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1 Introduction

Mueller [13, p. 11] explains the format of the propositions in the Elements.
A usual proposition has the format protasis, ekthesis, diorismos, kataskeuē,
apodeixis, and sumperasma. The protasis is the statement of the proposition.
The ekthesis instantiates typical objects that are going to be worked with.
The diorismos asserts that to prove the proposition it suffices to prove some-
thing about the instantiated objects. The kataskeuē constructs things using
the instantiated object. The apodeixis proves the claim of the diorismos. The
sumperasma asserts that the proposition is proved by what has been done with
the instantiated objects.

Netz [14, pp. 268–269]:

The Greeks cannot speak of ‘A1, A2, . . . , An’. What they must do is
to use, effectively, something like a dot-representation: the general
set of numbers is represented by a diagram consisting of a definite
number of lines. Here the generalisation procedure becomes very
problematic, and I think the Greeks realised this. This is shown by
their tendency to prove such propositions with a number of numbers
above the required minimum. This is an odd redundancy, untypical
of Greek mathematical economy, and must represent what is after
all a justified concern that the minimal case, being also a limiting
case, might turn out to be unrepresentative. The fear is justified,
but the case of n = 3 is only quantitatively different from the case of
n = 2. The truth is that in these propositions Greek actually prove
for particular cases, the generalisation being no more than a guess;
arithmeticians are prone to guess.

To sum up: in arithmetic, the generalisation is from a particular
case to an infinite multitude of mathematically distinguishable cases.
This must have exercised the Greeks. They came up with some-
thing of a solution for the case of a single infinity. The double
infinity of sets of numbers left them defenceless. I suspect Euclid
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was aware of this, and thus did not consider his particular proofs as
rigorous proofs for the general statement, hence the absence of the
sumperasma. It is not that he had any doubt about the truth of the
general conclusion, but he did feel the invalidity of the move to that
conclusion.

The issue of mathematical induction belongs here.

Mathematical induction is a procedure similar to the one described
in this chapter concerning Greek geometry. It is a procedure in
which generality is sustained by repeatability. Here the similarity
stops. The repeatability, in mathematical induction, is not left to
be seen by the well-educated mathematical reader, but is proved.
Nothing in the practices of Greek geometry would suggest that a
proof of repeatability is either possible or necessary. Everything in
the practices of Greek geometry prepares one to accept the intuition
of repeatability as a substitute for its proof. It is true that the
result of this is that arithmetic is less tightly logically principled
than geometry – reflecting the difference in their subject matters.
Given the paradigmatic role of geometry in this mathematics, this
need not surprise us.

2 Euclid

VII, Definitions:

1. An unit is that by virtue of which each of the things that exist
is called one. 2. A number is a multitude composed of units. 3.
A number is a part of a number, the less of the greater, when it
measures the greater; 4. but parts when it does not measure it. 5.
The greater number is a multiple of the less when it is measured by
the less.

20. Numbers are proportional when the first is the same multiple,
or the same part, or the same parts, of the second that the third is
of the fourth.

“A is the same part of B that C is of D” means that as many numbers as
there are in B equal to A, so many numbers are there in D equal to C. In
other words, B can be divided into numbers B1, . . . equal to A and D can be
divided into numbers D1, . . . equal to C, and the multitude of B1, . . . is equal
to the multitude of D1, . . .. In other words, whatever multiple B is of A, the
same multiple is D of C.

“A is the same parts of B that C is of D” means that there is a part of B
and a part of D such that (i) the part of B is the same part of A that the part
of D is of C, and (ii) the part of B is the same part of B that the part of D is of
D. In other words, there is a part of B and a part of D such that (i) A can be
divided into numbers A1, . . . equal to the part of B and C can be divided into
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numbers C1, . . . equal to the part of D, and the multitude of A1, . . . is equal to
the multitude of C1, . . ., and (ii) Aj is the same part of B that Cj is of D.

“sum of”
“divided”
“equal”
“same multiple”
VII.5: “If a number be a part of a number, and another be the same part

of another, the sum will also be the same part of the sum that the one is of the
one.”

Proof. Let A be the same part of BC that D is of EF . I say that the sum of
A,D is also the same part of the sum of BC,EF that A is of BC.

Say
BC = B1B2, . . . , BjBj+1 = A,

and
EF = E1E2, . . . , EjEj+1 = D,

and the multitude of B1B2, . . . is equal to the multitude of E1E2, . . ..
Since BjBj+1 = A and EjEj+1 = D, therefore BjBj+1, EjEj+1 = A,D.

But, as the multitude of B1B2, . . . is equal to the multitude of E1E2, . . ., the
sum of BC,EF can be divided as

BC,EF = B1B2, . . . , E1E2, . . . = (B1B2, E1E2), . . . ,

and the multitude of (B1B2, E1E2), . . . is equal to the multitude of B1B2, . . ..
Therefore, whatever multiple BC is of A, the sum of BC,EF is the same mul-
tiple of the sum of A,D. Therefore, whatever part A is of BC, the sum of A,D
is the same part of the sum of BC,EF .

“same parts”
VII.6: “If a number be parts of a number, and another be the same parts

of another, the sum will also be the same parts of the sum that the one is of the
one.”

Proof. Let AB be the same parts of C that DE is of F . I say that the sum of
AB,DE is the same parts of the sum of C,F that AB is of C.

Because AB be the same parts of C that DE is of F , there is a part of C
and a part of F such that AB can be divided as AB = A1B1, . . . with AjBj

equal to the part of C, and DE can be divided as DE = D1E1, . . . with DjEj

equal to the part of D, and the multitude of A1B1, . . . is equal to the multitude
of D1E1, . . ., and AjBj is the same part of C that DjEj is of F .

Because AjBj is the same part of C that DjEj is of F , therefore AjBj is
the same part of C that the sum of AjBj , DjEj is of the sum of C,F (VII.5).

And, as the multitude of A1B1, . . . is equal to the multitude of D1E1, . . .,
the sum of AB,DE can be divided as

AB,DE = A1B1, . . . , D1E1, . . . = (A1B1, D1E1), . . . ,
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where each AjBj , DjEj is equal to the same part of AB,DE, and the multitude
of (A1B1, D1E1), . . . is equal to the multitude of A1B1, . . ..

Therefore AB is the same parts of C that AB,DE is of C,F .

transitivity of same part
if A is the same part of B that it is of C, then B = C
VII.7: “If a number be that part of a number, which a number subtracted

is of a number subtracted, the remainder will also be the same part of the
remainder that the whole is of the whole.”

Proof. Let AB be the same part of CD that AE is of CF . I say that EB is the
same part of FD that AB is of CD.

Let G be such that EB is the same part of CG that AE is of CF .
Because AE is the same part of CF that EB is of CG, it follows that AE,EB

is the same part of CF,CG that AE is of CF (VII.5). But AE,EB = AB and
CG,CF = GF , so AE is the same part of CF that AB is of GF .

But by hypothesis, AE is the same part of CF that AB is of CD. Therefore
AB is the same part of GF that it is of CD, and therefore GF = CD. Subtract
CF from GF and CD; Then GF − CF = CD − CF , i.e. GC = FD.

By construction of G, AE is the same part of CF that EB is of GC. And
GC = FD. Therefore AE is the same part of CF that EB is of FD. But by
hypothesis, AE is the same part of CF that AB is of CD. Therefore EB is the
same part of FD that AB is of CD.

VII.8: “If a number be the same parts of a number that a number subtracted
is of a number subtracted, the remainder will also be the same parts of the
remainder that the whole is of the whole.”

Proof. Let AB be the same parts of CD that AE is of CF . I say that EB is
the same parts of FD that AB is of CD.

Let GH be made equal to AB. So GH is the same parts of CD that AE
is of CF . This means that there is a part of CD and a part of CF such that
GH can be divided as GH = G1H1, . . . where each GjHj is equal to the part
of CD, and AE can be divided as AE = A1E1, . . . where each AjEj is equal
to the part of CF , and the multitude of G1H1, . . . is equal to the multitude of
A1E1, . . ., and GjHj is the same part of CD that AjEj is of CF .

Because GjHj is the same part of CD that AjEj is of CF while CD is greater
than CF , therefore GjHj is greater than AjEj . Let GjMj be made equal to
AjEj . Thus GjHj is the same part of CD that GjMj is of CF . Therefore the
remainder GjHj − GjMj = MjHj is the same part of CD − CF = FD that
GjMj is of CF (VII.7).

Each MjHj is equal to the same part of FD. And the multitude of M1H1, . . .
is equal to the multitude of G1H1, . . .. Therefore M1H1, . . . is the same parts of
FD that GH is of CD.
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EB = AB −AE. But AB = GH. So EB = GH −AE. Then

EB = GH −AE

= G1H1, . . .−A1E1, . . .

= (G1H1 −A1E1), . . .

= (G1H1 −G1M1), . . .

= M1H1, . . . .

And HG = AB, therefore EB is the same parts of FD that AB is of CD.

Uses VII.5,6 for arbitrarily many terms
VII.9: “If a number be a part of a number, and another be the same part

of another, alternately also, whatever part or parts the first is of the third, the
same part, or the same parts, will the second also be of the fourth.”

Proof. Let A be the same part of BC that D is of EF . I say that, alternately
also, A is the same part or parts of D that BC is of EF .

Since A is the same part of BC that D is of EF , BC can be divided into
numbers B1C1, . . . equal to A, EF can be divided into numbers E1F1, . . . equal
to D, and the multitude of B1C1, . . . is equal to the multitude of E1F1, . . ..
Because BjCj = BkCk and EjFj = EkFk for each j and k, whatever part or
parts BjCj is of EjFj , the same part or parts is BkCk of EkFk. Therefore
whatever part or parts BjCj is of EjFj , the same part or parts is the sum of
B1C1, . . . of the sum of E1F1, . . . (VII.5, 6). That is, whatever part or parts
BjCj is of EjFj , the same part or parts is BC of EF .

But BjCj = A and EjFj = D, so whatever part or parts A is of D, the same
part or parts is BC of EF .

VII.10: “If a number be parts of a number, and another be the same parts
of another, alternately also, whatever parts or part the first is of the third, the
same parts or the same part will the second also be of the fourth.”

Proof. Let AB be the same parts of C that DE is of F . I say that, alternately
also, AB is the same part or parts of DE that C is of F .

Because AB is the same parts of C that DE is of F , there is a part of C
and a part of F such that AB can be divided as AB = A1B1, . . . with each
AjBj equal to the part of C, and DE can be divided as DE = D1E1, . . . with
each DjEj equal to the part of F , and the multitude of A1B1, . . . is equal to
the multitude of D1E1, . . ..

Since AjBj is the same part of C that DjEj is of F , alternately also, AjBj

is the same part or parts of DjEj that C is of F (VII.9).
Therefore whatever part or parts AjBj is of DjEj , the same part or parts is

the sum of A1B1, . . . of the sum of D1E1, . . . (VII.5, 6). But AjBj is the same
part or parts of DjEj that C is of F and AB = A1B1, . . ., DE = D1E1, . . .,
therefore whatever part or parts C is of F , the same part or parts is AB of
DE.
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“A is to B as C is to D”
VII.11: “If, as whole is to whole, so is a number subtracted to a number

subtracted, the remainder will also be to the remainder as whole to whole.”

Proof. Let AE be to CF as AB is to CD. I say that EB is to FD as AB is to
CD.

Since as AB is to CD so AE is to CF , AB is the same part or parts of CD
that AE is of CF (VII, Definition 20). Therefore the remainder EB is the same
part or parts of the remainder FD that AB is of CD (VII.7, 8).

Therefore, as EB is to FD, so is AB to CD (VII, Definition 20).

“antecedent”, “consequent”
VII.12: “If there be as many numbers as we please in proportion, then, as

one of the antecedents is to one of the consequents, so are all the antecedents
to all the consequents.”

Proof. Let A1, A
′
1, A2, A

′
2, . . . be as many numbers as we please in proportion,

so that as Aj is to A′
j so is Ak to A′

k. I say that, as Aj is to A′
j , so is A1, A2, . . .

to A′
1, A

′
2, . . ..

Since, as Aj is to A′
j so is Ak to A′

k, whatever part or parts Aj is of A′
j the

same part or parts is Ak of A′
k. Therefore the sum of A1, A2, . . . is the same

part or parts of the sum of A′
1, A

′
2, . . . that Aj is of A′

j (VII.5, 6).
Therefore, as Aj is to A′

j , so are A1, A2, . . . to A′
1, A

′
2, . . . (VII, Definition

20).

VII.13: “If four numbers be proportional, they will also be proportional
alternately.”

Proof. Let A,B,C,D be proportional, so that as A is to B, so is C to D. I say
that they are also proportional alternately, that is, that as A is to C, so is B to
D.

Since A is to B as C is to D, whatever part or parts A is of B, the same
part or parts is C of D (VII, Definition 20). Therefore, alternately, whatever
part or part A is of C, the same part or parts is B of D (VII.10). Therefore, as
A is to C, so is B to D (VII, Definition 20).

“same ratio”
transitivity of same ratio
VII.14: “If there be as many numbers as we please, and others equal to

them in multitude, which taken two and two are in the same ratio, they will
also be in the same ratio ex aequali.”

Proof. Let there be as many numbers as we please A1, . . . , An and others equal
to them in multitude A′

1, . . . , A
′
n which when taken two and two are in the same

ratio, so that as Aj is to Aj+1 so is A′
j to A′

j+1. I say that, ex aequali, as A1 is
to An so is A′

1 to A′
n.

Since as A1 is to A2 so is A′
1 to A′

2, therefore, alternately, as A1 is to A′
1, so

is A2 to A′
2 (VII.13). Likewise, as A2 is to A′

2, so is A3 to A′
3, etc., and because
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A1 is to A′
1, so is A2 to A′

2, then as A1 is to A′
1, so is A3 to A′

3. And so on.
Thus as A1 is to A′

1, so is An to A′
n. Therefore, alternately, A1 is to A′

1, so is
An to A′

n (VII.13).

“measures the same number of times”
cf. VII.8.
VII.15: “If an unit measure any number, and another number measure

any other number the same number of times, alternately also, the unit will
measure the third number the same number of times that the second measures
the fourth.”

Proof. Let the unit A measure any number BC and let another number D
measure any other number EF the same number of times. I say that, alternately
also, the unit A measures the number D the same number of times that BC
measures EF .

Since the unit A measures the number BC the same number of times that
D measures EF , therefore, as many units as there are in BC, so many numbers
equal to D are there in EF also. Let BC be divided into the units in it,
B1C1, . . ., and let and EF be divided into the numbers E1F1, . . . in it equal to
D. Thus the multitude of B1C1, . . . is equal to the multitude of E1F1, . . ..

Because the units B1C1, . . . are equal to one another, and the numbers
E1F1, . . . are equal to one another, and the multitude of the units B1C1, . . .
is equal to the multitude of the numbers E1F1, . . ., therefore, as BjCj is to
EjFj so is BkCk to EkFk. Therefore, as one of the antecedents is to one of the
consequents, so are all the antecedents to all the consequents (VII.12). All the
antecedents are B1C1, . . . = BC, and all the consequents are E1F1, . . . = EF ,
so as the unit B1C1 is to the number E1F1, so is BC to EF . But the unit
B1C1 is equal to the unit A and the number E1F1 is equal to the number D.
Therefore, as the unit A is to the number D, so is BC to EF . Therefore, the
unit A measures the number D the same number of times that BC measures
EF .

VII, Definitions:

11. A prime number is that which is measured by an unit alone.
12. Numbers prime to one another are those which are measured
by an unit alone as a common measure. 13. A composite number is
that which is measured by some number. 14. Numbers composite
to one another are those which are measured by some number as a
common measure. 15. A number is said to multiply a number when
that which is multiplied is added to itself as many times as there are
units in the other, and thus some number is produced.

“B measures C according to the units in A”
VII.16: “If two numbers by multiplying one another make certain numbers,

the numbers so produced will be equal to one another.”
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Proof. Let A,B be two numbers and let A by multiplying B make C, and B by
multiplying A make D. I say that C = D.

Since A by multiplying B has made C, therefore B measures C according
to the units in A. But the unit E also measures the number A according to the
units in A; therefore, the unit E measures A the same number of times that B
measures C. Therefore, alternately, the unit E measures B the same number
of times that A measures C (VII.15).

Again, since B by multiplying A has made D, therefore A measures D
according to the units in B. But the unit E also measures B according to the
units in B; therefore the unit E measures B the same number of times that A
measures D.

But the unit E also measures B the same number of times that A measures
C. Therefore A measures each of the numbers C,D the same number of times.
Therefore C = D.

VII.17: “If a number by multiplying two numbers make certain numbers,
the numbers so produced will have the same ratio as the numbers multiplied.”

Proof. Let the number A by multiplying the two numbers B,C make D,E. I
say that, as B is to C, so is D to E.

Since A by multiplying B has made D, therefore B measures D according
to the units in A. But the unit F also measures the number A according to the
units in A; therefore the unit F measures the number A the same number of
times that B measures D. Therefore, as the unit F is to the number A, so is B
to D (VII, Definition 20).

For the same reason, as the unit F is to the number A, so is C to E.
Therefore, as B is to D, so is C to E. Therefore, alternately, as B is to C, so
is D to E (VII.13).

VII.18: “If two numbers by multiplying any number make certain numbers,
the numbers so produced will have the same ratio as the multipliers.”

Proof. Let two numbers A,B by multiplying any number C make D,E. I say
that as A is to B, so is D to E.

Since A by multiplying C has made D, therefore also C by multiplying A
has made D (VII.16). For the same reason, since B by multiplying C has made
E, therefore also C by multiplying B has made E.

Therefore, the number C by multiplying the two numbers A,B has made
D,E. Therefore, as A is to B, so is D to E (VII.17).

VII.19: “If four numbers be proportional, the number produced from the
first and fourth will be equal to the number produced from the second and third;
and, if the number produced from the first and fourth be equal to that produced
from the second and third, the four numbers will be proportional.”

Proof. Let A,B,C,D be four numbers in proportion, so that as A is to B, so is
C to D; and let A by multiplying D make E, and let B by multiplying C make
F . I say that E = F .
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Let A by multiplying C make G. Since A by multiplying C has made G,
and by multiplying D has made E, the number A multiplying the two numbers
C,D has made G,E. Therefore, as C is to D, so is G to E (VII.17).

But by hypothesis as C is to D, so is A to B; therefore as A is to B, so is G
to E.

Since A by multiplying C has made G but also B by multiplying C has made
F , the two numbers A,B by multiplying a certain number C have made G,F .
Therefore as A is to B, so is G to F (VII.18). But further, as A is to B, so is
G to E; therefore, as G is to E, so is G to F . Therefore G has to each of the
numbers E,F the same ratio; therefore E = F .

Again, let E = F . I say that, as A is to B, so is C to D. With the same
construction, since E = F , as G is to E so is G to F . But as G is to E so is C
to D (VII.17), and as G is to F so is A to B (VII.18). Therefore, as A is to B,
so is G to E, and as G is to E so is C to D, so as A is to B, so is C to D.

VII.20: “The least numbers of those which have the same ratio with them
measure those which have the same ratio the same number of times, the greater
the greater and the less the less.”

Proof. Let CD,EF be the least numbers of those which have the same ratio
with A,B. I say that CD measures A the same number of times that EF
measures B.

Now, CD is not parts of A. For, if possible, let it be so. Since CD is to EF
as A is to B, therefore CD is to A so is EF to B (VII.13). Therefore EF is the
same parts of B that CD is of A (VII, Definition 20). Therefore there is a part
of A such that CD can be divided into numbers C1D1, . . . each equal to this
part, there is a part of B such that EF can be divided into numbers E1F1, . . .
each equal to this part, the multitude C1D1, . . . is equal to the multitude of
E1F1, . . ., and each CjDj is the same part of A that EjFj is of B. Since the
numbers CjDj and CkDk are equal to one another, and the numbers EjFj and
EkFk are equal to one another, and the multitude of C1D1, . . . is equal to the
multitude of E1F1, . . ., then as CjDj is to EjFj so is CkDk to EkFk. Thus as
one of the antecedents is to one of the consequents, so are all the antecedents
to all the consequents (VII.12). But CD = C1D1, . . . and EF = E1F1, . . .;
therefore, as C1D1 is to E1F1 so is CD to EF . Therefore C1D1, E1F1 are in
the same ratio as CD,EF , being less than them; this is impossible because by
hypothesis CD,EF are the least numbers of those which have the same ratio
as them.

Therefore CD is not parts of A. Therefore CD is part of A (VII.4). But
as CD is to EF so is A to B, therefore as CD is to A so is EF to B (VII.12).
Therefore CD is the same part of A that EF is of B (VII, Definition 20).
Therefore CD measures A the same number of times that EF measures B.

“least numbers”
“as many times as C measures A, so many units let there be in E”
VII.21: “Numbers prime to one another are the least of those which have

the same ratio with them.”
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Proof. Let A,B be numbers prime to one another. I say that A,B are the least
of those which have the same ratio with them.

If not, there will be some numbers less than A,B which are [the least num-
bers] in the same ratio with A,B. Let them be C,D. But the least numbers
of those which have the same ratio measure those which have the same ratio
the same number of times, the greater the greater and the less the less, that
is, the antecedent the antecedent and the consequent the consequent (VII.20).
Therefore C measures A the same number of times that B measures D.

As many times as C measures A, so many units let there be in E. Therefore
D also measures B according to the units in E.

And since C measures A according to the units in E, therefore E also mea-
sures A according to the units in C (VII.16). For the same reason, E also
measures B according to the units in D (VII.16). Therefore E measures A,B
which are prime to one another: which is impossible (VII, Definition 12).

Therefore there will be no numbers less than A,B which are in the same
ratio with A,B.

Therefore A,B are the least of those which have the same ratio with them.

VII.22: “The least numbers of those which have the same ratio with them
are prime to one another.”

Proof. Let A,B be the least of those numbers which have the same ratio with
them. I say that A,B are prime to one another.

If they are not prime to one another, some number will measure them.
Let some number measure them, and let it be C. And as many times as C

measures A, so many units let there be in D, and as many times as C measures
B, so many units let there be in E.

Since C measures A according to the units in D, therefore C by multiplying
D has made A (VII, Definition 15). For the same reason also, C by multiplying
E has made B (VII, Definition 15). Thus, the number C multiplying the two
numbers D,E has made A,B; therefore, as D is to E, so is A to B (VII.17);
therefore D,E are in the same ratio with A,B, being less than A,B: which is
impossible.

Therefore, no number will measure the numbers A,B.
Therefore A,B are prime to one another.

VII.23: “If two numbers be prime to one another, the number which mea-
sures the one of them will be prime to the remaining number.”

Proof.

VII.24: “If two numbers be prime to any number, their product also will
be prime to the same.”

Proof.
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VII.25: “If two numbers be prime to one another, the product of one of
them into itself will be prime to the remaining one.”

Proof.

VII.26: “If two numbers be prime to two numbers, both to each, their
products also will be prime to one another.”

Proof.

3 Works on arithmetic and music theory

Domninus of Larissa, Encheiridion 20–31 [17, pp. 111–115]:

20. Every number, when compared to an arbitrary number with
regard to the multitude of monads in them, is either equal to it, or
unequal. If they are equal to one another, their relationship to one
another will be unique and not further distinguishable. For in the
case of equality, one thing cannot be in this fashion and the other
thing in that fashion, since what is equal is equal in one single and the
same way. If, however, they are unequal, ten different relationships
can be contemplated concurrently.

21. But before giving an account of these, we must state that it is
true for every pair of numbers that the lesser is either a part, or
parts, of the greater number, since, if it measures the greater one,
it is a part of the greater number, such as in the case of 2 which
measures 4 and 6, of which it is a half or a third part, respectively.
If it does not measure it, it is parts of it, such as in case of 2, which,
not measuring 3, is two thirds of it, or in the case of 9, which, not
measuring 15, is three fifths of it.

22. Having stated this as a preliminary, we say that if those two
numbers which lie before us for inspection are unequal, the lesser
either measures the greater, or it does not.

23. If it measures it, the greater number is a multiple of the lesser
one, and the lesser number is a submultiple of the greater one, as in
the case of 3 and 9, since 9 is a multiple of 3, being its triple, and 3
is a submultiple of 9, being its subtriple.

24. If it does not measure the greater number, and if one subtracts
it from it once or several times, it will leave behind something less
than itself whch will, by necessity, be either a part, or parts, of the
number. For it will leave behind either a monad or some number.

25. If it leaves behind a monad, it obviously leaves behind a part of
itself. For the monad is part of every number, since every number
is a combination of monads.
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26. If it leaves behind some number, it will be either a part of itself,
or parts. For it is true for every pair of numbers that the lesser is
either a part, or parts, of the greater.

27. Now then, if the lesser number is subtracted once from the
greater, and it leaves behind a number less than itself which is a part
of it, then the greater number will be superparticular to the lesser,
while the lesser number will be subsuperparticular to the greater, as
in the case of 2 and 3. For 3 is superparticular to 2, since it includes
it and a half of it (therefore, it is also called sesquialter of it), while
2 is subsesquialter to 3. And the same is the case with 6 and 8, as
8 is sesquitertian to 6, while 6 is subsesquitertian to 8.

28. If the remainder is parts of the lesser number, then the greater
number will be superpartient, while the lesser number will be sub-
superparticular to the greater, as in the case of 3 and 5. For 5 is
superpartient to 3, since it includes it and two thirds of it (therefore,
it is also called superbitertian of it), while 3 is subsuperbitertian to
5. And the same is the case with 15 and 24, as 24 is supertriquantan
of 15, since it includes it and three fifths of it, while 15 is subsuper-
triquintan of 24.

29. If the lesser number is subtracted more often than once from
the greater, and it leaves behind a number less than itself which is
part of it, then the greater number will be multiple-superparticular,
while the lesser number will be submultiple-superparticular to the
greater, as in the case of 2 and 5. For 5 is multiple-superparticular to
2, since it includes it twice and a half of it (therefore, it is also called
duplex-sesquialter of it), while 2 is subduplex-sesquialter to 5. And
the same is the case with 6 and 26, as 26 is quadruplex-sesquitertian
to 6, while 6 is subquadruplex-sesquitertian to 26.

30. If the remainder is parts of the lesser number, then the greater
number is multiple-superpartient, while the lesser number is submultiple-
superpartient to the greater, as in the case of 3 and 8. For 8 is duplex-
superbitertian to 3, while 3 is subduplex-superbitertian to 8. And
the same is the case with 10 and 34, as 34 is triplex-superbiquintan
of 10, while 10 is subtriplex-superbiquintan of 34.

31. And these are the so-called ten relationships of inequality, to
which the ancients also referred as ratios:

1. multiple,

2. submultiple,

3. superparticular,

4. subsuperparticular,

5. superpartient,

6. subsuperpartient,
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7. multiple-superparticular,

8. submultiple-superparticular,

9. multiple-superpartient,

10. submultiple-superpartient.

This is the theory of numbers with regard to one another according
to the multitude underlying them.

Nicomachus [4]
Theon [5]
Szabó [19] assembles a philological argument that the Euclidean algorithm

was created as part of the Pythagorean theory of music. Szabó [19, p. 136,
Chapter 2.8] summarizes, “More precisely, this method was developed in the
course of experiments with the monochord and was used originally to ascertain
the ratio between the lengths of two sections on the monochord. In other words,
successive subtraction was first developed in the musical theory of proportions.”
Earlier in this work Szabó [19, pp. 28–29] says, “Euclidean arithmetic is pre-
dominantly of musical origin not just because, following a tradition developed
in the theory of music, it uses straight lines (originally ‘sections of a string’) to
symbolize numbers, but also because it uses the method of successive subtrac-
tion which was developed originally in the theory of music. However, the theory
of odd and even clearly derives from an ‘arithmetic of counting stones’ (ψῆφοι),
which did not originally contain the method of successive subtraction.”

Jordanus Nemorarius, De elementis arithmetice artis [3]
Jordanus Nemorarius, De elementis arithmetice artis [6, ]

Jordanus Nemorarius, De elementis arithmetice artis II [18, p. 697]:

What we call the denomination of a ratio, at least of a smaller num-
ber to a greater, is the part or parts that the smaller is of the greater;
and of a greater number to a smaller, the number by which it con-
tains it and the part or parts of the smaller that remain in the
greater.

Denominatio dicitur proportionis minoris quidem ad maiorem pars
vel partes quote illius fuerit, maioris vero ad minus numerus secun-
dum quem eum continet et pars vel partes minoris que in maiore
superfluunt.

Barker [1]
van der Waerden [24, p. 113]: VII.1,2,3, 4–10, 11–19, 20, 21, 22, 24, 26, 27,

33, VIII.2,3,7,8.
Burkert [2]
Philolaus [10]
Archytas [9]
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Vitrac [23, p. 305]
Heath [7]
Vandoulakis [22]
Knorr [12, p. 212]
Knorr [12, p. 244]

To Theaetetus, then, we ascribe inter alia these contributions: the
discovery of general theorems and classifications in the area of in-
commensurability; the organization of the fundaments of arithmetic
in a systematic and rigorous way as the necessary prelude to those
theorems. This effectively places the composition of Elements VII
with Theaetetus, but it is clear that much of that work was based
on techniques commonplace in the practical computation with frac-
tions: the division algorithm, the properties of ratios of integers.
and so on. Theaetetus’ innovations here were the theoretical use of
the division algorithm. the devising of sequences of theorems framed
around an explicit definition of numerical proportionality (VII, Def.
20). the establishment of a new geometric representation for num-
bers, contrasting with the older dot-methods. and the discovery and
proof of the fundamental theorems on relative primes. (VII.21–28).

Itard [11]
Heiberg [8]
Taisbak [20]
Pengelley and Richman [16]
Pengelley [15]
Witelo [21, p. 47], Definitions:

The quantity which, if multiplied by the smaller, produces the larger
or which divides the larger to yield the smaller is called the “denom-
ination of the ratio of the first to the second”. A ratio is said to be
compounded of two ratios whenever the denomination of that ratio
is produced by multiplying the denominations of those two ratios,
[namely] of one into the other.

Aristotle, Nicomachean Ethics V.3, 1131a,b.

The just, then, is a species of the proportionate (proportion being
not a property only of the kind of number which consists of abstract
units, but of number in general). For proportion is equality of ratios,
and involves four terms at least (that discrete proportion involves
four terms is plain, but so does continuous proportion, for it uses one
term as two and mentions it twice; e.g. ‘as the line A is to the line B,
so is the line B to the line C’; the line B, then, has been mentioned
twice, so that if the line B be assumed twice, the proportional terms
will be four); and the just, too, involves at least four terms, and the
ratio between one pair is the same as that between the other pair;
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for there is a similar distinction between the persons and between
the things. As the term A, then, is to B, so will C be to D, and
therefore, alternando, as A is to C, B will be to D. Therefore also
the whole is in the same ratio to the whole; and the distribution pairs
them in this way, and if they are so combined, pairs them justly. The
conjunction, then, of the term A with C and of B with D is what
is just in distribution, and this species of the just is intermediate,
and the unjust is what violates the proportion; for the proportional is
intermediate, and the just is proportional. (Mathematicians call this
kind of proportion geometrical; for it is in geometrical proportion
that it follows that the whole is to the whole as either part is to
the corresponding part.) This proportion is not continuous; for we
cannot get a single term standing for a person and a thing.

Campanus

(xii) Pars est numerus numeri minor

Peletarius
Billingsley, The elements of geometrie
Forcadel
Zamberti
Jean Errard, Les neuf premiers livres des élémens d’Euclide,
Denis Henrion, Les quinze livres des Elements d’Euclide
Robert Simson, The Elements of Euclid, pp. 253–254 proves that proportion

is equivalent in Books V and VII.

Clavius
Tartaglia
Commandinus, Euclidis Elementorum libri XV, p. 87
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