SOME PROBLEMS OF DIOPHANTINE APPROXIMATION.

BY
G. H. HARDY and J. E. LITTLEWOQOD,

TriNiTY CoLLEGE, CAMBRIDGE.

1I.
The trigonometrical series associated with the elliptic
J-functions.
2. 0. — Introduction.

2. 00. The series
2 XD 142 Qv 142 Q-1
1 1 1
where g=e%i*, are convergent when the imaginary part of ¢ is positive, and
represent the elliptic 9-functions
9,(0, 7), (0, 7), I.(0, 7).

When 7 is a real number z, the series become oscillating trigonometrical series
which, if we neglect the factor z and the first terms of the second and third
series, may be written in the forms

! The notation is that of Taxxery and Morx’s Théorie des fonctions elliptiques. We shall
refer to this book as 7. end M.
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ze(n_%)gnix’ 26”2;“‘;, 2(__ I)n en’xiz.

These series, the real trigonometrical series formed by taking their real or
imaginary parts, and the series derived from them by the introduction of con-
vergence factors, possess many remarkable and interesting properties. It was
the desire to elucidate these properties which originally suggested the researches
whose results are contained in this series of papers, and it is to their study
that the present paper is devoted.!

2. oI. We shall write

lye . )
(2. o11) si:——Ze("‘E) nzz, ot = zev!;uz’ 8,‘;=Z(-—I)”€”’"'z.
r<n v<n r<n

It is obvious that, if 8, is any one of s3, &, sa, then
(2. or12) 8,=0(n).

Our object is to obtain more precise information about ¢,; and we shall begin
by a few remarks about the case in which z is rational. In this case s, is
always of one or other of the forms

O(1), An + O(1),

where A4 is a constant. It is not difficult to discriminate between the different
cases; it will be sufficient to consider the simplest of the three sums, viz. s;.

We suppose, as plainly we may do without loss of generality, that x is
positive. Then z is of one or other of the forms

2441 24 2A + 1 zA ’
21 ’ 4ue+1 2u+1 4u+3

according as the denominator of & = zx is congruent to o, 1, 2, or 3 to mod-

vlus 4.

! Some of the properties in question are stated shortly in our paper 'Some problems of
Diophantine Approximation’ published in the Proceedings of the fifth International Congress of
Mathematicians, Cambridge, 1912,
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Now it is easy to verify that

s—1

2 e2w2nir/s

0

is of the forms ) . )
(+tx+9)Vs, £Vs, 0o, £iVs

according as $=o, 1, 2, 3 (mod. 4); and from this it follows immediately that
sp is of the forms

(149 4An + 0(1),

+ A4n + O(1),

0(1),

+idn + 0(1),

in these four cases. Thus, for example, the series
Z cos (2w x)

oscillates finitely if = is of the form (24 + 1)/(zu+1) or 24/(4p + 3), and
diverges if x is of the form (24 + 1)/2u or 24/ (4p + 1).1

2. . — O and o Theorems.

2. 10. We pass to the far more difficult and interesting problems which
arise when z is irrational. The most important and general result which we
have proved in this connexion is that

(2. 10I) 8n=0(n)

for any irrational x. This result may be established by purely elementary
reasoning which can be extended so as to show that such series as

1 This result (or rather the analogous result for the sine series) is stated by BromwicH,
Infinite Series, p. 485, Ex. 10. We have been unable to find any complete discussion of the
question, but the necessary materials well be found in DiricELET-DEDEKIND, Vorlesungen tiber
Zahlentheorie, pp. 285 et seq. See also Riemany, Werke, p. 249; GENoccnl, Atti di Torino, vol. 10,
p- 98s.
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(2. 102) Ee"”"", Zeﬂ‘““, ..

also possess the same property. We do not propose to include this proof in the
present paper. Although elementary, it is by no means particularly easy; and it
will find a more natural place in a paper dealing with the higher series (2. 102).
In the present paper we shall establish the equation (2. 101) by arguments of a
more transcendental, though really simpler, character, which depend ultimately on
the formulae for the linear transformation of the 9-functions, and will be found
to give much more precise results for particular classes of values of z.

2. 11. It is very easy to see that, as a rule, the equation (2. 101) must be
very far from expressing the utmost that can be asserted about s,.

It follows from the well known theorem of Rigsz-FiscHER that the series

2 1 2
(2‘ III) zcosn 7!2:, lenlﬂ T (6}0)

1
are FoURIER’s series. Hence, by a theorem of W. H. Youne!, it follows
that they become convergent almost everywhere after the introduction of a
convergence factor n—% (0'>0). As & and &' are both arbitrarily small, the

series themselves must converge almost everywhere. Hence the equation

1
(2. 112) a:,=o(ni+")

must hold for almost all values of x. It is evident that the same argument
may be applied to s and s, and to the analogous sums associated with such
series as (2. roz).

If, instead of the series (2. 111), we consider the series

cos Nz sin nzx

(2. 113) ; > . —
nZ (log n)2*® 72 (log n)2*?

and use, instead of Young’s theorem, the more precise theorem that any
FouRIER's series becomes convergent almost everywhere after the introduction of
a convergence factor 1/logn,® we find that we can replace (2. 112) by the
more precise equation

1 $vo
(2. 114) s,’.=o{n2 (log n)? };

! Comptes Rendus, 23 Dec. 1912.
? HaroY, Proc. Lond. Math. Soc., vol. 12, p. 370. The theorem was also discovered inde-
pendently by M. Riksz.
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and it is evident that we can obtain still more precise equations by the use of
repeated logarithmic factors. These we need not state explicitly, for none of
them are as precise as those which we shall obtain later in the paper. These
latter results have, moreover, a considerable advantage over those enunciated
here, in that the exceptional set of measure zero, for which our equations may
possibly cease to hold, will be precisely defined instead of being, as here,
entirely unspecified. The main interest of the argument sketched here lies in
the fact that it can be extended to series such as (2. 102).!

2. 120. We proceed now to the analysis on which the principal results of
the paper depend. These are contained, first in the equation (2. ror), and
secondly in the equation

(2. 1201) 8n=0(Vn),

which we shall prove for extensive classes of values of z.
In Chap. 3 of his Calcul des Résidus, LINDELOF gives an extremely elegant
proof of the formula '

g—1 T—p—1
: iq .
(2. 1202) en?wiplg — ]/_ e—mwiglp,

where p and ¢ are positive integers of which one is even and the other odd.?
Our first object will be to obtain, by an appropriate modification of LINDELGF’s
argument, analogous, though naturally rather less simple, formulae, applicable
to the series Ze"”““’, where z is irrational, and to the other series which we

are considering.
We shall, however, consider sums of a more general form than those of
which we have spoken hitherto, viz. the sums

( 12 |
s (2, 0)= 2 e(”"i’ " cos (2v—1) 70,
v<n
(2. 1203) { s (x, 0) = Ze““"“ cos 2 v,
v<n
s (z, 0) = 2 (—1)” e’ %i% cog 2vnd.
'DSn

! The argument may even be extended to series of the type Fe*% where Jn is not
necessarily a multiple of z; but for this we require a whole series of theorems concerning
DiricHLET'S series.

? The formula is due to GeroccHr and Scmasr. See LiINDELOF, L ¢, p. 75, for references
to the history of the formula.
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Here z and 6 are positive and less than 1, z is irrational, and n is not neces-
sarily an integer. These sums are related to the functions 3,(v,),... as s3,...
are related to 9,(o, 7),...

2. 12I. We consider the complex integral

{e”"“ cos 22t z cot mz dz
taken round the contour C shown in the figure. We suppose that the points
0, n are in the first instance avoided, as in the figure, by small semicircles of

1 H n+ 1 H
AN

AN
— H 7 n—1i{H

radius ¢, and that ¢ is then made to tend to zero. An obvious application of
Cavcay’s Theorem gives the result

n

' ; I P

(2. 1211) Z e’ 7% cos 2 vl = 2i P[e""" cos 2z cot w2z dz,

!
0

where P is the sign of CaucHY’s principal value, and the dashes affixed to the
sign of summation imply that the terms for which »=o0 and » =n are to be
divided by z.

We shall find it convenient to divide the contour C into two parts C, and
C,, its upper and lower halves, and to consider the integrals along C, and C,
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separately. When we attempt to do this a difficulty arises from the fact that,
owing to the poles of the subject of integration at z=o0 and z=n, the two
integrals are not separately convergent. This difficulty is, however, trivial and
may be'avoided by means of a convention.

Suppose that f(x) is a real or complex function of a real variable x which,
near x = «, is of the form

+ ¢ (2),

Xr— 0o

where ¢ (x) is a function which possesses an absolutely convergent integral across
x=oc; and suppose that, except at x=¢, f(x) is continuous in the interval
(a, A), where a <a< A. Then CavcHY’s principal value

4
P}f(x)dm

exists; but f(z) has no integral in any established sense from a to « or from e
to A. We shall, however, write

—&

Pff(x)dw=£_i£10{ff(x)dx——0 loge},
A 4 ‘
Pff(x)dx=£iﬂao{]f(x)dx+0 loge},

a+te

and it is clear that, with these conventions, we have
a A_ A
Pff(m)dx + Pj f(x)dx=Pf/(x)dx.
a [ a

It is clear, moreover, that a similar convention may be applied to complex
integrals such as those which we are considering; thus

iH
Pj 7% cog 226 w cot mz dz
0
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(taken along the line o, iH) is to be interpreted as meaning

iH
lim (je"""-” cos 2zl mcot mz dz + log e).

s—0
is

We may now write (2. 1211) in the form

n
. X .
(2. 1212) 2’ % cog 2 vl = ! (Pf— Pf) ef* iz cos 2270 cot wzdz,
i
0 G Ci

where now C, and C, are each supposed to be described starting from o. In
the first of these two integrals we write

. 21
cotmz=1 + T
and in the second
" . 2%
CcO 71'2———%—'6—_:-2—';‘;:-1"

The two constant terms in these expressions give rise to integrals which may be
taken along the real axis from o to =, instead of along C, and C,; uniting and
transposing these terms we obtain

n

n 5

! . .

(2. 1213) 2 e’z cog 2 vy 7w 6 —je‘z"”" cos 2zmldz=1, + I,,

]
0 0

where

e 2za6 I

1, =P¢j‘e”"“ cos 2zn0dz,

eP7i% o8 2 271 6
ezs:ru'_ 1

I,=P dz.

We now write

. == g27m + eteni 4 ... e2lk—lani ._8_2_"11
8-2’"’.——1 I — g2¥nt
in I,, and
L ptemi o og—demi g ...} g—2k—Daw et
e2omi ¢ 1 — e~ 2om
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in I,. If we observe that

Jeﬂmmmi cos 2zldz + | e e—2vani aog 220 dz
1 Cy

n

= zfe”””‘i” cos 2vzm cos 22wl dz,

0

we see that (2. 1213) may be transformed into

n k—1 4
I . N
2. I214) e’z cog 2yl — 2 e*iz 008 2ymwz cos 22wfdz = K, + K.
T 1] t 2
0 0y

where
A ezkzm' R
K, = P[e’%m co8 zzm&m dz,
(e
. e—2kzm’
.K, = P [672”‘” cos zzml ;—_Thm dz.

Cs

2. 122. We shall now suppose that H— «, so that the parts of C, and
O, which are parallel to the axis of x go off to infinity. If 2=§ 4+ iy, and
is large and positive, the modulus of the subject of integration in K, is very
nearly equal to

o {—amnrsa—0;

while if z=§—4dy, and 5 is again large and positive, the modulus of the sub-
ject of integration in K, is very nearly equal to

i— exp {-—zytn(k—’g'x-—ﬁ)}.
From this it follows immediately that, if

(2. 1221) k>nx+ 0,

the contributions to K, and K, of the parts of C, and C, which we are causing
to tend to infinity will tend to zero.

Acta mathematica. 37. Imprimé le 21 avril 1914. 26
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We are now left with two integrals each of which is composed of two
parts taken along rectilinear contours, and we may write

ﬂ+lm
" ekeai
1z
P e T CO8 2zn0 eZmd
—fo ‘n-—tm

z e—2keni
— e
f P cos 227:0 — dz

Of the four rectilinear integrals thus obtained two, viz. the two taken along
the imaginary axis, cancel one another. In the other two we write

z2=n+tt, z2=n—1¢

respectively, and then unite the two into a single integral with respect to ¢;
and when we substitute the result in (2. 1214) we obtain

n k—1
2 €T cog 2vwl — 2 2 j ez cog 29z cos 2znbdz =K,
0

where

€K
*

—2knt
K=i1 /e“""‘"hmﬁ { €=t cos 2 (n—tt) m — e~2%e=t cos 2(n + it) w6} dt.

2. 123. We now write

- 1 -]
K=if=if+i!=K’+K";
¢ ht i

and we proceed to show that

(2. 1231) K'=0 l/_;_
r

uniformly in respect to #, by which we imply that there is an absolute con-
stant 4 such that
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4
K< =
1K<=

for o<2<1, 0<6<1, all values of n, and all values of & subject to the in-
equality (2. 1221).

We may plainly ignore the factor 7e## in K. The factor in curly brack-
ets is equal to

2 (cos 2nm@ cosh 2¢w6 sinh znxwt + 4 sin 2n70 sinh 2¢{x0 cosh znxwi).

The factor e#7* we separate into its real and imaginary parts. When we
multiply these two factors together our integral splits up into four, of which
the integral

- g—2knt

(2. 1232) fcos t®wx cosh 2¢70 sinh znxntm dt

1

is typical; and it will be sufficient to consider this integral, the same arguments
applying to all four.

The function 1/(x— e 2*) decreases steadily as t increases from 1 to «.
Hence, by the second mean value theorem, the integral (2. 1232) may be writ-
ten in the form

T
(2. 1233) Afcos 2z cosh 2¢tw0 sinh 2naxnt e~ d¢,

1

where 4 (as always in this part of the paper) denotes an absolute numerical
constant, and T'>1. In (2. 1233) we replace the hyperbolic functions by their
expressions in terms of exponentials; and the integral then splits up into four,
of which we need only consider

T
(2. 1234) A ] cos 2y e—2mtlh—na—0) gt

1

the arguments which we apply to this integral applying @ fortiori to the rest.
The integral (2. 1234) may, by another application of the second mean value
theorem, be transformed into
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s
(2. 1235) A] cosimxdt,! (x<T' <T)

1

Now, if T and T" are any positive numbers whatever, we have

T TVz
cos Pz dit = — | cos mu? du;
Vz
TVz

and the integral last written is less in absolute value than an absolute constant.
We have therefore proved the equation (z. 1231), and it follows that

n , k—1 Zl /;
(2. 1236) 2 ez cos 2 vl —2 2 je”’"‘ cos 2vmz cos 2znfdz =K'+ O ]/ 2
1 1
0 0y

2. 124. The next step in the proof consists in showing that, in the equation
(2. 1236), k may be regarded as capable of variation to an extent O(1) on either
side, that is to say that we may replace k by any other integer %' lying between
k—A and k+ A, without affecting the truth of the equation. That this is
so if k is increased is obvious from what precedes, as the inequality (2. 1221) is
still satisfied; but when k is decreased an independent proof is required.

We consider separately the effects of such a variation on the two sides of
the equation (2. 1236). As regards the left hand side, it is plain that our
assertion will be true if

n

) A1
fe""”” cos 2zmadz=0 ]/;

9

uniformly for all values of » and a, and therefore certainly true if

n

feﬂ:ri.‘r+2zm'a dz=0 ‘I/_E .
x

0

! The A in this formula is of course not the same numerical constant as before.
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But
7 n
fet*niz+2zm'adz —_— e——nia?[zfenix(:+a{x)2dz
y )
ntale
= e~z | getmiz dz
ajx
nVz4alVa
— __]_:: e—m'aﬂl.z‘ e:u'u2 du;
z
aH/E
and this expression is evidently of the form desired.
We have now to consider the effect of a variation of k on the right hand

side of (2. 1236). The difference produced by such a variation is plainly of
the form

Y — g—2nt

1
—2kat __ o2k wb
Ofle |e2nt(n:c+0) dt
0

1
=0 f e—2atlk—ne—0) J¢
&

=0(1)=01/%-

Thus finally we may regard the k which occurs on either side of (2. 1236) as
capable of variation to an extent O (1).

2. 125. We proceed now to replace the integrals which occur on the left
hand side of (2. 1236) by integrals over the range (0, ). We write

n o o
I, =fe”’m'” co8 zvmz cos 220 dz =f—f-= I—1I.
0 0 n

Now consider the integral

fe*”m"' cos 2vmz cos 220 dz,

taken round the rectangular contour whose angular points are =, n + N,



206 G. H. Hardy and J. E. Littlewood.

n+ N +4H, n+¢H. The modulus of the subject of integration is less than
a constant multiple of

e—2:¢r](§z-v—ﬁ);
and from this it is easily deduced that, if
v+ 60<nzx,

the contributions of the sides (n + N, n+ N +iH) and (n + N + ¢H, n + ¢H)
tend to zero as N and H tend to infinity, and so that the second integral
which occurs in our expression for 7, may be replaced by one taken along the
line (n, n + 7). In order that this transformation may be legitimate for
=0, I,..., ¥ —1 we must have

(2. 1251) EF<nx+1—80.

It is important to observe that this condition and the condition (2. 1221)
cannot always be satisfied with k= k'; but that the difference between the least
k such that k> nx + 6 and the greatest &' such that X' <nz + 1 — 6 cannot be
greater than 1.1

On the assumption that (2. 1251) is satisfied, we have

n+io
(0 — 2niz
2 Z‘,Iv e*' 1% cog 227l
0

n

gin (2k — 1)z
( : ) dz
sin 7z

sinh (2k'—1)nt

0 t
sinh w ¢ d

=1 /e("’—””""—z"”" cos 2(n + it) b
b

I,

say; and so, bearing in mind the results of the analysis of 2. 124,

o0
k-1

”
1 . .
(2. 1252) 2, e’z co8 2y wl—2 2,/ ez 0og 2vwz o8 22wl dz
0 0 9

=K'—L+0 ]/-I--
x

1 It is these facts which render necessary the analysis of 2. 124.
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2. 126. We next write

@ 1 @
o f- v
0 0 1

and we proceed to show that
L'=0 ]/E,
x

8o that L may be replaced by L' in (2. 1252). The argument is practically the
same as that of 2. 123. We have to consider a number of integrals of which

w

(2. 1261) [cos £ x cosh 2t e—nent

sinh (2% — 1)t

sinh 7wt 4

is typical. Writing ze~®/(1—e—2%) for cosech w¢, observing that the factor
1/(x —e?"?) is monotonic, and using the second mean value theorem as in
2. 123, we arrive at the result desired.

We may accordingly replace L by L' in (2. 1252). And our next step is
to show that the &' which occurs in this modified form of (2. 1252) may be
regarded as capable of variation to an extent O (1). Here again our analysis is
practically the same as some of our previous work (in 2. 124), and there is
therefore no need to insist on its details. We may now write (2. 1z52) in
the form

ke ]

[ k—1
(2. 1262) Z'e”"’m'z cos 2 wrﬁ—zz fe’zmz cos ¥z ¢os 227wl dz
0o 0
=8—e+0 V%
x
where
[ : 2t
. . [ . .
R = zf grin(n®—t) I——e—_@{eg"“‘ cos z2(n —1t) mO—e—2n25t cos 2(n + 1t)n 6} d,
0
(2. 1263)

1
2 =zfe”i‘”("2—‘2)°2"mt cos 2(n + it)d

0

sinh (2k—1) i

ginh ¢ at;
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and, as the k’s which occur in these equations may all be regarded as capable
of variation to an extent O(1), there is no longer any reason to distinguish
between k and k'.

2. 127. Again
- (n?—22)
I . [em&in™—
(2. 1271) Q—8=;2medt,
0
where
Q = e~ h—at { g2neat ooy 3 (n — it) wl — e~ 2=t cos 2 (n + it) O}

—ze~tment ginh (2k— 1) 7wt cos 2(n + it) w0
= 2 cos 2nmf cosh 2¢ixlsinh (2nx— 2k + 1) 7t

+ 27 8in 2nnwf sinh 2¢t76 cosh (2nzx—2k + 1) 7.
We select the value of k& for which

—1<z2nx—2k +1<71;
and the integral (2. 1271) splits up into two, of which it will be sufficient to
consider the first, viz.

1
sinh (znz — 2k + 1)t

(2. 1272) 4 cos znnafem‘x(n?—t?) cosh 2¢m6 L 2 dt.
0
This is of the form
1
(2. 1273) O(I)j'e“"”"‘ cosh 2¢76 s____;?nhh ‘::tdt,
by

where «=|2nz— 2k + 1]. It will be enough to consider the real part of this
integral, the imaginary part being amenable to similar treatment.
The function

sinh axt

sinh «t (0<a<1)

decreases steadily from « as ¢ increases from zero. Hence
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T

1

cos wxt?® cosh ztnOM dt =« | cos mat® cosh 270 di
sinh ¢

0

0

T
= ¢ cosh zznﬂfcos mxtddt,

¢!

t and 7' denoting positive numbers less than 1. Since o< <1, 0<0<1, the
first factor here is of the form O (x); and the second is (cf. 2. 123) of the form

0 l/% Hence finally
f—2=0 ]/3
x

and so the left hand side of (2. 1262) is itself of the form 0]/%
2. 128. But

. by 7 . 2yl
eﬂnzz‘ COS 27z cOS 2zl dz — _—-l/_... e*—nl(ﬁﬂ-mﬂ)la‘ cos A
2 x X
0

Substituting this expression in (2. 1262), and observing that k may now be
supposed to be the integral part of nx, we obtain

Theorem 2. 128 If o<z <1, 0<0<1, then

n

~ ne
) B ) . 2vml I
Y i@ cos 2 vl — l/— el N gl cog — =0V
x

where O ]/% denotes a function of m, x, and 0 which s in absolute value less

than a constant multiple of .I/:?

We have omitted the lower limits of summation, and the dashes, which
are now plainly irrelevant.

We can also prove, by arguments of the same character as those of
§§ 2. 121 ef seq.,

1 LinpeLovw, L. c., p. 4.

Acta mathematice. 87. Imprimé le 22 avril 1914. 27
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Theorem 2. 1281. Under similar conditions
ie@—%y”h cos (z- —1) nﬂ—l/z gtz 'i(—— 1) e=*™I% cos 2vel _ g l/i
v x x z
n 0 ne 1\2 .
— 1)v g2l . * — ai0?] (7—5) m[:: (ZV*I V,
2( 1)¥ eV cos 2w l/;e ’Z.e =0

It will hardly be necessary for us to exhibit any details of the proofs,
and we will only remark that the integral

fe'*""‘ cos 2z cot wz dz
of 2. 121 is replaced by one or other of the integrals

fef’”"" cos 2276 tan wz dz, ] €17 cos 2zl cosec wz dz.

It is on the transformation formulae contained in Theorems 2. 128 and 2. 1281
that all the results of this part of the paper will depend.
2. 13. We have the following system of formulae:

sa(z+1, 0)=Visi(z, 0),
stz +1,0)= si(z, 0),
si(zx+1, 0)= si(x,0),
si(—wz, 0)= si(z, 0),
si(—z, O)= sz, 0),

(2. 131) shi(—=z, O)= shl(z, 0),
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Here s, denotes the conjugate of s,. It will be convenient in what follows to
write 01/% in the equivalent form

0(1)‘
Vz

Now suppose that x is expressed in the form of a simple continued fraction

I 1 1

(2. 132) a—‘ —a—;-l-a;'--,
and write
(2. 133) g = Ty = —

. I33 xS e a

0= [2], 0=%—[0]...
x x x, x,

so that

o<2z,<1, 050,<1

for all values of . Further, let 1, denote an unspecified index chosen from
the numbers 2, 3, 4; and let w denote a number whose modulus is unity but
whose exact value will vary from equation to equation.

This being so, we have

© 0 O(x)
SZ'L(Z, 0)—_—?;:8:'12(—-5! 5) + Tx
=V%Sﬁ',lw( a,—x,, 0,) +QV%
_ 9 0(1)
- V:;sﬁw( xn 01) + V;
=V—a;_§f;m(x1, 6,) + 9‘/—%—)-

Transforming s (x,, 0,) in the same way, we obtain

st (x, 0) =

Az I __:_[__
Vor sl (%, 6,) + O(1) { Va + Vx-aZ}
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Repeating the argument, we find

s} N L
e E A
I I
(){V_— Vxx‘ Vxxl_”xv_l}
(2. 134)
. ons, Bori)
m—lxv ALZL. e Ty Ty v+l Yv4l
X 1 .
+ 0D —+ —— + - |
(){ Va z, V;xl....x,,_lx,,}
Now
I
<—
I+ 2
Tr+l I
. - G 1
(2. 135) 2 @y < 0 <L

and so xz,...%,~—0 as r—w. We may therefore define » by the inequalities
(2. 136) NELy .. Tyt Ty <I<NIE, ... Ty
This being so, the first of the equations (z. 134) gives

six, ) =0(nVzz, ... z)
(2. 137)

I
+0“){V‘ vt +T/xx——“_'——ﬁ}

and the second gives

(2. 1371) st(x, 0) = 0(1){V_ V_ +V§§;—I—? = }
] v s s Lyl Wy

We have thus two inequalities for s (z, 6), the further study of which depends

merely on an analysis of the continued fraction (2. 132). These inequalities,
however, may be simplified. For, by (2. 135), *r@ps1 <-;—, and so

1
o
TE, ... Xy

I
+__.._.
Ve,

N

_——— (I + va—l + Vx,._gx,,_1+--~+ %, ... x,,.l)
bxxl « e e Tyl
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1 1 I 1, I
e —————————— ___+_: -+_+ .")
<Vxx, e Ty I+I+V2 Vz +2 2
K
< —
Vxx, « o« Xy—1
Hence (2. 137) may be replaced by
(2. I38) Si't(x, 0)=0 (nml [N 90,,._1) + 0-:—__1._—*——:,
wal o0 Ty—1
and similarly (2. 1371) may be replaced by
(2. 1381) st (xz, 0)=0 N S—
Vaz, ...z,

2. 14. From (2. 138) and (2. 1381) we can very easily deduce the principal
results of this part of the paper.

Theorem 2. 14. We have

sn(x$ 0)=O(”’)

for any irrational z, and uniformly for all values of 6. In particular, if 0 =o,
we have

8p=0(n)

Since nzx, ...2,—; > 1, the second term on the right hand side of (2. 138)

is of the form O(Vn). And since zz,...%,_1—o0 as ¥—oo, the first is of the
form o(n). Thus the theorem is proved.

Theorem 2. 141. If the partial quotients a, in the expression of x as a con-
tinued fraction are limited, then

su(z, 6)=0(Vn),
uniformly in respect to 0; and in particular
8y = 0 (ﬁ) .

These results hold, for example, when x is any quadratic surd, pure or mized.
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Yor, if a, < K, z, lies between

and so
T .. Ty By D> XX, ... 1| K> 1/ (nK).

Using (2. 1381), the result of the theorem follows.
Theorem 2. 142. If a, = 0(ne), then

1 1
sn(z, )= o{n2 (log n)ﬂ"}.

Theorem 2. 143. If a,— O(e%n), where g<§ log 2, then

1, ¢
8p (x, 6) = O(n2 ¥ iog2 +'s),
for any positive value of e.

For

1
I -1
By By < SEE . By1 <2 2

where w=v» or u=w»—1, according as » is even or odd. Hence
Lu
n>2%,
v<(2 +¢)logn
log 2
But
2x,... 5> Hyr oxx, ... 2%,

where H is a constant, and so

—V_E-;I—_—;,, =O(v%0 Vﬁ) = O{n% (log n);_o}‘

This proves Theorem 2. 142. Similarly, under the conditions of Theorem 2. 143,
we have

I =O(e;_wl/ﬁ) =0(n%+r°%§+6)'

Vex, ...z
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2. 15. Suppose now that ¢(n) is a logarithmico-exponential function!
(L-function) of n such that the series

(2. 151) 2(—}—)—(17&—)

is, to put it roughly, near the boundary between convergence and divergence,
so that the increase of ¢(n) is near to that of n. Then, arguing as in 2. 14,
we see that, if a,=0{¢p(n)},

X, ... %y (}3(1/) Ty oo Ty=1,

Vaex,...a

Now it has been proved by BoreL and BERNSTEIN? that the set of values of
z for which

an=0{g(n)}

is of measure zero when the series (2. 151) is divergent, and of measure unity
when the series is convergent. Hence we obtain
Theorem 2. 15. If ¢(n) is a logarithmico-exponential function of n such

I
25w

that

18 convergent, then

sn= 0Vng (log n)
for almost all values of x. In particular, if & is positive, then
1 1
sn=0 {'n,§ (log n)§+ 6}

for almost all values of .
It was this last result to which reference was made in 2. 1.

1 Haroy, Orders of Infinity, p. 11.
? See Borer, Rendicontt di Palermo, Vol. 27, p. 247, and Math. Annalen, Vol. 72, p. 578;
BerxstelN, Math. Annalen, Vol. 71, p. 417 and Vol. 72, p. 585.
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2. 16. Suppose that a series zfu,. possesses the property that

Sn=U + U+ - + U =0{Y(n)},

Y being a function which tends steadily to infinity with n; and let ¢ be a
function which tends steadily to zero as n— o, and satisfies the condition that

p(n)
2vmd e,

is convergent. Then it follows immediately, by an elementary application of
ABEL’s transformation, that the series

@ (n)
Y(n)

Un

is convergent. This obvious remark may be utilised to deduce a number of
corollaries from some of our theorems. To give one instance only, it follows
from Theorem 2. 15 that the series

. I
En—“ e’z cos 2n7l (a > E)

18 cdnvergent for almost all values of z, and, for any particular z, uniformly
with respect to 6.
A rather more subtle deduction can be made from Theorem 2. 14. It does

not follow that, because s, =o(n), the series 2% is convergent; and indeed
we shall see later that it is not true that (e. g.) the series

(2. 161) e
n

is convergent for all irrational values of z. But it s true that, if s, —o(n),
the series 2% is either convergent or not summable by any of CESARO’s means?;

and this conclusion accordingly holds of the series (2. 161). Similarly, if z is
such that a,= O(1), the series

en? iz
2 Vn

! HarpY and LirrLewoop, Proc. Lond. Math. Soc., Vol. 11, p. 433.



Some problems of Diophantine Approximation, 217

possesses the same property. We shall see later that it is the second alternative
which is true.

2. 17. So far we have dealt with series in which the parameter 6 occurs
in a cosine cos znm@ or cos (2n— 1) 0. It is naturally suggested that similar
results should hold for the corresponding series involving sin znw@ and
sin(zn—1) 720; and this is in fact the case. These series are, from the point of
view of the theory of functions, of a less elementary character: they are not
limiting forms of series which occur in the theory of elliptic functions. But it
is not difficult to make the necessary modifications in our analysis.

We write
( 1\? .
on(z, 0)= 26(”—5) " sin (2% — 1) 70
v <n
(2. 171) o4(x, 0) = X, e sin 297 6

v<n

oi(z, 6)= 2 (— 1) ™= gin 297 0

\ v<n

Theorem 2. 17. If o<z<1, 0<0<71, then

oh (, 0)=l/£e‘“‘”2/“ o:w(_i, g) +0 ]/j;,
8 Tb: . '02 3 I 0 ;
on(x, 0)= ;e W G — z +0 P
4 7'_ - 2 1 0 I
oz, =)/ Lemtteain (L D)+ 0 ) 2

uniformly in respect to 0.
Let us consider, for example, the second of these equations. We start
from the integral

fe‘”“i‘” sin 22760 7z cot wz dz,

and we arrive, by arguments practically the same as those of 2. 121—2. 127,
at the equation

@

7 nz
. . . 1
(2. 172) 2 e™iT gin 29wl — 2 2 €™ co8 2 vtz 8in 2270 dz =01/5-
0

Acta mathematica. 37. Imprimé le 22 avril 1914. 28
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The only substantial differences between the reasoning required for the proof of
this equation and those which we used before lie in the facts, first that some
of the signs of the principal value which we then used are now unnecessary,
and secondly that the two integrals along the axis of imaginaries no longer
cancel one another. These integrals, however, are of the form

o

s e—2knt
et ginh 2tm@ ———— dt

1—e 27"
¥

and are easily seen to be small when k is large. They are accordingly without
importance in our argument.

The integrals which occur in (2. 172), unlike the corresponding cosine
integrals, cannot be evaluated in finite form. We have, however,

@

(2. 173) 2]6’2’"’” cos zvmzsinzznd de=I(v + 6)— I (v —6),
]
where
(2. 174) 1(A) =‘/\e*’f"'-T sin 2z 4 dz.
0

Now let us consider the integral
fez’ni.t+2zniA dz (A > 0)

taken round the contour defined by the positive halves of the axes and a circle
of radius R. It is easy to show, by a type of argument familiar in the theory
of contour integration, that the contribution of the curved part of the contour
tends to zero as R— . Hence we deduce

@ a
2 R . im .
fezma:+%mA dz=zfe 2aiz-- 2w A dt’
0

0
and so
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I(4)= %fez’”‘”(ezmm-cos 2zmAd)dz

(]
«© @
=1 f ez cos 2emAdz + f e—tniz—2UxA
0 0

Again, it is easy to show that

8

—L2rig—24n A :E _I— )
.[e = dt AT 0 (As)

0

where 8 =1/27. Hence

I(v+ 0)—I(V—0)=ife22m'”{cos 2(v+0)mz—cos2(v—6O)mz} dz

0

y+0 v—0

= Vi e'—(02+’vz)ﬂi[-t sin %.@ + 0 i) .
. z x 2

From (2. 171), (2. 173), and (2. 175) we at once deduce the second equation of
Theorem 2. 17; and the others may be established similarly.

2. 18. From Theorem 2. 17 follow the analogues for the sums o of those
already established for the sums s. Thus we have

Theorems 2. 18, 2. 181—4. The results established in Theorems 2. 14,
2. I41—3, 2. 15, for series involving cosines, are true also for the corresponding
series involving sines.

2. 19. The preceding results have a very interesting application to the
theory of TAYLOR’s series.

Let

(2. 175) ' + P p + 0 (%)

f(Z) = Eanzn

be a power series whose radius of convergence is unity, and let, as usual, M (r)
denote the maximum of |f] along a circle of radius r less than 1. Further,
suppose that

M(r)y=0(x—r)—,
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and let
g(r)= 2 lan| ™.

Then it is known that!
.
gir)=0@x—r) =

Further, it is known that the number% occurring in the last formula cannot

be replaced by any smaller number, that is to say that, if J is any positive
number, a function f(z) can be found such that the difference between the

orders of g(r) and M(r) is 2——6.’ But so far as we are aware, no example
has been given of a function f(z) such that the orders of g(r) and M (r) differ
by as much as 2 We are now in a position to supply such an example.

Let
)= 3 evmitan,

where £ is an irrational of the type considered in Theorem 2. 141, so that the
partial quotients in its expression as a continued fraction are limited. Then, if
z=re2"0 we have, by Theorems 2. 141 and 2. 181,

S, = zevzai§+2m£0 = 0(Vn),

uniformly in 8; and from this it follows that

f(Z) — " (reﬂm'ﬁ) = 2 gn gninit+2nail — OV_I—— ,

I—7r

uniformly in 6. Hence

M(r)=0 l/;—i:r,

gir)= ="

while

1 Haroy, Quarterly Journal, Vol. 44, p. 147.
? Harpoy, ! ¢, p. 156.
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Thus the orders of g(r) and M (r) differ by exactly % If we consider, instead
of f(z), the function

1
—_— 9 sn I
Zn“ 2 emnif gn (o <a< E) )

we obtain in the same way an example of a function such that

M(r)=0 (1 —r)"e,

S oo F(a+§+)l;
(x—r) 2

These examples show that the equation
M(@r)=0(1—r) (¢ >0)

does not involve

gir)=o(1—r) " %
a possibility which had before remained open.!

2. 19. Theorems 2. 14 etc. also enable us to make a number of interesting
inferences as to the behaviour of the modular functions

Eq(@_%)i et J(—1rg

as g tends along a radius vector? to an irrational place et on the circle of con-
vergence. Thus from Theorem 2. 14 we can easly deduce that, if f(g) denotes
any one of these functions, then

10}

Hg)=olz—lgh %

and from Theorem 2. 141 that, if £ is an irrational of the class there considered,

then
1

He)=0@—lq]) *.

! Haroy, L ¢, p. 150.
? Or along any 'regular path’ which does not touch the circle of convergence.
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These results are, however, more easily proved by a more direct method, which
enables us at the same time to assign certain lower limits for the magnitude of
I1f(9)l, and to show that Theorems 2. 14 et seg are in a certain sense the best
possible of their kind. It is to the development of this method, which depends
on a direct use of the ordinary formulae for the linear transformation of the
J-functions, that the greater part of the rest of the paper will be devoted.

2. 2. — £ Theorems.

2. 20. We have occupied ourselves, so far, with the determination of cer-
tain upper limits for the magnitude of sums of the type s,. Thus we proved
that s,=o(n) for any irrational , and that s, = O (Vn) for an important class
of such irrationals, including for example the class of quadratic surds. But we
have done nothing to show that these results are the best of their kind that
are true. The theorems which follow will show that this is the case.

We shall begin, however, by proving a theorem of a more elementary cha-
racter which involves no appeal to the formulae of the transformation theory.

Theorem 2. 20. Suppose that ¢(n) is a positive decreasing function of n,
such that the series th(n) 18 divergent. Then it is possible to find irrationals x

such that the series
2 P (n) en’m’z

18 not convergent. The same i3 true of the series

1\¢ .
29(n) (=5)"ie S(— 1) (n) eniiz,

and of the real and imaginary parts of all these series.

Consider, for example, the real part of the first series. We shall suppose
that, among the convergents p,/q, to z, there are infinitely many of the form
2A/(4n + 1). Let (g,) be a subsequence selected from the denominators of these
convergents. We are clearly at liberty to suppose that the increase of a,.1,
when compared with that of any number which depends only on ¢, and the
function ¢, is as rapid as we please.

We shall consider the sum
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A,q,—1
8, = 2 @ (n) cos (n®wx),

Iy

where 4, is an integer large compared with ¢, but small compared with ¢,41/4¢,.
We shall suppose A4, so chosen that

3 4yqy

(2. 201) g, 2 @(n)—
2y

(2. 202) a1/ Ay gy — 0

and we shall show that, in these circumstances, |S,] tends to infinity with »,
and hence that the series

z @ (n) cos (ntmx)

cannot converge.
We may consider, instead of S,, the sum

A,g,—1
(2. 203) 8'y = D o(n) cos (nw p,/g,).
9y
For
4,9,—1
S,—8, = 2 @ (n){cos (n®mwx)—cos (n®wp,/q)}-
Iy
Now

qv Qv q"u+1 q'v1

ns(__ﬁv_”: n_ A

where a',4; is the complete quotient corresponding to the partial quotient a,.q,
and ¢'y41==a'y41¢» + ¢»—1; and from this it follows that |S, —8',| is less than a
constant multiple of

4,91
4, g
7 ql D o),
v @

and so of
43 e/ q'w+1 <4y qv/av+1.

Thus 8,—8',—o0 as v — w0, in virtue of (2. 202).
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We may write §, in the form

A,~1g,—1
8,=2 2 ¢ (rg, + 8) cos (s*zmp,/q).

r=1 s=0

If in this sum we replace ¢(rg, + s) by ¢(rg,), the error introduced is not
greater than

Ay~1g,—1 A,—1
> Dlptra)—olre +9)3<q 2 {@(re) —ollr+ 1) 0]}
r=] 8=0 reml

<P ().

Thus, with an error not greater than ¢,¢(q,), and a fortiort not greater than
¢, @ (1), we can replace §', by

Ay~-1 gy—1 _A,,—l
(2. 204) 8= X g(rg) D cos(s*np,/g)=+ Vg, D ¢(rg).
re=] sm=0 rm]
Now
quy
@) +92g) + -+ o{(4—1) g} > — 2 @ (n)
I 4,4,
>— F pn)—o(1),
Qv .
and so
-
18| > VI— 2 P(n)— Vg, p(1).
Hence

S” 3 4,49,

qv

which tends to infinity with », in virtue of (2. 201). Hence §',, and so §,,
tends to infinity with »; which proves the theorem.
In particular it is possible to find irrational values of z for which the series

cos (n®mx) cos (n’nx)
2 2

n n log n

are not convergent.
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2. 21. We shall find it convenient at this stage to introduce a new nota-
tion. We define the equation

|=2(g),

where ¢ is a positive function of a variable, which may be integral or con-
tinuous but which tends to a limit, as meaning that there exists a constant H
and a sequence of values of the variable, themselves tending to the limit in
question, such that

IfI>Ho

for each of these values. In other words, f =2 (p) is the negation of f =o(gp).
In the notation of Messrs WHITEHEAD and RuUSSELL we should write

=2(9).=.co(f=0(g)). Df.

2. 22. We shall now prove the following theorems.
Theorem 2. 22. If x is irrational, then

8, = R (Van).

Theorem 2. 221. If ¢ is any positive function of n, which tends to zero as
n-— o, then it is possible to find irrationals x such that

8 =2(n@).
These theorems show that the equation

3n=0(l/';l:),

established by Theorem 2. 141 for a particular class of values of x, cannot pos-
sibly be replaced by any better equation; and that the equation

Sn=0(n)

of Theorem 2. 14 is the best that is true of all irrationals. We shall deduce
these theorems from certain results concerning the elliptic modular functions.
2. 23. We write

q= et — em’(z+iy) = = TY+miz

= reni® (x>0, y>o0, 0<r<i).
Aeta mathematica. 31. Tmprimé le 23 avril 1914 29
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© 1\2
3, (o, 1)=22q(n 2) ,
1

g0, Ty =1+ 2 Zq”z,

(0, 7)=1+2 E(———I)"q'ﬂ.
1

We suppose that p,/g¢, is a convergent to

I
T—= =4 = .
Gy G,

and write
Pr=19n — PnGn—1 = Np = +1I.

We shall consider a linear transformation

p_¢ +dr
T a+ bt
where
a = pp, b =—gn,
} (Pn Odd))
C = Tn Pn—1, d=_'17nq»—l,
a = — Pn, b=Qn’
' {pn even).
c=—"7?npf;—l, d=1}nq’a—1,

In either case ad —bc=n) =1.
Finally, if a'y4; is the complete quotient corresponding to a,41, we write

@'nt1=0'n41qn + gn1,
and we take
Y=1/(gnq'ns1)-
When
Pn—1 18 even, Pn 18 odd, .

qn—1 18 odd, qn is even,

we shall say that the convergents pa—i/gn—1, Pn/gn form a system of type

(EO‘
0 E
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There are six possible types of system, viz.

oz (o5 (oo za) (20 o0

which we number

-

IO’ 20, 30, 40, 50, 60_

The following remark is of fundamental importance for our present purpose.
In any continued fraction whatever, one or other of the systems 1°, 2°, 5°, 6° must
occur infinitely often. This appears from the fact that the second column in
cases 3° and 4° is O, O, and that all cases in which the first column is O, O
fall under 1°, 2°, 5°, or 6°.

2. 24. In cases 1°, 2°, 5° or 6° we have

I

‘93(0x ’5)= — 19(0, T)’

wVa + br

where w is an 8-th root of unity, and 9 stands for one or other of 9, and J,.!
Now

. —i| V2
Ia+bz’|=|p,,—qnx—qn1/y|=l:t,1 z|= 12 :
9n+1 T n41
Also, if @ = e¢¥T, we have
IQI=6-—"1’
where
ct+dry  _(d 1
A=I(T)—I(a+br)~1{b b(a-{-b';)}
— y =qln+1 >t
(t/g'n1)*+qny® 29 = 27
Hence

1
Ql<e "<1/(4.8)<.z21,

2|Ql+2|Q|* + ---<z2(.21) +2(.21)* + ---

<L
2

' T. and M., Vol. 2, p. 262 (Table XLII).
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|‘9(°’ T)|=|Ii2Q+2Q‘:}: |>2

Consequently

|‘93 (0, T)I >qu’n+1 > K VQu q,n+1 = KVI/y

From this follows at once
Theorem 2. 24. If g=re™®, where x is irrational, then

oS —al/ 1]
N I—r

From this we can deduce Theorem 2. 22 as a corollary. For if we had

as r—1I.

3n=0(l/ﬁ)9

the series
I+ 2 Ze"’""-"r"’ = E Up 1™
1
would satisfy the condition

Ug+ Uy + - + un=0(Vn),

and so we should have

2u,.r"=(x——r)2(u.,+ul+ s Uug)

—(x—1) Yo (V)

"

an equation which Theorem 2. 24 shows to be untrue.
Again, let ¢(1/y) be any function which tends to zero with y. We have

[95(0, )| >KVgns1=KV1/gny.

We choose a value of x such that, for an infinity of values of n corresponding
to one of the favourable cases 1°, 2°, 5°, 6°, we have

V1/gn> @ (gnq'nsr);
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this may certainly be secured by supposing that a,.; is sufficiently large. We
have then

1950, )| > KVi/yep(x/y).
From this we deduce

Theorem 2. 241. Given any function ¢ which tends to zero, it 18 possible to
find irrational values of x such that

1 +2$(I"2=Q{l/:__1_:(p(1-l—r)}

when ¢ =re™® gnd r— 1.

From this theorem Theorem 2. 221 follows as a corollary just as Theorem
2. 22 followed from Theorem 2. 24.

2. 25. It is interesting to consider a little more closely the case in which
z is an irrational for which a, =0 (1).

Let us, instead of considering only the special value 1/(gn ¢'n+1) of ¥,
consider the range R, defined by ‘

I I
< =
q':.+1 =Y qn
or
N <y< ,
In q’n+1 —y—_WQn q'n+1

where 7 =g¢u/¢'n+1. It is clear that, for different values of =, these ranges
cover up the whole range of variation of y. If now y=1_/(gnq'n+1), so that
n<{<1/7m, we have

A y _ & dan,
(1/¢ns)* + quy® 1+E* qn

The least values of 4 correspond to { =y, 1/7; and then

— fan T

g gn + @'nt1 > 2
Suppose first that » corresponds to a system of one of the types 1°, 2°, 5°, 6°.
Then the argument of 2. 24 shows that the absolute value of 9(o, T) lies

between —21— and Zl If on the other hand n corresponds to a system of type 3°

or 4°, we have
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I
40, T)=——=—=—3,(0, T).
Js(0, 7) v 9 (0, T

Now

9, (o, T)=2Q1 (1+@+@+--),
and the absolute value of the second factor lies hetween 2— and 2— On the
other hand A lies between ¢'3+1/(qh + ¢'a41) and ¢'us1/2¢n, and a fortiori between
—;— and —Z—(K + 1), where K is the greatest value of a partial quotient. Hence
in this case also |9 (o, T')| lies between fixed positive limits.

Thus, as the ranges R, fill up the whole range of variation of y, we can
determine two constants H,, H, so that

i,

H,
< ——— .
Vla + be|

Via + bs]
T ¢ I

e ol
la +bs] ]/ Wgig T y)

and it is easy to see that the second factor under the radical lies between fixed
positive limits. Hence we obtain
Theorem 2. 25. If q=re™s, the partial quotients to = being limited, and

r—1, then
4
I+ziqrﬂ ~r 1 1
" I—7

2. 26. In the preceding discussion, the argument which showed that

|‘93 (o, T)I
But

A >§ was independent of any hypothesis as to the continued fraction. Hence

we have in any case
H, _ H,
Vla + b’l’l f/ (

“93 {o, T)‘ <

I/¢a+1)* + qny®

I 1
=0!—=)}=o0 (—:) H
{ Vany } Vy
as g,— . Hence we obtain

Theorem 2. 26. For any irrational value of x, we have

! The formula f><¢ implies that [f]/¢ lies between fixed positive limits: see Harpy,
Orders of Infinity, pp. 2. 5.
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1 +2ZQ"2=O{V._‘ }
1 I —7

This result may of course also be proved as a corollary of Theorem 2. 14, by
reasoning analogous to that used in 2. 24. But the direct proof is none the
less interesting.

2. 27. The argument used in 2. 24, in deducing Theorem 2. 22 from Theo-
rem 2. 24, may be adapted so as to prove an interesting generalisation of the
former theorem. Let us write, as before

w
I+ 2 26”2"“'7"2 =2unr”,
1

and suppose that k!Sﬁ/n" is one of CESARO’s means associated with the series

2“"“ Then
(2. 271) S’;=.Q(nk+%).

For if this were not so, we should have

1
2u,,r”=(1 — )+l ZS,’;W = (1 — r)k+ 2 0 (nk+4_) ™

=y =}

From (2. 271) it follows that the series Zu,, cannot become summable (Ck) on
1
the introduction of a convergence factor n 4.1 And from this we deduce

Theorem 2. 27. The series
zn—a enﬁm'z (‘x S E)

cannot be convergent, or summable by any of CESARO’s means, for any irrational x.
We need hardly remark that the same is true of

N

(n— l»)2m'.1: 9. 2
2 n—a_ e 2 , 2 (__ I)” n—a NPT,

On the other hand, if o> i, all these series converge presque partout (2. 11, 2. 16).

* Haroy and LrrrLeEwoop, Proc. Lond. Math. Soc., Vol. 11, p. 435.
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2. 3. — An application to the theory of trigonometrical series.!

2. 30. The problem of finding a trigonometrical series whose coefficients
tend to zero, and which converges, if ever, only for a set of values of the ar-
gument  of measure o, was first formulated by FaTou? and first solved by
Lusin.® The results of the earlier part of this paper have led us to a solution
of Fatou’s problem which seems to us to have considerable advantages over
Lusin’s.

We can, in fact, prove the following theorem, which is an extension of
Theorem 2. 27.

Theorem 2. 30. The series

2 n—¢cos (nmwzx), 2 n—esin (nzx),

1 s
where 0 <a< 5 are never convergent, or summable by any of CESARO’s means, for

any irrational value of x.4

Considered simply as solutions of Farou’s problem, these series have, as
against Lusin’s, two advantages. In the first place, they are series of a simple,
natural, and elegant analytical form. In the second place, the problem of con-
vergence is solved completely; there is no exceptional set of values of z for
which doubt remains.®

2. 31. We proceed to the proof of Theorem 2. 30. This theorem is a
corollary of

' An abstract of the contents of this part of the paper appeared, under the title »>Tri-
gonometrical Series which Converge Nowhere or Almost Nowheres, in the Records of Proceed-
ings of the London Math. Soc. for 13 Febr. 1913.

? Acta Mathematica, Vol. 30, p. 398.

* Rendiconti di Palermo, Vol. 32, p. 386.

* The cosine series converges when a is a rational of the form (244 1)/(2p+ 1) or
21/(4px + 3), the sine geries when z is a rational of the form (244 1)/(2g 4 1) or 24/ {4p + 1)
(see 2. o1), In the abstract referred to above this part of the result (which is of course trivial)
was stated incorrectly.

% It is only since this paper was written that we have become aware of a different solution
given by H. Stevmavs (Comptes Rendus de la Société Scientifigue de Varsovie, 1912, p. 223).
STEINHAUS also solves the problem of convergence for his series completely; they converge, in
fact, for mo values of 2. Thus in this respect our examples have no advantage over his; the
advantage, if anywhere, is on his side. In respect of simplicity etc. our examples have the
advantage over his as much as over Lusix's.
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Theorem 2. 31. If q=re™®, where x is irrational, then, as r — 1, both the
real and the imaginary parts of

fl@=1+ 239”’

1
4
are of the form S){'I/ I }
I—7r

In faet, when once this theorem has been established, Theorem 2. 30 follows
from it in the same way as Theorem 2. 22 followed from Theorem 2. 24¢. And
the proof of Theorem 2. 31 is in principle the same as that of Theorem 2. 24,
though naturally more complicated.

Our notation will be the same as in 2. 23. We shall prove first that, in
cases 1°, 2°, 5% and 6°, we have

-1
3

(i) [9:(0, 7)]> Ky 4,

(ii) am 9, (o, 'r)’—zmﬁ >4

for all integral values of m, K and & being positive constants, provided either
(0‘) Gnt1 > 1

(ﬁ) Upny1 =1, Opy2=1.

We shall express this shortly by saying that 1°, 2°, 5°, 6° are favourable cases,
except possibly when

A1 = I, Any2> I;

a ’favourable case’ being one in which we can prove the inequalities

1 1
(2. 311) [R{F (0, ©)}|>Ky~%, [I{I(0, 7)}|> Ky 1.
We have
1
. I, (0, T) = —— 9(o, T).
(2. 312) 1(0, 7) Vo The (o, T
If ans1>1,
_ —adpq1/Up —x o X,
IQ"—'e <e < 233

and if a1 =1, Gniz=—1,

Acta mathematica. 37. Imprimé le 22 avril 1914. 30
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Ot 1y T @13,
gn A'ny2 dn 2
3
S I
lol<e™ "<
In either case

21Qf +2|QI + - <3

and so
{2. 313) 19 (o, T)|>%» jam 9 (o, T)}< arc tani—<;1;7r.
Again
a+br=+ (hn+ 1)/ qns1,

1 -1

(2. 314) ja + bz} =2 *Vgun>Ky 4,
1 T T

(2. 315) am{(a +b7) }E—-B—v;,,fz (mod. —2~1r)~

From (2. 312), (2. 313), (2. 314), and (2. 315) it follows, first that the modulus

1
of 9;(o, 7) is greater than a constant multiple of y~ % (as has been shown already
under z. 24), and secondly that

__ 1 kS T ),
(2. 35)  am9,(0, O)=—Zrnm + { z n} (mod. )

I . 1
where {—zn} denotes a number whose absolute value is less than 57 Hence
I

am 3, (o, r} must differ by at least

from any multiple of in; and so the cases which we are considering are all

favourable.

2. 32. We shall now prove that, as n— «, favourable cases must recur in-
finitely often. This will complete the proof of Theorem 2. 31.

We represent the state of affairs, as regards the oddness or evenness of
pn and ¢n, in a way which will be made most clear by an example. If every
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pr is odd, and g, is alternately odd and even, we represent the continued frac-
tion diagrammatically in the form

000 0O0....
OEOEO....

~— and so in other cases,
Suppose first that O O occurs infinitely often above. Then one or other

of the systems
0 0 0 0)
o2 (&0

must occur infinitely often. If the first, which is system 2°, either favourable
cases recur infinitely often, or the ensuing partial quotient is always 1. We
represent this state of affairs by the symbol

0 0}.
0F

In this case our diagram continues

0 OlE
O ElO’
O B\ . . .
and as ( % 0) iz case 5°, either favourable cases recur continually, or the next
quotient is also 1, so that we have
O O|E ]
0 E|O

But then the first four letters represent a system of type 2° followed by two
quotients @n+1 =1, dn+2=1; and this is a favourable case. Thus if (g g) recurs
continually, favourable cases recur comtinually.

We consider next the result of supposing that (101;' g) recurs continually.

This is case 4° If the diagram continues with an O above, it must continue
in the form

0
o

000
EOE
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and then we can repeat our previous argument. The only alternative is that
it should continue

0O0E

EOO
— and as the last four letters form a system of type 6° the next quotient
must (in the unfavourable case) be 1. Hence we obtain

0 0 E|O,
E 0 O\E
The next quotient must also be 1; and so the system of type 6° gave in reality
a favourable case.

We have thus proved that, whenever the succession OO recurs continually
above, we obtain an infinity of favourable cases. It only remains to consider

the hypothesis that p, is alternately odd and even.

O E\ [0 E\.
If we have O E above, we have one or other of the systems ( 0 0), ( B 0),

systems 5° and 6°. Thus we have a favourable case unless a,41=1. If the
system is of type s5°, we are led to

0 E{0
O O|E

— 8o that the system is favourable. On the other hand, if it is of type 6°,

we are led to
0 E|lO,
E 0|0

As the next numerator is even, the next denominator is odd. Hence the next

system is (g g), and we have seen that this case must be favourable.

We have now examined all possible hypotheses, and found that they all
involve the continual recurrence of favourable cases. Thus Theorem 2. 31 is
established.

2. 33. From this theorem we can, as was explained in 2. 31, deduce
Theorem 2. 30 as a corollary. The latter theorem has an interesting consequence
which we have not seen stated explicitly.
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The series

2 7% cos (ndwx), 2 n— sin (n? 7 x),

I .
where « < o are not FOURIER’S series.

For if they were they would be summable (C 1) almost everywhere, by a
theorem of LEBEseuE.! It follows that trigonometrical series exist, such that

2 (lanl?+2 + [ba]?+?)

is convergent for every positive J,> which are not FOURIER’s series. This

is of interest for the following reason. If 2 (an + b3) is convergent, the series

is the Fourier’s series of a function whose square is summable.® Further if
p is any odd integer, and

S (lauf *5 + (5 45)

is convergent, then the function has its (1 4 p)-th power summable.* Tt
would be natural to suppose that the Riesz-FiscHer Theorem might be capable
of extension in the opposite direction. One might expect, for example, to find
that a series for which

2 ([anl+2 + [Ba] 1)

is convergent must be the FoURIER’s series of a function whose (1 +%)—th

power is summable. That this is not true has been shown by Youxa, by
means of the series

* Math. Annalen, Vol. 61, p. 251. See also Lecons sur les séries trigonomélriques, p. 94
where however the proof is inaccurate. A Fourigr's series is in fact summable (C9), for any
positive J, almost everywhere (Haroy, Proc. Lond. Math. Soc, Vol. 12 p. 365). That our series

. : I . . .
are not Fourier's series when ¢ < = can in fact be inferred merely from their non-conver-
2

gence, since to replace n—~a by n—8, where § is any number greater than a, would, if they were
Fourier’'s series, render them convergent almost everywhere (Younes, Comptes Rendus, 23 Dec. 1912).

? Or even for which

2 |an|1 + |on)?
log n)l+d

is convergent.

8 Thig is the ‘Riesz-Fisceer Theorem'.

* W. H. Youwne, Proc. Lond. Math. Soc., Vol. 12, p. 71
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zcos nz + 8in nx
1 1

nA (log n)?

— here p=3. Our examples however show a good deal more, viz. that as
soon as the 2 which occurs in the RiEsz-FiscHer Theorem is replaced by any
higher index, the series ceases to be necessarily a FoURIER’s series at all.

2. 34. There are other classes of series the theory of which resembles in
many respects that of the series studied in this paper. One such class comprises
such series as

2 cosec N, 2 {— 1) cosec nwzx

and the corresponding series in which the cosecant is replaced by a cotangent:
these series are limiting forms of g-series such as

2t

Another class comprises the series
2ma 1 S oo -3}

and the corresponding series in which (nx)——g is replaced by nxz. We have

proved a considerable number of theorems, relating to these various series, of
which we hope to give a systematic account on some future occasion.
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