregates

VR+va
etc .

Squares

.Jii2 + 2..};R + ..RI

Cubes

m + 3VaR2 + 3Va2R+,;;;,J
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PROPOSITION 160

Theorem

If aseries of equals is augmented by aseries of third roots, [the sums of] the
aggregates and [of] their squares, cubes, etc. will have known ratios to aseries
of equals.

(Thus, if a parallelogram is augmented by half a cubical parabola.) . That is:

Aggregates

ijR+~

etc.
2 3 73+4=4

Squares

ifii2 + 2{j(;R + ij(;:i .

Cubes

ijR3 + 3VaR2 + 3Va2R + 013

COMMENT

And it may be carried out by the same method if there is proposed aseries of
equals augmented by series of fourth roots, fifth roots, etc. or also by series of
square roots of cubes, supersolids, etc. or cube roots of second powers, fourth
powers , etc. And the same in other cases.

PROPOSITION 161

Theorem

Equally, if aseries of first powers is augmented by aseries of second powers ,
[the sums of] the aggregates, and [of] their squares, cubes, etc. will have known
ratios to aseries of equals. That is:

Aggregates

aR+a2

etc.

1 + 1 - QAR2
2 3 - 6

Squares

a2R2 +2a3R+a4

Cubes

a3R3 + 3a4 R2 + 3a5 R + a6

1 + ~ + ~ + 1 - 209 AR6
4 5 6 7 - 140

And it may be carried out by the same method if there is proposed aseries
of first powers (or also second powers, third powers, etc .) augmented by any
other series ; so it is not worth dwelling on this any longer. In all of which , the
sequence of numbers , first in the numerator, then in the denominator, is clear
to the eye.
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PROPOSITION 162

Corollary

Therefore a hyperbolic conoid or pyramid to half the circumscribed cylinder
or prism is as 5 to 6, and to the total as 5 to 12.

(It is to be understood that both the transverse diameter and the maxi­
mum intercepted diameter , are equal to t he latus rectum, otherwise an appro­
priate adjust ment must be introduced.)

For if the latus rectum of t he hyp erbola is taken to be l or R , the transverse diamet er

t = l, and intercepted diameter d, t he squares of the ordinates will be dl + ~dl (by
P rop osit ion 33 of On conic sections)54 or (since t = l) dl + d2

. And t herefore (since l
or R ar e fixed quantiti es , while d is variable, and indeed proport ion al to t he alti t ude,
for which may t herefore be substituted a , b, c, et c.) all t he squa res (and also t herefore
t he plan es of t he conoid of pyramidoid ) will be an infin ite series of first powers
augmented by aseries of second powers, t hus aR + a2

, bR + b2
, eR + c2

, etc. as far
as R 2 + R 2 = 2R 2

• And t herefore t hat series, to half aseries of the same number
equa l to greatest (t hus to AR2

) , will be as 5 to 6 by what has gone before. And
t herefore to t he complet e series of equals as 5 to 12. As was pr op osed .

COMMENT

The same also happens if the greatest intercepted diam eter is taken to be
equal to the transverse diameter. As may be gathered from the following
propositi on.

54 Here for t he first time Walli s used some of the algebraic formulae t hat he developed in
On coni c sections.
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PROPOSITION 163

Corollary

If, moreover , the limitation of the preceding proposition does not apply,55
the ratio of the conoid or pyramidoid to the circumscribed cylinder or prism,
alt hough not the same as there indicated , is nevertheless known.

For in any case, the squa res of ordina tes of the hyp erbola are dl + dtd I, or dL + ;!L,

or dT; dd L. If for the intercepted diam et ers , d, d, etc . there are put in turn

a, b, c, etc. and it is supposed that the greatest of t hem is D , then t he squar e

of t he greatest ordinate is DT; DD 1. All aT + bT + cT etc . (as far as DT)

are equal to ~ADT, and all a2+b2+ c2 etc . (to AD2) are equal to ~AD2 , the
sum of which, ~ADT + 4AD 2, if multiplied by Land t he product divided by

~ ADT + ~ AD2 vr+ so 3T + 2D
T , will give T L, or also 2 T 3 ADL, or thence 6T ADL.

And the ratio of t his, 3T :;'2D ADL, t he sum of squares of all ordinates, to

DT+D2 T+D
TAL, or -T-ADL, t he sum of the same number of terms equal to the

square of the greate st, is that of the conoid or pyr amidoid to the circumscribed
cylinder or prism (sin ce the plan es are proportion al to those squa res), t hat is, as
3T+2D T+D

6T to -T-' or as 3T + 2D to 6T + 6D , or as ~T + ~D to T + D. There-

fore:

PROPOSITION 164

Corollary

As half the transverse diamet er augmente d by a third of the intercepted diam­
ete r , to the sum of the transverse and intercepted diameters; or as three times
the transverse together with twice the intercepted to six times both together:
so is the hyp erbolic conoid or pyramidoid to the circumscribed cylinder or
prism (on the same base).

Clear from what has gone before.

55 That is, the limitation that both the t ra nsve rse diamet er and t he maximum int ercepted
diamet er must be equal to the latus rectum.
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PROPOSITION 165

Corollary

In the same way, the hyperbola to the circumscribed parallelogram is as a
series of square roots augmented term by term, to aseries of the same number
of terms equal to the square root of the greatest.

That is, if the condition of Proposition 162 holds, as J(aR + a2) + J(bR + b2) +
J(cR + c2) etc. (as far as J(R2+ R2)), to AJ(R2+ R2) = AJ2R2 = ARJ2. That
is, as all the ordinates to the greatest taken the same number of times.

But if that condition does not hold, then it will at least be as J'-a-T-;-a"2L- +

. / bT + b2 . / cT + c2
. / DT + D2 . / DT + D2

Y-T-- L + Y-T-- L etc. (as far as Y TL) , to Ay T L. That

is, (dividing everything by JL and muitiplying by JT) as J(aT + a2) + J(bT +
b2) + J(cT + c2) etc. (as far as J(DT + D2)), to AJ(DT + D2), as is clear from
the demonstration in Proposition 163.56

COMMENT

And by what means the ratio of the sum of those roots, to the sum of the
same number equal to the greatest, may eventually be expressed in numbers,
is not so easily shown.

And therefore we here come upon the same difficulty in the quadrature
of the hyperbola as we recalled several times above for the quadrature of the
circle or ellipse (and various other curved figures) , that is, that it must now
be inquired what are the ratios for infinite series of roots of binomes, just as
there for apotomes.

And indeed I was sometimes inclined to believe the thing to be quite
impossible, that an infinite number of surd roots, incommensurable to each
other, might be brought together in one sum that has an explicable ratio to
some proposed rational quantity.

And this indeed seems to be confirmed still more strongly, since a finite
series of this kind, to aseries of the same number of terms equal to the great­
est, has scarcely allowed any other expression of the ratio than by repetition
of everything piece by piece; for rarely do two or more happen to be commen­
surable, that can be gathered into one sumo

For example, if the radius of a circle is taken in six equal parts, the
right sines or ordinates in the quadrant standing on the ends of each of
those parts will be J(36 - 0) + J(36 - 1) + J(36 - 4) + J(36 - 9) + J(36 ­
16) + J(36 - 25) + J(36 - 36) (by what was said at Proposition 121), or what

56 This is virtually the last of Wallis's geometrie examples; from now on his investigations
are based almost entirely on arithmetic.
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it reduces to, J36 + J35 + J32 + J27 + J20 + J11 + JO, or as irrationals
reduced to their least terms, 6 + J35 + 4J2 + 3J3 + 2J5 + J11 + O. The
ratio, therefore, of this sum of roots to the greatest root taken the same
number of times, thus 7J(36 - 0), or 7J36, or 7 x 6, that is 42, can be no
better expressed than

6 + J35 + 4J2 + 3J3 + 2J5 + J11 + 0
42

And that is the ratio of those right sines or ordinates in the quadrant, to the
same number of lines equal and parallel to the radius in the circumscribed
square.

Equally, if the radius is taken in ten parts, the right sines will be
J(100 - 0) + J(100 - 1) + J(100 - 4) + J(100 - 9) + J(100 -16) + J(100 ­
25) + J(100 - 36) + J(100 - 49) + J(100 - 64) + J(100 - 81) + J(100 ­
100). That is J100 + J99 + J96 + J91 + J84 + J75 + J64 + J51 + J36 +
J19 + JO. Or 10 + 3J11 + 4J6 + J91 + 2J21 + 5J3 + 8 + J51 + 6 +
J19 + O. Which sum cannot be written otherwise more briefly than by sub­
stituting 24 for 10 + 8 + 6 + 0; so the ratio of this sum to the greatest root
taken the same number of times, thus to 11J100 or 11 x 10 or 110, can be no
better expressed than

24 + 3J11 + 4J6 + J91 + 2J21 + 5J3 + J51 + J19
110

which seems still less intelligible than when the radius is taken in fewer parts,
such as six.

And in the same way, as more parts of the radius are taken, so the expres­
sion for the ratio necessarily becomes more intricate; and indeed requires
repetition of almost all the roots, since they happen little, indeed rarely, and
only as if by chance, to be commensurable either with rational numbers or
with each other. And therefore if one takes the radius in an infinite number
parts, the ratio arising will appear even less expressible than here.

The same holds if, in the manner of Proposition 135,one takes the diameter
of the circle in twelve parts. For then the corresponding right sines in the semi­
circle are J(O x 12 - 0) + J(l x 12 - 1) + J(2 x 12 - 4) + )(3 x 12 - 9) +
J(4 x 12 - 16)+ J(5 x 12 - 25) + )(6 x 12 - 36) + J(7 x 12 - 49) + J(8 x
12 - 64) + J(9 x 12 - 81) + J(10 x 12 - 100) + J(l1 x 12 - 121) + J(12 x
12 - 144). That is J(O - 0) + )(12 - 1) + J(24 - 4) + )(36 - 9) + J(48­
16) + )(60 - 25) + )(72 - 36) + )(84 - 49) + J(96 - 64) + J(108 - 81) +
J(120 - 100) + J(132 - 121) + J(144 - 144). That is JO +)11 + J20 +
J27 + )32 + )35 + J36 + )35 + J32 + J27 + J20 + )11 + JO. Or because
of those roots taken twice, 2JO + 2J11 + 2)20 + 2)27 + 2)32 + 2J35 +
J36. Or reducing irrationals to least terms, 0 + 2J11 + 4J5 + 6J3 + 8J2 +
2J35 + 6. Therefore the ratio of this sum to the same number of roots equal to
the greatest , thus to 13J36 or 13 x 6, that is to 78, can be no better expressed
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than as
0+ 2)11 + 4)5 + 6)3 + 8)2 + 2) 35 + 6

78

or
) 11 + 2) 5 + 3)3 + 4)2 + ) 35 + 3

39

And this is t he ratio of the sum of those right sines in the semicircle, to
the same number of lines equa l and parallel to the radius in the parallelo­
gra m circumscribing this semicircle . If, moreover , the greatest sine )36 = 6 is
assumed to be t aken twice (for both quadrants at the same t ime) and there­
fore for 13 equa ls, are put 14 (t hus for 13 x 6 = 78 is put 14 x 6 = 84) this
will be the same ra tio as was said above to arise from taking t he radius in six
par ts.

Equally if the diamet er is taken 20 parts. The right sines in t he semicircle
will be )(0 x 20 - 0) + ) (1 x 20 - 1) + J(2 x 20 - 4) + ) (3 x 20 - 9) +
)(4 x 20 - 16) + J(5 x 20 - 25) + ) (6 x 20 - 36) + ) (7 x 20 - 49) + )(8 x
20 - 64) + )(9 x 20 - 81) + ) (10 x 20 - 100) + )(11 x 20 - 121) + )(12 x
20 - 144) + )(13 x 20 - 169) + )(14 x 20 - 196) + )(15 x 20 - 225) + )(16 x
20 - 256) + )(17 x 20 - 289) + )(18 x 20 - 324) + )(19 x 20 - 361) + J(20 x
20 - 400). That is ) 0 + ) 19 + ) 36 + )51 + )64 + ) 75 + )84 + J 91 + ) 96 +
J 99 + J I00 + ) 99 + )96 + )91 + J84 + ) 75 + )64 + )51 + J 36 + J 19+
) 0. Or 2)0 + 2)19 + 2) 36 + 2)51 + 2J64 + 2)75 + 2)84 + 2J91 + 2)96
+ 2J99 + ) 100. (That is, the same as held above in a quad rant taking the
radius in ten parts, here put twice, except that t he greatest sine, in common
to both quadrants, is not repeated .) Or also 0 + 2)19 + 12 + 2)51 + 16 +
10)3 + 4)21 + 2) 91 + 8)6 + 6)11 + 10. Or fina lly (since 0 + 12 +
16 + 10 = 38), 38 + 2)19 + 2) 51 + lOJ3 + 4)21 + 2)91 + 8)6 + 6)11.
And therefore t he ratio of the sum of t hose roots to t he greatest taken the
same number of t imes (t hus, 21 x 10 = 210) is

38 + 2)19 + 2) 51 + 10)3 + 4)21 + 2) 91 + 8)6 + 6)11
210

or
19 + )19 + ) 51 + 5)3 + 2J21 + ) 91 + 4)6 + 3)11

105

And indeed the mor e par ts there are taken of the radius or diamet er,
so much less does the ratio of all the sines, to the grea test taken the same
number of times, seem expressible. Therefore if the radius or diameter is taken
in infinitely many parts (which it seems must be done for our purposes) the
ra t io of all sines , to the radius taken the sam e number of t imes, that is, th e
quadrant or semicircle to t he circumscribed squa re or parallelogram , seems
wholly inexpressible, at least unless an expression of this kind is judged to be
sufficient , as we showed in P roposit ions 121 and 135.



The Arithmetic of Infinitesimals 125

And thus having weighed this carefully, it nearly came about that I ab an­
doned the investigation of the thing that, as it were, I so called for above. The
one thing that gave hope was this. That is, that the same difficulty notwith­
standing, in square roots, cube roots, biquadratic roots, etc. of numbers in
arithmetic proportion the thing turned out not badly.

For example, if aseries of second roots is continued as far as you please,
thus, JO + JI + J2+ J3+ J4+ J5+ J6, their ratio to the greatest taken
the same number of times, thus, 7J6, does not seem to be expressible other
than as

JO + JI + J2+ J3+ J4+ J5+ J6
7J6

or

o+ 1 + J2+ J3+ 2 + J5+ J6
7J6

or at least (since 0 + 1 + 2 = 3) as

3 + J2+ J3+ J5+ J6
7J6

unless perhaps it pleases one to multiply both the numerator and denominator
by J6 to produce the ratio 3J6 + JI2 + JI8 + J30 + J36 to 7 x 6, or rather
3J6 + 2J3 +3J2 + J30 + 6 to 7 x 6 = 42. And similarly in other series of
this kind.

But if the same series is supposed continued to infinity, it will eventually
produce the ratio ~ or 2 to 3 or 1 to I! , as was said in Propositions 53
and 54, the infiniteness itself indeed (which seems amazing) destroying the
irrationality.

And it holds similarly for third roots , fourth roots, etc. as is clear from
what was taught above in Propositions 54 and 59.

This difficulty notwithstanding, the quadrature of the simple parabola
been shown both by others before this, and also by us by our method; and
also the quadrature of any higher parabola (the same difficulty remaining) has
been taught by us happily enough above, so clearly not all hope was lacking
of eventually finding the ratio of series of universal roots (of augmented or
reduced series) to aseries of equals. And indeed if not in every case, at least for
those so far set out; and perhaps even in those that touch on the quadrature
of the circle itself or the ellipse, or also the hyperbola, something may be
gained.

That what must next be inquired after may be more rightly seen, let us
remember what (among other things) has been achieved so far towards the
quadrature of the circle (or any ellipse).
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That is, by Propositions 118 and 121, if the sequence of ratios f, ~' 1
8
5 ' 1~85 '

~~: ' etc. can be interpolated , the rati o tha t must be placed as intermediate
between the first and secon d is that of a qu adrant of a circle to t he square of
the radius, or t he circle it self to the square of t he diameter.

In the same way, by Propositi ons 133 and 135, if it were possible to inter-
I hi f rati 1 1 1 1 1 he rati h bpo ate t IS sequence 0 ratios 1" ' 6 ' 30 ' 140 ' 630 ' etc., t e ratio t at must e

placed as intermediate between the first and second is that of a semicircle to
t he square of the diam eter.

Bu t , above all, if it were possible to interpola te the diagona l num­
bers in the table in Propositi on 132, that is, 1, 2, 6, 20, 70, etc., t he
ratio of 1 to the number intermediate between the first and second of
those, is that of the circle to the square of the diameter , and t he ellipse
to the circumscribed parallelogram. As will be proved by the followin g
propositi on .

PROPOSITION 166

Theorem

If an infinite series of equa ls, first powers, second powers, third powers, etc.
is mul tiplied te rm by term by itself reversed .P" and t he same also by itself
directly.P'' t he sums of the product s of t he former , to the sums of the lat­
te r , are as 1 to 1, 2, 6, 20, 70, etc., t he diagonal numbers in the table in
Proposit ion 132.

For if aseries of equals (whether taken directly or reversed) is multiplied term by
term by itself, it will give aseries of equals, to which there belongs the ratio 1 to 1.

If, moreover, aseries of first powers is thus multiplied by itself directly, it will
give aseries of second powers; if aseries of second powers is thus multiplied it will
give aseries of fourth powers; if aseries of third powers, it will give aseries of
sixth powers, etc. by Proposition 73. To which belong the rat ios ~ ' k, ~ ' ~ ' etc. by
Propositions 44 or 64.

If, moreover, aseries of first powers is multiplied term by term by itself
reversed (thus the series a, b, c, etc . by the series D - a, D - b, D - c, etc.) or
in the same way a series of second powers by itself reversed (thus a2, b2, c2, etc.
by the series (D-a) 2, (D- b)2, (D - c)2, etc or D2 - 2aD +a2, D 2 - 2bD + b2,

D 2 - 2cD + c2, etc.) or in the same way a series of third powers by itself reversed

57 In seipsam inverse positam, that is ' taken backwards' or 'reversed ' . Bear in mind that
Wallis 's series, t hough it has an infinite nu mb er of terms, has a finit e greatest term, and
so t he term s ca n be taken in eit her dir ection .

58 In seipsam directe positam; Walli s uses 'directl y ' here to mean 'forward' . Earlier (in
Propositions 99, 102, 103, 104, 106) he spo ke of direct and reciproca l pro po rtion; t he
two uses of 'direct ' are linked in that t he powers, or indi ces, of direct series go forwards
(1, 2, 3, . . .) whereas t he indices of reciprocal or invers e series go backwards
(- 1, - 2, - 3, .. .).
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(t hat is a3, b3, c3, etc . by (D -a)3 , (D- b)3, (D- C)3 , etc.) , and so on for the
rest , t he rat ios belonging to t hem are i , :lö , l~O ' 6~O ' etc. by P rop ositi ons 133
and 134.

T herefore t he ratios of t he latter rat ios to t he former ratios are as 1 to t he
numbers 1, 2, 6, 20, 70, etc., t hat is, to t he diagona l numbers in t he table in P ropo­
sition 132 (as is clear from t he calculat ions). W hich was to be proved.

COMMENT

It must be not ed here: in the sequence of ra t ios t , ~, t , ~ , i,etc. the denomi­
nators are arit hmetic proportionals; and therefore if in the intervals there are
to be int erposed the same number of ratios, they will be ~, ~ , i, i , etc .
by analogy with arit hmetic proportionals, and the rules in Propositions 44
and 64.

B . h f ra t i 1 1 1 11 t h d . tut m t e sequence 0 ra t ios 1" ' 6"' 30' 140 ' 630 ' etc . e enomma ors
are 1, 6, 30, 140, 630, etc. arising from cont inued multiplication of the num-

b
6 x 10 x 14 x 18 12 x 20 x 28 x 36ete. ( h b h h

ers 1 x etc . or 1 x 8 w ere ot t e
1 x 2 x 3 x 4 2 x 4 x 6 x ete .

numerators and denominators of t he fractions are arithmetic proportionals).
And t herefore (by analogy with those progressions), if the number to be inter­
posed between t he first and second is called A, then the rest , to be interposed
in the remaining intervals, ar ise from cont inued multiplication of the numbers

16 x 24 x 32ete. . .A x . (And indeed, the number placed before the first lS i A,
3 x 5 x 7ete.

by the same analogy. In the previous case , moreover, and therefore in the
sequence soon to follow, the number before the first vanishes; that is, first to
0, th en to infinity.)59

F inally in the sequence of ratios t , ~ , i, 2~ ' 7~ ' etc . the denomina­
to rs 1, 2, 6, 20, 70, arise from cont inued multiplication of the numbers

2 x 6 x 10 x 14ete. 4 x 12 x 20 x 28ete. ( h b b h
1 x or 1 x w ere, as a ove, ot

1 x 2 x 3 x 4ete . 2 x 4 x 6 x 8etc .
the numerators and the denominato rs of the fract ions are arithmet ic propor-
t ionals). And therefore (by ana logy with such progressions), if the number to
be int erposed between the first and second is called 0::, the rest arise from con-

8 x 16 x 24etc.
tinued multiplication ofthe numbers 0:: x 3 5 7 . (Moreover, 0:: = ~A,

x x etc .
. 1 di id d b 1 · 2 1 1 )smce A 1V1 e y 2 lS A = TA = Q'

2

59 W hat Wa llis means here is t hat in t he seq uence just discussed t he mul t ipli er before .!f
(following t he sa me pattern ) would be ~ , and the refore t he te rm before A must be kA.
In t he previous sequ ence t he mu lt iplier before ~ (following the same pattern) wou ld be 3
and t herefore t he term be fore 1 must be ~ = 0, and t he one before that must be infinite.
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PROPOSITION 167

Theorem

T herefore if an infinite series of second roots (thus Ja, J b, Je, etc .) is
mult iplied term by term by itself reversed (thus by J(D - a), J( D - b),
J( D - e) etc .) and also by itself directly (thus t he series Ja, J b, Je, etc .
by the series Ja , J b, Je, etc.), the sum of products of the former (t hus
J(aD - a2

) + J(bD - b2
) + J(eD - e2

) , etc .) to the sum of the latter (thus
Ja2 + J b2 + Je2 etc. or a+ b+ e etc.) is as 1 to the intermediate number
interp osed between the diagonal numbers 1 and 2 in the table in Proposi­
t ion 132.

Follows from what has gone before. For a series of second roots is int ermediate
between aseries of equa ls and series of first powers (as is clear from what was sa id
in Proposition 64).

Moreover , aseries of second roots multiplied by itself directly (thus "ja, "jb,
"je, etc. by "ja, "jb, "je, etc. ) is a series of first powers (thus "ja2

, "jb2
, "je2

, etc. or
a, b, e, ete .) to which belongs the ratio ~ by Propositions 44 or 64. And th erefore,
if t he ratio that belongs to aseries of [second root S] BO mul t iplied by it self reversed
(intermediate, that is, between the ratios t and i) is sa id to be 2b, then the ratio

of this 2b, to that ~ , t hat is 5' will be (by what has gone before) that of 1 to

the numb er interposed between 1 and 2, in the sequence of diagonal numbers 1, 2,
6, 20, 70, etc . in the table of P rop osition 132. Whieh number, therejore, in what
follows will be ealled O. And it is half the number interp osed between 1 and 6 in the
sequence 1, 6, 30, 140, 630, etc.

PROPOSITION 168

Coro lla ry

And therefore the circle to t he square of its diameter is as 1 to 0 , that is, to
the number interp osed between 1 and 2 in the sequence of diagonal numbers
1, 2, 6, 20, 70, etc. in the table of Proposition 132.

For since (by Propositions 133 and 135) the semic ircle to the squa re of it s diame­
ter is as 1 to 20 (the number intermediate between 1 and 6 in t he sequence 1, 6,
30, 140, 630, etc .) the circle (twice the semicircle) is as 1 to 0 (the number inter­
mediat e between 1 and 2 in the sequence 1, 2, 6, 20, 70, etc .) by what has gone
before.

And indeed t he same ratio 5 is that which must be placed as int ermediate

between t and ~ in the sequence t , ~ , fg , 1~5 ' etc . by Propositions 118 and 121,
as will also be further obv ious later .

BO Wa llis has mistakenly wr itten 'first powers '.
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COMMENT

Since t herefore (as at last we return to what we pointed out in the Comment
to Propositi on 165) the thing may be redu ced to this , whet her we can inter­
polate those rati os (noted in Proposition 118), t, ~, 1

85
' 1~85 ' etc., that is, 1 to

3 15 105 (t hat i 1 1 1 1 7 2 9 ) h' h . f . d1, 2 ' 8 ' 48 ' etc. t at is, to , 2 ' 8 ' 48 ' etc. w 1C anse rom cont mue
3 x 5 x 7 x getc .

multiplication of t he numbers 1 x 8
2 x 4 x 6 x etc.

Or also those f, f; , 3
1
0' 1~0 ' etc. (from Proposit ion 133), of which the

denominators 1, 6, 30, 140, etc. arise from continued mult iplicati on of the

b
6 x 10 x 14 x 18etc.

num ers 1 x .
1 x 2 x 3 x 4etc .

Or finally those t, ~ , f; , 2
10' etc. , that is, of 1 to 1, 2, 6, 20, et c. (the

diagonal numbers in the table in Proposition 132) which arise from cont inued
mul tiplication of the numbers 1 x f x ~ X 1

30
X 144 etc .

If, I say, we can interpolat e any one sequence of these ratios , we will have
the quadrat ure of the circle very accurately. And indeed in t he first and third,
the ratio to be interposed (afte r the first ) will be Ö, bu t in the second the
ratio 2b . And therefore if t he interpolation is shown in one, it may aiso be
done without difficul ty in t he ot hers .

One may therefore approach the table in Proposition 132 (as we assumed
from the beginning, whence t here shines greater hope of underst anding the
question ), that we may see by what art we may interp olate it. And therefore we
repeat it with spaces placed alte rnately (so that what were there the first , sec­
ond , t hird sequence , etc. are here the second , fourth, sixth, etc.) and exa mine
it a lit tl e more closely, which is to be done in vario us propositions following.

PROPOSITION 169

Theorem

All the numbers of the table in Proposition 132 are figurate. That is, those in
the first sequence (whether vertically or horizont ally) are units; those in the
second, sides; those in the third, t riangular numbers; those in the fourth, pyra­
mid al numbers, and so on, thus, triangulo-triangulars, trian gulo-pyramidals,
pyr amido-pyramidals, etc.

This is clear from inspection of the table, and by comparison (if needed) with the
figurat e numbers that occ ur in Maurolico and other s. Mor eover , I use those names
that our master Oughtred (a n exceptional mathemati cian) uses in his Clavis maihe­
maticae, (C hapter 17, not e 11) .6 1

6 1 Wallis is referring here to the second and later edit ions of William Oughtred 's Clavis
mathematicae, those published from 1647 onwards; in the first (1631) edit ion, Oughtred's
note on figurate numbers app ears at Chapte r 18, note 16. Wallis was involved in cor­
recting the third Latin edit ion of the Clavis for publication at Oxford in 1652. See
Stedall 2002, 55-87.
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Moreover, what were the first , second, third sequences, etc. in that table
in Proposition 132, now here repeated in the same way become the second,
fourth, sixth, etc. (because of the interposed spaces to be filled , if possible, with
numbers).

nits

ides

riangulars

yramidals

riangulo-triangulars

T
And so on

PROPOSITION 170

Theorem

Two sequences in the table shown, that is, units and sides, are easily interpo­
lated (interposing as many places as one likes); in the former, obviously, by
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the interposition of one as many times as needed ; in the latter, by the same
number of arithmetic means.

Thus, one may interpose a single number everywhere; the interpolated sequences of
units will be 1,1,1,1,1,1,1,1,1,1,1,1; but of sides L, 1, 1~ , 2, 2~, 3, 3~, 4, 4~ ,

5, 5~, 6, or ~, 1, ~ , 2, ~ , 3, ~, 4, ~ , 5, lf, 6.
The reasoning is obvious; since the numbers in the former sequence are equals,

in the latter arithmetic proportionals.

COMMENT

The remaining sequences are not so easily interpolated, except by first finding
the true nature of each sequence , which we will investigate in the following
Propositions.

PROPOSITION 171

Lemma

Let it be proposed to inquire, what is the ratio of the triangular numbers to
their sides.

We will investigate that by this process:

1. If one takes the number of points that any triangular number requires, they can
of necessity be displayed in the form of a triangle, and the lines may be joined
as in the diagram. It is clear that the complete triangular figure is divided into
as many triangles (similar both to the whole and amongst themselves) as the
square of the number of the side less one (which may be demonstrated if need
be from Euclid's Elements VI.19). And therefore if the number of the side is l,
the number of small triangles will be (l - I? = 12 - 2l + 1.

2. Since any of these triangles has three angles, the number of these angles will be
31 2

- 6l + 3.
3. It must be noted that at three angular points of the whole figure , only the same

number of angles adjoin (that is, one each) , and therefore those three angles
occupy three points, or 3P.
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4. At the remaining points along the sides, there meet three angles, any one of
which therefore occupies one third of a point. Moreover, those intermediate
points on the sid es are l - 2 on each side, therefore 3l - 6 in all (since t here are
three sides) ; and the angles adjacent to these intermediate points are 9l - 18
(since there are three angles to each point) , of which any one occupies one third

. 9l-18
of a POInt, or ~P. Therefore all together occupy --3-P,

5. At the rernaining points left over, inside the area of the figure, there rneet six
angles (that is, six at each) which therefore occupy one sixth of a point. How
rnany are those angles, thus together? The total number of angles is (as we
said) 3z2 - 6l + 3. Now if there are subtract ed 3 (taken at the corners of the
whole figure) and 9l - 18 (adjacent to the points on the sides) t here rem ain
312 - 15l + 18, which is the number of an gles meeting at points inside the area.
But since any of them occupies one sixth of a point , or iP , they occupy together

312 - 15l + 18 P
6 .

Finally, if all the points so found ar e added together , that is, 3P and 9l ~ 18 P

d 3z2 - 15l + 18 P hei ill b l2 + l . h b f II h .an 6 ' t eir sum Wl e -2- POInts, t e num er 0 a t e pomts.

That is, the triangular numbe r of side l. Therefore:

PROPOSITION 172

Theorem

The side of any triangular number to the number itself is as l to [2 : [ .

As has been shown in what has gone before .
Therefore, given a side l , there will be given a t riangular number belonging to that

l2 + l
side, thus n = -2- '

And conversely, given a triangular number , its side may be found .
That is, by solving this equat ion: 2n = z2 + l , we will have y'(t + 2n) - ~ = l.

PROPOSITION 173

Corollary

If the transverse diameter of a hyperbola is 1 and its latus rectum ~ , taking
diameters (between the foot of the ordinate and the vertex) 1, 2, 3, 4, 5, etc .,
the squares of the ordinates will be 1, 3, 6, 10, etc ., that is, triangular numb ers
whose sides are 1, 2, 3, 4, 5, etc .

This may be proved by Propositions 17 or 33 of my On conic sections . The figur e
in the following Proposition shows the hyp erbola its elf.
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PROPOSITION 174

Corollary

In the same way, suppose that on t he same line AaD there are two similar
t riangles a Dß, ADB, and t hat AD to DB and a l) to Dß are as 1 to )~,

and take equal steps Aa = 1 = cd) = DD etc. The rectangles BDß, BDß,
etc. will be to each ot her as 1, 3, 6, 10, etc. , t riangular numbers, whose sides
are o I) , o I) , etc. But t he mean proport ionals between BD and Dß, BD and
Dß etc . are the ordinates of the hyperbola aDE whose t ransverse diameter
is Aa and latus rectum oH , or equal to it .

D

Clear from t he calcul ation . For of t he rect angles BDß , t he first will be v't x

2v't = 1. T he seco nd 2v'4 x 3v'4 = 3. The third 3v'4 X 4v'4 = 6. The fourth
4v'4 X 5v'4 = 10. And so on. Which are t he squares of t he ordinates in the hyper­
bola , by wh at has gone before. And therefore the mean prop ort ionals J l, J3, J6,
J lO, etc . are t he ordinates t hemse lves.

COMMENT

If, moreover , it had been assumed that AD = DB and also cd) = Dß, then the
rectangles would have been 1 x 2 = 2, 2 x 3 = 6, 3 x 4 = 12, 4 x 5 = 20, etc .,
twice the t riangular numbers, and t he mean proportionals ) 2, ) 6, ) 12,
) 20, etc . would be the ordinates of a hyperb ola , in which both t he latus
rectum and transverse diameter would be 1, which, as has been said, will be
clear from consideration. Wh ich is easily accommodated to other rat ios of the
latus rectum to the transverse diameter.
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PROPOSITION 175

Theorem

The sequence of triangular numbers in the previous table may be conveniently
interpolated if between the sides of those numbers there are interposed as
many arit hmetic means as are needed , and from these are formed triangular
numbers according to Proposition 172.62

Thus if in th e sequence of triangular numbers 1, 3, 6, 10, 15, etc . a single number is
to be everywhere interposed : their sides 1, 2, 3, 4, 5, etc . int erpolated by arithmetic
means, must be ~ , 1, 1 ~ , 2, 2 ~ , 3, 3~ , 4, 4~ , 5, etc. to which sides (by Proposi­

tion 172) correspond the triangular numbers ~ , 1, 1~ , 3, 4~ , 6, 7~ , 10, 12~ , 15, 1 7 ~ ,

21 0 3 1 15 3 35 6 63 10 99 15 143 21 0 fi ll 3 8 15 24 35,etc. r 8' , 8' ' 8' ' 8' ' 8' , 8 ' , et c. r na y 8 ' 8 ' 8 ' 8 ' 8 '
~ , pt, W' ~, l~O , 1~3 , 1~8 , et c. whose differences are arithmetic proportionals.

In the same way, if two places are to be interposed in a single interval, t hey will
produce the numbers ~, ~ , 1, Jt- , ~ , 3, ~, ~ , 6, ~, 7§- , 10, etc. Or ~ , ~ , ~, Jt- .
~ , ~ , etc . whose differences, in the same way, are arithmetic proportionals.

PROPOSITION 176

Lemma

It is proposed to inquire what is the ratio of the pyramidal numbers to their
sides.

This proposition also may be investigated by the same process as we used in Propo­
sition 171, which anyone who wishes may try (having observed in the meantime the
facts that necessarily distinguish the arrangement of pyramidal numbers from the
arrangement of triangular numbers). But since it is not so easy for the reader to
conceptualize the necessary placing of points in a pyramid (as not all of them can
be positioned in the same plane) , or the placing of the solid angles at each point, it
seems more satisfactory here to show it by the method that folIows. (Which indeed ,
except that I preferred to show another method, cou ld have been applied also at
Proposition 171.)

1. A pyramidal number is equal to a sum of t riangular numbers (as is clear from
what was said at Propositions 130 and 132) , that is, from 1 to t he trian­
gular number with the same side as itself, inclusive. (In the same way also,
triangular numbers arise from sums of sides ; and sides from units; and also
t riangulo-triangulars from pyramidals; and so on) .

62 Note the mixture of geom etry and algebra in this theorem . Triangles and sides are
geometrical concepts, while an arithmetic mean can be const ruc te d eit her geometrically
or algebra ically. The final st ep in Wallis's argument, however , the const ru ct ion of new
triangular numbers from given sides is purely algebraic: there is no physical meaning to
a triangular number based on a side of ~ or 1 ~ or 2 ~ points.



[+1 [+1 l+1 .
7. Therefore the sum of both together (thus -2-l + -3-l2 + -6-l), that IS,

312 + 3l + 213 + 2[2 + [2 + l 2[3 + 6[2 + 4[ . .
6 6 IS the sum of the two senes, half

[3 + 3[2 + 2[
of which sum, 6 is the pyramidal number of side l. Therefore:
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2. Moreover, any triangular number of side [ is [2:[,by Proposition 171.

3. Therefore, having taken the sides 1, 2, 3, 4, etc . or (in their place) a, b, c, d, etc.
the sum of a2 + a, b2 + b, c2 + c, d2 + d, etc. (the number of which will be equal
to the greatest side) will be twice the sum of triangular numbers; and therefore
half of this will be the pyramidal number, whose side is equal to the side of the
greatest triangular number.

4. Therefore, the pyramidal number is half the sum of two series, continued from
1 as far as one likes, until the number of places is equal to the side of the
pyramidal number sought, which may be supposed l , To which if there is added
in front another place 02 + 0 (so that the series is understood to begin from 0)
the number of terms will be [ + 1. And the sum of both series is already known
from Propositions 2 and 20.

5. That is, the sum of a series of first powers 0 + a + b + c etc. of which the last is

[ and the number of terms [ + 1, will be [ ~ 1[ , by Proposition 2.

6. And the sum of aseries of second powers 0+ a2 + b2 + c2 etc. of which the last
. . [+1 [+1 [+1

term IS [2 and the number of terms [+ 1, will be -3-e + ~[2 or -3-[2 +

[ ~ 1[, by Proposition 20.

PROPOSITION 177

Theorem

Th .d f .d I b h ber i lf . l l3 + 31
2 + 2le SI e 0 any pyrarm a num er to t e num er itse IS as to 6

As shown in what has gone before.
But, given a pyramidal number n, its side will not be known except by solving

the cubic equation 6n = [3 + 3[2 + 2l .

PROPOSITION 178

Theorem

The sequence of pyramidal numbers in the previous table may be conveniently
interpolated if between the sides of those numbers there are interposed as
many arithmetic means as are needed , and from them are formed pyramidal
numbers according to the preceding Proposition.
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T hus , if t he sides 1, 2, 3, 4, 5, 6, et c, of pyr amidal nu mbers 1, 4, 10, 20, 35, 56, ete .
are interpo lated in t his way : 4 , 1, 14 , 2, 2 4 , 3, 34 , 4, 4 4 , 5, 54 , 6, et c. To t hese sides

will eorres po nd t he pyramidal seq uenee 15, 1, 216 , 4, 6ft , 10, 14iß , 20, 26* , 35,

44 * , 56, ete. or a lso 15, 1, N, 4, \0; , 10, 21361, 20, 412: , 35, 711;, 56, ete. Or rather .*, 1, ~085 , 4, 318
5, 10, ~83 , 20, l~r , 35 , 2~:5 , 56, etc.

PROPOSITION 179

Lemma

It is proposed to inquire what is the ratio of t riangulo-t riangular numbers to
their sides.

This will be shown by the same met hod as in Proposition 176. That is:

1. A t riangulo-triangular numbers is equal to the sum of all t he pyramidal numbers
(t he sides of wh ich are to be understood as int egers , for the interpolation is not
yet earr ied out) from 1 to t he number sharing the same side , incl usive.

2 M if h id " Z h id I ber ] Z3 + 3Z
2
+ 2Z b P ". oreover 1 t e SI e IS , t e pyrarru a num er IS 6 ' Y rop osi-

t ion 177.
3. T he refore , having taken sides 1, 2, 3, 4, ete. or (in t heir plaee) a, b, c, d, ete.

the sum of a3 + 3a2 + 2a, b3 + 3b2 + 2b, c3 + 3c2 + 2c, d3 + 3d2 + 2d, etc. (t he
number of all of whic h will be equal to t he greatest side, as is obvious) will
be six times the sum of pyramidal numbers; and therefore a sixth of t his sum
will be t he t riangulo-triangular nu mb er whose side is t he same as t hat of t he
greatest pyramid.

4. And t here fore t he triangulo-t riangular number is one sixth of the sum of t hree
ser ies , eontinued from 1 as far as one likes until t he number of t erms is equal
to t he side of t he required t riangulo-triangular number , which may be ealled Z.
And t here fore, if to that t he re is added in fron t another te rm 03 + 02 + 0 (so
the series are understood to inerease from 0), t hen t he number of terms will be
Z+ 1. And t he sum of eaeh of t hose series is already known from Prop ositions 2.
20 and 40.

5. That is, t he sum of twice aseries of first powers , 0 + 2a + 2b+ 2c, etc . whose

last t erm is 2Z , and with number of t erms Z+ 1, will be Z~ 12Z, by Proposition 2.

6. The sum of three t imes a seri es of seeo nd powers , 0 + 3a2 + 3b2 + 3c2
, etc . whose

last t erm is 3Z2, and with number of t erms Z+ 1, will be Z~ 13Z2 + Z~ 1 3Z2, by

P rop ositi on 20.
7. The sum of a seri es of third powers, 0 + a3 + b3 + c3

, etc, whose las t term is Z3,

and with number of terms Z+ 1, will be Z: l Z3 + Z;ZI Z3 by Prop osition 40.

Therefore t he aggregate of t hese sums

( h Z+ 12Z Z+ 13Z2 Z+ 13Z2 Z+ l Z3 Z+ l Z3)
t us 2 + 3 + 6Z + 4 + 4Z '
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h
. 24[2 + 24[ + 24[3 + 24[2 + 12[2 + 12[ + 6[4 + 6[3 + 6[3 + 6[2

t at 18, 24

6[4 + 36[3 + 66[2 + 36[ . h f h h . . h f hi h24 ' 18 t e aggregate 0 tose t ree series, one Sixt 0 w ic ,

[4 + 6[3 + 111
2 + 6[ . h . I . I b f sid [Th 1:24 ' IS t e tnangu o-triangu ar num er 0 SI e . ererore:

PROPOSITION 180

Theorem

The side of any triangulo-triangular number to the number itself is as l to
l4 + 613 + l1l 2 + 6l

24

Therefore, given side l there is given the triangulo-triangular number, thus:

[4 + 6[3 + 1112 + 6[
n = 24

But given a triangulo-triangular number its side will not be found exeept by
solving this equation 24n = [4 + 6[3 + ne + 6[ .

PROPOSITION 181

Theorem

The sequence of triangulo-triangular numbers in the previous table may be
conveniently interpolated if between the sides of those numbers there are
interposed as many arithmetic means as are needed, and from them are formed
triangulo-triangular numbers according to the preceding Proposition.

Thus, to the interpolated sides ~,1 ,1~,2,2~,3 , 3~ ,4,4~,5,5~ , 6, et c, eorrespond

the triangulo-triangular numbers 13258 ,1 ,215;8,5,91;8 ,15,2315;8 , 35,50 13;8,70,94 g~,

126, ete. or also t2'8 ' 1, g~ , 5, \12585 ,15, 31°2°83,35, 61~3: , 70 , 1i~~5 , 126 , ete. Or rather,
105 1 945 5 3465 15 9009 35 19305 70 36465 126
384' '384' ' 384' , 384 ' , 384' ' 384 ' , etc .

PROPOSITION 182

Lemma

It is proposed to inquire what are the ratios of subsequent sequences of figu­
rate numbers to their sides, that is, triangulo-pyramidal numbers, pyramido­
pyramidal numbers, etc.
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It is possible indeed for t his to be shown by t he sa me method t hat we used in
Proposit ions 176 and 179, wit h t he help of t he P rop osit ions noted t he re, t hat is,
P ropos itions 2, 20 and 40 toget he r with P roposition 43, at leas t if we would first
pursue fur t her t he teaching of ra tios of finite series of fourth , fifth, sixt h (and subse­
quent) powers to aseries of equal te rms, which teaching we only briefly indicated at
P roposit ion 43. Bu t if anyone wants t hat fur t her continuation , he may dem onstrat e
it by another method as best pleases hirn, or also (unless better aids occ ur to hirn )
by t he help of t he table itself, which we already have in hand, after which , by a way
soo n to be taught, we will show how to investigate t he rat ios of figurate numbers ,
to t he sides of any of t hem , in subsequent seq uences. For as at P ropositions 176
and 179, from known rat ios of simple finite series (t hus , by P rop ositions 2, 20 and
40, of first powers , second powers and t hird powers , to series of equals) t here may be
invest iga te d the rat ios of t his table (t hus, triangular, pyramidal , trian gulo-trian gul ar
numbers to t heir resp ective sides) , so in t urn, the latter known, t he form er also may
be sought out , and t here fore t he te aching of Proposition 43 may be cont inued as far
as one likes.

Becau se, moreover (as we said ), that was only touched on at Prop osition 43. Nor
ind eed is it necessary to the pr esent purpose to proceed with it further, since from
the known formulae'f of a few sequences of this t able (or the ra tios of those figurate
numbers to their resp ecti ve sides ) a method of investigat ing t he formulae also of the
sub sequent sequences will begin to appear, so that I may now operate more easily
by t hat, as is given here,

The formula for each sequence of numbers is clear from what has gone before.

Units

Sides

Tri angulars

Pyramidals

Tri angulo-t riangulars

1

[

[2 + [
2

[3 + 3[2 + 2 [

6
[ 4 + 6[3 + 1112 + 6[

24

It is also clear, looking more closely, that those formulae arise from continued
multiplication of these quantiti es:

[ [+1 [+2 [+ 3
1 x - x -- x -- x -- etc .

1 2 3 4
or

1 x [ x ([ + 1) x ([ + 2) x (l + 3)
1 x2 x 3 x4

63 Serierum chara cteribus, Iit erally , from t he proper ti es of t he sequences' . Since for Walli s
t he proper t ies of each seq uence had now come to be defined by an algebraic formula ,
character is trans lated from here onwards by ' formula ' .



The Arithmetic of Infinit esimals 139

For

l x l + O =1
1

1 x 1+ 1 = Z2 + Z
2 2

Z2 + Z Z+ 2 Z3 + 3z2 + 2Z
- 2- x - 3- = -'--:6"""'-:'-

Z3 + 3Z2 + 2Z Z+ 3 Z4 + 6Z3 + ll z2 + 6Z---=--- x--=----=-:----
6 4 24

And t here fore, if the multiplica t ion of t he ratio last di scovered is co ntinued further,
Z+ 4 Z+ 5 Z+ 6 .

by - 5- x - 6- x -7- etc. we w ill have the formulae of t he subsequent seq uence.

Thus

and

Z5 + lOZ4 + 35Z3 + 5012 + 241
120

Z6 + 15Z5 + 85Z4 + 225Z3 + 27412 + 120Z
720

[ d
Z7 + 2116 + 175Z5 + 735Z4 + 1624Z3 + 1764Z2 + 720Z] 64

a n 5040

And so on , as far as you pl ease .65

COMMENT

In this way we say, from the cont inuation of the ratios or formulae of the
present table, it is possible to deduce also the cont inuation of those ratios
indicated in Proposit ion 43.66 But since that will perhaps not be obvious to

6 4 This formula was included only in t he edi t ion rep rint ed in the Opera mathematica in
1695; it is included here for completeness.

65 These formulae were first written down symbolica lly, almost exact ly as Walli s has them
here, by Thom as Harriot about fifty yea rs ea rlier , exceptthat Harriot used nn etc .
where Walli s later wrote 12 etc.; see British Libr ar y Add MS 6782 , ff . 108, rep roduced
in Lohne 1979, 294 . Harriot also discovered the sa me method of genera ti ng the numbers
by successive multiplication . The formulae and the method of generat ing them were also
known to Fermat who, however , expressed the results verbally: "T he last side multiplied
by the next greater makes twice t he triangle. The last side mul ti plied by t he triangle
of the next greater side makes the three t imes the pyramid. The last side multiplied by
the pyr amid of the next greater side makes four t imes t he t riang ulo-t riang le. An d so on
by the sa me progression ad infinitum ' ; Fermat to Rob erval , 4 November 1636, Fermat
1891- 1912 , II , 84-85, see also Mah oney 1974, 230.

66 From his formulae for figurat e numbers Wa llis is about to derive fur t her results on sums
of powers. lt seems t hat Fermat was in possession of t he sa me facts but worked t he ot her
way round: from sums of powers to formulae für figur ate numbers: see Mah oney 1974,
229- 233 .
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all, I have considered it worth a little t rouble to show it in passing. Which
indeed , may be introduced here wit hout inconvenience, in a way t hat will
perh aps not be unwe1come to some. Therefore for example:

Let it be proposed to inquire what is the ra t io of a finite series of fourth
powers (beginning from 0) to aseries of the same number of terms equal to
the greatest .

1. The formula for the t riangulo-triangular numbers (by Proposi-

80) · 1
4 + 61

3 + 111
2 + 61 d c h I id It ion 1 IS 24 , an ror t e t riangu o-pyrami a s

15 + 101
4 + 351 3 + 5012 + 241 b P . . 82

120 ' y roposition 1 .

2. Moreover , (as has ofte n been said) , a figurate number of any degree (in the
present table) is the sum of all t hose preceding in the degree near est to it.
Therefore a triangulo-pyramidal number is a sum of triangulo-triangular
numbers .

3. And therefore , t aking sides 1, 2, 3, et c. or (in their place) a, b,c, etc . (of
which t he greatest may be called I) , and formi ng from them triangulo­
t riangular numbers, their sum will be the triangulo-pyramidal number of

h id h . 15 + 1014 + 3513 + 5012 + 241
t e same SI e, t at IS 120

4. Moreover , the sum of the series 0 + 6a + 6b+ 6c etc. is (by Proposition 2)

I + 161 = 61
2 + 61

2 2
5. The sum of the series 0 + l1 a2 + l1b 2 + l1 c2 etc. is (by P rop osition 20)

I + 1 12 I + 1 12 1113 + 1112 1112 + 111 2213 + 331 2 + 111
-3- 11 +~11 = 3 + 6 = 6

6. The sum of the ser ies 0 + 6a3 + 6b3 + 6c3 etc. is (by Prop osition 40)
1+1 1+1 614 + 613 613 + 612 614 + 1213 + 612

--613 + --613 - + ---
4 41 - 4 4 4

612 + 61 2213 + 3312 + 111
7. These three sums collected int o one ar e 4 + 6 +

614 + 1213 + 612 914 + 4013 + 6012 + 291
=

4 6
8. If, therefore , from twenty-four t imes the sum of all of them , is taken the

sum of t he three series,

that is, if from

is taken

that is, from

is taken

(l5 + 1014 + 3513 + 5012 + 241) /5

(914 + 4013 + 6012 + 291) /6

(61 5 + 6014 + 21013 + 30012 + 1441 )/30

(4514 + 20013 + 30012 + 1451 )/30

t here remains the sum of the fourth series, that is, of fourth powers

(615 + 1514 + 1013 + 0012
- 11 )/30
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That is, one thirtieth of 6[5 + 6[4

+9[4 + 9[ 3

+ 1[3 + 112

- 1[2 - 1[

Th . [+ 1[4 3[ + 3 [3 [ + 1[2 _ [ + 1[
at 1S 5 + 10 + 30 30·

Which is therefore the sum of the series of fourth powers whose last term
is [4, with number of terms [ + 1.
Or, if for the number of terms l + 1, there is substituted m , and therefore
aseries of equal terms ml", the series of fourth powers will be ~m[4 +
130 m[3 + 310 m[2 - io ml (if, that is, the first term is 0, the second 1), or
mi" 3m[4 m[4 m[4

"5 + J:Ol + 30[2 - 30[2·
9. Therefore a finite series of fourth powers, to aseries of the same number

of terms equal to the greatest, is as ~ + 1~[ + 3~[2 - 3~[2 to 1. Which is

what was sought."?

And in the same way, these being known, the ratio of aseries of fifth
powers to aseries of equals may be found with the help of the formula for the
next series of the table. And thence the ratio of aseries of sixth powers, with
the help of the formula for the next following series in this table, and so on
as far as one likes.

Moreover , that this may be better understood, it will perhaps be worth
the effort to open up a little more precisely what has already been taught. For
although it seems to me that I have taught it sufficiently clearly, it may be ,
nevertheless, that the reader less accustomed to those things might perhaps
sometimes hesitate.

It should be noted, therefore, that here (as also everywhere else, where we
speak of finite series) we make the number of terms l + 1 (thus, if the first
term is 0, the second is said to be 1), one more than the number of steps by
which the last term is reached; that is, [than the number] of all the differences
of the terms taken continually, the sum of all of which is equal to the greatest
term, whether those differences are equal , as in aseries of first powers (thus,
1, 1, 1, 1, etc ., differences of arithmetic proportionals) , or increasing, as in as
series of second powers , third powers, etc. (thus, 1, 3, 5, 7, etc ., differences of
squares; or 1, 7, 19,37, etc., differences of cubes , etc.) , or even decreasing, as
in aseries of second roots, third roots, etc. (since, for example, the difference
v3 - v2 is less than v2 - VI, and this less than VI - vO,etc. and so on
for the rest). The number [ of these differences (in any series) is one less than
the number of terms, as is obvious . And the sum of all (because of the nullity

67 When the Arithmetica infinitorum was reprinted in 1695 Wallis added further (lengthy)
calculations for the sums of sequences of fifth and sixth powers; see Wallis 1695, I,
449-452.
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of the first term, 0) is t he greatest term itself. Moreover , where the number
or quanti ty of terms is called m , the number of differences, or of steps to th e
greatest , will be m - 1.

Take, for example, aseries of first powers , which is like a sum of paral­
lelograms of equal alt it ude filling the figure of a circumscrib ed tri angle; of
which, if t he first is called 0 (that is, of no width, although of the same alti­
tude as the rest) , the second 1, etc. and the number of all is 16, there will
be 15 differences (equal to each other , t hat is everywhere 1), and the great­
est term t herefore 15. And t herefore since in each parallelogram the common
alt it ude is 116 VB (see figure 1) and the continual increase in width /6BS , all
the alt it udes taken at once, th at is, t he alt itude of the inscribed figure, are
VB = ~~ VB , but at the sam e ti me all t he increases in width, that is, the base
of the inscrib ed figure, are not BS, but ~~ BS, or BS - 116BS. If, moreover ,
one proceeds yet one ste p further , adjoining under the base one further par­
allelogra m, we will indeed have the width of BS precisely, but the alt it ude
now becomes augmented, that is VB + 116 VB . But if (in figure 2) the figure
is taken to be circumscribed by parallelograms, t hen first the altitudes of all
the parallelograms taken toget her , that is, t he alt itude of the circumscribed
figure, are VB (which is now to be imagined perp endicular to the base) , and
then all the par ts of t he widt h taken together , that is, the base of the circum­
scribed figure, are BS precisely. But now the series begins not from 0, bu t 1;
but if this series is cont inued one ste p further ab ove the vertex (so as to begin
from 0) the alt it ude t hus increased will now be VB + 116 VB , as is obvious.
And therefore the inscribed figur e cont inued one ste p below the base and t he
circumscrib ed figure continued one ste p above the vertex amount to the same
thing.

And t he total in t his tri angle (and by the same reasoning in other figures,
unless the st eps are unequal) is sufficient ly evident . For (besides that it is
clear enough from what has already been said ) if in the triangle there are
taken any number of lines par allel to the base (in which count we wish to
include the base itself, and the point of the vertex) and the same number of
parallelograms adjacent to them, then if all those are assumed to lie under
th eir lines, the lowest of them will be under the base ; if above, the highest
will be above t he vertex. If, moreover , we suppose that those lines lie neither
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at t he to p nor the botto m of the par allelograms but pass through t he middle
of them, t hen both the highest and lowest of t hem will be par t in, part out ,
of t he t riangle. Therefore whatever plaee we suppose those lines to have with
respeet to the parallelograms, the figure eonstit uted from the par allelograms
(so long as it begins from 0) will eit her have its base a little less or its alt it ude
a little greate r than has that true trian gle.

And this exeess or defeet , as long as one is dealing with finit e series, mus t
be wholly taken aeeount of. Where, however , one is dealing with infinite ser ies,
it may be safely negleeted. For sinee the more te rms there are assumed, the
smaller beeomes the differenee of eit her the base or the alt it ude , if one pro­
eeeds to infinity it vanishes: indeed ~ (an infini tely small part ) may be taken
for nothing (at leas t , observing some limitations of whieh we will soon speak) .
Thus, for example, if a triangle with alt it ude A, base B , is inseribed with par­
allelograms, in eaeh of whieh the alt itude is ~A, and the inerease of width is
~ B , the inseribed alt it ude will be 00 x ~ A , and the base not B bu t B - ~ B.
For the number of alt itudes is 00 and of differenees 00 - 1. But if the figure
so inseribed is eont inued one st ep below the base, or the cireumseribed one
ste p ab ove t he vertex, the base will be 00 x ~ B = B , t he alt itude A + ~Aj

indeed the number of inerements is 00 and of alt it udes 00 + 1. Where therefore
one deals with finite series , by t he alt it ude and base must be understood the
alt it ude and base of the adse ribed figure (whether inseribed or cireumseribed)
not , however , of that to whieh it is adsc ribed; but in an infinite series it is all
the same whether one understands the former or t he latter, sinee t he differ­
enee is infini tely small , and therefore vanishing or zero. For 00,00 + 1 , 00 - 1 ,

amount to t he same thing. And just as when a polygon with infini tely many
sides is taken for a eircle, it is all the same whether it is underst ood inseribed
or cireumseribed (t hat is, whether the radius is supposed equal to a line from
t he eentre to a vertex, or to one taken from the eentre to the middle of a side,
the difference of which, because of the infini te number of sides , is infinite ly
small) , so in our adse ription it is all the same (beeause of the infinite ly small
differenee) whether the altitude or base of the inseribed or eireumseribed
figure is taken for the t rue one . And indeed as in an inseribed or cireum­
ser ibed polygon with infini tely many sides , the sides are supposed equa l to
eaeh ot her, that is, t heir right sines and tangents are equal both to eaeh other
and to the ares themselves, so here also both the bases and alt itudes of the
figures eonsist ing of inseribed or cireumseribed par allelograms must be sup­
posed equal both among themselves and to that of the adseribed figure; that
is, if one wishes to speak precisely, not to differ exeept by an infini tely small
par t .

In the same way, in the figure in Propositi on 5, in the figure inseribed by
similar seetors of spirals, if the number of seetors is finite, it will be a finite
series , whose first term is 0, bu t the last is the last of the inseribed sectors
(whose radius is one par t less t han that of the last eireumseribing sector) ,
and the ares of all those sectors taken together equa l half the are of the
eoterminous eircle, that is, eoterminous with t he figure eons ist ing of seetors,
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not eoterminous with t he t rue spira l. And if the number of sectors (just as
was supposed there) is supposed infinite, the ares of all the seetors taken
together to this point will be equal to half the are of the eoterminous eircle,
that is, eote rminous with t he figure eonsist ing of these infinitely many seetors;
which [are] however is eit her itself ident ical with that eoterminous with t he
t rue spira l, or eertainly less than it by an infinitely small par t of itself (that is,
nothing). But if instead of inserib ed seetors there are taken cireumseribed, the
are of the eoterminous circle will be inereased by one par t of itself (whether
the number of seetors is finite or infinite) so that half of it will be equal to t hat
to be had by taking all the ares of the seeto rs together, and t herefore it must
be supposed to have begun one step before the beginning of the t rue spiral,
so that the are of the first seetor is O. For in arithmetic proportionals, unless
the first term is 0, the sum of all will not be equal to half the last multiplied
by the number of terms.

Moreover , what has been shown in t hese figures, may be understood (with
appropriate ehanges) of any ot hers, that is, the number of terms (if begun
from 0) will be one more th an the number of differenees, or small parts, from
whieh the greatest term is eonstituted (whether t hose differenees are equal
or unequal) ; and t herefore if in the adseribed figure (whet her inseribed or
cireumseribed) the base is taken equal to the base of the proposed figure, to
which it is adseribed, (whet her by eont inuing t he inserib ed one step below
the base, or the eireumseribed one ste p above the vertex) , the alt it ude of
the former will be one par t greater than the alt it ude of the lat ter (whether
that par t is finite or infinite) . Wh ere, moreover , the number of par ts of the
altitude of t he latter is assumed infinite, it will be in the former 00 + 1; or if
the alt itude of the lat ter is A , that of the former will be A + ~ A. If in the
former it is A (as we usually put it) , it will be in t he latter A - ~A, whieh
however (at infinity) amounts to the same thing on aeeount of the infinitely
small differenee.

But when we say that an infinitely small par t may be taken as nothing, this
must be reeeived with eaut ion, for this does not hold everywhere, but some­
t imes offers oeeas ion to lapse. Sinee from an infinitely small par t multiplied
infinitely t here sometimes arises a suffieient ly large quant ity, namely, that of
whieh tha t part was a divisor , alt hough infinitely small. For ~ x 00 = 1 and
...!..A x 00 = A.
00
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We have shown an example in the Comment to Proposition 13. If (in figures
1 and 2) one were to conclude, because the sides of the infinite number of
parallelograms (constit ut ing line VB) and t he sides of the t rapezia (complet ing
VB) taken piece by piece do not differ from each other except by an infinite ly
small par t (since both t he latter and the former are infinitely small, ind eed
~ of the lines VB, VB), that this therefore is to be discounted , and that the
sides of the parallelogram s and t rapezia are to be said to be equa l; and th at
therefore (since from the addit ion of equa ls to equa ls, the sums are equa l)
the infini te number of the former is equa l to the infinite number of the latter,
t hat is , all of VB is equal to all of VB. T his is clearly a paradox (into which,
nevertheless, one is quite inclined to fall unless one takes care). For alt houg h
the differences piece by piece are infinitely small (t hat is, ~ VB - ~ VB) ,
nevertheless t he sum of all (an infinite number), has a sufficient ly noteworthy
magnitude, that is, BV - VB.

And meanwhile in the same parallelograms and t rapezia (if we look at the
area) not only do they have infinitely small differences taken piece by piece,
but also the sum of the former and the sum of the latter (that is, an infinite
number of parallelograms taken toge ther and an infinite number of t rapezia)
differ from each ot her only by an infinitely small part, which does not hold
for t heir sides .

The reason for the dist inction is th is: since where one deals wit h the
comparison of sides [of parallelograms and trapezia], taking any two respec­
t ively, although the difference is less as the number of all is greater, yet it is
always the same ratio by which each difference is diminished as the number of
differences is increased ; and therefore the sum of the differences, to be divided ,
is not diminished . But where one is dealin g with areas, not only are t he differ­
ences of any two (trap ezia and parallelograms) taken respectively diminished,
but also the sum of all of them; and indeed the more differences t here are,
the less is the sum of them , unt il at length not only does each [para llelogram]
differ infinitely little from each [trapezium] (which it would not be sufficient
to have demonstrated) but so also do all [the parallelograms] from all [the
t rapezia] taken together, as is clear from the demonst rat ions. And this I have
considered worth the t rouble of noting somewhat more fully, because in this
place I have noticed some are inclined to fall.

Lest , moreover , anyone here suspects this danger , that while we have t he
accurate alt itude of any figure, we also have the same increased by an infinitely
small part of its elf, t his one thing may sufficient ly restore their security, that ,
ot her t hings being equa l, the increase of alt it ude of any figure (whet her plane
or solid) increases t he area or size only in the same ratio. And t herefore where
the increase in alt it ude is only some infinitely small part of itself, the increase
of the whole figure will also be only in the same ratio, that is, by some infinitely
small part of itself, or ~ of the whole figure; because (since there are taken
so many at a t ime but not infinitely many) t he space will be less than any
assigned quant ity, and may t herefore be taken as nothing.
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But finally it may be asked why I choose the inscribed figure ra ther than
the circumscribed, t herefore beginning almost everywhere from °rather than
I? Par ti cularly since the circumscribed figure (not continued one step above
the vertex so that it begins from 0, but rather from 1) has precisely both the
same base and alti tude as that to which it is circumscribed , whether in series
of first , or second, or any subsequent powers, and whether a finite or infinite
series?

I say it is ind eed possible for what we have dealt with to be done by
either method , t hat is, by inscrib ed or circumscrib ed figures (which we also
pointed out above at Proposition 43 which gave the opportunity for all this
Comment, indeed t he greater par t of it could not be conveyed more quickly
since it depends on the Proposition imm ediately preceding th is). Therefore,
for example, a series of first powers may be deno ted indifferently by 1, 2, 3,
etc. or by 0, 1, 2, etc . for the first te rm °adds nothing to the sum of the
rest. And indeed I already at one t ime set out my lemmas by both methods,
although either was sufficient for our demonstration, so I did not think the
reader should be burdened with both, especially since I was mostly looking at
infinite series, and have scarcely made use of finite series oth er than in lemmas
to have at hand for theorems of infinit e series.

And meanwhile circumscribed figures, if the thing is weighed carefully,
are no more like the figures by which they are circumscribed, than are
inscrib ed. For example, the inscrib ed agrees with the given figure
as to alt it ude and width at th e vertex but differs as to the base (that is ,
the width at the lowest point ); the same inscrib ed figure cont inued one step
below t he base (or t he circumscribed so cont inued above the vertex) agrees
with t he given figure as to base, and width at the vertex, but differs as to
alt itude. Bu t t he circumscribed (not cont inued) indeed agrees with the given
figure as to base and alt it ude bu t not as to width at the vertex, which in one
is 0, in the ot her 1.

Since, therefore, to t his extent circumscribed and inscrib ed figures behave
indifferently as far as our business is concerned, I prefer our series to begin
with °rather than 1, partly because although an inscribed figure seems to be
better suited , nevertheless both can be adjusted (as has already been said) ,
whether it is supposed cont inued above the vertex or below th e base; partly
because in this way (since t he lowest te rm is 0) the sum of the ext remes is the
same as the greatest term; but especially so that I can, wit hout going a long
way round in words , understand under the name of aseries of first powers not
only 0, 1, 2, 3, etc . but also 0, 2, 4, 6, etc. or 0, 3, 6, 9, etc . or 0, 4, 8, 12, etc .
and similarly others beginning from 0, what ever the second term; and under
the name of aseries of second powers not only 0, 1, 4, 9, etc. but also 0, 2, 8,
18, etc . or 0, 3, 12, 27, etc. and similarly ot hers. And the same in subsequent
series.

If anyone however prefers to begin t heir series from 1, they may set out
the resul ts in t his manner.



Series of first powers :

0+ 1 1

1+1=2"
0+1+2 1

2+2+2=2"
0+1+2+3 1

3+3+3+3=2"
0+1+2+3+4 1

4+4+4+4+4=2"
0+1+2+3+4+5
5+5+5+5+5+5
etc.

Or also:

0+1 1 1
2+2=2"-4

0+1+2 1 1

3+3+3=2"-6

0+1+2+3 1 1

4+4+4+4=2"-8

1
2"
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1 + 2 1

3+3=2"

1+2+3 1

4+4+4= 2"
1+2+3+4 1

5+5+5+5=2"
1+2+3+4+5 1

6+6+6+6+6=2"

etc.

1 + 2 1 1
2+2=2"+4

1+2+3 1 1
-::-3-+---:3-+-3 = 2" + 6

1+2+3+4 1 1

4+4+4+4=2"+8

0+1+2+3+4 1 1

5+5+5+5+5 = 2" - 10

etc .

Series of second powers:

0+1 1 1

1+1= 3+6

0+1+4 1 1

4 + 4 + 4 = 3 + 12

0+1+4+9 1 1

9 + 9 + 9 + 9 = 3 + 18

0+ 1 + 4 + 9 + 16 1 1

16 + 16 + 16 + 16 + 16 = 3 + 24

etc .

1+2+3+4+5 1 1

5+5+5+5+5 =2"+10

etc.

! -! _.l...
4 - 3 12

1 + 4 1 1

9 + 9 3 - 18

1+4+9 1 1

16 + 16 + 16 = 3 - 24

1 + 4 + 9 + 16 1 1

25 + 25 + 25 + 25 = 3 - 30

etc.
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Or also:

0+1 1 5
4 + 4 = 3 - 24

0+ 1 + 4 1 12
9 + 9 + 9 = 3 - 81

0+ 1 + 4 + 9 1 22
16 + 16 + 16 + 16 = 3 - 192

0+ 1 + 4 + 9 + 16 1 35

25 + 25 + 25 + 25 + 25 = 3 - 375

etc.

Series of third powers:

0+1 1 1
1+1=4+4

0+1+8 1 1
8+8+8=4+8

0+ 1 + 8 + 27 1 1
27 + 27 + 27 + 27 = 4 + 12

o+ 1 + 8 + 27 + 64 1 1
64 + 64 + 64 + 64 + 64 = 4 + 16

etc .

1 + 4 1 7

4+4=3+24

1 + 4 + 9 1 15

9 + 9 + 9 = 3 + 81

1 + 4 + 9 + 16 1 26
16 + 16 + 16 + 16 = 3 + 192

1 + 4 + 9 + 16 + 25 1 40
25 + 25 + 25 + 25 + 25 = 3 + 375

etc.

1 + 8 1 1

27 + 27 = 4 - 12

1 + 8 + 27 1 1

64 + 64 + 64 4 - 16

1 + 8 + 27 + 64 _ ! _ ..L

125+125+125+125 4 20

etc.

And similarly in the subsequent series , which I have abstained from listing
lest I over extend myself. The reader may, if he wishes, with no great work
either turn these arguments into theorems, or generate other similar ones
for the subsequent series, if he has paid attention to what I have already
taught .

But there is also yet another way of setting out the series up to here (if the
reader is attracted by diversity), which will also sometimes be no less useful.
If, that is, the series is begun neither from 0 (as in the inscribed figure) nor
from 1 (as in the circumscribed figure ) but from an intermediate quantity, thus
~ (which therefore represents a figure intermediate between an inscribed and
circumscribed, or greater than an inscribed and less than a circumscribed),
to give, for example, aseries of first powers ~ + 1~ + 2~ + 3~ etc . or (which
derives from that) 1 + 3 + 5 + 7 etc. In which case the argument for first
powers is to be set out thus.



1
]. ~
1 2

~ + 1~ 1
--- -
2+2 2

~+1~+2~ 1

3+3+3+3 2

~+1~+2~+3~ 1
4+4+4+4+4 2
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1 1
=

2 2

1 + 3 1-- -
4+4 2

1+3+5 1
6+6+6 2

1+3+5+7 1
8+8+8+8 2

And indeed this method best of all suits Propositions 15 and 16 where we
eompare the figure eontained in the spiral with that in a parabola. For if
in the spiral figure, having taken any number of lines MT making angles
sueeessively equal to eaeh other, there are supposed sectors inseribed in eaeh
spaee, their ares will be as 0, 1, 2, 3, ete ., but if eireumseribed, as 1, 2, 3,
4, ete. But if they are applied so that the ares of the sectors are bisected by
the spiral, they will be as ~,1~,2~,3~, ete . or as 1, 3, 5, 7, ete . (that is, as
differenees of square numbers).

And therefore if those ares, (whether finite or infinite in number, although
infinite in the same way that words are facts : I have eonsidered this euriosity
should there be omitted) are supposed taken in line and eontinued in turn
so as to make the same number of segments of the diameter of a parabola
(plaeed eontinuously), whenee the intereepted diameters eome out to be 1, 4,
9, 16, ete . (for 1 + 3 = 4, 1 + 3 + 5 = 9, ete.) to which eorrespond ordinates
(as square roots of the diameters) whieh will be to eaeh other as 1, 2, 3, 4,
ete. , that is, as those lines MT, MT, ete . themselves passing through the ends
of similar sectors in the true spiral.

And by this method one may eompare a figure eonsisting not only of an
infinite number of sectors (which we did there), but also of a finite num­
ber, eontained in the spiral, with the figure made from the same number
of parallelograms eontained in the parabola. Whieh indeed (without a new
figure) may be suffieiently understood. If those ares of sectors are denoted
1a, 3a , 5a , ete . and the true radii (proportional to those) 2r, 6r, lOr , ete. the
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sectors will be lar, 9ar , 25ar , ete . (that is, half the product of the radius and
are respeetively). Having taken eontinual segments along the diameter of a
parabola in the same way, la, 3a, 5a, ete., and therefore intereepted diameters
la ,4a(= la + 3a) , 9a(= 4a + 5a), ete. and ordinates that eorrespond to those
diameters (as their square roots), 2r,4r, 6r, ete. (which divide spaees not of
equal altitude,68 but whose altitudes are in arithmetic proportion, as 1, 3,
5, ete ., as is obvious) , the parallelograms inseribed in those spaees will be
la x Or,3a x 2r,5a x 4r, ete . or Oar, 6ar , 20ar, ete . or cireumseribed will be
la x 2r,3a x 4r ,5a x 6r, ete ., or 2ar , 12ar, 30ar , ete . Moreover, those inter­
mediate, part inseribed, part cireumseribed (whieh, that is, have a width,69
that is the arithmetie mean between the two ordinates bounding the spaee)
or (which amounts to the same thing) inseribed trapezia, will be la x lr,3a x
3r ,5a x 5r, ete ., or lar, 9ar, 25ar, ete . equal one by one to the proposed sec­
tors; of whieh the ares, that is, are equal to the altitudes of the parallelograms
(that is, to the segments of the diameter of the parabola) , but the radii twice
the widths of the parallelograms; or if the radii of the seetors are equal to the
widths of the parallelograms , the parallelograms will be twiee the seetors.

But it is time I put an end to this extended Comment; sinee why I have
omitted anything here was explained above.

PROPOSITION 183

Theorem

The side of any figurate numb er, in any sequence of th e given table (of Propo­
sition 132) eontinued as far as one likes, will have a known ratio to its figurate
number.

That is, as indicated in the preceding Proposition.

PROPOSITION 184

Theorem

And therefore it will not be diffieult to interpolate the subsequent sequenees
in the given table eontinued as far as one likes.

That is, having found the proper formula of each by Proposition 182, the interpola­
tion may be done as in Propositions 175, 178 and 181.

68 The 'alt it ude' of each space is the length of the segment along the diameter of the
parabola.

69 The 'widt h ' of each parallelogram (actually a rectangle) is the length of the ordinate
that bounds it .
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The same table, as was promised, will be here shown thus interpolated.
Or otherwise more expediently: after the interpolation of sequences both hori­

zontally and vertically as far as one likes has been begun by Propositions 170 and
175, etc. , one may continue it further as far as one likes solely by the summation
of numbers already found; for not only the numbers in the table in Proposition 132
(where we pointed out the same thing) , but also those interposed by interpolation,
arise from the summation of two others, one above, one to the left (not indeed adja­
cent as in Proposition 132, because of the place now interpolated) but taken after
one interpolated place. As will be clear from inspection.

What has already been said, moreover, in various preceding propositions about
the interpolation of one place in each space mayaiso be easily accommodated, with
appropriate changes, to two or three or more interposed places.

COMMENT

It must be noted here that it is possible to accomplish all this work of interpo­
lation so far shown (even without finding the correct formula for any sequence)
with the help of the reminders to be had in the Comments to Propositions 126
and 154. That is, by first interpolating the vertical sequences and then repeat­
ing the interpolations in the same way in the horizontal sequences. But while
it is not injudicious to investigate the formula for each distinct sequence, and
the reader may not perhaps be ungrateful, it may please to hirn to proceed
by another method rather than that used .

Since this has arisen, moreover, it is clear from the interpolation car­
ried out hetween each sequence, whether vertically of horizontally, in the
table of Proposition 132, that new sequences have already emerged amongst
them, not yet complete, however, hut with gaps. And indeed that place (sig­
nified by the symbol 0) whose completion I wish for the most , remains
as yet empty. If, moreover, it was given to fill any one of those empty
places, then the rest could be filled without difficulty, as will be clear from
Proposition 188.

But since the table in Proposition 132 is now to be had interpolated by
new sequences, in order that the interposed sequences have their appropriate
titles according to the scheme of that table, this following Proposition is to
be noted.

PROPOSITION 185

Theorem

If a new sequence is interposed among the sequences of the table in Proposition
132, in order that it may be given its correct title, the indices of the powers
positioned there must be noted. And only those powers are to be interposed
whose indices hold the correct relationship to the original indices .
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Thus, since t he powers found at t he head of that table have indices 0, 1,2,3,4, et c.,
by t he interp olation of one place now done everywhere the indices of the powers
positioned t here will be - 4 ,0, 4 , 1, 14,2, 24 ,3, 34, 4, etc.

In the same way, since t he indi ces of powers positioned down the margin of
h bl I I I I I 2 2 2 2 2 h . di f ht at ta e are Ö' l ' 2' 3 ' 4' etc. or 0 ' 2 ' 4' 6' 8 ' etc ., the in ices 0 t e powers now

positioned will be ':1'~' f,~' ~' ~ ' ~ ' ~' ~' ~' etc. (or for ':1 you may subst it ut e - f
or ~2 or -2, which amo unts to the same t hing).

Therefore t he table now interpolated may be had in this way.

If an infinite series of equal te rms is reduced by a similar series of first
roo ts , or second roots, or third roots, etc. [the sums of] t he differences, and
[of] t heir squares , cubes, etc. will be in the same ratio to a corresponding
series of equa ls as 1 to t he numbers in the following table.

.,
And so on

COMMENT

And here now one may note another series of those we menti oned in the
Comments to Propositions 165 and 168, nam ely one that I had taught before
at Propositions 118 and 121, un exp ect edly arises also in the present table,
that is, in the t hird sequence across .
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PROPOSITION 186

Theorem

This is clear, that an infinite series of universal roots, to aseries of the same
number of equals, may have a rational ratio.

That is, by the preceding Propositions we will have:

Square roots
of differences

..;'(VR -..;0:)

..;'(VR - ../b)

..;'(VR - y'C)

etc . to

..;'(VR- VR)

..!i. {fR
15

..;'( {IR - ijii)

..;'( {IR - ijb)

..;'( {IR - ije)

etc. to

or liA ifR
35

Differences Square roots of cubes

..;'("fR3 - 3..;'R2a + 3..;'Ra 2 - vfa3)

..;'("fR3 - 3..;'R 2b+ 3..;'Rb2 - .Jb3)

..;'("fR3 - 3..;'R2C + 3..;'Rc2 - .JC3)

..;'("fR3 - 3"fR3 + 3"fR3 - "fR3)

..!i.ifii3
35

..;'( ifli3 - 3~R2a + 3~Ra2 - ~)

..;'( ifli3 - 3~R2b + 3~Rb2 - W)

..;'( ifli3 - 3~R2C + 3~Rc2 - ijC3)

..;'( ifli3 - 3~R2 R + 3 ifli3 - ~RR2)

.12..~ = .12.. AVR105 105

And by the same method for any other sequence of this table for which the interpo­
lation has been completed.

Therefore nothing is lacking for perfecting the same in the remaining sequences
(and in particular for the quadrature of the circle) , except that there should be
discovered a method of filling the empty places , or (which comes down to the same
thing) that there should be found the correct formulae for those sequences. And
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indeed although it is not obvious how to find the formulae for the interpolated
sequenees, nevertheless one may eome to know from the following Proposition what
ratios they have to eaeh other, so that if by any art we may find one of them, at
onee the rest are also found.

PROPOSITION 187

Theorem

In the table of Proposition 184: just as taking any number 1 of the second
sequence (that is, the first of the even sequences), the formulae for the remain­
ing terms (from the even sequences) arise from continued multiplication of the

b 1 l l + 1 l + 2 l + 3 ( d i P .. )70num ers x"1 x -2- x -3- x -4- etc . as was sai m roposition 182

. . 2l 2l + 2 2l + 4 2l + 6
or (which amounts to the same thing) 1 x 2" x -4- x -6- x -8- etc .,

so taking any letter A of the first (of the odd) sequences,"! the formu­
lae for the remaining terms from the odd sequences arise from continued

. . . 2l - 1 2l + 1 2l + 3 2l + 5
multiplication of numbers A x -1- x -3- x -5- x -7- etc . And

therefore if one of these becomes known, the rest also immediately fol­
low.

For here one claims an analogy with arithmetie progressions, which are seen in both
the numerators and denominators. And the induetion eonfirmed this for all the
plaees that are filled, so that there may be no doubt but that the same mayaiso be
eonsidered in the empty plaees .

And therefore from the formulae for the odd sequenees, if one term beeomes
known the rest also follow.

PROPOSITION 188

Theorem

In the sequences in the table of Proposition 184, if the first terms Aare
labelIed o , A, ß,B, "1, C, 8, D , € , E, etc. 72 and the second terms (that is, the

70 Wallis mistakenly has Proposition 178 here.
71 Here Wallis takes A to represent any terrn of the first sequence, thus 00, 1,~, ... .
72 Here Wallis uses A in two distinct ways: (i) to represent in a general way the first terms

of the even sequences (see note 5), but also (ii) to denote in particular the first term of
the second sequenee.
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first of the evens) 1, then all the rest (bo th even and odd) arise from continued
multiplication of the following numbers. Thus:

Odd Even

In the first
o x 2 x 4 x 6 x 8 etc . 1 x 1 x 3 x 5 x 7 x 9 etc .a x
1 x 3 x 5 x 7 x 9 etc. 2 x 4 x 6 x 8 x 10 etc .

In the second A x 1 x 3 x 5 x 7 x 9 etc . 1 x 2 x 4 x 6 x 8 x 10 etc .
1 x 3 x 5 x 7 x 9 etc . 2 x 4 x 6 x 8 x 10 etc.

In the third ß x
2 x 4 x 6 x 8 x 10 etc. 1 x 3 x 5 x 7 x 9 x 11 et c.
1 x 3 x 5 x 7 x 9 et c. 2 x 4 x 6 x 8 x 10 et c.

In the fourth E x
3 x 5 x 7 x 9 x 11 etc. 1 x 4 x 6 x 8 x 10 x 12 etc.
1 x 3 x 5 x 7 x 9 et c. 2 x 4 x 6 x 8 x 10 etc .

In the fifth
4 x 6 x 8 x 10 x 12 etc. 1 x 5 x 7 x 9 x 11 x 13 et c.

IX 1 x 3 x 5 x 7 x 9 etc. 2 x 4 x 6 x 8 x 10 etc.

In t he sixth C x
5 x 7 x 9 x 11 x 13 etc.

1 x
6 x 8 x 10 x 12 x 14 etc .

1 x 3 x 5 x 7 x 9 etc . 2 x 4 x 6 x 8 x 10 etc.

In the seventh 8 x
6 x 8 x 10 x 12 x 14 etc.

1 x
7 x 9 x 11 x 13 x 15 etc.

1 x 3 x 5 x 7 x 9 etc . 2 x 4 x 6 x 8 x 10 etc.

In the eighth

And so on.

D x 7 x 9 x 11 x 13 x 15 etc .
1 x 3 x 5 x 7 x 9 etc.

1 x 8 x 10 x 12 x 14 x 16 etc .
2 x 4 x 6 x 8 x 10 etc.

Proved from what has gone before. Or also (as before) by an alogy with an
arithmetic progression. And indeed, it was confirmed by induction in all the filled
places, so that there may be no doubt but that the same may be considered in the
empty places.

If, moreove r , anyone hesitates at the odd places of th e first sequence (which I

f . d I ' I' . f h bO x 2 x 4 x 6 x 8etc .)assert arise rom contmue mu tip ication 0 t e num ers o x ,
1 x 3 x 5 x 7 x getc .

that is, lest the figure 0 which is seen there complet ely destroy the whole con-
tinued multiplication, however large it becomes, and make all the terms of the
sequence vanish into 0 or nothing, it must be understood how thi s danger has been
guarded against, because the term A in this sequence is 00, or infinity, (just as
we showed above in the Comment to Proposition 166) , and therefore unless 0 fol­
lows (to diminish the force of that (0) all the terms of th e sequence would have
turned out to be 00, or infinity. But both of them together convenient ly remedy
this danger. For although 00 x 0 does not definitely designate any number (and
therefore not hing can thence be concluded with certainty about the rest of the
quantities) , it can nevertheless come up in place of virtually all numbers in turn.
For any number divided by 00 will give a quotient 0 and conversely. Thus 1/00 = 0,
1/0 = 00; 2/00 = 0, 2/0 = 00; 3/00 = 0, 3/0 = 00. And so on, for any ot hers . And
therefore (since divisor multiplied by quotient must restore the number divided),
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it must be that 00 x 0 = 1, or 00 x 0 = 2, or 00 x 0 = 3; and so on for any other
numbers.

PROPOSITION 189

Theorem

Here it follows that if in the empty spaces of the table of Proposition 184 any
one is filled with a known number, then all the rest will also be known.

For example, if the number designated by this symbol Dis assumed known, all the
rest also become known; which, that is, will have the ratio to that quantity as is
indicated here below .

The whole process is shown by the preceding propositions.
It must also be noted here, moreover, that any intermediate number is the sum

of two others, one taken from above, the other carried to the right (not to the next
place but after one interposed) .

We may also adjoin the formula for any sequence (as far as it is known from
Propositions 182 and 187), so that the reader may better see how far we have taken
the thing.

2.1 - I
AIt­

I

1=2./+0
:%
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COMMENT

And indeed until now we seem to have carried the thing through happily
enough. But here, at last, I am at a loss for words . For I do not see in
what manner I may produce either the quantity D, or the formula for the
sequence A .73 (Nor therefore how to attain completely the formulae for the
odd sequences, though their ratios to each other are known, nor the odd
places in the odd sequences, although the ratios of these to each other are
also known.) For although if the lateral numbers are integers, thus, 1, 2, 3,
4, etc. the first terms of their sequences may be written down, thus, 1, !, i,
~~, etc. it is nevertheless not easy to understand in what manner the ratio of
these numbers to their respective lateral numbers may be expressed by any
one equation; or whence also to the remaining lateral numbers (in the odd
places) ! , ~, ~ , etc. there may be fitted the first term of their sequences.
For although here no small hope seemed to shine, nevertheless, this slippery
Proteus whom we have in hand, both here and above, frequently escapes and
disappoints hope. In what manner, moreover, having also been constrained
here he might have shown his face, it will perhaps not be unwelcome to have
put forward . Namely:

PROPOSITION 190

Theorem

In the fourth (or second even) sequence, numbers taken alternately (in even
places) 1, 2, 3, 4, 5, etc. arise from continued multiplication of the numbers,

f . 1 2 3 4 5 t 1 4 6 8 10 . d (. ddor ractions, x"1 x "2 x "3 x 4" e c. or x"2 x "3 x 4" x 5' etc., an In 0

1 ) 1 3 5 7 f th lti 1· ti 1 3 5 7 9 Sp aces "2'"2'"2 '"2 ' etc. rom e mu ip ica IOn "2 x "1 x "3 x 5 x "7 etc. 0

because of the interpolation of one number in each space (so that from both
odd and even places intermingled there arises a single sequence), any of the
ratios by which the first term of all, whether of the evens or odds, is continually
multiplied, must be separated into two ratios (as, for example, the ratio 1 to
2 is composed from the ratios 1 to I! and I! to 2) in this way:

I x ' Je ' x ! &c
r--A-. ~ rL. ~ .
~ X ~ X i x t X i X ; X 1 x ; x t

VVV ~ VV'V "VV
~ x J x I x i )( ~

73 The sequence of first terms.
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In the sixth (or third even) sequence, if the same is to be done, any ratio must
be separated in the same way into two ratios, but both of those are composed
of two ratios, in this way:

&co

&c.

10
5J: X ~ X I x

~~~~
t .3 2. x4 3 Xr +x6' S X, 6'x 8 i t 9 8 XIO
- X--)(..- X-- X --" --)( -- x-­
2x+ IX3 2X4 3xr 4x6' fx1 6x8 7X9
~~~
i x t X I J( f &c.

That is, by first separating any ratio into four ratios (thus ~ = ~~~~~~~ and

~ = ~~~~~~~ , and so on for the rest), and then distributing them alternately
into two classes.

In the eighth (or fourth even) sequence, any ratio must be separated in the
same way into two ratios, but both of those are composed of three ratios , thus:

Th . b fi . .... (th 8 3 x4 x5 x6 x7 x8at IS , y rst separating any ratio into SIX rattos t us 2 = 2 x3 x4 x5 x6 x7 etc.
and ~ = ~ ~~ ~~ ~~~~~~ etc.) which must then be distributed alternately into
two classes.

And similarly in the tenth sequence, twelfth sequence, etc. any ratio must
be separated into eight ratios, ten ratios, etc. which must then be distributed
alternately into two classes.

(Moreover, in the second (or first even) sequence, there is no need for the
separation of the ratios, but since all are the same ratio of equality, or t, that
same ratio is also everywhere interposed, for t x t = t·)

But if we attempt this in the odd sequences, that is, so that any ratio is
separated (proceeding evenly) into two ratios, the thing does not come out so
happily.

So (for example), since (by analogy with the rest) the ratios of the fifth sequence
must be separated into three ratios , of the seventh into five ratios , etc. (always
an odd number) , an equal partitioning of them into two classes, as needed for the
required interpolation, cannot be done.
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This whole Proposition (by inspection of the table) is sufficiently clear in itself
to those who are attentive.

The thing will perhaps appear somewhat more clearly if I separate some of the
ratios of the sequences into two, three, four ratios, etc. (as each sequence requires) .
That is:

In the third sequence

2
1

2
1

In the fourth sequence

3
"2

3
"2

4
:3

4
:3

4
"2

3x4
2x3

In the fifth sequence

6
5"

6
5"

6 _ 5x6
4" - 4x5

~ = 7x8
6 6x7

9 _ 8x9
"7 - 7x8

In the sixth sequence

4
1

2x3x4
1x2x3

5
1

2x3x4X5
1x2x3x4

7 _ 4x5x6x7
:3 - 3x4x5x6

8
5"

6x7x8
5x6x7

2 = 6x7x8x9
5 5x6x7x8

11
8"

9x 10x 11
8x9x 10

11
T

8x9x lOx 11
7x8x9x10

In the seventh sequence
6
1

2x3x4x5x6
1x2x3x4x5

2 = 5x6x7x8x9
4 4x5x6x7x8

10 _ 6x7x8x9x 10
5" - 5x6x7x8x9

11 7x8x9x lOx 11
"6 6x7x8x9xlO

12 = 9x10x11x12x13
8 8x9x10x11x12

In these sequences (however far continued) and all subsequent sequences, it must
be noted that ratios from any even sequences are separated into an even number
of others, which may therefore be conveniently distributed (as was said) into two
classes; ratios from any odd sequences, however, are separated into an odd number
of others, which therefore can not be so distributed.
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COMMENT

If, moreover, anyone thinks a eure might sufficiently conveniently be applied to
this problem by separating the ratios of the fifth sequence, seventh sequence,
etc. (not into three ratios, five ratios, etc . but) into six ratios, ten ratios,
etc. (that is twice three, twice five, etc .) in such a way that the ratios (now
even in number) may be distributed into two classes : the thing cannot on
any account succeed as wished . For this indeed amounts to the same thing
as if the ratios of the fourth sequence, sixth sequence, eighth sequence, etc .
are separated (not into two ratios, four ratios, six ratios, etc . but) into four
ratios, eight ratios , twelve ratios, etc. and after that distributed alternately
into two classes . Which indeed if it were done , would not produce the ratios
sought (which we showed above) but others somewhat different from those,
as will be clear to the experienced.

And indeed I am inclined to believe (what from the beginning I suspected)
that this ratio we seek is such that it cannot be forced out in numbers accord­
ing to any method of notation so far accepted, not even by surds (of the
kind implied by Van Schooten in connection with the roots of certain cubic
equations, in his Appendix to the treatise On a complete description 0/ conic
sections,74 or in the thinking of Viete, Descartes and others) so that it seems
necessary to introduce another method of explaining a ratio of this kind , than
by true numbers or even by the accepted means of surds.

And indeed this, whether opinion or conjecture, seems to be confirmed
here, since if we have the appropriate formula, for any even sequence (in the
table of Proposition 184) so also we might have obtained a formula of this kind
for any odd sequence; then, just as for the formulae for the even sequences we
have taught how to investigate the ratio of finite series of first powers, second
powers, third powers, fourth powers, etc., to aseries of the same number of
terms equal to the greatest of those (in the Comment to Proposition 182), so
by formulae of the same kind for odd sequences, it would seem there could
be investigated similarly the ratio of finite series of second roots, third roots,
etc. to aseries of the same number of terms equal to the greatest of these:
why this is not to be hoped for, moreover, we showed in the Comment to
Proposition 165.

And therefore what arithmeticians usually do in other work, must also
be done here ; that is, where some impossibility is arrived at, which indeed

74 Frans van Schooten, De organica conicarum sectionum in plano descriptione tractatus,
Leiden 1646. The Appendix gives Cardano's formula for the solution of z3 = • - pz + q as«+h + Ji qq + f.t p3 - «-h + Jhq + f.t p3 . This was perhaps the first time that

Wallis saw Cardano's formula in Cartesian notation; he hirnself had arrived at the same
result in 1647 or 1648 but using Oughtred's notation; see Wallis to Collins, 12 April 1673,
in Rigaud 1841, 11, 564-566. For Wallis's self-confessed ignorance of the arithmetic of
surds in his early years see also Wallis to Collins , 6 May 1673, ibid . 11, 578. Wallis's copy
of Van Schooten's 1646 Tractatus with his annotations on the flyleaf is now Bodleian
Library Savile Bb .lO.
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must be assumed to be done, but nevertheless cannot actually be done, they
consider some method of representing what is assumed to be done , though it
may not be done in reality.

And this indeed happens in all operations of arithmetic involving reso­
lution.I'' for example, in subtraction: if it is proposed that a larger number
must be taken from a smaller, thus 3 from 2 or 2 from 1, since this can not be
shown in reality, there are considered negative numbers, by means of which
a supposed subtraction of this kind may be expressed, thus 2 - 3, or 1 - 2,
or -l.

In division, if it is proposed that a number must be divided by another
which is not a divisor.?" thus 3 by 2, since this can not be shown in reality,
there is invented a method of indieating a supposed division of this kind, in
hi ~ . 3 11t 1S rorm: 2 or 2'

In the extraction of roots, if there is proposed a number that is not in its
nature truly apower, for example, if there is sought the square root of 12,
since that root cannot be expressed as any integer or fractional number, there
is invented a method of indieating any supposed root of this kind in this form:
J12 or 2J3.

Equally, in a geometrie progression, thus, 3, 6, 12, etc . if there is sought
a new term to be interposed between 3 and 6, it is said to be 3J2, or J18 ,
or J(3 x 6), or better (since it amounts to the same thing), J(2 x 9), which
is the same as to say more explicitly, the mean term between 3 and 6 in the
progression 3, 6, 12, ete. or between 2 and 9 in the progression 2, 9, 40~, ete.
Thus if between 3 and 6 there are to be interposed two geometrie means, the
first will be ~3 x 3 x 6 or .vS4 or rather 3.v2 (that is, 3 times the cube root
of the common multiplier 2), and so on in other cases.

If, moreover, a geometrie progression, whieh is assumed to be formed by
continued multiplication of the first term by any numbers equal to each other
(thus, 3, 6, 12, 24, etc. from the continued multiplication 3 x 2 x 2 x 2 etc.)
does not always have rational intermediate terms, it is no wonder if that does
not happen in a progression formed by continued multiplication of the first
term by any succeeding unequal numbers, whether increasing or decreasing
(thus 1, 2, 6, 24, etc. from the continued multiplication 1 x 2 x 3 x 4 etc ., or
1 3 15 105 f h . d 1 . li . 1 3 5 7 t, 2' 8' 48' etc. rom t e contmue mu tip ication x 2 x 4 x (3 e c.

As much, moreover, holds here; since it is not possible to designate that
quantity (0) by a true number (not even by the usual said radieals, or surds) ,
there may be sought some method of expressing it in some way. Therefore,
as J(3 x 6) signifies the mean term between 3 and 6 in a regular geometrie
progression 3, 6, 12, etc. (from the continued multiplication 3 x 2 x 2 etc.) so
nr(11 ~) signifies the mean term between 1 and ~ in a deereasing hypergeometrie

75 Resolution is here used as the opposite of composition, thus of subtraction as opposed
to addition, division as opposed to multiplication, or extraction of roots as opposed to
composition of powers.

76 Non metitur, literally 'by which it is not measured'.
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progression (from the continued multiplication 1 x ~ x ~ etc.) which will be:
o = nr(ll~) . And therefore the circle, to the square 0/ its diameter, is as 1
to nr(11 ~ ). Which indeed is the true Quadrature of the Circle expressed in
numbers, as far as the nature of those numbers may be shown.

And indeed, just as in a regular geometric progression, 3, 12, 48, etc. ,
anyone who says the term intermediate between 3 and 12 is V(3 x 12) may not
be said to have set the thing out satisfactorily, since that term may be more
explicitly said to be 6 (for V(3 x 12) = V36 = 6). But anyone who assigns
between 3 and 6 (in the progression 3, 6, 12, etc.) the intermediate term
V(3 x 6) (or rather V18, or 3V2) may be said to have set it out sufficiently,
since it is not possible to assign a true number. Thus if in the progression 1,
185, ~~1 , etc. anyone says that nr(11 1

; ) is the intermediate term between the
terms 1 and 1;, he has not taught the thing sufficiently explicitly, for he could
have said ~. But anyone who assigns nr(ll ~) as the intermediate term between
1 and ~ must be said to have set the thing out sufficiently, since this term
cannot be expressed in true numbers; therefore it suffices if it is indicated in
some way.

And, further, although V(3 x 6) (in the progression 3, 6, 12, etc.) or V18
or 3V2 cannot be expressed accurately in true numbers, it may, nevertheless,
be signified as closely as one wishes (thus greater than 4.24 but less than 4.25;
or greater than 4.2426 but less than 4.2427; or greater than 4.242639 but less
than 4.242640, and so on); so also the number 0 = nr(ll~) may be signified as
closely as one wishes in true numbers, though not exactly, thus, greater than
1.27 but less than 1.28; greater than 1.2732 but less than 1.2733; greater than
1.273239 but less than 1.273240, and so on, as may be put together either
from our table (which will be shown in the following Proposition) or also in
various other ways.

Therefore I see no reason why the ratio of the circle to its circumscribed
square (or also the ellipse to the circumscribed parallelogram) , that is, 1 to
o = nr(ll~) , or 0 = 1nr;! (that is, 1 to the term intermediate between 1 and ~

in the progression 1, ~, 1.;, etc .) may not be said to be just as systematically
explained as the ratio of the side of a square to its diagonal, that is as 1 to 1V2,
or, or to v(1 x 2) (that is, as 1 to the intermediate term between 1 and 2 in the
progression 1, 2,4, etc .) , except that this notation V20r v(1 x 2) is already
accepted (thought is was at one time new) while ours is now introduced for
the first time because of the new kind of progression now for the first time
(as I believe) discovered. Moreover, just as the notation for surd numbers
(thus, V2, etc.) introduced into arithmetic the method of adding, subtracting,
multiplying, dividing etc , for surd roots, so it will not be difficult to apply
operations of this kind to this our new method of notation, which however
is not the purpose of the present work. Meanwhile I am not ignorant that
for perfecting this notation more accurately, there must be adjoined distinct
symbols, thus nr2 , nr3 , nr4 , etc. as will indicate either a single mean , or the
first of two, or three, etc ., just as is also usually done for the sign V, thus
V2

, V3
,~, etc. to signify a square root, cube root , fourth root, etc. , that
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is, either a single mean proportional or the first of two, three, etc. In the
same way, other distinct signs must be added which indicate, in the continued
multiplications (of the given interpolated sequences) , whether they increase
by ones, or by twos, threes, etc. But all this, and whatever similar problems,
must await more exact inquiry into these progressions, if mathematicians are
of the opinion this should be admitted into arithmetic (and why less should
be done , I do not see). It is sufficient for the purpose of the present work
that we wish to indicate it in some way and to supply in plain words what is
lacking in symbols. If, moreover, this method of notation thought out by me
is less pleasing to mathematicians, I would as happily allow it to be changed
to a way that they show more appropriate.

Howsoever this may be, I must indeed acknowledge that I am still unable
to supply formulae of this kind for the odd sequences as for the even sequences
in the table; nor for the odd places in the odd sequences (though I have now
shown the ratios of those to each other) according to any method of notation
(that I know yet accepted) . And although in those above, often by fortune and
by breaking paths never, as far as I know, trodden before, I have discovered
some of the hoped for conclusions, I could scarcely, however , (for the reasons
already shown) have dared to hope that likewise here also everything would
come out as wished. If, by chance, anyone else from here on treading in my
footsteps arrives at length at what it was not given to me to arrive at (for I
would not wish to pro claim to the skilled the limits of all other methods in
the same way as for mine), and discover more useful methods of expressing
those same quantities, I would certainly not bear any ill will. In the meantime
I believe it will be by no means unwelcome to mathematicians that I have
offered some new light , not (as I judge it) wholly to be disparaged, on the
obscurity of problems concerning the quadrature of the circle, and to have
expressed that in numbers as far as the nature of numbers allows.

What we have already found , moreover , it may also be pleasing to set out
in some following Propositions, in a form a little changed. And first indeed it
may be signified as closely as one wishes by whole numbers, and afterwards
also by straight lines.

PROPOSITION 191

Problem

It is proposed to inquire, what is the value of the term 0 (in the table of
Proposition 189), as closely as one wishes using whole numbers.

That the thing may come out more easily, the terms of the progression (the
d d in) 10 1 0 3 40 3 x 5 4x60 3x 5 x 7 t b 11 dsame pro uce agam 2 ' , '2':3 ' 2x4' 3x5 ' 2x4x6 ' e c. may e ca e

Cl, a, ß, b, 'Y, c, 8,d, etc.
Moreover, 1 : 2 = Cl: ß, and 2: 3 = a : b, and 3: 4 = ß : 'Y, and 4 : 5 = b : c, and

5 : 6 = 'Y : 8, and 6 : 7 = c : d.
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. (3 2b 3, 4c 58 6d 7
That IS - = - - = - - = - - = - - = - - = - etc,

'a l'a 2'(3 3'b 4 ', 5'c 6'
Therefore (since the multiplying ratios continually decrease) we will have

(3 . {the lesser of both77

- IS
a

the greater of both

~ x I!.. = I!.. = ~ therefore less than fi1 = !J1a aal' V"1 V1."1

I!.. x !!.. = !!.. = ~, therefore greater than JI = IIIa (3 a 2 V2 V1. 2

(3 {Iess than
and therefore (3= a x - = 0 is

a greater than

In the same way

IV2 = Iflf

Ift=lflf

, . {the lesser of both ~ x ~ = ~ = ~ ' therefore less than Ii = jlf

~lli 5
the greater of both ~ x ~ = ~ = 4' therefore greater than VI = l1f

4 t than
and therefore 'Y = b x ~ = 3" 0 is

greater than

3jlf- x 1-2 3

311f- x 1-2 4

that is, 0 is less than ~ : ~ x jlf, greater than ~ : ~ x l1f
And (by the same reasoning)

8 4 x 6 . {Iess than
8 = c x - = --0 IS

C 3 x 5
greater than

3x5 x 0
2 x 4 V1. 5

3x5 x 0
2 x 4 V1. 6

. . 3x3x5x5 (;l 3x3x5x5 (;l
that IS, 0 IS less than 2 x 4 x 4 x 6 x vii, greater than 2 x 4 x 4 x 6 x vii

And (continuing the work in this way according to the mies of the table) it will be
found that

{

Iess than
o is

greater than

3 x 3 x 5 x 5 x 7 x 7 x 9 x 9 x 11 x 11 x 13 x 13 !J.1
2 x 4 x 4 x 6 x 6 x 8 x 8 x 10 x 10 x 12 x 12 x 14 x V1. TI
3 x 3 x 5 x 5 x 7 x 7 x 9 x 9 x 11 x 11 x 13 x 13 !J.1
2 x 4 x 4 x 6 x 6 x 8 x 8 x 10 x 10 x 12 x 12 x 14 x V1. 14

77 WaIlis's argument here is that ß/a is the smaller of the two quantities afo. and ß/a
(because of the decreasing ratio), and is therefore less than the square root of their
product. WaIlis does not make himself entirely clear, and Christiaan Huygens was puzzled
by this part of the argument, and failed to understand why WaIlis went on to take a
square root; see Huygens to WaIlis, [l1J/21 July 1656, Beeley and Scriba 2003, 189-192.
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And so on as far as one likes . In such a way, that is, t hat t he numerator of t he
fraction arises from continually multiplying odd numbers 3, 5, 7, et c. placed twice,
bu t the denominator from cont inually multiplying even numb ers 2, 4, 6, etc. a lso
placed twice, except t he first and las t , which are put only once ; an d finally all t hat
ratio, or fract ion , t hus formed , is mult iplied by t he square root of 1 increased by
some fracti on of it self, namely t hat which has as it s denominator t he las t of the odd
numbers in the continued mul t ip lication , if we seek a nu mber too lar ge, or of t he
evens, if we seek a nu mb er too smalI.

And by this method it may be done as far as one likes until t he difference
between t he great er and the smaller becomes less than any assigned qu an tity (which,
t he refore , if one supposes t he operat ion cont inued infinitely, will at last disappear).
Which indeed , in case it is needed , will be demonstrated here.

Thus, as has already been said of the numbers in t he cont inued mu lt iplication ,
the greatest of the evens (t hat is, the final factor of the denominator ) may be called
z, and therefore the gre atest of the odds (t hat is, the final factor of the numerator)
will be z - 1 (that is, the ot her less one). Therefor e (since the same multiplier is

combined with both) the number too large to the number too small will be as VI Z~1

t o J1f,t hat is, as the final surd nu mb er in the form er to the final surd number in the

latter) , that is, as Vz:'1 to V~' that is, as Vzz.:.1 to J (z + 1) t hat is as J Z2 = z

to J (Z2 - 1). Moreover it may happen (by increasing t he quant ity z as needed) that
the differ ence between the roots J Z2 and J(z2 - 1), that is, z - J(Z2 - 1), becomes
less than any assigned quantity (as is known , and was also said elsewhere by me at
Proposition 39 of On eonie sections). And t herefore t he number too large exceeds
t he number too small by a fraction less t han any ass igned qua nt ity.I" W hich was to
be proved .

Since, moreover , as is clear from wh at has been said , by increasing t he number
z infinitely, the number too large exceeds t he number too small by a fraction less
t han any ass igned quant ity, t he differences between t hem (and t herefore of either
from t he t rue qu an t ity) will be infinitely smalI, that is, not hing.

Further , since t he number z is t hus increased infinitely, t hat fractional part of 1

adjoined to it will be infinit ely small; it will be J1f or VI Z~ 1 ' which amo unts

to the same t hing t here fore as J l or 1 (on account of the vanishing infinitely
small part) , whi ch by multiplicat ion changes nothing. We say that t he fraction

3 x 3 x 5 x 5 x 7 x 7ete. 9 x 25 x 49 x 81ete. . d i fi . I . . If
or 8 24 48 80 cont mue m nite y 1S it se pr e-

2 x 4 x 4 x 6 x 6 x 8ete. x x x ete.
cisely the required number 0 , and the ratio of 1 to this is that of the circle to the
square of its diameter. Or (if this is more pleasing), as the denominator of that frac­
t ion is to the numerator, so we may say is the circle to the square of it s diameter.
And , as the numerator is t o the denominator, so is the square to t he circle. That
is, as the product of the continued mult ipl ication 9 x 25 x 49 x 81 etc. (squares of

78 Wallis's proof has interesting elements of a later limit argument , but is incomplete. His
argument th at z - V(z2 - 1) can be made less than any assigned quantity is correct ; he
has ignored, however, the fact that t his quantity is multiplied bya fraction that increases
with each new pair of mult ipliers. The convergence of the fraction therefore depends on
the properti es of not one but two infinite processes.
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odd numbers) to the product of 8 x 24 x 48 x 80 etc. (the same squares decreased
by one) , continued infinitely.

Moreover, if some more curious person inquires how far that continued multi­
plication must be continued until at last that given difference, or less than that,
is arrived at, or so that the number too large exceeds the number too smalI, by
however small apart of itself (or not even that) , that will be investigated by this
method.

Let the greater quantity be called m, the smaller n, and let their difference, that

part however smalI , thus ~m = m - n , and let it be inquired how far the work must

be continued, that is, what will be the number z , the greatest (simple) multiplier
that produces that difference (or even less than it) .

Since therefore m - n = ~m, we will have n = m - ~m, and m : n = m:

a b b-a 2m - Em = bm: -b-m = b : b - a = z : y'(z - 1) (by the method demonstrated) .

Therefore by'(Z2 - 1) = bz - az . And (squaring everywhere) b2z2 - b2 = b2z2 +
a2Z2 - 2abz2. And then (deleting b2Z2 everywhere and transposing the rest) 2abz2 -

a2Z2 = b2. And finally (dividing everywhere) Z2 = 2 bb
2

2 ' Therefore the square
a - a

root of this number (if it is an even number), or at least (if it is either a fraction
or a surd or an odd number) the even number next greater than that root, will be
the greatest of the multipliers that arrives at the assigned difference or certainly less
than that . Which was to be investigated.

The same another way

After this our description of that quantity D, we may also add another, which
I have received from that most noble person and very skilled geometer, Lord
William Viscount and Baronet Brouncker.

Since I showed him some of my progressions, and indicated by what rule
they proceeded, meanwhile asking him to indicate in what form he thought
that quantity might usefully be described. That Noble Gentleman, having
thought it over himself, judged by a method of infinites of his own that the
same quantity could be most conveniently described in this form:

1
D= 1-

2_9_
25

2-
49

2-
81

2-2- etc .

That is, if to one there is added a fraction that has adenominator continually
broken, by the rule that the numerators of each small fraction are 1, 9, 25,
etc ., squares of odd numbers 1, 3, 5, etc., but the denominators everywhere 2
with an adjoined fraction, and thus infinitely. Adding this at the same time,
that , wherever at length it pleases one to stop, instead of the final 2 with the
fraction afterwards cut off, there may be put (according to the place where
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one requi res it to stand) any of 3, 5, 7, 9, etc. (arithmetically proportional
from 1, in whole numbers); that is, if it is required to stand in the first place,
3, if in t he second, 5, if in the third , 7, an d so on, pu tt ing the nurnb er that
defines the place, doubled and increased by one. And, in the same manner , if
it is required to stand at an odd place of t he fraction it will produce a number
too large: bu t if even, too small. And the longer it is car ried on, the more
nearly it approaches in eit her case the t rue number,

1

1
1-

3
1

1-
2_9_

5
1

1-
2_9_

25
2­

7
1

1-
2 _ 9_

25
2­

49
2­

9

too small

to o lar ge

too small

too large

too small

And he has desc ribed in the same form t he remain ing numbers sought in
our table, and int erpolated ot hers of OUf progressions, similar to those in the
table shown. But to open up all the pro cess of his method would take longer
than can be spared here. I hoped, moreover , that at some time the t hing itself
would be publicly shown by hirn in an orderly way.

COMMENT

But since I see that persuading the Noble Gentleman that he hirnself wishes
to undertake it is going to be more difficult, I will endeavour to show the thing
according to his thinking, as closely as I can and briefly.

The Noble Gentleman noticed that two consecutive odd numbers, if mul­
tiplied together, form a product which is the squar e of the int ermediate
even number minus one (t hus, 1 x 3 = 4 -1 = 22,_ 1, 3 x 5 = 15 = 16 - 1 =
42 - 1, etc .) And similarly two consecut ive evens form a product which is
one less than the square of t he intermediate odd number (t hus, 0 x 2 =
o= 1 - 1 = 12 - 1, 2 x 4 = 8 = 9 - 1 = 32 - 1,4 x 6 = 24 = 25 - 1 = 52 - L
etc .) He asked, therefore , by what ratio the factors must be increased to form a
product , not those squares minus one, bu t equal to the squares themselves. He
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found t his could be done, moreover , if both factors are increased by a fracti on
that has a denominator conti nua lly broken , infini tely so, in the form we have
shown ab ove. That is , the numerators of the par t fracti ons are squares of odd
numbers, bu t the denominators are everywhere twice an int eger , increased by
a fraction , and so infinitely. In this form, cont inued as far as one likes."?

Moreover , those factors thus const ituted, continued as far as one likes
(though not infinitely) form a product either less than the required squa re, if
the number of fracti ons adjoined to the integer is even, or greate r, if odd; so
that, however , the lan ger this is carried on , the more nearly it approaches t he
required square , which is confirmed by this demonstrati on .

Let the first whole number of any required [pai r of] factors be F, and
the next F + 2. The number between , therefore , (to be squa red) is F + 1.
The product of the former , F 2 + 2F, is less than the square of the lat ter ,
F 2 + 2F + 1.

Now one fraction is adjoined to each factor. Therefore the factors

1 1
F + - F and F + 2 + - F-- form a product

2 2 +4
4F 4 + 16p3 + 20p2 + 8P + 9

4F2 + 8F ' which will be greater than the square

F 2 2F _ 4F4 + 16F3 + 20F2 + 8F
+ + 1- 4F2 +8F

Then two more fract ions are adj oined ; the resul ting factors

1 1
F + 9 and F + 2 + 9 form a product

2F + 2F 2F + 4 + 2FH

4F3 + llF 4F3 + 24F2+ 59F + 54
----=-- x---:-;:----=-- - -

4F2 + 9 4F2 + 16F + 25

16F6 + 96F 5 + 280F4 + 480F3 + 649F2 + 594F
16F4 + 64F3 + 136F2 + 144F + 225

79 The first fracti on , beginning wit h zero, osc iIlates between zero and infin ity , bu t multiplied
by the next frac t ion , beginn ing with 2, it is supposed to make 1.
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which is less than the square F 2 + 2F + 1 =

16F6 + 96F5 + 280F4 + 480F3 + 649F2 + 594F + 225
16F4 + 64F3 + 136F2 + 144F + 225

And thus it may be done as far as one likes; it will form a product which will
be (in turn) now greater than, now less than, the given square (the difference,
however , cont inually decreasing , as is d ear) , which was to be proved.

These having been found, moreover , they may be so adapted to our
sequences, that thence the desired terms in the table become known , described
according to this method of not ation.

For example, (putting A for the first term of any sequence), the first
sequence in OUf table is composed (as was shown above) in the odd places by
th ti d lt i l' . A 0 2 4 6 A 0 4 8 12e con mue mu t1P ication x 1 x 3 x :5 x "7 etc. or x 2" x 6" x 10 X 14
t A d i th 1 1 1 3 5 7 1 2 4 8 14e c. n m e even p aces x 2" x 4 x 6" x 8 etc. or x 4 x 6" x 10 X 16 etc.

That is,

OX2)Q.OO 4x6)Qf(t 8XIO)Q8(b
A \ t A 'f ,A . ,

1 +r l ,1 (" I ... 1 91 I
- I ä t q ~ J q + ~ Tö rö . I q 14 .. TI tw • II fi ~ ..

Ax--x - x--x---x--x---x x&c.
o 2 . -+ 6 8 10 12
~ ~ ~
2x+)Q2{1 6x8)Q§(l Ioxr2)<Qo(~

Or also (which dearly comes down to the same thing) in this form

Q..2.)OX2(~ Q6) 4X60 Q..IO)8XIO(d
~ ~ ~
0 2 i 6 8 10 t"

Ax x---x x x x • x x&c.
llit 31!t ft!dt 7dtl, 9dttt II 1 d 13 I IB t 15 1 t

~ '---y----J~
Q",,) 2X+(i Q 8)6'x1(1 Q..I2.) 10Xu.(~

Either way, the ratios from which the numbers to be put in either odd or
even places are composed , may be separated into two ratios (as is dear) , from
which may be constituted the numbers to be put in each place cont inually;
th at is, the numbers in first the even then the odd, reduced to one sequence
by common interpolat ion.

Similarly, in the third sequence, in which the numbers occupying odd
places are composed by the cont inued multiplication A x f x ~ x ~ x ~ etc.
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A 4 8 12 16 t d i th I b 1 3 5 7 9 tor x 2" x 6" x 10 X 14 e c., an In e even p aces y x 2" x 4 x 6 x 8 e c.

1 6 10 14 18 That ior x 4 x "6 x 10 X 16 etc . at IS ,

:U4)Q40 6x8)Q8(1 IOXI2.)Q..12.(H
r---A----. t A \~

31h S'iTlt 7tld .. 9t\dt IIddt I~ddt Ij'~"tt
Ax X--K---lC X----IC X x&c.

1:& 14-
"----y---J
12X1f)Q..14Gf

And these are indeed abundantly sufficient for completing all the numbers
of our table, since it has already been shown above at Proposition 188, that
any one of the desired numbers being found , the rest immediately become
known. If anyone, however, desires that just as we resolved our ratios in the
first and third sequences, so also to have the ratios of the remaining sequences
resolved in the same way, it will indeed be possible that that also should be
done , so that, however, in the fourth sequence (that is, the second after the
sequence of units) , there will be aseparation of any ratios produced into two
ratios; in the fifth , into three, and so on.

That is, in the fourth in this form:

~X4X4x6)Q.:.·p():U=t 6)(8x8)(IO) Q 8xlo: (I~=t
, Ä \ r A ,

., I I r I I I I I I
;) &rt )( S 111 ~.. ro ~, x7 li n.. 7 li d.. x9 t1 r1, 9 Tl ,I.. x1 I n rt ,

A)(-----)(-------'- ll- ----- Je---- &c.
:I )( .. 4 x 6 6' )( 8 8 Je 10

" T

In the fifth sequence, in this form:

:2.lC4X6lc~p6x8) Q.:.fx6'x8: (l=t
Ar

31t, X, ti d4
A X---------x-----.-----

4 x 6 x 8
\ ,.. ,
.p 6x 8 x6x 8 x IO)Q 6x8xIO:e~=1

And similarly in the following sequences. That is, each ratio of the fourth,
fifth, sixth sequence etc. is composed from two, three, four ratios etc. of the
third sequence .
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Since, moreover , for each of those sequences of ratios now discovered (from
which t he numbers of our table may be const ructed by cont inued multiplica­
t ion), it might seem convenient that t hey can be shown in various forms, and
(just as needed ) tra nsformed from one to another, so that (standing in for
ot her fractions) they may better support the operations of ar ithmetic: it is
also possible to do this conveniently by what was given at t he beginn ing of
this Comment, that is, by the resolut ion (as was there taught) of squares
of even numbers into the facto rs'" there indicated, each being written (for
convenience) in symbols, in this way:

10 I Q,!2 I Q!+ I QI6 --
F I G I H I .

nri! 13s1d IIr';,!, I/Rd.Jj. •

..

HO J;E . IIF ftG
!xUB 'fxJ;C UxUO f;xft .E

ftx'lxUo ;~xUB I,XUX{tC

I --I txl;.XUX~o

Q:Ir I Q+ I Q61 Q8 I Q-OBCI D E
\

[11. 31,: h:'·d.,~~d4 s>dd4r------1--1to JB "c-- ------1tx 'ID-

For since OB = 22 = 4, and B C = 42 = 16,
we will have 4 : 16 = OB : B C = 0 : C = 1

4
6 0 = 40;

and ~O = C
In the same way, d = B and 13 = o.
And the same in the ot her places.

Therefore with t he ratios recently found, there are for the sequences :

. ° 2 4 6 8 10FIrst A x - - - x--- x --- x --- x --- x ---
1~ 3~ 5~ 7~ ~ ll~
2~ 6~ 10TiD-F 14 14+ 18~ 22~

12x - - - x etc .
1 3~
26'26-F

o 2 4 6 8 10 12
that is A x - x - x - x - x - x - x - x etc .
80 0 B C D E F G

2 4 6 8 10 12
Second A x - x - x - x - x - x - x et c.

2 4 6 8 10 12

Rectangulorum aequalium latera , iiterally 'sides of equal rectangles' .
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6 X 8 X 10 6 X 8 X 10
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B C D E F G H
Third A x - x - x - x - x - x - x - x etc.

2 4 6 8 10 12 14
BC CD DE EF FG GH HI

Fourth A x 2 x 4 x 4 x 6 x 6 x 8 x 8 x 10 x 10 x 12 x -12-x-1-4 x -14-x-1-6

x etc.

F .fth A BCD CDE DEF EFG FGH
1 X X X X x-----

2 X 4 X 6 4 X 6 X 8 6 X 8 X 10 8 X 10 X 12 10 X 12 X 14

GHI
X X etc.

12 X 14 X 16

And thus in the rest (where, however, it is to be understood that A is
not everywhere the same quantity, but in the first sequence A = 00, or better

000, in the second A = 1 = 000 X ~, in the third A = ~o = 1 X ~, in the

1 . 6
fourth A = ~ = ~o X 0 ' in the fifth A = !O = ~ X D = ~ X iC = ~ X ~O.

And so on. For the first vertical sequence is the same as the first across (as is
clear above). They may thus be shown, merely by an equally powerful dernon­
stration, so that only one of these infinit e numbers is needed in each expres­
sion , and often indeed not one. For example, in the fifth sequence, the sec-

CDE 36E 64C 40 16 C 12 3E
ond ratio 4 X 6 X 8 = 4 X 6 X 8 4 X 6 X 8 3 = 3B "3 = D = 16
etc. and therefore by multiplying this ratio written in any of these ways,
by the second term of that sequence, 1, (found in our table) the third term is
to be had:

40 16 C 12 3E
1 X 3 = 3B = "3 = D = 16 etc.

And this third term multiplied by the next ratio:

100D 900B 15 15B 15 5D
6 x 8 x 10 = 1920 = 80 = 32 = 2C = 24

40
= 3E etc .

will give the fourth term of the same sequence, ~ = 2~, that is, the same as
the table shows. (But the same term is also equally shown by multiplication
of the second term, 1, by the ratio composed of the second and third.) And
in this way one may show each term of our table, having made use sometimes
of some one, but more often not even one, of those infinite numbers, the first
of which indeed, that denoted 0, we introduced into our table.

Therefore the ratio of the circle to the square of its diameter (as
4 C 9 9E 225 25G

already said) :tPd : d
2 = 1 : 0 = B = "4 = D = 64 = 16F = 256 etc. And

similarly (since the ratio of the circumference to the diameter is four times
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the ratio of the circle to the square, because, that is, ~pd : d2 = ~p : d), the
ratio of the circumference to the diameter, p : d = 0 : 4, and the diameter to
the circumference, d : p = 0 : 4 =

1 . i = B = 16 = 4D = 256 = 64F = 1024
. 0 C 9 9E 225 25G etc.

That is, 1 to 0

and 1 to B

is the ratio of the circle to the square of its diameter

is the ratio of the diameter to the circumference.

It remains that I should show a reason (not so much from necessity as for
the sake of clarity) why in assigning the value of the quantity D, as I said
above, for the final denominator of the continually broken fraction (taking it
to stand wherever one likes), there is to be put not 2 but rather 3,5,7,9, etc.
as the place where it is to stand requires. The reason indeed is this.

Since it may be assumed (as already taught) that D x B = 22 = 4, and
that D = 1~ and B = 3~, then ifwe divide 4 = 22 by B (the next factor)

2 2+ 6 6+
it will give D. If the quantity B is taken incomplete, it will produce not the
quantity D itself but another which will be either greater or less, according as
the imperfect value taken for B is less or greater than the exact value of B .
That is, if for the divisor B is taken 3, having done the division it will give
1~ for D; if for the divisor we take 3i, it will give 1~ ; if 3~, it will give

25 66

1+ .And so on, as is clear from the calculation itself.
2~2...,-

And so it will be for B = 36~' C = 51~+' D = 7 ll+, etc. That is, for B
the last denominator will be one ofthese: 5, 7, 9,11, etc. (namely, the one that
the place where it stands requires) because 3 (the whole number with which
the description of the quantity B begins) continually increases in arithmetic
progression in twos . And similarly in C, one of these: 7, 9, 11, 13, etc. And in
D one of these: 9, 11, 13, 15, etc. (which, that is, in the former from 5, and
in the latter from 7, continually increase in arithmetic progression in twos) .
And similarly in those that follow, which the calculation itself will indicate.

And generally, in any of those quantities to be described (in whatever
place at length one would wish to stop) for the last denominator there may
be taken twice the number that denotes the place of the fraction, increased
by that whole number that begins the description.

If anyone asks, moreover, why in this process (in designating the last
denominator) we make the division by the second factor rather than the
first , the reason is, that thus the thing proceeds more conveniently. For as
those denominators now go forward from the initial whole number increasing
arithmetically; if the division were done by the first factor, the denominators
would go backwards from the initial whole number, decreasing (which would
confuse the description more), as trying it will show. And therefore by that
rule, if (for example) the quantity F is written as 102 = 100 divided by E,
the denominators thus produced will be 9,7,5,3, 1, -1, etc. If, however, by
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the first method, as 122 = 144 divided by C , they would have been 13, 15, 17,
19, 21, 23, 25, etc ., t hat is, the former decreasin g from 11, t he lat ter increas­
ing; and, moreover , wherever the latter method gives quantities altoget her too
large, the former will likewise give them too large, and conversely. Whence
it is also clear, that the first method of writing the final denominator is not
only less confusing, but is also more accurate than the second. For since the
excess and defect ar e always determined by the final fract ion (by t he addition
of which , a quantity which was too large becomes too small, and conversely),
where the denominator is greate r (keeping the same numerator ) the fraction
is less, and t herefore eit her the excess or defect is less, than if the denominator
were [smaller].81 Therefore putting in place denominators continually increas­
ing will decrease t he error, and t hose cont inua lly decreasing will increase it .
Whi ch indeed is t rue as far as you like, so that not just in our correction
which proceeds by cont inual increase of denominators, anyone may find to
their advantage (or rather , disadvantage on account of the said reason), that
it may be taken so far that the increased denominator is greate r than the
general denominator, (namely, that which is equal to twice the whole num­
ber at the beginning) for , until that is arr ived at, changing from t he general
denominator to the increasing denominator does not diminish , bu t increases
the adjoined fracti on , therefore also the error.

T here seems to remain yet one more thing , that is, that I show by what
rule cont inually broken fractions of this kind may be conveniently reduced to
ordinary fracti ons.

Moreover , while it may be don e by a method known to everyone, beginning
from the end, and going back until one event ually ar rives at the beginning, all
the same it seems desirabl e that it may by don e by start ing from the beginning
and pro ceeding as far as one likes. Therefore , we will now show how this may
be don e.

Therefore, let any cont inually broken fracti on of this kind be writ ten thus:
a

b
a - -

c
ß-

d
T - e

8- - etc.
e

Therefore it may be agreed that the reduction may be set up by the
accepted method, in this way:

a a

o o

a aß
b b + a ß
a -

ß

81 Walli s has mistakenly written 'greater ' (major) here.
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a

ba--
ß _c_,

a

ba-­
c

ß-
d,­s

ac+ aß,
ac+b,+aß,

aßd + aco + aß,o
bd+ aßd + aco + b,o + aß,o

etc.
And so on , as needed. Whence we may put together this rule, with the

help of which we may begin the reduction from the beginning, cont inuing as
far as we like:

P [82] Q[83J p Q Q

That is, if (of three consecutive fractions) the numerator of the third given ,
is multiplied by the numerator of the first just sought out, and the denomina­
tor of the third given , by the numerator of the second just sought out, the sum
will be the numerator of the third sought. And similarly, if the numerator of
the third given, is multiplied by the denominator of the first just sought out,
and the denominator of the third given, by the denominator of the second
just sought out, the sum will be the denominator sought.

An example may make the thing clear.

Let the fraction to be reduced be: 1

9
2-25
2­

49
2-

81
2­

11

The work may be set up thus. Having found the second fraction by the
usual method, the third and those following may be had thus.

82 Propositus, or proposed, or given.
83 Quaesitu s, or sought out.
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} 29

p Q
25 x l = 25

2 1 1
x 2 = 4 2 2

25 x 2 = 50
} 76

9 2 1
-

13 = 2~2
2 x 13 = 26 2

25 29 1
49 x 2 = 98 - -= - -

2 76 9156 2~2 x 29 = 58 2 - -
2

x 13 = 637
} 789

49 156 1
49 - - --

2 789 9
2 x 76 = 152 2~

2 ----;w

x 29 ~ 2349 }
2 - -

81 2

11
4065 81 4065 1

x I56 = 1716 - -- --
II 14835 9

2~

81 x 76 ~ 6156 } 14835 2 ----;w

11 x 789 = 8679
2-sT

2 1'""1

And so on as far as needed . The reason for t he opera t ions is clear from
what has alrea dy been said.

If anyone st ill wonders, moreover , how it comes about that these cont inually
broken fractions are alte rnately now greater than, now less t han the required
quant ity, (according to whether it pleases anyone to stop here or there) ,
he may briefly be given the reason for it . Since it is certain that an inte­
ger without any adjoined fraction is too sma ll, the first fraction adjoin­
ing that integer increases the quant ity, bu t the smaller it is itself, the
less it increases it . Here, therefore, the first fraction increases the quan­
t ity, and indeed as far as this, t hat now what was too small becomes too
large. And keeping the same num erator of this fraction , if the denomina­
tor is increased (which comes about by the adjoining of a second fract ion)
t he first fraction, and therefore also the whole quanti ty, is decreased by
adjoining a second. And this decrease will be smaller (and therefore the
total quantity greater) as the denominator of this second fract ion (keeping
t he same numerator) is increased , which comes about by adjoining a third
fraction . T herefore the third fract ion decreases the second, and t herefore
increases the first , and thus also, t herefore, the whole quantity. And simi­
larly in t he subsequent steps . Thus the four th adjoined fraction decreases
the third, that is, increases the second, decreases t he first and therefore
t he whole quantity. The fifth decreases the four th, and therefore increas es
the third, decreases the second , and increases the first and therefore the
whole quanti ty. Therefore adjoining fract ions in odd places increases, in
even pIaces decreases, the quanti ty. Which is to be und erstood not only of
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c

this, but of any other fractions thus continually broken (in the denomina­
tors) .

And thus far I have shown the thinking of the Noble Gentleman as briefiy
and clearly as I could . And what else I thought could be said about his method,
I have indicated briefiy.

>4

~ 0\ ~ t

PROPOSITION 192

Theorem

Suppose there is a smooth curve va (not moving jerkily from here to there)
with axis V X, and with tangent to the vertex VT, from which to the curve
there are taken lines parallel to the axis and equally spaced from each other,
of which the second , fourth, sixth, eighth, etc . (in even places) are as 1, 6,
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30, 140, etc. (which numbers arise from continued multiplication of these:
1 x ~ X 12° X 134 X 11 etc.) Then as the second is to the third (that is, as 1
to the number interposed between 1 and 6), so will be the semicircle to the
square of its diameter.

Follows from Propositions 139 and 135.

PROPOSITION 193

Theorem

Suppose there is proposed a smooth curve va, to which there runs to the
vertex a line VT, from which to the curve there are taken any number of
parallel lines equally spaced from each other, of which the second, fourth,
sixth, eighth, tenth, etc. (in even places) are as 1, ~, 185, 14°;, ~~~, etc . (which

numbers arise from continued multiplication of these: 1 x ~ x ~ x t x *etc.)
Then as the second is to the third (that is, as 1 to the number that must be
interposed between 1 and ~), so will be the circle to the square of its diameter.
(And also as the second is to the fifth, so will be three times the circle to four
times its square, etc .)

Follows from Propositions 118, 121 and 185.

PROPOSITION 194

Theorem

Suppose there is a smooth curve va,with axis VX, and tangent to the vertex
VT, and of the lines taken from there to the curve (parallel to the axis and
equally spaced) the second, fourth, sixth, eight, tenth, etc. (in even places) are

1 5 35 31 5 3465 t ( hi h b . f ti d lti li .as '2'"8' 48' 384 ' e c. w 1C num ers anse rom con mue mu ip ication
of these: 1 x ~ x i x ~ X 181 etc .) Then as the second is to the third (that
is, as 1 to the number that must be interposed between 1 and ~) so will be
the circle to ! of the circumscribed square (or the square of its diameter), or
three times the circle to four times the circumscribed square. (And as also as
the second is to the fifth, so will be three times the circle to eight times its
square, etc.)

Clear from what has gone before and from the table in Proposition 189.
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COMMENT

And indeed innumerable propositions of this kind may be deduced from the
same table (in Proposition 189), certainly having formed some or other curves
of this kind according to the course of the table.

And what kind of curves all these will be it will not be very easy to
judge. All the same, one may observe certain things here. That is, in the sixth
sequence the (triangular) numbers 1, 3, 6, 10, etc. (which arise by continued
multiplication of these: 1 x ~ x ~ X 16° x 1; etc.) are as the squares of the
ordinates in a hyperbola, as was said at Proposition 173.

In the fourth sequence, the (arithmetically proportional) numbers 1, 2, 3,
4, etc. (which arise from continued multiplication of these: 1 x ~ x ~ x ~ etc.)
are as the squares of the ordinates of a parabola, or as lines in a triangle, as
is obvious.

In the second sequence, the (equal) numbers 1, 1, 1, 1, etc . (which arise
from continued multiplication of these: 1 x ~ x ~ x *etc.) are as the squares
of lines (or also as the lines themselves) in a parallelogram, as is obvious.
Therefore in the second and fourth sequence, in reality there arise straight
lines for the curves, namely, in the latter the side of a triangle, in the former
the side of parallelogram.

In the sixth, eighth, tenth, etc. (taking alternate sequences), there will arise
yet more complex curves, but their formulae are no less accurately designated
in the said table than the known formulae of the parabola, hyperbola and
ellipse.

Moreover, in the remaining interposed sequences, the first, third, fifth, etc.
(in odd places) there arise the same smooth and regular curves (thus of the
kind Descartes would understand as geometric),84 although their formulae are
more difficult to set out, as they are intermediate between the known formulae
of sequences placed in even positions, according to what we showed of the form
of the progressions in Proposition 187.

What the exhibited curves, indicated by each sequence of the table
(whether taken in even or odd places), present for inspection, the adjoined
figure shows, which exhibits those depicted curves one by one, taking the
correct measure of each on (as it is said) the same scale.

Meanwhile it must be noted (what the inspection itself also indicates)
that the convexity of VC (turning against the line VT), which in the last of
the curves is greatest, gradually decreases in the previous ones (if we reckon
it backwards), until in the fourth place the curve passes to a line (which is
intermediate between concave and convex), thence in the third to concave,
and in the second to a parallel, and finally in the first is recurved (that is, it
continually approaches a line by those steps by which the rest recede) . The

84 Descartes' definition of a geometrie curve is not that it should be smooth and regular ,
but that it can be described by a single equation in the coordinates. Wallis has failed
to find such an equation for the odd curves, but goes on to argue (see below) that such
formulae or equations must exist .
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same line VT, which in the fifth and following is a tangent, in the fourth cuts
the line, in the third is a diameter of the curve, in the second a parallel, and
finally in the first an asymptote.

What are the properties of all these curves, moreover, and by what meth­
ods they may most conveniently be described, the more curious may not for
the present ask of me (for I am already tired and weary enough from the
varied and difficult journey), nor that I should further handle the quadrature
of the hyperbola (which was done above). And indeed it is possible that it
may be pleasing to some that I offer this business while remaining silent on
it , since it allows them, the method having been already demonstrated, to be
diverted by the same mysteries.

And all are such as Descartes would have by the name of geometrie, which
without doubt is the case, since it is already sufficiently established for the
even places, their formulae having now been discovered, and therefore also for
odd places (though their formulae are not so conveniently written) it cannot
be thought otherwise. What kind of equations they are that belong to each,
will be clear from the regularity itself. For since to the fourth sequence there
belongs a linear equation; to the sixth, a quadratic; to the eighth, a cubic;
etc. (that is, the highest power is linear, a square, a cube, etc .) so to the
interpolated sequences, equations must pertain that are intermediate to these
(thus, to fifth powers , that which is intermediate between quadratic and linear;
and it may be judged in the same way for the rest) . But that equations of
this kind may be satisfactorily written in the accepted way, is perhaps to be
doubted.

To me, all the same, it is sufficient (and indeed repays the taking up of
this labour) to have pursued the thing this far, and treading a new path
to have uncovered the same by other ways; indeed what might lead me was
not therefore easy to foretell at the beginning, but that pertaining to the
quadrature of curves (or at least some of them), and other more difficult
problems of this kind, seemed to direct the course correctly. Nor indeed was
our hope disappointed. For although for the circle, its ratio to the square
(which I do not deny I also looked to from the beginning) did not appear
so plainly as we wished, as in various other curves, to be explained in some
accepted way of notation (but by some meanderings it led me, and at length
stopped at something unsayable); the reward for this labour, however, is to
have indicated that [quadrature] as far as the nature of numbers allows, so that
nothing more remains than that it should be agreed between mathematicians
by what notation (whether mine or another yet to be considered for decision)
they wish to indicate that unsayable ratio. And in other curves thus no less,
everything has come out as wished (and indeed often beyond what was hoped
for) , in that I have shown innumerable quadratures of curves , some quite
unknown until now, as weIl as some indeed known before, but now taught by
a new and easier method. And in innumerable other intricate mathematical
problems (thus of pyramids, conoids and spheres, of spirallines and the spaces
contained in them, of parabolas, and others in passing), I have either been
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the first to complete them, or have much elucidated. In the same way, I have
reduced figures continued to infinity, both plane and solid, to known and finite
measure (not one only, which was already done by Torricelli, which seemed
amazing enough, but many) .

Indeed, it would have been easy (by the method one preferred) to have
inferred innumerable other propositions in passing (which no one skilled in
these things can doubt) since that doctrine that I hand over is sufficiently
fertile in its consequences. And indeed, in the first parts of this treatise I
have more copiously inserted consequences of this kind, particularly so that
I might indicate what this doctrine offered. But in what followed I did that
more sparingly, partly because now our method and its usefulness was clear
from what had gone before up to then, so that now anyone could show it by
his own effort; partly also lest the number of propositions (which now seemed
to swell) and therefore the whole treatise should grow to an exceedingly heavy
bulk. Therefore much has been indicated lightly in passing, which if the more
diligent wanted to follow up, would require, rather, a whole inquiry to each
part.

There remains this: we beseech the skilled in these things, that what we
thought worth showing, they will think worth openly receiving, and whatever
it hides, worth imparting more properly by themselves to the wider mathe­
matical community.

PRAISE BE TO GOD



Glossary

(The number in brackets after each definition indicates the Proposition where
the term first appears.)

Arithmetic proportionals: Quantities that increase or decrease by regular
addition of a fixed quantity. (1)

Binomes and apotomes: A binome is a quantity of the form Ja + Jb, and
an apotome of the form Ja - Jb. (Comment following 127)

Circle: In Wallis's text a circle is always a plane figure with area. The bound­
ing line is the circumference. (6)

Conoid: Asolid formed by rotation of a curve around an axis of symmetry (a
diameter) or an ordinate; a parabolic conoid is generated by the rotation
of a parabola. (4)

Diameter: One of the principal axes of a conic (and for a right conie an axis
of symmetry) . If such an axis is aligned with the x-axis, with the vertex
of the curve at the origin, then the length of the diameter as far as a
given point is given by the x-coordinate (see also ordinate). (14)

The diameter is also sometimes called the intercepted diameter. (88)

Figure: A plane figure with an area. (5)

Index : The number denoting apower, thus the index of x n is n. (64)

Latus rectum : The totallength of the ordinates passing through a focus of a
conie. For a parabola with equation y2 = kx the latus rectum is 2k. (15)

Ordinate: In modern notation, the length of an ordinate of a curve at any
point is given by the y-coordinate (see also diameter). (14)
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Parabo la: A eurve whose equation in its simplest form is yn = kx . For the
eommon (or simple) parabola n = 2, while for eubieal, biquadratie or
supersolid parabolas , n = 3, 4 or 5, respect ively. The latter are known
as higher parabolas. (4; Comment following 38)
A right parabola has ordinates at right angles to its diameter , while an

inclined parabola (cut from an inclined cone) has ordinates at some
other angle to the diameter. (4)

A truneated parabola is cut off by a line x = d. (14)

Proportionals: Quantities of the form a, ar, ar 2 , ar 3 , . . . . (Strict ly these are
geometrie proportionals; see also arithmetie proportionals above .)

The m ean proportional between x and y is .;xY (since y: .;xY= .;xY :
x) . (75)

The third proportional of two (orde red) quantities x and y is y2[» . (84)

Pyramid: Asolid with polygonal cross-sections parallel to the base; in a
parabolie pyramid any cross-section through t he vertex is bounded by
parabolic curves . (4)

Right eonies: Conies in which the ordinates are at right ang les to the
diam eter. (4)

S egment: A portion of length of a line or curve. (11)

Sequenees and seri es: A sequenee is a finite or infinite list of terms, while a
series is now generally understood as a sequence of partial sums. Wallis
uses the single Latin word seri es both for a list of terms and as a col­
leetive noun to denote a set of such terms, usually summed. I have used
sequenee where Wallis describes individual terms generated according to
some ru le, but seri es where it is clear that he means all th e terms taken
collect ively. My use of series in the text is thus not st rictly in keeping
with modern mathematical conventions, but nor was Wallis 's. (1)

Sines, right and versed: The right sine of an are subtending an angle 28 at
the cent re of a circle is half the lengt h of the chord connecting its ends ,
that is, r sin 8. The versed sine is the distance between the cent re of the
are and the chord connecting its ends , t hat is, r( l - cos 8). (Comment
following 38)

Univ ersal root: A root of two or more quant it ies added together. (Comment
following 165)
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